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Abstract 

Metabolomics is an emerging field in systems biology that aims to perform a comprehensive analysis 

of a biological system’s metabolome by identifying and quantifying all its metabolites. Due to their 

high diversity in concentration, structure and chemical characteristics, this is an extremely complex 

task which requires high resolution methodologies such as mass spectrometry (MS) or nuclear 

magnetic resonance (NMR) to provide an approximated overview of the metabolome. These analyses 

also generate complex data, which, in turn, requires first suitable pre-processing and then pre-

treatment to be properly analysed – crucial steps in the workflow that must be pondered and carefully 

applied. Since there are many factors that significantly affect the metabolome, metabolomics data 

obtained from different sources and conditions has successfully been used to discriminate samples of 

biological systems and to find key metabolites supporting that discrimination. The pre-processing of 

the data generates a 2D-dataset with features (usually m/z peaks for MS analysis) on one axis and 

samples on the other. Subsequent data analysis aims to extract and highlight the significant biological 

variation between samples over the background variation in the data. Traditional data analysis in 

metabolomics focuses primarily on the comparison of intensity of the features in the samples rather 

than on information such as their presence/absence in each sample. However, a major problem of this 

analysis is the high variability of the intensity data between different samples (even of the same 

biological system) when analysed in different experimental batches, instruments, pre-processed with 

different methods or parameters, etc., which leads to a low level of reproducibility. Another bottleneck 

is the unambiguous structural identification of the metabolites that can be key in discriminating 

between the studied systems. 

The aim of this work was to develop two new approaches for the computational analysis of 

metabolomics data, in the context of profiling and discrimination of biological samples. As part of this 

development, a systematic evaluation of their performance when compared to more established 

methods for selected high-resolution MS datasets was also a major goal.  

The first approach is based on the concept of considering only the occurrence of spectral features to 

construct a binary sample vector encoding feature presence as 1 and absence as 0. The use of such data 

encoding, followed by the adoption of binary metrics of sample distance, can be used as a pre-

treatment method to transform data before the application of unsupervised and supervised methods 

related to profiling and classification. While using such pre-treatment, called Binary Similarity 

(BinSim) effectively discards information contained in the metabolite signal intensities, the resulting 

data has less variability than intensity data and more consistent results on the discrimination of 

biological systems can be obtained. Furthermore, BinSim greatly simplifies the analysis by skipping 

most of the peak filtering, and the choice of the missing value imputation, normalization and scaling 

methods to use. The performance of statistical methods in discriminating the datasets transformed with 

BinSim was consistently as good as or slightly better than datasets treated with different combinations 

of traditional, intensity-based, pre-treatments. In the former, features that appeared in one (biomarker-

like) or a few of the groups were the most important to build discriminant classifiers, which was 

markedly different from those computed from datasets treated in traditional ways, emphasizing the 

new perspective that BinSim offers. 

The second approach is based on the construction of a Mass-Difference Network (MDiN) for each 

sample, using masses as nodes and a set of mass differences derived from common biochemical 

reactions to establish edges. The information in the network is the possible transformations between 

the identified metabolites that could happen in a biological context. Results from different network 

analysis on sample MDiNs were compared using statistical methods to discriminate the samples into 
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their respective groups. Analysis that focused on node centrality measures, especially their degree, 

allowed a better discrimination of the samples compared to analysis focused on global network 

characteristics and was on par with the discrimination achieved in the same datasets treated with more 

established intensity-based methods, while offering the versatility of other network analysis methods 

on the sample MDiNs to complement the discrimination. 

 

Keywords: Metabolomics; Data Analysis; Data Pre-Treatment; Statistical Analysis; Network 

Analysis.
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Resumo 

A metabolómica é um campo emergente na biologia de sistemas que visa realizar uma análise global 

do metaboloma de um sistema biológico ao identificar e quantificar todos os seus metabolitos. Devido 

à alta diversidade na concentração, estrutura e caraterísticas químicas dos metabolitos, esta é uma 

tarefa complexa que requer a utilização de metodologias de alta resolução como espetrometria de 

massa (MS, Mass Spectrometry) ou ressonância magnética nuclear (NMR, Nuclear Magnetic 

Resonance). Apesar destes métodos não identificarem todos os metabolitos presentes num sistema 

(devido a limitações na gama dinâmica dos instrumentos utilizados e a preferência de cada abordagem 

para certos tipos de metabolitos), estes oferecem uma visão aproximada do metaboloma completo. A 

complexidade dos dados obtidos requerem primeiro um pré-processamento e depois um pré-

tratamento adequados para extrair a informação presente. Assim, ambas estas etapas são cruciais no 

fluxo normal de trabalho em metabolómica e, como tal, devem ser ponderados e escolhidos 

cuidadosamente. Sendo que muitos factores afectam significativamente o metaboloma de um sistema 

biológico, dados de metabolómica têm sido usados com sucesso na discriminação de amostras de 

diferentes sistemas e para a identificação de metabolitos chave que suportam esta discriminação, 

através de variados métodos estatísticos. O pré-processamento gera um conjunto de dados 2D com 

caraterísticas (normalmente picos m/z em análise MS) num eixo e amostras no outro. Na formação 

destes dados surgem valores em falta – amostras que não têm caraterísticas presentes noutras 

amostras. Sendo que diversos métodos estatísticos não suportam a existência de valores em falta, são 

aplicados métodos de filtração de picos para reduzir o número destes; seguidos da aplicação de um 

método de imputação dos valores em falta que restam após filtração. A análise de dados procede com 

a aplicação de pré-tratamentos que podem ser divididos em três sub-categorias – normalizações 

(incluído às vezes no pré-processamento), transformações e scaling. Uma combinação de métodos 

destas categorias é utilizado para extrair e destacar a variação biológica significativa entre as amostras. 

Contudo, todos estes métodos tradicionais destacam os padrões de intensidades entre as caraterísticas 

em detrimento de outras informações importantes no contexto da metabolómica como a presença e 

ausência destas nas amostras. Um possível problema desta utilização para a análise de dados de 

metabolómica é a intensidade ter uma variabilidade elevada mesmo entre amostras do mesmo grupo. 

Esta variabilidade aumenta ainda mais quando analisadas em lotes experimentais diferentes, 

instrumentos diferentes com preparação de amostras diferentes, métodos ou parâmetros de pré-

processamento diferentes, entre outros, originando uma baixa reprodutibilidade dos dados. A 

dificuldade da identificação estrutural inequívoca dos metabolitos chave na discriminação de grupos 

coloca-se como outro problema na análise de dados. 

O objetivo deste trabalho foi desenvolver duas novas abordagens para a análise computacional de 

dados de metabolómica, no contexto da caraterização e discriminação de amostras biológicas. Estes 

tratamentos descartam a informação de sinais da intensidade predominantemente utilizada pelos 

métodos de tratamento estabelecidos, de forma a evitar a elevada variabilidade desta, concentrando-se 

noutros aspectos dos dados, o que deve oferecer uma nova perspetiva sobre estes. Como parte deste 

desenvolvimento, uma avaliação sistemática da performance destes tratamentos para um set 

seleccionado de conjuntos de dados de MS de alta resolução foi outro objetivo principal do trabalho. 

Três combinações de métodos de pré-tratamento tradicionais foram comparadas na análise de 

resultados: 1) Pareto scaling; 2) Normalização por uma caraterística de referência e Pareto scaling; 3) 

Normalização, transformação logarítmica generalizada e Pareto scaling. Foram utilizados dois 

conjuntos de dados metabolómica de videira (Vitis) contendo 3 réplicas de 11 variedades cada – um 

obtido por electrospray em modo negativo de ionização (ESI
-
) e outro em modo positivo de ionização 
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(ESI
+
) – e um conjunto de dados de 3 réplicas de 5 estirpes de leveduras, utilizando ou a lista de picos 

m/z ou fórmulas atribuídas aos picos (quando possível) como caraterísticas.   

Semelhança binária (BinSim, Binary Similarity) é a primeira abordagem desenvolvida, sendo baseada 

no conceito de considerar exclusivamente a ocorrência de características espectrais. A ideia é que o 

conjunto de metabolitos identificados por métodos de alta resolução é caraterístico dos diferentes 

sistemas e pode ser utilizado para os discriminar, conseguindo obter resultados mais consistentes 

devido à menor variabilidade da identificação de metabolitos em relação à informação dos sinais de 

intensidade (descartada). Este método consiste na construção de um vector binário para cada amostra 

que codifica a presença de uma caraterística como 1 e ausência como 0 que pode ser usado para 

transformar os dados antes da aplicação de métodos estatísticos para caraterizar e classificar amostras. 

A simplicidade deste método encontra-se no facto de que necessita (e até prefere) pouca filtração de 

picos e de que salta a escolha dos métodos de imputação de valores em falta e combinação de 

normalizações, transformações e scaling a usar, acelerando a análise de dados. Utilizando métodos de 

agrupamento de amostras (não supervisionados) e modelos de classificação (supervisionados), a 

qualidade da discriminação das amostras nos seus respetivos grupos em dados transformados com 

BinSim foi consistentemente semelhante ou ligeiramente melhor do que quando tratados com 

tratamentos baseados em intensidade, levando, quase sempre, à melhor ou segunda melhor 

discriminação (dos 4 tratamentos comparados). Uma discriminação perfeita foi atingida nos dados da 

levedura em todos os métodos estatísticos usados; nos dados da videira, métodos não supervisionados 

agruparam corretamente cerca de metade dos grupos e os métodos de classificação supervisionados 

(Random Forest e Partial Least Squares - Discrimination Analysis, PLS-DA) previram com cerca de 

80% de precisão os grupos das amostras. Para observar se esta discriminação era obtida por 

informação menos usada pelos métodos tradicionais, retirou-se os 2% de caraterísticas consideradas 

mais importantes para construir os modelos de classificação de Random Forest e de PLS-DA dos 

dados tratados das diferentes formas. Este conjunto de caraterísticas importantes nos dados tratados 

com o BinSim é muito distinto, tendo um grande número de caraterísticas apenas presentes neste 

(73,5% em média) em comparação com os conjuntos obtidos dos modelos construídos de dados 

tratados de forma diferente. Além disso, estas apareciam num pequeno número de grupos (em 

comparação com os restantes casos), ou seja, eram caraterísticas com muitos valores em falta e que, 

por isso, são muitas vezes filtradas. Nas caraterísticas importantes para construir modelos Random 

Forest nos dados da levedura, esta tendência foi mais acentuada com características importantes a 

aparecerem predominantemente apenas num grupo, ou seja, a atuarem como biomarcadores desse 

grupo nos dados estudados. Conclui-se, então, que a informação obtida por este tratamento é distinta 

em relação aos outros tratamentos baseados em intensidade no fluxo de trabalho da metabolómica. 

A segunda abordagem consiste em construir uma rede de diferença de massas (MDiN, Mass-

Difference Network) para cada amostra de um conjunto de dados e discriminar estas pela comparação 

das suas caraterísticas. MDiN foi um conceito originalmente desenvolvido por Breitling et al. que usa 

a lista de massas de dados de metabolómica como vértices/nós na rede e um conjunto de diferença de 

massas que estabelece arestas entre os vértices com diferenças que se enquadram nesse conjunto. Cada 

diferença de massa (MDB, Mass-Difference-based Building block) corresponde a uma diferença na 

fórmula elementar de um metabolito após a ocorrência de uma reação bioquímica comum (enzimática 

ou não enzimática). Assim, para cada amostra, forma-se uma rede semelhante, conceptualmente, às 

redes metabólicas mas gerada apenas pela informação do conjunto de dados. Cada rede tem a 

informação das possíveis transformações biologicamente significativas entre os metabolitos presentes 

que podem ocorrer num contexto biológico, enfatizando, a presença destas interações sobre a 

intensidade de cada caraterística. Apesar da complexidade, as redes construídas podem ser analisadas 
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e comparadas de inúmeras formas diferentes, mostrando ter uma grande versatilidade no modo como 

podem ser usadas, sendo esta a principal vantagem do método. As redes construídas foram analisadas 

por diferentes métodos de análise de redes: focadas na centralidade dos nós (grau, intermediação e 

proximidade), ou nas caraterísticas globais das redes como no número de vezes que cada MDB foi 

usada para estabelecer arestas e na topologia da rede (usando o GCD-11, Graphlet Correlation 

Distance using 11 graphlet orbits). Comparando os resultados das análises por variados métodos 

estatísticos, a análise da centralidade dos nós, especificamente do grau, permitiu a melhor 

discriminação das amostras nos seus grupos. Resultados indicaram que a análise de cada nó pelas suas 

possíveis interações permite uma discriminação dos grupos semelhante à alcançada quando os dados 

são tratados com os tratamentos tradicionais mencionados anteriormente. Contudo, a análise das 

caraterísticas globais das redes deu indicações que poderá demonstrar diferenças importantes e 

biologicamente significativas gerais do metabolismo ao nível da proeminência de diferentes tipos de 

reações no sistema. 

Conclui-se, então, que ambas as abordagens são viáveis na análise de dados de metabolómica, 

extraindo informação que pode ser utilizada para discriminar as amostras dos conjuntos de dados. A 

sua diferente perspetiva também permite que sejam usados numa análise que complemente a de outros 

tratamentos. Ainda mais, como estes tratamentos enfatizam informação com menos variabilidade do 

que a intensidade, têm um grande potencial na análise de múltiplos conjuntos de dados obtidos com 

diferentes instrumentos, laboratórios, entre outras hipóteses dos mesmos grupos biológicos, abrindo 

portas para estudos futuros que se possam focar na viabilidade destas estratégias neste contexto. 

 

Palavras-Chave: Metabolómica; Análise de Dados; Tratamento de Dados; Análise Estatística; 

Análise de Redes. 

  

  

  



Index 

VII 

Index 

1. Introduction ....................................................................................................................................... 1 

1.1 Mass Spectrometry Techniques for Data Acquisition.............................................................. 1 

1.2 Challenges in Metabolomics Experiments ................................................................................ 2 

1.3 Metabolomics Data Analysis ...................................................................................................... 4 

1.3.1 Data Pre-Processing and Feature Annotation ................................................................... 4 

1.3.2 Data Pre-Treatment ............................................................................................................. 6 

1.4 Metabolomics Data Analysis – Statistical Analysis .................................................................. 9 

1.4.1 Univariate Analysis ............................................................................................................ 10 

1.4.2 Multivariate Analysis ......................................................................................................... 11 

1.4.2.1 Unsupervised Learning Methods ............................................................................... 11 

1.4.2.2 Supervised Learning Methods.................................................................................... 13 

1.5 Analysis of the Chemical Diversity of a System’s Metabolome ............................................. 18 

1.5.1 Representation of a System’s Chemical Diversity ........................................................... 18 

1.5.2 Mass-Difference Networks (MDiNs) ................................................................................. 20 

1.6 Aim.............................................................................................................................................. 22 

 

2. Materials and Methods ................................................................................................................... 24 

2.1 Datasets ...................................................................................................................................... 24 

2.1.1 Grapevine Datasets (Positive and Negative Ionization Modes) ...................................... 24 

2.1.2 Yeast Dataset ....................................................................................................................... 25 

2.2 Binary Similarity – Data Pre-Treatment and Statistical Analysis ........................................ 26 

2.2.1 Data Pre-Treatment ........................................................................................................... 26 

2.2.1.1 Binary Similarity ......................................................................................................... 26 

2.2.1.2 Other Traditional Data Pre-Treatment Methods ..................................................... 27 

2.2.2 Statistical Unsupervised and Supervised Multivariate Analysis - BinSim .................... 27 

2.2.2.1 Statistical Unsupervised Analysis – Clustering......................................................... 28 

2.2.2.2 Statistical Supervised Analysis – Random Forest and PLS-DA .............................. 29 

2.3 Sample Mass-Difference Networks – Data Pre-Treatment and Statistical Analysis ........... 30 

2.3.1 Mass-Difference Network Construction ........................................................................... 30 

2.3.2 Mass-Difference Network Analysis and Secondary Dataset Construction ................... 32 

2.3.3 Statistical Unsupervised and Supervised Multivariate Analysis – MDiNs .................... 33 

 



Index 

VIII 

3. Results and Discussion .................................................................................................................... 35 

3.1 Binary Similarity as a Data Pre-Treatment ............................................................................ 35 

3.1.1 Unsupervised Statistical Analysis – Hierarchical and K-means Clustering ................. 36 

3.1.2 Supervised Statistical Analysis – Random Forests and PLS-DA Classifiers ................ 41 

3.1.2.1 Random Forest and PLS-DA Classifiers – Prediction Accuracy ............................ 42 

3.1.2.2 Random Forests and PLS-DA Classifiers – Important Features ............................ 46 

3.1.3 The Rationale and Benefits of Using Binary Similarity .................................................. 51 

3.1.4 Chemical Formulas as Features in Analysis across Different Datasets ......................... 53 

3.2 Mass-Difference Sample Networks as a Data Pre-Treatment ............................................... 54 

3.2.1 The Rationale of Using Mass-Difference Networks as a Data Pre-Treatment ............. 54 

3.2.2 Mass-Difference Network Construction and Limitations ............................................... 55 

3.2.3 Mass-Difference Network Analysis ................................................................................... 57 

3.2.4 Unsupervised Statistical Analysis – Hierarchical and K-means Clustering ................. 59 

3.2.5 Supervised Statistical Analysis – Random Forests and PLS-DA ................................... 63 

3.2.6 Potential of MDB Influence Secondary Dataset Features .............................................. 66 

3.2.7 Comparison of Sample MDiNs to Other Pre-Treatments .............................................. 68 

 

4. Conclusion .................................................................................................................................... 71 

 

5. References .................................................................................................................................... 73 

 

6. Annexes ........................................................................................................................................ 81 

 

  



Index 

IX 

List of Figures  

 

Figure 1.1: Representation of a typical results figure from PCA (A) and Hierarchical Clustering (B).

 ............................................................................................................................................................... 13 

Figure 1.2: Different strategies to split the dataset into k different groups of m samples each. ........... 14 

Figure 1.3: Example of a small decision tree present in a Random Forest. ......................................... 18 

Figure 1.4: Example of a Van Krevelen diagram (A) and a Kendrick Mass Defect plot (B) of 

metabolomics data. ................................................................................................................................ 20 

Figure 1.5: Example of the concept of Mass-Difference Networks (MDiNs) in a 4 node example 

network. ................................................................................................................................................. 21 

Figure 2.1: Example of the Binary Similarity (BinSim) treatment applied to an example dataset. ..... 27 

Figure 2.2: Demonstration of “correctly” and “incorrectly” clustered groups and of the Discrimination 

Distance (DD) calculation for each group on an example dendrogram. ............................................... 29 

Figure 2.3: Representation of all 9 unique graphlets up to 4 nodes (G0, G1, …, G8) and their 15 

automorphism orbits (0, 1, …, 14). ....................................................................................................... 33 

Figure 3.1: Hierarchical Clustering Analysis (HCA) dendrograms of the Negative Grapevine Dataset 

(A) and Yeast Dataset (B). .................................................................................................................... 37 

Figure 3.2: Heatmaps of the Cophenetic Correlation Coefficient between the dendrograms of all 

differently treated dataset pairs of the Negative Grapevine Dataset (A) and of the Yeast Dataset (B). 38 

Figure 3.3: Tuning of the number of trees used to build the Random Forest models. ......................... 43 

Figure 3.4: Optimization of the number of components used to build the PLS-DA models. ............... 43 

Figure 3.5: Distribution of the prediction accuracy of Random Forest and PLS-DA models. ............. 44 

Figure 3.6: Characteristics of the most important features used to build the Random Forest and the 

PLS-DA models. ................................................................................................................................... 47 

Figure 3.7: Mass-Difference Network built from the complete Yeast Dataset.. .................................. 55 

Figure 3.8: Mass-Difference Network built from the Negative (A) and Positive (B) Grapevine 

Dataset.. ................................................................................................................................................. 56 

Figure 3.9: Hierarchical Clustering Analysis (HCA) of the different secondary datasets obtained from 

sample MDiNs. ...................................................................................................................................... 61 

Figure 3.10: Distribution of the prediction accuracy of Random Forest and PLS-DA models built from 

the different secondary datasets. ........................................................................................................... 64 

Suppl. Figure 6.1: Hierarchical Clustering Analysis (HCA) dendrograms of the Positive Grapevine 

Dataset (A) and Yeast Formula Dataset (B). ......................................................................................... 81 

Suppl. Figure 6.2: Heatmaps of the Baker’s Gamma Correlation between the dendrograms of all 

differently treated dataset pairs of the Negative Grapevine Dataset (A) and of the Yeast Dataset (B). 82 

Suppl. Figure 6.3: Heatmaps of the Cophenetic Correlation (A,B) and the Baker’s Gamma 

Correlation (C,D) between the dendrograms of all differently treated Positive Grapevine Dataset (A) 

or Yeast Formula Dataset, respectively. ................................................................................................ 83 



Index 

X 

Suppl. Figure 6.4: Tuning of the number of trees used to build the Random Forest models. ............. 84 

Suppl. Figure 6.5: Optimization of the number of components used to build the PLS-DA models. ... 84 

Suppl. Figure 6.6: Distribution of the prediction accuracy of Random Forest and PLS-DA models. . 85 

Suppl. Figure 6.7: Permutation test of the Random Forest and PLS-DA models built with each 

different set of datasets. ......................................................................................................................... 88 

Suppl. Figure 6.8: Characteristics of the most important features used to build the Random Forest and 

the PLS-DA models............................................................................................................................... 89 

Suppl. Figure 6.9: Hierarchical Clustering Analysis (HCA) of the different secondary datasets 

obtained from sample MDiNs. .............................................................................................................. 91 

Suppl. Figure 6.10: Tuning of the number of trees used to build the Random Forest models from the 

secondary datasets built from sample networks .................................................................................... 92 

Suppl. Figure 6.11: Optimization of the number of components used to build PLS-DA models from 

the different secondary datasets. ........................................................................................................... 92 

Suppl. Figure 6.12: Permutation test of the Random Forest and PLS-DA models built based on each 

set of secondary datasets.. ..................................................................................................................... 95 

 

  



Index 

XI 

List of Tables 

Table 2.1: Wild Vitis species, V. vinifera subsp. Sylvestris and V. vinifera cultivars in the Grapevine 

Datasets. ................................................................................................................................................ 25 

Table 2.2: List of MDBs used to build the MDiNs. ............................................................................. 31 

Table 3.1: Discrimination Distance, correct clustering and correct first cluster percentages of the HCA 

of the Negative Grapevine and Yeast Datasets after different treatments. ............................................ 39 

Table 3.2: Discrimination Distance, correct clustering percentage and adjusted Rand Index of the K-

means Clustering analysis of the Negative Grapevine and Yeast Datasets after different treatments. . 41 

Table 3.3: Percentage of unique features in each set of the 2% of most important features to build 

Random Forest or PLS-DA models. ...................................................................................................... 48 

Table 3.4: Characteristics of the Mass-Difference Networks of the Yeast Dataset, the Negative 

Grapevine Dataset and the Positive Grapevine Dataset. ....................................................................... 56 

Table 3.5: Discrimination Distance, correct clustering percentages and adjusted Rand Index of the K-

means Clustering analysis performed on the secondary datasets obtained from network analysis of 

each sample network for the Yeast, Negative and Positive Grapevine Datasets................................... 61 

Table 3.6: Gini Importance of the features from the MDB influence secondary datasets obtained from 

the sample networks to build the respective Random Forest models. ................................................... 67 

Table 3.7: PO3H feature of the MDB influence secondary dataset built from the Yeast sample 

networks before and after normalization. .............................................................................................. 68 

Table 3.8: Summary of the results of the performance of the different statistical methods in 

discriminating samples into their respective group. .............................................................................. 70 

Suppl. Table 6.1: Discrimination Distance, correct clustering and correct first cluster percentages of 

the HCA of the Positive Grapevine and Yeast Formula Datasets after different treatments. ............... 83 

Suppl. Table 6.2: Discrimination Distance, correct clustering percentage and adjusted Rand Index of 

the K-means Clustering analysis of the Positive Grapevine and Yeast Formula datasets after different 

treatments. ............................................................................................................................................. 84 

Suppl. Table 6.3: Impact of each MDB in building the 3 full networks. ............................................. 90 

 

  



Abbreviations 

XII 

List of Abbreviations 

In alphabetical order: 

ANOVA – Analysis of Variance 

BinSim – Binary Similarity pre-treatment 

CID – Collision Induced Dissociation 

CV – Cross-Validation 

DD – Discrimination Distance 

DR – Decision Rule  

ECD – Electron Capture Dissociation 

ESI – Electrospray Ionization  

FDR – False Discovery Rate  

FT-ICR-MS – Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 

G – Generalized logarithmic transformation 

GC – Gas Chromatography 

GCD-11 – Graphlet Correlation Distance using 11 graphlet orbits 

GCM – Graphlet Correlation Matrix  

GD – Grapevine Datasets 

Glog – Generalized Logarithmic Transformation 

HCA – Hierarchical Clustering Analysis  

HILIC – Hydrophilic Interaction Liquid Chromatography 

HMDB – Human Metabolome Database 

HPLC – High Performance/Pressure Liquid Chromatography 

KMD – Kendrick Mass Defect 

kNN – k-Nearest Neighbours 

LC – Liquid Chromatography 

LOOCV – Leave-One-Out Cross-Validation 

LV – Latent Variable 

m/z – Mass over Charge 

MAR – Missed At Random  

MCAR – Missed Completely At Random  

MDB – Mass-Difference based Building blocks 

MDB Inf. – MDB (Mass-Difference-based Building block) Influence 

MDiN – Mass-Difference Networks 



Abbreviations 

XIII 

MNAR – Missed Not At Random 

MS – Mass Spectrometry 

N – Normalization by leucine encephalin feature pre-treatment 

NGP – Normalization by leucine enkephalin, Generalized logarithmic transformation and Pareto 

scaling pre-treatment 

NIPALS – Nonlinear Iterative Partial Least Squares (or Projection to Latent Structures) 

NMR – Nuclear Magnetic Resonance 

NP – Normalization by leucine encephalin followed by Pareto scaling pre-treatment 

P – Pareto scaling 

PC – Principal Component 

PCA – Principal Component Analysis 

PLS – Partial Least Squares (or Projection to Latent Structures) 

PLS-DA – Partial Least Squares (or Projection to Latent Structures) – Discriminant Analysis 

PQN – Probabilistic Quotient Normalization  

PRESS – Predictive Residual Sum of Squares 

QRILC – Quantile Regression Imputation of Left-Censored data 

RF – Random Forest 

RP – Reverse Phase 

S/N – Signal-to-Noise ratio 

SS – residual Sum of Squares 

T-ReX – Time aligned Region complete eXtraction 

UPGMA – Unweighted Pair Group Method with Arithmetic mean 

UPLC – Ultra Performance Liquid Chromatography 

VIVC – Vitis International Variety Catalogue 

VIP – Variable Importance/Influence in Projection 

YD – Yeast Dataset  

YFD – Yeast Formula Dataset 

YMDB – Yeast Metabolome Database 

ypred – Predicted response variable of a test sample from PLS Regression 

 

 



Introduction 

1 

1. Introduction 
Metabolomics is an emerging field in systems biology which can be defined as a comprehensive 

analysis aiming to identify and quantify all the metabolites of a biological system [1,2,3]. Metabolites 

are endogenous and exogenous small molecules (<1500 Da) whose ensemble constitutes the system’s 

metabolome. They are the end-product of all cellular processes and are, consequently, informative of 

the biochemical activity of the system. Moreover, they can be quite diverse at a structural and 

physical-chemical level and include peptides, amino acids, nucleic acids, inorganic species, cofactors, 

and hormones, among others [4–8]. Therefore, specific metabolites can be representative of different 

phenotypes of a biological system and, as such, the metabolome can be a source of phenotypic 

biomarkers [5,9,10]. This leads to the diverse applications of metabolomics – from studying human 

diseases [11], plants [12] and bacteria [13] to drug discovery [14] and others [15].  

Metabolomics experiments can be divided into two categories: targeted and untargeted metabolomics. 

