
This is a repository copy of Component-based design of multi-objective evolutionary
algorithms using the Tigon optimization library.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/173896/

Version: Accepted Version

Proceedings Paper:
Duro, J.A. orcid.org/0000-0002-7684-4707, Oara, D.C., Sriwastava, A.K. et al. (3 more
authors) (2021) Component-based design of multi-objective evolutionary algorithms using
the Tigon optimization library. In: Chicano, F., (ed.) GECCO '21: Proceedings of the
Genetic and Evolutionary Computation Conference Companion. GECCO '21 : The Genetic
and Evolutionary Computation Conference, 10-14 Jul 2021, Lille, France. ACM Digital
Library , pp. 1531-1539. ISBN 9781450383516

https://doi.org/10.1145/3449726.3463194

© 2021 Association for Computing Machinery. This is an author-produced version of a
paper subsequently published in Gecco'21 Proceedings. Uploaded in accordance with the
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/427394804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Component-Based Design of Multi-Objective Evolutionary
Algorithms Using the Tigon Optimization Library

João A. Duro
j.a.duro@sheffield.ac.uk
University of Sheffield

Sheffield, UK

Daniel C. Oara
dcoara1@sheffield.ac.uk
University of Sheffield

Sheffield, UK

Ambuj K. Sriwastava
a.k.sriwastava@sheffield.ac.uk

University of Sheffield
Sheffield, UK

Yiming Yan
yiming.yan@outlook.com
University of Sheffield

Sheffield, UK

Shaul Salomon
shaulsal@braude.ac.il

ORT Braude College of Engineering
Karmiel, Israel

Robin C. Purshouse
r.purshouse@sheffield.ac.uk

University of Sheffield
Sheffield, UK

ABSTRACT

Multi-objective optimization problems involve several conflicting

objectives that have to be optimized simultaneously. Generating

a complete Pareto-optimal front (POF) can be computationally ex-

pensive or even infeasible, and for that reason there has been an

enormous interest in using multi-objective evolutionary algorithms

(MOEAs), which are known to generate a good approximation of

the POF. MOEAs can be difficult to implement, and even for experi-

enced optimization experts it can be a very time consuming task.

For this reason several optimization libraries exist in the literature,

providing off-the-shelf access to the most popular MOEAs. Some

optimization libraries also provide a framework to design MOEAs.

However, existing frameworks can be too stringent and do not

provide sufficient flexibility for the design of more sophisticated

MOEAs. To address this, a recently proposed optimization library,

known as Tigon, features a component-based framework for the

design of MOEAs with a focus on flexibility and re-usability. This

paper demonstrates the generality of this new framework by show-

ing how to implement different types of MOEAs, covering several

paradigms in evolutionary computation. The work in this paper

serves as a guide for researchers, and others alike, to build their

own MOEAs by using the Tigon optimization library.

CCS CONCEPTS

· Computing methodologies → Search methodologies; · Ap-

plied computing→Multi-criterion optimization anddecision-

making; · Software and its engineering→ Search-based soft-

ware engineering.

KEYWORDS

Software engineering, evolutionary algorithms, multi-objective op-

timization, algorithm design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10–14, 2021, Lille, France

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00
https://doi.org/10.1145/3449726.3463194

ACM Reference Format:

João A. Duro, Daniel C. Oara, Ambuj K. Sriwastava, Yiming Yan, Shaul

Salomon, and Robin C. Purshouse. 2021. Component-Based Design of Multi-

Objective Evolutionary Algorithms Using the TigonOptimization Library. In

2021 Genetic and Evolutionary Computation Conference Companion (GECCO

’21 Companion), July 10–14, 2021, Lille, France. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3449726.3463194

1 INTRODUCTION

Many multi-objective evolutionary algorithms (MOEAs) have been

proposed over the years for solving multi-objective optimization

problems [22]. The general principle of these algorithms is to mimic

nature’s evolutionary principles to guide a population of solutions

towards the Pareto-optimal front (POF). Relying on a population

of solutions, as opposed to using a single solution at any time (e.g.

trajectory methods [2]), can be seen as advantageous for solving

multi-objective optimization problems since multiple trade-off solu-

tions can be found in one single run. Although there is no guarantee

to identify optimal trade-offs, a good approximation to the POF can

provide valuable information to a decision-maker about the poten-

tial synergies that exist between the criteria in the optimization

problem.

Due to the their popularity, MOEAs can be found in several

software libraries, making it easier for researchers, and optimization

practitioners alike, to use them without having to code an MOEA

from scratch. Some open-source software libraries also provide

a framework for the design of MOEAs; examples found in the

literature are PISA [4], ParadisEO-MOEO [15], jMetal [18], and

MOEADr [5]. However, many of these libraries provide a static

framework for the design of MOEAs where it is only possible to

swap certain traditional evolutionary computation components,

such as selection and variation operators. MOEADr in particular,

provides a component-based framework for the design of MOEAs,

but focusses only on decomposition-based MOEAs. To design more

sophisticated MOEAs there is a need for more flexible and intuitive

frameworks.

