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Abstract—This paper presents the idea of multiscale
parametrization for tropospheric refractivity inversion using
gradient-based optimization method. Our motivation is to im-
prove the accuracy of inversion without the use of apriori
information. We retrieve the details of the refractivity distribution
progressively from large to smaller scales using hierarchical mul-
tiscale strategies in the admissible parameter space. The proposed
formulation for multiscale adjoint tomography is validated and
is confronted to a numerical test. This study shows that such
strategies can potentially resolve complex ducting conditions
which would otherwise fail a plain gradient-based inversion.

Index Terms—Inverse Problems; Troposphere Propagation;
Multiscale Adjoint Method.

I. INTRODUCTION

Radar coverage in maritime environment depends on am-
bient refractive index in the lower troposphere. Non-standard
refractivity variations may create anomalous propagation con-
ditions which diminish performance of seaborne surveillance
platforms. In order to provide the platform with real-time
situational awareness about radar coverage, Refractivity-From-
Clutter (RFC) is proposed [1]. The goal of RFC is to invert
ambient refractivity from sea surface radar clutter [2].

The inverse problem is driven by the simulations of
Parabolic Wave Equation (PWE). Initial RFC techniques have
required lots of PWE simulations, so their scope has been lim-
ited to the problems with small parameter dimension [3]. Since
the work in [4], high-dimensional RFC problems are solved
efficiently using the adjoint state method. The last decade
has seen progress in the development of adjoint-based RFC
techniques (e.g., [5]) commonly relying on regularization.

The inversion of refractive index in PWE is a complex
nonlinear ill-posed problem. The mitigation of nonlinearity
and ill-posedness is searched by guessing what the missing
information about the problem might be so that the solutions
become physical. Accordingly, regularization and space reduc-
tion techniques have been used in RFC systems. Their advan-
tage is that many non-physical local minima can be avoided
during gradient-based optimization iterations. However, one
may not always have quality apriori information to choose the
regularization technique and construct the reduction basis.

Instead, we are interested in exploring the advantages of
using Multiscale Parametrization Techniques (MPT) in RFC.
We are motivated by the contribution of multiscale strategies
in recent progress in acoustic full-waveform inverse problem
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Fig. 1. Schematic of the bistatic configuration. Initial field φ(z) propagates
rightward in horizontally stratified atmosphere, which is characterized with
refractivity m(z). Our goal is to retrieve m(z) from wavefield measurements
obtained with receiver array at distance R from the known source.

in geophysics (e.g., [6]). In this paper, we apply the multiscale
strategy in the parametrization, being inspired from the ideas
in [7]. As an intermediate step towards RFC, we work on
the 2-D tomography problem which is illustrated in Fig. 1, as
in [4]. This choice is firstly due to that there is still work
in progress for both RFC and tomography problems even
in 2-D configuration. Secondly, the tomography problem is
less complex problem than RFC, so analyzing it can help us
develop real-time accurate RFC systems.

Our objective is to investigate the potential of MPT to
mitigate the nonlinearity of the problem in our context, prior
to curing the ill-posedness using regularization [6], [7]. In
this work, we propose the recipe for multiscale least-squares
inverse problem using adjoint state method for wide-angle
parabolic equation. The novelty of this work is in the innova-
tive solution proposed for the high-dimensional tomography
problem discussed in [4], by tailoring the multiscaling idea
in [7] and by fusing it with the method developed in [8],
so as to build an improved refractivity inversion strategy
which ideally works without the need for apriori information
about the ambient conditions. We validate our strategy and
show the improvement through the inversion of synthetic data.
The problem is formulated in Section II and validation and
inversion results are given in Section III.

II. MODELING

We study the problem of inferring the atmosphere from
wavefield measurements obtained in the bistatic configuration



illustrated in Fig. 1, which is called the tomography problem
in this paper. From a known source, initial field propagates
towards a vertically-positioned receiver array in horizontally
stratified atmosphere. The refracted propagating field is mea-
sured with this receiver array at several altitude points at a
distance from the source. Our goal is to invert the refractivity
of the atmosphere from the wavefield measurements obtained
with receiver array, for given source and ground conditions.
We invert synthetically-generated data because we do not have
access to real-world measurements. In this section, we present
the formulations defining this inverse problem and describe
our solution strategy.

