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Abstract 

Super-resolution microscopy has catalyzed valuable insights into the sub-cellular, mechanistic details 

of many different biological processes across a wide range of cell types. Fluorescence polarization 

spectroscopy tools have also enabled important insights into cellular processes through identifying 

orientational changes of biological molecules typically at an ensemble level. Here, we combine these 

two biophysical methodologies in a single home-made instrument to enable the simultaneous 

detection of orthogonal fluorescence polarization signals from single fluorescent protein molecules 

used as common reporters on the localization of proteins in cellular processes. These enable 

measurement of spatial location to a super-resolved precision better than the diffraction-limited 

optical resolution, as well as estimation of molecular stoichiometry based on the brightness of 

individual fluorophores. In this innovation we have adapted a millisecond timescale microscope used 

for single-molecule detection to enable splitting of fluorescence polarization emissions into two 

separate imaging channels for s- and p- polarization signals, which are imaged onto separate halves 

of the same high sensitivity back-illuminated CMOS camera detector. We applied this fluorescence 

polarization super-resolved imaging modality to a range of test fluorescent samples relevant to the 

study of biological processes, including purified monomeric green fluorescent protein, single 

combed DNA molecules, and protein assemblies and complexes from live Escherichia coli and 

Saccharomyces cerevisiae cells. Our findings are qualitative but demonstrate promise in showing 

how fluorescence polarization and super-resolved localization microscopy can be combined on the 

same sample to enable simultaneous measurements of polarization and stoichiometry of tracked 

molecular complexes, as well as the translational diffusion coefficient. 
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Introduction 

Understanding the ‘physics of life’ at the molecular level [1] has undergone a revolution since the 

development and refinement of fluorescence microscopy [2] and is now routinely used at 

milliseconds to a few tens of milliseconds timescales to understand the spatial organization within 

living cells as well as the dynamical properties of constituent biomolecules [3].  In particular, the 

mobility – both translational and rotational - of these biomolecules gives information on their local 

cellular environment and their functional interactions, i.e., which molecules interact with other 

molecules inside cells, where they interact in the context of their sub-cellular location, and when 

they interact in the context of past and future biological events.  While translational diffusion 

coefficients [4] or molecular dynamics simulations [5] can be used to estimate rotational properties 

of biomolecules, intracellular environments are crowded, with values of ~20% (w/v) protein content 

or more being typical [6], and present complex diffusive landscapes in which states of rotational and 

translational mobility are not necessarily indicative of one another [7].  More accurate experimental 

measurements of rotational states are desirable, especially if coupled with the simultaneous ability 

to resolve spatially where in a living cell these mobile biomolecules are.  

Fluorescent ‘reporter’ probes, i.e., fluorescent tags that report on the location of specific biological 

molecules, remain a powerful and selective tool in this regard.  As the excited molecule collapses to 

its ground state and radiates, the emitted photon’s electric field aligns with the transition electric 

dipole moment of the emitting fluorophore [8], leading to a well-defined linear polarization. With 

dedicated optical components in a light microscope setup, one may decompose the emission of 

individual fluorophores into orthogonal components, and measurement of their relative intensities 

confers information on the fluorophore’s azimuthal angle about the optical axis of the instrument. 

In the cell cytoplasm and other biologically relevant systems with relatively low orientation 

constraints, molecular rotation typically occurs on an approximately nanosecond timescale, meaning 

that measurement of rotationally-coupled properties requires specialized photon counting hardware 

with similarly high temporal resolution [9]. This temporal accuracy, however, typically comes at the 

cost of poor spatial resolution, with nanosecond scale experiments usually performed at an 

ensemble detection scale equivalent to several thousands of molecules [10]. Where available, 

simultaneous high spatial and temporal resolutions enable detailed measurements of dynamical 

processes, such as in studies of conformational actuations of molecular motors [11] or lipid 

membrane components [12], though this is typically limited by a small imaging volume that 

precludes reconstructing an image of a biological cell on a relevant timescale.  On the other hand, 

imaging diffusing molecules on approximately millisecond timescales - at the sensitivity or readout 

limits of current fluorescence microscope cameras [13], [14] for fully sampled multi-micron fields of 

view - allows the molecule of interest to, potentially, rotate and tumble hundreds or thousands of 

times during a single frame acquisition, effectively scrambling the polarization signal [15].  For 

strongly interacting molecules, such as those attached to a surface [8] or bound to other 

biomolecules [16], the rotational diffusion time increases and the range of accessible rotational 

states is greatly diminished so that the polarization signal is more easily detected. Similarly, 

molecules with a higher directional structural stability such as DNA intercalating dyes [17], [18], 

fibers [19] , or membrane proteins [20] show a strong polarization signal if care is taken not to 

depolarize the emitted light. 

This effect can be utilised in ensemble scale fluorescence anisotropy assays, commonly used for drug 

discovery [21]  and studies of enzymatic binding [22] and nucleic acid conformations [23]. While 

anisotropy assays can be refined to a dilute single-molecule level in vitro [9] or to high-sensitivity 

using strategies such as modulated input polarization [24], the fact remains that without detection 



of single molecular complexes in individual living cells, this approach can neither describe 

heterogeneous molecular phenotypes across living populations, nor disentangle the dynamic 

microenvironments in the vicinity of these molecules within each cell.  However, polarization-

sensitive imaging of individual live cells [25], [26] can be combined with single-molecule techniques 

[27], [28] which directly enable this level of discrimination, as previously used to remove bias from 

super-resolution reconstructions [29], [30]. These combined super-resolution techniques have been 

used to study dynamic events in macromolecule assembly with full molecular orientation reporting 

at a timescale of 100 ms [28], [31]–[33], although the requirement for total internal reflection 

renders this primarily suitable for surface-based imaging.  Sophisticated theoretical treatments also 

exist for the unequivocal detection of molecular orientation in images [34], [35], though most 

require defocus or other image aberrations that are not ideal or intuitive for live imaging. 

Techniques in which the excitation polarisation is modulated [36]–[40] have promising signal-to-

background characteristics and potential for true 3D reconstruction of molecular orientation [40]. 

