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The stable limit DAHA and the double Dyck path algebra

Dongyu Wu, PhD

University of Pittsburgh, 2021

The double Dyck path algebra (DDPA) is the key algebraic structure that gov-

erns the phenomena behind the shuffle and rational shuffle conjectures. Carlsson

and Mellit[CM18] introduced the DDPA as part of their proof of the shuffle conjec-

ture. Later Mellit[Mel16] used this algebra to prove the more general rational shuffle

conjecture.

The structure emerged from their considerations and computational experiments

(see, especially, [CM18, Sect. 4.1]) while attacking the conjecture. Nevertheless, the

DDPA bears some resemblance to the structure of a type A double affine Hecke

algebra (DAHA). While trying to address this resemblance, Carlsson and Mellit

noted one aspect that differentiates the two structures and speculated on how they

could be ultimately related [CM18, p. 693-694].

The goal of this project is to explain how the DDPA emerges naturally and

canonically (as a stable limit) from the family of GLn DAHA’s. Our context is

different from the one suggested by Carlsson and Mellit.
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1.0 Introduction

In 2018, Erik Carlsson and Anton Mellit published a proof [CM18] of the compo-

sitional shuffle conjecture of Haglund, Morse, and Zabrocki in [HMZ12], which is a

refinement of the original shuffle conjecture of Haglund, Haiman, Loehr, Remmel and

Ulyanov in [BG99]. The conjecture was originally stated in relation to the diagonal

representation of the symmetric group Sn on the polynomial ring C[x1, ..., xn, y1, ..., yn]

in n pairs of variables. Explicitly, it states that

∇en[X] =
∑
π

∑
w∈WPπ

tarea(π)qdinv(π,w)xw,

where the distinguished ∇ operator is defined in [BGSLX16b] to act diagonally on

the modified Macdonald basis {H̃µ}, and the right-hand side of the equation consists

of various combinatorial quantities associated to Dyck paths which will be introduced

in details in Chapter 4. Haglund, Morse, and Zabrocki later refined the conjecture

as

∇Cα[X; q] =
∑

touch(π)=α

∑
w∈WPπ

tarea(π)qdinv(π,w)xw,

where Cα is a composition of creation operators for Hall-Littlewood polynomials with

parameter 1/q acting on the constant polynomial 1.

To attack the conjecture, Carlsson and Mellit invented a new structure Aq,t called

double Dyck path algebra. Aq,t together with its canonical representation is the key

algebraic structure that governs the phenomena behind the shuffle conjecture. In this

way, they successfully related steps in a Dyck path to operators in the corresponding

double Dyck path algebra. They were able to recover a Dyck path from recursively
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applying operators on the constant polynomial 1. Furthermore, they discovered that

the antilinear degree-preserving automorphism defined by

Ti 7→ T−1i , d− 7→ d−, d+ 7→ d∗+, yi 7→ zi

maps intermediate polynomials in the recursion process into monomials in yi. By

using the automorphism, the conjecture can be proved by recursion.

Using the theory of the double Dyck path algebra, Mellit proved the rational

compositional shuffle conjecture in [Mel16] and the compositional delta conjecture

with D’Adderio in [DM20]. Considering the significant potential of this new algebra,

we would like to understand the structure of the algebra Aq,t. Carlsson and Mellit

predicted there is a connection between Aq,t and double affine Hecke algebras H+
k .

They left the problem of relating the two structures as an open problem.

In this dissertation, we will use the stabilization of the representation theory of

the deformed double affine Hecke algebra H̃+
k to explain the structure. The algebra

H̃+
k (k > 1) is defined to be the Q(t, q)-algebra generated by T1, ..., Tk−1, X1, ..., Xk, ω̄

with the following:

1.

TiTj = TjTi, for |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, (Ti − 1)(Ti + t) = 0,

tT−1i XiT
−1
i = Xi+1, XiXj = XjXi,

TiXj = XjTi, for j 6= i, i+ 1,

2.

ω̄Ti = Ti+1ω̄, for i = 1, ..., k − 2,

ω̄Xi = Xi+1ω̄, for i = 1, ..., k − 1,

2



3. Denote

γ = ω̄2Tk−1 − T1ω̄2.

Then

γTk−1 = −tγ, T1γ = γ,

γω̄k−2γ = γω̄k−1γ = γω̄k = 0.

We have discovered the algebra admits a representation on P+
k , the polynomial

ring Q(t, q)[x1, ..., xk]. More specifically, we have proven the existence of the following

action of H̃+
k on P+

k .

Theorem 1. The algebra H̃+
k has a representation on Q(t, q)[x1, ..., xk] defined as

the following:

Xi 7→ xi,

Ti 7→ si + (1− t)xi
1− si

xi − xi+1

,

Ỹi 7→ t1−i+kTi−1...T1ω̄T
−1
k−1...T

−1
i ,

where

ω̄.f(x1, ..., xk) = p1ω
−1.f(x1, ..., xk), ωf(x1, ..., xk) = f(q−1xk, x1, ..., xk−1),

for f(x1, ..., xk) ∈ P+
k , and

p1 : Q(t, q)[x1, ..., xk]→ x1Q(t, q)[x1, ..., xk],

x1f(x1, ..., xk) 7→ x1f(x1, ..., xk), f(x2, ..., xk) 7→ 0

is the projection map onto the subspace x1Q(t, q)[x1, ..., xk].

3



The main obstacle of the stabilization process is the fact that the deformed

Cherednik operators Ỹi are still not fully compatible with the inverse system. An-

other difficult aspect of this structure is the non-commutativity of Ỹi operators. We

overcome this second difficulty by formulating a concept of limit that takes into con-

sideration not only the inverse system, but also the t-adic topology. As it turns out,

the limit operators Ỹi act on the almost symmetric module P+
as, a subspace of the

inverse limit P+
∞ of P+

k . On xiP+
as the action of the limit operator Ỹi coincides with

the action of the Cherednik operator Yi.

We relate the action of the limit operators on P+
as to the following algebra. Let

H+ be the Q(t, q)-algebra generated by the elements Ti,Xi, and Yi, i ≥ 1, satisfying

the following relations:

TiTj = TjTi, |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, (Ti − 1)(Ti + t) = 0, i ≥ 1,

tT−1i XiT
−1
i = Xi+1, i ≥ 1

TiXj = XjTi, j 6= i, i+ 1; XiXj = XjXi, i, j ≥ 1,

t−1TiYiTi = Yi+1, i ≥ 1

TiYj = YjTi, j 6= i, i+ 1; YiYj = YjYi, i, j ≥ 1,

Y1T1X1 = X2Y1T1.

We call H+ the positive limit DAHA. In order to establish the limit action, we first

proved the recovery of the commutativity of Ỹi operators in the limit.

Theorem 2. Let Yi = limk Ỹ
(k)
i . Then

[Yi, Yj] = lim
k

[Ỹ
(k)
i , Ỹ

(k)
j ]Πk = 0.

The main technical result we proved is the following

4



Theorem 3. The algebra H+ admits a representation on P+
as induced from the H̃+

k

action on P+
k . More specifically,

Ti = lim
k
T

(k)
i , Xi = lim

k
X

(k)
i , Yi = lim

k
Ỹ

(k)
i

defines an action on P+
as.

We then prove the main theorem of this dissertation in Chapter 5, which states

there exists an isomorphism defined as follows:

Theorem 4. P(k) is an H+
∞-subrepresentation of P+

as for any k. Define the algebraic

isomorphism Φ = (Φk)k≥0 : P∗ → V∗ as

Φk : P(k)→ Vk; xi 7→ yi for i ≤ k; Xk 7→
X

t− 1
.

Then under this definition we have

yiΦk = ΦkXi, ziΦk = ΦkỸi.

Furthermore, we will also be able to define explicitly all of the connecting maps

as follows.

Theorem 5. Now let ik : P(k) → P(k + 1) be the inclusion map. Define the

connecting maps ∂k = ω̃−1k+1.ik and ∂∗k = ω−1k+1.ik as two operators from P(k) to

P(k + 1). Let ∂−k : P(k)→ P(k − 1) be defined as

∂−k f(x1, ..., xk)F [Xk] = τkf(x1, ..., xk)F [Xk − xk]Exp[(1− t)x−1k Xk]

∣∣∣∣
const(xk)

,

where τk is the alphabet shift xi+1 7→ xi for all i ≥ k. Then Aq,t has a representation

on P∗ defined as the following:

TiF = siF + (1− t)xi
F − siF
xi − xi+1

,

5



d+F = ∂kF, d∗+F = ∂∗kF, d−F = ∂−k F,

where F ∈ P(k).

Then Φ is an isomorphism of Aq,t representations under this definition.

The theorem uses a simple isomorphism Φ to link the canonical DDPA rep-

resentation with the modified polynomial DAHA representations. Therefore, the

canonical DDPA representation can be fully characterized by studying the classical

DAHA representations. As the theory of DAHA has been enthusiastically developed

by mathematicians in various fields for years, one may expect the connection between

the two kinds of algebras will considerably enrich the theory of the double Dyck path

algebra and widen the range of its potential applications, as well as help resolve some

still open conjectures generalized from or related to the shuffle conjecture.
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2.0 Ring of symmetric functions

In this section we will introduce the preliminary facts on symmetric functions

used in the thesis.

2.1 Combinatorics

2.1.1 Partitions

By definition, a partition λ of n is a sequence

λ = (λ1, ..., λk)

such that λ1 ≥ λ2 ≥ ... ≥ λk > 0 and λ1 + ... + λk = n. We will use the notation

λ ` n to denote that λ is a partition of n. We will call k the length of λ and denote

by l(λ) = k. By convention, we will impose that λi = 0 for all i > k. Therefore, we

have ∑
i≥1

λi = n.

For later use we define the quantities n(λ) and zλ below associated to the partition

λ for later use.

n(λ) =
∑
i

(i− 1)λi.

zλ =
∏
i

(ri!i
ri),

where ri is the number of occurrences of i in λ.

7



2.1.2 Young diagrams and Young tableaux

We will use a family of combinatorial objects called Young diagrams to illustrate

partitions. The Young diagram D(λ) corresponding to the partition

λ = (λ1, ..., λk)

consists of k consecutive rows of squares such that the i-th row contains exactly λi

number of squares. For instance, the following figure portraits the diagram corre-

sponding to the partition (6, 3, 2, 1, 1).

We say the box located in the j-th row from top to buttom and the i-th column

from left to right has the coordinates (i, j). The diagram generator of λ is defined as

Bλ(q, t) =
∑

(i,j)∈D(λ)

ti−1qj−1.

Given a partition λ, we define the conjugate λ′ of λ to be the partition that cor-

responds to the diagram obtained by transposing D(λ). For instance, the conjugate

of the previous example (6, 3, 2, 2, 1) is (5, 4, 2, 1, 1, 1) as shown below.

8



We will adopt two partial orders on the set of partitions of n. The dominance

order is defined as

λE µ⇐⇒ λ1 + ...+ λk ≤ µ1 + ...+ µk, for all k ≥ 1.

We say that µ dominates λ if λE µ.

Another partial order is obtained from containment of Young diagrams. We will

write λ ⊆ µ if D(λ) is contained in D(µ), or equivalently, if λi ≤ µi for all i ≥ 1.

If λ ⊆ µ, we define the skew Young diagram µ/λ to be the collection of cells in

D(µ) \D(λ). The following figure shows the skew diagram µ/λ where λ = (2, 2, 1)

and µ = (3, 3, 2, 1).

We will associate four quantities to each cell in a Young diagram. The arm

armλ(c), leg legλ(c), coarm coarmλ(c), and coleg colegλ(c) of a cell c in the dia-

gram D(λ) will denote the number of cells to the east, south, west and north of c

respectively. In the example below, we have

armλ(c) = 2, legλ(c) = 3, coarmλ(c) = 0, colegλ(c) = 2.

c

A Young tableau of a diagram D(λ) is an assignment to each box a number in the

set {1, 2, ..., n} where λ ` n. A Young tableau is said to be standard if the entries are

9



increasing along each row and each column. It is said to be semistandard if the entries

are non-decreasing along each row and increasing along each column. The following

are examples of a standard and a semistandard Young tableau of D((5, 2, 1)).

1 2 3 6 7
4 8
5

3 3 3 4 4
4 7
8

We will then denote by SYT(λ) the set of standard Young tableaux of D(λ), and

SSYT(λ) the set of semistandard Young tableaux of D(λ).

2.2 Symmetric functions

2.2.1 Ring of symmetric functions

The polynomial f(x1, ..., xn) ∈ Q[x1, ..., xn] is said to be symmetric in x1, ..., xn

if we have

f(xσ1 , ..., xσn) = f(x1, ..., xn), for all σ ∈ Sn.