In targeted metabolomics, the focus is put on a particular set of characterized and annotated 

metabolites, classes of metabolites, or involved in specific metabolic pathways in a hypothesis-driven 

experiment. In untargeted metabolomics, the focus is on getting a global picture of a system with the 

ultimate ambitious objective of identifying and characterizing all metabolites [2,16]. This endeavour 

leads to very complex metabolomics data, which requires robust and scalable computational and 

statistical tools to treat and extract meaningful information from them, as will be explained later in 

more detail. 

 

1.1 Mass Spectrometry Techniques for Data Acquisition 
Due to the desired holistic analysis of a complex system, the two main analytical methodologies used 

in metabolomics experiments are nuclear magnetic resonance (NMR) and mass spectrometry (MS). 

Although less sensitive, NMR is a non-invasive analytical technique that allows the identification and 

quantification of metabolites, as well as the determination of their chemical structures, conformations 

and absolute stereochemistry. MS has a superior sensitivity and dynamic range as well as a high 

throughput, allowing the detection of hundreds to tens of thousands of compounds from one single 

biological sample (reviewed in [17]). 

In this work, the focus will be on mass spectrometry-based metabolomics data. This is a technique that 

detects and measures the relative quantities (coded as intensities) of ionized molecules, separated 

based on their m/z (mass to charge ratio), in a biological sample. A sample must be previously ionized 

(different ionization methods such as electrospray can be used) in a mass spectrometer [4,18,19]. MS
n
 

is the process through which multiple (n) stages of MS are carried out in succession with selection and 

fragmentation of ions from the previous MS stage occurring in-between them. Common fragmentation 

methods are collision induced dissociation (CID) and electron capture dissociation (ECD). The pattern 

of ion fragmentation helps the elucidation of the molecular formula and structure of the precursor ion, 

which is the main objective of MS
n
 [20]. However, given the sheer complexity of the metabolome – 

both with the amount of metabolites and their concentration range present in samples – the holistic 

untargeted analysis becomes a very challenging endeavour, with many difficulties that have to be 

overcome or minimized. 

A popular way to address some of the issues caused by metabolome complexity is to couple the MS 

analysis with separation techniques such as HPLC (High Performance/Pressure Liquid 

Chromatography) and GC (Gas Chromatography) – LC-MS and GC-MS for example – to further 

improve analytical performance [4,9,21]. Their advantages and disadvantages have been well 
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described in [5,18,19]. This approach is particularly useful in untargeted metabolomics approaches. 

The objective of using these chromatographic separation techniques is to make the sample mixtures 

less complex by separating them based on a certain characteristic such as metabolite polarity, so every 

MS analysis will only detect a lower number of metabolites. This facilitates the detection of low-

concentration metabolites that might not be detected due to the limits of the dynamic range and it 

helps distinguish compounds with very similar m/z that are not easily discriminated due to the 

resolution limits of the instruments used. A common disadvantage to all these hyphenated methods is 

the increase of time duration of the analysis by adding the chromatographic step. GC-MS has high 

reproducibility and low cost, but it can only analyse and detect volatile compounds (both non-volatile 

and thermolabile compounds are not detected), which hinders the objective of untargeted 

metabolomics experiments. Additionally, it may also require a lengthy sample preparation with sample 

chemical derivatization (to provide volatility to most of the metabolites so that they are able to be 

detected). This chemical derivatization may lead to the formation of by-products that were not present 

in the original sample, as well as the degradation of some metabolites, further influencing the results 

and the reproducibility of the derivatization [5,18,19]. On the other hand, LC separation followed by 

electrospray ionization (ESI) in LC-MS does not have these limitations [18]. The columns used in 

HPLC are usually reverse phase columns (C8 or C18 are the most common); this type of LC-MS is 

better suited to the analysis of non-polar or semi-polar compounds since polar and ionic compounds 

tend to elute with the solvent front (no separation in time is achieved). Thus, complementary analysis 

using separations like hydrophilic interaction liquid chromatography (HILIC) can help increase the 

coverage of the analysis [18,19]. In UPLC (Ultra Performance Liquid Chromatography) porous 

particles with < 2 µm diameter are used and this can help enhance the resolution as well as the 

sensitivity of the chromatographic separation in comparison to HPLC [5,18]. 

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) is an extreme 

resolution (over 1,000,000) mass spectrometry technique which has the highest m/z determination 

accuracy with an average error lower than 1 ppm [8,22]. This technique stores ions that travel in a 

circular trajectory in which the frequency of the rotation is characteristic of the m/z and the magnet of 

the instrument [23]. A disadvantage of FT-ICR-MS is the relatively slow time of acquisition of each 

transient, which complicates coupling with prior separation methods such as LC-MS [24]. The 

accumulation of transients also grants a very high dynamic range and sensitivity (limit of detection for 

compounds) for detection of compounds. The mass accuracy and resolution of this technique allows 

the identification of most metabolites based on their m/z alone without the need of a coupled 

separation method (simpler sample preparation), which enables unambiguous molecular formula 

assignments in low mass metabolites (up to ≈ 500 Da), [22]. Besides these alluring characteristics, 

since ions are stored, MS
n
 experiments are easily done from FT-ICR-MS instruments that can apply an 

array of different fragmentation methods [24]. 

 

1.2 Challenges in Metabolomics Experiments 

Despite the advanced techniques employed, metabolomics experiments still face a lot of serious 

challenges due to the extreme sensitivity of their data: a good part of them can be addressed during the 

experiment or corrected during data analysis but some remain intrinsic to the data and must be 

considered when analysing results. 

At an individual level, every biological system is unique and will have a unique metabolome. 

Therefore, even two identical systems will have minor differences in their metabolome. This 

uninduced biological variation will lead to inherent variability in the data [7,25]. The metabolome is 
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extremely sensitive to experimental manipulation and environmental factors (slight changes in pH or 

growth medium, stress, temperature, among others), leading to considerable changes in metabolite 

concentration especially in secondary metabolites. Secondary metabolites are metabolites that are not 

directly essential for cell growth and survival but are important in the interactions of the organism with 

its environment for its continued survival, for example, acting as defence or resistance compounds or 

as signals [26]. Metabolome changes occur in a very short time span due to the small half-life of 

metabolites. Therefore, reducing this inter-individual variability between biological replicates is a goal 

that must be kept in mind when preparing the experimental protocol [7,22,27]. The wide range of 

metabolites in an extensive array of concentrations also hinders the detection of the least concentrated 

metabolites, which can be biologically significant (molecules such as signals) despite the high 

dynamic range of the instruments used. Furthermore, the high degree of difficulty in achieving 

unambiguous structural identification of the detected metabolites is a major bottleneck [28,29]. This is 

due to the variety of possible metabolites that complicate unambiguous formula assignments without 

extreme mass accuracy and resolution and to the MS
n
 fragmentation not generating a consensus 

fragmentation pattern [30], coupled with the lack of reference spectra due to metabolomics being a 

still relatively new “omics” field [7,28,29]. 

A metabolomics dataset usually has a very high number of features (thousands) that represent the 

metabolites in comparison with the number of samples. A characteristic of these datasets that must be 

considered when applying statistical methods is that a lot of these features are highly correlated due to 

their relations, for being in the same metabolic pathways for example – the curse of dimensionality 

[31,32]. The variability present in each feature comes from the induced biological variation (that is, 

the intended variation to observe and analyse in the experiment) and the uninduced biological 

variation previously mentioned, which encompasses all the technical variation due to either the 

protocol or instrumental variations. This variation can lead to large intensity fluctuations not correlated 

with the biological response, which means that intensity data is highly variable. The different features 

in the dataset are also present in many different magnitudes. Many multivariate statistical methods will 

give more weight to higher magnitude features with larger absolute changes in concentration rather 

than low concentration metabolites. However, the biological importance of a metabolite does not 

depend on the concentration of metabolites. For example, signal molecules usually have very low 

concentrations and can be fundamental in characterizing two different phenotypes. Finally, 

metabolomics data is usually heteroscedastic (the variability/variance of its features is not constant), 

while many different statistical methods assume the data is homoscedastic [25]. 

Taking these issues into account, an objective of untargeted metabolomics experiments is the 

identification of some key features, characteristics and trends in the data that can help define and 

discriminate the studied systems. To achieve this goal, robust computational and statistical tools to 

treat and extract information from the data have been developed and applied (data analysis), [7]. 

However, many of the currently applied methods have been adapted to the metabolomics framework 

from previously established “omics”, especially transcriptomics and proteomics [2,30] and, 

consequently, are not perfectly tailored to metabolomics data. In the next sections, a workflow of 

metabolomics data analysis will be presented, with special focus on the data pre-treatment that aims to 

eliminate the impact of the uninduced biological variation while maximizing the information from the 

induced biological variation. 
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1.3 Metabolomics Data Analysis 
The raw spectral data goes through an extensive and time-consuming analysis. This analysis has the 

aforementioned objective of extracting information from the raw spectra and can be divided into pre-

processing, pre-treatment and data analysis [25,31], which will be further explained in the next 

sections.  

However, besides these steps, proper statistical planning prior to the execution of the experiment is of 

the utmost importance to take the most advantage of different statistical methods (examples mentioned 

in section 1.4), [31,33]. This planning must consider both the number of samples and replicates to use 

(depending on the aim of the work) and the procedure to obtain data relevant to the scientific question. 

It is important to randomise any step of the procedure that introduces bias in the results – for example, 

the order of sample analysis, who is handling the samples, where the samples are prepared or stored, 

etc. Another critical point is the knowledge of how the used analytical platforms work [18,33]. 

 

1.3.1 Data Pre-Processing and Feature Annotation 

The main differences between analysis of MS and NMR data is in the pre-processing stage, since the 

initial steps of processing spectral data are unique to each method, due to the nature of the raw data 

obtained [34]. The product of the pre-processing stage is a 2D data matrix with features represented in 

one dimension and samples in the other. Therefore, these steps aim to improve the quality of the signal 

while reducing bias in the raw data, thus facilitating the retrieval of useful information [4,35,36]. 

Mass-spectrometry raw data processing includes spectra deconvolution, correction of the baseline and 

noise filtering, peak detection, or peak picking, peak alignment, and gap filling (if needed). In cases 

where MS is coupled with liquid or gas chromatography, retention time correction can also be 

employed [35,37]. Correction of the baseline is a noise filtering procedure used to remove low-

intensity artefacts (born of instrumental or experimental noise) by estimating the baseline shape and 

subtracting it from the raw signal [4,36,38]. The peak detection step aims to identify and quantify all 

features (ions) in the spectra while trying to avoid false positives, using, for example, peak-based 

methods (detect ‘peak-like shapes’) or binning-based methods (split spectra into small m/z intervals) 

[4,36,39]. A common way of peak picking is using the signal-to-noise ratio (S/N) to filter the detected 

peaks. Spectral or peak alignment (before or after peak detection) is an essential step in multiple 

sample studies and intends to correct the slight shifts in m/z and retention time (if applicable) that exist 

between different samples [4,39]. Some common methods of spectral and peak alignment are well 

discussed by Alonso et al. [4]. These processing steps are normally performed by commercially or 

freely available software such as XCMS [40] and MZMine [41], simplifying user input. 

NMR pre-processing includes chemical shift calibration, phasing and baseline correction, specific to 

NMR spectra followed by steps akin to peak detection, filtering and spectral alignment that are closer 

to the MS processing steps already mentioned. An in-depth review of the processing steps is featured 

in Emwas et al. [42]. 

Gap filling or missing value imputation is a bridge between the processing and pre-treatment step of 

the metabolomics data analysis workflow. Missing values arise in metabolomics datasets after peak or 

spectral alignments when a feature detected in a sample is not detected in another. The imputation 

consists of replacing those missing values by a certain value to facilitate the different kinds of data 

analysis performed downstream in the workflow (which do not adequately account for the presence of 

missing values) while maintaining the overall structure of the data. Missing values can be values 

missed completely at random (MCAR), missed at random (MAR) and missed not at random (MNAR), 
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[43,44]. For metabolomics data, MCAR missing values can be due to instrumental factors, such as 

stochastic fluctuations during data acquisition, while MAR missing values can be, for example, due to 

incorrect peak detection by the chosen algorithm [43]. In other words, these kinds of missing values 

are due to stochastic errors in the metabolomics workflow that lead to the lack of detection of features 

that are above the detection limit of the high-resolution method applied. MNAR missing values are, 

however, caused by some features of the data being under the detection limit (accounting for the 

baseline correction and noise filtering performed), [44] – low concentration or absent features in 

samples (can have a biological meaning). There are strategies to reduce the number of values that have 

to be imputed by filtering the number of features used in further analysis. These can be done by 

imposing a maximum percentage of missing values in any feature, filtering those that exceed this limit 

[43]. This threshold can be set on the overall dataset or it can be set on a group of technical replicates. 

As far as the strategies to impute the missing values are concerned, there are a plethora of options 

available; some favour the imputation of MNAR and others MCAR/MAR [43].  As for methods that 

favour the imputation of MNAR, considering all missing values as such, some strategies replace all 

missing values by a constant small value that is usually either zero or half of the minimum intensity 

value on the dataset. Another strategy known as Quantile Regression Imputation of Left-Censored data 

(QRILC) [45] randomly imputes values from a small-value distribution (estimated by quantile 

regression), [43,44]. As for methods that favour the imputation of MAR/MCAR considering all 

missing values as such, these are usually replaced by the mean or median of all values in the 

corresponding feature or by using more complex methods like kNN (or k-Nearest Neighbours) 

imputation [46], Random Forest imputation [47], among many other methods that can be applied 

[43,44]. As always, the choice of the method has a considerable effect on the data matrix and on the 

results of further statistical analysis. Wei et al. [43] recommends the use of Random Forest imputation 

for MCAR/MAR and QRILC for MNAR, while Guida et al. [44] suggests that the type of missing 

value imputation to be used depends on the data analysis method that will be used subsequently, 

meaning that there is no single one-size-fits-all “best” method. 

After peak alignment and obtaining a 2D dataset, feature annotation is an optional step that can be 

applied at any time in the workflow. Feature annotation is the annotation of m/z values with formulas 

or metabolite “names”. The dataset can sometimes be filtered to only include features that were 

annotated. Annotation can be done by comparing m/z values with those of a database such as 

Chemspider ([48], http://www.chemspider.com/) or the Human Metabolome Database (HMDB, [49], 

https://hmdb.ca/), or by using algorithms that find suitable formulas that can be assigned to an m/z 

peak such as the SmartFormula algorithm of MetaboScape 4.0 (Brüker Daltonics).  These algorithms 

tend to use the 7 golden rules proposed by Kind and Fiehn [50] that set some guidelines to restrict the 

possible formulas to assign to an m/z peak. These guidelines are in terms of setting the maximum 

absolute numbers of each element (most common are C, H, O, N, S, P), elements ratio to carbon 

ranges, presence of multiple heteroatoms, respect to Senior and Lewis chemical rules and whether the 

expected isotope pattern for the metabolite with a possible formula is observed [50]. Both these 

methods must take into account the fact that m/z peaks represent the protonated or de-protonated 

metabolites whether the analysis is performed in positive or negative mode and that they may form 

adducts with ions such as Na
+
, K

+
 or Cl

-
. However, coverage of the metabolome of different organisms 

and biological systems is lacking even for the Human metabolome, which means that using databases 

will lead to incomplete metabolite assignments [7]. Nevertheless, using formula assignment 

algorithms can be used as a complementary approach to database annotation. The reliability of the 

formulas assigned to the m/z peaks, nonetheless, might not be the best, especially with the automated 

formula assignment algorithms. The assignment can be validated by MS
2
 but, on the large scale of 

http://www.chemspider.com/
https://hmdb.ca/
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metabolomics, it relies on the availability of reference data which can make unambiguous 

identification difficult [7,30]. Therefore, feature annotation is still a major bottleneck in metabolomics 

analysis. 

 

1.3.2 Data Pre-Treatment 

After all the pre-processing steps mentioned in the previous section, with optional feature annotation, a 

clean dataset is obtained and is ready to be treated. Data pre-treatment has the objective of 

highlighting relevant biological information within the dataset while reducing the effect of undesired 

variation [25] due to measurement or technical errors, slight changes in temperature, batch or operator 

variation, etc. At this stage, an extra filtering step can be applied to remove features with very low 

variance between the samples (since these features are non-informative) or, if possible, to remove 

features with low reproducibility between samples based on quality control samples [51]. Following 

this, pre-treatments can be divided into 3 different “categories” of treatments: normalizations, 

transformations, and centering and scaling. Each category contemplates multiple options of treatment 

and may also be applied in combination with other categories, exponentially increasing the number of 

options available [52]. Since the pre-treatments made to the data can considerably alter the results of 

the statistical analysis, a thoughtful deliberation of the advantages and disadvantages of each treatment 

should be made, taking into account both the goal of the metabolomics study and the statistical 

analysis that will be performed downstream [25,35].  

In the usual metabolomics workflow, normalization is the first pre-treatment step. Normalization has 

the objective of removing between-sample variation by trying to eliminate the systematic bias that 

exists between them [35,36]. This is done by multiplying or dividing the intensity values of the 

samples by a certain normalization factor, which is specific to each sample, allowing quantitative 

comparison analysis between them. There are several methods to normalize data currently used in 

metabolomics: 

 Normalization by a reference feature that is an internal or external standard present in every 

sample. In this case, the normalization factor is the peak area or intensity of said reference 

feature in each sample or that value multiplied by a constant. Since this feature has a known 

concentration across all samples, by equalizing the intensity of this feature on all samples, 

comparing the intensity of the features between samples becomes more reliable.  

 Normalization by the total peak area sum of a sample. Each sample’s normalization factor is 

the sum of intensities of all its features. This method assumes that the total metabolite 

concentration in each sample is identical. It is worth noting that this means that high 

concentration metabolites will contribute much more to the normalization factor, which means 

that if, for whatever reason, there is a considerable concentration change in these types of 

metabolites, it will affect the normalization factor, reducing its efficacy – a possible 

disadvantage [35]. 

 Quantile Normalization, which aims to make all samples have the same peak intensity 

distribution. It is different from the other methods as it does not use a conventional 

normalization factor. Instead, it creates a “reference spectrum” from the data and uses it to 

replace all the values in the dataset. This is done by first ranking all intensities in each sample. 

Then, by calculating the mean or median of all intensities with the same rank, the “reference 

spectrum” is obtained. Finally, all values are replaced by the intensity value in the “reference 

spectrum” with the same rank. After normalization, a dataset where each sample has the same 

set of intensity values but distributed between the features differently is obtained [35,53]. This 
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method achieves the goal of having all samples with the same distribution, although it is 

problematic in datasets with considerable amounts of missing values or missing values that 

were imputed with constant values, since it creates samples with a lot of identical values in the 

lowest (or highest) ranks. 

 Probabilistic Quotient Normalization (PQN) is a method that assumes that the difference in 

intensity in most peaks is due to different dilutions. This method therefore starts by performing 

a normalization by the total peak area, scaling all samples to the same magnitude and then 

proceeds to calculate another normalization factor based on a reference spectrum. This 

reference spectrum can either be calculated as the mean or median intensity of each feature or 

it can be a separate sample from the study or from a database. All samples are divided by this 

reference spectrum and the median value of the quotients of all features of a sample from this 

operation is taken as the normalization factor (dilution factor) for each sample [54]. 

Transformations are a set of non-linear treatments whose main objective is to reduce 

heteroscedasticity and to make the data more symmetric (less skewed). A dataset is said to be 

heteroscedastic if the variance of its variables is not constant. This affects the reliability of the 

statistical analysis since most methods assume that the dataset is homoscedastic and that it has a 

symmetrical distribution [25,35,55]. Transformations can have a “pseudo scaling” effect since they 

reduce the intensity of the higher values more than that of the lower values, thus shortening their 

differences. However, it does not replace the proper scaling methods presented below [25]. The most 

common transformation methods are logarithmic or power transformations: 

 Logarithmic Transformation is a straightforward transformation that usually applies either 

natural base or base 2 logarithms to the dataset. This transformation, besides the previously 

mentioned effects, also turns multiplicative relations into additive relations, which might be 

biologically relevant. Note: This transformation cannot be directly applied on a dataset with 

null values. 

 Generalized Logarithmic Transformation (Glog) is a variation of the logarithmic 

transformation that introduces a transformation parameter λ, with the objective of stabilizing 

variable variance. This transformation is made by applying equation 1.1 to the dataset [55,56]. 

The standard logarithmic transformation stabilizes variance for most of its variables, except 

for low-intensity features, since as they get closer to zero their variance increases 

dramatically. The Glog transformation aims to correct this drawback with the λ factor. Ideally, 

λ = b/a, where b and a are a normal distribution (with mean 0) of the error/variance, dependent 

of (b) and independent of (a) the intensity in the dataset in a model where the variance of a 

variable x is given by equation 1.2 [55,56]. 

�̃�ij = log2

(

 
𝑥ij +√(𝑥ij

2 + λ2)

2

)

      (eq. 1.1) 

Variance(𝑥i) =  b
2  ×  𝑥i

2  +  a2  +  α      (eq. 1.2), 

Where x̃ is the transformed intensity x of the metabolite i of sample j, λ is a transformation 

parameter and α is background noise. 

 Power Transformation applies the square root to the values in the dataset (√𝑥𝑖𝑗). It is a simple 

transformation that, despite not transforming multiplicative relations into additive relations, it 
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tends to reduce heteroscedasticity, improve symmetry and can be used in datasets with null 

values [25].  

Mean centering and scaling is the last category of metabolomics data pre-treatments and usually the 

last step in data pre-treatment. These procedures have the aim of “balancing” high and low intensity 

biologically important metabolites and, to that end, they are often coupled together. Mean centering is 

done by applying equation 1.3 to the dataset, which removes the average intensity of each metabolite 

in every sample, leading to a focus on the relevant biological changes of a metabolite between 

different samples. This results in datasets where each variable has a mean of zero [25]. However, 

metabolites with higher intensities will have greater absolute differences in concentration compared to 

low concentration metabolites (especially in datasets where transformations were not applied to reduce 

heteroscedasticity) [35]. Scaling complements mean centering since it specifically aims to transform 

these absolute differences into relative differences, such as fold changes. Therefore, scaling methods 

include both mean centering and scaling of the data, as can be seen in the equations that define the 

scaling methods (eqs. 1.4-1.8) that subtract the mean of the corresponding variable to each value 

(mean centering) and then divide it by a scaling factor, which varies between the scaling methods. 

These scaling factors are mostly based on a dispersion measure, such as standard deviation, with size 

measures (mean, median) being a possible alternative. Although these very useful methods help 

emphasize the importance of low concentration biologically important metabolites, they can also lead 

to an amplification of the error in these metabolites’ intensity assuming that the errors are relatively 

large in small values (which, when scaled up, also scale up the errors) [25]. Some of the most common 

and discussed scaling methods are presented here [7,25,35,57]. In each equation, x̃ is the scaled 

intensity x of the metabolite i of sample j, s and x̅ are the standard deviation and average intensity of 

metabolite i across all samples, respectively. 

 Mean-centering: 

x̃ij = xij − x̅i   (eq. 1.3) 

 Auto Scaling or unit variance scaling uses the standard deviation of each metabolite as a 

scaling factor – eq. 1.4. This directly achieves the proposed aim of centering and scaling data 

to give equal weight to all features for further statistical analysis. However, this is the method 

that best represents the aforementioned increase of error that scaling might lead to in 

uninformative features affected by noise, which variation may, then, be interpreted as 

important. So, in order to apply this method, a considerable analytical effort has to be made 

during peak filtering to remove noisy and uninformative features of the dataset to minimize its 

shortcomings [35]. 

x̃ij = 
xij − x̅i

𝑠𝑖
   (eq. 1.4) 

 Pareto Scaling is a slight modification to auto scaling that uses the square root of the standard 

deviation as the scaling factor – eq. 1.5. This combines elements of both mean centering and 

auto scaling and still increases the importance of low concentration metabolites while limiting 

the inflation of measurement errors and preserving the data structure. This way, the method 

limits the influence of the drawbacks of mean centering and auto scaling, but it still suffers 

from them to some degree. While sensitive to large fold-changes, it does not present any 

major drawback due to the compromise taken [7,35]. 
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x̃ij = 
xij − x̅i

√𝑠𝑖
   (eq. 1.5) 

 Range Scaling uses the range between the maximum and the minimum value a variable has 

across all samples as a scaling factor (hence the name) – eq. 1.6. The idea behind the scaling 

factor is that it represents the biological range of each metabolite. A disadvantage of the 

method is that its scaling factor depends only on the maximum and minimum value of a 

metabolite, making it very sensitive to outliers on any extreme (the minimum tends to be an 

imputed value given to missing values) [25,58]. 

x̃ij = 
xij − x̅i

𝑥𝑖 (max) − 𝑥𝑖 (min)
   (eq. 1.6) 

 Vast Scaling or VAriable STability scaling is another extension of auto scaling that multiplies 

its result by the ratio between the mean and the standard deviation of metabolite i (prior to 

auto scaling) – eq. 1.7. The purpose of this extra factor is to diminish the inflation of 

measurement errors – the major drawback of autoscaling – and focus on more “stable” 

features. This way, the low-abundance metabolites (low average) with high relative error (high 

standard deviation) will have a low x̅i/𝑠𝑖 ratio and will have less importance [59]. However, a 

problem that arises is that biologically relevant features that have considerable fold changes 

between samples will also be considered unstable (low x̅i/𝑠𝑖 ratio) and may be overlooked. 

Thus, this method focuses on features that change subtly between samples – stable features. 

x̃ij = 
xij − x̅i

𝑠𝑖
  ×  

x̅i
𝑠𝑖
   (eq. 1.7) 

 Level Scaling uses the mean of a metabolite (or the median as an alternative) – a size measure 

– as a scaling factor, unlike all other prior methods that used a dispersion measure – eq. 1.8. It 

changes each value to the intensity percentage change from the mean of the metabolite, which 

helps see fold changes between samples [25]. 

x̃ij = 
xij − x̅i

x̅i
   (eq. 1.8) 

Each of these scaling methods provides a different outlook to scaling the data and brings its own sets 

of advantages and disadvantages, giving weight to the claim that the choice of pre-treatment methods 

depends on the objective of the analysis and should be regarded as a challenging and key task in data 

analysis. 

 

1.4 Metabolomics Data Analysis – Statistical Analysis 
All these possible processes and treatments aim to enhance the results of the statistical analysis of the 

metabolomics data. This analysis is the next step of the metabolomics workflow and, like the previous 

ones, a plethora of different approaches can be taken. As already discussed in the challenges of 

metabolomics experiments (section 1.2), the “omics”-characteristic high dimensional data (number of 

features much higher than the number of samples) poses specific issues to the statistical analysis due 

to feature multicollinearity [31,60], which is not corrected by the previously described pre-treatments. 

Statistical analysis can either be univariate or multivariate analysis. These two types are not mutually 

exclusive and application of both strategies can help to maximize the extraction of meaningful 
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information [32]. This dissertation is mainly focused on multivariate statistical analysis so only a brief 

overview of univariate analysis will be given.  

 

1.4.1 Univariate Analysis 

Metabolomics data is clearly multivariate with a large number of features, although it can still be 

analysed in a univariate way.  A univariate analysis is performed by doing successive tests one feature 

at a time [61]. These methods have the disadvantage of considering a multivariate dataset as multiple 

individual variables, which will therefore fail to consider the interactions between different 

metabolites expected from a dynamic system. They counterbalance this disadvantage by being 

relatively simple to use and easily interpretable [4,62]. Moreover, they can also be used to find 

informative features in the dataset as a feature filtering procedure prior to multivariate analysis in 

some cases [32]. Many different statistical tests have been developed that are specific to certain 

characteristics in the data, most importantly if the distribution is approximately normal (Shapiro-Wilk 

and Kolmogorov-Smirnov tests can be used to assess normality), if there is homogeneity of variances 

between groups or homoscedasticity (Bartlett and Levene’s test can be used to assess it), if there are 2 

or more groups to be tested or if the samples are paired/matched [32]. These are based on hypothesis 

tests that set a null hypothesis or H0 that states that there are no differences between the tested groups. 