Polarization-based orientation information is also weakly encoded in an emitter’s point-spread 

function [41], although this information is difficult to extract without unequivocal single-molecule 

emission.  A major benefit of single-molecule localization microscopy (SMLM) techniques such as 

polar-dSTORM (where STORM denotes stochastic optical reconstruction microscopy) [27], [42] is 

that the pointing flexibility of the probe can be statistically decoupled from the orientation of the 

biological target, with exquisite precision.  However, the heavy requirements for angular and spatial 

sampling in these approaches preclude the study of highly dynamic molecular complexes and 

assemblies in vivo, particularly within the relatively low photon budget of fluorescent protein fusions 

compared to bright organic dye reagents. 

Away from polar-dSTORM, polarization microscopy has also been combined with structured 

illumination microscopy (SIM) [38], where actin fibrils were imaged giving orientation as a trivial 

readout of the reconstructed SIM image, and photoactivated localization microscopy (PALM) [43] 

where the photoactivation was used to study orientation inside a nuclear pore complex on a 

molecule-by-molecule basis. Polarized super-resolution microscopy is also compatible with multi-

photon excitation [44], which allows for deeper imaging into optically heterogeneous samples such 

as biological tissues at higher spatial resolution, although the range of fluorescent fusions and 

capacity for dynamic tracking or time-lapse imaging are limited. 

In our present work, we report an easy-to-implement method to combine super-resolvable Slimfield 

microscopy [45] with single-molecule polarization microscopy, in which we demonstrate as proof-of-

concept can trivially image single fluorophores to sub-pixel lateral precision at moderately rapid 

exposure times of 40 ms, splitting the linear s and p polarization components and imaging them 

simultaneously onto separate halves of the same camera pixel array. The use of Slimfield microscopy 

means we are not limited to surface imaging, such as total internal reflection fluorescence (TIRF) 

microscopy and can therefore image biological structures inside cells when appropriate. The image 

stacks are analyzed with our in-house MATLAB software package called ADEMSCode [46] which 

identifies the positions of the fluorophores to super-resolved precision, nominally to a lateral spatial 

precision of ~40 nm for typical fluorescent proteins at comparable integration timescales [47]. With 

post-processing software written in Python, we spatially register the two polarization detection 

channels using sub-pixel phase cross correlation-based transformation functions and find the total 

integrated pixel intensity for the lateral component of each detected diffraction-limited fluorescent 

focus in each polarization channel, converting this into a polarization value, on a fluorescent 

molecule-by-molecule basis. By reconstructing the two-channel image into a single channel, we can 

also estimate the molecular stoichiometry of in vivo protein complexes by measuring the initial 



intensity of each fluorescent focus prior to any photobleaching and then normalizing this against the 

measured total integrated intensity of a single fluorophore [48], denoted here as the Isingle value, 

using our Python implementation of the fluorescent foci tracking and stoichiometry quantification 

algorithm [49]. 

We first demonstrate that under circularly polarized excitation, monomeric GFP (mGFP) either 

immobilized to a glass coverslip surface or diffusing freely in solution recovers the expected 

qualitative form of the polarization distribution. We then demonstrate the utility of our technique 

using three different live cell systems of the Mig1 glucose sensing pathway in Saccharomyces 

cerevisiae (budding yeast), the Rep accessory helicase protein in Escherichia coli bacteria and the 

aggresome stress response organelle also found in E. coli. Finally, we apply our method to study the 

pattern of fluorescence polarization of single DNA molecules that have been combed out onto a 

coverslip surface in vitro and labelled with a fluorescent dye that binds with a well-defined 

orientation relative to the DNA axis.  Our aim here is not to quantify the exact orientation of each 

emitter. Instead, we get single-particle stoichiometry and diffusion information and aggregate 

polarization data so that we can compare populate-level polarizations and binding behavior.  

The Mig1 glucose repressor in budding yeast provides a model system for regulated protein 

assembly in eukaryotic cells that can be controlled by the extracellular concentration of 

glucose;   under plentiful glucose supply, Mig1 is concentrated inside the nucleus to suppress a host 

of metabolic pathways concerned with the metabolism of glucose, including several implicated in 

diabetes and cancer in humans [50].  However, when yeast cells are incubated in low glucose 

conditions, the localization bias of Mig1 molecules shifts away from the nucleus into the cytoplasm 

leading to an increase in the mean nearest neighbour distance of fluorescent foci and a lower 

expectation of optical overlap of diffraction-limit fluorescent foci, despite a higher total expression 

of Mig1 molecules per cell [51]. 

Rep is a so-called “accessory” helicase present in bacteria that is associated with the molecular 

machinery responsible for DNA replication, an intricate mesoscale complex called the replisome, via 

“replicative” helicase DnaB [52] and helps in clearing nucleoprotein barriers to replication as well as 

restarting replication of DNA after replisome stalling due to these barriers. It has been shown 

previously by our group that clusters of Rep in live cells are primarily hexameric in terms of their 

stoichiometry [53]. We chose to look at this protein here as it has a relatively well-defined low 

stoichiometry and therefore serves as a good test of our correlative stoichiometry/polarization 

detection method. We also apply our approach to a membraneless bacterial intracellular organelle 

called the aggresome, which forms inside bacteria as a result of stressful environmental conditions 

[54]. Using our live cell single-molecule fluorescence polarization imaging we show that all three of 

the protein assembly systems of Mig1, Rep and the aggresome have polarization distributions like 

those of freely diffusing GFP. At low stoichiometry values corresponding to just a handful of 

molecules per protein assembly we observe a broad variance in polarization reflecting population 

sampling of individual polarization states, while as the stoichiometry increases to typically over ~10 

molecules per complex the polarization variance narrows to closer reflect the ensemble average of 

the unpolarized values. The stoichiometries we measure are in line with previously reported values, 

and this technique therefore represents a promising tool for interrogating polarization and 

stoichiometry states simultaneously of complex protein assemblies in single live cells. An added 

feature to the fluorescent foci tracking is that the effective apparent diffusion coefficient can be also 

be measured, therefore our tool enables correlative synchronous measurements of molecular 

content, polarization, and translational mobility at the level of single tracked molecular complexes 

and assemblies. 



For experiments on DNA in vitro we use a specific DNA-binding dye called YOYO-1, that binds with a 

fixed orientation when intercalated inside the major groove of DNA [18]. The polarizations recorded 

are indicative of DNA substrate orientation as expected from our knowledge of YOYO-1 binding. 