All symmetric polynomials in x1, ..., xn will form a ring under polynomial addition

and multiplication. This is called the symmetric polynomial ring in Xn with the

coefficient ring Q, and denoted by Sym[Xn], where

Xn = x1 + x2 + ...+ xn

is called the alphabet of the symmetric polynomial ring.

Consider the projection map

pm,nQ[x1, x2, ..., xm]→ Q[x1, x2, ..., xn] (m > n)

10



by sending xn+1, ..., xm to 0. The restriction map on Sym[Xm] will be also called pm,n.

Then the symmetric polynomial rings will form an inverse system with respect to

the projection maps. We will define the ring of symmetric functions in the alphabet

X = x1 + x2 + ... to be the inverse limit, i.e.

Sym[X] = lim
←

Sym[Xn]

At last we introduce the following notations for further use.

Notation. We define the following three alphabets

X̄k = x1 + ...+ xk, Xk = xk+1 + xk+2 + ..., X̄[m,n] = X̄n − X̄m.

2.2.2 Distinguished symmetric functions

There are distinguished families of symmetric polynomials and symmetric func-

tions which will be useful. We will define them below.

Definition 1. (mλ, eµ, pµ and hµ) Let the alphabet Xn = x1 + x2 + ... + xn. The

monomial symmetric polynomial mλ[Xn] with respect to the partition λ for any

|λ| ≤ n is defined as

mλ[Xn] =
∑

xλ =
∑
α

xα1
1 ...x

αn
n ,

where α runs over all distinct permutations of λ. The elementary symmetric poly-

nomial ek[Xn], the power-sum symmetric polynomial pk[Xn] are then defined as

ek[Xn] = m(1,1,...,1)[Xn], pk[Xn] = m(k)[Xn],

where (1, 1, ..., 1) ` k. By convention, ek[Xn] = 0 if k > n. Then for a partition

µ ` m, we define

eµ[Xn] = eµ1 [Xn]...eµm [Xn], pµ[Xn] = pµ1 [Xn]...pµm [Xn].

11



At last, the complete homogeneous symmetric polynomial hk[Xn] is defined to be

the sum of all distinct monomials of degree k in Xn, and

hµ[Xn] = hµ1 [Xn]...hµm [Xn], for any µ.

Now let X = x1 + x2 + .... Then we define

mλ[X] =
∑

Y⊂X, |Y |=|λ|

mλ[Y ],

and similarly for eµ[X], pµ[X] and hµ[X].

Example 1. We have

p2[X3] = x21 + x22 + x23, e2[X3] = x1x2 + x1x3 + x2x3, h2[X3] = p2[X3] + e2[X3].

p2[X] = x21 + x22 + ..., e2[X] = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4 + ....

We will then define another family of special symmetric functions called Schur

polynomials/functions.

Definition 2. (Schur polynomials/functions) Let λ be a partition. Then the Schur

polynomial sλ[Xn] is defined as

sλ[Xn] =
∑

T∈SSYT(D(λ))

xT =
∑

T∈SSYT(D(λ))

xt11 ...x
tn
n ,

where ti is the number of occurrences of the number i in the semistandard Young

tableau T . For an infinite alphabet X, we define

sλ[X] =
∑

Y⊂X, |Y |=|λ|

sλ[Y ].

Example 2. We have

s(1,1,0)[X3] = x1x2 + x2x3 + x1x3 = e2[X3], s(1,1)[X] = e2[X].

12



It is a classical result that these special kinds of symmetric functions will alge-

braically span the whole space. Furthermore, we have

Proposition 2.2.1. Let Z be an alphabet, which is allowed to be either finite or

infinite. Then each of the following sets

{pλ[Z]}|λ|≤|Z|, {eλ[Z]}|λ|≤|Z|, {hλ[Z]}|λ|≤|Z|, {mλ[Z]}|λ|≤|Z|, {sλ[Z]}|λ|≤|Z|

will form a basis for Sym[Z].

We will then define the involution ω on Sym[Z] on bases as the following

ωek[Z] = hk[Z], ωpk[Z] = (−1)k−1pk[Z], ωsλ[Z] = sλ′ [Z].

2.2.3 Hall inner product

We will then define the Hall inner product 〈−,−〉 to be the symmetric bilinear

inner product on symmetric functions such that any of the following conditions is

satisfied:

〈sλ, sµ〉 = δλ,µ, 〈hλ,mµ〉 = δλ,µ, 〈pλ, pµ〉 = zλδλ,µ.

It is a fact that the three possible definitions are equivalent. Therefore with

respect to the inner product, the Schur functions will form an orthonormal basis.

13



2.3 Plethysm

From now on in all of the remaining sections, we will use the symmetric function

ring with coefficient ring Q(q, t), i.e. Q(q, t)⊗ Sym[X]. By an abuse of notation we

will still use Sym[X] to represent Q(q, t)⊗ Sym[X].

Let X be an alphabet and A be an expression of indeterminates. We define

the plethystic evaluation pk[A] to be the expression obtained by substituting ak for

every indeterminate a that occurres in A. Note that we count the coefficients q, t as

indeterminates as well. As we know {pλ} form a basis, we can algebraically extend

the definition to f [A] for any f ∈ Sym[X].

Example 3. We have

� p3[X + (t− 1)z] = p3[X] + (t3 − 1)z3.

� p1p2[
X
1−q ] = p1[X]p2[X](1− q)−1(1− q2)−1.

� pk[−X] = −pk[X].

� e2[X + t] = 1
2
(p21[X + t]− p2[X + t]) = e2[X] + tp1[X].

� e2[x] = 0, h2[x] = x2.

It is worth noting that pk[−X] = (−1)kωpk[X] for all k ≥ 0. Hence we have

f [−X] = (−1)deg(f)ωf [X]

for any homogeneous symmetric function f . This gives us the following useful facts:

hk[−X] = (−1)kek[X], ek[−X] = (−1)khk[X], sλ[−X] = (−1)nsλ′ [X],

where λ ` n.

14



Then we define the plethystic exponential function Ω[X] as

Ω[X] =
∞∑
n=0

hn[X] = exp(
∞∑
n=1

pn[X]

n
)

Then by definition we have all exponential properties, i.e.

Ω[X + Y ] = Ω[X]Ω[Y ], Ω[−X] = 1/Ω[X].

Then we can rewrite the Cauchy identity in an exponential way as

Proposition 2.3.1. Let {uλ} and {vµ} be a pair of dual bases for Sym[X] with

respect to the Hall inner product. Then we have

Ω[XY ] =
∑
λ

uλ[X]vλ[Y ].

As a corollary, using the self-dual basis {sλ} we obtain

f [A] = 〈Ω[AX], f [X]〉

for all symmetric f [X] ∈ Sym[X].

The following formulae will also be useful. We refer to [Hag08] for a detailed

proof.

Proposition 2.3.2. We have

en[A+B] =
n∑
k=0

ek[A]en−k[B], en[A−B] =
n∑
k=0

ek[A]en−k[−B],

hn[A+B] =
n∑
k=0

hk[A]hn−k[B], en[A−B] =
n∑
k=0

hk[A]hn−k[−B].

As a corollary which will be often used in later sections, we have

Corollary 2.3.3.

en[(t− 1)x] = (−1)n−1(t− 1)xn, hn[(t− 1)x] = tn−1(t− 1)xn, for any n ≥ 1.

Proof. Write (t− 1)x = tx− x and use the expansion formulae.
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2.3.1 Macdonald polynomials

We will now define the q, t-Hall inner product. Let f, g ∈ Sym[X]. Then we

define

〈f, g〉q,t = 〈f [X], g[
1− t
1− q

X]〉.

According to [Mac15], the Macdonald polynomials Pλ[X; t, q] can be uniquely defined

by the following two conditions:

� {Pλ[X; t, q]} form an orthogonal basis.

� Pλ[X; t, q] is lower unitriangular with respect to mλ. In other words we have

Pλ[X; t, q] = mλ[X] +
∑
µ/λ

cµλ(t, q)mµ.

The integral form {Jλ[X; t, q]} of the Macdonald polynomials is defined as

Jλ[X; t, q] =
∏

c∈D(λ)

(1− tarmλ(c)q1+legλ(c))Pλ[X; t, q],

and the transformed Macdonald polynomials {H̃λ[X; t, q]} are defined as

H̃λ[X; t, q] = qn(λ)Jλ[
X

1− q−1
; t, q−1].

Since the plethysm involved is invertible, the set {H̃λ[X; t, q]} will form a basis for

Sym[X].

We have the following characterization of {H̃λ[X; t, q]}.

Proposition 2.3.4. [Hai99] The transformed Macdonald polynomials {H̃λ[X; t, q]}

uniquely characterized by the following conditions:

�

H̃λ[(1− t)X; t, q] ∈ Q(t, q){sλ : λ ≥ µ},
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�

H̃λ[(1− q)X; t, q] ∈ Q(t, q){sλ : λ ≥ µ′},

�

〈H̃λ, s(n)〉 = 1.

2.3.2 Remarkable operators on Sym[X]

We then define some remarkable operators on Sym[X] and will discuss them

in details in Chapter 4 and Chapter 5. These operators are studied in details in

[BGSLX16b].

The nabla operator∇ is an operator on Sym[X] which acts diagonally on H̃λ[X; t, q]

as

∇H̃λ = qn(λ)tn(λ
′)H̃λ.

The Dk operators are defined to be a family of operators on Sym[X] satisfying

DkF [X] = F [X +
(1− t)(1− q)

z
]Ω[−zX]|zk ,

where |zk means taking the coefficient of zr. It has been proven in [BGSLX16b] that

D0 is also an diagonal operator with respect to the basis H̃λ[X; t, q]. More specifically

we have

D0H̃λ = −Dλ(t, q)H̃λ,

where

Dλ(t, q) = −1 + (1− q)(1− t)
∑
c∈λ

qcolegλ(c)tcoarmλ(c).

Then we define delta operators ∆f and ∆′f as

∆fH̃λ = f [Bλ(q, t)]H̃λ,
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∆′fH̃λ = f [Bλ(q, t)− 1]H̃λ.

The following results in [GHT99] are used for the proof of the shuffle conjecture.

We will quote them for later use.

Proposition 2.3.5. Let e1 be the left multiplication operator by the elementary sym-

metric function e1[X]. Then we have the following relations:

Dke1 − e1Dk = (1− q)(1− t)Dk+1, for all k ≥ 0,

D0e1 − e1D0 = −(1− q)(1− t)∇e1∇−1.
(2.3.2.1)

Theorem 2.3.6. Let P be a homogeneous symmetric polynomial of degree k ≥ 1.

Then we may write

P = D1A+ e1B,

where A and B are homogeneous symmetric polynomials of degree k − 1. Therefore

the operators D1 and e1 acting on 1 can generate the whole Sym[X].

At the end of this part, we define the Cr operators as

CrF [X] = −t1−rF [X +
(t−1 − 1)

z
]Exp[zX]|zr .

Then we define Cα = Cα1 ...Cαl for any composition α of length l.

As proven in [HMZ12], we have

Proposition 2.3.7. ∑
|α|=n

Cα[X; q] = (−1)nen[X] (2.3.2.2)

The Cα operators will be used to define the compositional shuffle conjecture.
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2.3.3 Diagonal coinvariants

Let the symmetric group Sn act on C[x1, y1, x2, y2, ..., xn, yn] diagonally. More

explicitly, the permutations will simultaneously permute the indices of x and y. Rn

is defined to be the ring of coinvariants for the diagonal action. In other words,

Rn = C[x1, y1, x2, y2, ..., xn, yn]/I,

where I = ((x1, y1, ..., xn, yn)
⋂

C[x1, y1, ..., xn, yn]Sn) is the ideal generated by all Sn-

invariant polynomials without constant term. Note that the Sn-action preserves the

double grading

Rn =
⊕
r,s

(Rn)r,s

with respect to degrees in x and y.

Now we define the Frobenius characteristic F to be the linear map from the space

of Sn characters to symmetric functions by sending the irreducible character χλ to

the Schur function sλ[X]. The Frobenius series of Rn is defined as

FRn [X; q, t] =
∑
r,s

qrtsF (char(Rn)r,s).

The following theorem by Haiman connects the Frobenius series of Rn and the

nabla operator.

Theorem 2.3.8. [Hai01] We have

FRn [X; q, t] = ∇en[X].

One may expect a more explicit formula for en[X]. We will discuss it in details

in Chapter 4.
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2.3.4 Ring of almost symmetric functions

The positive k-symmetric space P(k)+ is defined as

P(k)+ = {f(x1, x2, ...) ∈ R̂(r) | f is symmetric in xk+1, xk+2, ..., for some r ≥ 0}.

We observe that P(k)+ ⊂ P(k + 1)+. Then we may define the almost symmetric

polynomial ring P+
as to be the union of all P(k)+,i.e.

P+
as =

⋃
k≥0

P(k)+.