With the test that will be applied, a probability value (p-value) of type I errors, that is, false positives 

(when the hypothesis is rejected despite being true) is calculated. After setting a threshold of 

acceptable type I errors (the most common is 5%), if the p-value is below this threshold, the null 

hypothesis is rejected, meaning that there is a significant difference between the compared groups; if it 

is above the threshold, the null hypothesis cannot be rejected – there isn’t a significant difference 

between the compared groups. A stricter/lower threshold for type I errors will lead to more type II 

errors – false negatives – and vice versa. Vinaixa et al. [32] gives examples of possible tests to apply 

based on the dataset studied: for datasets whose features follow an approximate normal distribution 

and are homoscedastic, parametric tests are applied to compare means such as the unpaired and paired 

t-tests for 2 unpaired and paired groups, respectively, one-way ANOVA with multiple comparison for 

more than 2 unmatched groups and repeated-measures ANOVA for more than 2 matched groups; if 

the distribution isn’t approximately normal, non-parametric tests are applied to compare medians such 

as the Mann-Whitney U test, the Wilcoxon signed-rank test, the Kruskal Willis one-way analysis of 

variance and the Friedman tests for 2 unpaired groups, 2 paired groups, more than 2 unmatched groups 

and more than 2 matched groups, respectively. An extensive review on univariate analysis of 

metabolomics data is provided by Vinaixa et al. [32]. 

When the univariate tests are applied iteratively to all features in a multivariate dataset, the likelihood 

(and number) of false positives starts increasing and they become almost inevitable when thousands of 

features are tested – the problem of multiple testing. Therefore, multiple test correction procedures 

need to be applied to control the number of false positives while trying to prevent missing true 

positives. Common methods for this are the Bonferroni correction and the False Discovery Rate 

(FDR) [4,32,61,62]. The Bonferroni correction is a conservative approach to minimize type I errors 

(increasing type II errors) that changes the threshold to reject the null hypothesis by dividing the pre-

defined threshold by the number of tests performed (number of features) – thresholdnew = thresholdold / 

number of tests. Minimizing the FDR is a less conservative approach that aims to minimize the ratio of 

false positives to true positives instead of just reducing the absolute number of false positives. It 

transforms the set thresholds (that indicate that x% of all tests will result in false positives) into a q-

value that indicates that x% of all significant tests will be false positives [4,32,62].  The Benjamini-

Hochberg procedure is the most common out of the FDR-based methods. This procedure orders every 
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p-value obtained from the statistical test for every feature from lowest to highest and considers 

features significant (rejecting null hypothesis) if the condition indicated in equation 1.9 verifies [63].  

𝑝 − value ≤  
rank of feature by lowest 𝑝 − value 

number of features
 × 𝑞 − value    (eq. 1.9) 

 

1.4.2 Multivariate Analysis 

Multivariate analysis considers all metabolomic data features simultaneously to analyse the data. This 

global view means that they take into account all possible metabolite interactions (including metrics 

like covariance and correlations) and don’t see them as independent, unlike in univariate analysis 

[4,62]. However, due to the fact that the thousands of features in metabolomics dataset represent 

metabolites that are correlated and connected with other metabolites through, for instance, metabolic 

pathways, and the fact that there is a limited number of samples, high multicollinearity in the data is 

unavoidable – the curse of dimensionality [32,57,64,65]. This is a difficult issue for most multivariate 

methods to efficiently deal with, especially methods that rely on building a model since these will be 

prone to be overfitted – the model will “learn” the training data used to build it too well relying on 

small feature’s variations that are not significant and will perform poorly with additional data [32]. 

Besides this, the complex interactions between the different features muddled in the data between 

informative and non-informative features can be difficult to discern [65]. For all these reasons, robust 

and extensive validation of built models must be achieved (discussed in section 1.4.2.2). Multivariate 

analysis methods can either be unsupervised learning methods or supervised learning methods. 

Unsupervised methods analyse the data without information regarding the groups or classes the 

samples belong to and try to detect intrinsic patterns within the data [66,67]. Supervised methods 

analyse the data with a priori knowledge of the group memberships of the training data used in 

building predictive models suitable to classify new data [4,66]. 

 

1.4.2.1 Unsupervised Learning Methods 

As mentioned earlier, unsupervised learning methods are a type of multivariate analysis whose aim is 

to detect intrinsic patterns within the data to group or separate different samples without knowledge of 

their group membership or the number of groups (metadata), that is, results are purely data-driven 

[66]. Many different unsupervised methods are available, with the most commonly used being 

Principal Component Analysis (PCA). Other common methods are self-organizing maps and a 

plethora of different clustering analysis methods [4,64]. A brief overview of PCA and some clustering 

analysis methods, specifically agglomerative Hierarchical Clustering Analysis (HCA) and K-means 

Clustering Analysis, will be given.  

Principal Component Analysis (PCA) is an approach first described by Hotelling [68] and which 

became one of the most widely used methods of multivariate analysis. It is a dimension reduction 

algorithm that focuses on reducing the dataset dimensions from its number of features (pp) to a small 

number of Principal Components (PCs hereafter) orthogonal to each other [64,69]. These principal 

components are directions in the pp-dimensional space (with pp being the number of features) 

designed to represent new coordinates of sample data and are calculated to preserve as much 

information as possible by maximizing the variance of the projections of the data point over these new 

coordinates. The PCs will then represent a new coordinate system, with a dimension lower (usually 

much lower) than pp. Therefore, the first PC is defined as the direction in the pp-dimensional space, 

which corresponds to the largest variance in the data (linear combination of the pp features of the 
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original dataset); the second PC is defined as the direction of the largest variance of the data 

orthogonal to the first PC; the third is orthogonal to the first and the second one and henceforth 

[38,64,70]. The new coordinates of each sample projected on each PC form the matrix of PC Scores 

[64]. The number of components to use is also a valid question. Common approaches are setting a 

threshold for the minimum accumulated explained variance by the different components (for example, 

it can be set at 80 or 90%) or observing when the variance explained by a new component compared to 

the variance explained by the prior component starts being less impactful (and therefore including it 

does not meaningfully improve the fitting of the PCA model to the data). Apart from this, common 

visualization of this descriptive method is usually done with the plot of the sample scores on the first 2 

or 3 principal components; therefore, when the aim is to represent the data in these components only 2 

or 3 are used, as seen in Fig. 1.1A [69,70]. The results of the PCA depend on the variance of the data. 

This means that they also depend on the units of the features in the dataset, hence the aforementioned 

importance of pre-treating the data, in this case specifically the importance of centering and scaling the 

data to standardize the features [70]. A more detailed review of PCA, explaining the intricacies of the 

method, as well as extensions of PCA, is presented by Jolliffe et al. [70]. Moreover, due to the 

popularity of the method, comprehensive textbooks on the subject can be found (such as [71]). 

Clustering methods analyse the data based on similarity measures, using the distance between 

samples. Clustering methods can be divided into hierarchical clustering (agglomerative HCA is an 

example), partitioning clustering (such as K-means clustering), model-based clustering, grid-based 

clustering, density-based clustering and graph-based clustering [64,72]. A detailed review of the 

different clustering types and their applications in bioinformatics is provided by Andreopoulos et al. 

[72]. It is worth taking into account that most of these methods don’t give an estimation of the 

reliability of their results and, therefore, it has to be estimated by other methods if needed [20]. 

In agglomerative hierarchical clustering analysis, all samples start in their own separate cluster and are 

progressively clustered together based on a similarity measure. The closest clusters are first clustered 

together and this process is done iteratively until one cluster with all samples is obtained. This 

similarity measure is based on a distance metric used – commonly the Euclidian distance between the 

samples but can also be Manhattan, Mahalanobis distances or even binary dissimilarity metrics such as 

Jaccard or Yule dissimilarities. The calculation of the distances between multi-sample clusters needs 

another criterion called Linkage. Some common Linkage methods are average linkage or UPGMA 

algorithm that considers the mean distance between all pairs of samples, one belonging to each of the 

clusters (may be computationally intensive), single linkage that considers the minimum distance 

between 2 samples (one belonging to each cluster – may merge clusters with only 2 samples close to 

each other, which is referred to as the chaining problem), complete linkage that considers the 

maximum distance between 2 samples (one belonging to each cluster – vulnerable to outliers), Ward’s 

variance minimization linkage method where the “distance” to be minimized is the within-cluster 

variance [73] and centroid linkage where the distance between clusters is the distance between their 

centroids, among others [38,64,72]. The result of this method can be neatly represented as a 

dendrogram (tree) that facilitates both visualization and interpretation – Fig. 1.1B [4]. Different 

dendrograms can result from applying either different distance metrics or linkage methods. They can 

be compared by correlation metrics, with the two common metrics being the cophenetic correlation 

coefficient (Pearson correlation between all pairwise distances where two samples were clustered 

together between the two dendrograms [74]) and Baker’s Gamma correlation coefficient (Kendall’s 

correlation between the iterations of the algorithm where two samples were merged together in each 

dendrogram for all sample pairs [75]). 
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K-means clustering is a type of partitioning-based clustering method where k clusters are made with a 

centroid being representative of each cluster (k is defined by the user). Samples are attributed to the 

cluster defined by the closest centroid in the pp-dimensional space (pp being the number of features in 

the studied dataset) and the centroids are updated to minimize the distance to the samples that are in 

their cluster (which can be negatively affected by outliers). These two steps are repeated until the 

samples in each cluster do not change between iterations (or their shift is below a predefined 

threshold). Since the starting centroids are chosen randomly, this method does not always generate the 

same results, since the algorithm may stop at a local minimum instead of a global minimum, so 

repeating the algorithm might help find the best estimation of the global minimum. This type of 

methods might be applied over hierarchical clustering when a specific number of clusters is desired 

[64,72]. 

As with all techniques, it is important to assess the quality of the clustering. The Rand index is an 

external criterion that evaluates how similar the clustering made is to the natural group separation of 

the samples on the original dataset (defined a priori of the analysis). This index compares the k 

clusters made from K-means clustering analysis (each cluster is a group) to the original group 

memberships. Thus, each pair of samples is tested to see if their group relation by the original group 

memberships and by the clusters made from clustering are in “agreement”. They are in “agreement” if 

the two samples that belong (or do not belong) to the same original group memberships were (or were 

not) clustered in the same cluster by the K-means clustering analysis. For example, considering the 

samples in Fig 1.1, the original group memberships and clustering performed are “in agreement” if 2 

samples of the dGLO2 strain (same group) were clustered in the same cluster and are also “in 

agreement” if a sample from the dGLO2 strain and another from the dENO1 strain were clustered in 

different clusters. The Rand index is then the ratio of every pair of samples that is in agreement by 

total amount of pairs of samples [64,76]. 

 

Figure 1.1: Representation of a typical results figure from PCA (A) and Hierarchical Clustering (B). A) Sample 

projection on the first 2 Principal Components with the explained variance of each Principal Component (PC) indicated in the 

respective axis. B) Dendrogram representation of Hierarchical Clustering. Both representations were made from an example 

dataset with 3 samples of 5 different groups that each represent a strain of yeast – the reference BY4741 strain – and 4 single 

gene deletions of this strain: deletion of the GRE3 (dGRE3), ENO1 (dENO1), GLO1 (dGLO1) or GLO2 (dGLO2) gene (Data 

from [77]). 

 

1.4.2.2 Supervised Learning Methods 

As mentioned earlier, supervised methods build models based on a set of data called the training set 

with a priori knowledge of their group membership (discrete groups) or of continuous response 

variables. The models can then be used to make classifiers (group memberships) or regressions 

A
B
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(continuous response variables), [4,66]. Regressions will try to predict the best fit of a test sample with 

a continuous response variable and the quality of its predictions can be assessed by calculating the root 

mean squared error in relation to the true response variables of the test data. Classifiers, on the other 

hand, will try to predict the group membership (discrete options) of samples of the test data based on 

the groups of the samples in the training data. These classifiers can then be assessed according to their 

predictive accuracy of group memberships, as well as their sensitivity and specificity among other 

possible performance metrics [66]. For this work, classifiers are the most relevant type of supervised 

methods. 

As indicated before, validation of the models obtained by supervised learning methods is extremely 

important to avoid overfitting due to the high number of features, high feature collinearity and low 

sample number of the metabolomics datasets. Common ways to try and validate a model include (but 

are not limited to) external validation by holding out test samples, internal validation, bootstrapping, 

and permutation tests. Internal validation tends to be used when the number of samples is low and the 

loss of a few samples to test the model would have a significant impact on the model built, while 

external validation is better used when there is a greater amount of samples [78].  Internal validation is 

performed using methods such as k-fold cross-validation (CV) and leave-one-out cross-validation 

(LOOCV), [78] and it consists of splitting the dataset that will be used for the final model into its own 

training and testing set in different ways to observe the model’s performance when predicting 

“unknown samples”. K-fold CV splits the dataset into k different sample sets (5,7 or 10 are the most 

common), where one of them is iteratively the testing set and all the others are the training set until all 

sets have been the test data once. The mean of the performance metrics of the models built for each 

test set is therefore an estimate of the performance of the prediction model built with the full dataset.  

The splitting of data can be achieved in different ways (Fig. 1.2): standard k-fold CV groups can be 

constructed with venetian blinds (each sample is sequentially assigned a number from 1 to k, with k 

being the number of sets and each sample with the same number belongs to the same set) or 

contiguous blocks (each block of n/k samples forms a set, with n being the total number of samples) if 

the samples are already randomly ordered, or split into random subsets. Besides this, stratified k-fold 

CVs aim that all different sets have the same number of samples of each group. In LOOCV, each set is 

comprised by a single sample – in each iteration, a model is built with all the samples, except one that 

will be tested [4,52,64,78]. External validation works by leaving out a set of samples that are only 

used to test the model, while the rest of the samples are used to build the model. The two main 

parameters are the number of the samples excluded (around 30% of the total samples is the norm) and 

the procedure to select the samples to leave out, such as random sampling (closer to a “real” situation) 

or Kennard-Stone sampling (used to have a uniform distribution between training and test sets) [78].  

 

Figure 1.2: Different strategies to split the dataset into k different groups of m samples each. Each different 

pattern/colour represents a group. Adapted from https://wiki.eigenvector.com/index.php?title=Using_Cross-Validation. 

 

Sam
p
les 

Venetian Blinds Contiguous Blocks Random Subsets Leave one-out CV 

https://wiki.eigenvector.com/index.php?title=Using_Cross-Validation
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The objective of a permutation test is to determine the probability of observing an equal or better 

performance of the predictive model built from a dataset compared to predictions based on pure 

chance, that is, the significance of the predictive accuracy of the model. This is done by randomly 

permuting the group labels of each sample, building the model (with the same parameters) with the 

permuted labels’ dataset, and comparing the performance of its prediction model (using one of the 

prior validation techniques mentioned) – usually accuracy is the performance measure used with 

classifiers. The rationale is that if there is some intrinsic structure within the groups, the prediction 

model should have a greater accuracy compared to when the data is jumbled (the difference between 

the groups is absent). Thus, many label permutations are repeated and if our original prediction model 

has a better performance x% of the times, with x normally being equal to 95 or 99%, the prediction 

model’s performance is significantly better than the models built with randomly labelled datasets, that 

is, the model is using information intrinsic to the different groups to classify them [4,64,79]. 

A brief overview of two different supervised learning methods, PLS-DA and Random Forest, will be 

given next. 

 

Partial Least Squares Discriminant Analysis (PLS-DA)  

Partial Least Squares (or Projection to Latent Structures) – Discriminant Analysis (PLS-DA) is a 

popular classification method in the field of metabolomics since it can analyse efficiently high-

dimensional data with multicollinearity and does not assume any kind of distribution for the data. 

PLS-DA was created from the Partial Least Squares (PLS, also referred as Projection to Latent 

Structures) regression analysis by adding a decision rule for group membership to the regression 

results obtained. Like PCA, PLS is a dimension reduction algorithm. However, instead of maximizing 

variance of the projections of the samples on the principal components, PLS maximizes the covariance 

between the dataset (the samples) – X – and a vector or a matrix representing classes/group 

memberships – Y [31,64,78,80]. The PLS algorithm used is slightly different depending on whether 

there are 2 classes (PLS1-DA) or more than 2 (PLS2-DA) to predict. For 2 classes, the response 

variable will usually be a vector of 0s and 1s, where each number represents a categorical class. For 

more than 2 categorical classes, a “dummy matrix” is constructed with one-hot encoding, where each 

column represents a class with a sample having a 1 or a 0 in that column whether they belong to the 

class or not, respectively [78]. PLS components are projections called Latent Variables (LVs). Wold et 

al. goes into detail about the mathematical models that define the PLS regression and the PLS-DA 

classification analysis [81], which will not be explained here. As in PCA, we can compute Loadings 

(values of the contribution of each variable to each LV) and Scores (coordinates of each sample on the 

new components); however, since both the X variables and the Y response variables are considered 

when making a model, there are both X-loadings and X-scores, Y-loadings and Y-scores. 

Furthermore, another pair of matrices called X-weights and Y-weights is needed to give information 

about the combination of the variables to form the quantitative relation between X and Y [80,81]. 

According to Wold et al., the LVs in the model should be restricted to those which contribute to the 

predictive significance of the PLS or PLS-DA model using internal validation methods like cross-

validation, such as the ones discussed earlier in this work [81]. For regression analysis, the 

performance of the model can be assessed by the value of (1 - Predictive Residual Sum of Squares 

(PRESS)/SS), where SS is the residual sum of squares of Y corrected for the mean – Q
2
 – as the 

number of LVs increases [81].  

The results of applying a PLS model on a test sample are a non-categorical prediction of the best 

estimate of the response variable for a given test sample. This will be called ypred here and it is a 
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number (almost always between 0 and 1) for 2 class systems and a vector with n numbers (n > 2) for 

more than 2 class systems where each number corresponds to a class where the closer to 1 it is, the 

more similar the sample is to the samples belonging to that class. From the ypred, a decision rule (DR) is 

then applied to decide the class or group membership of each test sample (transforming PLS into a 

PLS-DA). Besides, the X-scores could be used by employing a distance metric to calculate its distance 

to the different classes [78]; however, this is less common than the use of ypred. The simplest and most 

common decision rule used is to simply see what the maximum value in the ypred vector is and assign 

the sample to the corresponding column/group (max DR rule). Nevertheless, other more complex DRs 

can be applied, such as transforming the ypred with a probability density function or setting a minimum 

threshold for a class to be assigned (leads to the possibility of unassigned samples, which can be an 

advantage when testing truly unknown samples). This threshold can be determined arbitrarily or by 

applying tools like probability density functions [78]. For 2 class models, the threshold or cut-off point 

is usually set at 0.5, where a higher value is assigned to the class represented as 1, and a lower value 

than 0.5 is assigned to the class represented as 0. This threshold can also be changed and optimized 

based on user preference. Besides, two threshold points might be set, creating a boundary and an 

interval of values between the thresholds where no assignment is made [78]. However, if most of the 

predictions made are close to the defined threshold, this could mean that the model has a low 

discriminatory power, putting its prediction capability in question [31]. Despite this, a study by Lee et 

al. shows that the “simple” max DR rule has a similar performance to other more complex rules, 

leading to higher model stability in exchange for slightly lower model accuracy [80]. 

With the PLS-DA models, there are many strategies that allow either variable selection to make a 

model with a lower number of variables (higher density of meaningful variables) or to select possible 

biologically important features that contributed more to the model to discriminate the different classes. 

These are filter methods that aim to identify important features based on a certain measure (which is 

the most relevant to this work); wrapped methods that aim to create robust models with a reduced 

amount of variables by iterating the following process – applying filter methods to obtain subsets of 

the data and refitting the model to find the subset that maximizes performance; finally, embedded 

methods where variable selection is made during the development of the model [82]. Filter measures 

can be applied to a direct set of parameters obtained by the PLS model, specifically the absolute values 

of X-weights (contribution of each feature to the covariance of X and Y in each LV) and regression 

coefficients (global measure of association between X and Y used for test sample prediction in each 

LV), [80,82]. Therefore, an ordered list of their absolute values can give us an indication of the most 

important features to build the PLS-DA model. Variable Importance/Influence in Projection (VIP) 

score is another method that estimates the importance of each feature to explain the variance in Y 

using equation 1.10, which takes into account the importance (variance explained) of each LV in the 

model in comparison to the total variance in Y and the contribution of each feature to each LV 

(represented as the X-weights) to select the features that are most important to the model [82–84]. 

Since the average of all VIP scores is 1, 1 is usually used as a minimum threshold to consider a feature 

as important or relevant. However, a careful consideration of a suitable threshold based on the results 

obtained is recommended. 

VIPi = √𝑝𝑝 × 
∑ (qa

2  × ta
′  × ta)  × (wai /  ‖wa‖)

2 nº LV
a=1

∑ qa
2  ×  ta

′  ×  ta
A
a=1

     (eq. 1.10) 

In equation 1.10,  qa and ta are Y-loadings and X-scores of the a
th
 LV, wai is the x-weight of the a

th
 LV 

for feature i and pp is the total number of features [82,84]. 
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Many different variants of PLS-DA have been developed since the start of PLS-DA use in statistical 

analysis with orthogonal PLS-DA being the variant that has gained the most notoriety in recent years; 

this method separates the Y-correlated variation in X from the Y-uncorrelated variation in X (structure 

in X that is orthogonal to the Y response) – Orthogonal Signal Correction [7,52,64]. 

 

Random Forest 

Random Forest is a classifier that consists of an ensemble of independent decision trees, each built 

with a subset of the training data. Each tree makes a decision about which group a tested sample 

belongs to. The global result for the random forest classifier is then based on the majority vote of all 

individual trees [64,85]. This allows for a better performance,  less variance in the results and 

especially less overfitting compared to using single-decision trees built with all training samples 

[52,86]. A decision tree is an input-output model that makes binary decisions based on the value of a 

feature (each node on the tree represents one of these decisions) built so that it can split the samples in 

their respective groups (Fig. 1.3). With each decision made, the data subset is split into two different 

subsets. The logical rules (decisions) are chosen to decrease a certain “impurity measure” such as the 

Gini Index/Impurity. The Gini Index is a measure of the probability of a random sample being 

incorrectly labelled if randomly labelled by the distribution of the training samples’ labels of the node 

where that sample is inserted. Each binary decision is then made so that misclassification of samples 

used to build the tree is decreased as much as possible until all subsets of samples only have samples 

of one group or until a maximum tree depth predefined by the user is reached. A test sample navigates 

the tree according to those binary decisions and it will be classified as belonging to the majority group 

of the terminal node that it reaches [52,64,86,87]. For random forest, each tree is independently built 

based on a random bootstrap sampling of the training data, with the forest being a set of de-correlated 

trees [52,86]. An important parameter of the model is, then, the number of trees to use. With more 

trees added to the forest, the generalization error of the prediction converges, which means that adding 

more trees won’t lead to overfitting the model [85,86]. This means that an appropriate number of trees 

to use is one that is sufficient to approximate the converged generalized error (and, therefore, the 

convergence of the model accuracy) without being too computationally expensive. Random Forest can 

be applied to great effect with metabolomics data due to their ability to deal with collinear data while 

not assuming any distribution in the data and being resistant to outliers [64]. Furthermore, they are 

able to highlight features that were important to build the model. A way to perform this is by assessing 

how much a feature contributed to decreasing the impurity measure used across the different decision 

trees (more contributions means a higher importance of the feature in the model). When the impurity 

measure used is the Gini Index, this is called the Gini Importance or Mean Decrease Gini [87]. Other 

approaches to characterize feature importance include the Mean Decrease Accuracy, which assesses 

the feature’s importance by assessing its impact on the performance of the model (by checking the 

performance when said feature has random permutated values), [87]. 
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Figure 1.3: Example of a small decision tree present in a Random Forest. All the samples are a part of the training set 

used to build the example decision tree.  

 

1.5 Analysis of the Chemical Diversity of a System’s Metabolome 
A system’s metabolome has a huge chemical diversity, which at any given point is characteristic of the 

system under the conditions of its environment. Its chemical diversity comes from the thousands of 

metabolites that make its metabolome, from their complex interactions and spatial and temporal 

organization [88]. The compositional space these metabolites occupy even when only considering the 

6 more common elements in biological compounds (C, H, O, N, S and P) is extremely vast, with 

millions of possible combinations in both number and structural organization of those six elements to 

make different compounds. As mentioned earlier, this makes the structural identification of 

metabolites a major bottleneck of the metabolomics analysis even for high resolution techniques, 

especially when considering that thousands of formulas can be fit in the same 1 Da interval, each with 

many different possible isomers. The actual metabolites present in a biological system undergo 

specific interactions consistent with the homeostasis of highly organized and complex systems. This 

organization is, in great part, achieved by the compartmentalization of molecules, which places 

different metabolites in specific subcellular localizations at specific times, where they can be used in a 

myriad of different functions, for example as energy storages, building blocks of macromolecules, 

signals, among others [6,88]. 

 

1.5.1 Representation of a System’s Chemical Diversity 

The analysis of the global chemical diversity of a system from high-resolution data helps to 

characterize it. Data from high-resolution methods can give us a global snapshot of the metabolome. 

As already discussed, this “snapshot” is incomplete and will be biased towards a subset of metabolites 

more easily identified by the method used. Despite this limitation, it still encompasses a substantial 

part of the chemical diversity of a metabolome, which can be further increased by using multiple 

different high-resolution methods [88]. The annotation of some spectral features found by these 

methods can greatly help the analysis of the chemical diversity of a sample. Fortunately, structural 

elucidation (unambiguous identification) of metabolites is not needed and that bottleneck can be 

overcome. The use of formula assignment algorithms to assign likely formulas to m/z peaks is a faster 
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process that may be used instead of structural elucidation, if needed. However, these can still be 

ambiguous when multiple suitable formulas have very similar masses (a problem that gets worse at 

higher masses). The complex chemical diversity of different samples is usually represented in 

simplified and visually clear ways that can be easily interpreted. Some of the more common 

representations of a system’s chemical diversity are Van Krevelen and Kendrick Mass Defect (KMD) 

plots [88,89]. 

Van Krevelen plots represent the carbon, hydrogen and oxygen (CHO) chemical space by plotting the 

identified formulas on a plot of the ratio of the number of hydrogen to carbon atoms (H/C) over the 

ratio of the number of oxygen to carbon atoms (O/C) – Fig. 1.4A. The areas (combinations of both 

ratios) the different formulas occupy are sometimes used to estimate to which groups or categories 

they belong, such as aminoacids, carbohydrates, lipids, lignins, nucleic acids, aminoacids-like, or 

carbohydrates-like compounds, among others [90]. For example, this representation was done in the 

works of Gougeon et al. [91] and Roullier-Gall et al. [29] when analysing the chemical diversity in 

wines. However, the lack of concretely defined boundaries for each category and the considerable 

overlap among these different categories makes the classification often inefficient. This lack of 

accuracy associated with the difficulty in categorizing compounds solely based on their H/C and O/C 

ratios (not considering other relevant elements such as nitrogen) can lead to inconclusive results and a 

lack of robust conclusions [90]. 

KMD plots represent the Kendrick Mass Defect over the Kendrick nominal masses – Fig 1.4B. The 

Kendrick mass of a compound is given by standardizing the group CH2 to exactly 14 (Kendrick mass) 

by eq. 1.11. The Kendrick Mass Defect (KMD) is the difference between the nominal Kendrick mass 

and the exact Kendrick mass [92]. This means that compounds with the same heteroatoms (class) and 

same amount of double bonds plus rings (type – changes by H2 or exactly by 0.0134 KMD) will be 

represented in a horizontal line with their position on the x-axis being based on the number of CH2 

groups. Therefore, it allows the visualization of the different classes and types of compounds in the 

samples (due to their characteristic KMD) in a 2D space [92], although it can become difficult to 

distinguish groups when many compound classes are present. 

m Kendrick =  m IUPAC  ×  14 ÷  14.01565 (IUPAC mass of the group CH2)  (eq. 1.11) 

Furthermore, the different formulas being plotted in these types of graphs can also be colour-coded 

based on some pre-determined condition to further help the visualization of the chemical diversity. For 

example, in Adrian et al. [93], when analysing the chemical diversity in grapevines, formulas were 

coloured based on the chemical elements they possess, splitting them into these groups: CHO, CHON, 

CHOS, CHOP, CHONS, CHONP and CHONSP.   
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Figure 1.4: Example of a Van Krevelen diagram (A) and a Kendrick Mass Defect plot (B) of metabolomics data. Dots 

are coloured according to their elemental formula composition: (●) – CHO, (●) – CHOS, (●) – CHON, (●) – CHNS, (●) – 

CHONS, (●) – CHOP, (●) – CHONP, (●) – CHONSP and (●) – Other. Data from [77]. 