 

Methods 

Slimfield Microscopy 

Slimfield microscopy was performed using a bespoke epifluorescence microscope described 

previously adapted for single-molecule detection with millisecond timescale sampling [55] . The 

excitation source was a continuous wave laser at 488 nm (Coherent Obis XS) with intrinsic vertical 

polarization. The settings were as follows for all experiments:  source power 20 mW equivalent to 

approximately 8 kW/cm2 at the sample after beam expansion and de-expansion (see Figure 1); 

integration time per frame of 40 ms (i.e., frame rate of 25 Hz).  For experiments requiring circularly 

polarized excitation, a λ/4 waveplate (Thorlabs part AQWP05M-600) was placed in the laser delivery 

path prior to the microscope entrance pupil. The correct circularization was ensured by rotating the 

λ/4 waveplate to equalize the power transmitted through a linear polarizer in the sample plane, 

independently of the linear polarizer’s direction. For experiments using linearly polarized excitation, 

this λ/4 waveplate was removed and replaced with a λ/2 wave plate (Thorlabs part AHWP05M-600) 

rotated by either 0° for vertical polarization or 45° for horizontal polarization at sample. For all 

microscopy we used a Photometrics Prime 95B camera and a Nikon Plan Apochromat (NA 1.49) 

objective lens. 

Orthogonal polarization signals detection 

The polarization splitter module centred on a ratio polarizing beam splitter cube (Thorlabs PBS251), 

into whose downstream paths linear polarizing filters (Thorlabs LPVISA100) were placed to clean up 

traces of non-polarized light. The polarization splitter module was fixed to a magnetically mounted 

breadboard to allow the exchange of this module for the color channel splitter usually in place. A 

schematic diagram of the polarization splitter can be seen in Figure 1.  

Purified GFP in vitro sample preparation 

Monomeric green fluorescent protein (normal enhanced GFP but with the addition of an A206K 

point mutation to inhibit dimerization) was purified from competent E. coli as described previously 

[47]. Samples were prepared inside ‘tunnel’ slides with standard microscope slides, plasma cleaned 

#1.5 coverslips and double-sided sticky tape as described previously [48], [53]. Initially, the tunnel 

was washed with 100 µL of phosphate buffer saline (PBS, Sigma Aldrich), and then 10 µL of 10 µg/mL 

anti-GFP (RPCA-GFP, EnCor Biotechnology Inc.) was flowed in and incubated for 5 min. The 

antibodies form a sparse carpet on the plasma-cleaned coverslip surface for mGFP to bind to. Excess 

anti-GFP remaining in solution was then washed out with 100 µL PBS, and the slide was then 

incubated with 10 µL 1 mg/mL bovine serum albumin (BSA) (05479, Sigma-Aldrich) for 5 min to 

passivate the surface against non-specific binding of mGFP. After a further 100 µL PBS wash, 10 µL 

50 ng/mL (2 nM) purified mGFP in PBS was flowed in and incubated for 5 min, to bind to the surface 

immobilized anti-GFP. A final 100 µL PBS wash was performed, the slide sealed with clear topcoat 

nail polish (Rimmel London) and imaged directly afterwards in Slimfield. For mGFP in solution, the 

same procedure was used with the omission of the anti-GFP incubation step, and the final 

incubation/wash steps, and focusing a few microns into solution as opposed to on the coverslip 

surface itself as for surface immobilized mGFP. In this case, the BSA incubation passivates the entire 



surface and the mGFP, therefore, remain in solution for imaging of their diffusive behavior. All 

incubations were performed with the slide inverted in a humidity chamber at ambient room 

temperature. A schematic diagram of the immobilized mGFP assay is shown in Supplementary Figure 

S1. 

DNA/YOYO-1 sample preparation 

YOYO-1 was diluted in PBS to 1 µg/mL and mixed with a 1:9 dilution of lambda DNA:PBS in equal 

volumes as described previously [46]. To prepare the coverslip surface, coverslips were plasma 

cleaned for one minute in atmospheric plasma, and the clean side was then coated in 0.1% (w/v) 

poly-L-lysine and incubated for two minutes. The coverslip was then washed in MilliQ water and 

allowed to partially air dry so that no large droplets of water remained, but the surface was moist. 

To assemble the microscopy sample, 5 µL of the DNA/YOYO-1 mixture were pipetted onto a glass 

microscopy slide. The coverslip was then dropped onto the sample droplet with the poly-L-lysine-

functionalized side in contact with the DNA/YOYO-1 droplet to facilitate surface immobilization, 

resulting in a molecular combing effect to stretch out single DNA molecules onto the coverslip 

surface [46]. The coverslip edges were sealed with nail polish and the sample was imaged 

immediately as described above. 

S. cerevisiae Mig1-GFP sample preparation 

S. cerevisiae of either BY4741 parent strain, or genomically labelled at the glucose regulator, Mig1-

GFP, were grown on Yeast Extract–Peptone–Dextrose (YPD) plates + 4% glucose for 48h at 30°C.  The 

cultures were inoculated into liquid Yeast Nutrient Broth (YNB) media with 4% glucose with 

sequential dilutions and grown overnight, then transferred either into YNB + 4% (high glucose 

condition) or +0.2% (low glucose condition) for 1h before imaging as described above.  

E. coli Rep-mGFP sample preparation 

A previously described E. coli Rep-GFP labelled cell strain [53] was grown in LB broth overnight at 

37°C to saturation. The overnight liquid cell cultures were then diluted 1000-fold in 1 × 56 salts 

minimal medium fortified with 0.2% glucose and grown to mid-log phase at 30°C. To prepare slides 

for microscopy, the cells were spotted onto a 1% agarose pad containing 1 × 56 salts and 0.2% 

glucose and affixed to a glass microscope slide. Finally, a glass coverslip was laid over the top and 

cells were imaged immediately as described above.  

E. coli aggresome sample preparation 

To induce aggresome formation, E coli cells cultured overnight were diluted by 1:1000 into fresh LB 

medium and grown at 37 °C for 24 hours to induce nutrient stress [54]. To prepare slides for 

imaging, the cell washed two times with M9 minimal medium and spotted onto a 1% agarose pad 

containing M9 medium and affixed to a glass microscope slide. Then a glass coverslip was laid over 

the top and the sample was imaged immediately as described above.   