A. Standard Adjoint-based Tomography

We are interested in the estimation of the refractivity coef-
ficient m(z) of the wide-angle parabolic wave equation given
below [9]:

∂ru+ j

[
k0(m(z)− 1) +

(√
k2

0 + ∂2
z − k0

)]
u = 0, (1a)

u(0, z) = φ(z), (1b)
u(r, 0) = 0. (1c)

In (1), the state function u(r, z) ∈ C is related to the electric
or magnetic field propagating at frequency f = k0c/2π
through a medium with refractive index m(z).

The refractivity function m(z) is inferred from synthetically
generated wavefield measurements taken vertically at a given
distance R from the known source at all altitude points in
domain Ω = [0, R]× [0, Z] as given in Fig. 1. In this scenario,
we assume that we do not have access to the phase of the
complex function u during measurements. In this case, the
inverse problem is formulated as the minimization of the
square error functional over parameter m as given below:

min
m∈Mad

J(m) =
1

2

∫ Z

0

∣∣|usim
m (R, z)|2 − dobs

∣∣2 dz. (2)

In the cost function (2), dobs is the synthetically generated
measurement function in interval z ∈ [0, Z] using mOBJ such
that dobs = |usim

mOBJ
(R, z)|2 by solving (1). The cost function

is minimized using gradient-based optimization method (see
[4] for a worked example). The gradient of the cost function
J(m) with respect to control parameter m is given below as
proposed by [8]:

∇mJ = <

{
jk0

∫ R

0

wm(r, z) · um(r, z) dr

}
. (3)

The function wm(r, z) ∈ C is the adjoint function of the first
order sensitivity of u with respect to m. It is the solution of
the following equation as proposed by [8]:

∂rwm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]
wm = 0, (4a)

wm(R, z) = 2
(
|um(R, z)|2 − dobs

)
um(R, z), (4b)

wm(r, 0) = 0. (4c)

Solving (2) for high-dimensional m is a highly ill-posed
problem even in the absence of modeling or measurement
errors and noise [4]. In the next section, we explain how
to apply the search space reduction technique to reduce the
complexity of (2), referring the works in [6], [7].

B. Search Space Reduction

The motivation behind the search space reduction is to
increase the efficiency of optimization. In the context of this
study, search space reduction can be used for reducing the
dimensionality of the problem so as to explore the search space
in a well-organized economical fashion. Besides, the interest
can be to restrict the search direction such that some non-
physical local minima are avoided, or inversion parameters are
polished (e.g. filtered, regularized) [6]. The reader is referred
to [6] for further information about these ideas.

Subspace approaches are used for the investigation of search
space reduction as described in [6]. For this study, a parameter
model perturbation m̃ ∈ RNz can be restricted to lie in an NL-
dimensional subspace of RNz . This subspace is spanned by the
vectors {ai}i=1,...,NL

, with NL < NZ . Then, m̃ is given by:

m̃ =

NL∑
i=1

qiai = Aq. (5)

Here, qi ∈ RNL are the new parameters of inversion and A =
[a1, ..., aNL

] ∈ RNz×NL is the reduction basis [6].
In the context of RFC, subspace methods have typically

looked for a good choice of reduction basis so that the
atmosphere is resolved with an acceptable agreement to the
observation. To achieve this, apriori knowledge about the
atmosphere is required [10], [11]. However, our goal here
is not to solve the entire of a particular type of problem
with the best reduction basis. Instead, we look for a generic
method to obtain a good starting point which represents the
global structure of the atmosphere. This can be later used
for retrieving a more detailed description of the atmosphere.
Therefore, it is sufficient if our basis functions could capture
roughly the global structure of the ambient refractive index at
a given resolution level.

The gradient at this reduced resolution level can be com-
puted efficiently by using (3). The gradient of the cost function
J̃(q) in this reduced space with respect to q can be inherited
from the ∇mJ(m) in (3) using the chain rule:

J̃(q) := J(Aq) then ∇qJ̃(q) = AT ∇mJ(m). (6)

The term ∇qJ̃(q) ∈ RNL is called the reduced gradient at
multiscale parametrization level L in this paper.

Since the reduced gradient is restricted as a function of
the reduction basis, the inversion accuracy depends on the
choice of the basis. In the next section, we introduce an
optimization strategy to reduce the importance of finding the
best reduction basis in order to represent the ambient refractive
index, following the ideas in [7] about multiscale strategies.



C. Multiscale Strategy for Adjoint-based Tomography

Proper parametrization of the model m(z) can drastically
change the performance of inversion algorithm. However in
practice, it is difficult to compare different parametrizations or
reduction bases and select the best, without the use of apriori
information about the atmosphere. Nevertheless, a multiscale
approach can be used for weakening the dependence of the
inversions on the reduction basis progressively. Additionally,
such approaches can mitigate the nonlinearity of the inverse
problem [7], [12].