 

1.5.2 Mass-Difference Networks (MDiNs) 

Recently, another representation method called Mass-Difference Networks (MDiNs), which allows a 

better discrimination of different compound classes when compared to Van Krevelen and KMD plots, 

has been used to complement the two previously mentioned types of plots. Mass-Difference Networks 

(MDiNs) use the list of masses obtained from high-resolution methods as nodes in a network. Edges 

are established between nodes that have a difference in masses very close to specific mass differences 

that represent certain chemical transformations – Fig. 1.5 [88,94]. This method was originally 

developed by Breitling et al. [95] and took advantage of the fact that many likely chemical formulas 

could be assigned from high-resolution data to build non-random and informative networks ab initio. 

These networks made from high-resolution data originate their own partial “metabolic networks” that 

also consider possible spontaneous non-enzymatic reactions and are not influenced or skewed by the 

known metabolic pathways that still are very incomplete in many biological systems [95,96]. The 

exact mass differences correspond to the changes in the elemental formula of metabolites due to 

common biochemical reactions such as: methylations (total change of CH2 after substitution of –H 

hydrogen atom by a –CH3 group), hydrogenations/dehydrogenations (H2), hydroxylations (O), 

phosphorylations (PO3(H)), among many other possibilities (such as aminoacids for bigger groups) 

that have characteristic masses, for example, H2 = 2.01565 Da and CH2 = 14.01565 Da [94,95]. These 

“Mass-Difference-based Building blocks” (MDBs) can be chosen from a set of common biochemical 

reactions or by observing the most common mass differences present in the dataset and to which 

chemical transformations they might correspond [95,97]. 

BA
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Figure 1.5: Example of the concept of Mass-Difference Networks (MDiNs) in a 4 node example network. m/z peaks are 

from a mass spectrum. dif. = difference. 

 

These networks are also used as a method to expand the number of features assigned with formulas in 

a way similar to Kendrick Mass Defect analysis, but able to consider as many homologue series as the 

number of groups used to build the network [94,96]. This kind of formula assignment can be achieved 

if even one single elemental formula is known in a component of the generated network, since all 

edges correspond to specific additions or subtractions of MDBs. Therefore, by starting with a select 

list of formulas assigned to peaks with higher reliability, obtained for example through annotation with 

a database, you can assign formulas to many of the other m/z peaks through a chain of specific mass 

differences to the starting formulas (while keeping in mind certain characteristics of metabolites such 

as acceptable ratios between the different elements), [94] as an alternative approach to formula 

assignment algorithms. On one hand, this makes formula assignment biased to formulas “similar” to 

the starting set of formulas, instead of considering the complete metabolite chemical space; on the 

other hand, these formulas belong to known existing metabolites that have a high probability of being 

present in the sample and, therefore, it could be argued that formulas similar to these, especially when 

the difference can be explained by common biochemical reactions, also have a higher probability of 

being present in the same sample.  

Visualization of the networks can be further enhanced by colouring the different edges based on the 

group or mass difference that defined that edge. This helps seeing trends of relations between 

functional groups in the network more easily [94].  
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1.6 Aim 
This dissertation focuses on the exploration and development of new and reliable ways to analyse 

metabolomics datasets for the profiling and discrimination of samples into their respective design 

groups. In particular, two new methods were developed, as alternatives to traditional data pre-

treatments, exploring new perspectives to look at metabolomics data: 

1) Binary Similarity (or BinSim for short); 

2) Sample Mass-Difference Networks (Sample MDiNs). 

 

These two pre-treatment methods forgo the use of the highly variable intensity data and focus on the 

(less variable) occurrence of spectral features in the samples (as an effort to make metabolomics 

results more reproducible). Moreover, due to focusing on different aspects of the data, any of these 

methods could also be used as a complementary approach to the usual workflow to provide a more 

complete picture of the metabolomics data analysed. 

1) Binary Similarity focuses simply on the presence and/or absence of features from a dataset – 

occurrence of spectral features – discarding its metabolites signal intensity data. Since most 

other mainstream available treatments focus on the different signal intensities, features with 

considerable amounts of missing values tend to be filtered. This method skips most of the 

peak filtering (since missing values are valuable information in this method), missing value 

imputation and choice of pre-treatment steps in the metabolomics analysis workflow for a 

faster and simpler analysis. Furthermore, it also ignores the oft-used intensity data, which is 

very prone to variance from sample to sample in metabolomics, thus it should give a new 

perspective on the data compared to other methods. So, with its speed, simplicity, less 

variability and new perspective, it can also be a way to complement the standard 

metabolomics data analysis workflow, even if not used as the primary analysis. Here, how 

well different statistical analysis methods (both unsupervised and supervised methods) can 

discriminate between different groups in datasets treated by BinSim compared to datasets 

treated with more established intensity-based pre-treatment methods were compared. 

Moreover, to observe if this approach was extracting relevant information from data features 

that are often not used despite being equally important, the important features to build 

classifier models with supervised methods from datasets treated with BinSim and with other 

intensity-based methods were compared.  

 

2) Sample MDiNs is a method that focuses on building Mass-Difference Networks (MDiNs) for 

each sample in a dataset (sample networks), where each (neutral) mass in the sample 

represents a node and an edge is established if the difference between two masses (nodes) can 

be explained by a change in a metabolite derived from a simple biochemical reaction 

(enzymatic or non-enzymatic). Thus, the set of mass differences (“Mass-Difference-based 

Building blocks” – MDBs) used represent the mass derived from the overall change in the 

elemental formula of a metabolite after certain sets of reactions. This method will aim to build 

a characteristic network for each sample to represent their chemical diversity. The chemical 

diversity of a biological system is, in principle, characteristic of that system under certain 

conditions since it is tied to the metabolome. It follows that a network such as a MDiN, which 

aims to be a good descriptor of the chemical diversity could and should have specific 

properties that characterize a sample of that system. Therefore, here it is proposed that these 

sample MDiNs can be characteristic of their biological group and therefore used (as a data 
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analysis treatment) to represent metabolomics samples and discriminate them into their 

respective groups (be it species, strains, varieties, or any other kind) based on the networks 

characteristics and properties. As traditional methodologies, MDiNs aim to extract 

information and generalize it into something we can understand, however it focuses on the 

possible chemical transformations between the different spectral features rather than looking 

at each feature individually. Thus, the sample networks contained the information of the 

possible chemical transformations between its nodes, which is a very different perspective in 

comparison to other methods. This opens a plethora of options due to the versatility of 

network analysis methods that can be used to compare different networks. Through different 

of these network analyses that focus on diverse network characteristics (nodes, edges, 

topology of the network) on the sample networks, “secondary datasets” were built which 

allowed the comparison of the different samples. By a similar methodology to the previous 

point, statistical methods were used to try and discriminate the different samples into their 

respective groups based on those secondary datasets to test if any of them could be considered 

a viable way to treat data as far as the discrimination of samples is concerned.  

These treatments, if viable, will contribute to a boost in the usual metabolomics data analysis 

workflow, by taking into account characteristics that are specific of metabolomics data (as opposed to 

most other methods, which were borrowed and adapted from the other “omics” sciences), looking at 

the data in considerably different ways and being able to quickly complement most dataset analysis. 
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2. Materials and Methods 
Three metabolomics datasets (hereafter referenced as the Negative and Positive Grapevine Datasets 

(GD) and the Yeast Dataset (YD)) were systematically used for the development of the proposed 

methods and for comparison with more established intensity-based methods. These datasets were 

previously acquired at the Fourier-Transform Ion-Cyclotron-Resonance and Structural Mass 

Spectrometry Laboratory (FT-ICR-MS-Lisboa) group infrastructure, where this work was developed. 

All processing, treatment and analysis of the different datasets mentioned from here on out were made 

using Python 3.7.4 programming language. Furthermore, this was developed by using several well-

known Python packages. The main Python packages used were: numpy [98], pandas [99], scipy [100], 

scikit-learn [101], matplotlib [102], seaborn [103] and networkx [104]. Moreover, this work both 

contributed for and used extensively the package metabolinks available at 

https://pypi.org/project/metabolinks/. 

The main scripts, jupyter notebooks and data used to produce this work are available in a git-hub 

repository at: https://github.com/aeferreira/similarity_share as well as some of the other analyses made 

to support this work that was not shown in this dissertation. 

 

2.1 Datasets 

2.1.1 Grapevine Datasets (Positive and Negative Ionization Modes) 

The Grapevine Datasets were acquired by Marisa et al. [105] and are available in figshare data 

repository with the identifier m9.figshare.12357314 (https://doi.org/10.6084/m9.figshare.12357314), 

[106]. Grapevine Dataset samples were prepared as described in Marisa et al. [105]. Briefly, the leaf 

metabolome from eleven field grown Vitis genotypes (5 wild Vitis species and 6 Vitis vinifera) was 

analysed by Fourier Transform Ion Cyclotron Resonance mass spectrometry (FT-ICR-MS). For the 

analysis, extracted metabolite samples were diluted 1000-fold in methanol and human leucine 

enkephalin (Sigma Aldrich) was added for internal calibration of each mass spectrum ([M+H]
+
 = 

556.276575 Da or [M-H]
-
 = 554.262022 Da). Formic acid (Sigma Aldrich, MS grade) was added at a 

final concentration of 0.1% (v/v) before the positive ion mode analysis. Samples were analysed by 

direct infusion on an Apex Qe 7-Tesla FT-ICR-MS (Brüker Daltonics). Spectra were acquired with an 

accumulation of 250 scans of 512Kb for each spectrum, at both positive (ESI
+
) and negative (ESI

-
) 

electrospray ionization modes, in the mass range of 100 to 1000 m/z. Data Analysis 5.0 (Brüker 

Daltonics, Bremen, Germany) was used to internally calibrate each mass spectrum using leucine 

enkephalin for single point calibration. Peaks lists (m/z and intensity) were retrieved, considering a 

minimum signal-to-noise ratio of 4. 

Thus, the Grapevine dataset consists of FT-ICR-MS metabolomics data obtained in positive and 

negative modes of 3 biological replicates of 11 different grapevine genotypes. The information of the 

11 different Vitis genotypes is presented in Table 2.1. Data from the positive and negative modes were 

treated independently. 

 

https://pypi.org/project/metabolinks/
https://github.com/aeferreira/similarity_share
https://doi.org/10.6084/m9.figshare.12357314
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Table 2.1: Wild Vitis species, V. vinifera subsp. Sylvestris and V. Vinifera cultivars in the Grapevine Datasets. Species, 

cultivar names, VIVC variety number, type of accession, origin (information adapted from https://www.vivc.de/) and 

abbreviations used to identify each species/cultivar are indicated. Table adapted from Marisa et al. [105]. 

Vitis species 

Subspecies 

(subsp.) or 

cutivar (cv.) 

VIVC 

variety 

number 

Abbreviation Type of accession Origin 

V. candicans 

Engelmann 

Vitis candicans 

engelmann 
13508 CAN Wild species 

United States 

of America 

V. riparia 

Michaux 

Riparia Gloire 

de Montpellier 
4824 RIP Wild species 

United States 

of America 

V. rotundifolia 

Muscadinia 

Rotundifolia 

Michaux cv. 

Rotundifolia 

13586 ROT Wild species 
United States 

of America 

V. rupestris 

Scheele 
Rupestris du lot 10389 RU Wild species 

United States 

of America 

V. labrusca Isabella 5560 LAB Wild species 
United States 

of America 

V.vinifera 

Subsp. sylvestris - SYL Wild plant Portugal 

Subsp. sativa cv. 

Cabernet 

Sauvignon 

1929 CS 
Cultivated 

grapevine 
France 

Subsp. sativa cv. 

Pinot Noir 
9279 PN 

Cultivated 

grapevine 
France 

Subsp. sativa cv. 

Regent 
4572 REG 

Cultivated hybrid 

(crossing V. vinifera 

cv. Diana X cv. 

Chambourcin) 

Germany 

Subsp. sativa cv. 

Riesling Weiss 
10077 RL 

Cultivated 

grapevine 
Germnay 

Subsp. sativa cv. 

Trincadeira 
15685 TRI 

Cultivated 

grapevine 
Portugal 

 

The total 33 samples were aligned together by a peak-based method using an in-house Python script 

made available in the metabolinks Python package (https://github.com/aeferreira/metabolinks) with 1 

ppm m/z peak tolerance, generating a 2D-dataset with 5821 peaks in the negative mode and 30660 

peaks in the positive mode. 

 

2.1.2 Yeast Dataset 

Yeast dataset was acquired by J. Luz [77] and is available at the git-hub repository: 

https://github.com/aeferreira/similarity_share (‘5yeasts_notnorm.csv’). Briefly, the metabolome from 

five different yeast strains was analysed by FT-ICR-MS. Metabolites were extracted from cells 

collected at stationary phase of growth for each culture. For the analysis, extracted metabolite samples 

were diluted 100-fold in methanol:water (1:1) and human leucine enkephalin (Sigma Aldrich) was 

added for internal calibration of each mass spectrum ([M+H]
+
 = 556.276575 Da). Formic acid (Sigma 

Aldrich, MS grade) was also added at a final concentration of 0.1% (v/v). Samples were analysed by 

direct infusion on SolariX XR 7-Tesla FT-ICR-MS, equipped with ParaCell (Brüker Daltonics). 

Spectra were acquired with an accumulation of 100 scans of 4Mb for each spectrum, at positive 

https://www.vivc.de/
https://github.com/aeferreira/metabolinks
https://github.com/aeferreira/similarity_share


Materials and Methods 

26 

electrospray ionization mode (ESI
+
), in the mass range of 100 to 1200 m/z. Data Analysis 5.0 (Brüker 

Daltonics, Bremen, Germany) was used to internally calibrate each mass spectrum using leucine 

enkephalin for single point calibration. Peaks lists (m/z and intensity) were retrieved, considering a 

minimum signal-to-noise ratio of 4. 

Thus, the Yeast dataset consists of FT-ICR-MS metabolomics data obtained in positive mode of 3 

biological replicates of 5 different strains of Saccharomyces cerevisiae: the reference strain BY4741 

(represented as BY) and 4 single-gene deletion mutants of this strain – ΔGLO1, ΔGLO2, ΔGRE3 and 

ΔENO1 represented respectively as dGLO1, dGLO2, dGRE3 and dENO1. These deleted genes are 

directly or indirectly related to methylglyoxal metabolism.  

The raw data from the 15 samples were aligned using the MetaboScape 4.0 software (Brüker 

Daltonics, Germany) using the T-ReX (Time aligned Region complete eXtraction) algorithm with the 

following parameters: m/z delta = 1.10, Intensity Threshold = 0.00, Maximum Charge = +1. The peak 

lists were aligned in a bucket table, generating a 2D dataset with 21252 peaks.  

Formulas were assigned to the m/z values using the MetaboScape 4.0 software (Brüker Daltonics), 

first with annotation from the HMDB [49] or YMDB [107] (Human and Yeast Metabolome 

Databases, respectively) metabolites list and, afterwards, with MetaboScape’s SmartFormula 

algorithm (formula assignment algorithm) with the following parameters: m/z tolerance narrow 0.1 

and wide 1.0 ppm and mSigma narrow 10 and wide 100. The elements considered for formula 

assignment were C, H, N, O, S, P with the ‘Auto Upper Formula’ option. The formulas assigned had 

to have at least one carbon and one hydrogen. The Senior and Lewis MetaboScape filter and the 

heuristic element count probability checks were applied. The allowed element ratios were the 

following: H/C – 0.2-3.1, O/C – 0.0-1.5, N/C – 0.0-1.3, S/C – 0.0-0.8, P/C – 0.0-0.3, P/O – 0.0-0.34. 

17726 unique formulas were assigned to the 21252 peaks, 1652 of which were identified in multiple 

samples. The Yeast dataset filtered down to only peaks with assigned formulas will be referred as the 

Yeast Formula Dataset (YFD). 

  

2.2 Binary Similarity – Data Pre-Treatment and Statistical Analysis 

2.2.1 Data Pre-Treatment 

Minor peak filtering was performed in the datasets by excluding peaks that only appeared in 1 sample 

since these features are uninformative, regardless of the pre-treatments made. Using this filtering, the 

negative Grapevine dataset was reduced from 5821 to 3629 peaks, the positive Grapevine dataset from 

30660 to 7026 peaks and the positive Yeast dataset from 21252 to 1973 peaks.  

After filtering, the same procedures described below were applied independently to the negative and 

positive GD (Grapevine Dataset), YD (Yeast Dataset) and YFD (Yeast Formulas Dataset): the Binary 

Similarity method proposed pre-treatment in this dissertation and with several combinations of more 

established, intensity-based, methods that were discussed in the introduction.  

 

2.2.1.1 Binary Similarity 

The Binary Similarity treatment consisted of considering the occurrence of spectral features to 

construct a binary sample vector encoding feature presence as 1 and absence as 0, that is, changing all 

the intensity values (feature present in a sample) to 1 and change all missing values (feature not 
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present in a sample) to 0, obtaining a binary dataset (comprised of 0s and 1s). An example of this 

transformation is presented in Fig. 2.1. 

 

Figure 2.1: Example of the Binary Similarity (BinSim) treatment applied to an example dataset. Feat. – Features; 

Samp. – Samples. 

 

2.2.1.2 Other Traditional Data Pre-Treatment Methods 

Except for data transformed into a binary matrix, missing value imputation was performed by 

replacing missing values with half of the minimum intensity value present in the whole dataset. In this 

work, representative results of most established intensity-based methods will be presented. For that, 

one of each of the previously mentioned methods will be chosen: normalizations (normalization by a 

reference feature, in this case, leucine enkephalin – N), transformations (generalized logarithmic 

transformation – G) and centering/scaling (Pareto scaling – P). The methods were chosen due to their 

frequency in metabolomics data analysis. Since any of these methods can be used in combination with 

each other, results obtained with datasets treated in 3 different combinations (in the mentioned order) 

will be presented: 

1. P pre-treatment – Pareto scaling only (eq. 1.5). 

2. NP pre-treatment – Normalization by leucine enkephalin followed by Pareto scaling. 

3. NGP pre-treatment – Normalization by leucine enkephalin, generalized logarithmic 

transformation (eq. 1.1 with λ equal to 1/10th of the minimum intensity value in the dataset as 

it is done in the commonly used software MetaboAnalyst 4.0 – see https://github.com/xia-

lab/MetaboAnalystR) and Pareto scaling. 

These pre-treatments were implemented in Python and are available in the metabolinks Python 

package (https://github.com/aeferreira/metabolinks). 

After these pre-treatments, from each original dataset, 4 differently treated datasets were obtained 

which will be referred to as BinSim (Binary Similarity), P, NP and NGP depending on the treatment 

undertaken. 

 

2.2.2 Statistical Unsupervised and Supervised Multivariate Analysis - BinSim 

As already discussed, the objective of this part of the work is to compare the viability of using the 

simple pre-treatment method BinSim, which only focuses on the occurrence of spectral features in 

each sample, to the more established (intensity-based) pre-treatment methods used for discriminating 

different groups in the metabolomics data. Thus, with this objective in mind, the performance of 

different clustering and classification methods in discriminating the groups of the same datasets 

treated differently was compared. These methods were: unsupervised clustering analysis, more 

https://github.com/xia-lab/MetaboAnalystR
https://github.com/xia-lab/MetaboAnalystR
https://github.com/aeferreira/metabolinks
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specifically agglomerative hierarchical clustering and K-means clustering analysis, and supervised 

classification analysis, more specifically, Random Forest and PLS-DA. 

 

2.2.2.1 Statistical Unsupervised Analysis – Clustering 

Agglomerative Hierarchical Clustering Analysis (HCA) with UPGMA (average) linkage method was 

performed on each dataset. The distance metric considered for the datasets treated with intensity-based 

pre-treatments (P, NP and NGP) was Euclidian, while for the BinSim treated datasets, binary 

dissimilarity metrics were chosen due to its binary nature. Nine different binary distance metrics 

(available in the scipy Python package [100]) were tested (Jaccard, Dice, Rogers-Tanimoto, Russell-

Rao, Kulsinski, Yule, Sokal-Sneath and Sokal-Michener dissimilarities and Hamming distance [108]), 

from which 3 will be shown as they were considered representative of the results (to avoid repetition): 

Jaccard and Yule dissimilarities and Hamming distance. 

 Jaccard dissimilarity: dJaccard (S1, S2) = 1 − 
nº (S1 ∩ S2)

nº (S1 ∪ S2)
   (eq. 2.1), where Si represents sample 

i and the intersection and union are based on the set of features each sample has. 

 Yule dissimilarity: dYule (S1, S2) =  
2 × n10× n01

n11× n00+ n10× n01
    (eq. 2.2), where nij is the number of 

corresponding pairs of features in sample 1 and sample 2 equal to i and j respectively. 

 Hamming distance: distance between 2 samples of the dataset is the proportion of disagreeing 

components (i.e. a feature is in one sample and not the other and vice-versa) of all the 

components in the dataset (including features missing in both samples). 

The similarity between the dendrograms of the same dataset but with different pre-treatments 

performed was observed by using two correlation coefficients: the cophenetic correlation coefficient 

[74] and the Baker’s gamma correlation coefficient [75]. These methods were adapted from the R 

package dendextend [109]. To test if the analysis led to a good discrimination of the different groups 

in each dataset, three metrics were developed and used to detect if the clustering of samples belonging 

to the same group is happening preferentially to the clustering of samples from different groups. The 

“correct clustering” percentage is the percentage of the groups (group based) whose samples all 

clustered together before any other sample clustered with a sample of said group – group “correctly 

clustered”. Another metric used was called “Discrimination Distance” (DD). The DD of a dendrogram 

is the average DD of each group of the dataset. The DD of each group is 0 if it is not “correctly 

clustered” (defined in the same way as in the previous metric) or it is the distance between where all 

the samples of the group were correctly clustered and where another sample is clustered with that 

group, normalized by the maximum distance of any two samples in the HCA – see Fig. 2.2. Therefore, 

the DD will always be between 0 and 1. The final metric used was the “correct first cluster” 

percentage (sample-based). This is the percentage of samples whose first cluster was only with 

samples from its group (not all needed). As an example, in Fig. 2.2, the two right RL samples have a 

correct first cluster since the first time they cluster is with each other, while the remaining RL sample 

does not have a correct first cluster, since its first cluster is with both 3 CS samples and the 2 other RL 

samples. Thus, despite the RL group not being correctly well clustered, two of its samples have a 

correct first cluster. This means that the correct first cluster percentage will always be higher than the 

correct (group) clustering percentage. These metrics can give us information on how well the different 

groups are discriminated and it helps us better compare how different treatments in the same dataset 

affected the discrimination of different groups. 
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Figure 2.2: Demonstration of “correctly” and “incorrectly” clustered groups and of the Discrimination Distance (DD) 

calculation for each group on an example dendrogram.  

 

K-means Clustering Analysis was performed on each differently treated dataset with cluster number 

equal to the total group number of the dataset (11 in the grapevine, 5 in the yeast data) and Euclidian 

distance metric (including for the BinSim treated datasets) using the scikit-learn Python module [101]. 

K-means clustering results can slightly vary due to the existence of local minima when trying to 

minimize the distance of the samples to the closest cluster centroid (K-means clustering optimization 

objective – minimize sum of squared distances of all samples to the closest cluster centroid) since the 

starting positions of the different cluster centroids is random [72]. Thus, the K-means clustering 

algorithm was iterated 150 times and the median results of all metrics used of the 15 cluster sets (10%) 

closest to the global minimum were taken. Three metrics were used to measure how well the groups 

were discriminated. Two metrics used had the same rationale as two of the ones used for the HCA 

(Discrimination Distance and correct clustering percentage – group-based metrics) but with a slight 

redefinition of the concept of “correct clustering”. In this case, the distances are measured between 

cluster centroids and a clustering is correct if it contains all and only the samples of a single group. 

This is a stricter condition that the one imposed in the HCA, so a lower percentage of correct 

clustering is expected. The other metric used was the Rand Index adjusted for chance (sample-based 

metric). 

 

2.2.2.2 Statistical Supervised Analysis – Random Forest and PLS-DA 

The classifiers chosen to use as a comparison test between the differently treated datasets were 

Random Forest and PLS-DA. These models were built using the scikit-learn Python module [101]. 

Due to the datasets used having a low number of replicates (samples in each group), validation of the 

model and the results was done by internal stratified 3-fold cross-validation (number of samples in 

each group is 3) [78]. The performance of the models was judged based on their prediction accuracy 

estimated by the average accuracy of the stratified 3-fold cross-validation. Since the combination of 

samples randomly selected to each fold can affect the results (even if slightly), especially with low 

sample size in each group, this process was iterated 200 times and the mean accuracy of all iterations 
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was taken as a global metric for the cross-validation evaluation. Moreover, permutation tests (with 

1000 iterations each) were used to further assess if the models were significant. 

The number of trees used for the Random Forest classifiers were tuned to 200, the number for which 

the predictive accuracy of the models did not increase further in any of the different datasets (Fig. 3.3 

and Suppl. Fig. 6.4 – already stabilized with 100 trees in all datasets), while not being too 

computationally intensive. Other parameters were left as the default values used in the scikit-learn 

function. For each model built, the Gini Importance of each feature was calculated [87]. Then, an 

ordered list of the average importance of each feature across each iteration and each different 

combination of training and testing sets was compiled. The top 2% of features considered most 

important to build the models for each dataset were taken and their relevant characteristics were 

evaluated, namely, the number of samples and different groups those features appeared in. 

Partial Least Squares (Projection to Latent Structures) – Discriminant Analysis (PLS-DA) classifiers 

were built for each differently treated dataset using the PLS2 – NIPALS algorithm implemented in the 

PLSRegression module from the scikit-learn Python package [101]. The default parameters in scikit-

learn were used, except the scaling of the samples, not performed since data was already pre-treated. 

The number of components for the PLS-DA models were chosen to minimize the predictive residual 

sum of squares (maximize Q
2
) computed from stratified 3-fold cross-validation choosing 11 

components for the 4 Negative Grapevine Datasets (treated in different ways), 13 for the Positive GD 

ones, 4 for YD and the YFD ones – Fig. 3.4 and Suppl. Fig. 6.5. Group membership was encoded by 

the one-hot encoding method.  

In group membership predictions, test samples were assigned to the group corresponding to the 

maximum value in ypred (vector with n numbers, each a measure of similarity to a group) output of the 

PLS – maximum DR. As it was done for the random forests, the top 2% of features considered most 

important to build the models were taken and the number of samples and different groups those 

features appeared in were counted. Here, the Variable Importance in Projection (VIP) was used to 

estimate the importance of each feature to build each model [82]. 

 

2.3 Sample Mass-Difference Networks – Data Pre-Treatment and Statistical 

Analysis 

2.3.1 Mass-Difference Network Construction 

An extra peak filtering step was applied to the Yeast Dataset (YD) to discard m/z peaks over 1000 and 

merging features that had the same formula assigned by the SmartFormula algorithm of MetaboScape 

4.0 (Brüker Daltonics). After this step, the YD had 1893 m/z peaks. A Mass-Difference Network 

(MDiN) was built for the Yeast Dataset (YD), for the Negative and for the Positive Grapevine 

Datasets (GD) using the MetaNetter 2.0 plugin [110] of Cytoscape 3.8.1 [111] with an accepted error 

margin of 1 ppm and the transformations used described in Table 2.2. The nodes of the different 

networks were the neutral masses of the peaks for each of the network. These were annotated in the 

YD by the Bucket Labels given by the MetaboScape 4.0 software, in the Negative GD by adding the 

mass of a proton and in the Positive GD by subtracting the mass of a proton (≈ 1.0073 Da) from the 

m/z peaks. Edges were established between nodes with difference in masses very close to a specific set 

of mass differences (within 1 ppm deviation).  