More recently, a new release of the Liger optimization workflow

software1 has introduced the Tigon optimization library in [9]. One

of the major contributions of Tigon in [9] has been the proposal

of a new component-based framework for the design of MOEAs

1Latest releases of the Liger software can found in the following GitHub repository
https://github.com/ligerdev/liger.

GECCO ’21 Companion, July 10–14, 2021, Lille, France João A. Duro, Daniel C. Oara, Ambuj K. Sriwastava, Yiming Yan, Shaul Salomon, and Robin C. Purshouse

with a focus on flexibility and re-usability. An MOEA is made

up of several simple interacting components, and many of the

existing components can be re-used for the implementation of

different types of MOEAs. Another interesting feature is the ability

to customise the components or even to change the algorithm

dynamically at run-time. This opens up the possibility for the design

of more advanced MOEAs, such as those found in the automatic

algorithm design literature [3, 16].

It has been demonstrated in [9] how to use the Tigon component-

based framework to implement an elitist Pareto-dominance-based

MOEA, known as NSGA-II [7], and this paper focuses on demon-

strating its generality to implement different types of MOEAs cover-

ing several paradigms in evolutionary computation. Besides NSGA-

II, other algorithms covered in this paper are: MOGA [11], SMS-

EMOA [10], MOEA/D [21] and ParEGO [14].

This paper is organised as follows. An introduction to the Tigon

optimization library, including the details of the component-based

framework for the design ofMOEAs is provided in Section 2. The im-

plementation of the differentMOEAs by using the Tigon component-

based framework is described in Section 3. This paper concludes

with Section 4.

2 TIGON OPTIMIZATION LIBRARY

Tigon is an object-oriented C++ optimization library first intro-

duced in [9] that forms part of the Liger software. One of the key

features of Tigon is that it uses the Decorator design pattern [12]

to implement a component-based framework to design MOEAs. By

‘component-based’ we mean that an MOEA is broken down into

simple reusable components (or operators), and each one performs

a simple action (e.g. selection, crossover and mutation) on a popu-

lation of solutions. In the remainder of this paper we use the term

‘set’ to refer to a population of solutions. In order to implement the

sophisticated behaviour of an MOEA, many operators rearrange

the existing solutions into different sets according to some crite-

rion (e.g. based on their distance in objective space), and several

of these sets can co-exist concurrently during the run-time of an

algorithm. Knowing that sets only store pointers to the solutions,

any operation involving the creation, manipulation and deletion of

sets is expected to have a very low run-time complexity. A solution

is only deleted once it is no longer referenced by any of the existing

sets, which is facilitated by the use of C++ smart pointers.

In the following sections we provide more details about the

decorator design pattern in Section 2.1, and the approach used to

help the operators to identify which sets they need to operate on

in Section 2.2.

2.1 The Tigon decorator design pattern

The Decorator design pattern is used in object-oriented program-

ming languages for adding behaviour to (or decorate) an object

dynamically, without affecting other objects from the same class.

This is reportedly [12] more efficient than relying on the approach

of subclassing, where the behaviour of a base class can be extended

by other subclasses. One drawback of subclassing is that extensions

are fixed during compile-time and cannot be changed during run-

time. Another advantage of the decorator design pattern is that it

enforces the Single Responsibility Principle [20], meaning that each

Figure 1: UML diagram showing architecture of the decora-

tor design pattern. Taken from [9] and edited.

class is responsible for a single part of the algorithm’s functional-

ity. Creating classes that encapsulate more than one responsibility,

each corresponding to a different functionality, are more difficult to

maintain. Also, given that multiple functionalities are encapsulated

in the same class, a single change to one functionality could have

side-effects, such as breaking other functionalities.

A UML diagram showing the architecture of the decorator design

pattern is depicted in Figure 1. The three classes in the top right (i.e.

IPSet, PSetBase and IPSetDecorator) provide the implementation of

the design pattern2, while the other classes on the left are the dec-

orators of IPSet (i.e. SBX Crossover, Scalarization and RandomInit).

The decorator classes are now referred to as operators in the remain-

der of this paper. All operators are under the interface IOperator,

and each operator is responsible for implementing a single func-

tionality of the algorithm. There are other operators in the library

besides the three operators shown in Figure 1, and for a complete

list the reader is referred to https://github.com/ligerdev/liger/tree/

master/src/libs/tigon/Operators. Depending on their functionality,

the operators are organized under several interfaces. For instance,

all operators under IInitialisation, such as RandomInit, are responsi-

ble for initialising solutions (i.e. setting the values of their decision

vectors by using some sampling technique).

The intention of the design pattern is to decorate IPSet objects

by stacking up all operators on top of each other, and adding a new

functionality each time an operator calls an overridden method.

This behaviour is achieved by the following steps:

(1) PSetBase and IPSetDecorator both become a subclass of IPSet,

and the latter holds a pointer to IPSet, namely m_ipset;

(2) all operators need to be subclasses of IPSetDecorator and

override evaluateNode(). This is also where all the function-

ality of the operators is placed in their respective classes;

(3) add evaluate() to both IPSet and IPSetDecorator. Notice that

evaluate() becomes available to all operators via class inheri-

tance.