Similarly we define the counterpart with respect to the alphabet X−1 = x−11 +

x−12 + .... We define P(k)− and the ring of almost symmetric negative polynomials

P−as analogously.
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3.0 Double affine Hecke algebras

In this chapter we will define Double affine Hecke algebras and discuss the cor-

responding representation theory. Then we will introduce a stabilization procedure

for the polynomial representations. The stabilization will be used to establish a

connection between double affine Hecke algebras and the double Dyck path algebra.

3.1 Definitions

3.1.1 Affine Hecke algebras

Definition 3. The affine Hecke algebra AHAk of type GLk is a Q(t)-algebra gener-

ated by

T1, ..., Tk−1, X
±1
1 , ..., X±1k

satisfying the following relations:

TiTj = TjTi, for 1 ≤ i < j ≤ k − 1 with 1 < |i− j| < k − 1,

TiTi+1Ti = Ti+1TiTi+1, for i = 1, ..., k − 2,

(Ti − 1)(Ti + t) = 0, for i = 1, ..., k − 1,

(3.1.1.1a)

tT−1i XiT
−1
i = Xi+1, for 1 ≤ i ≤ k − 1

TiXj = XjTi, for 1 ≤ i ≤ k − 1, 1 ≤ j ≤ k with j 6= i, i+ 1,

XiXj = XjXi for 1 ≤ i, j ≤ k.

(3.1.1.1b)

The definition above is based on the Bernstein presentation of the affine Hecke

algebra AHAk. The following presentation of AHAk will also be used.
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Proposition 3.1.1. The affine Hecke algebra AHAk is generated by

T̃0, T1, ..., Tk−1, ω̃

with relations:

TiTj = TjTi, for 1 ≤ i < j ≤ k − 1 with 1 < |i− j| < k − 1,

TiTi+1Ti = Ti+1TiTi+1, for i = 1, ..., k − 2,

(Ti − 1)(Ti + t) = 0, for i = 1, ..., k − 1,

TiT̃0 = T̃0Ti, for 2 ≤ i ≤ k − 1,

T̃0T1T̃0 = T1T̃0T1,

(T̃0 − 1)(T̃0 + t) = 0,

(3.1.1.2a)

ω̃Tiω̃
−1 = Ti−1 for 1 ≤ i ≤ k − 1, ω̃T̃0ω̃

−1 = Tk−1. (3.1.1.2b)

Remark. T̃0, ω̃ and X1, ..., Xk are related by

ω̃ = Tk−1...T1X
−1
1 = tk−1X−1k T−1k−1...T

−1
1 ,

T̃0 = ω̃−1Tk−1ω̃ = ω̃T1ω̃
−1 = tk−1X1X

−1
k T−11 ...T−1k−1...T

−1
1 .

Notation. We denote by AHA+
k the subalgebra of AHAk generated by Ti, i ≤ k−1,

and Xi, i ≤ k, or equivalently, by Ti, i ≤ k − 1, and ω̃−1. Similarly, we denote by

AHA−k the subalgebra of AHAk generated by Ti, i ≤ k − 1, and X−1i , i ≤ k, , or

equivalently, by Ti, i ≤ k − 1, and ω̃.
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3.1.2 Double affine Hecke algebras

Now we will introduce the double affine Hecke algebras (DAHA).

Definition 4. The double affine Hecke algebra (DAHA) Hk of type GLk is a Q(t, q)-

algebra generated by

T1, ..., Tk−1, X
±1
1 , ..., X±1k , Y ±11 , ..., Y ±1k

satisfying (3.1.1.1a), (3.1.1.1b) the following relations:

t−1TiYiTi = Yi+1, for 1 ≤ i ≤ k − 1

TiYj = YjTi, for 1 ≤ i ≤ k − 1, 1 ≤ j ≤ k with j 6= i, i+ 1,

YiYj = YjYi for 1 ≤ i, j ≤ k.

(3.1.2.1a)

Y2X
−1
1 Y −12 X1 = t−1T 2

1 ,

Xk...X1Yi = q−1YiXk...X1.
(3.1.2.1b)

Similarly, we will introduce a different presentation of Hk.

Proposition 3.1.2. The double affine Hecke algebra (DAHA) Hk is generated by

T0, T1, ..., Tk−1, X
±1
1 , ..., X±1k , ω

satisfying (3.1.1.1a), (3.1.1.1b) and the following relations:

TiT0 = T0Ti, for 2 ≤ i ≤ k − 1,

T0T1T0 = T1T0T1,

(T0 − 1)(T0 + t) = 0,

(3.1.2.2a)

ωTiω
−1 = Ti−1 for 2 ≤ i ≤ k − 1,

ωT1ω
−1 = T0 ωT0ω

−1 = Tk−1,
(3.1.2.2b)

ωXi+1ω
−1 = Xi for 1 ≤ i ≤ k − 1, ωX1ω

−1 = q−1Xk. (3.1.2.2c)
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Remark. Y1, ..., Yk and ω are related by

Yi = t1−iTi−1...T1ω
−1T−1k−1...T

−1
i .

Double affine Hecke algebras were first introduced by Cherednik[Che95]. We also

refer to [SV11],[IS20] for alternative definitions.

Notation. For the sake of stabilization, we will also define the positive and negative

subalgebras of Hk. Let H−k be the subalgebra of Hk generated by

T1, ..., Tk−1, X
−1
1 , ..., X−1k , Y −11 , ..., Y −1k ,

and H+
k the subalgebra of Hk generated by

T1, ..., Tk−1, X1, ..., Xk, Y1, ..., Yk.

We will then define the classical Laurent polynomial representation of the algebra

Hk.

Denote

P−k = Q(t, q)[x−11 , . . . , x−1k ], P+
k = Q(t, q)[x1, . . . , xk]

and

Pk = Q(t, q)[x±11 , . . . , x±1k ].

The representation below is called the standard representation of Hk [Che95, Theo-

rem 2.3]
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Proposition 3.1.3 ([Che95], Theorem 2.3). The Laurent polynomial representation

of the algebra Hk on Pk is defined as follows:

Tif(x1, ..., xk) = sif(x1, ..., xk) + (1− t)xi
1− si

xi − xi+1

f(x1, ..., xk),

ω̃f(x1, ..., xk) = Tk−1...T1x
−1
1 f(x1, ..., xk),

ωf(x1, ..., xk) = f(q−1xk, x1, ..., xk−1),

(3.1.2.3)

for any f(x1, ..., xk) ∈ Pk. In particular, Xi will act on Pk as left multiplication by

xi.

Remark. It is easy to see P−k is an invariant subspace of Pk under the AHA−k and

H−k actions, while P+
k is an invariant subspace under the AHA+

k and H+
k actions.

Note that the actions mentioned are all faithful.

3.2 Stable limits of DAHA

3.2.1 Stable limit DAHA

Definition 5. The algebra H+
∞ is defined to be the Q(t, q)-algebra generated by

T1, T2, ..., X1, X2, ..., Y1, Y2, ... with the following relations:

TiTj = TjTi, for |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, (Ti − 1)(Ti + t) = 0,
(3.2.1.1a)

tT−1i XiT
−1
i = Xi+1, XiXj = XjXi,

TiXj = XjTi, for j 6= i, i+ 1,
(3.2.1.1b)
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t−1TiYiTi = Yi+1, YiYj = YjYi,

TiYj = YjTi, for j 6= i, i+ 1,
(3.2.1.1c)

Y1T1X1 = X2Y1T1. (3.2.1.1d)

We will call the positive limit DAHA.

Note that, as opposed to the corresponding elements of Hk, the elements Xi, Yi

are not invertible in H+
∞. Similarly, we define the negative limit DAHA.

Definition 6. Let H−∞ be the Q(t, q)-algebra generated by the elements Ti,X
−1
i , and

Y −1i , i ≥ 1, satisfying the following relations:

TiTj = TjTi, for |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, (Ti − 1)(Ti + t) = 0,
(3.2.1.2a)

t−1TiX
−1
i Ti = X−1i+1, i ≥ 1

TiX
−1
j = X−1j Ti, j 6= i, i+ 1, ,

X−1i X−1j = X−1j X−1i , i, j ≥ 1,

(3.2.1.2b)

tT−1i Y −1i T−1i = Y −1i+1, i ≥ 1

TiY
−1
j = Y −1j Ti, j 6= i, i+ 1,

Y −1i Y −1j = Y −1j Y −1i , i, j ≥ 1,

(3.2.1.2c)

X−11 T−11 Y −11 = T−11 Y −11 X−12 . (3.2.1.2d)

We will call the negative limit DAHA.

Remark. There exists an anti-isomorphism of Q(t, q)-algebras defined by mapping

Ti, Xi, Yi to Ti, Y
−1
i , X−1i respectively. Therefore, we may regard the two algebras as

capturing the same structure and we will call both of them the stable limit DAHA.
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3.2.2 Projective system for negative part

Let

πk : P−k → P
−
k−1

be the ring morphism that maps x−1k to 0 and acts as identity on all the other

generators. The rings P−k , k ≥ 1 form an inverse system. We will use the notation

P−∞ for the ring lim
←−
P−k . We denote by Πk : lim

←−
P−k → P

−
k the canonical morphism.

Let,

ιk : P−k−1 → P
−
k

the canonical inclusion ring morphism. The inductive limit lim
−→
P−k is canonically

isomorphic with the ring Q(t, q)[x−11 , x−12 , . . . ] of polynomials in infinitely many vari-

ables. As with the projective limit, the rings lim−→
k≥n
P−k and lim

−→
P−k are canonically

isomorphic. We denote by Ik : P−k → lim
−→
P−k the canonical morphism.

The following diagram is commutative:

P−k−1 P−k−1

P−k P−k

ιk πk

where each horizontal map represents the identity map. For a fixed n ≥ 1, denote

by ιn,k : P−n → P−k , n ≤ k, the canonical inclusion. The sequence of maps ιn,k :

P−n → P−k , k ≥ n is compatible with the structure maps πk. Therefore, they induce

a morphism

P−n → lim−→
k≥n
P−k ∼= lim

−→
P−k .

Furthermore, these maps are compatible with the structure maps ιn and therefore

induce a morphism

J : lim
−→
P−k → lim

←−
P−k .
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By construction, ΠkJIk : P−k → P
−
k is the identity function. We denote Jk = JIk :

P−k → P−∞.

For any n ≥ 1, a sequence of operators Ak : P−k → P
−
k , k ≥ n, compatible with

the inverse system induces a (limit) operator A : P−∞ → P−∞. We have Ak = ΠkAJk.

An analogue structure emerges from the polynomial rings P+
k . We adopt the

corresponding notation for all the relevant spaces and maps.

We will now recall some results from [Kno07] which allow for the stabilization of

the negative DAHA.

The map πk is partially compatible with the actions of AHA−k and AHA−k−1.

More precisely we have

Proposition 3.2.1. [Kno07, Theorem 9.1] Let πk : P−k → P
−
k−1. Then we have

πkTi = Tiπk, 1 ≤ i ≤ k − 2,

πkTk−1 = πksk−1,

πkω̃k = 0,

πkTk−1ω̃k = ω̃k−1πk,

πkX
−1
i = X−1i πk, 1 ≤ i ≤ k − 1,

πkX
−1
k = 0.

(3.2.2.1)

The compatibility with the actions of H−k and H−k−1 can also be investigated, but

the verification is more delicate. More precisely, we have the following result:

Proposition 3.2.2. [Kno07, Proposition 9.11] For any 1 ≤ i ≤ k − 1, we have

πkYi = Yiπk. (3.2.2.2)

Furthermore, the operator Y −1i stabilizes both P−k and P−k−1 and

πkY
−1
i = Y −1i πk. (3.2.2.3)
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3.2.3 Negative stable limit DAHA action

For example, for any n ≥ 1, the sequence of operators (Ak)k≥1 defined by

Ak := Y (k)
n , k ≥ n,

induces the limit operator Yn : lim←−
k≥n
P−k → lim←−

k≥n
P−k . Since lim←−

k≥n
Pk and P−∞ are canoni-

cally isomorphic, we obtain an operator Yn : P− → P−.

Similarly, we obtain limit operators Ti, X
−1
i , and Y −1i , i ≥ 1. The following result

immediately follows.

Theorem 3.2.3. The limit operators Ti, X
−1
i , and Y −1i , i ≥ 1, define a H− action

on P−∞.

Proof. All relations are satisfied because they are satisfied by the corresponding

operators acting on each P−k .

It is important to remark that the operators Y −1i are invertible (with inverse Yi).

3.2.4 P−as subrepresentation

As it was pointed out in [Kno07, §10] the subrepresentation on the subspace P−as
is more canonical from a certain point of view. The reason for considering P−as is the

following. Each P−k is a parabolic module for the affine Hecke algebra AHA−k and has

a standard basis (in the sense of Kazhdan-Lusztig theory) indexed by compositions

with at most k parts. The sequences consisting of the standard basis elements indexed

by the same composition (in all P−k , k ≥ n, for some n) give elements of P−∞ (see

[Kno07, §9]) which are expected to play the role of a standard basis for the limit
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representation. However, these limits of standard basis elements do not span P−∞,

but rather the smaller space P−as .