Each of the mass differences in the set of mass differences mentioned is called a “Mass-Difference-

based Building block” (MDB). The MDB corresponds to the mass of a specific overall change in the 
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metabolite elemental formula due to a simple biochemical reaction (enzymatic or non-enzymatic). For 

example, a methylation corresponds to the substitution of a –H hydrogen atom in a metabolite by a –

CH3 methyl group, leading to an overall change of a CH2 and a change in mass of 14.01565 Da. The 

choice of the set of MDBs is crucial in building the MDiNs, since the structure of the network directly 

depends on these. The objective was to choose a set of MDBs that represent changes caused by the 

most common and ubiquitous chemical reactions in biological systems, while still maintaining the 

metabolite formula charge neutrality. For example, to maintain neutrality, a phosphorylation would 

mean the overall addition of a PO3H group – addition of a -PO3
2-

 group + 2 H
+
 (maintaining neutrality) 

to replace an H atom in a metabolite. To this end, the set of MDBs should encompass a considerable 

percentage of reactions that happen in a biological context with a relatively small number of groups – 

a total of 15 groups were picked.  All the MDBs chosen represent changes in metabolites of no more 

than 5 atoms and less than 80 Da (small size). Each MDB should represent a set of chemically known 

reactions and a change in every main element in metabolites (C, H, O, N, S and P) is represented by at 

least one of the MDBs. To fulfil these conditions, representative MDBs were searched using 

BRENDA ([112], https://www.brenda-enzymes.org/). The list of MDBs chosen as best candidates 

were compared with works that used MDiNs such as Breitling et al. [95] and Tziotis et al. [94]. The 

MDBs that were considered to build the MDiNs were the following: 

Table 2.2: List of MDBs used to build the MDiNs. Elemental Transformations (represented by the overall elemental 

change in the metabolite), their masses (Δ Mass, Da) which correspond to specific changes in the elemental composition of a 

metabolite and examples of types of reactions represented by each MDB. 

Elemental Transformations Δ Mass (Da) Reaction Types 

O (-NH) 0.984016 Deamination 

NH3 (-O) 1.031634 Transamination 

H2 2.015650 Hydrogenations / Dehydrogenations 

CH2 14.015650 Methylations 

O 15.994915 Oxygenations / Hydroxylations 

H2O 18.010565 Condensation / Dehydration / Cyclization 

NCH 27.010899 Transfer of a formidoyl group 

CO 27.994915 Formylation 

CHOH 29.002740 Hydroxymethylation 

S 31.972071 Transfer of a –SH group 

C2H2O 42.010565 Acetylation 

CONH 43.005814 Transfer of a carbamoyl group 

CO2 43.989829 Carboxylation / Decarboxylation 

SO3 79.956815 Sulphation 

PO3H 79.966331 Phosphorylation 

Analysis of the number of nodes, edges, size of the biggest component, diameter and radius of the 

networks and number of isolated nodes in the networks was made using the networkx Python module 

[104].  

In this methodology, an edge is established between two masses, independently of the rest of the nodes 

(masses) or edges in the network. Thus, the edges established between a list of masses is the same 

whether that list of masses are the only nodes in the network or integrated in a bigger network. Thus, a 

subgraph of said list of masses in the bigger network built would be isomorphic to the network built 

with only the list of masses. Consequently, the MDiNs for each sample of each of the datasets were 

https://www.brenda-enzymes.org/
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built by inducing the subgraph of only the nodes that represent m/z peaks present in each sample – 

sample MDiNs or sample networks. 

 

2.3.2 Mass-Difference Network Analysis and Secondary Dataset Construction 

The analysis of the different sample MDiNs was done in 5 different ways: using 3 different measures 

of network centrality – degree, betweenness centrality and closeness centrality –, a metric based on the 

MDBs used to establish edges – “MDB influence” – and a metric to compare network topology – 

GCD-11 (Graphlet Correlation Distance using 11 graphlet orbits), [113]. The results from each of 

these analyses in each sample MDiN were used to compile a “secondary dataset” for each analysis 

method with different features according to the method. Thus, a set of 5 different secondary datasets 

was made for the YD, for the Negative and for the Positive GD. 

For each of the three centrality measures used (degree, betweenness and closeness centrality), its value 

for each node in the different sample networks were compiled on a secondary dataset (one for each 

centrality measure), where each feature is representative of a node in the sample MDiNs, thus creating 

datasets with the same number of features to the original datasets. 

Another secondary dataset was made by counting the number of times each MDB (mass difference / 

chemical transformation) was used to establish an edge between two masses in each sample MDiN. 

These counts were normalized by the total number of edges established in each sample network to 

represent the percentage of edges each MDB established in each sample network. This methodology is 

referred hereafter as “MDB influence” – the impact of each MDB in building the sample networks. 

The features of the dataset are the 15 MDBs used to build the sample networks (greatly reducing the 

number of features on the original datasets). 

The last network analysis method used to build a secondary dataset was the Graphlet Correlation 

Distance including the 11 non-redundant orbits of up to 4-nodes graphlets (GCD-11) to analyse the 

topology of the network [113]. Fig 2.3 shows the orbits and graphlets of up to 4-nodes graphlets. 

Graphlets are small and non-isomorphic sub-graphs of a network and each graphlet can have multiple 

automorphic orbits if the nodes in the graphlet are not “symmetric” that is, are not in the same relative 

position [114]. In this method, a matrix is built where each row is the Graphlet Degree Vector of a 

node in the network constructed by counting the number of times that node is in each of the 11 orbits. 

The Spearman correlation between the columns (the orbits) of said matrix makes an 11 by 11 

symmetric matrix called the Graphlet Correlation Matrix (GCM) that should be representative of the 

network topology. Usually, the Euclidian distance between the upper triangular matrices is used to 

compare two different networks (thus the Correlation Distance). Here, instead of this procedure to 

calculate a distance between two networks, the secondary dataset was built by compiling the upper 

triangular matrix of the GCM of each sample network as the sample information (a column). The 

features were, therefore, the 60 orbit n – orbit m Spearman correlations with n and m being 2 different 

of the 11 orbits [113,115]. 
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Figure 2.3: Representation of all 9 unique graphlets up to 4 nodes (G0, G1, …, G8) and their 15 automorphism orbits 

(0, 1, …, 14). The different orbits in each graph are represented by the different coloration of the nodes (nodes with the same 

coloration in a graphlet have equivalent orbits). Orbit numbers coloured black are the 11 non-redundant orbits used in the 

GCD-11 method, and orbit numbers coloured red are 4 redundant orbits of up to 4-node graphlets not used in the GCD-11 

method. Figure based on [114]. 

As for nomenclature, each secondary dataset will be identified by the following system: Main 

Network – Analysis method. For example, the yeast dataset sample networks analysed by degree will 

be identified as: YD – Degree. The other 4 analysis methods would be mentioned as: YD – 

Betweenness, YD – Closeness, YD – MDB Influence and YD – GCD-11. 

2.3.3 Statistical Unsupervised and Supervised Multivariate Analysis – MDiNs 

The statistical multivariate analysis performed on the secondary datasets was similar to the described 

in the ‘Statistical Unsupervised and Supervised Multivariate Analysis – BinSim’ section (section 

2.2.2). Briefly, the methods employed were the following: 

Agglomerative Hierarchical Clustering Analysis (HCA) was performed on each dataset with UPGMA 

(average) linkage method and Euclidian distance metric. The quality of the discrimination of the 

different groups by the clustering was assessed with the Discrimination Distance, the correct clustering 

and correct first cluster percentages (metrics explained earlier). K-means Clustering Analysis was 

performed using the Euclidian distance metric with cluster number equal to the total group number in 

each case – 5 in the secondary datasets obtained from the YD network and 11 from the Negative and 

Positive GD. This was made with the scikit-learn Python module [101]. Each analysis was iterated 150 

times and the median results of the 15 (10%) best set of clusters (evaluated by the minimization of the 

sum of squared distances to the cluster centers – objective function of the K-means clustering analysis 

algorithm) for 3 metrics were used: the Discrimination Distance, the correct clustering percentage, and 

the adjusted Rand Index. 

Random Forest and PLS-DA models were built for each secondary dataset using the scikit-learn 

Python module [101] with validation of said models done by internal stratified 3-fold cross-validation. 

The performance of the models was assessed by their mean predictive accuracy of the test groups in 

each cross validation set over 200 iterations of random sampling of the data into 3 stratified folds. 

Random Forest models were made with 200 trees (after tuning – Suppl. Fig 6.10). The average 

importance of the 15 features from the MDB influence secondary datasets obtained from the YD, 

Negative GD and Positive GD to build the aforementioned Random Forest models were estimated by 

the Gini Importance (calculated using the scikit-learn Python library), [87,101]. Optimization of the 

number of components used to build the PLS-DA models was made by the minimization of the 

Predictive Residual Sum of Squares of the respective PLS Regressions (Suppl. Fig. 6.11). PLS-DA 

models were built (using the PLS2 – NIPALS algorithm implemented in the scikit-learn Python 

module [101]) with 5 components for the secondary datasets obtained from the YD network and for 
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the betweenness centrality, MDB influence and GCD-11 secondary datasets obtained from the 

Negative and the Positive GD and with 11 components for the degree and closeness centrality 

secondary datasets obtained from the Negative and the Positive GD. Biological group membership 

was encoded by the one-hot encoding method. The decision rule employed was the max DR rule – 

each sample was assigned to the group corresponding to the maximum value of the ypred output of the 

PLS-DA. Permutation tests for the Random Forest and PLS-DA models (with 1000 iterations each) 

were used to further assess the significance of the PLS-DA models (Suppl. Fig. 6.12). 
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3. Results and Discussion 
This section encompasses two parts:  

1) The first part will focus on comparing the performance of different unsupervised and 

supervised statistical analysis methods in discriminating samples into their respective groups 

in datasets treated with the Binary Similarity (BinSim) data pre-treatment, described in section 

2.2.1.1 (Materials and Methods), and treated with traditional, intensity-based methods, 

described in section 2.2.1.2 (Materials and Methods). 

2) The second part will focus on the development of a characteristic Mass-Difference Network 

(MDiN) for each sample considering a set of “Mass-Difference-based Building blocks” 

(MDBs) that represent sets of chemical reactions. The constructed sample networks will be 

analysed by different network analysis methods. Results from the analysis of different aspects 

of each network will be used to build a “secondary dataset” for each analysis method. Then, to 

test if the sample networks constructed can be characteristic of the group that the sample 

belongs to, the performance of unsupervised and supervised statistical analysis methods in 

discriminating samples into their respective groups based on the secondary datasets built will 

be evaluated.  Finally, the performance of the discrimination achieved will be compared to the 

results obtained in 1). 

 

3.1 Binary Similarity as a Data Pre-Treatment 
The four datasets analysed were: the Negative and Positive Grapevine Dataset (Negative GD and 

Positive GD), the Yeast Dataset (YD) and the Yeast Dataset filtered for features with formulas 

assigned (YFD). Each of these datasets were treated in 4 different ways: the Binary Similarity 

(BinSim), the new treatment proposed in this dissertation, and 3 different combinations of 3 different 

treatments – normalization by the reference feature leucine enkephalin (N – a normalization 

treatment), generalized logarithmic transformation (G – a transformation treatment) and Pareto scaling 

(P – a centering/scaling treatment). These particular data treatments were chosen due to their 

commonality in metabolomics data analysis [25,35]. Thus, as an example, the datasets obtained from 

the Yeast Dataset, according to the pre-treatment applied, will be referred to as: 

 YD – P – only treated with Pareto scaling. 

 YD – NP – treated with normalization (by leucine enkephalin) followed by Pareto scaling. 

 YD – NGP – treated with normalization (by leucine enkephalin) followed by generalized 

logarithmic transformation and Pareto scaling. 

 YD – BinSim – treated with the Binary Similarity pre-treatment. 

The Binary Similarity (BinSim) pre-treatment was envisioned as a reliable and simpler alternative to 

more established intensity-based pre-treatments. Furthermore, it was specifically created with 

metabolomics data analysis in mind. It focuses on the presence or absence of features from the 

different samples instead of the highly variable intensity-driven focus of the other pre-treatments. The 

BinSim pre-treatment consists of encoding all intensity values (feature present in a sample) as 1 and 

all missing values (feature not present in a sample) as 0, obtaining a binary dataset comprised of 0s 

and 1s. 

To test the viability of the Binary Similarity method in highlighting relevant information from 

metabolomics datasets, the performance of multiple unsupervised and supervised statistical methods in 

discriminating the various groups present in each of the datasets treated with the BinSim pre-treatment 
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and the same datasets treated with the other methods mentioned was compared. Furthermore, the 

important features to build the classifier models built by supervised statistical methods for each 

differently treated dataset was analysed to observe if the BinSim treated data offers a new perspective 

on the same original data (discrimination achieved by looking at a different set of features). Since the 

Binary Similarity treatment was developed with the intention of also reducing the peak filtering steps, 

only minor peak filtering was performed in the datasets (only peaks that appeared in only one sample 

were excluded).  

To avoid redundancy, only the results for the Negative GD and the YD are presented in this section. 

The complementing results of the Positive GD and YFD are presented in the Annexes. 

 

3.1.1 Unsupervised Statistical Analysis – Hierarchical and K-means Clustering 

Clustering techniques are unsupervised methods where the algorithms employed do not use the 

information of group membership of the samples [66]. These methods were used to see if there is an 

intrinsic pattern in the data brought out by the different treatments that allows the discrimination of 

samples belonging to different groups and how the success of the discrimination was affected when 

using the BinSim pre-treatment. Both Hierarchical Clustering and K-means Clustering were 

employed. 

Hierarchical Clustering Analysis (HCA) was performed on each differently treated dataset with 

UPGMA (average) linkage method with the resulting dendrograms shown in Fig. 3.1 for the Negative 

GD and the YD – 4 in each case for each different treatment (for the BinSim pre-treatment, here are 

shown the results using only one binary distance metric – the Jaccard dissimilarity). For the Positive 

GD and YFD, the results are presented in the Suppl. Fig. 6.1. 
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Figure 3.1: Hierarchical Clustering Analysis (HCA) dendrograms of the Negative Grapevine Dataset (A) and Yeast 

Dataset (B). The datasets were treated with the P (1), NP (2), NGP (3) pre-treatments using Euclidian distances or the 

BinSim pre-treatment (4) using Jaccard Dissimilarity distance metric. HCA was performed with UPGMA linkage method. 

Pre-treatments: P – Pareto scaling, N – Normalization by leucine enkephalin, G – Generalized logarithmic transformation, 

BinSim – Binary Similarity; Vitis genotypes abbreviations are indicated in Table 2.1. 

A1
A2

A3 A4

B1 B2

B3 B4
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For the Hierarchical Clustering analysis of the YD in Fig 3.1B, all 5 yeast strains have all their 

samples well discriminated from each other in all 4 dendrograms (4 treatments). All replicates are 

grouped with each other. This dataset represents the case of a dataset where the samples of each group 

are very distinct from each other as can be observed in Fig 3.1B to test if the BinSim pre-treatment 

keeps this information from the dataset. From the dendrograms made from the negative GD in Fig 

3.1A, it can be seen that the different grapevine groups are less “well” discriminated. From the 11 

different varieties, only around half of them have all their samples clustering together before clustering 

with any other sample – “correctly clustered”. Thus, this dataset represents the case where the samples 

of each group are very similar to each other to test if the discrimination power is similar or even higher 

in datasets treated with BinSim pre-treatment in relation to the intensity-based methods when 

meaningful information is harder to extract. Overall, especially in the GD – NGP and GD – BinSim 

datasets (Fig 3.1A3-A4), the Vitis vinifera cultivars (in shades of blue and purple) tend to be closer 

together with each other than to the wild Vitis species (in different shades of green) except for the RU 

variety (Vitis rupestris du lot). Analysing each group, the PN cultivar samples tend to cluster well 

together and are distant from other varieties. ROT, RIP, LAB and CS varieties’ samples also tend to be 

well clustered among the different treatments. On the other hand, the TRI, REG and RU varieties are 

less well defined, as their samples appear to be similar since they seem to mix up with cluster of the 

other varieties as easily as they cluster with samples of the same variety. All dendrograms obtained 

seem, at a glance, very similar independently of the treatment made and indeed they lead to the same 

conclusions about trends in the data as analysed here. This means that, at a first look, the data treated 

with BinSim retains as much information as the other treated datasets to discriminate between the 

different groups. 

To have a more concrete and objective measure of this similarity, the cophenetic correlation 

coefficient [74] and the Baker’s Gamma correlation coefficient [75] between all pairs of dendrograms 

were calculated and are presented, respectively, in Fig 3.2 and Suppl. Fig 6.2 for the Negative GD and 

the YD and in Suppl. Fig. 6.3 for the Positive GD and the YFD.  

 

Figure 3.2: Heatmaps of the Cophenetic Correlation Coefficient between the dendrograms of all differently treated 

dataset pairs of the Negative Grapevine Dataset (A) and of the Yeast Dataset (B). For the datasets treated with the 

Binary Similarity pre-treatment, 3 representative binary distance metrics were used: Jaccard, Hamming and Yule 

dissimilarities/distances. For the others, Euclidian distance was used. Pre-treatments: P – Pareto scaling, N – Normalization 

by leucine enkephalin, G – Generalized logarithmic transformation. 

 

A B
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The heatmaps in Fig. 3.2 show that all cophenetic correlation coefficients between the different 

dendrograms for each dataset (Negative GD and YD) are higher than 0, in fact, most of them show 

strong positive correlations. This was also observed in the Baker’s Gamma correlation coefficient 

(Suppl. Fig 6.2) and in the correlations calculated for the Positive GD and YFD dendrograms (Suppl. 

Fig 6.3). Furthermore, there are not noticeable differences in correlations between different intensity-

based pre-treatments and between these and the BinSim pre-treatment. In fact, for example, the 

Negative GD – NGP has a higher correlation with the Negative GD – BinSim (with the different 

binary distance metric) than to the GD – P or GD – NP treatment. As for the 3 different binary 

distance metrics used, Negative GD – BinSim and YD – BinSim with the Hamming distance seem to 

have slightly higher correlations with the P, NP and NGP treated datasets but the dendrograms made 

with all the three binary distance metrics are highly correlated (so any of the three distance metrics 

lead to very similar results) and are also positively correlated with the dendograms treated with the 

other treatments (computed using the Euclidian distance). This shows that all the treatments employed, 

including BinSim, are revealing the same trends in the data, leading to similar clustering. 

Taking this into account, the next question is to test if the hierarchical clustering was joining samples 

of the same strain/variety/group preferentially, that is, if there was an intrinsic pattern in the data (after 

treatment) which led, without outside information, to the discrimination of samples from different 

groups. To this end, three metrics were used to analyse the discrimination of the samples in the 

clustering – the Discrimination Distance (DD), the correct clustering and correct first cluster 

percentages described in the section 2.2.2.1 (Materials and Methods). To reiterate, a “correct 

clustering” was here defined as all the samples in a group clustering together before clustering with a 

sample of any other group. The results obtained from these analyses are presented in Table 3.1 

(Negative GD and YD) and in Supplementary Table 6.1 (Positive GD and YFD).   

 

Table 3.1: Discrimination Distance, correct clustering and correct first cluster percentages of the HCA of the Negative 

Grapevine and Yeast Datasets after different treatments. Binary Similarity has 3 different results based on the distance 

metric used. Pre-Treatments: BinSim – Binary Similarity, P – Pareto Scaling, N – Normalization by a reference feature, G – 

Generalized Logarithmic Transformation. 
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Discrimination Distance 0.10 0.12 0.14 0.12 0.12 0.15 0.31 0.22 0.22 0.14 0.19 0.35 

Correct Clustering (%) 45 45 54 54 45 45 100 100 100 100 100 100 

Correct First Cluster (%) 64 64 79 67 70 64 100 100 100 100 100 100 

  

For the Yeast Dataset, as expected, all groups in all cases were perfectly discriminated with 100% 

correct clustering percentage. The Discrimination Distance changes slightly between datasets from YD 

– BinSim with the Yule dissimilarity metric and YD – P with higher DDs at 0.35 and 0.31 to the lower 

DD of the YD – BinSim with the Jaccard dissimilarity metric (0.14). The more informative results 

come from the GD where all datasets had correct (group) clustering percentages between 45 and 54 % 

(5 or 6 groups correctly clustered), DDs between 0.10 and 0.15 and correct first clusters between 64 

and 79% (21 to 26 samples with a correct first cluster). Thus, very similar results were obtained 

between the different HCA with Negative GD – NGP results being slightly better followed by the 

Negative GD – BinSim results (using either Jaccard or Hamming distance metrics). Results for the 

Dataset 

Treatments 

Metrics 
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Positive GD and YFD in the Supplementary Table 6.1 are in line with this, with the BinSim treated 

datasets having similar results to the others. In fact, in the Positive GD, despite the overall poorer 

discrimination of the groups if compared to the Negative GD, the Positive GD – BinSim using the 

Yule or Jaccard dissimilarities achieves a considerable better discrimination than the other treatments 

– 45% of groups are correctly clustered compared to a maximum of 27% in other cases. Furthermore, 

the Positive GD – BinSim dendrograms using any of the three binary distance metrics had higher 

correct first cluster percentages (52, 61 and 70% – Suppl. Table 6.1) in comparison to the 

dendrograms made from the traditionally treated datasets (maximum of 48%) with more than half of 

the samples having a “correct” first cluster. Although these discrimination results are not ideal if the 

objective was to discriminate the different grapevine varieties based on this data, it means that even in 

a dataset with ‘murky’ information, BinSim performance in extracting information is comparable or 

slightly better to that of intensity-based methods.  

It is worth noting that the correct (group) clustering percentage and DD are very sensitive to outliers 

with the “correct clustering” definition used, since just one stray sample from a group can lead to that 

entire group being labelled as not “well clustered”. However, this is not a problem for the results 

obtained since each dataset used here only has 3 replicates. Hence, one sample being an outlier in the 

group corresponds to a hefty part of the group and should be considered. It would be remiss to not say 

that these methods are not suited to be directly applied to test the clustering efficiency for datasets 

with higher number of samples per group. In these cases, they should be adapted. For example, a 

change would be to consider a “correct clustering” as x% of samples of a group clustering together (80 

or 90% for example) instead of all samples to account for possible outliers in bigger datasets. On the 

other hand, the correct first cluster percentage should be resistant to outliers as is. 

To corroborate the results obtained, another clustering technique was used: K-means Clustering using 

the scikit-learn Python module [101]. This method clusters samples in a pre-determined number of 

clusters. The number of clusters chosen for each dataset was equal to their number of groups: Negative 

and Positive GD – 11 groups, YD and YFD – 5 groups. Correct clustering percentage and 

Discrimination Distance (group-based) metrics were adapted for this method (see section 2.2.2.1). 

Since, in this method, k clusters are made instead of samples being progressively clustered, the 

“correct clustering” definition was altered to a stricter “all and only the samples of a group are in one 

cluster.” As such, lower correct clustering percentages are expected in relation to what was obtained 

with Hierarchical Clustering. Moreover, a 3
rd

 metric was used, the Rand Index, a measure of the 

proportion of the pair of samples which are correctly clustered or correctly not clustered together 

(adjusted for the expected percentage of samples which would be in those situations randomly). The 

results are presented in Table 3.2 for the Negative GD and YD and in Supplementary Table 6.2 for the 

Positive GD and YFD. K-means Clustering analysis uses the projection of the samples in the pp-

dimensional space with pp equal to the number of features, therefore, binary distance metrics cannot 

be used to cluster the samples. So, the distance metric used was Euclidian for all the different datasets, 

including those treated with BinSim. 
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Table 3.2: Discrimination Distance, correct clustering percentage and adjusted Rand Index of the K-means Clustering 

analysis of the Negative Grapevine and Yeast Datasets after different treatments. Pre-Treatments: P – Pareto Scaling, N 

– Normalization by a reference feature, G – Generalized Logarithmic Transformation. 

 

 

As expected, the correct clustering percentage in the GD sharply decreased from the obtained with 

Hierarchical Clustering. However, once again, the GD – BinSim enables a similar discrimination to 

the other treatments, although GD – NGP has the higher correct clustering percentage (4 out of 11 

groups) and a slightly higher Discrimination Distance (0.17) than GD – BinSim (0.16). The adjusted 

Rand Index results are all between 0.48 and 0.59 showing that the samples are being correctly placed 

in the clusters many more times than what would be expected at random, once again reaching the 

conclusion that there is some intrinsic information and characteristics in the dataset which allows the 

correct discrimination of the samples in their groups. GD – NGP also has the higher Rand index which 

indicates that the samples are being correctly clustered more times comparing to the other treatments, 

with GD – BinSim having again the 2
nd

 highest value with 0.53. The analysis of the YD led again to 

the perfect separation of all samples in their respective clusters so all datasets have 100% correct 

clustering and Rand Index equal to 1. Thus, the information here lies in the Discrimination Distance 

where the YD – BinSim outperforms every other pre-treatment scoring 0.86, which means that each 

group is close to be equidistant to any other group in the pp-dimensional plane. The YD – P also has a 

very high DD at 0.73 while YD – NP and YD – NGP trail farther behind with DDs slightly below 0.4. 

In this case, the BinSim pre-treatment amplified further the already very meaningful differences 

between each group. On the other hand, in the Positive GD, GD – NP has a considerable better 

performance than all other treatments. However, it is only able to discriminate 23% (3 or 4 groups) of 

the groups with a 0.49 Rand index (Supplementary Table 6.2). The BinSim treated dataset here leads 

to worse results in the Positive GD (compared to the GD – NP) despite its better performance on the 

Positive GD with Hierarchical Clustering. Overall, K-means clustering analysis was not able to 

discriminate the different groups of the Positive GD regardless of the pre-treatment method, when 

compared to the Hierarchical Clustering Analysis. 

From these clustering methods, we reach the conclusion that, in all datasets studied, data treated with 

the Binary Similarity revealed the same trends and information in the data leading to identical 

conclusions about it, whether it contained clearly distinct groups or more similar and less distinct 

groups. It was also observed that the dendrograms made were very similar and that all methods had 

similar results, with no single treatment having performed consistently better than others. 

 

3.1.2 Supervised Statistical Analysis – Random Forests and PLS-DA Classifiers 

Following the conclusion of the previous section and since the discrimination of the samples in their 

respective groups is a key part of this work, the natural progression was to compare the performance 

of different classifiers to discriminate the samples in their groups after pre-treatment with the different 

methods. Furthermore, the more important features to build the classifier models were computed to 
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assess if the BinSim pre-treatment gives relevance to parts of the data different from the other 

methods, as was hypothesized. For this comparison, two different classifiers were applied: Random 

Forest and PLS-DA using the scikit-learn Python package [101]. PLS-DA is a dimension reduction 

classifier that was chosen due to its popularity in the metabolomics data analysis workflow [31,78]. 

Random Forest is an algorithm based on the majority decision of an ensemble of decision trees [85] 

that make a series of binary decisions based on the values of one feature in each decision. This 

classifier was chosen due to the nature of the binary choices in its decision trees. The rationale was 

that the binary choices would be able to extract the information present in a binary dataset comprised 

of zeroes and ones, such as the ones obtained after the BinSim pre-treatment by choosing features 

where ones and zeroes being separated would lead to clear division of a single group or a set of 

groups. Therefore, a better performance of Random Forest classifiers with datasets treated with 

BinSim was expected, comparing to PLS-DA classifiers performance. 

 

3.1.2.1 Random Forest and PLS-DA Classifiers – Prediction Accuracy 

Since the objective was the discrimination of the different groups in the data, the performance of the 

models was evaluated by their average predictive accuracy based on an internal stratified 3-fold cross-

validation procedure. This internal stratified 3-fold cross-validation was chosen to mitigate the low 

number of samples in each group – only 3 [78]. Yet, this means that each group’s training data is only 

comprised of 2 training samples for each model which weakens the reliability of the model. Knowing 

this, measures were taken to improve the fidelity of the results obtained. For Random Forest models, 

the number of trees was tuned to 200 since, as you can see in Fig. 3.3 and Suppl. Fig. 6.4, the average 

predictive accuracy of the datasets with all the different treatments had already stabilized and stopped 

increasing (fluctuating around a certain set of values) from 100 trees onwards, while also not being too 

computationally intensive. For PLS-DA models, the number of components were chosen based on the 

minimization of the predictive residual sum of squares (maximization of Q
2
) estimated with stratified 

3-fold cross-validation – Fig 3.4 (Negative GD and YD) and Suppl. Fig. 6.5 (Positive GD and YFD). 