Multiscaling with hierarchical refinement strategy in the
admissible parameter space is employed in this work. Such
strategy can use (6) to optimize efficiently i.e., starting from
an initial guess, next scale inherits the inverted parameters at
the previous scale as its initial guess. In the next sections, we
explain how this is accomplished in an example scenario.

III. NUMERICAL ANALYSIS

In this section, we validate the proposed methodology and
apply it to the inversion of synthetically generated data. More
details on the simulation and the validation can be found
in [13].

A. Computational Setup

The computational domain ΩNr,Nz
has the dimensions R =

10 km and Z = 150 m. It is discretized with a uniform grid
with numbers of discretizations Nr = 101 and Nz = 151.
The initial condition φ(z) is given by the complex-point source
positioned at (rs, zs) = (−100 m, 25 m) with width of 5 m and
radiation frequency of fs = 2 GHz at horizontal polarization.

Refractivity m is described via modified refractivity M
given by M(z) = (m(z) − 1) × 106. The objective and the
initial modified refractivity parameters are denoted by MOBJ
and MIG respectively in Fig. 3a . Refractivity does not vary
with range. The finite dimensional refractivity parameter m of
the simulations is computed at grid nodes, i.e., m ∈ RNz .
Consequently, we aim at inverting Nz = 151 refractivity
parameters.

Reduced refractivity q is mapped to m using piecewise-
linear basis function. Parameter q is equidistantly distributed
in altitude and m is computed using linear interpolation on q.

The functions um and wm in (1) and (4) are estimated
numerically using split-step wavelet technique [14]. The field
is apodized with the Hanning window for z > Z. The ground
is modeled using local image method. So as to improve the
accuracy of the numerical method, we have used the splitting
scheme given below [14], [9]:

u|r+∆r,z= eB/2T −1
{
PT

{
eB/2u|r,z

}}
, (7)

where B = {−jk0(m − 1)∆r} is the term accounting for
the atmosphere, T is the wavelet transform operator with
compression, T −1 is the inverse wavelet transform, and P
is the operator modelling the free-space propagation in the
wavelet domain. The adjoint field is computed using the same
numerical method.
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(b) Validation of multiscale adjoint
gradient function (6).

Fig. 2. Gradients estimated with the finite differences (FD) and the adjoint
model (AM). The curves follow the synoptic structure of each other, so the
multiscale adjoint method is validated.

The synthetic data is generated from function u by solving
the forward model (1) for given objective parameter model
mOBJ using the split-step wavelet technique [14] with the split-
ting scheme (7). The numerical settings of the forward model
used during inversions, as described earlier in this section, is
the same as the one used during the synthetic data generation.
Finite dimensional observation dobs = |usim

mOBJ
(R, z)|2 is sam-

pled at each grid node in interval z ∈ [0, Z] at range R, i.e.,
dobs ∈ RNz . The inversion aims at retrieving MOBJ ∈ RNz by
minimizing (2) iteratively using well-known BFGS algorithm
[15], starting from an initial guess MIG ∈ RNz .

B. Validation of the Gradient

Since we use gradient-based optimization algorithm for
solving (2), the inversion accuracy depends on how accurate
the gradient is estimated. In this section, we validate the
gradient functions (3) and (6). The validation is performed
numerically using the baseline computational setup given in
Section III-A.

In order to validate (3) and (4), the gradient function (3)
which is estimated using Adjoint Model (AM), denoted by
∇mJAM , is compared to the gradient function estimated using
Finite Differences (FD), denoted by ∇mJFD. Here, ∇mJFD

is obtained using forward difference scheme for perturbation
tolerance ε = 10−6. (Other values of ε have been tested. No
significant dependence is observed.) The two gradients of the
first iteration are computed as shown in Fig. 2a. The derived
adjoint model is validated since it estimates the same gradient
function computed by FD.

