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ABSTRACT 

Cardiovascular diseases (CVDs), which are a prime cause of global 

mortality, are disorders that affect the heart and blood vessels' 

functioning. CVDs may cause consequent complications, due to 

occlusion in a blood vessel and present as impaired cardiac wall 

functioning (myocardium). Identifying such impairment 

(infarction) of the myocardium is of great clinical interest, as it 

can reveal the nature of altered cardiac topography (ventricular 

remodelling) to aid the associated intervention decisions. 

With recent advances in cardiac imaging, such as Magnetic 

Resonance (MR) imaging, the visualisation and identification of 

infarcted myocardium has been routinely and effectively used in 

clinical practice. Diagnosing infarcted myocardium is achieved 

clinically through the late gadolinium enhancement (LGE) test, 

which acquires MR images after injecting a gadolinium-based 

contrast agent (GBCA). Due to the increased accuracy and 

reproducibility, LGE has emerged as the gold-standard MR 

imaging test in identifying myocardial infarction. However, 

clinical studies have reported gadolinium deposition concerns in 

different body organs and adverse outcomes in patients with 

advanced kidney failure, over time. Such incidents have 

motivated researchers to look into the development of both 

accurate as well as safe diagnostic tools. 

Emerging research on identifying infarcted myocardium utilises 

myocardial strain to safely identify infarcted myocardium, which 

has been addressed in the presented study. For example, 

myocardial strain represents the shortening or lengthening of the 

myocardium. If the myocardium is infarcted, then the 

corresponding strain values differ compared to the healthy 

myocardium. This finding can be identified and utilised for 

clinical applications. The research presented in this thesis aims to 

identify infarcted myocardium accurately and safely by using 
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myocardial strain (shortening or lengthening of the 

myocardium).  

To achieve the aforementioned aim, the research methodology is 

divided into six objectives. The initial objectives relate to the 

development of a novel myocardial tracking method. The middle 

objectives relate to the development of clinical application 

methods, and the final objectives concern the validation of the 

developed methods through clinical studies and associated 

datasets. The research presented in this thesis has addressed the 

following research question: 

Research question 1: How can a 2D myocardial tracking and 

strain calculation method be developed using the 2D local 

weighted mean function and structural deformation within 

the myocardium? 

Research question 2: How can a 3D myocardial tracking and 

strain calculation method be developed using the 3D local 

weighted mean function to calculate 3D myocardial strain? 

Research question 3: How can 2D circumferential strain of 

the myocardium be used in identifying infarcted left 

ventricular segments for the diagnosis of myocardial 

infarction patients? 

In literature, myocardial tracking and strain calculation methods 

have limited extension to 3D and dependency on tissue material 

properties. Moreover, additional limitations, such as limited 

inclusion of structural deformation details within the 

myocardium, are found in the literature. Therefore, methods are 

likely to become subjective or numerically unstable during 

computation. Moreover, the inclusion of myocardial details with 

grid-tagging MRI, for structural deformation within the 

myocardium, is more realistic compared to cine MRI. 
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The aforementioned limitations are overcome by proposing a 

novel Hierarchical Template Matching method, which performs 

non-rigid image registration among grid-tagging MR images of a 

cardiac cycle. This is achieved by employing a local weighted 

mean transformation function. The proposed non-rigid image 

registration method does not require the use of tissue material 

properties. Grid-tagging MRI is used to capture wall function 

within the myocardium, and the local weighted mean function is 

used for numerical stability. The performance of the developed 

methods is evaluated with multiple error measures and with a 

benchmark framework. This benchmark framework has provided 

an open-access 3D dataset, a set of validation methods, and 

results of four leading methods for comparison. Validation 

methods include qualitative and quantitative methods. The 

qualitative assessment of outcomes and verified ground truth for 

the quantitative evaluation of results are followed from the 

benchmark framework paper (Tobon-Gomez, Craene, Mcleod, et 

al., 2013). 

2D HTM method has reported the root mean square error of point 

tracking in left ventricular slices, which are the basal slice 

0.31±0.07 mm, the upper mid-ventricular slice 0.37±0.06 mm, 

the mid-ventricular slice 0.41±0.05 mm, and the apical slice 

0.32±0.08 mm. The mid-ventricular slice has a significantly 

higher 4% (P=0.05) mean root mean square error compared to 

the other slices. However, the other slices do not have a 

significant difference among them. Compared to the benchmark 

free form deformation method, HTM has a mean error of 

0.35±0.05 mm, which is 17% (P=0.07, CI:[-0.01,0.35]) reduced to 

the free form deformation method. 

Our technical method has shown the 3D extension of HTM and a 

method without using material properties, which is advantageous 

compared to the methods which are limited to 2D or dependent 
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on material properties. Moreover, the 3D HTM has demonstrated 

the use of 3D local weighted mean function in 3D myocardial 

tracking. While comparing to the benchmark methods, it was 

found that the median tracking error of 3D HTM is comparable to 

benchmark methods and has very few outliers compared to them. 