The C++ implementation of evaluate() in IPSetDecorator is as fol-

lows:

void IPSetDecorator::evaluate() {

m_ipset->evaluate();

evaluateNode();

}

2The implementation of the decorator design pattern is in https://github.com/ligerdev/
liger/tree/master/src/libs/tigon/Representation/PSets.

Component-Based Design of Multi-Objective Evolutionary Algorithms Using the Tigon Optimization Library GECCO ’21 Companion, July 10–14, 2021, Lille, France

In the above code there is a recursive call to evaluate() which has

the effect of stacking up all operators on top of each other, and

following this, evaluateNode() executes the operators code in the

same order that they have been stacked up. An example showing

how to call the decorator pattern in C++ is as follows:

PSetBase* base = new PSetBase();

ProblemGenerator* problem = new ProblemGenerator(base);

RandomInit* initialiser = new RandomInit(problem);

Evaluator* evaluator = new Evaluator(initialiser);

evaluator->evaluate(); // Invoke evaluate() method

In this particular example the intention is to initialise a population

of solutions, and then to evaluate them (i.e. determine their per-

formance or fitness) with respect to a given optimization problem.

The first operator is PSetBase, which does not add any functionality

and the only purpose is to serve as an anchor to the execution

starting point. The operators are then initialised in the order that

we wish to execute them, and during initialisation each one takes,

as input, the previous operator object. Once all operators have been

initialised a call to evaluate() creates a sequence of events that are

shown in Figure 2. Notably, initially all operators call evaluate()

(steps 1-4), and once the sequence of calls reaches the PSetBase

class, evaluateNode() is called by each operator in turn following

the provided sequence (steps 5-11).

We have shown a very simple example where a population has

been initialised, and then evaluated for a given optimisation prob-

lem. Using this component-based approach it is possible to imple-

ment the behaviour of more complex algorithms, as will be shown

in Section 3. In the example shown above only one set of solutions

has been created, in this case by RandomInit. However, it is common

for other operators to create new sets by rearranging the existing

solutions according to some criterion, and these multiple sets can

co-exist concurrently during the execution of an algorithm. The

approach used to help the operators to identify which sets they

need to operate on is described in the following section.

2.2 A tag-based approach to help coordinate
the information flow between operators

To help the operators to identify which sets they need to operate

on, we use the concept of tags. A tag is an identifier that takes the

format of a string, and can be added to sets and operators. More than

one tag can be added to a single set, each one giving an indication of

what might happen to the set. For instance, considering the example

from Figure 2:

(1) the operator RandomInit initialises a set randomly and adds

the tag For Evaluation. This gives an indication that there is

a need to evaluate the solutions in the set, that is, determine

their fitness values. Following the operation of RandomInit,

other operators are able to find this particular set with the

tag For Evaluation.

(2) The operator Evaluator looks for sets with the tag For Eval-

uation, and once a set has been found, it evaluates all its

solutions.

An operator can have multiple tags. For an operator to operate

on a set, the set needs to contain all the tags of the operator, but

the set can also contain other tags that are not in the operator. For

instance, consider the following three sets and their tags:

(1) Set-1 has Tag-1, Tag-2, and Tag-3;

(2) Set-2 has Tag-1 and Tag-2, and;

(3) Set-3 has Tag-2 and Tag-3.

If an operator has Tag-1 and Tag-2, then it operates on Set-1 and

Set-2 since both sets contain all the tags defined for the operator,

but Set-3 is ignored since the set does not contain Tag-1.

In addition, the operators categorise the tags as either input tags

or outputs tags. An input tag means that the operator will only

read the solutions without modifying them. On the other hand, an

output tag means that the operator will modify the solutions in the

set (e.g. change the values of their decision vectors).

The tags have an influence on the way information flows be-

tween operators, and we use an operators-tags diagram, as shown

in Figure 3, to represent the interaction between operators and sets.

In Figure 3 there are two diagrams, each with four operators. The

circle below an operator indicates that the operator is a set creator.

The filled circle () below Operator-A, signifies that the set(s) con-

tain new solutions. The non-filled circle (#) below Operator-B in

the left diagram, signifies that all solutions in the set are pointers

to existing solutions, meaning that the same solutions could exist

in other sets. This implies that a change to any of these solutions

will be automatically reflected in other solutions found in other

sets. Moreover, when an operator has an input tag, the solutions

in the corresponding sets are read-only, and this is represented

by a line with an arrow, where the arrow points to a side of the

operator. When an operator has an output tag, the solutions in

the corresponding sets have readśwrite permissions, and this is

represented by a line without an arrow, connected to the bottom of

the operator. The diagram in the left is now described in point a)

while the one in the right in point b) as follows:

a) The sets created by Operator-A are tagged with Tag-1. Tag-

1 is an input tag for Operator-B (represented by the red

line with an arrow), and an output tag for Operator-C and

Operator-D (represented by the red line without an arrow).