From the previous section we know P(k)− can be alternatively defined as

P(k)− = {F ∈ P−∞ | ∀i > k, TiF = F}.

We still define P−as as the inductive limit of P(k)− with respect to the inclusion map.

Then we have

Theorem 3.2.4. The almost symmetric module P−as is a H− submodule of P−∞.

We call this representation the standard representation of H−. We expect this

representation to be faithful.

As explained in [Kno07], a sequence on non-symmetric Macdonald polynomials

indexed by the same composition gives rise to an element of P−as, and such ele-

ments are common eigenfunctions for the action the operators Y −1i . These limit

non-symmetric Macdonald polynomials do not span P−as and therefore the spectral

theory of the operators Y −1i acting on P−as is not yet fully understood.

3.3 Modified DAHA

As we explained, the negative part of the DAHA admits a good stabilization.

On the other hand, Y ±1i fail to act consistently. Therefore we do not have a similar

result for P+
∞. The following example demonstrates the inconsistency of the action.
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3.3.1 Motivation

Example 4. Consider the action of Y
(2)
1 and Y

(3)
1 on x2. For x2 ∈ P+

2 , we have

Y
(2)
1 x2 = ω−1T−11 x2

= x2 + q(1− t−1)x1,

while for x2 ∈ P+
3 , we have

Y
(3)
1 x2 = ω−1T−12 T−11 x2

= ω−1T−12 (x1 + (1− t−1)x2)

= x2 + qt−1(1− t−1)x1.

Clearly we see Y
(2)
1 and Y

(3)
1 have different actions on x2.

Y ±1i will not act on P+
as consistently. However, the rescaled compositions of

operators {tkYiXi} ⊂ H+
k have compatible actions on P+

k . More specifically, we have

Proposition 3.3.1. πkt
kY

(k)
i X

(k)
i = tk−1Y

(k−1)
i X

(k−1)
i πk. (i ≤ k − 1)

Proof. First note that we have

πkω
−1
k Tk−1 = ω−1k−1πk,

31



which can be verified by direct computation. Hence we have

πkY
(k)
i Xi = t1−iTi−1...T1πk(ω

−1
k T−1k−1...T

−1
i Xi)

= t1−kTi−1...T1πk(ω
−1
k XkTk−1...Ti)

= t1−kTi−1...T1ω
−1
k−1πk(T

−1
k−1XkTk−1...Ti)

= t−kTi−1...T1ω
−1
k−1πk(Tk−1XkTk−1...Ti)

= t1−kTi−1...T1ω
−1
k−1πk(Xk−1Tk−2...Ti)

= t−iTi−1...T1ω
−1
k−1T

−1
k−2...T

−1
i Xiπk

= t−1Y
(k−1)
i Xiπk

Therefore we have πkt
kY

(k)
i Xi = tk−1Y

(k−1)
i Xiπk.

This motivates us to consider a modification of Yi operators to address the con-

sistency problem. Therefore in order to correctly stabilize the action of the positive

part, we modify the original algebra as explained in the following section

3.3.2 Deformed DAHA H̃+
k

Definition 7. The algebra H̃+
k (k > 1) is defined to be the Q(t, q)-algebra generated

by T1, ..., Tk−1, X1, ..., Xk, ω̄ with the following:

1. T1, ..., Tk−1, X1, ..., Xk that satisfy the relations (3.1.1.1a), (3.1.1.1b).

2.

ω̄Ti = Ti+1ω̄, for i = 1, ..., k − 2,

ω̄Xi = Xi+1ω̄, for i = 1, ..., k − 1,
(3.3.2.1)
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3. Denote

γ = ω̄2Tk−1 − T1ω̄2.

Then

γTk−1 = −tγ, T1γ = γ,

γω̄k−2γ = γω̄k−1γ = γω̄k = 0.
(3.3.2.2)

Remark. H̃+
k can be seen as a deformation of H+

k with the specification γ = 0.

However, the generating relations of H̃+
k do not yield commutativity for the analogues

of the Cherednik operators.

Proposition 3.3.2. Define Ỹ1, ..., Ỹk as

Ỹ1 = tkω̄T−1k−1...T
−1
1 , Ỹi+1 = t−1TiỸiTi.

Then they do not form a commutative family of elements. In fact, we have

[Ỹ1, Ỹ2] = t2k−1γT−1k−1...T
−1
1 T−1k−1...T

−1
2 = t2k−1γT−1k−2...T

−1
1 T−1k−1...T

−1
1 .

Hence γ can be seen as a measurement of the non-commutativity of Ỹi operators.

Then we can define the following action of H̃+
k on P+

k .

Theorem 3.3.3. The algebra H̃+
k has a representation on Q(t, q)[x1, ..., xk] defined

as the following:

Xi 7→ xi,

Ti 7→ si + (1− t)xi
1− si

xi − xi+1

,

Ỹi 7→ t1−i+kTi−1...T1ω̄T
−1
k−1...T

−1
i ,

(3.3.2.3)

where

ω̄.f(x1, ..., xk) = p1ω
−1.f(x1, ..., xk) for f(x1, ..., xk) ∈ P+

k ,
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and

p1 : Q(t, q)[x1, ..., xk]→ x1Q(t, q)[x1, ..., xk],

x1f(x1, ..., xk) 7→ x1f(x1, ..., xk), f(x2, ..., xk) 7→ 0

is the projection map onto the subspace x1Q(t, q)[x1, ..., xk].

Proof. Only the consistency of the action of ω̄ needs to be verified.

First, from (3.1.2.2b) we have

ω̄Ti.f = p1ω
−1Ti.f

= p1(Ti+1ω
−1.f)

= Ti+1p1ω
−1.f

= Ti+1ω̄.f,

for f ∈ P+
k and 1 ≤ i ≤ k − 2. Similarly from (3.1.2.2c) we have

ω̄Xi.f = Xi+1ω̄.f,

for f ∈ P+
k and 1 ≤ i ≤ k − 1.

It remains to verify the relations involving γ. By linearity it suffices to verify

monomials. We present the explicit expression of the action of γ on monomials.
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γ(xt11 ...x
tk−1

k−1 x
tk
k ) =



0, if tk−1 6= 0, tk 6= 0

(1− t)qtk−1(x
tk−1−1
1 x2 + x

tk−1−2
1 x22 + ...

+x1x
tk−1−1
2 )(xt13 x

t2
4 ...x

tk−2

k ), if tk−1 6= 0, tk = 0

(t− 1)qtk(xtk−11 x2 + xtk−21 x22 + ...

+x1x
tk−1
2 )(xt13 x

t2
4 ...x

tk−2

k ), if tk−1 = 0, tk 6= 0

Note that the expression immediately implies γTk−1 = −tγ and T1γ = γ. The rest

may be also checked directly.

Remark. The action of ỸiXi is the same as that of tkYiXi. In other words, the

action of t−kỸi on xiQ(t, q)[x1, ..., xk] is identical to that of Yi on the same space.

Therefore Ỹi’s can be viewed as a modification of the Cherednik operators.

3.4 Stabilization of H̃+
k

3.4.1 Direct stabilization

The stability of this family of operators can be shown from the following theorem.

Theorem 3.4.1. Let

ιk : P+
k−1 → P+

k
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be the inclusion map. Then the following diagram is commutative:

P+
k−1 P+

k−1

P+
k P+

k

Ỹ
(k−1)
i

ιk

Ỹ
(k)
i

πk

Equivalently, we have

πkỸ
(k)
i ιk.f = Ỹ

(k−1)
i .f

for all f ∈ P+
k−1.

Proof. Note that p1ω
−1
k = ω−1k pk. Hence we have

πkỸ
(k)
i ιk.f = πkt

1−i+kTi−1...T1p1ω
−1
k T−1k−1...T

−1
i .f

= tk−iTi−1...T1p1πkω
−1
k Tk−1T

−1
k−2...T

−1
i .f+

πkt
k−i(t− 1)Ti−1...T1p1ω

−1
k T−1k−2...T

−1
i .f

= tk−iTi−1...T1p1ω
−1
k−1πkT

−1
k−2...T

−1
i .f+

πkt
k−i(t− 1)Ti−1...T1ω

−1
k pk(T

−1
k−2...T

−1
i .f)

= Ỹ
(k−1)
i πk.f + 0

for all f ∈ P+
k−1.

The theorem implies the existence of limit operators Ỹi.

Corollary 3.4.2. For each i > 0, there exist an operator

Ỹi : Q(t, q)[x1, x2, ...] −→ P+
∞

such that

ΠkỸiIk = Ỹ
(k)
i , ∀k ≥ i,

where Πk : P+
∞ → P+

k and Ik : P+
k → Q(t, q)[x1, x2, ...] are the projection map and

the inclusion map respectively.
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Proof. Note that {P+
k } under the inclusion maps forms a direct system with the

direct limit Q(t, q)[x1, x2, ...].

The domain of Ỹ
(∞)
i is smaller than the expected P+

∞. The obstruction for the

extension of Ỹ
(∞)
i to P+

∞ can be precisely identified.

3.4.2 Extension of the stabilization

We define the Q(t, q)-linear operators W
(k)
i : P+

k → P
+
k , i ≥ 1, as follows. Let

s ≥ 0, and let i1 < i2 < · · · < is ≤ k and t1, . . . , ts be positive integers. We set

W
(k)
1 (xt1i1 . . . x

ts
is

) =


0, if i1 = 1 or s = 0,

tts(1− t−1)qtsxts1 xt1i1 . . . x
ts−1

is−1
, if i1 > 1.

(3.4.2.1)

Define

W
(k)
i+1 = t−1TiW

(k)
i Ti, 1 ≤ i ≤ k − 1.

For 1 ≤ i ≤ k, we also denote

Z̃
(k)
i = Ỹ

(k)
i −W (k)

i .

Lemma 3.4.3. The following diagram is commutative:

P+
k P+

k

P+
k−1 P+

k−1

Z̃
(k)
i

πk πk

Z̃
(k−1)
i
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Proof. It is enough to prove the statement for i = 1. For any monomial f ∈ P+
k−1,

we have

πkW
(k)
1 f = W

(k−1)
1 πkf

and the commutativity of the digram follows from Theorem 3.4.1.

Let f ∈ xkP+
k be a monomial and g ∈ P+

k . A direct check shows that

πkω
−1
k pk T

−1
k−1 pk g 6= 0

only if g is not divisible by xk−1. On the other hand,

T−1i xiP+
k ⊆ xi+1P+

k .

Now,

πkỸ
(k)
1 f = tkπkω̄kT

−1
k−1 . . . T

−1
1 f

= tkπkω̄kT
−1
k−1 . . . T

−1
1 pk f

= tkπkω
−1
k pk T

−1
k−1 pk(T

−1
k−2 . . . T

−1
1 f).

Based on the previous remarks, πkỸ
(k)
1 f 6= 0 unless f is not divisible by x1. Further-

more, the only monomial from T−11 f that survives is s1f . Applying this repeatedly,

we obtain

πkỸ
(k)
1 f = tkπkω

−1
k pk T

−1
k−1 pk(sk−2 . . . s1f) = W

(k)
1 f.

Therefore, πkZ̃
(k)
i f = 0 = Z̃

(k−1)
i πkf , as expected.

As a consequence, we obtain the following.
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Proposition 3.4.4. For any i ≥ 1, the sequence of operators (Z̃
(k)
i )k≥2 induces a

map

Z̃
(∞)
i : P+

∞ → P+
∞,

such that ΠkZ̃
(∞)
i = Z̃

(k)
i , for all k ≥ i, k ≥ 2.

This motivates the concept of limit we develop in what follows.

The order of vanishing at t = 0 of the rational function R(t, q) = A(t, q)/B(t, q) ∈

Q(t, q), with A(t, q), B(t, q) ∈ Q[t, q], denoted by

ordR(t, q),

is the difference between the order of vanishing at t = 0 for A(t, q) and B(t, q).

We say that the sequence (an)n≥1 ⊂ Q(t, q) converges to 0 if the sequence

(ord an)n≥1 ⊂ Z converges to +∞. The sequence (an)n≥1 ⊂ Q(t, q) converges to

a if (an − a)n≥1 converges to 0. We write,

lim
n→∞

an = a.