Choice of polarization metric  

The fluorescence polarization metric, ρ, is relatively intuitive and is well-defined within the range (-1, 

+1) for single detected fluorescent foci (the diffraction-limited point spread function in the 

microscope’s focal plane). 𝜌𝑉 = 𝐼𝑉𝑆 − 𝐼𝑉𝑃𝐼𝑉𝑆 + 𝐼𝑉𝑃 



𝜌𝐻 = 𝐼𝐻𝑆 − 𝐼𝐻𝑃𝐼𝐻𝑆 + 𝐼𝐻𝑃 

𝜌𝐶 = 𝐼𝐶𝑆 − 𝐼𝐶𝑃𝐼𝐶𝑆 + 𝐼𝐶𝑃 ≈ 𝜌𝑉 + 𝜌𝐻2  

 

Both the method presented here, and standard anisotropy assays aim to measure the same 

fundamental property of fluorescence polarization, and so share the assumption that fluorophores 

are dipolar and act independently.   However, there are non-trivial differences, including their 

assumptions about the number of emitters per measurement, or equivalently the stoichiometry S of 

a detected fluorescent focus.  Most of these assays describe ensemble measurements (Stoichiometry 

>> 1) of anisotropy, 𝑟 = 2𝜌𝑉/(3 − 𝜌𝑉), with perpendicular axes of excitation and detection. Under 

Slimfield microscopy, the single- or few-emitter limit is important - within which the relevance of the 

anisotropy metric is unclear - and the optical axes of excitation and detection are colinear.  With 

care, one may assess the theory used for routine assays, assuming the collective behavior of 

randomly oriented ensembles, to interpret the Slimfield polarization results.  For example, the Perrin 

equation describes how under linear polarized excitation, the photoselected polarization signal 

decreases according to the rotation timescale τR, which is the property of interest in our 

experiments. It reads as: 

( 1〈𝜌𝐿〉 − 𝐶) = ( 1𝜌𝐿′ − 𝐶) (1 + 𝜏𝐹𝜏𝑅) 

where τF is the fluorescent lifetime and C = 1/3 in the ensemble limit (S >> 1) and the subscript L can 

refer to either V or H. The fundamental polarization, ρ’, describes the theoretical, integrated 

response of many randomly oriented emitters of in the absence of rotational depolarization.  The 

concept can be extended to single or few emitters, for which the expectation in general depends on 

the stoichiometry S, i.e., the number of independent emitters per focus.  Under excitation that is 

parallel to one of the detection channels, the photoselection effect favors that channel and the 

expectations become 𝜌𝑉′ = (1 − 1/√𝑆)/2 and 𝜌𝐻′ = −(1 − 1/√𝑆)/2  respectively [56].   

Under circularly polarized or unpolarized excitation, the situation appears rather different. The 

photoselection effect is equalized over both axes of the detector and the resulting expectation is 

unbiased, 𝜌𝐶′ = (𝜌𝑉′ + 𝜌𝐻′ )/2 = 0.  However, the rotational decay of each measured non-zero 

polarization is inherently the same.  Since anisotropy r, and not polarization ρ, is additive in the 

ensemble limit [21] , the apparent rotational timescale is related to the average of (1+ τF/τR)-1 over 

the measurement time τ, which in this case is the camera exposure time of 40 ms.   

As such, the polarization signal from an individual fluorescent focus provides a measure of the 

fastest rotational timescale of the emitters at that location.  In the context of our experiment 

therefore, a focus with non-zero polarization signal indicates a set of molecules, within a super-

resolvable localization, that are persistently constrained in their rotational dynamics over the full 

duration of the exposure.  

In all cases, the measured polarization signal from our microscope instrumentation if applied to cell 

samples is also attenuated due to several depolarization factors.  With colinear detection from a 

monolayer of cells, the contribution due to scattering is minimal.  The largest contribution is 

expected to be the high numerical aperture (NA) of the objective, which distorts how polarization 

components in the sample plane couple to those in the excitation and detection paths. We note that 



in Slimfield, the excitation beam strongly underfills the back focal plane of the objective lens to 

emerge collimated, and therefore the incident laser itself will not be prone to depolarization from 

the lens’ numerical aperture.  However, the theoretical effect on depolarization of the fluorescence 

emission [57] reveals a similar form to the Perrin equation above: (1𝜌 − 1) = ( 1𝜌0 − 1) ( 21 + sin(2𝜓)/2𝜓) 

where ρ0 is the underlying polarization in the limit NA = 0 and 𝜓 = sin−1(NA/𝑛) is the half angle of 

the detection, with n the refractive index of the objective’s coupling medium.  The effect is such that 
extreme polarizations remain accurate, but smaller polarization signals are suppressed by up to 40% 

at our NA=1.49. 

A locally-variable contribution to depolarization is homo-FRET [58] , in which photoselected emitters 

transfer their energy to another nearby emitter, whose alignment has a weaker correlation with the 

absorbed photon.  The net effect is to depolarize the emission at that location.  As such, homo-FRET 

itself has been identified as a potential signature of protein aggregation, but it only occurs when the 

chromophores approach within a few nanometers, so the corresponding depolarization is a weak 

effect for relatively large fluorescent proteins.  

For the work presented here, the above effects limit the ability to infer a quantitative molecular 

orientation, which would require a high degree of confidence in the corrections for depolarization.   

Instead, we look at population-scale measurements by summing the responses of individual 

fluorescent foci, themselves not inherently of single fluorophores if applied to live cell samples, to 

allow a qualitative interpretation of the polarization distributions. 

Image analysis 

Images were analyzed with ADEMSCode [46], a home-written package in MATLAB (MathWorks), to 

identify candidate foci corresponding to fluorescent complexes. The super-resolved positions of the 

foci with an integrated signal-to-noise ratio (SNR, equivalent to the amplitude of fitted 2D Gaussian 

function divided by the standard deviation of the local background pixel intensity noise multiplied by 

the area of the putative fluorescent focus) of at least 0.4 for mGFP assays was taken and used for 

customized Python post-processing. Specifically, the full frame was split into two rectangular regions 

of interest and the translation-only mapping between them was found with scikit-image’s 
phase_cross_correlation function [59]. Not only was this mapping used to transform the images of 

the second channel onto the first, but also to shift the channel 2 spots into their locations in channel 

1. The integrated intensity of each fluorescent focus in each channel was found by summing the 

intensity inside a circular mask of radius 5 pixels centered on the super-resolved position after local 

background correction. The local background was calculated as the mean average of pixels specified 

by a bitwise XOR between the circular spot mask and a square of side length 17 pixels also centered 

on the fluorescent focus locus. The corresponding values in both channels for a given fluorescent 

focus were used to calculate the polarization 

 𝜌 = (𝐼1 − 𝐼2)/(𝐼1 + 𝐼2).   