The sets created byOperator-B are taggedwith Tag-2. Tag-2 is

an input tag forOperator-D (represented by the blue line with

an arrow). Given this representation the sequence of events

is as follows: 1) Operator-A creates sets and these are tagged

with Tag-1; 2) Operator-B reads the sets from Operator-A and

creates new sets by simply re-arranging the solutions into

the new sets, and these are tagged with Tag-2; 3) Operator-C

modifies the sets from Operator-A; and 4) Operator-D reads

the sets from Operator-B and uses this information to further

modify the sets from Operator-A.

b) The sets created by Operator-A are tagged with Tag-1. Tag-1

is an input tag for Operator-B (represented by the red line

with an arrow), and an output tag for Operator-D (repre-

sented by the red line without an arrow). The sets created

by Operator-B are tagged with Tag-2. Tag-2 is an input tag

for Operator-C (represented by the blue line with an arrow)

and also an input tag for Operator-D (represented by the

green line with an arrow). The sets created by Operator-C

are tagged with Tag-2 and Tag-3. Given that Operator-D has

both input tags Tag-2 and Tag-3, it means that Operator-D

GECCO ’21 Companion, July 10–14, 2021, Lille, France João A. Duro, Daniel C. Oara, Ambuj K. Sriwastava, Yiming Yan, Shaul Salomon, and Robin C. Purshouse

Figure 2: Sequence diagram showing an example of the decorator design pattern. Taken from [9] and edited.

Figure 3: Operators-tags diagram showing the effect of tags

in the information flow between four operators.

only reads the sets created byOperator-C, and avoids the ones

from Operator-B. Given this representation, the sequence of

events is as follows: 1) Operator-A creates sets and these are

taggedwith Tag-1; 2)Operator-B reads the sets fromOperator-

A and creates new sets with new solutions, and these are

tagged with Tag-2; 3) Operator-C reads sets from Operator-B

and creates new sets by re-arranging existing solutions into

the new sets, and these are tagged with Tag-2 and Tag-3; and

4) Operator-D reads the sets from Operator-C and uses this

information to modify the sets from Operator-A.

3 COMPOSING MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHMS

In this section we describe how existing MOEAs in the Tigon

optimization libraries have been implemented by the use of the

component-based framework, involving operators and tags. For

each case, an operators-tags diagram will include the operators Ini-

tialisation and Evaluator. The first creates a population of solutions

by using some sampling technique, and the set that represents this

population is referred to as the Main Optimization Set. The second,

as the name suggests, evaluates all the solutions from sets that have

been tagged For Evaluation. Moreover, the implementation of the

algorithms described in this section can be found in https://github.

com/ligerdev/liger/tree/master/src/libs/tigon/Algorithms.

3.1 MOGA

MOGA [11] is the first non-elitist Pareto-dominance-based MOEA

to make use of the non-dominated classification as a way to sep-

arate the population into ranks, and also introduced the concept

of niching as a mechanism to maintain diversity amongst the non-

dominated solutions. The operators-tags diagram for this MOEA is

shown in Figure 4, and the details are as follows.

The solution fitness assigned procedure is conducted by the op-

erators NonDominance Ranking, Average Fitness and Shared Fitness.

NonDominance Ranking first assigns a rank to each solution, where

the rank of a solution 𝑖 is equal to one plus the number of solutions

that dominate solution 𝑖 . In this way, non-dominated solutions are

assigned rank 1, and the other solutions have rank higher than 1

up-to a maximum of 𝑁 , where 𝑁 is the population size. One set

is created for each rank, and all solutions with the same rank are

placed in the same set.

Average Fitness determines an average fitness for each solution

based on their ranks. This involves first sorting in ascending order

all the solutions with respect to their ranks, and a raw fitness is

determined by a linear mapping function that preserves the ranks

between solutions. A solution’s fitness is then computed as the

average of the raw fitness with respect to all solutions in the same

rank. Given that Average Fitness needs to access all solutions in

the entire population in order to determine the average fitness, the

output tag of the operator is set to Main Optimization Set. Shared

Fitness then calculates a niche count for each solution, and its value

is used to modify the solution’s fitness. This procedure operates on

each rank separately, and for this we set the output tag of Shared

Fitness to Fitness. This means that Shared Fitness is able to operate

Component-Based Design of Multi-Objective Evolutionary Algorithms Using the Tigon Optimization Library GECCO ’21 Companion, July 10–14, 2021, Lille, France

Figure 4: MOGA operators-tags diagram.

on the sets created by NonDominance Ranking one by one, where

each set corresponds to a different rank.

The Stochastic Universal Sampling implements a selection process

from the classical genetic algorithm literature [1]. The solutions

are selected from the Main Optimization Set based on their fitness,

and new sets are created with these solutions (corresponding to

the green lines). Following the selection process, two variation

operators (crossover and mutation) operate on the selected solu-

tions. However, the set created by Stochastic Universal Sampling

contains multiple solutions (often more than two), but the crossover

operator only operates on sets with two solutions. To address this,

the operator Random Filtration For Direction creates multiple sets

with two solutions each from the Stochastic Universal Sampling set

(corresponding to the yellow lines). The variation operators SBX

Crossover and Polynomial Mutation then operate on each set indi-

vidually. The operatorMerge for Next Iterationmerges the sets from

Stochastic Universal Sampling and Random Filtration For Direction.

The solutions in the merged set replace the old population in the

Main Optimization Set. This completes one iteration of the MOGA

algorithm.