Next, we check if the reduced gradient is computed prop-
erly. To do so, we compute ∇qJ̃AM using ∇mJAM with (6)
for an arbitrary dimension of q, then plot it as shown in Fig.
2b. Next, we compute ∇qJ̃FD by perturbing directly on q
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Fig. 3. Inverted parameters MINV from synthetically generated data which
corresponds to the same objective parameter MOBJ, without multiscaling
(i.e., using (3)) in 3a and with multiscaling (i.e., using (6)) in 3c and their
convergence plots in 3b and 3d respectively. Inversion result improves with
the use of multiscale parametrization.

using forward difference scheme. We observe an acceptable
difference between FD and AM estimations, so the gradient
of the multiscale approach is validated. The slight difference
between FD and AM estimation in multiscale gradient vali-
dation probably comes from modeling error in ∇mJAM . The
splitting scheme (7) reduces this modelling error. In the next
section, we show that the inversion result is improved using
this reduced gradient in a multiscale strategy.

C. Preliminary Inversion Result

In this section, we explore the ability of our multiscale
strategy to improve inversion results. To show the potential im-
provement, we select a baseline setup for which the gradient-
based method fails to reach the global minimum without the

use of multiscale strategy. Moreover, the objective parameter
MOBJ ∈ RNz is a complex profile such that it cannot be
represented by any q ∈ RNL with NL < Nz considering
the choice of our basis function. In other words, resolution of
this ducting condition requires refinement of parameter at the
finest level Nz .

In Fig. 3, we plot an inversion result together with the
convergence, with and without multiscale strategy. With the
choice of objective and initial guess parameters as in Fig.
3a, it is not possible to solve the problem accurately using
only the plain adjoint-based method (i.e., the optimization is
performed directly on the Nz dimensional search space Mad
using (3)). The result MINV in Fig. 3a indicates the severity
of nonlinearity and ill-posedness in the inverse problem. At
this point, we assume that we do not have access to additional
information to choose a good initial guess, pick the proper
regularization strategy or the functional representation of m
with few parameters, etc.

Multiscale strategy is now used for tackling this problem
without additional apriori information. To show that in a
numerical test, we perform 3 levels of multiscaling using the
reduced gradient: we start with a 4-parameter inversion and
refine the parameter dimension to 26 and 76 progressively.
Then, we solve the 151-dimensional problem with the initial
guess inherited from the inverted parameters of multiscale
strategy. The obtained inversion result is as shown in Fig.
3c. The inversion is able to recover the general shape of
the objective duct in many altitude points. By doing that,
we achieve lower cost function compared to the case where
multiscaling is not used (see Figs. 3b and 3d). The inversion
result indicates that our multiscale strategy is suitable to cope
with that level of inversion complexity at R = 10 km. In fact,
since the global structure of the duct is approximated properly
at the first level, the cost function decrease monotonically
as the parameter dimension increases between the multiscale
levels (see Fig. 3d). More testing is necessary to confirm the
potential of the proposed methodology.

In practical applications, our altitude of interest to invert can
be greater than the length of the receiver array. In order to test
how the technique performs when the data is available only
at the first few meters above the sea level, we limit the length
of the receiver array to 30 m. Solving this inverse problem
required imposing bounds on the optimization parameters
since the optimization parameters diverged from the admissi-
ble parameter space with iterations. Therefore, a well-known
L-BFGS-B algorithm [16] is used bounding the optimization
parameters in the interval of 300−350 M -unit at the sea level
and in the interval of 280− 380 M -unit elsewhere. Inversion
result of this scenario is presented in Fig. 4. Inversion retrieves
roughly the gradient of objective refractivity MOBJ only at the
first few meters. Widening the interval of optimization bounds
does not have prominent impact on the synoptic structure
(gradient) of the inverted parameters at z ∈ [0, 50] m, so the
bounds values are chosen considering the presentability of the
results in Fig. 4. More testing and validation is necessary to
improve the potential of this methodology in dealing with lack
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Fig. 4. Inverted parameters MINV using synthetically generated data from
only the first 30 meters, with multiscaling (i.e., using (6)) and the convergence
plot. Inversion retrieves roughly the gradient of objective refractivity MOBJ
only at the first few meters.

of measurement data.

IV. CONCLUSION

In this paper, we apply a multiscale parametrization to
reduce the nonlinearity of refractivity inversion problem. We
have shown that a proper hierarchical refinement strategy im-
proves the inversion results. Our goal is to achieve unrealisti-
cally good inversion results on synthetic data, before inverting
real world measurements. Note that we only used a basic linear
interpolation for reducing the parameter vector dimension of
the problem. A more proper choice of reduction basis can
be found for accelerating the inversions and for reducing the
sensitivity of inversions to the initial guess. Solving more
complex ducting conditions (e.g., longer propagation ranges,
more realistic ducts, noisy measurements) will be performed
in a future study.
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