Definition 8. Let (fk)k≥1 be a sequence with fk ∈ P+
k . We say that the sequence is

convergent if there exists N ≥ 1 and sequences (hk)k≥1, (gi,k)k≥1, i ≤ N , hk, gi,k ∈

P+
k , and (ai,k)k≤1, i ≤ N , ai,k ∈ Q(t, q) such that

1. For any k ≥ 1, we have fk = hk +
∑N

i=1 ai,kgi,k;

2. For any i ≤ N , k ≥ 2, πk(gi,k) = gi,k−1 and πk(hk) = gk−1. We denote by

gi = lim
k→∞

gi,k and h = lim
k→∞

hk

the sequence (gi,k)k≥1 and, respectively, (hk)k≥1 as an element of P+
∞. We require

that gi ∈ P+
as.

3. For any i ≤ N the sequence (ai,k)k≥1 is convergent. We denote ai = lim
k→∞

(ai,k).
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If the sequence (fk)k≥1 is convergent we define its limit as

lim
k

(fk) := h+
N∑
i=1

aigi ∈ P+
∞.

Example 5. The sequence

fk = (1 + t+ ...+ tk)ei[Xk],

has the limit

lim
k
fk =

1

1− t
ei[X].

Similarly, the sequence

gk = tkei[Xk]

has limit 0.

We show that the limit of a sequence does not depend on the choice of the

auxiliary sequences in Definition 8.

Proposition 3.4.5. The concept of limit is well-defined.

Proof. It suffices to show that the limit of the constant sequence 0 is zero, regardless

of the auxiliary sequences in Definition 8. Consider sequences (ci,k)k≥1 and (qi,k)k≥1

such that

0 =
N∑
i=1

ci,kqi,k ∈ P+
k ,

and

lim
k→∞

ci,k = ci ∈ Q(t, q), lim
k→∞

qi,k = qi ∈ P+
as.

We need to show that
∑N

i=1 ciqi = 0.

Without loss of generality, we assume that q1, ..., qN are Q-linearly independent.

Indeed, any linear relation between q1, ..., qN must also hold for q1,k, ..., qN,k, for all k.
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We can therefore substitute one of them, say q1,k, with the same Q-linear combination

of q2,k, ..., qN,k for all k. It is clear that the conclusion does not change after such a

substitution.

Each qi ∈ P+
as. We can find the n ≥ 1, such that qi ∈ P(n) for all 1 ≤ i ≤ N .

For the same reason as before, without loss of generality, we can assume that

qi = fi(x1, ..., xn)eαi [Xn]

and

αi = (αi,1 ≥ · · · ≥ αi,si), 1 ≤ i ≤ N

are distinct partitions. Let

M = max
1≤i≤N

αi,1.

For any k > M + n, we claim q1,k, ..., qN,k are also Q-linear independent. Indeed, if

we have a linear relation

N∑
i=1

aifi(x1, ..., xn)eαi [xn+1, ..., xk] = 0,

for some ai ∈ Q, then for any evaluation at x1 = b1, ..., xn = bn, we have

N∑
i=1

aifi(b1, ..., bn)eαi [xn+1, ..., xk] = 0.

Note that because k − n > M , and the partitions αi are distinct, the symmetric

functions eαi [Xn] are linearly independent. Therefore, for all 1 ≤ i ≤ N ,

aifi(b1, ..., bn) = 0.

Since fi are polynomials in finitely many variables we obtain, for all 1 ≤ i ≤ N ,

aifi(x1, ..., xn) = 0,
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which is a contradiction. Therefore, for k large enough, we have that q1,k, ..., qN,k are

Q-linear independent.

We can now prove that for k large enough, all ci,k will necessarily be 0. Indeed,

from the hypothesis we have

0 =
N∑
i=1

ci,kqi,k.

By multiplying both sides the common denominator of ci,k we may assume all ci,k

are polynomials in two variables t, q. Again, for any evaluation q = a, t = b, we have

0 =
N∑
i=1

ci,k(a, b)qi,k.

But we already now q1,k, ..., qN,k are Q-linear independent for k large enough. Hence

it forces ci,k(a, b) = 0 for all i. Again, this implies that ci,k(t, q) = 0, 1 ≤ i ≤ N .

For later use, we record the following result. To set the notation, assume that

Ak : P+
k → P

+
k , k ≥ 1, is a sequence of operators, with the following property: for

any f ∈ P+
as, the sequence (AkΠkf)k≥1 converges to an element of P+

as. Let A be the

operator

A : P+
as → P+

as, f 7→ lim
k
AkΠkf.

We refer to A as the limit operator of the sequence (Ak)k≥1.

Proposition 3.4.6. Let (fk)k≥1, fk ∈ P+
k be a convergent sequence such that f =

limk fk ∈ P+
as. Then, with the notation above, we have

Af = lim
k
Akfk.
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Proof. By replacing fk with fk − Πk, it is enough to prove the statement for the

case f = 0. If is enough to assume that f = 0. In this case, there exist sequences

(ci,k)k≥1 and (qi,k)k≥1 as in Definition 8 such that

fk =
N∑
i=1

ci,kqi,k ∈ P+
k ,

with

lim
k→∞

ci,k = ci ∈ Q(t, q), lim
k→∞

qi,k = qi ∈ P+
as.

For each i such that ci 6= 0, we may replace ci,k with ci,k/ci and qi,k with ciqi,k.

This allows us to assume that ci ∈ 0, 1. Without loss of generality, we assume that

q1, ..., qN are Q-linearly independent. Indeed, any linear relation between q1, ..., qN

must also hold for q1,k, ..., qN,k, for all k. We can therefore substitute one of them,

say q1,k, with the same Q-linear combination of q2,k, ..., qN,k for all k. It is clear that

the conclusion does not change after such a substitution. It is now clear that for all

i we have ci = 0.

For any k ≥ 1,

Akfk =
N∑
i=1

ci,kAkqi,k =
N∑
i=1

ci,kAkΠkqi.

Since lim
k→∞

AkΠkqi = Aqi ∈ P+
as, we have, by Definition 8,

lim
k
Akfk =

N∑
i=1

ci,kAqi = 0.

This is precisely our claim.

This result can be interpreted as a statement of continuity for the operator A.

Let (Bk)k≥1 be another sequence of operators with the same property as (Ak)k≥1 and

denote by B : P+
as → P+

as the corresponding limit operator.
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Corollary 3.4.7. With the notation above, the operator AB is the limit of the se-

quence (AkBk)k≥1.

Proof. Let f ∈ P+
as. Since lim

k
BkΠkf = Bf ∈ P+

as, we can apply Proposition 3.4.6

to obtain

lim
k
AkBkΠkf = ABf ∈ P+

as,

which proves our claim.

Let us examine the following situation.

Lemma 3.4.8. Let f ∈ P+
as and i ≥ 1. The sequence W

(k)
i Πkf converges. We define

W
(∞)
i : P+

as → P+
∞, W

(∞)
i f = lim

k
W

(k)
i Πkf ∈ P+

∞.

Proof. It is enough to prove our claim for W1 and f = g(x1, . . . , xn)mα[Xn], for

some n ≥ 1, where g is a monomial and mα is the monomial symmetric function in

the indicated alphabet. If x1 divides g, then W1f = 0. We assume that x1 does not

divide g.

We denote by `(α) the length of the partition α. Of course, for any k ≥ n+ `(α),

we have

Πkmα[Xn] = mα[xn+1, . . . , xk].

If k ≥ n + `(α), denote by a1, . . . , as the distinct parts of α. Let βi, 1 ≤ i ≤ s

the partition obtained by eliminating one part of size ai from α. Then,

mα[xn+1, . . . , xk] =
s∑
i=1

k∑
j=n+`(α)

mβi [xn+1, . . . , xj−1]x
ai
j .
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Therefore, we have

W
(k)
1 Πkf = g(x1, . . . , xn)

s∑
i=1

k∑
j=n+`(α)

W
(k)
1 mβi [xn+1, . . . , xj−1]x

ai
j

= g(x1, . . . , xn)
s∑
i=1

k∑
j=n+`(α)

(tj − tj−1)qaixai1 mβi [xn+1, . . . , xj−1].

For a monomial m = xη1i1 · · ·x
ηM
iM

, n < i1 < · · · < iM , η1, . . . , ηM ≥ 1, we denote

`(m) = iM and we write m ∈ [β] if (η1, . . . , ηM) is a permutation of the partition β

and we write m ∈ [β]k if m ∈ [β] and `(m) ≤ k. With this notation, we have

W
(k)
1 Πkf = g(x1, . . . , xn)

s∑
i=1

∑
m∈[βi]k

(tk − t`(m))qaixai1 m

= g(x1, . . . , xn)

 s∑
i=1

tkqaixai1 mβi [xn+1, . . . , xk]−
s∑
i=1

qaixai1
∑

m∈[βi]k

t`(m)m


According to Definition 8,

lim
k
W

(k)
1 Πkf = −

s∑
i=1

qaixai1 g(x1, . . . , xn)
∑
m∈[βi]

t`(m)m ∈ P+
∞,

which proves our claim.

We can now prove the following.

Proposition 3.4.9. Let f ∈ P+
as and i ≥ 1. The sequence Y

(k)
i Πkf converges. We

define

Yi : P+
as → P+

∞, Yif = lim
k
Y

(k)
i Πkf ∈ P+

∞.

Proof. Straightforward from Proposition 3.4.4 and Lemma 3.4.8. More precisely,

Yi = Z̃
(∞)
i +W

(∞)
i .
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It turns out that the image of Yi is contained in P+
as. We will use the following

result.

Lemma 3.4.10. Let f ∈ Q(t, q)[xk+1, xk+2, . . . ] be a polynomial satisfying

Tif = f, for k + 1 ≤ i ≤ k +m.

Let g = T−1k+m . . . T
−1
k+1T

−1
k (xskf), for some s ≥ 0. Then,

Tig = g for k ≤ i ≤ k +m− 1.

Proof. The claim is a consequence of the braid relations for the elements Ti.

Lemma 3.4.11. P(k)+ is stable under the action of Y1. Therefore, we have

Yi : P+
as → P+

as.

Proof. Let f ∈ P(k)+. For any m > k + 1 we have

Ỹ
(m)
1 Πmf = tmω̄mT

−1
m−1 . . . T

−1
1 Πmf.

Since f ∈ P(k)+, Πmf is fixed under the action of Tk+1, . . . , Tm−1. Now, we have

ω̄mT
−1
m−1 . . . T

−1
1 Πmf = ω̄mT

−1
m−1 . . . T

−1
k+1T

−1
k (T−1k−1 . . . T

−1
1 Πmf),

and we may write

T−1k−1 . . . T
−1
1 Πmf =

∑
j

cj[x1, . . . , xk−1]x
sj
k fj

as a finite sum, where each fj is a polynomial in Q(t, q)[xk+1, xk+2, . . . ] satisfying

Tifj = fj, for i = k + 1, k + 2, . . . ,m− 1.
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Applying Lemma 3.4.10 for T−1k−1 . . . T
−1
1 Πmf , we obtain that T−1m−1 . . . T

−1
1 Πmf is

fixed under the action of the elements Tk, . . . , Tm−2. The relation (3.3.2.1) implies

that ω̄mT
−1
m−1 . . . T

−1
1 Πmf is fixed under the action of Tk+1, . . . , Tm−1. Therefore,

Ỹ
(m)
1 Πmf is symmetric in xk+1, . . . , xm for all m > k + 1. In conclusion, the limit

lim
m
Y

(m)
i Πmf ∈ P(k)+,

proving our claim.

We can now state the following.

Proposition 3.4.12. The space P+
as carries an action of the limit operators Ti, Xi, Yi,

i ≥ 1.

As we will show in Theorem 3.4.16, these operators define an action of H+ on

P+
as.

Remark. It is important to note that on xiP+
as the action of Yi is the stable limit of

the action of the sequence of Cherednik operators Y
(k)
i ∈ Hk.

In fact, we can obtain a more precise description of the action of Y1 on P(k)+.

First, let us record the following technical result.

Lemma 3.4.13. Let xn1 ∈ P+
m+1. Then,

tmT−1m ...T−11 xn1 =
n−1∑
i=0

xn−im+1hi[(1− t)Xm].

Proof. We will prove by induction on m. By direct computation we obtain

T−11 xn1 = t−1xn2 + (t−1 − 1)(xn−12 x1 + xn−22 x21 + ...+ x2x
n−1
1 )

= t−1
n−1∑
i=0

xn−i2 hi[(1− t)x1].
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Assume our claim holds for m− 1. Then, we have

tmT−1m ...T−11 xn1 = tT−1m

n−1∑
i=0

xn−im hi[(1− t)Xm−1]

=
n−1∑
i=0

n−i−1∑
j=0

xn−i−jm+1 hj[(1− t)xm]hi[(1− t)Xm−1]

=
n−1∑
l=0

xn−lm+1

∑
i+j=l
i,j≥0

hj[(1− t)xm]hi[(1− t)Xm−1]

=
n−1∑
l=0

xn−lm+1hl[(1− t)Xm],

as expected.