Remarks:At the end of each iteration several different sets have

been created by the operators. NonDominance Ranking and Stochas-

tic Universal Sampling have created sets with solutions from the

Main Optimization Set, and the sets created by Random Filtration

Figure 5: NSGA-II operators-tags diagram. Taken from [9]

and edited.

For Direction contain new solutions. These new solutions are only

evaluated at the beginning of the next iteration by the operator

Evaluator. In case it is desirable to check the performance of these

solutions at the end of each iteration, then the operator Evalua-

tor needs to be added at the end, after Merge for Next Iteration.

Moreover, the procedure in Shared Fitness operates separately on

the solutions of each rank, and if the complete population were to

be used instead, then it would require changes to the procedure

to ensure that solutions have been separated into ranks, thereby

wasting computing resources. This demonstrates the effectiveness

of rearranging the solutions into new sets and the importance of

tags.

3.2 NSGA-II

NSGA-II [7] is an elitist Pareto-dominance-based MOEA that shares

many similarities with MOGA, such as the determination of ranks

between solutions and the use of a diversity-preserving mecha-

nism. A major difference is that an elite population is preserved

between successive iterations. The operators-tags diagram is shown

in Figure 5, and the details are as follows.

For NSGA-II the initial population size is set to 2𝑁 where 𝑁

is the number of non-dominated solutions in the final population.

Like MOGA, NSGA-II also generates ranks between solutions by

using NonDominance Ranking, but the ranks are determined in a dif-

ferent way. The first rank corresponds to the set of non-dominated

solutions, and the next rank is determined by excluding the first

GECCO ’21 Companion, July 10–14, 2021, Lille, France João A. Duro, Daniel C. Oara, Ambuj K. Sriwastava, Yiming Yan, Shaul Salomon, and Robin C. Purshouse

rank solutions from the population. New ranks are determined

in this way until all solutions have been excluded. The diversity-

preserving mechanism is implemented by NSGA-II Crowding, which

determines how crowded each solution is in the objective space.

The least crowded solutions are attributed a better fitness than

other more crowded ones. This procedure operates on each rank

separately, and for this we set the output tag of NSGA-II Crowding

to Fitness.

The operator NSGA-II Elite Selection constructs an elite popu-

lation by selecting one rank at a time until the population size is

higher than or equal to 𝑁 . In case the population size exceeds 𝑁 ,

then the solutions from the last rank are sorted with respect to

their crowding distance values, and the more crowded solutions are

removed from the population until the population size is equal to

𝑁 . The set created by NSGA-II Elite Selection is read by the operator

Tournament Filtration For Direction. This operator is similar to Ran-

dom Filtration For Direction since it rearranges the solutions from

the population provided as input into several sets, each containing

only two solutions. The only difference is that Tournament Filtration

For Direction also conducts tournament selection, meaning that all

solutions from the population are first paired with each other, and

only those that have better fitness survive. Those solutions that

survive this process are then placed into sets to undergo variation.

Following this, the variation operators (crossover and mutation)

and Merge for Next Iteration operate in the same way as mentioned

for MOGA.

Two variants of NSGA-II that exist in the Tigon optimization

library are NSGA-II-PSA [19] andNSGA-III [6]. In the former,NSGA-

II Crowding and NSGA-II Elite Selection are replaced by two equiva-

lent operators that use a clustering partition-based selection algo-

rithm as opposed to the crowding distance. In the latter, NSGA-II

Crowding is replaced by an operator that uses a decomposition-

based niching mechanism to select solutions.

Remarks: NSGA-II shares many similarities with MOGA, no-

tably the use of ranks and a diversity-preserving mechanism. Tour-

nament Filtration For Direction likewise Random Filtration For Direc-

tion from MOGA creates sets with new solutions. These are then

merged with the elite population created by NSGA-II Elite Selection

into the Main Optimization Set.

3.3 SMS-EMOA

SMS-EMOA [10] is a steady-state indicator-basedMOEA. It relies on

Pareto-dominance for convergence and an indicator (in this case the

hypervolume metric [23]) ensures a good spread of solutions across

the POF. However, once Pareto-dominance becomes ineffective,

convergence is ensured by the hypervolume metric. The steady-

state selection scheme used by this MOEA means that only one

solution is created and tested to be inserted in the population at each

iteration of the algorithm, which is different from the generational

scheme used by the previous two MOEAs, where at each iteration

a new entire population is created and tested to replace the old

population. The operators-tags diagram is shown in Figure 6, and

the details are as follows.

The operator NonDominance Ranking is used to separate the

solutions into non-dominance ranks by using the same procedure

as NSGA-II. SMS-EMOA Reduce operates on the last rank and the

Figure 6: SMS-EMOA operators-tags diagram.

solution with the worst contribution towards the hypervolume

metric is not added to the set created by the operator (corresponding

to the green lines). To implement a steady-state selection scheme:

first Tournament Filtration For Direction creates only one set with

two solutions that subsequently undergo crossover; and second, the

operator Truncate Sets removes one of the solutions from the set.