Together with the masks, these values were also used to plot polarization heatmaps. To avoid 

double counting of fluorescent foci visible in both channels, any candidates in channel 2 closer than 

2 pixels to any candidate in channel 1 were neglected. All plots were made with matplotlib [60]. The 

schematic of this process is shown in Supplementary Figure S2. 



We found that the emission polarization distribution appeared to vary spatially in a similar manner 

to the intensity of the incident laser, whose beam profile underfills the field of view. Specifically, we 

found that outside the central illuminated region the polarization was skewed positive, while in the 

center the skew appears negative.  The outer region is not illuminated by the laser and therefore 

must be an artifact not corresponding solely to the ratio of emitted fluorescence.  The negative skew 

in the center cannot similarly be dismissed, although the background in channel 2 (vertically 

polarized) is everywhere significantly larger than channel 1 (horizontally polarized) (Figure 2 a,b) 

which suggests a negative bias in the polarization signal that may not be fully compensated by our 

existing method of background subtraction. 

We restricted our downstream analysis to the fluorescent foci located inside a circle of radius equal 

to the full width at half maximum of the beam, within which the excitation intensity (and the 

expected total emission intensity) is relatively high. In practice this radius is approximately 90 pixels 

or 4.8 µm in the sample plane. 

For the DNA/YOYO-1 images, the full channels underwent registration, and the polarization P was 

calculated on a pixel-by-pixel basis to create a heatmap of polarization. However, the raw image 

intensities were prone to large background which effectively washed out the negative polarization 

signal. To compensate for this, the channels were scaled such that the maximum intensity in each 

channel was equal. Although this precludes quantitative analysis of the generated polarization 

heatmap, it nonetheless demonstrates the presence of the distinct polarization states associated 

with molecular orientation. 

Calculating the brightness of single dye molecules, Isingle 

The E. coli aggresome data was imaged until it was fully bleached and in the photoblinking regime 

and was reconstructed by registering both channels on to each other and summing. This 

reconstructed single-channel image was then analyzed with our new Python single-molecule 

tracking code PySTACHIO [49] which plots the integrated foci intensity and finds the peak of a kernel 

density estimation fit to the intensity distribution. We also checked this against the surface-

immobilized mGFP data and both were found to give a consistent Isingle value around 130-140 

integrated pixel values, equivalent to a quotient of 70 ± 8 (mean ± s.d.) photoelectrons frame-1 

molecule-1, which is consistent with a shot-noise limited measurement. 

 

Results 

Vertically, horizontally, and circularly polarized light give different distributions for mGFP immobilized 

in vitro 

We began by immobilizing mGFP as in the protocol in Figure 2, and imaging with the excitation beam 

polarized either vertically, horizontally, or circularly. We acquired >10 fields of view in each case and 

analyzed as above. In Figure 4 we present representative fields of view under circularly polarized 

excitation (Figure 2 a,b) and extracted a polarization heatmap (Figure 2c).  It is possible to resolve 

the apparent net polarizations of individual mGFP molecules at this imaging speed despite the large 

uncertainty (up to 50%) in their total emission intensity.  We see that in the cases of vertically and 

horizontally polarized excitation (Figure 4 panels d and e respectively) there are distinct distributions 

(Kolmogorov-Smirnov (KS) test [61], p < 0.01) which are skewed towards the polarization of the 

excitation laser as expected (positive for horizontal and negative for vertical, Table 1).  



  𝐻 𝑉  𝐶 
𝐻 + 𝑉2  𝐶 (fd.) 

𝐻     
 

 

𝑉 0.008    

 

 

𝐶 0.7 0.02     𝐻 + 𝑉2  0.06 0.8 0.1  

 𝐶 (fd.) 0.1 0.003 0.2 0.03   

Table 1:  Two-sample Kolmogorov–Smirnov test (MATLAB kstest) of dissimilarity of polarization 

distributions, showing p significance values. Labels refer to the following datasets: immobile mGFP 

imaged with horizontally (H), vertically (V) or circularly (C) polarized excitation, or freely diffusing 

mGFP imaged with circularly polarized excitation (C, fd.). Very low values p < 0.1 (black) imply a 

significant difference such as a shift in median, while moderate values around p = 0.1 (grey) may 

result from a similar median but different variance, or vice versa.  High values, p >> 0.1, indicate that 

the test cannot separate the distributions.  The C distributions appear more similar to H than to V, 

due to the negative polarization bias in measurement. 

Physically, this arises because of photoselection, whereby fluorophores aligned parallel to the 

polarization of the excitation laser are more likely to be excited than those aligned perpendicularly. 

This leads to a higher rate of detection of aligned fluorophores and the distribution overall is 

therefore skewed towards the excitation polarization.  The magnitude of photoselection bias here is 

expected to be about ρ = ±0.3, qualitatively consistent with observation.  Quantitatively, however, 

we cannot exclude the presence of confounding factors of a similar magnitude. Some are expected 

to average out in the distribution, such as the noise on each single-molecule polarization 

measurement, while others including depolarization and G-type correction factors will not. 

Under circularly polarized excitation, symmetry considerations would suggest a distribution which is 

the sum of the vertical and horizontal cases, and indeed we see in Figure 2f that the circularly 

polarized distribution is qualitatively similar to the sum of the distributions in panels 2d and 2e (KS 

test, p = 0.1). This acts as a useful check on the delivery of excitation and of the consistency of 

detection.  The shape of this distribution resolved at a high statistical power is also reassuringly 

symmetric around its mean, since the photoselection is equalized along both axes.  However, rather 

than the expected mean 〈𝜌𝐶〉 = 0 for the circular polarization case, there is a consistent negative 

offset, which strongly indicates a significant difference, of order 30%, in the optical transmission 

efficiencies, and/or depolarization properties, of our split detection channels. 