Recall that for all k, the multiplication map P+
k ⊗Sym[Xk] ∼= P(k)+ is an algebra

isomorphism.

Proposition 3.4.14. Let n ≥ 0, f(x1, . . . , xk−1) ∈ P+
k−1, and G[Xk−1] ∈ Sym[Xk−1].

We regard

F = f(x1, . . . , xk−1)x
n
kG[Xk−1]

as an element of P(k)+. Then,

Y1T1 · · ·Tk−1F =
tk

1− t
f(x2, . . . , xk)G[Xk+qx1](hn[(1−t)(Xk+qx1)]−hn[(1−t)Xk]).
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Proof. For any m > k + 1, we have

Ỹ
(m)
1 T1 · · ·Tk−1ΠmF = tmω̄mT

−1
m−1 . . . T

−1
k f(x1, . . . , xk−1)x

n
kG[X[k,m]]

= tkω̄mf(x1, . . . , xk−1)G[X[k,m]]t
m−kT−1m−1 . . . T

−1
k xnk

= tkω̄mf(x1, . . . , xk−1)G[X[k,m]]
n−1∑
i=0

xn−im hi[(1− t)X[k,m−1]]

= tkf(x2, . . . , xk)G[X[k+1,m] + qx1]

n−1∑
i=0

(qx1)
n−ihi[(1− t)X[k+1,m]].

Therefore, lim
m
Y

(m)
i T1 · · ·Tk−1ΠmF , equals

tkf(x2, . . . , xk)G[Xk + qx1]
n−1∑
i=0

(qx1)
n−ihi[(1− t)Xk]

=
tk

1− t
f(x2, . . . , xk)G[Xk + qx1]

(hn[(1− t)(Xk + qx1)]− hn[(1− t)Xk]),

proving our claim.

We establish the following result in preparation for the proof of Theorem 3.4.16.

Lemma 3.4.15. Let f ∈ P+
as. Then,

lim
k

[Ỹ
(k)
i , Ỹ

(k)
j ]Πkf = 0.
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Proof. First note that we can apply the following two relations recursively

[Ỹ
(k)
i , Ỹ

(k)
j ] = t−1Tj−1[Ỹ

(k)
i , Ỹ

(k)
j−1]Tj−1, for i > j,

[Ỹ
(k)
1 , Ỹ

(k)
i ] = t−1Ti−1[Ỹ

(k)
1 , Ỹ

(k)
i−1]Ti−1, for i > 2.

Hence it suffices to prove the result for [Ỹ
(k)
1 , Ỹ

(k)
2 ].

Recall that we have

[Ỹ
(k)
1 , Ỹ

(k)
2 ] = t2k−1γkT

−1
k−1...T

−1
1 T−1k−1...T

−1
2 = t2k−1γkT

−1
k−2...T

−1
1 T−1k−1...T

−1
1 .

Let f(x1, ..., xm)F [X] ∈ P(k)+, where F [X] is fully symmetric and non-zero. Then

for k > m we have

γkT
−1
k−1...T

−1
1 T−1k−1...T

−1
2 Πkf(x1, ..., xm)F [X]

= γkT
−1
k−1...T

−1
1 T−1k−1...T

−1
2 f(x1, ..., xm)F [Xk]

= γkF [Xk](T
−1
k−1...T

−1
1 T−1k−1...T

−1
2 f(x1, ..., xm))

= 0.

Therefore, in this case,

lim
k→∞

[Ỹ
(k)
i , Ỹ

(k)
j ]Πkf(x1, ..., xm)F [X] = 0.

It remains to compute the limit for f(x1, ..., xm) ∈ P+
m. Let k > m+ 1. Without

loss of generality, we may assume that

T−1m−2...T
−1
1 T−1m−1...T

−1
1 f(x1, ..., xm)
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is a monomial of the form xnmx
n′
m−1g(x1, ..., xm−2). If n > 0, we have

[Ỹ
(k)
1 , Ỹ

(k)
2 ]f(x1, ..., xm) = γkT

−1
k−2...T

−1
1 T−1k−1...T

−1
1 f(x1, ..., xm)

= γkT
−1
k−2...T

−1
m−1T

−1
k−1...T

−1
m

(T−1m−2...T
−1
1 T−1m−1...T

−1
1 f(x1, ..., xm))

= γkT
−1
k−2...T

−1
m−1T

−1
k−1...T

−1
m xnmx

n′

m−1g(x1, ..., xm−2)

= g(x1, ..., xm−2)γkT
−1
k−2...T

−1
m−1x

n′

m−1T
−1
k−1...T

−1
m xnm.

If n = n′ = 0 then [Ỹ
(k)
1 , Ỹ

(k)
2 ]f(x1, ..., xm) = 0. If n = 0 and n′ > 0, then by

Lemma 3.4.13

γkT
−1
k−2...T

−1
m−1x

n′

m−1

= tm−kγk

n′−1∑
i=0

xn
′−i
k−1 hi[(1− t)X[m−1,k−2]]

= tm−k
n′−1∑
i=0

hi[(1− t)X[m−1,k−2]]γkx
n′−i
k−1

= tm−k(1− t)
n′−1∑
i=0

hi[(1− t)X[m−1,k−2]](x
n′−i−1
1 x2 + · · ·+ x1x

n′−i−1
2 ).

Therefore, lim
k

[Ỹ
(k)
1 , Ỹ

(k)
2 ]f(x1, ..., xm) = 0.

If n′ = 0 and n > 0, then by Lemma 3.4.13

γkT
−1
k−2...T

−1
m−1T

−1
k−1...T

−1
m xnm = tm−kγkT

−1
k−2...T

−1
m−1

n−1∑
i=0

xn−ik hi[(1− t)X[m,k−1]].

By writing

hi[(1− t)X[m,k−1]] =
i∑

j=0

hi−j[(1− t)X[m−1,k−1]]hj[(t− 1)xm−1]
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and using again Lemma 3.4.13 for T−1k−2...T
−1
m−1x

j
m−1, we write

γkT
−1
k−2...T

−1
m−1T

−1
k−1...T

−1
m xnm

as

tm−k
n−1∑
i=0

γkx
n−i
k hi[(1− t)X[m−1,k−1]]

= tm−k(t− 1)
n−1∑
i=0

hi[(1− t)X[m−1,k−2]](x
n−i−1
1 x2 + · · ·+ x1x

n−i−1
2 ).

Therefore, lim
k

[Ỹ
(k)
1 , Ỹ

(k)
2 ]f(x1, ..., xm) = 0.

For the last case, n, n′ > 0, proceeding as in the previous case we obtain that

γkT
−1
k−2...T

−1
m−1x

n′

m−1T
−1
k−1...T

−1
m xnm

equals

tm−kγkT
−1
k−2...T

−1
m−1x

n′

m−1

n−1∑
i=0

xn−ik

i∑
j=0

hi−j[(1− t)X[m−1,k−1]]hj[(t− 1)xm−1].

Lemma 3.4.13 for T−1k−2...T
−1
m−1x

j
m−1 implies that [Ỹ

(k)
1 , Ỹ

(k)
2 ]f(x1, ..., xm) = 0.

We are now ready to prove our main result.

Theorem 3.4.16. The operators Ti, Xi, and Yi, i ≥ 1, define a H+-module structure

on P+
as.
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Proof. The relations that hold in the algebra H̃k also hold for the corresponding

limit operators by the repeated application of Corollary 3.4.7. Recall that the relation

3.2.1.1d and the first two relations in 3.2.1.1c also hold inside the algebras H̃k. The

only relations that do not transfer directly from those in H̃k are the commutation

relations between Yi and Yj. However, we do have

[Ỹ
(k)
i , Ỹ

(k)
j ] = t−1Tj−1[Ỹ

(k)
i , Ỹ

(k)
j−1]Tj−1, i > j,

[Ỹ
(k)
1 , Ỹ

(k)
i ] = t−1Ti−1[Ỹ

(k)
1 , Ỹ

(k)
i−1]Ti−1, i > 2.

These, by application of Corollary 3.4.7 imply the same relations for the limit oper-

ators

[Yi, Yj] = t−1Tj−1[Yi, Yj−1]Tj−1, i > j,

[Y1, Yi] = t−1Ti−1[Y1, Yi−1]Ti−1, i > 2.

Therefore, for any i, j, the commutativity of Yi and Yj follows from the commutativity

of Y1 and Y2. Fix f ∈ P+
as. Then, by Proposition 3.4.6 and Corollary 3.4.7,

[Y1, Y2]f = lim
k

[Ỹ
(k)
i , Ỹ

(k)
j ]Πkf,

which is 0 by Lemma 3.4.15.

We call this representation the standard representation of H+. As with the

standard representation of H−, we expect this representation to be faithful.
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4.0 Double Dyck path algebra

4.1 Dyck paths

We will now introduce the double Dyck path algebra. We will first introduce

the preliminaries about Dyck paths. Dyck paths are classical combinatorial objects

which occur in many areas in combinatorics.

4.1.1 Definitions

Definition 9. (Dyck path) A Dyck path of order n is a path in the n × n lattice

from (0, 0) to (n, n) that consists of n unit-length north steps and n unit-length east

steps, which stays weakly above the line y = x.

Note that a Dyck path may touch the main diagonal y = x but shall not travel

below the diagonal. The following figure shows a Dyck path of order 8.
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Figure 1: A Dyck path π of order 8

We will then define several combinatorial quantities associated to Dyck paths.

For a Dyck path π, we will denote by |π| its order (length). In the previous case,

we have |π| = 8. Then for each cell of the grid define its coordinates (i, j) to be

the coordinates of the top right corner. For instance, in the previous example, the

bottom left cell will have the coordinates (1, 1), and the top right cell will have the

coordinates (8, 8).

Then the area of a Dyck path π is defined as:

Area(π) = {(i, j)|i < j, (i, j) under π}, area(π) = #Area(π).

In other words, cells under the Dyck path π and strictly above the main diagonal

y = x will contribute to the area of π.

55



Now let aj denote the number of cells (i, j) in the row j. We define

Dinv(π) = {(j, j′)|1 ≤ j < j′ ≤ n, aj = aj′} ∪ {(j, j′)|1 ≤ j′ < j ≤ n, aj′ = aj + 1},

dinv(π) = #Dinv(π).

More explicitly, the set Dinv(π) will consist of all pairs of row numbers satifying

either of the following two conditions: either the two corresponding rows have ex-

actly same number of cells between the Dyck path and the main diagonal, or the

higher corresponding row has exactly one cell less than the lower corresponding row.

Furthermore, we use ordering to distinguish the two cases. In the previous case, we

will arrange the two entries in ascending order. In the latter case, we will arrange

them in descending order.

Let (x1, 1), (x2, 2), ..., (xn, n) be the cells immediately to the right of the North

steps with respect to the Dyck path π. Then the set Dinv(π) can be equivalently

interpreted as all pairs of numbers (j, j′) satisfying either of the following two con-

ditions: either j < j′, and the cells (xj, j) and (xj′ , j
′) are on the same subdiagonal,

where a subdiagonal is defined to be a straight line determined by the equation

y = x+ c for some constant c, or j > j′, and the cell (xj, j) is on the subdiagonal one

unit lower than that of the cell (xj′ , j
′). This alternative interpretation of the defi-

nition of Dinv allows us to quickly count the number of elements in the set, namely

dinv(π).

Let the touch compostion α = (α1, ..., αk) of π be defined as consisting of the

gaps between the points where π touches the diagonal. We will call this composition

touch(π).

As an exercise, in the previous example of a Dyck path, we have

� Area(π)={(1, 2), (3, 4), (4, 5), (5, 6), (5, 7), (5, 8), (6, 7), (6, 8), (7, 8)}, area(π)=9.
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� Dinv(π)={(1, 3), (2, 4), (2, 5), (2, 6), (4, 5), (4, 6), (5, 6)} ∪ {(3, 2)}, dinv(π)=8.

� touch(π)=(2, 6).

Definition 10. (Word parking function) Let π be a Dyck path of order n. A word

parking function with respect to π is a function

w : {1, 2, ..., n} → Z+,

such that whenever xj = xj+1 for some j ∈ {1, 2, ..., n−1}, we have w(j) > w(j+ 1).

We will also use wj to denote the evaluation w(j). The set of all word parking

functions associated to the Dyck path π will be denoted by WPπ.

Equivalently, we could regard a word parking function as an assignment of posi-

tive integers to the cells immediately to the right of the North steps, such that the

cells in the same column must obey a strictly increasing order from top to bottom.

The following figures illustrates an example of a word parking function with respect

to the Dyck path π we discussed earlier.

57



Figure 2: A word parking function w associated to π

We then define

Dinv(π,w) = {(j, j′) ∈ Dinv(π)|wj > w′j}, dinv(π,w) = #Dinv(π,w)

More explictly, the set Dinv(π,w) is a subset of Dinv(π) satisfying the extra condition

that the entry assigned the cell immediately to the right of the North step in the j-th

row is strictly greater than that of the j′-th row. Therefore for the example above,

we have

Dinv(π,w) = {(4, 5), (3, 2)}, dinv(π,w) = 2.