At this stage the set contains only one solution, which undergoes

mutation, and finally it is mergedwith the solutions from set created

by SMS-EMOA Reduce in order to replace the old population in the

Main Optimisation Set.

Remarks:Many operators have parameters that can be tuned

by the user. For instance, it is possible to define the number of

sets and their number of solutions in many filtration operators,

such as Tournament Filtration For Direction. This has shown to be

useful in order to implement the steady-state selection scheme in

SMS-EMOA. We acknowledge that the SMS-EMOA Reduce could

perhaps be partitioned into several smaller operators, given that

currently this operator performs a very specific task that might

only be useful for SMS-EMOA.

3.4 MOEA/D

MOEA/D [21] is a decomposition-based MOEA that decomposes a

multi-objective optimization problem into several concurrent single-

objective subproblems, each approaching the POF from a different

direction. Each solution in the population is attributed a direction

(reference) vector that defines a target direction in objective space

Component-Based Design of Multi-Objective Evolutionary Algorithms Using the Tigon Optimization Library GECCO ’21 Companion, July 10–14, 2021, Lille, France

Figure 7: MOEA/D operators-tags diagram.

towards the POF. The operators-tags diagram is shown in Figure 7,

and the details are as follows.

Weight Vector Init attributes a different direction vector to each

solution in the population by using some design of experiments

technique (e.g. the Simplex Lattice method). Scalarization deter-

mines a scalarized fitness value per solution by using the direction

vector, a corresponding weighting vector, and a given scalarization

function (e.g. weighted Chebyshev). Neighbourhood Filtration di-

vides the population into 𝑁 neighbourhoods based on the distance

between the direction vectors, where 𝑁 is the population size, and

each neighbourhood contains a total of 𝑛 solutions (by default 𝑛 is

set to 5). Notice that each neighbourhood is represented by a single

set.

In the next step, the goal of the Neighbourhood Update is to

replace existing solutions in the neighbourhoods (or the entire pop-

ulation) by 𝑁 child solutions. However, the child solutions are only

available after the Random Filtration for Direction operation, and an-

other requirement are the sets coming from Random Set Replacement

Figure 8: ParEGO operators-tags diagram.

which are also not yet available. This means that Neighbourhood

Update does not operate during the first iteration. The sets created

by Random Set Replacement are copies of the neighbourhoods, but

for a given probability some sets are replaced by the Main Optimi-

sation Set. This implementation follows a particular functionality of

the MOEA/D algorithm, which states that when promoting a child

solution into a neighbourhood, this neighbourhood is sometimes

replaced by the entire population. Random Set Replacement imple-

ments this behaviour by creating new copies of the neighbourhoods

but replacing some of the neighbourhoods by the entire population.

Following this, Random Filtration for Direction creates 𝑁 sets with

two solutions each from the neighbourhoods created by Random Set

Replacement. SBX Crossover, Truncate Sets and Polynomial Mutation

operate in the same way as described for the SMS-EMOA algorithm.

Remarks: The neighbourhood structure proved to be one of

the most challenging implementations involving the concept of

sets and tagsÐin part due to the probabilistic procedure used by

MOEA/D to update the neighbourhoods. The current design for

this algorithm meant that Neighbourhood Update does not operate

during the first iteration since the required sets are not yet available.

3.5 ParEGO

ParEGO [14] is a hybrid surrogate-based multi-objective extension

of the single-objective efficient global optimization (EGO) algo-

rithm [13], known to have a better performance than the majority

of existing MOEAs when applied to optimization problems where

function evaluations are expensive or otherwise restricted in num-

ber. At each iteration, a surrogate model is learnt based on the

scalarized fitness values of the solutions, and a search over the

surrogate model reveals a new single solution by balancing local

exploitation with global exploration. The operators-tags diagram is

shown in Figure 8, and the details are as follows.

Direction Iterator does not interact with any sets and therefore

there are no connections in the diagram. This operator iterates over

a set of direction vectors, and each time it is called, a new direction

GECCO ’21 Companion, July 10–14, 2021, Lille, France João A. Duro, Daniel C. Oara, Ambuj K. Sriwastava, Yiming Yan, Shaul Salomon, and Robin C. Purshouse

vector is chosen randomly from the set of available direction vectors.

The chosen direction vector is saved in the IPSet class (see Figure 1),

and therefore it becomes visible to the other operators via class

inheritance. The Scalarization operates in the sameway as described

for MOEA/D, but the difference is that all solutions are scalarized

with respect to the direction vector chosen by Direction Iterator, as

opposed to each solution having its own direction vector. Learning

a surrogate model can be computationally expensive if the number

of solution is too high. To address this, Direction Fitness Filtration

selects a subset of solutions from theMain Optimization Set and the

chosen solutions are added to a new set (corresponding to the blue

line). This new set serves as input to the Surrogate Based Optimizer

and a surrogate model is learnt based on the fitness values of the

solutions. A single-objective search procedure is conducted over the

surrogate model to find a new candidate solution that maximises

the expected improvement function. We employ a single-objective

genetic algorithm known as ACROMUSE [17] to conduct the search.

After each iteration a single solution is found by the Surrogate Based

Optimizer for a different direction vector.