However, we are not seeking to extract more detailed orientation information for individual dipoles 

and noting the differences in overall distribution for bound and free fluorophores, we can say that 

this source of systematic error, similar to a G correction factor in anisotropy instruments, does not 

materially affect the qualitative interpretation of our results.  Future calibrations may remove these 

influences such that the polarization signals can be rendered independent of the instrument. 



The relative proportion of fluorescence intensity in either polarization detection channel across all 

the surface-immobilized mGFP assays we tried varied between approximately 1% and 99% as a 

proportion of the sum of I1+I2.  

mGFP freely diffusing shows a distinct polarization distribution 

In Figure 2g we show the overall distribution for tracking mGFP molecules freely diffusing in vitro. In 

total we tracked 10 different acquisitions for 100 frames each giving 1,000 total frames of 

information in this case. The polarization distribution is smooth, symmetric, and again centered 

around approximately ρ = -0.2, which is distinct from the immobilized mGFP cases under linear 

excitation (Figs 2d-e, KS test: p < 0.1), but with far fewer extreme values when compared to the 

immobilized circular excitation (Fig 4f) or the sum of the immobilized linear excitation cases (KS test, 

p < 0.1).  The expectation for a freely diffusing system would be that the polarization distribution 

peaks around ρ = 0 regardless of excitation polarization, as the intensity in each channel should be 

approximately equal under rotation events during the fluorescence lifetime (which washes out any 

photoselection under linear excitation) and under many thousands of rotation events during the 

camera integration time (which mask the presence of a dipole under circular excitation).  

The negative offset manifests in a noticeable shift of the mean polarization, though the decay is 

symmetrical on both sides of the center of the measured distribution. This is the expected behavior 

for a system with a consistent sample-independent bias in polarization measurement, likely due to 

rectifiable differences in the noise floors and optical properties of the two channels.  Regardless of 

this systematic error, there is a clear similarity (KS test, p > 0.1) in the averages of the immobile and 

freely diffusing cases under circular excitation, while the tails of the distributions are qualitatively 

distinct. The apparently narrower distribution in the freely diffusing case would imply a more 

rotationally averaged dipole as expected, but this difference in variance cannot presently be 

separated from the contributions due to the underlying sensitivity of the measurement.   

YOYO-1 intercalated DNA shows a polarization signal dependent on its orientation 

In Figure 3 we show the results of imaging DNA surface immobilized on the cover slip with YOYO-1 

intercalated. YOYO-1 is known to be strongly bound to DNA with a fixed orientation making it a 

useful reporter dye for single-molecule polarization [18]. Here we see qualitatively that the vertically 

oriented DNA has a positive (i.e., horizontal polarization) signature - because the YOYO-1 is 

perpendicular to the helical axis of the DNA. The polarization microscopy is able to discern these 

orientations though as we have a one-shot imaging system, we are not able to accurately determine 

the precise orientation of a dye. This is however evidence that the orientational polarization 

response is captured correctly by our imaging and analysis methodology. 

Rep-GFP in E. coli shows a similar distribution of polarization to freely diffusing mGFP 

Figure 4 shows the results of our imaging Rep-GFP in living E. coli.  Most strikingly the 2D histogram 

in Figure 4a shows the convergence of polarization to our mean free-diffusion value as stoichiometry 

increases. This indicates a random averaging of orientations with respect to the detector as would 

be expected for large stoichiometries, as the increased number of uncorrelated fluorophores has the 

effect of scrambling the average polarization signal and therefore giving the appearance of neutral 

polarization. However, the measurable spread of polarization values at low stoichiometry indicates 

that for small complexes polarization signals can be extracted that are consistent with alignment 

between the electric dipole axis of the GFP fluorophore and the electric field of the excitation laser.  

 The stoichiometry distribution (Figure 4b) is in line with previously estimates of Rep that is not 

colocalized with the DNA replication fork, known to have a broadly hexameric trend though less 



pronounced than that for Rep colocalized with the replication fork [53].  Indeed, as the majority of 

Rep molecules expressed in any given the cell are not likely to be colocalized with the replisome in a 

given sampling time window, we expect our polarization measurement to be representative of this 

fraction.   

The E. coli aggresome shows a null polarization distribution 

In Figure 5 the stoichiometries and polarizations of E. coli aggresome foci are reported. Again, in 

Figure 5a we see that the polarization converges on the ensemble mean value for the freely diffusing 

case as stoichiometry increases. In the case of aggresomes, we need to consider higher 

stoichiometries than other samples, since they are likely a compact agglomeration of several 

different proteins in a small, confined area, thus several molecules can potentially arrange randomly 

in generating an ensemble polarization signal over the whole aggresome. Here, we see a tight peak 

around the null polarization value, which suggests three possibilities - one is that the aggresome 

itself is rotating rapidly and giving a 0 polarization signal; second it could be that the proteins and/or 

their fluorescent tags within the aggresome are free to rapidly rotationally diffuse; or thirdly it could 

be that the aggresome is made up of tightly packed proteins and is relatively static, but proteins of 

different orientations combine to scramble the polarization signal to 0. Given previous work on 

aggresomes, we believe the latter to be more likely to be the case. However, further work, such as 

using photoactivated dyes, would be needed to build up a map of individual protein polarizations, 

but we present the work here more as proof-of-concept to show the potential of our new tool. In 

Figure 5b we should the 2D histogram of diffusion coefficients and polarizations which shows no 

obvious trend at these scales. Once again, the polarization distribution shape (Figure 5c) is 

qualitatively similar to that of the freely diffusing mGFP, though marginally narrower. The 

stoichiometry (Figure 5d) is consistent with previously reported values for the E. coli aggresome. In 

Figure 5d we demonstrate the correlative aspect of our method by plotting all quantified properties 

of each tracked fluorescent focus against each other in a 3D scatter. For each such fluorescent focus 

we are able to simultaneously measure the diffusion coefficient, stoichiometry, and polarization. 