The 4 different treatments on the same datasets had a similar performance (Q
2
) with the increase in the 

number of components, so choosing the same number of components for each one was possible. The 

results obtained led to 11 components being chosen for the 4 Negative Grapevine Datasets, 13 for the 

positive GD and 4 for both the YD and the YFD. 
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Figure 3.3: Tuning of the number of trees used to build the Random Forest models. Random Forest predictive accuracy 

as a function of the number of trees used in the forest for the Negative Grapevine (A) and Yeast (B) datasets with different 

pre-treatments. Accuracy was estimated by stratified 3-fold cross-validation. Pre-Treatments: BinSim – Binary Similarity, P 

– Pareto Scaling, N – Normalization by a reference feature, G – Generalized Logarithmic Transformation. 

 

 

Figure 3.4: Optimization of the number of components used to build the PLS-DA models. 1- (Predictive Residual Sum 

of Squares (PRESS) / residual Sum of Squares (SS)) or Q2 estimated by stratified 3-fold cross-validation of PLS regressions 

of the Negative Grapevine (A) and Yeast (B) datasets with different number of components. Pre-Treatments: BinSim – 

Binary Similarity, P – Pareto Scaling, N – Normalization by a reference feature, G – Generalized Logarithmic 

Transformation. 

 

To further mitigate the issue of having only 2 training samples within each group, stratified 3-fold 

cross-validations were repeated 200 times (iterations) with random sampling of the folds. Figure 3.5 

shows the distribution of the average prediction accuracy of the Random Forest and PLS-DA models 

for the Negative GD and YD estimated by stratified 3-fold cross validation for each of the 200 

iterations on a violin plot with the average accuracy of the 200 iterations being presented below the 

graphs. Results for the Positive GD and YFD are shown in Suppl. Fig 6.6 (Supplementary Data). The 

significance of the accuracy of the models built was assessed by permutation tests that are shown in 

Suppl. Fig. 6.7, where the predictive accuracy of permuted labels models (1000 permutations), 

BA

A B
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estimated by stratified 3-fold cross-validation, were compared to the predictive accuracy of a random 

iteration of the corresponding non-permuted model. For all models built from different combinations 

of datasets and treatments, the predictive accuracy distribution of permuted labels models was 

considerably below the non-permuted model accuracy (p-value = 0.001), which means that the 

classifiers’ accuracy resulted from significant information present in the data and not from random 

noise. This can also be concluded for the BinSim pre-treatment. 

 

 

Figure 3.5: Distribution of the prediction accuracy of Random Forest and PLS-DA models. Violin plots of the 

distribution of the prediction accuracy of 200 iterations of Random Forest and PLS-DA models built based on the Negative 

Grapevine dataset (A and B, respectively) and on the Yeast dataset (C and D, respectively). Each iteration’s accuracy is 

estimated by stratified 3-fold cross-validation. Each iteration randomly splits the dataset in three folds. Below the plots, the 

average prediction accuracy is presented. BinSim – Binary Similarity, P – Pareto Scaling, N – Normalization by a reference 

feature, G – Generalized Logarithmic Transformation. 
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The distributions of predictive accuracy for both Random Forest and PLS-DA models of the Negative 

GD are very similar, situated around the 80% mark, with a great overlap amongst the different 

treatments. This leads to the conclusion that the models built from each differently treated dataset have 

approximately the same discrimination power. The average accuracy of the different datasets in 

Random Forests varies between 76.4 and 82.2% and in PLS-DA between 73.6 and 83.5%. The GD – 

BinSim had the 2
nd

 best accuracy in Random Forest models (Fig 3.5A) with 81.2% close to the 82.2% 

of the GD – P and higher than the GD – NP and GD – NGP which have accuracies around 77%. These 

results can also be observed in Fig. 3.3A (since the predictive accuracy was also used to tune the 

number of trees), where GD – BinSim and P had, almost always, a higher prediction accuracy than GD 

– NP and NGP independently of the number of trees used for the Random Forest, which gives more 

confidence to the results obtained. GD – BinSim also had the best accuracy in PLS-DA models (Fig 

3.5B) with 83.5% higher than the 79.5% of the GD – NGP and much higher than the 74.8 and 73.6% 

of the GD – P and GD – NP respectively. As for the Positive GD (Suppl. Fig. 6.6A,B), similar results 

are observed. Once again, PLS-DA model prediction accuracy is around 80% for all datasets, with 

Positive GD – NGP and BinSim above 80% and GD – NGP having the best average accuracy (84%). 

Positive GD – P has a smaller average accuracy at 76.2% and a high spread of values in its 

distribution. On the other side, the Random Forest models have a much lower average accuracy 

(Suppl. Fig 6.6A). Positive GD – BinSim has the highest average accuracy at 71.1% closely followed 

by GD – P with 70.2%. However, these are much higher than the average accuracy of Positive GD – 

NP and GD – NGP that are below the 50% mark. This difference in accuracy between the GD – P and 

BinSim and the GD – NP and NGP can also be clearly observed in Suppl. Fig 6.4 in models built with 

different number of trees. Despite the much lower performance in this case, the BinSim treated dataset 

still performs as well or better than the other methods chosen for comparison.  

Thus, despite the similar performances of the different models (especially on the Negative GD), the 

GD – BinSim models seem to perform slightly better than the other datasets. Even more, it seems 

more consistent since it is the best or close to the best dataset in all the 4 methods used (Random 

Forest, PLS-DA and also in Hierarchical Clustering and K-means Clustering analysis) in the 4 datasets 

studied. The information extracted from this dataset led to consistently good discrimination power 

(comparatively) between the different groups. Ideally, the prediction accuracy of the grapevine models 

should be closer to 100%, but to evaluate the viability of the BinSim pre-treatment, this works as a 

good proof of concept with difficult to discriminate data. 

The good performance of BinSim treated datasets might also be a consequence of the big inherent 

variability of the intensity data of FT-ICR-MS [116] that reduces the efficiency of the other 

treatments. Since in every model built each group is represented by only 2 training samples, trying to 

discern intensity patterns that reliably discriminate the different groups is a very difficult endeavour 

and, therefore, more prone to errors since an incidental pattern in the 2 training samples might not be 

replicated by the corresponding test sample leading to misclassifications. A hypothesis is, then, that 

the BinSim pre-treatment robustness might be increased (in comparison to other treatments) on low to 

medium-sized datasets where the amount of training samples to build a classifier is limited and relying 

on intensity patterns may be even more prone to errors because of their variance. This could possibly 

be explored in future studies.  

Surprisingly, and contrary to expectations, PLS-DA models based on the Negative GD – BinSim 

dataset have a better prediction accuracy than Random Forest models (83.5 against 81.2), as opposed 

to other treated datasets such as the Negative GD – P and GD – NP where Random Forest models had 

the higher performance. So, the binary decisions made in decision trees were not more suited to 

discriminate the groups present in a binary matrix in relation to other supervised classifiers. The same 
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was observed for the results of the Positive GD with PLS-DA models having an average accuracy of 

81.0% to the 71.2% of the Random Forest models. 

For the remaining datasets, both the YD (Fig 3.5C,D) and the YFD (Suppl. Fig 6.6C,D) in both 

Random Forests and PLS-DA models had a perfect predictive accuracy (100%) in the discrimination 

of the 5 groups on the models built. This leads to the conclusion that the BinSim pre-treatment did not 

discard substantial and essential information by ignoring intensity data to hamper a perfect 

discrimination. However, by analysing the key features chosen by the different algorithms, it can be 

tested if the discrimination happened based on a different set of features. 

 

3.1.2.2 Random Forests and PLS-DA Classifiers – Important Features 

Now that it was established that the discrimination power of different statistical methods on BinSim 

treated datasets is similar to datasets treated with the other, intensity-based, methods, the next step is 

to assess if this is, as hypothesized, achieved by “looking at the information differently”. That is, if the 

treatment made is actually giving more weight to information/features that are usually ignored and the 

different statistical methods are using that information for the discrimination of the different groups. 

To this end, the features more relevant to building the models were considered, followed by an 

evaluation of whether the sets of such features and their overall characteristics are very different 

between methods, giving a special relevance to the comparison with the BinSim pre-treatment. To 

determine which features are “important” for the development of the models, different “feature 

importance” metrics, specifically, the Gini Importance for Random Forest models [87] and the 

Variable Importance in Projection (VIP) for PLS-DA models [82] were used (estimated with stratified 

3-fold cross-validation and averaged for the 200 iterations). The top 2% of features considered overall 

important were taken, that is, 73 features in Negative GD, 141 in the Positive GD, 39 in the YD and 33 

in the YFD. When these methods are used for feature selection, usually a much greater number of 

features are selected since the interest is on features that influence the model in a noticeable way even 

by a small amount. For example, for the VIP metric, a usual cut-off point to keep a feature in feature 

selection is 1 [82]. For these datasets, this would mean hundreds and sometimes even more than a 

thousand features would be selected. However, here the aim is to compare the more essential features 

and it is in that interest that only such a small number of features were selected. The overlap of the sets 

of important features is represented in the Venn diagrams in Fig. 3.6A,B,E,F (Negative GD and YD) 

and Suppl. Fig. 6.8A,B,E,F (Positive GD and YFD), to see if there were more different and unique 

important features chosen in the GD – BinSim case. Since the BinSim pre-treatment focuses on the 

occurrence of spectral features, the number of different groups and, more importantly, the number of 

samples the features appeared in were considered as their main characteristics. Fig. 3.6C,D,G,H 

(Negative GD and YD) and Suppl. Fig. 6.8C,D,G,H (Positive GD and YFD) swarm plots show the 

distribution of the number of samples the important features appear in as well as the average number 

of samples and groups where they appear. Table 3.3 shows the average percentage of the percentage of 

“unique important features” (only important for the dataset/classifier combination with a specific 

treatment) for Random Forest, PLS-DA or both (that can be seen in the Venn diagrams of Fig. 3.6 and 

Suppl. Fig. 6.8) for each of the tested treatments when applied in the 4 main datasets (Negative and 

Positive GD, YD and YFD). 
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Figure 3.6: Characteristics of the most important features used to build the Random Forest and the PLS-DA models. 

Venn diagrams of the 2% most important features used to build the Random Forest (by the Gini Importance method) and the 

PLS-DA (by the VIP method) models built based on the Negative Grapevine Dataset (141 features, A and B, respectively) 

and Yeast Dataset (33 features, E and F, respectively). Distribution plots of the number of samples each important feature 

appears in their dataset on each differently treated Negative Grapevine Dataset (C, D) and Yeast Dataset (G, H) with the 

median number of samples and different groups they appear in below the plots. Pre-Treatments: BinSim – Binary Similarity, 

P – Pareto Scaling, N – Normalization by a reference feature, G – Generalized Logarithmic Transformation. 
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Table 3.3: Percentage of unique features in each set of the 2% of most important features to build Random Forest or 

PLS-DA models. The percentage is calculated by averaging the percentage of unique features for each of the 4 pre-

treatments and for Random Forest or PLS-DA models. Pre-treatments: P – Pareto Scaling, N – Normalization by a reference 

feature, G – Generalized Logarithmic Transformation. 

 

For simplicity, the 2% of features chosen as important to build the PLS-DA or Random Forest models 

in the “X” treated dataset will be hereafter mentioned as the important features of the “X” (or “X” 

treated) dataset. Similar results for other PLS-DA model importance metrics (sum of the regression 

coefficients and the X-weights for each feature) were obtained so only the results for the VIP metric 

were shown. Accounting for both Fig. 3.6 and Suppl. Fig. 6.8, the Venn Diagrams show that BinSim 

treated datasets have the most unique important features in 6 of the total 8 (4 datasets with one of two 

models: Random Forest or PLS-DA) presented cases and have the 2
nd

 most unique features after the P 

treated datasets in the 2 remaining cases (Random Forest models of the Negative and Positive GD), 

making it the treatment with the most average “unique important features” overall – 73.4% (Table 

3.3). As for the distribution of the number of samples the features appear in, Random Forest and PLS-

DA models chose features in BinSim treated datasets that consistently (in 7 of 8 cases) appeared in a 

lesser number of samples (and different groups) except for the PLS-DA models made from the 

Negative GD that, as we are going to see later, presented multiple oddities to all other cases. This 

seems to point towards a conclusion that, indeed, BinSim treated dataset emphasize the information 

present in a very different set of features with different characteristics, specifically, that have a bigger 

number of missing values, that is, features that are exclusive to one or very few groups in the dataset 

(approaching the concept of “biomarkers”).  

For the results in the 4 sets of datasets (Negative GD and YD presented in Fig. 3.6 and Positive GD 

and YFD presented in Suppl. Fig. 6.8), there are apparent patterns and similarities they all share with 

the exception of the PLS-DA models of the Negative GD (Fig. 3.6B,D) that breaks some of these 

trends. It can be seen that the distribution of the number of samples where the chosen features appear 

is very different in Random Forest and PLS-DA models, showing that the rationale to build classifier 

models for the two methods is quite different and demonstrating the importance of researchers 

knowing the concepts behind the statistical methods they use to take the most advantage of their data 

and the methods to answer the hypothesis proposed. 

Starting with the intensity-based pre-treatments, both the important features of the P and NGP treated 

datasets have a similar distribution of the number of samples they appear in between the Random 

Forest and PLS-DA models (with the exception already mentioned). Most of the P treated datasets 

important features appear in almost every sample in the datasets (15 in the yeast datasets and 30 plus 

in the grapevine datasets) and, consequently, every group. In this facet, this is the complete opposite to 

the aim of the BinSim pre-treatment, as it is also apparent when observing the distribution of the 

number of samples important features appear between these two pre-treatments. The conclusion is that 

the information regarding the presence and absence of features is almost completely discarded and the 

 Percentage of unique important features in the different models (%) 

Models P NP NGP Binary Similarity 

Random Forest (RF) 76.2 22.9 23.1 75.6 

PLS-DA 16.8 12.3 47.9 71.2 

Combined  

(RF + PLS-DA) 
46.5 17.6 35.5 73.4 
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discrimination of the groups is made almost entirely by trying to discern different intensity patterns 

between the groups in features present in almost all samples.  

On the other hand, the number of samples NGP datasets’ important features appear in is very spread 

out without a particular bias for samples that appear in a high or low number of samples. Furthermore, 

there is a slightly higher occurrence of features that appear in multiples of 3 samples, especially on the 

yeast datasets (where there is a reason to believe there are more features that appear exclusively in 

some of the groups because of the excellent predictive accuracy of the models of these datasets treated 

with BinSim). This is important when recalling that in every dataset each group has 3 samples, so the 

higher occurrence can be explained by the fact that there may be some preference for features that 

only appear in some groups (if it was just a combination of appearing in 0, 1, 2 and 3 samples of each 

group, there wouldn’t be a generalized increase of features that appear in exactly 3, 6 and 12 samples 

when compared with their direct “neighbours” in both yeast datasets). This is an indication that there 

is still some consideration for the presence and absence of the features, which tracks when realizing 

that, from the intensity-based methods, the NGP’s logarithmic transformation decreases more the 

difference between higher values, such as different high-intensity values in comparison to the 

difference between smaller values, such as between imputed missing values and low intensity peaks, 

separating more the “missing values” (absence of the features) to the usual intensity values (present 

features), and giving them, therefore, a slightly greater importance (compared to other traditional 

methods). 

The important features found when the models were built from datasets treated with NP have a very 

peculiar behaviour. The distribution of the number of samples where the features occur is almost 

identical to the one in NGP treated datasets for the Random Forest models (features well spread); 

while it is almost identical to the P treated datasets in PLS-DA models (mostly features that appear in 

almost all samples). The same can be seen in the Venn diagrams, where there is a great overlap of the 

important features of Random Forest models between NP and NGP treated dataset and of the 

important features of PLS-DA models between the NP and P treated datasets. This also helps explain 

the results presented in Table 3.3, where NP treated datasets have a low percentage of unique 

important features in each dataset (on average below 20%) compared to all other treatments due to this 

overlap to NGP datasets in Random Forests models and P datasets in PLS-DA models. A similar trend 

is found in the results of the P and NGP treated datasets where P datasets have a lot of unique 

important features in Random Forest models (even slightly higher on average that BinSim datasets) 

but a really low amount in PLS-DA models due to the overlap with the NP datasets’ important 

features, while the opposite happens to the NGP datasets. This also explains why the average 

percentage of unique features in these two cases is between the low percentages of NP datasets and 

very high percentages in BinSim datasets. This finding also led to the identification of this exact 

pattern happening on the predictive accuracy of these models as seen in Fig. 3.5 and Suppl. Fig. 6.6. 

The predictive accuracy of models built based on the NP treated datasets is close to NGP treated 

datasets if the model is a Random Forest and to P treated datasets if the model is a PLS-DA. 

Finally, regarding the new proposed pre-treatment, BinSim, its important features are quite different 

from the other pre-treatments, with an average of 73.4% of unique features, almost 30% higher than 

the next following average (Table 3.3). This is because, consistently, for both PLS-DA and Random 

Forest models, they exhibit a very small overlap with the sets of important features of datasets treated 

in other ways. For the remaining BinSim datasets’ non-unique important features, these have a larger 

overlap, that is, also are chosen as important features, with the NGP treated datasets, making the latter 

the closest to BinSim datasets’ important features. As explained earlier, from the intensity-based 

methods, NGP’s logarithmic transformation decreases more the difference between higher intensity 
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values in comparison to the difference between smaller values (found between imputed missing values 

and low intensity peaks), giving some importance to the absence or presence of features that the 

BinSim treated datasets represent, hence explaining the slight NGP and BinSim similarity.  

Furthermore, important features of the BinSim treated datasets appear in a much smaller number of 

samples and different groups than the important features in the other datasets (except for Negative GD 

PLS-DA models). However, the distribution of the feature occurrence by number of samples is very 

different in Random Forest and PLS-DA models. In Random Forest models, they mostly appeared in a 

very small number of samples ranging between 3 and 6, that is, features that were exclusive to one 

group or sometimes two groups. This was more apparent on the Yeast datasets where 33 of the 39 on 

the YD (Fig. 3.6G) and 27 of the 33 on the YFD (Suppl. Fig. 6.8G) important features appeared in 

only 3 samples (number of samples of each group). These features are chosen because they help to 

clearly identify and separate the samples belonging to one or sometimes two groups in one decision 

node in the binary decision trees made in the Random Forest models. For the Random Forest model of 

the Positive GD (Suppl. Fig. 6.8C), there is also a clear group of features that occur in a great number 

of samples from around 22 to 30 after a zone from 10 to around 21 samples where almost no important 

feature is present. This trend can be found in the other datasets and models, but is more noticeable 

here. This kind of feature represents the opposite of the concept of “biomarker” by being metabolites 

that are present in almost all groups with the exception of one or two.  

On the other hand, in PLS-DA models, the important features tend to occur in approximately half of 

the samples. For example, in YD and YFD (Fig. 3.6H and Suppl. Fig. 6.8H), most features occur 

between 6 and 9 samples (with a higher number on 6 samples) of the 15 total samples, that is, in 2 or 3 

of the 5 different yeast strains. This difference to Random Forests may be attributed to the fact that 

each component in PLS-DA is trying to maximize the group separation between all groups instead of 

prioritizing individual group separation. In the example of the yeast datasets, when features can only 

have 2 values (1 or 0), this happens when the contribution of a feature to a component separates half of 

the groups between each other, that is, 2 groups from the other 3 groups, therefore features that appear 

in 2 or 3 groups only (appear between 6 and 9 samples) are prioritized. This tendency is also 

maintained in the Negative and Positive GD (Fig. 3.6D and Suppl. Fig. 6.8D) where chosen features 

tend to appear in near half of the total samples in the dataset but with a much higher spread due to the 

higher number of groups and samples and the groups being less well defined. 

Regarding the results for the important features of the PLS-DA models of the Negative Grapevine 

Dataset in Fig. 3.6B,D (often mentioned exception), the Venn diagram of the overlap of the important 

features is consistent with what was observed in the other cases; however the distribution of the 

occurrence of features by number of samples is quite different. Here, for the P treatment, the 

distribution of the occurrence of important features in the data is spread between appearing in low to 

high numbers of samples, instead of appearing almost exclusively in 30 plus samples like in all other 

results, while, for the NGP, the distribution is less spread out and is heavier at 9 which is also 

uncharacteristic of the NGP treated datasets. The important features of the Negative GD – NP follow 

their usual trend of being very close to P datasets in PLS-DA models. No discernible reason for these 

changes was found. The important features of the BinSim treated Negative GD are the only set that 

follows the trend displayed in other datasets with their distribution being very similar to the one 

observed in Positive GD (Suppl. Fig. 3.6D), however the change of the other distributions decreased 

the median of their distributions, making this the only set where the BinSim dataset’s important 

features does not have the lowest value for the median. 
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One important note to take away from the analysis is that classifier models built after the BinSim pre-

treatment use features that appear in a low number of samples, specifically features almost exclusive 

to only one group (acting as “biomarkers”). This is important since no artificial emphasis was put on 

this kind of features and the information stored in them is echoed in features that are present in almost 

every group except one or two. Therefore, this leads to the conclusion that there are more features that 

act like “biomarkers” than the opposite (only do not appear in one or two groups). These features have 

a lot of missing values. Features with many missing values are often discarded during peak filtering 

[43]. This indicates that these highly informative features that can greatly help sample discrimination 

are often filtered out of the dataset during peak filtering. When these features are kept, it is usually 

because feature filtering was done on an individual group basis (for example, if a feature is present in 

most of the samples of a single group, it is kept even if it is not found in any other samples). This kind 

of filtering would potentiate, in theory, the results of a method based on the occurrence of spectral 

features such as BinSim (highlights biomarker-like features), as was observed when this filtering was 

performed on the grapevine datasets leading to a high increase in the performance of different methods 

in BinSim treated datasets (results not shown). Nevertheless, this happens because samples of the 

same group were artificially made more similar to each other by this method. Thus, in my opinion, 

when using internal validation methods to specifically analyse the discrimination of samples into their 

respective groups, these types of filtering are not suitable since the “test samples” used to validate the 

models were made artificially closer to the training samples. An example of the use of these filters in 

discrimination analysis would be applying it only on the training samples when the model will be 

validated by an external metric so that “testing samples” are always treated as truly “unknown 

samples”. 

 

3.1.3 The Rationale and Benefits of Using Binary Similarity 

The Binary Similarity (BinSim) pre-treatment was specifically created with metabolomics data 

analysis in mind as a simpler and reliable alternative to traditional pre-treatments. It focuses on the 

presence or absence of features from the different samples instead of the intensity-driven (in the case 

of mass spectrometry metabolomics data) perspective of the other pre-treatments. It considers only the 

occurrence of spectral features to construct a binary sample vector encoding feature presence as 1 and 

absence as 0, obtaining a binary dataset comprised of 0s and 1s. Therefore, this method requires lower 

amounts of peak filtering from the original data since the existence of missing values is also a source 

of information. Even more, since missing values are such a valuable source of information, the method 

benefits from lower amounts of peak filtering altogether. This method also allows skipping the choice 

of a missing value imputation method (since all missing values are changed to 0) and the subsequent 

choice of the pre-treatments to use. Hence, the application of this treatment is very simple and skips 

the ambiguity of choosing the ‘best’ methods to apply in the peak filtering, missing value imputation 

and pre-treatment (choices of which combinations and methods of scaling, normalizations and 

transformations to use) in the metabolomics workflow. 

The presence or absence of features in a set of samples can be very helpful in the discrimination 

between samples from different sources (belonging to different biological groups) especially for 

metabolites that are exclusive to one group of samples (and act as biomarkers in the context) or to only 

a few of the studied groups; or the opposite with some key metabolites absent from just one or two 

groups. However, this kind of information tends to be overshadowed by the intensity data in the usual 

workflow due to 1) the extensive peak filtering usually performed, 2) the subsequent missing value 

imputation and 3) the nature of the traditional pre-treatments. The peak filtering tends to exclude 

features with higher amounts of missing values [43]. Depending on the method used for the filtering, 
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this can also include those features exclusive to one or a small number of groups, overlooking the 

importance of these features that can greatly help group discrimination. The missing value imputation 

on the remaining missing values is an almost mandatory step for further statistical analysis since many 

statistical methods do not work with the absence of values in the data [43]. When these values are 

treated as mistakes in the acquisition or processing of the data, that is, as MAR/MCAR values [43], 

their potential original importance is again eliminated (although this is the correct procedure to 

counteract errors in acquisition or processing if they are suspected to be such). When they are treated 

as MNAR values, that is, absent or in very low concentrations [44], they are usually replaced by small 

values and (only) partially retain their information and importance as low concentration/absent 

metabolites (decreases difference to present features). As such, low intensity features can be closer to 

(originally) missing values than to high intensity features and are considered more similar to them in 

many statistical methods, diminishing the importance of actually identifying a feature. Finally, 

traditional pre-treatments are all intensity transformations, from the mathematical point of view, so 

even when low amounts of peak filtering are performed (as it was done in this work), the focus falls 

mostly on the intensity patterns of the features, as was observed (Fig. 3.6).  

Thus, the idea of the BinSim pre-treatment is to focus specifically on the occurrence of spectral 

features by discarding the intensity data. This idea is supported by intensity data being highly variable 

between different metabolomics experiments even in the same batch of analysis due to slight 

differences in the sample preparation, ionization efficiency of the samples, sample processing, etc., 

which reduces the reproducibility of metabolomics results. Lin et al. [116] shows the difficulty in 

having reproducible intensity and relative quantification results between two different laboratories that 

are analysing the same set of samples with the same protocol and different instruments, despite a good 

portion of the same metabolites being annotated in both analyses. So, it stands to reason that, by 

eliminating this high variance factor, it is possible to more consistently compare the different samples 

with higher reliability based on the (less variable) identified metabolites. In fact, the discrimination 

results obtained by different statistical methods in BinSim treated datasets were more consistent that 

with intensity-based pre-treatments with them being either the best or second-best results of the 4 pre-

treatments compared in almost all cases between the different statistical analysis methods and between 

the different datasets used (perfect discrimination in the YD with all statistical methods; around half of 

the groups correctly clustered in unsupervised statistical methods and 80% predictive accuracy in 

supervised statistical classifiers in the Negative GD, for example). Furthermore, since BinSim also 

focuses on a different aspect of data, as observed by the very unique set of important features in 

building Random Forest and PLS-DA models from BinSim treated datasets (73.4% of the selected 

important features were unique on average), it gives a different perspective of them. It focuses on 

features that act as or close to “biomarkers” for specific biological groups in the dataset that are many 

times ignored or overshadowed due to factors explained above in this section. Thus, BinSim could 

also be used as a complementary approach to any of the other treatments mentioned. In fact, this 

observation is an indicator that both avenues of analysis should be made to give a more global and in-

depth look at the data, instead of only looking at one aspect of it. 

With this in mind, BinSim did perform consistently as well or slightly better than the other treatments 

used in this work in all different statistical methods used, and in all tested datasets for the profiling and 

discrimination of samples while using information different from the information used by other 

methods (as observed by the set of important features used to build Random Forest or PLS-DA 

models).  

 



Results and Discussion 

53 

3.1.4 Chemical Formulas as Features in Analysis across Different Datasets 

The results for the Yeast Dataset (YD – features were peaks m/z) and the Yeast Formula Dataset (YFD 

– features were the formulas assigned to peaks m/z when possible) were very similar with all different 

statistical analysis methods used. This was expected since most features in the YD had a formula 

assigned and were, therefore, also present in the YFD; hence the results from the YFD were only 

presented in the Annexes. Nevertheless, it was relevant to show that the perfect discrimination of the 

different yeast strains was still possible using only m/z peaks that had formulas assigned. Although 

more tests on different datasets are needed, these preliminary results show that this kind of feature 

engineering does not hinder (at least noticeably) information extraction by the different multivariate 

analysis methods. The importance of this lies in the much bigger versatility of using formulas as 

features in comparison to m/z peaks, specifically, to compare to other datasets.  