A variant of ParEGO found in the Tigon optimization library

is known as sParEGO [8]. The new variant extends ParEGO for

dealing with stochastic optimization problems where the solution’s

performance following each evaluation can be uncertain. For this,

two operators are added to the operators-tags diagram just after

Scalarization. The first implements an uncertainty quantification

approach which assigns a random variate to each solution based

on the fitness of nearby solutions, and the second uses a given

robustness criterion applied to each random variate to determine a

new robust fitness value for each solution.

Remarks: ParEGO is different from the other MOEAs in the

sense it does not use any selection or variation operators. A large

part of the algorithm functionality is embedded in the operator

Surrogate Based Optimizer, where a single solution is found by

solving a single-objective problem. The other operators extend the

algorithm to the multi-objective domain. Moreover, some operators

do not interact with sets, but their functionality is crucial for the

algorithm. One example isDirection Iterator : this operator’s purpose

is to iterate over a set of direction vectors, and this is independent

from the existing solutions.

4 CONCLUSION

This paper builds on a new component-based framework for the

design of MOEAs, part of the Tigon optimization library. The frame-

work enables the user to design an MOEA by assembling a set of

components, and the way the components interact with several pop-

ulations of solutions is controlled by a user-led visually intuitive tag-

based approach. We have shown that the new framework is general

and flexible enough for the implementation of a range of MOEAs

covering several paradigms in evolutionary computation. The algo-

rithms considered in this work include: MOGA (non-elitist Pareto-

dominance-based); NSGA-II (elitist Pareto-dominance-based); SMS-

EMOA (steady-state indicator-based); MOEA/D (decomposition-

based); and ParEGO (surrogate-based). For future work, the en-

deavour of the authors will be to extend the current framework

to find novel algorithm designs by exploiting automatic algorithm

configuration methods [3, 16]. For this, we may need to diversify

and increase the number of operators in the Tigon library. Existing

operators are mostly inspired by strategies found in the MOEAs

described in this paper; other metaheuristics, not just evolutionary

algorithms, could be also considered (e.g. particle swarm optimiza-

tion and simulated annealing). It is also our interest to conduct a

comparative analysis between Tigon and other optimization frame-

works.

5 ACKNOWLEDGEMENTS

The authors would like to acknowledge financial support from

Innovate UK and Ford Motor Company as part of the Advanced

Propulsion Centre UK project DYNAMO (grant 113130), and also

EPSRC and Jaguar Land Rover as part of the jointly funded Pro-

gramme for Simulation Innovation (PSi) (EP/L025760/1). Daniel

Oara acknowledges EPSRC studentship support (EP/M508135/1 and

EP/M506618/1). The authors would also like to thank University of

Sheffield undergraduate project student Christopher J Gaskell for

his implementation of NSGA-III.

REFERENCES
[1] James Baker. 1987. Reducing Bias and Inefficiency in the Selection Algorithm. In

Second International Conference on Genetic Algorithms and Their Application.
[2] Zahra Beheshti and Siti Mariyam Shamsuddin. 2013. A Review of Population-

based Meta-Heuristic Algorithm. International Journal of Advances in Soft Com-
puting and its Applications 5 (2013), 1ś35.

[3] Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. 2016. Au-
tomatic Component-Wise Design of Multi-Objective Evolutionary Algorithms.
IEEE Transactions on Evolutionary Computation 20, 3 (2016), 403ś417. https:
//doi.org/10.1109/TEVC.2015.2474158

[4] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. 2003. PISA
Ð A Platform and Programming Language Independent Interface for Search
Algorithms. In Evolutionary Multi-Criterion Optimization (EMO 2003) (Lecture
Notes in Computer Science), Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler,
Kalyanmoy Deb, and Lothar Thiele (Eds.). Springer, Berlin, 494 ś 508.

[5] Felipe Campelo, Lucas S. Batista, and Claus Aranha. 2020. The MOEADr Package:
A Component-Based Framework for Multiobjective Evolutionary Algorithms
Based on Decomposition. Journal of Statistical Software, Articles 92, 6 (2020),
1ś39. https://doi.org/10.18637/jss.v092.i06

[6] Kalyanmoy Deb and Himanshu Jain. 2014. An Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on
Evolutionary Computation 18, 4 (2014), 577ś601. https://doi.org/10.1109/TEVC.
2013.2281535

[7] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation 6, 2 (2002), 182ś197. https://doi.org/10.1109/4235.
996017

[8] João A. Duro, Robin C. Purshouse, Shaul Salomon, Daniel C. Oara, Visakan
Kadirkamanathan, and Peter J. Fleming. 2019. sParEGO ś A Hybrid Optimiza-
tion Algorithm for Expensive Uncertain Multi-objective Optimization Problems.
In Evolutionary Multi-Criterion Optimization, Kalyanmoy Deb, Erik Goodman,
Carlos A. Coello Coello, Kathrin Klamroth, Kaisa Miettinen, Sanaz Mostaghim,
and Patrick Reed (Eds.). Springer International Publishing, 424ś438.