Then we will introduced the original form of the shuffle conjecture.
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Theorem 4.1.1.

∇en =
∑
|π|=n

∑
w∈WPπ

tarea(π)qdinv(π,ω)xw.

For example, the previous example will contribute to the term t9q2z21z
2
3z4z

2
5z7 on

the right hand side of the equation.

We could have the following compositional version of the shuffle conjecture as a

refinement of the original conjecture.

Theorem 4.1.2. [CM18]

∇Cα(1) =
∑

touch(π)=α

∑
|π|=n

∑
w∈WPπ

tarea(π)qdinv(π,ω)xw.

Denote the right hand side of the equation by Dα(X; q, t). By Proposition 2.3.2.2,

this is stronger than the original conjectrue. Carlsson and Mellit proved the com-

position version in [CM18] using the double Dyck path algebra structure. We will

introduce their proof in the following sections.

4.2 Double Dyck path algebra

4.2.1 Definitions

Notation. We will first define two quivers Q̇ and Q̈ and introduce some conventions.

Q̇ is defined to be the quiver with vertex set Z≥0, and for all k ∈ Z≥0 arrows d+

from k to k + 1, arrows d− from k + 1 to k, and for k ≥ 2 loops T1, ..., Tk−1 from k

to k. Note that, to keep the notation as simple as possible, the same label is used

to denote many arrows. To eliminate the possible confusion we adopt the following

convention.
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Convention. In all expressions involving paths in Q̇, unless specified otherwise,

we assume that all the expressions involve non-zero paths (that is, the constituent

arrows concatenate correctly to produce a non-zero path) that start at the node k

(fixed, but arbitrary).

Then define Q̈ as the quiver with vertex set Z≥0, and for all k ∈ Z≥0 arrows d+

and d∗+ from k to k + 1, arrows d− from k + 1 to k, and loops T1, ..., Tk−1 from k to

k. We will adopt the same labelling convention for paths in Q̈.

Figure 3: The quivers Q̇ and Q̈

Definition 11. The Dyck path algebra At is defined to be the quiver path algebra

over Q̇ subject to the following relations:

TiTj = TjTi, for 1 ≤ i < j ≤ k − 1 with |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, for i = 1, ..., k − 2,

(Ti − 1)(Ti + t) = 0, for i = 1, ..., k − 1,

(4.2.1.1a)

T1d
2
+ = d2+, d+Ti = Ti+1d+, for i = 1, ..., k − 2, (4.2.1.1b)

d2−Tk−1 = d2−, Tid− = d−Ti, 1 ≤ i ≤ k − 2. (4.2.1.1c)
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d−[d+, d−]Tk−1 = t[d+, d−]d−,

T1[d+, d−]d+ = td+[d+, d−],
(4.2.1.1d)

where [d+, d−] = d+d− − d−d+.

To facilitate the comparison with the DAHA, the parameters t, q in [Mel16,

Def. 3.1, 3.2] have been interchanged.

Definition 12. The double Dyck path algebra At,q is defined to be the quiver path

algebra over Q̈ subject to the following relations:

1. relations (4.2.1.1a), (4.2.1.1b), (4.2.1.1c) and (4.2.1.1d),

2.

T1(d
∗
+)2 = (d∗+)2, d∗+Ti = Ti+1d

∗
+, for i = 1, ..., k − 2, (4.2.1.2a)

td−[d∗+, d−] = [d∗+, d−]d−Tk−1,

t[d∗+, d−]d∗+ = T1d
∗
+[d∗+, d−].

(4.2.1.2b)

3. the cross relations:

d+zi = zi+1d+, d∗+yi = yi+1d
∗
+, for i = 1, ..., k − 1,

z1d+ = −qtk+1y1d
∗
+,

(4.2.1.3)

where loops yi and zi from k to k for 1 ≤ i ≤ k are defined as

y1 =
1

tk−1(t− 1)
[d+, d−]Tk−1...T1,

yi+1 = tT−1i yiT
−1
i , for 1 ≤ i ≤ k − 1,

z1 =
tk

1− t
[d∗+, d−]T−1k−1...T

−1
1 ,

zi+1 = t−1TiziTi, for 1 ≤ i ≤ k − 1.
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Remark. There exists an involution ρ : At,q → At,q defined as

T−1i 7→ Ti, d− 7→ d−, d
∗
+ 7→ d+, t

−1 7→ t, q 7→ q−1.

Viewing At as a subalgebra of At,q, we will denote by At−1 the image of this subalgebra

under the involution ρ.

To shed light on the resemblance between At and affine Hecke algebras, we have

the following proposition.

Proposition 4.2.1 ([Mel16],Proposition 3.1). The loops yi’s and zi’s satisfy the

following relations:

yiTj = Tjyi, for i 6= j, j + 1

yi+1 = tT−1i yiT
−1
i , for 1 ≤ i ≤ k − 1,

yiyj = yjyi, for 1 ≤ i, j ≤ k,

(4.2.1.4)

yid− = d−yi, for 1 ≤ i ≤ k − 1

d+yi = T1...TiyiT
−1
i ...T−11 d+, for 1 ≤ i ≤ k,

(4.2.1.5)

ziTj = Tjzi, for i 6= j, j + 1

zi+1 = t−1TiziTi, for 1 ≤ i ≤ k − 1,

zizj = zjzi, for 1 ≤ i, j ≤ k,

(4.2.1.6)

zid− = d−zi, for 1 ≤ i ≤ k − 1

d∗+zi = T−11 ...T−1i ziTi...T1d
∗
+, for 1 ≤ i ≤ k,

(4.2.1.7)
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Remark. Note that the relations (4.2.1.4) match the generating relations of the

affine Hecke algebra AHAk of type GLk, which will be defined later. But since

y1, ..., yk are not defined to be invertible, At will only contain a copy of the polynomial

part AHA+
k of AHAk.

Similarly, we see that the loops T−11 , ..., T−1k−1 and z1, ..., zk will generate a copy of

AHA+
k with parameter t−1.

The proof of the shuffle conjecture relies on two representations of At and At,q

respectively defined as follows.

Proposition 4.2.2 ([Mel16], Proposition 3.2, 3.3). The following operations define

an action of At,q on

V∗ =
⊕
k

Vk =
⊕

Q(q, t)[y1, ..., yk]⊗ Sym[X].

TiF = siF + (1− t)yi
F − siF
yi − yi+1

,

d−F = F [X − (t− 1)yk]Exp[−y−1k X]

∣∣∣∣
const(yk)

,

d+F = −T1...Tk(yk+1F [X + (t− 1)yk+1],

d∗+F = γF [X + (t− 1)yk+1],

(4.2.1.8)

where F ∈ Vk, F |const(yk) means taking the constant term of F with respect to yk, and

all the operators correspond to arrows originating at node k. Note that the action

defined above may restrict to an action of At on V∗.

Corollary 4.2.3. Let the action of At,q on V∗ be defined as above. Then yi for

1 ≤ i ≤ k will act on Vk as the left multiplication by yi.
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4.2.2 The shuffle theorem

We will then briefly explain the proof of the shuffle theorem in [CM18]. First we

need to slightly modify the At,q representation on V∗ as the following:

TiF = siF + (1− t)yi
F − siF
yi − yi+1

,

d′−F = −ykF [X − (t− 1)yk]Exp[−y−1k X]

∣∣∣∣
const(yk)

,

d′+F = T1...Tk(F [X + (t− 1)yk+1],

d∗+F = γF [X + (t− 1)yk+1],

(4.2.2.1)

Note that we use d′− and d′+ to distinguish the different actions. As explained in

[Mel16], we have

Proposition 4.2.4. Let M : Vk → Vk be the operator of multiplication by

(−1)ky1...yk

for each k ≥ 0. Then we have

Md′− = d−M, Md′+ = d+M, Myi = yiM.

Therefore, as M is injective, statements for the original representation could be

used to deduce statements for the modified representation.

We will then quote the main recursion formula.

Proposition 4.2.5. Let α be a composition of length l. Then we have

Dα(q, t) = (d′−)l(Nα),

where Nα ∈ Vl is defined by the following recursion formulae:

N∅ = 1, N1α = d′+Nα, Naα =
ta−1

q − 1
[d′−, d

′
+]
∑
β`a−1

(d′−)l(β)−1Nαβ.
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Now consider the antilinear automorphism N on V∗ induced by the involution ρ.

Then we have the following important result.

Theorem 4.2.6. Let the antilinear automorphism N : V∗ → V∗ induced by the

involution ρ be defined as

N (1) = 1, NTi = T−1i N , Nd′− = d′−N , Nd′+ = d∗+N , N yi = z′iN .

Then we have the following properties

1.

N (yα) = t
∑

(αi−1)Nα,

2.

ND1 = −e1N ,

3. Let winv be the involution sending q, t,X to q−1, t−1,−X respectively. Then

N|V0 = ∇winv.

Therefore as by a simple computation

Dα(q, t) = (d′−)k(Nα) = (d′−)k(N (t|α|−kyα))

= N (d′−)k(t|α|−kyα)

= NwinvCα(1) = ∇Cα(1).

We see the conjecture is true.
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5.0 Stable limit DAHA and DDPA

In this chapter we will describe the connection between the stable limit of the

action of H̃+
k on P+

as and the action of At,q on V∗. Note that the elements in P(k)

consist of elements of P which are symmetric in the alphabet Xk = xk+1 +xk+2 + ....

Therefore each P(k) can be easily related to Vk. This leads to a relationship between

P+
as and V∗.

5.1 Induced At,q action

We will first have to construct an action of At,q on a complex of vector spaces

extracted from P+
as.

5.1.1 Action on P∗

We will use the standard representation of H+ to construct a quiver representa-

tion of At,q. Let

P• = (P(k)+)k≥0.

For k ≥ 0, recall that we denote by H+(k) the subalgebra of H+ generated by

Ti, Xi, and Yi, 1 ≤ i ≤ k. From Lemma 3.4.11 we know that each P(k)+ is stable

under the action of H+(k) through the standard representation of H+. For all k, the

multiplication map P+
k ⊗ Sym[Xk] ∼= P(k)+ is an algebra isomorphism.

The elements

ω̃−1k , ω−1k ∈ H
+
k
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act on P+
k via the standard representation of H+

k (see Proposition 3.1.3). We extend

their action to P(k)+ as Sym[Xk]-linear maps. Let

ι(k) : P(k)+ → P(k + 1)+

be the canonical inclusion map. Denote

∂k = −ω̃−1k+1ι(k) : P(k)+ → P(k + 1)+ and ∂∗k = ω−1k+1ι(k) : P(k)+ → P(k + 1)+.

Recall that the Hall-Littlewood symmetric functions Pλ(X, t) are a distinguished

basis of the ring of symmetric functions Sym[X], indexed by partitions λ. There

is a remarkable family of linear operators Bn, n ≥ 0, and B∞ on Sym[X], defined

as follows. B∞ is the operator of left multiplication by the elementary symmetric

function e1[X] = X and B0 is the operator defined by

B0Pµ(X, t−1) = t`(µ)Pµ(X, t−1).

For n ≥ 0, let Bn+1 := [B∞,Bn].

The operator

∂−k : P(k)+ → P(k − 1)+

is defined to be the P+
k−1-linear map which, on elements of the form xnkF [Xk] acts as

∂−k (xnkF [Xk]) = BnF [Xk−1].