Mig1-GFP in high and low glucose conditions  

We find that Mig1-GFP is primarily localized to the nucleus or is present predominantly throughout 

the cytoplasm of the cell, for high and low glucose conditions respectively as reported in previous 

work (Figure 6).  In both high and low glucose conditions the stoichiometry values for fluorescent 

foci and the total integrated protein copy per cell are also consistent with previous work to within 

experimental error.  The tracked complexes showed an average trend towards a neutral polarization 

distribution at all stoichiometries, but with a decreasing variance as stoichiometry increases.  The 

trend is such that the spread decreases sub-linearly with increasing stoichiometry, which is 

anticipated from the deviation ~ 1/√𝑆 expected under averaging of independent normally 

distributed polarization signals from randomly oriented fluorophores. 

 

Discussion and Conclusions 

Previous studies have reported a range of valuable instrumentation that can perform simultaneous 

super-resolved localization microscopy and polarization imaging, for example using structured 

illumination [38], PALM [43] and polar-dSTORM [42]. While each of these has distinct advantages - 

straightforward orientation reconstruction with SIM, molecule-by-molecule investigation of multi-

protein structures with PALM, and high spatial resolution for polar-dSTORM, they have the 

disadvantages that go with their respective coupled technique. For example, lower effective spatial 



resolution in SIM, and no time-resolution as such for polar-dSTORM which used fixed cell samples. In 

this proof-of-concept work here we have extended rapid and high sensitivity Slimfield microscopy to 

image fluorophores that are commonly employed as single-molecule fluorescent protein reporters in 

cellular processes, using single-molecule super-resolved localization microscopy combined with 

simultaneous polarization information. The lateral spatial precision and integration time for imaging 

we report is comparable to polarization PALM tracking, however our principal innovation is to 

correlate polarization measurements of individual tracked fluorescent foci with their measured 

molecular stoichiometry in terms of the number of fluorescently labeled molecules present in each 

tracked particle. Note also that although we have focused primarily on reporting the polarization 

and stoichiometry values of tracked molecular complexes, complete measurements of the apparent 

diffusion coefficient may be obtained for each tracked fluorescent focus as we show in Figure 5, so 

our new tool has the capability to correlate polarization, stoichiometry and translational mobility at 

the level of single dynamic molecular complexes in live cells. We have demonstrated the core utility 

of this correlative approach for a commonly used fluorescent protein reporter in vitro, as well as 

three different biological systems in both live single budding yeast and E. coli cells. 

We used our in-house fluorescent foci tracking suite of software ADEMSCode and a novel Python 

analysis code to spatially register image channels, detect fluorophores, and measure distributions 

automatically of the polarization metric 

 𝜌 = (𝐼1 − 𝐼2)/(𝐼1 + 𝐼2), where 𝐼1 and 𝐼2 are the respective horizontally and vertically polarized 

components of the fluorescent emission. 

For surface-immobilized fluorophores we show three distinct distributions depending on excitation 

polarization and demonstrate that the circularly polarized excitation gives rise to a distribution that 

is approximately the sum of the vertical and horizontal excitation distributions as expected. In the 

case of freely diffusing fluorescent protein, we used circularly polarized excitation light to 

demonstrate that the distribution is approximately symmetrical around a small negative polarization 

value, which we believe is  an artifact due to different noise floors between the two detection 

channels, in contrast to previous studies in which the polarization is split by a single prism [42]. The 

freely diffusing case is distinct from the surface-immobilized one, indicating that even at 40 ms 

integration times, several orders of magnitude slower than the ~nanosecond rotational timescales 

anticipated in free solution, our instrument is sensitive to differences in fluorophore mobility 

dynamics.  This is further evidenced by the clear polarization signal in YOYO-1 intercalated DNA for 

which the orientations of the dye molecules are well known. Although these spatially extended 

filamentous structures cannot be quantitatively analyzed in the same way as the single-particle 

tracking data, it is clear that polarization changes due to orientation can be captured by our setup, 

and by moving to a two-shot imaging methodology with switchable 45⁰ polarization rotation, a true 

azimuthal, dipolar orientation can be captured. 

In live cells, we found consistently that large protein assemblies show similar behavior to the freely 

diffusion mGFP case. This indicates one of two things – either within the assembly itself the 

molecules are free to rotate on a timescale below 40 ms, or the whole aggregate is free to rotate on 

that timescale. One further complication is that the fluorescent protein reporters used here are 

designed to be attached via a flexible linker of typically a few nm in contour length. These linkers are 

explicitly designed to allow some level of mobility of the reporter molecule relative to the native 

protein molecule itself for the purposes of helping to minimize functional impairment due to steric 

hindrance effects from the relatively large fluorescent protein molecule that is often comparable in 

effective diameter to the native protein. This linker mobility unsurprisingly may increase the 

likelihood that rotational diffusion of the fluorophore dipole axis is at a timescale much smaller than 



the smallest integration time available to Slimfield microscopy of ~milliseconds, thereby limiting the 

sensitivity of measurable polarization dependence. However, in the case of tightly packed molecular 

assemblies in live cells this effect of flexible linker mobility may be dramatically reduced, and so 

some polarization dependence may still be detectable. 

Discerning the difference between molecular mobility inside protein assemblies and the motion of 

the whole assembly itself is made more complex by the polarization “scrambling” effected by the 
large number of emitters in a small area.  As such, the variance in polarization is itself a potential 

predictive metric of either stoichiometry or rotational properties, if the other is known. Further work 

will be needed to robustly interrogate this. In particular, our module is suitable to be used also for 

photoactivated fluorescence microscopy and tagging molecules of interested with photoactivated 

dyes such as PAmCherry would allow us to see “inside” the protein aggregates we have seen in this 
work and to assess the orientational properties of the individual constituents independently.  While 

in vitro studies have used the photoselective dependence of linearly excited polarization to infer 

stoichiometry [56],  our approach has the great advantage that we are able to quantify both 

polarization and stoichiometry in each protein assembly independently and in vivo, which to our 

knowledge has not been reported previously, as well as 2D mobility information embodied in the 

apparent diffusion coefficient. 

With brighter artificial dyes, or improved sensitivity such as through modelling of depolarization 

effects, we may be able to go to lower exposure times and gain more information on the 

fluorophores such as diffusion coefficients, and aim to use this methodology on live cells, though this 

is beyond the scope of the present proof-of-concept work. Although the range of power in either 

polarization detection channel is 1-99% the minimum intensity of the brightest focus from either I1 

or I2 never goes below 50%. Since the analysis software uses the brightest detected focus from 

either channel to pinpoint the location of the fluorescent emitter this is what ultimately determines 

the lateral spatial precision. In our imaging regime, the lateral precision scales approximately as the 

reciprocal of the square root of the number of photons. From the number of photons detected per 

fluorophore relative to conventional Slimfield microscopy, we estimate that the lateral precision is 

better than ~60 nm. 