[9] João A. Duro, Yiming Yan, Ioannis Giagkiozis, Stefanos Giagkiozis, Shaul Salomon,
Daniel C. Oara, Ambuj K. Sriwastava, Jacqui Morison, Claire M. Freeman, Robert J.
Lygoe, Robin C. Purshouse, and Peter J. Fleming. 2021. Liger: A cross-platform
open-source integrated optimization and decision-making environment. Applied
Soft Computing 98 (2021), 106851. https://doi.org/10.1016/j.asoc.2020.106851

[10] Michael Emmerich, Nicola Beume, and Boris Naujoks. 2005. An EMO Algorithm
Using the Hypervolume Measure as Selection Criterion. In Evolutionary Multi-
Criterion Optimization, Carlos Coello Coello, Arturo Hernández Aguirre, and
Eckart Zitzler (Eds.). Lecture Notes in Computer Science, Vol. 3410. Springer
Berlin / Heidelberg, 62ś76. https://doi.org/10.1007/978-3-540-31880-4_5

[11] C. M. Fonseca and P. J. Fleming. 1998. Multiobjective Optimization and Multiple
Constraint Handling with Evolutionary AlgorithmsÐPart I: A Unified Formula-
tion. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and
Humans 28, 1 (Jan 1998), 26ś37. https://doi.org/10.1109/3468.650319

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

Component-Based Design of Multi-Objective Evolutionary Algorithms Using the Tigon Optimization Library GECCO ’21 Companion, July 10–14, 2021, Lille, France

[13] Donald R. Jones, Matthias Schonlau, and William J. Welch. 1998. Efficient Global
Optimization of Expensive Black-Box Functions. Journal of Global Optimization
13 (1998), 455ś492. https://doi.org/10.1023/A:1008306431147

[14] Joshua Knowles. 2006. ParEGO: A Hybrid Algorithm With On-Line Landscape
Approximation for Expensive Multiobjective Optimization Problems. IEEE
Transactions on Evolutionary Computation 10, 1 (Feb 2006), 50ś66. https:
//doi.org/10.1109/TEVC.2005.851274

[15] Arnaud Liefooghe, Laetitia Jourdan, and El-Ghazali Talbi. 2011. A software
framework based on a conceptual unified model for evolutionary multiobjective
optimization: ParadisEO-MOEO. European Journal of Operational Research 209, 2
(2011), 104ś112. https://doi.org/10.1016/j.ejor.2010.07.023

[16] Manuel López-Ibáñez and Thomas Stützle. 2012. The Automatic Design of Multi-
objective Ant ColonyOptimization Algorithms. IEEE Transactions on Evolutionary
Computation 16, 6 (2012), 861ś875. https://doi.org/10.1109/TEVC.2011.2182651

[17] Brian McGinley, John Maher, Colm O’Riordan, and Fearghal Morgan. 2011. Main-
taining Healthy Population Diversity Using Adaptive Crossover, Mutation, and
Selection. IEEE Transactions on Evolutionary Computation 15, 5 (2011), 692ś714.
https://doi.org/10.1109/TEVC.2010.2046173

[18] Antonio J. Nebro, Juan J. Durillo, and Matthieu Vergne. 2015. Redesigning the
jMetal Multi-Objective Optimization Framework. In Proceedings of the Com-
panion Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation (Madrid, Spain) (GECCO ’15). ACM, New York, NY, USA, 1093ś1100.

https://doi.org/10.1145/2739482.2768462
[19] Shaul Salomon, Christian Domínguez-Medina, Gideon Avigad, Alan Freitas, Alex

Goldvard, Oliver Schütze, and Heike Trautmann. 2014. PSA Based Multi Ob-
jective Evolutionary Algorithms. In EVOLVE - A Bridge between Probability, Set
Oriented Numerics, and Evolutionary Computation III, Oliver Schuetze, Carlos A.
Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del
Moral, and Pierrick Legrand (Eds.). Springer International Publishing, Heidelberg,
233ś259. https://doi.org/10.1007/978-3-319-01460-9_11

[20] Robert J Winter. 2014. Agile Software Development: Principles, Patterns, and
Practices. Wiley Online Library.

[21] Qingfu Zhang and Hui Li. 2007. MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition. IEEE Transactions on Evolutionary Computation
11, 6 (December 2007), 712ś731. https://doi.org/10.1109/TEVC.2007.892759

[22] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam
Suganthan, and Qingfu Zhang. 2011. Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and Evolutionary Computation 1, 1 (2011),
32ś49. https://doi.org/10.1016/j.swevo.2011.03.001

[23] Eckart Zitzler and Lothar Thiele. 1998. Multiobjective optimization using evolu-
tionary algorithms Ð A comparative case study. In Parallel Problem Solving from
Nature — PPSN V, Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-
Paul Schwefel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 292ś301.
https://doi.org/10.1007/BFb0056872

	Abstract
	1 Introduction
	2 Tigon optimization library
	2.1 The Tigon decorator design pattern
	2.2 A tag-based approach to help coordinate the information flow between operators

	3 Composing multi-objective evolutionary algorithms
	3.1 MOGA
	3.2 NSGA-II
	3.3 SMS-EMOA
	3.4 MOEA/D
	3.5 ParEGO

	4 Conclusion
	5 Acknowledgements
	References