The operators Bn, n ≥ 0, are creation operators for the Hall-Littlewood sym-

metric functions. They are (modulo a change of variable) the vertex operators in

[Jin91] (see also [Mac15, §III.5, Exp. 8]). They are particular cases of more general
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operators (as in [GHT99,BGSLX16b]) depending of both parameters q, t, which can

be described more explicitly using plethystic substitution. In our case,

BnF [X] = (F [X − z−1]Exp[−(t− 1)zX])∣∣zr ,
where ∣∣zr denotes the coefficient of zr in the indicated expression. The expression

for B0 implies the indicated formula for Bn, n ≥ 1 (see, e.g., [GHT99, Proposition

1.4]). B0 is the q = 0 specialization of the operator ∆′ in [Hai99, (2.10)]. The fact

that the Hall-Littlewood symmetric functions are eigenfunctions of this operator is

proved in [Hai99, Corrolary 2.3]. This leads to the following compact expression for

∂−k . Let f(x1, . . . , xk) ∈ P+
k and F [Xk] ∈ Sym[Xk]. Then,

∂−k f(x1, ..., xk)F [Xk] = τkcxk(f(x1, ..., xk)F [Xk−xk]Exp[−(t− 1)x−1k Xk]), (5.1.1.1)

where τk denotes the alphabet shift Xk 7→ Xk−1 (or xi+1 7→ xi for all i ≥ k). This

description makes it clear that, if F [Xk−1] ∈ Sym[Xk−1] then

∂−k F [Xk−1] = F [Xk−1]. (5.1.1.2)

By writing any F [Xk] ∈ Sym[Xk] as F [Xk−1−xk] we see that the elements of P(k)+

can be written as finite sums of the form∑
fi(x1, . . . , xk−1)x

i
kGi[Xk−1]. (5.1.1.3)

By (5.1.1.1), on such an expression, ∂−k acts as

∂−k
∑
i

fi(x1, . . . , xk−1)x
i
kGi[Xk−1] =

∑
i

fi(x1, . . . , xk−1)Gi[Xk−1]∂
−
k x

i
k (5.1.1.4)

To facilitate the comparison between the operators Xi, Yi and [∂, ∂−], [∂∗, ∂−] we

record the following formulas.
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Lemma 5.1.1. For any k ≥ 1 we have

∂k−1∂
−
k − ∂

−
k+1∂k = (t− 1)ω̃−1k . (5.1.1.5)

Proof. The proof of this equality is identical to the one in the proof of [CM18,

Lemma 5.4]; we include a brief explanation for the reader’s convenience. Using the

relations (4.2.1.1c), we have

∂k−1∂
−
k − ∂

−
k+1∂k = −T1 · · ·Tk−1Xk∂

−
k + T1T2 · · ·Tk−1∂−k+1TkXk+1

= T1 · · ·Tk−1Xk(−∂−k + ∂−k+1T
−1
k ).

The operator −∂−k + ∂−k+1tT
−1
k acts on P(k)+ as scaling by (t− 1). By (5.1.1.4) this

only needs to be for the action on xnk , n ≥ 0. We have,

∂−k+1tT
−1
k xnk − ∂−k x

n
k = ∂−k+1x

n
k+1 + (1− t)

n−1∑
i=1

xik∂
−
k+1x

n−i
k+1 − ∂

−
k x

n
k

= hn[(1− t)Xk] + (1− t)
n−1∑
i=1

xikhn−i[(1− t)Xk]− hn[(1− t)Xk−1]

= −(1− t)xnk .

This proves our claim.

Lemma 5.1.2. Let k ≥ 1, n ≥ 0, f(x1, . . . , xk−1) ∈ P+
k−1, and G[Xk−1] ∈ Sym[Xk−1].

We regard

F = f(x1, . . . , xk−1)x
n
kG[Xk−1]

as an element of P(k)+. Then,

(∂∗k−1∂
−
k −∂

−
k+1∂

∗
k)F = f(x2, . . . , xk)G[Xk+qx1](hn[(1−t)(Xk+qx1)]−hn[(1−t)Xk]).

(5.1.1.6)
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Proof. Straightforward from (5.1.1.2) and the definition of ∂∗, ∂−.

We then describe the At,q-module structure on P•.

Theorem 5.1.3. The map that sends Ti, d+, d∗+, and d− to Ti, ∂, ∂∗, and ∂−,

respectively, defines a At,q-module structure on P•. Under this action, the operators

yi, zi act as Xi, Yi.

It is important to note that while the operators corresponding to arrows con-

necting different nodes are local (i.e. dependent on k), the operators Ti, Xi, Yi that

correspond to loops are global (i.e. independent of k, as they are restrictions of

operators on P+
as).

Proof. The fact that the operator

y1 =
1

tk−1(t− 1)
[d+, d−]Tk−1 . . . T1,

acts on P(k)+ as X1 follows from (5.1.1.5). Therefore, for all i ≥ 1, the operator yi

acts as Xi.

Furthermore, from (5.1.1.3), (5.1.1.6), and Proposition 3.4.14 we obtain that

z1T1 · · ·Tk−1 =
tk

1− t
[d∗+, d−]

acts on P(k)+ as Y1T1 · · ·Tk−1. Therefore, z1 acts on P(k)+ as Y1 and, for all i ≥ 1,

the operator zi acts as Yi.

The verification of many of the relations in Definition 4.2.1.2 is virtually identical

to the corresponding verification in [CM18]. We briefly indicate the main details.

The fact that (4.2.1.1a) holds is clear (also part of Theorem 3.4.16). For the first

relation in (4.2.1.1c) see the proof of the corresponding relation in [CM18, Lemma

5.3]; the second set of relations in (4.2.1.1c) is clear from the definition of the maps
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involved. For (4.2.1.1b), recall the expressions for ω̃−1k . With this in mind, the first

relation in (4.2.1.1b) follows from the equality

T1 · · ·Tk+1T1 · · ·Tk = T2 · · ·Tk+1T1 · · ·Tk+1, (5.1.1.7)

which is a consequence of the braid relations. Indeed,

T1∂k+1∂k = T1T1 · · ·Tk+1T1 · · ·TkXkXk+1

= T1T2 · · ·Tk+1T1 · · ·Tk+1XkXk+1,

which on P(k)+ acts as T1T2 · · ·Tk+1T1 · · ·TkXkXk+1 = ∂k+1∂k. The second set of

relations in (4.2.1.1b) is again a straight consequence of the braid relations.

For the relations (4.2.1.1d), remark that (5.1.1.5), (4.2.1.1c), and the fact that

∂−k commutes with X1 implies the first relation in (4.2.1.1d). The second relation in

(4.2.1.1d) follows from (5.1.1.5) and (5.1.1.7).

The first relation on (4.2.1.2a) is a consequence of the fact that an element in the

image of ∂∗k+1∂
∗
k is symmetric in x1, x2. The second relation in (4.2.1.2a) is essentially

(3.1.2.2b).

For the first relation in (4.2.1.2b) can be seen (with the help of (4.2.1.1c)) to be

equivalent to

Y1∂
−
k = ∂−k Y1. (5.1.1.8)

The commutativity relation is not immediately clear from the definition of the op-

erators involved. We proceed as in the proof of [CM18, Proposition 6.3]. More
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precisely,

(t+ 1)(∂−[∂∗, ∂−]Tk−1 − t[∂∗, ∂−]∂−)

= (t+ 1)∂−∂∗∂−(Tk−1 + t)− t∂∗(∂−)2(Tk−1 + t− Tk−1 + 1)

+ (∂−)2∂∗(Tk−1 + t− Tk−1 + 1)

= ((t+ 1)∂−∂∗∂− − t∂∗(∂−)2 + (∂−)2∂∗)(Tk−1 + t)

= (∂−[∂∗, ∂−]− t[∂∗, ∂−]∂−)(Tk−1 + t).

For the second equality we used the relations (4.2.1.1c) and (4.2.1.2a). The image of

Tk−1 + t lies on the kernel of Tk−1 − 1. Therefore, it is enough to check that

∂−[∂∗, ∂−] = t[∂∗, ∂−]∂−

on P(k − 1)+ ⊂ P(k)+. By (5.1.1.4), ∂− acts as identity on P(k − 1)+ ⊂ P(k)+.

After examining the action of both sides of the relation on elements in P(k − 1)+ ⊂

P(k)+ of the form (5.1.1.3) we see that it is enough to establish the equality for the

action on the elements xnk−1x
m
k + xmk−1x

n
k , n,m ≥ 0. The rest of the argument in

[CM18, Proposition 6.3] applies to conclude the verification of the first relation in

(4.2.1.2b).

For the second relation in (4.2.1.2b) we proceed as follows. By examining the

action of both sides of the relation on elements of the form (5.1.1.3) we see that it is

enough to establish the equality for the action on the elements xnk , n ≥ 0. By direct

computation,

[∂∗, ∂−]∂∗xnk = hn[(1− t)Xk+1 + (1− t)qx1]− hn[(1− t)Xk+1]

and

T1∂
∗[∂∗, ∂−]xnk = hn[(1−t)Xk+1+(1−t)qx1+(1−t)qx2]−T1hn[(1−t)Xk+1+(1−t)qx1],
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from which the claimed equality can be readily verified.

The second relation in (4.2.1.3) is precisely (3.1.2.2c). For the first relation in

(4.2.1.3), it is enough to verify the case i = 1, that is

ω̃−1k+1Y1 = Y2ω̃
−1
k+1.

Using the first expression for ω̃−1k+1, this reduces to (3.2.1.1d).

The last relation is proved as follows

qtk+1X1ω
−1
k+1 = tk+1ω−1k+1Xk+1

= tk+1$k+1Xk+1

= Y1T1 · · ·TkXk+1

= Y1ω̃
−1
k+1.

Therefore,

Y1∂k = −qtk+1X1∂
∗
k+1,

as desired.

5.1.2 Isomorphism

We conclude with the comparison of the representations of At,q in Proposition

4.2.1.8 and Theorem 5.1.3. Let us first define

Φ• = (Φk)k≥0 : P• → V•,

as follows

Φk : P(k)+ ∼= P+
k ⊗ Sym[Xk]→ Vk; xi 7→ yi, 1 ≤ i ≤ k; Xk 7→

X

t− 1
.

We note that each Φk is a Q(t, q)-algebra isomorphism.
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Theorem 5.1.4. Φ• is an isomorphism of At,q-representations.

Proof. We clearly have ΦkTi = TiΦk for all 1 ≤ i ≤ k − 1. We will check that the

action of d+ satisfies the following equality

d+,kΦk = Φk+1d+,k.

Therefore we only need to prove the correspondence for d+, d
∗
+, d−.

Let F = xt11 ...x
tk
k f [Xk] ∈ P(k)+. We have,

d+,kΦkF = d+,ky
t1
1 ...y

tk
k f [

X

t− 1
]

= −T1...Tk(yt11 ...y
tk
k yk+1f [

X + (t− 1)yk+1

t− 1
])

= −T1...Tk(yt11 ...y
tk
k yk+1f [

X

t− 1
+ yk+1])

= −Φk+1(T1...Tkx
t1
1 ...x

tk
k xk+1f [Xk+1 + xk+1])

= −Φk+1(T1...TkXk+1(x
t1
1 ...x

tk
k f [Xk]))

= Φk+1d+,kF.

Similar computations show that d∗+,kΦk = Φk+1d
∗
+,k and d−,kΦk = Φk−1d−,k.

5.2 Operators on P(0)+

We will then describe the remarkable operators on P(0)+.
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5.2.1 Remarkable operators ∇̃ and D̃0

Proposition 5.2.1. Let

∇̃ = Φ−10 ∇Φ0 : P(0)→ P(0).

Then we have

∇̃Pλ[X; q, t−1] = tn(λ)qn(λ
′)Pλ[X; q, t−1].

Proof. Note that we have the identity

qn(λ)Jλ[
X

1− q−1
; t, q−1] = H̃λ[X; t, q]

= H̃λ′ [X; q, t]

= tn(λ
′)Jλ′ [

X

1− t−1
; q, t−1].

Hence we have

H̃λ[(t− 1)X; t, q] = tn(λ
′)Jλ′ [tX; q, t−1].

Therefore

∇̃Jλ′ [tX; q, t−1] = Φ−10 ∇t−n(λ
′)H̃λ[X; t, q]

= Φ−10 t−n(λ
′)tn(λ

′)qn(λ)H̃λ[X; t, q]

= tn(λ
′)qn(λ)Jλ′ [tX; q, t−1].

Now as a J-polynomial is a homogeneous symmetric polynomial coming from a

scaling of the P -polynomial with the scalar only depending on the partition λ, the

formula above leads to the following

∇̃Pλ[X; q, t−1] = tn(λ)qn(λ
′)Pλ[X; q, t−1].
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With a similar argument, we have

Proposition 5.2.2. Let

D̃0 = Φ−10 D0Φ0 : P(0)→ P(0).

Then

D̃0Pλ[X; q, t−1] = −Dλ(t, q)Pλ[X; q, t−1],

where

Dλ(t, q) = −1 + (1− t)(1− q)
∑
c∈λ

tcoarmλ(c)qcolegλ(c).

Meanwhile, we may also define the operator D̃k plethystically as follows.

Proposition 5.2.3. We have

D̃kF [X] = ckF [X − (1− q)
z

]Exp[(1− t)zX].

Proof.

D̃kF [X] = Φ−10 DkF [
X

t− 1
]

= Φ−10 ckF [
X + (t− 1)(q − 1)/z

t− 1
]Exp[−zX]

= ckF [X +
(1− q)
z

]Exp[−(t− 1)zX].

As an analogy of 2.3.2.1, we could also have the following properties for D̃k.

Proposition 5.2.4.

D̃ke1 − e1D̃k = (1− q)(1− t)D̃k+1, for all k ≥ 0,

D̃0e1 − e1D̃0 = −(1− q)(1− t)∇̃e1∇̃−1.
(5.2.1.1)

We would expect ∇̃ can be similarly realized by an automorphism. Therefore

the shuffle theorem can be analogously translated.
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