Finally, we note that while this assay gives high spatial (super-resolved over a field of view of length 

scale of several tens of microns) and competitive temporal resolution (tens of ms), the polarization 

information is an aggregate property over an imaged population. Rather than quantify individual 

fluorophore orientation, we instead look at total polarization distribution to semi-quantify the 

overall binding behavior of the sample.  Presently, it does not provide the level of sensitivity to 

anisotropy available in ensemble techniques, though this has a significant scope for improvement. 

Most notably, we use a relatively coarse analysis which only corrects for local background in each 

channel and does not yet fully represent the potential information contained in the images.  We do 

not here correct for depolarization effects either in the excitation or imaging paths. In future we aim 

to perform more extensive and rigorously controlled calibration such that we can approximate a 

correction for the polarization measurement (including, but not limited to, accommodations 

equivalent to the instrument’s G correction factor used in ensemble assays).  Based on the speed, 

scale and sensitivity of our imaging method, there is future potential to extract time-resolved 

orientations for single molecules tracked with non-specialist, extensible, super-resolved Slimfield 

microscopy and to build on the information we are already able to extract such as stoichiometry. 

Our technique represents a first step towards developing a useful and simple to implement tool for 

probing the dynamical properties of molecules in vivo and a new avenue for understanding the 

physics that underlies life. 
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Figures and captions 

 

 

Figure 1. Schematic diagram of the Slimfield microscope. a) Laser light vertically polarized at source 

(blue) passes through a shutter (S) and is expanded 3x by the lens pair L1 and L2, before passing 

through L3 which forms a telescope with the objective lens to ensure light at the sample is 

collimated. Finally, in the excitation path the laser light passes through a wave plate (WP) on a 

rotational mount, either λ/2 for linear polarization or λ/4 for circular polarization. The light is 

directed to the sample with a dichroic mirror which allows the collected fluorescence (green) to pass 

through it.  The emission then encounters the lens L4 and is focused at the side port of the 

microscope body to form an intermediate image plane into which we place adjustable slits to 

provide a rectangular field aperture (FA).  The emission is then recollimated with the lens L5; b) The 

image light then encounters the polarization splitting module and the vertical and horizontal 

polarized light (orange and pink respectively) are separated by a broadband, polarizing beam splitter 

cube. Each polarization channel then is purified by a linear polarization filter (LP1 and LP2) before 

being focused on to the left and right sides of the same camera chip by the lens L6. For convenience, 

components inside the dotted box are mounted to a breadboard which is on removable magnetic 

mounts and can therefore be easily swapped for another module, e.g., color splitter. Immediately 



before the camera, reflected excitation light is removed by an emission filter, EF. c) The left-hand 

side of the acquired image shows the horizontal polarized light, and the right-hand side shows the 

vertical (individual channels are indicated by dashed boxes). By registering the image and creating a 

composite image we recover the true fluorophore distribution. 

 

 

  

 

 

 

Figure 2. a) Vertical polarization channel from a representative GFP in vitro assay under circular 

polarized excitation. b) Horizontal polarization channel from the same assay as in a), both with 

illuminated region of interest shown as dashed circles. c) The polarization heatmap found by 

combining a) and b) and analyzing as in Figure 3. d-f) Polarization distribution for surface 



immobilized mGFP when illuminated by d) vertically, e) horizontally and f) circularly polarized light. 

g) Polarization distribution for freely diffusing mGFP illuminated with circularly polarized light. Panels 

d-f have N = 104, 208, 195, and 6,170 tracks respectively.  

 

 

 

 

 

 

 

Figure 3: a) Horizontal and vertical polarization fields of view for DNA/YOYO-1 complexes (top and 

bottom, respectively). The horizontal DNA is more visible in the vertical polarization channel because 

the YOYO-1 intercalates perpendicular to the DNA helical axis; b) Heatmap of polarization 

demonstrating the qualitative polarization difference between differently oriented molecules. Bars: 

1 µm 

 

 

 



 

Figure 4: a) 2D histogram showing polarization as a function of stoichiometry. Inset: a representative 

E. coli field of view with tracked loci overlaid with green crosses and cell boundaries marked with 

white dotted lines; b) stoichiometry distribution for Rep-GFP foci with a peak at 3±3.5 molecules 

(mean ± half width at half maximum); c) polarization distribution for Rep-GFP foci showing 

qualitatively similar behavior to freely diffusing mGFP (Figure 2). Panels a bar: 1 µm 

 

 

 

 



 

Figure 5: a) 2D histogram showing e. coli aggresome polarization as a function of molecular 

stoichiometry. Inset: a representative field of view with tracked aggresome foci overlaid as green 

crosses and approximate cell boundaries shown as white dotted lines; b) 2D histogram of 2D 

diffusion coefficient against polarization; c) polarization distribution for aggresome foci showing 

qualitatively similar behavior to freely diffusing mGFP (Figure 2); d) stoichiometry distribution for E. 

coli aggresome foci with a peak at 70±40 molecules (mean ± half width at half maximum). Inset: 3D 

scatter plot showing all calculated properties of each spot, stoichiometry vs 2D diffusion coefficient 

vs polarization. Panels a bar: 1 µm 

 

 

 

 

 



 

Figure 6: a) polarization vs stoichiometry 2D heatmap for yeast Mig1-GFP in 4% glucose with inset 

representative field of view. Cell outlines are given as dotted white lines and tracked foci as green 

crosses; polarization distribution for Mig1-GFP in high glucose conditions showing similar behavior to 

freely diffusing mGFP; c) stoichiometry distribution for Mig1-GFP aggregates in high glucose with a 

broad peak at 13 molecules; d) polarization vs stoichiometry heatmap for Mig1-GFP in 0.2% glucose 

with inset field of view as in panel a; e) polarization distribution for Mig1-GFP in low glucose; f) 

stoichiometry distribution for Mig1-GFP aggregates in low glucose with stoichiometry peak shifted 

higher, though with a higher standard deviation. N=30 cells for each dataset. Panels a and d bars: 

1 µm. 