As we mentioned earlier, intensity data of mass spectrometry experiments is highly variable [116] and 

depends heavily on the sampling, metabolite extraction, instrument used, instrument settings, 

ionization efficiency of the metabolite, processing of the data, etc. As such, even comparing between 

samples or technical replicates obtained in the same experiment batch can reveal these irregularities 

that are even higher when comparing samples that should be similar (belong to the same group such as 

culture extract from the same yeast strain in similar conditions) but were prepared at a different time 

by a different person, analysed at a different spectrometer and, maybe, with some slight differences in 

parameters. This was observed by Lin et al. [116] which noted the variability of intensity of the same 

metabolites and the same samples was present between different batches of the experiment performed 

by the same laboratory and was magnified further when repeated in different laboratories, showing the 

low reproducibility of relative quantitation in untargeted metabolomics experiments. On the other 

hand, they were able to get a good intersection of the same metabolites annotated. This low 

reproducibility of the intensity data between studies makes the building of classifiers and comparison 

across different datasets difficult. Thus, the fact that the BinSim pre-treatment focuses on occurrence 

of spectral features that has a lower variability than that of intensity data makes a possible cross 

dataset analysis more feasible. 

However, the alignment of m/z peaks of different datasets that have slight shifts due to the small error 

in mass spectrometry analysis can be another problem for this analysis. By using formulas as features 

instead of m/z peaks, the alignment between the different datasets becomes much more straightforward 

(comparing the number of metabolites in common between the different datasets), especially if reliable 

formula assignments are possible. This means that there is significant potential in analysis across 

different datasets when using both the BinSim pre-treatment and formulas as features since both were 

shown in this work to keep the relevant information of the dataset to discriminate between the 

different groups. In my opinion, future studies could capitalize on these findings by building a 

classifier model from a dataset and observe if it can be used to reliably classify samples of another 

dataset with samples belonging to the same groups but obtained in slightly different conditions, for 

example in another mass spectrometer, to test the potential of building more general classifying 

models. 
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3.2 Mass-Difference Sample Networks as a Data Pre-Treatment 

3.2.1 The Rationale of Using Mass-Difference Networks as a Data Pre-Treatment 

The core idea behind this pre-treatment is related to BinSim. It relies on the concept that the set of 

metabolites that are identified in high-resolution methods is characteristic of the studied biological 

system and can be used for the discrimination of samples in a dataset, implicitly discarding highly 

variable signal intensity data. The information used from the original dataset is rather the set of 

features identified in each sample. Mass-Difference Networks focus on the possible chemical 

transformations between the identified metabolites based on their masses instead of just focusing on 

their presence or absence in the different samples. A cell’s metabolome is very dynamic, with 

metabolites consistently changing and transforming into each other [6]. Usually, metabolism is 

represented by metabolic networks that trace every identified enzymatic chemical reaction of a certain 

biological system. MDiNs (Mass-Difference Networks) aim to construct a network representation of 

the metabolome using solely the information from metabolomics datasets [95] and not requiring 

unambiguous structural or elemental identifications to build the network. These networks are built in 

an ab initio fashion and aim to describe the chemical diversity of a system. To this end, they use the 

list of masses of identified metabolites as nodes in the network. Edges are established between masses 

with a difference close to one of specific mass differences (MDB – “Mass-Difference-based Building 

block”), [94,95]. Each mass difference chosen is the mass corresponding to a specific change in the 

elemental formula of a metabolite after a chemical reaction that is common in a biologic context; for 

example, a methylation corresponds to the incorporation of a –CH3 methyl group by substitution with 

a –H hydrogen atom, leading to an overall change of CH2, that is, a change in mass of 14.01565 Da. 

Therefore, the set of mass differences chosen is of critical importance in this process. 

Mass-Difference Networks consider all possible reaction interactions between the list of masses (based 

on the set of MDBs used) and can take into account both enzymatic and non-enzymatic chemical 

reactions in the representation of the metabolome and its interactions. Apart from accepting non-

enzymatic transformations, it is not restricted by the knowledge of the different metabolic pathways 

that make up the metabolic networks that may still be very incomplete in less studied biological 

systems [96]. Furthermore, it does not require the extensive metabolite identification that is required in 

the mapping of a dataset to traditional metabolic networks. In fact, since MDiNs are based on the 

differences between masses, it does not technically require any formula assignment to have been made 

to spectral features. Nonetheless, it is worth noting that there are some drawbacks to building the 

network without any prior metabolite formula identification such as precluding network construction 

from considering elemental ratio constraints and increasing the number of spurious connections that 

will be discussed further later on. Most of the times, only a small fraction of metabolites is confidently 

identified, which are, then, used as a benchmark to assign many more formulas using the MDiNs built 

by propagation of the chemical transformations that link the metabolites in a network component. 

Thus, an MDiN built on the list of masses of a sample should be a representation of the chemical 

diversity of its metabolome akin to the metabolic networks, while being more easily applied and built, 

and not depending on prior knowledge of the metabolic pathways in the studied biological systems. 

This methodology is more complex than that of BinSim but should generate networks with plentiful 

information that can be analysed by network-oriented methods from analysing the local characteristics 

of each individual node to the global characteristics of the networks. Consequently, comparing the 

characteristics of these networks could be an efficient way to discriminate and classify the samples 

into their respective groups. Furthermore, using multiple analysis methods to compare sample MDiNs 

could give complemental information beyond the quality of discrimination achieved. 
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3.2.2 Mass-Difference Network Construction and Limitations 

MDiNs were built for 3 datasets: the Negative and Positive Grapevine Datasets (Negative and Positive 

GD) and the Yeast Dataset (YD) as described in section 2.3.1 (Materials and Methods). The only 

information given to build the networks was the list of masses of the m/z peaks for each dataset after 

conversion to represent neutral states of the metabolites. A network for each of the 3 datasets was built 

with a representation of their largest components in Fig. 3.7B and Fig. 3.8 and an overall look at the 

full network built from the YD and a close-up view of its most populated area in Fig. 3.7A,C, 

respectively. Table 3.4 shows the main characteristics of each network. The Yeast Formula Dataset 

(formulas as features) was not used since this method uses a list of masses (from the m/z peaks after 

adjustment for neutrality). The sample networks (or sample MDiNs) for each sample in each of these 

datasets were constructed by inducing a subgraph with only the nodes that correspond to the masses 

(m/z peaks) present in each sample. As such, each sample MDiN represents the chemical diversity of 

that sample.  

 

 

Figure 3.7: Mass-Difference Network built from the complete Yeast Dataset. A) Overview of the Yeast dataset network 

constructed. B) Close-up of the biggest Yeast dataset network component. C) Detailed view of the highest populated area in 

the network. Node size reflects the node degree and node colour changes from blue (●) to dark red (●) with higher degree. 

Edge colour represents the MDB (representing a set of chemical reactions) used to establish said edge: (▬) – O(-NH), (▬) – 

NH3(-O), (▬) – H2, (▬) – CH2, (▬) – O, (▬) – H2O, (▬) – NCH, (▬) – CO, (▬) – CHOH, (▬) – S, (▬) – C2H2O, (▬) – 

CONH, (▬) – CO2, (▬) – SO3, (▬) – PO3H. Network representations were made with the Cytoscape 3.8.1 [111]. 

 

A 

C 

B 
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Figure 3.8: Mass-Difference Network built from the Negative (A) and Positive (B) Grapevine Dataset. Node size 

reflects the node degree and node colour changes from blue (●) to dark red (●) with higher degree. Edge colour represents the 

MDB (representing a set of chemical reactions) used to establish said edge: (▬) – O(-NH), (▬) – NH3(-O), (▬) – H2, (▬) – 

CH2, (▬) – O, (▬) – H2O, (▬) – NCH, (▬) – CO, (▬) – CHOH, (▬) – S, (▬) – C2H2O, (▬) – CONH, (▬) – CO2, (▬) – 

SO3, (▬) – PO3H. Network representations were made with the Cytoscape 3.8.1 [111]. 

 

Table 3.4: Characteristics of the Mass-Difference Networks of the Yeast Dataset, the Negative Grapevine Dataset and 

the Positive Grapevine Dataset. 

Network 

Characteristics 

Yeast Dataset 

(YD) Network 

Negative Grapevine 

Dataset (GD) Network 

Positive Grapevine 

Dataset (GD) Network 

Number of Nodes 1893 3629 7026 

Number of Edges 810 1005 6597 

Biggest Component Size 275 183 2482 

Diameter 31 27 49 

Radius 16 14 25 

Number of Nodes 

without Edges 
1205 2452 3110 

 

The network in Fig. 3.7 as well as Table 3.4 show that from approximately 1/3 to half of the nodes are 

connected to, at least, one other node. This means that the majority of nodes do not establish any 

connections and are, therefore, as uninformative to these methods as completely missing features. 

Despite this, the remaining nodes establish many different connections with each other, most of them 

in the largest components of each network. The Negative GD Network is comparatively less inter-

connected than the YD Network while the Positive GD Network is a lot more inter-connected, 

probably due to the sheer number of nodes in a relatively small mass window, obtaining a component 

with almost 2500 nodes much larger than the largest components of the other networks. The 3 

networks all have very high diameter and radius, with the radius being almost perfectly half of the 

diameter. This means that the networks are highly spread with many long stretches of node chains 

(Fig. 3.7 and 3.8). Near the center, there are zones of the network with greater interconnectivity 

between the nodes visible in the redder areas of the networks in Fig. 3.7C and Fig. 3.8, which act as 

the main hubs of the network – higher degree of the nodes in the area. In the Positive GD network 

(Fig. 3.8B) there are 3 to 4 different zones of high interconnectivity. The network topology with low 

number of nodes with high degree (that make up the hubs of the network) and a high number of nodes 

B 

A 
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with low degree (distribution approximates a power law) is characteristic of many different biological 

systems, including metabolic networks [117]. 

Suppl. Table 6.3 shows that the top 3 main transformations (MDBs) used to establish edges in the 3 

networks were CH2 (methylations), H2 (Hydrogenations) and O (Oxygenations and Hydroxylations). 

Since they represent some of the most common reactions and differences between metabolites in 

biological systems, this is a signal that the difference between the masses is not random and is skewed 

towards differences congruent with these types of biological reactions – networks are being built as 

expected. 

The sample networks (not shown) induced from the full networks share their main characteristics and 

topology on a smaller scale, because they have fewer nodes. This means that the sample networks 

cannot be easily discriminated by their topology without a closer and more in-depth analysis.  

As mentioned before, there are some disadvantages in only using mass lists due to the lack of extra 

restrictions for establishing edges. False positives can happen between two masses (metabolites), 

generating an edge between them, whose MDB does not correspond to their actual differences in 

elemental compositions. This is more likely to happen with higher masses, where the combination of 

possible formulas within a 1 ppm error margin increases exponentially [50]. Those spurious 

connections can thus happen between 2 very different metabolites, for example, between X and Y, if 

X has a very close theoretical mass to a metabolite that could be transformed from or into Y. This 

could be observed in some instances in the YD network, where a conflict between formulas existed 

when propagating formula assignment from metabolites with more reliable formula assignments – 

annotated with the HMDB [49] or YMDB [107]. Moreover, elemental ratio constraints (for example, 

number of oxygen to number of carbons ratio) can only be applied when formula assignment is taken 

into account, while the network is being built from the formulas assigned to a few selected nodes. 

Without considering formula assignments (only using mass lists), this cannot be done. Consequently, 

there may be additions in succession of different groups due to chemical transformations that can lead 

to formulas that would theoretically occupy a chemical space not usually occupied by metabolites. In 

case the masses are very similar to each other, in some instances, two masses can be linked by the 

same chemical transformation (mass difference) in the same “direction” (both add or both subtract the 

same group due to a chemical transformation) to the same node. This can be seen in the upper right 

corner of Fig. 3.7C where nodes 255.2927 and 255.2925 (blue) are both linked to node 299.2924 (red) 

by a CO2 edge. This would mean that those two peaks are representing metabolites with the same 

elemental formula, which results from a problem of either the peak selection and alignment in the pre-

processing stages or with the mass error tolerance being too high in the MDiN building stage. Finally, 

all the connections established are only hypothetical based on the mass difference of the metabolites. 

Despite these problems, the overall structure of the networks should be robust to these issues so it 

should not considerably affect our results. Moreover, the objective is to test this approach as a 

generalized treatment of metabolomics datasets for sample discrimination, many of which do not have 

the needed assigned formulas to mitigate these issues. So, it is in the interest of this work to test if this 

treatment is viable with the least possible available information (and not for the common use of 

MDiNs which is metabolite formula assignment). 

 

3.2.3 Mass-Difference Network Analysis 

Since the application of MDiNs as a metabolomics data analysis pre-treatment (for sample 

discrimination) is novel, several different analyses methods were applied to test if meaningful 
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discriminatory information can be gathered only from the structure of MDiNs. Thus, for the different 

sample networks obtained from the 3 main networks, their individual node centrality and global 

network (node-independent) characteristics (considering the number of times each MDB was used to 

establish edges and their network topology) were computed. As an aside, since the global network 

characteristics are independent of the identity of their nodes, they can be used to compare sample 

MDiNs whose peaks were not previously aligned and compiled in the same dataset. The analysis of 

the results for each sample network was grouped together, for each method, to make “secondary 

datasets” with features depending on the method used. Statistical methods were subsequently used to 

analyse if the information gathered in the different secondary datasets is discriminatory in the sense of 

separating groups or predicting the correct assignment of samples into those groups. The statistical 

methods used were the same as in sections 3.1.1 and 3.1.2: Hierarchical Clustering and K-means 

Clustering analysis (unsupervised), Random Forests and PLS-DA classifiers (supervised). 

For individual analysis of the nodes, three centrality measures were used: degree, betweenness 

centrality and closeness centrality. The values of each node in the network in each measure were 

compiled on a secondary dataset for each of the centrality measures. That is, the features of the 

secondary datasets are still the mass lists of the original datasets. However, the information of each 

feature (mass) is the relation to other masses as described by the different centrality measures and not 

information contained in the feature itself. As an example, if the degree of a feature is 0, then that 

feature either is not present or does not establish any connections, if the degree is 1, then the feature is 

present and establishes exactly one connection and so forth with degree 2, 3, etc. Thus, the key 

information associated with a feature is its possible relation with other features.  

To observe if the frequency of mass differences between the mass lists of different samples could 

indicate that certain sets of chemical reactions were being over or under stimulated in some biological 

groups and could be meaningful information for group discrimination, the percentage of edges 

associated with each MDB (mass difference) in sample networks was compiled to make a secondary 

dataset. This method will be referred to as MDB influence hereafter since it represents the impact of 

each MDB in building the sample networks. The rationale is that if, for example, oxidizing compounds 

or enzymes are more present or expressed in a biological system in relation to another, it is expected 

the presence of more metabolites whose difference corresponds to an oxidation reaction (O or H2) and, 

therefore, more metabolites/masses would have a difference corresponding to those chemical 

transformations. In this case, the number of features is condensed to the number of groups used – 15 

(where each feature is an MDB) – from originally thousands of features. The important features to 

build the classifier models can then indicate which chemical transformations have different 

prominences in the biological systems studied, which is a concept that is further explored in section 

3.2.6. 

To analyse the general network topology of each sample network, a method called GCD-11 was 

applied. The GCD-11 method was chosen to analyse the topology of the network since prior studies 

such as Tantardini et al. [115] and Yaveroğlu et al. [113] show it performs very well in the comparison 

and classification of networks when compared to many other methods. GCD-11 is the Graphlet 

Correlation Distance, using 11 non-redundant orbits for up to 4-node graphlets [113]. Graphlets are 

small and non-isomorphic subgraphs of a network and each graphlet can have multiple automorphic 

orbits if the nodes in the graphlet are not in the same relative position [114]. As explained in greater 

detail in the Materials and Methods (section 2.3.2), the features of this method are the 60 orbit n – 

orbit m (n, m are 2 of the 11 different orbits) Spearman correlations of the counts of orbits n and m of 

all nodes in a network. These 60 features represent the network topology. In this case, the features do 
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not have a clear and interpretable biological significance, which prevents an in-depth analysis of the 

features considered important in classifiers built from these secondary datasets. 

Each secondary dataset is identified by the following general notation: Main Network – Analysis 

method. For example, the yeast dataset sample networks analysed by degree are identified as: YD – 

Degree. The other 4 analysis methods are referred to as: YD – Betweenness, YD – Closeness, YD – 

MDB Influence and YD – GCD-11. When addressing all the three secondary datasets built from a 

certain network analysis method, they are referred to as: analysis method secondary datasets; for 

example, degree secondary datasets. 

 

3.2.4 Unsupervised Statistical Analysis – Hierarchical and K-means Clustering 

Hierarchical Clustering Analysis (HCA) and K-means Clustering analysis were performed to observe 

if the samples of the same biological groups in the different secondary datasets clustered preferentially 

with each other rather than with samples of other groups due to an intrinsic pattern in the data.  

HCA was performed with the UPGMA linkage method and the Euclidian distance metric. The 

resulting dendrograms corresponding to degree, MDB influence and GCD-11 sample network analysis 

are presented in Fig. 3.9, while the remaining dendrograms (after betweenness and closeness centrality 

analysis) are presented in Suppl. Fig. 6.9. Furthermore, an evaluation summary using and 

Discrimination Distance metrics, the correct clustering and first correct cluster percentages of the 

HCA performed on the secondary datasets obtained is also presented in Fig. 3.9A4, B4, C4.  
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Figure continues in the next page → 
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Figure 3.9: Hierarchical Clustering Analysis (HCA) of the different secondary datasets obtained from sample MDiNs. 

Dendrograms of the HCA of the Yeast (A), Negative Grapevine (B) and Positive Grapevine (C) sample networks after 

degree (1), MDB influence (2) or GCD-11 (3) network analysis of each one. HCA was performed with UPGMA linkage 

method and Euclidian distance metric. (4) Summary of the discrimination observed (based on 3 different metrics) after HCA 

of the datasets obtained after the different network analysis methods used on the sample networks. Vitis genotypes 

abbreviations are indicated in Table 2.1. 

 

K-means Clustering analysis was performed on the 5 secondary datasets built from sample networks 

for each of the 3 main datasets studied using the Euclidian distance metric with the scikit-learn Python 

module [101]. The number of clusters chosen for each dataset was equal to the number of groups: YD 

– 5 groups, Negative and Positive GD – 11 groups. The results of an analysis of how well the samples 

were discriminated by K-means clustering analysis using the discrimination distance, correct 

clustering percentage and the adjusted Rand Index metrics are presented in Table 3.5. 

 

Table 3.5: Discrimination Distance, correct clustering percentages and adjusted Rand Index of the K-means 

Clustering analysis performed on the secondary datasets obtained from network analysis of each sample network for 

the Yeast, Negative and Positive Grapevine Datasets.  
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Discrimination 

Distance 
0.71 0.00 0.41 0.10 0.08 0.21 0.00 0.11 0.08 0.02 0.00 0.01 0.00 0.00 0.00 

Correct 

Clustering (%) 
100 0 60 20 20 45 0 27 18 9.1 0 9.1 0 0 0 

Adjusted Rand 

Index 
1 0.31 0.81 0.56 0.51 0.48 0.23 0.43 0.25 0.24 0.23 0.14 0.23 0.26 0.21 

C1
C2

C3
C4



Results and Discussion 

62 

 

Analysing both Fig. 3.9 and Table 3.5, it can be seen that, in all three main datasets, using the degree 

centrality measure to characterise each sample network leads to the most correct discrimination of 

samples in both clustering techniques applied. Observing the YD results, YD – Degree was the only 

secondary dataset that allowed a perfect discrimination of the samples in both methods (Fig. 3.9A1 

and Table 3.5). YD – Closeness (another centrality measure) allows the 2
nd

 best discrimination, while 

YD – Betweenness (the last centrality measure) leads to the worst discrimination with 0% of groups 

correctly clustering in both methods, only 53% of samples with correct first clusters (HCA)  and an 

adjusted Rand Index (K-means clustering) of 0.31 (much lower than those of other analysis methods – 

Table 3.5). YD – MDB Influence results are below those of YD – Closeness with 60% correct group 

clustering in HCA (87% of samples with correct first clusters) and 20% in K-means clustering. YD – 

GCD-11 results (topology of the sample networks) are slightly worse than YD – MDB Influence with 

40% correct group clustering and 80% of samples with correct first clusters in HCA and 20% correct 

clustering in K-means clustering (same as YD – MDB Influence) with a lower Discrimination 

Distance (0.08 < 0.10) and adjusted Rand Index (0.51 < 0.56) that show that the well discriminated 

group was more separated from other samples (Discrimination Distance) and that the samples of 

groups not completely well clustered were more partially well clustered in the YD – MDB Influence 

case (Rand Index). 

This trend of the quality of the discrimination of samples achieved from the secondary datasets was 

also observed for both clustering metrics in the Negative GD results, despite the overall quality being 

lower due to the groups being less distinct in this dataset. Despite this, HCA on the GD – Degree led 

to a very good result: 7 of the 11 groups (64%) were correctly clustered/discriminated with 76 % of 

samples (25 out of 33) with correct first clusters (Fig. 3.9B1) and K-means clustering led to 5 groups 

being correctly discriminated (45%) with a Rand Index of 0.48. 

The performance of the discrimination of the samples of the Positive GD was poor with both 

clustering methods like it was with the intensity-based and BinSim pre-treatments (section 3.1.1). In 

the best discrimination, obtained with HCA of GD – Degree, only 2 groups were correctly clustered 

and 42% of samples had correct first clusters – albeit a very low quality of separation is apparent in 

the dendrogram in Fig. 3.9C1. K-means Clustering analysis was not able to correctly cluster a single 

group in 4 of the 5 secondary positive grapevine datasets and they all had a low Rand Index (between 

0.21 and 0.26). GD – Betweenness was the exception, with one group being correctly clustered. 

Nonetheless, the low Rand Index when compared to the others (0.14) indicates that this was probably 

happenstance rather than better discrimination due to information from the GD – Betweenness.  

Based on these results, from the different sample MDiN characteristics, the analysis and comparison 

of the networks based on the centrality of their nodes, especially their degree (which keeps a high 

number of features), was the most successful approach, far better than focusing on the global 

characteristics of the network that greatly reduced the number of total features (topology and impact of 

each MDB in establishing the MDiNs – GCD-11 and MDB influence, respectively). This indicates 

that there is a significant information content in the network that is not being translated to the few 

features of those methods. From these latter two, the MDB influence analysis allows the clustering 

methods to discriminate the different samples slightly better than the GCD-11 topology analysis, even 

though the information is concentrated in only 15 features. A more in-depth discussion is presented 

later when combined with the results from supervised analysis. 
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3.2.5 Supervised Statistical Analysis – Random Forests and PLS-DA  

As performed in section 3.1, after clustering analysis, the discrimination of the different groups in the 

data was evaluated by using supervised statistical methods that build classifiers whose purpose is to 

classify and discriminate samples. The classifiers chosen were Random Forests and PLS-DA. Random 

Forests and PLS-DA models were built from each of the secondary datasets for the 3 studied datasets 

using the scikit-learn Python module [101]. After tuning, Random Forest models were built with 200 

trees (Suppl. Fig. 6.10). The number of components of PLS-DA models was chosen to minimize the 

predictive residual sum of squares estimated with stratified 3-fold cross-validation. For the secondary 

datasets based on the Yeast sample networks, models were built with 5 components (Suppl. Fig. 

6.11A). For the secondary datasets obtained from network analysis of the degree or closeness 

centrality of each node (high feature number) on the Negative or the Positive GD sample networks, 

PLS-DA models were built with 11 components (Suppl. Fig. 6.11B). For the secondary datasets 

obtained from the MDB influence or GCD-11 network analysis (low feature number) on the Negative 

or Positive GD sample networks, PLS-DA models were built with 5 components since Q
2
 started to 

drop with higher component numbers (Suppl. Fig. 6.11B). Models with 5 components were also made 

after betweenness centrality analysis of the Negative and Positive GD sample networks, despite the 

high number of features of its secondary datasets (Suppl. Fig. 6.11B). The quality of the 

discrimination was evaluated according to the distribution of the predictive accuracy of 200 iterations 

of the classifiers, estimated through randomly sampled stratified 3-fold cross-validation (Fig. 3.10). 

Permutation tests in Suppl. Fig. 6.12 all show that the predictive accuracy of the distribution of 

permuted labels Random Forest and PLS-DA models was considerably below that of the reference 

non-permuted models built from the secondary datasets (p-value < 0.02), which means that the 

classifiers’ accuracy resulted from significant information present in the data and not from random 

noise. 
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Figure 3.10: Distribution of the prediction accuracy of Random Forest and PLS-DA models built from the different 

secondary datasets. Violin plots of the distribution of the prediction accuracy of 200 iterations of Random Forests and PLS-

DA models built from the secondary datasets obtained from the sample networks of the Yeast Dataset (A and B, 

respectively), Negative Grapevine Dataset (C and D, respectively) and Positive Grapevine Dataset (E and F, respectively). 

Each iteration’s predictive accuracy is estimated by randomly sampled stratified 3-fold cross-validation. Below the plots, the 

average prediction accuracy is presented. MDB Inf. – MDB Influence. 

A B

C D

E F
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Once again, models built on secondary datasets obtained from the degree analysis of the sample 

networks outperform all others in the 3 main datasets studied, closely followed by closeness. As for 

the general performance on the 3 main datasets, the classification analysis of the different secondary 

datasets from the YD has a greater predictive accuracy, with a perfect discrimination of the sample 

being reached in some cases (Fig 3.10A,B). Maintaining the same trend from the clustering analysis, 

analysis of the secondary dataset from the Negative GD yields better results than the poor performance 

of the classifiers built from all secondary datasets of the Positive GD, with the highest average 

predictive accuracy reached being a low 66.7%, around 16% lower than the maximum achieved in the 

Negative GD – 82.8% (Fig 3.10C-F). Despite these differences in absolute accuracies, the trends 

observed between the five network analyses methods used was identical for the datasets. 

Regarding the three different centrality measures used to analyse the networks, the degree secondary 

datasets outperformed the others in all statistical methods used. As previously seen, this was already 

the trend observed in the clustering methods. With these classifiers, Random Forest and PLS-DA 

classifiers have a perfect discrimination with the YD – Degree, 81.8 and 82.8% average accuracy, 

respectively, with the Negative GD – Degree and 65.0 and 66.7% average accuracy, respectively, with 

the Positive GD – Degree (Fig 3.10). Both classifier methods achieve similar accuracies based on 

these datasets. Classifiers of the closeness centrality secondary datasets always have a similar but 

slightly inferior performance to the degree secondary datasets. Regarding the betweenness centrality 

secondary datasets, Random Forest classifiers had an average predictive accuracy of 30 to 40% higher 

than PLS-DA models (97.7 to 66.1% for the YD, 74.7 to 37% for the Negative GD and 54.7% to a 

very low 21.0% for the Positive GD) – Fig 3.10. This difference meant that PLS-DA classifiers built 

from the betweenness centrality secondary datasets had the worst performance of the 5 metrics 

following the results from clustering analysis while Random Forest classifiers had the 3
rd

 best 

performance (below degree and closeness secondary datasets). However, the conclusion to be 

extracted is that analysis based on the degree of each node is the most suitable one to be performed on 

the sample networks among the centrality measures based on node characteristics which create 

secondary datasets with an equal number of features to that of masses. 

Regarding the methods that analyse the networks as a whole, classifiers built from the MDB influence 

secondary datasets always outperform, in terms of predictive accuracy, those from GCD-11 secondary 

datasets, despite both methods performing poorer than those built from the degree secondary datasets 

(Fig 3.10). These results are in line with the results of the clustering techniques. Moreover, the 

performance of Random Forest classifiers of these datasets slightly outperforms that of PLS-DA 

classifiers. This might be due to the low feature number in MDB influence (15) and GCD-11 (60) 

secondary datasets. As a dimension reduction algorithm, one of the main appeals of PLS-DA comes 

from its proficiency in reducing greatly the number of features of metabolomics datasets to just a few 

components. Since MDB influence and GCD-11 secondary datasets already have a low number of 

features, this appeal of dimension reduction algorithms is reduced.  

The low performance of the different statistical methods in analysing GCD-11 secondary datasets was 

partially expected. Despite the proven suitability of this method to classify different networks 

according to their topology [113,115], the topology of the different sample networks was very similar 

and, in turn, similar to their mother networks shown in Fig 3.7 and 3.8. Therefore, the difference in 

topology would have to be identified in the finer structure of these networks. The low predictive 

accuracy of classifiers of YD – GCD-11 (around 80%), Negative GD – GCD-11 (around 40%) and 
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Positive GD – GCD-11 (around 30%) shows that GCD-11 was not sensitive enough to allow a quality 

discrimination based on the finer structure of the topology of the network (Fig 3.10).  

The MDB Influence analysis (specific to MDiNs) stands, then, as the 2
nd

 most promising method from 

the 5 studied. Despite the worse performance in comparison with the closeness secondary datasets, 

since closeness centrality focuses on the same aspect of the network as the degree analysis and 

underperforms comparatively, it is less useful than the MDB influence analysis. As an aside, although 

Random Forest models built from Negative GD – MDB Influence show a 62.2% (Fig. 3.10C) average 

prediction accuracy, this is probably an underestimation (variance due to the random 3-fold split of the 

dataset) if we consider Suppl. Fig. 6.10B (number of trees tuning), where the prediction accuracy 

seems closer to 70%. This performance could be important due to the significance of the features of 

the MDB influence secondary datasets – MDBs chosen to build the MDiNs. Each feature represents 

the percentage of times the respective MDB was used to construct an edge in each sample, that is, it 

should be representative of the number of different compounds that are being created/destroyed by the 

set of chemical reactions each MDB represents. In theory, this can inform if a certain biological 

system has, for example, the phosphorylation or the oxidation of compounds over or under stimulated 

in comparison to another system. This discrimination between different groups becomes harder with 

the presence of more groups due to the limited number of features. Although the 94/95% predictive 

accuracy of the classifiers for YD – MDB Influence (Fig. 3.10A,B) and the 60 to 70% predictive 

accuracy in discriminating between 33 samples of 11 different groups of the Negative GD with only 

15 features (Fig. 3.10C)  is impressive and clearly shows that there is meaningful information grasped 

in this way, it is undeniable that it underperforms in relation to the degree secondary datasets and the 

analysis of datasets treated in the ways discussed in section 3.1. However, this information can still 

give us a perspective on some metabolic differences between the biological groups as exemplified in 

the next section (3.2.6).  

 

3.2.6 Potential of MDB Influence Secondary Dataset Features  

From the different network analysis methods employed, MDiN analysis based on the degree of the 

nodes allowed for the best discrimination results. Nonetheless, as discussed, the information 

associated with their features is the possible relations (by biochemical transformations) with other 

features represented by the number of connections each feature (node) has in the MDiN. 

Consequently, classifier models would give more importance to features whose pattern of possible 

chemical transformations is different from biological group to group. Since it is the changes on the 

presence of the neighbouring nodes and the pattern of edges around it in the MDiN that determines the 

importance of the features (nodes) to build the different classifier models from the degree secondary 

datasets, these important features can’t be conclusively identified as key metabolites in the 

discrimination of the groups. On the other hand, despite the worse discrimination achieved in classifier 

models built from the MDB influence dataset, the most important features to build these models can 

give an indication of the chemical transformations that have different prominence in the biological 

systems, which can be a new way of comparing the samples [118]. In turn, these can indicate 

metabolic differences in those reaction types in the biological systems under study. This is a promising 

use of the analysis based on MDB influence and can help characterize differences in the metabolomes 

or orient future research paths. The MDB influence differences are clearer when only comparing 2 

different groups but can also be seen between multiple groups as shown in the example below. 

As an example, consider the Random Forest models built from the MDB influence secondary datasets 

obtained from the sample networks. Random Forest models were chosen since they discriminate the 
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biological systems of each dataset better than the PLS-DA models built from the same secondary 

datasets (higher average predictive accuracies). Table 3.6 shows the importance of each of the 15 

MDBs (used to build the sample MDiNs) in building the Random Forest classifiers, estimated by the 

Gini Importance [87]. The results show that the “PO3H” MDB that represents mostly the 

phosphorylation of metabolites is the most important MDB to separate the groups of YD – MDB 

Influence, while oxygenations (oxidations) and hydroxylations represented by the “O” MDB are the 

most important for both the Negative and Positive GD – MDB Influence (and the “PO3H” is closer to 

the least important feature – 13
th
 and 15

th
 place, respectively). Looking at the YD results, since it is 

known that the groups are distinct between each other to the point that many different treatments and 

statistical methods discriminated them perfectly, it can be seen in Table 3.7 that there is, in fact, a 

distinction of the “PO3H” edges established in each group with a high number of edges 

(phosphorylations) in the strains BY4741 and ΔGRE3, an average amount in ΔGLO2 and a very low 

amount in the strains ΔENO1 and ΔGLO1. So, for a study with the goal of characterizing differences 

in the metabolism of these strains, although other treatments can show a perfect discrimination of the 

groups and indicate certain key metabolites for this discrimination, this could point to this global 

metabolic change on metabolite phosphorylation or steer a study on the possible causes that lead to 

different phosphorylation of metabolites (for example, what caused or can justify the lack of 

metabolite phosphorylation in the ΔENO1 and ΔGLO1 strains) as a more global look at the 

metabolome and its differences. 

 

Table 3.6: Gini Importance of the features from the MDB influence secondary datasets obtained from the sample 

networks to build the respective Random Forest models. Gini Importance is calculated by the scikit-learn Python module 

also used to build the Random Forest models [101]. The Gini Importance of all features adds up to 1. MDB – Mass-

Difference-based Building block. 

 

 

Yeast Dataset Negative Grapevine Dataset Positive Grapevine Dataset 
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Table 3.7: PO3H feature of the MDB influence secondary dataset built from the Yeast sample networks before and 

after normalization. Normalized values represent the percentage of edges established in the sample network due to the 

respective MDB. MDB – Mass-Difference-based Building block. 

MDB BY4741 dGRE3 dENO1 dGLO1 dGLO2 

PO3H (not 

normalized) 
19 20 23 17 17 16 5 7 6 8 10 10 12 13 11 

PO3H 

(normalized) 
10.5 7.9 11.3 9.2 8.0 6.8 4.9 4.8 3.8 3.1 4.8 5.3 5.9 7.0 5.8 

 

3.2.7 Comparison of Sample MDiNs to Other Pre-Treatments  

A summary of the results presented throughout this dissertation about the performance of different 

statistical methods after pre-treatments based on signal intensities and the new pre-treatments 

proposed in this work is presented in Table 3.8. The results from the analysis on the YD show that 

degree analysis after the construction of sample MDiNs allowed a perfect assignment of the 15 

samples into their respective groups with high Discrimination Distances on clustering analysis. This 

good performance is au par with the intensity-based pre-treatments and the BinSim pre-treatment. The 

results from the analysis on the Negative GD show that degree analysis of the sample MDiNs also led 

to very good discrimination results even when compared to intensity-based pre-treatments or BinSim, 

exhibiting higher correct clustering fractions on both HCA (7 of the 11 groups were well clustered) 

and K-means clustering (5 of the 11 groups). This trend was also maintained in the Random Forest and 

PLS-DA models with more than 80% predictive accuracy in both, once again higher than the intensity-

based treatments in most cases. This similar performance to the intensity-based pre-treatments, 

although with worse absolute values, was also mostly observed in the results from the discrimination 

analysis on the Positive GD with similar results obtained with the clustering techniques. Both Random 

Forest and PLS-DA models built from the Positive GD – Degree had a sub-par performance with a 

maximum of only around 66% predictive accuracy. For the Random Forest models, this wasn’t very 

different to what was observed with intensity-based and BinSim pre-treatments (5% below the two 

best pre-treatments and 15% higher than the others). However, with the PLS-DA models, this was far 

below (around 15%) the performance on the Positive Grapevine Dataset treated with the pre-

treatments presented in section 3.1 of this work (around 80% predictive accuracy). From the different 

metrics used to evaluate sample discrimination in the 4 statistical methods presented and on the 3 

benchmark datasets, this, then, stands as the exception where the discrimination obtained with the 

sample MDiNs (using the degree analysis) was not better or similar to intensity-based treatments. As 

for the analysis on the datasets generated by the MDB influence analysis of the sample networks, the 

discrimination achieved by the different statistical methods was poorer than the discrimination 

achieved in datasets treated in other ways. Thus, despite the potential highly informative and 

biological significance of the features of the secondary dataset built by this type of analysis, when the 

objective is just the discrimination of the different samples, this method should only be picked when 

other alternatives mentioned in this work can’t be applied. 

Like the BinSim pre-treatment, the analysis and discrimination of metabolomics dataset by building 

sample MDiNs appears viable compared to the more established intensity-based pre-treatments, 

leading to a good discrimination of samples. However, it should be pointed out that, from a 

computational point of view, this is a more complex pre-treatment than BinSim, whose simplicity was 

one of its main advantages. The complexity of MDiN-based methods stems from the need to build 
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secondary datasets. For these, it is necessary to choose a set of MDBs that represent the set of 

chemical reactions relevant to the analysed system, then build the different MDiNs and finally use a 

network analysis method (after the assessment in this work, it is recommended to use the node degree 

analysis to achieve the better discrimination). The poor results obtained from the Positive GD PLS-DA 

models may indicate that the sample MDiNs are a less robust pre-treatment (in comparison to BinSim) 

and, therefore, requires a more careful consideration of when to apply it. However, these problems are 

contraposed by the great versatility that the sample network analysis provides. While the BinSim pre-

treatment is tailored to the discrimination of different groups while highlighting very specific key 

metabolites, the sample MDiNs can also achieve a very good discrimination of the samples while 

retaining other information that can be extracted from these networks for further analyses, granting a 

great versatility to this method. For example, MDB influence analysis is still possible, giving further 

insights, as discussed in the previous section; analysis on the main hubs of the partial metabolic 

networks built can be used to 1) characterize the sample and biological group and 2) further compare 

with the other biological groups. Therefore, it allows a great amount of other biologically relevant 

information to be extracted from this fresh perspective that MDiNs grant. Moreover, MDiN network 

analysis is still viable on sample MDiNs that come from different datasets whose peaks were not 

previously aligned and do not have formulas assigned. Analysing datasets with both drawbacks is 

usually impossible by other methods or individual node network analysis methodologies, but can still 

be done by falling back on comparing the global characteristics of the sample networks such as the 

MDB influence analysis that, although less efficient, may still provide meaningful insight and 

discrimination of the samples. These examples show the great benefit of the versatility of sample 

MDiN based analysis. 

Finally, since this methodology, like the BinSim pre-treatment, forgoes the highly variable intensity 

data for the less variable encoding based on the presence/absence of features, its potential in analysis 

across different datasets analysis is similar to the great potential of BinSim with all the points 

discussed in section 3.1.4 also applying here. Moreover, using formulas assigned to compare different 

unaligned datasets as suggested in section 3.1.4, would allow MDiN construction with these formulas 

in mind, diminishing the number of spurious connections between masses and establishing maximum 

ratios between the different chemical elements which would further improve the quality of the MDiNs. 

Furthermore, since the information in MDiNs comes from the relations between features, these might 

be more robust to missed identifications of some metabolites, alleviating the impact of data variability 

on the analysis between different metabolomics datasets, potentiating even more the advantages of 

these types of analysis. Finally, as a last resort, if alignment of the different datasets is not possible, 

MDiNs still tolerates a comparison based on the global network characteristics, specifically, MDB 

influence analysis that may also give meaningful insights as discussed above. Therefore, as suggested 

for the BinSim pre-treatment, future studies could test the plausibility of classification of samples 

across different datasets based on sample MDiNs since, in theory, sample MDiNs could also 

outperform the currently available methodologies for analysis across different datasets. 
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Table 3.8: Summary of the results of the performance of the different statistical methods in discriminating samples 

into their respective group. Results summary of the Hierarchical clustering analysis (HCA), K-means clustering analysis, 

Random Forest and PLS-DA classifiers of the Yeast Dataset, Negative and Positive Grapevine Datasets after being treated in 

one of the following ways: one of three combinations of intensity-based pre-treatments, Binary Similarity pre-treatment, 

degree or MDB influence analysis of sample MDiNs. BinSim – Binary Similarity, P – Pareto Scaling, N – Normalization by 

a reference feature, G – Generalized Logarithmic Transformation, MDiN – Mass-Difference Network.   

Statistical Analysis 

Results 

Intensity-Based 

Pre-Treatments 

 

BinSim 

 
MDiN 

Degree 

MDiN 

MDB 

Influence P NP NGP 

Yeast Dataset 
HCA      

Discrimination Distance 0.31 0.22 0.22 0.14 0.24 0.09 

Correct Clustering (%) 100 100 100 100 100 60 

Correct First Cluster (%) 100 100 100 100 100 87 

K-means Clustering    

Discrimination Distance 0.73 0.39 0.37 0.86 0.71 0.10 

Correct Clustering (%) 100 100 100 100 100 20 

Adjusted Rand Index 1.00 1.00 1.00 1.00 1.00 0.56 

Random Forest    

Prediction Accuracy (%) 100 100 100 100 100 94.9 

PLS-DA    

Prediction Accuracy (%) 100 100 100 100 100 93.7 

Negative Grapevine Dataset 
HCA      

Discrimination Distance 0.10 0.12 0.14 0.12 0.13 0.12 

Correct Clustering (%) 45 45 54 54 64 18 

Correct First Cluster (%) 64 64 79 67 76 42 

K-means Clustering    

Discrimination Distance 0.09 0.13 0.17 0.16 0.21 0.08 

Correct Clustering (%) 18 27 36 27 45 18 

Adjusted Rand Index 0.52 0.48 0.59 0.53 0.48 0.25 

Random Forest    

Prediction Accuracy (%) 82.2 76.4 76.7 81.2 81.8 62.2 

PLS-DA    

Prediction Accuracy (%) 74.8 73.6 79.5 83.5 82.8 47.3 

Positive Grapevine Dataset 
HCA      

Discrimination Distance 0.03 0.02 0.03 0.04 0.02 0.002 

Correct Clustering (%) 27 27 18 45 18 9.1 

Correct First Cluster (%) 33 27 48 52 42 15 

K-means Clustering    

Discrimination Distance 0.00 0.04 0.00 0.06 0.00 0.00 

Correct Clustering (%) 0 23 0 9.1 0 0 

Adjusted Rand Index 0.22 0.49 0.31 0.23 0.23 0.26 

Random Forest    

Prediction Accuracy (%) 70.2 45.8 47.0 71.1 65.0 48.0 

PLS-DA    

Prediction Accuracy (%) 76.2 79.2 84.6 80.6 66.7 42.8 
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4. Conclusion 
The main aim of this study was to develop and test the viability of two different data pre-treatments, 

which were called Binary Similarity (BinSim) and sample MDiNs, specifically tailored to the 

characteristics of high-resolution and high-accuracy metabolomics data. These new methods highlight 

relevant but usually overshadowed information to give a new perspective on the data complementing 

what is usually obtained from the standard metabolomics pre-treatments and workflows, which are 

signal intensity driven. Their viability was assessed by comparing the performance of different 

supervised and unsupervised statistical analysis in discriminating groups defined in FT-ICR-MS 

datasets after treatment with one of the methods proposed in this dissertation or with some of the most 

established and common pre-treatments used in the metabolomics workflow. 

Both the BinSim and the sample MDiNs treatments forgo the intensity data from the Mass 

Spectrometry datasets for the information of which feature is present or absent from which sample. 

The idea was to augment the consistency of the results by discarding the highly variable intensity data 

for the less variable identification of metabolites. 

The Binary Similarity pre-treatment consisted of changing all intensity values to 1 if features are 

present in a sample and all missing values to 0. This greatly simplified the metabolomics workflow 

steps before the statistical analysis since it skips the choice of different missing value imputation 

methods and combinations and parametrization of other steps, requiring a lower amount of peak 

filtering. The four datasets treated by BinSim allowed all the different statistical methods employed, 

both supervised (Hierarchical Clustering and K-means Clustering analysis) and unsupervised analysis 

(Random Forest and PLS-DA classifier models), to discriminate the different groups within the 

datasets with an accuracy as high as that achieved using the intensity-based pre-treatments. Moreover, 

results were more consistent with BinSim than with any of the other 3 treatments used as a reference, 

allowing often the best or second-best discrimination by the different statistical methods. Finally, the 

features estimated as more important to build the different Random Forest and PLS-DA classifier 

models for the BinSim were very different and unique when compared to the other treatments and had 

very different characteristics, being mainly features that appeared in only one (biomarker-like) or only 

a few of the biological groups studied in the dataset, that is, features that appear in a low number of 

samples. 

Sample Mass-Difference Networks (MDiNs) consists of translating the list of masses (m/z peaks in 

MS datasets) into characteristic networks that represent the chemical diversity of each sample’s 

metabolome by linking masses with differences that indicate they may be transformed into each other 

by a simple biochemical reaction (MDB), originating a metabolic-like network. Thus, the information 

on display is the possible transformations (through chemical reactions) of the different metabolites 

identified with a set of MDBs used to build the networks. The MDiNs associated with each sample 

allow a versatility in the way the data can be manipulated, when compared to other traditional 

treatments or BinSim.  For the discrimination of samples, an individual node-centric network analysis, 

specifically, node degree network analysis allowed the different statistical methods to have a 

performance of group discrimination and prediction on par or slightly better than the original datasets 

treated with intensity-based pre-treatments on 2 out of 3 benchmark datasets. With the last benchmark 

dataset, the sample discrimination using sample MDiNs was also on par in almost all statistical 

methods used, except for the poorer performance of PLS-DA models. This may indicate that this 

treatment is less robust than BinSim, for example. This point and the complexity of building and 

analysing the sample MDiNs stood as the main disadvantages of this approach. They are contraposed 
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by the versatility of this type of analysis. For example, it was shown how MDB influence analysis of 

the MDiNs may have the capacity to identify metabolic differences by evaluating the prominence of 

MDBs (chemical reactions) between biological groups. 

The promising results obtained for the two pre-treatments proposed in this dissertation associated with 

their theoretical mitigation of the low reproducibility of metabolomics data, by discarding intensity, 

show a great potential for the use of both methods in different contexts in the future. Thus, future 

studies could use these results to go further beyond and test the viability of sample discrimination in 

cross metabolomics dataset (same biological groups but obtained either in a different instrument, 

different protocol, different condition, etc.) analysis using these pre-treatments proposed. Finally, there 

are also possible avenues to further explore the versatility and the potential of the sample MDiNs in 

metabolomics data analysis, for example, going more in-depth on the possible biological significance 

of the MDB influence analysis. 
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6. Annexes 

 
Suppl. Figure 6.1: Hierarchical Clustering Analysis (HCA) dendrograms of the Positive Grapevine Dataset (A) and 

Yeast Formula Dataset (B). The datasets were treated with the P (1), NP (2), NGP (3) pre-treatments using Euclidian 

distances or BinSim pre-treatment (4) using the Jaccard Dissimilarity distance metric. HCA was performed with UPGMA 
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B1 B2
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linkage method.  Pre-treatments: P – Pareto scaling, N – Normalization by leucine enkephalin, G – Generalized logarithmic 

transformation; BinSim – Binary Similarity; Vitis genotypes abbreviations are indicated in Table 2.1. 

 

 

Suppl. Figure 6.2: Heatmaps of the Baker’s Gamma Correlation between the dendrograms of all differently treated 

dataset pairs of the Negative Grapevine Dataset (A) and of the Yeast Dataset (B). For the datasets treated with the 

BinSim pre-treatment, 3 representative binary distance metrics were used: Jaccard, Hamming and Yule 

dissimilarities/distances). For the others, Euclidian distance was used. Pre-treatments: P – Pareto scaling, N – Normalization 

by leucine enkephalin, G – Generalized logarithmic transformation. 
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Suppl. Figure 6.3: Heatmaps of the Cophenetic Correlation (A,B) and the Baker’s Gamma Correlation (C,D) between 

the dendrograms of all differently treated Positive Grapevine Dataset (A) or Yeast Formula Dataset, respectively. For 

the datasets treated with the Binary Similarity pre-treatment, 3 representative binary distance metrics were used: Jaccard, 

Hamming and Yule dissimilarities/distances). Pre-treatments: P – Pareto scaling, N – Normalization by leucine enkephalin, G 

– Generalized logarithmic transformation. 

 

Suppl. Table 6.1: Discrimination Distance, correct clustering and correct first cluster percentages of the HCA of the 

Positive Grapevine and Yeast Formula Datasets after different treatments. Binary Similarity has 3 different results 

based on the distance metric used. Pre-Treatments: BinSim – Binary Similarity, P – Pareto Scaling, N – Normalization by a 

reference feature, G – Generalized Logarithmic Transformation. 
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Discrimination Distance 0.034 0.015 0.025 0.043 0.03 0.082 0.30 0.22 0.22 0.14 0.19 0.34 

Correct Clustering (%) 27 27 18 45 18 45 100 100 100 100 100 100 

Correct First Cluster (%) 33 27 48 52 61 70 100 100 100 100 100 100 
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Suppl. Table 6.2: Discrimination Distance, correct clustering percentage and adjusted Rand Index of the K-means 

Clustering analysis of the Positive Grapevine and Yeast Formula datasets after different treatments. Pre-Treatments: P 

– Pareto Scaling, N – Normalization by a reference feature, G – Generalized Logarithmic Transformation. 

 

 

 

 

 

 

Suppl. Figure 6.4: Tuning of the number of trees used to build the Random Forest models. Random Forest predictive 

accuracy as a function of the number of trees used in the forest for the Positive Grapevine (A) and Yeast Formula (B) datasets 

with different pre-treatments. Accuracy was estimated by stratified 3-fold cross-validation. Pre-Treatments: BinSim – Binary 

Similarity, P – Pareto Scaling, N – Normalization by a reference feature, G – Generalized Logarithmic Transformation.  

 

Suppl. Figure 6.5: Optimization of the number of components used to build the PLS-DA models. 1- (Predictive 

Residual Sum of Squares (PRESS) / residual Sum of Squares (SS)) or Q2 estimated by stratified 3-fold cross-validation of 

PLS regressions of the Positive Grapevine (A) and the Yeast Formula (B) datasets with different number of components. Pre-

Treatments: BinSim – Binary Similarity, P – Pareto Scaling, N – Normalization by a reference feature, G – Generalized 

Logarithmic Transformation. 
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Discrimination Distance 0 0.035 0 0.066 0.72 0.39 0.36 0.85 

Correct Clustering (%) 0 23 0 9.1 100 100 100 100 

Adjusted Rand Index 0.22 0.49 0.31 0.23 1 1 1 1 
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Suppl. Figure 6.6: Distribution of the prediction accuracy of Random Forest and PLS-DA models. Violin plots of the 

distribution of the prediction accuracy of 200 iterations of Random Forest and PLS-DA models built based on the Positive 

Grapevine dataset (A and B, respectively) and on the Yeast Formula dataset (C and D, respectively). Each iteration’s 

accuracy is estimated by stratified 3-fold cross-validation. Each iteration randomly splits the dataset in three folds. Below the 

plots, the average prediction accuracy is presented. Pre-Treatments: BinSim – Binary Similarity, P – Pareto Scaling, N – 

Normalization by a reference feature, G – Generalized Logarithmic Transformation. 
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Suppl. Figure 6.7: Permutation test of the Random Forest and PLS-DA models built with each different set of 

datasets. Significance diagnostic showing the distribution of predictive accuracy of the Random Forest and PLS-DA models 

built from each differently treated Negative Grapevine (A and B, respectively), Yeast (C and D, respectively), Positive 

Grapevine (E and F, respectively) and Yeast Formula (G and H, respectively) datasets in permutation tests and the p-values 

of the test for accuracy. 1000 permutations were randomly sampled. Vertical lines show the accuracy of model with non-

permuted labels. Accuracy was estimated by stratified 3-fold cross-validation. P-value is: (nº permutations with higher 

prediction accuracies than the non-permutated dataset + 1)/(nº of permutations + 1). Pre-Treatments: BinSim – Binary 

Similarity, P – Pareto Scaling, N – Normalization by a reference feature, G – Generalized Logarithmic Transformation. 
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Suppl. Figure 6.8: Characteristics of the most important features used to build the Random Forest and the PLS-DA 

models. Venn diagrams of the 2% most important features used to build the Random Forest (by the Gini Importance method) 

and the PLS-DA (by the VIP method) models from each differently treated Positive Grapevine Dataset (141 features, A and 

B, respectively) and Yeast Formula Dataset (33 features, E and F, respectively). Distribution plots of the number of samples 

each important feature appears in their dataset on each differently treated Positive Grapevine Dataset (C, D) and Yeast 

Formula Dataset (G, H) with the median number of samples and different groups they appear in below the plots. Pre-
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Treatments: BinSim – Binary Similarity, P – Pareto Scaling, N – Normalization by a reference feature, G – Generalized 

Logarithmic Transformation. 

 

Suppl. Table 6.3: Impact of each MDB in building the 3 full networks. Counts of the number of edges that each mass 

difference corresponding to a specific elemental transformation established in the complete YD network, Negative GD 

network and Positive GD network. 

 

Elemental 

Transformation (MDB) 

Yeast Dataset 

(YD) 

Negative Grapevine 

Dataset (GD) 

Positive Grapevine 

Dataset (GD) 

O (-NH) 38 50 291 

NH3 (-O) 32 120 214 

H2 101 138 763 

CH2 152 173 1229 

O 100 135 821 

H2O 96 58 735 

NCH 27 34 289 

CO 78 111 612 

CHOH 6 36 98 

S 13 8 118 

C2H2O 62 39 544 

CONH 19 24 261 

CO2 39 61 386 

SO3 11 9 121 

PO3H 36 9 115 
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Suppl. Figure 6.9: Hierarchical Clustering Analysis (HCA) of the different secondary datasets obtained from sample 

MDiNs. Dendrograms of the HCA of the Yeast (A), Negative Grapevine (B) and Positive Grapevine (C) sample networks 

after betweenness (1) or closeness centrality (2) network analysis of each one. HCA was performed with UPGMA linkage 

method and Euclidian distance metric. Vitis genotypes abbreviations are indicated in Table 2.1. 
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Suppl. Figure 6.10: Tuning of the number of trees used to build the Random Forest models from the secondary 

datasets built from sample networks. Random Forest Model predictive accuracy as a function of the number of trees used 

in the forest of the secondary datasets built from the Yeast Dataset (A), Negative Grapevine Dataset (B) and Positive 

Grapevine Datasets (C) sample networks. Accuracy was estimated by stratified 3-fold cross-validation.   

 

  

Suppl. Figure 6.11: Optimization of the number of components used to build PLS-DA models from the different 

secondary datasets. 1- (Predictive Residual Sum of Squares (PRESS) / residual Sum of Squares (SS)) or Q2 estimated by 

stratified 3-fold cross-validation of PLS regressions with different number of components of the secondary datasets obtained 

from the sample networks of the Yeast Dataset (A), Negative and Positive Grapevine Datasets (B). GD – Grapevine Dataset. 
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Suppl. Figure 6.12: Permutation test of the Random Forest and PLS-DA models built based on each set of secondary 

datasets. Significance diagnostic showing the distribution of predictive accuracy in permutation tests and the p-values of the 

test for accuracy of the Random Forest and PLS-DA models built based on the secondary datasets generated from the sample 

networks of the Yeast (A and B, respectively), Negative and Positive Grapevine (C – Random Forests – and D – PLS-DA) 

datasets. 1000 permutations were randomly sampled. Vertical lines show the accuracy of model with non-permuted labels. 

Accuracy was estimated by stratified 3-fold cross-validation. P-value is: (nº permutations with higher prediction accuracies 

than the non-permutated dataset + 1)/(nº of permutations + 1). 
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