The clinical results are validated with LGE imaging. The 

quantitative error measure is the area under the curve (AUC) of 

sensitivity vs 1-specificity curve of the receiver operating 

characteristic (ROC) test. The achieved AUC value in detecting 

infarcted segments in basal, mid-ventricular, and apical slices are 

0.85, 0.82, and 0.87, respectively. Calculating AUC with 95% 

confidence level, the confidence intervals of lower and upper 

mean AUC values in basal, mid-ventricular and apical slices are 

[0.80, 0.89], [0.74, 0.85], and [0.78, 0.91], respectively. Overall, 

considering the detections of LGE imaging as the base, our 

method has an accuracy of AUC 0.73 (P=0.05) in identifying 

infarcted left ventricular segments. 

The developed methods have shown, systematically, a promising 

approach in identifying infarcted left ventricular segments by 

image processing method and without using GBCA-based LGE 

imaging. 
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Chapter 1 

Introduction 

 

1.1 Introduction to the thesis 

1.1.1 Background and motivation to the research 

Cardiovascular diseases (CVDs) are the prime cause of global 

mortality (WHO, 2017). In 2016, approximately 17.9 million 

deaths occurred due to CVDs, which accounted for 31% of all 

global deaths; the reported primary conditions were myocardial 

infarctions and strokes (WHO, 2017). In the United Kingdom 

(UK), myocardial infarction causes one hospital visit every three 

minutes (BHF, 2019). Furthermore, official reports show that 

every year approximately 735,000 Americans suffer from 

myocardial infarction. Out of them, about 525,000 have a first-

time myocardial infarction, and approximately 210,000 have a 

second-time myocardial infarction (CDC, 2015). Such incidents 

show a need to improve cardiac treatments. As treatments 

depend on diagnostic results, an accurate diagnosis plays a crucial 

role in treatment planning. 

Researchers have contributed towards cardiac diagnosis 

methods, inspired by cardiac muscle behaviour and mechanics 

(Sengupta, Tajik, Chandrasekaran, et al., 2008; Smiseth, Torp, 

Opdahl, et al., 2016). This has enabled researchers to develop 

clinical tools such as speckle tracking (Crosby, Amundsen, 

Hergum, et al., 2009). Growing knowledge, such as the material 

properties of cardiac muscle, and technological advancements, 

such as magnetic resonance imaging (MRI), have opened up 

opportunities to improve diagnosis tools (Lima and Desai, 2004). 

A diagnosis tool should be accurate and safe for the ideal 

treatment. Moreover, it should be convenient for patients as well 

as clinical experts. 



28 
 

 

One of the heart conditions, which is clinically referred to as 

myocardial infarction (MI), arises due to insufficient blood supply 

to the cardiac wall muscle (myocardium) (Thygesen, Alpert, Jaffe, 

et al., 2012). The diagnosis involves assessing reduced blood flow 

and muscular damage (clinically referred to as infarction) of the 

myocardium (Pennell, Sechtem, Higgins, et al., 2004). Detecting 

infarction is a crucial diagnostic criterion, as it helps to 

understand the nature of ventricular remodelling (Pfeffer and 

Braunwald, 1990; Azevedo, Polegato, Minicucci, et al., 2016).  

In current clinical practice, clinical experts utilise late gadolinium 

enhancement (LGE) imaging in identifying such myocardial 

infarction (Pennell, Sechtem, Higgins, et al., 2004; Flett, Hasleton, 

Cook, et al., 2011). LGE imaging uses gadolinium-based contrast 

agents (GBCA) to highlight infarcted myocardium. Gadolinium 

deposits in infarcted myocardium approximately 15-20 minutes 

after injection, and the subsequent MRI shows infarcted 

myocardium with higher image intensity values (Pennell, 

Sechtem, Higgins, et al., 2004). Such an approach of LGE imaging 

is promising in identifying infarcted myocardium. However, 

gadolinium deposition may bring allergic reactions such as 

urticaria and anaphylaxis (Jung, Kang, Kim, et al., 2012). Such 

reactions depend on the type of contrast agents (McDonald, Hunt, 

Kolbe, et al., 2019) and are controlled with premedication like 

antihistamine (Jung, Kang, Kim, et al., 2012). However, there 

could be a possibility of adverse incidents like death, despite 

antihistamine premedication (Jung, Kang, Kim, et al., 2012). 

Moreover, GBCA usage can bring adverse situation like 

nephrogenic systemic fibrosis in advanced renal insufficiency 

patients. Therefore, GBCA is contraindicated to use in chronic 

kidney disease stage 4 or 5 patients (glomerular filtration rate 

less than 30 ml/min/1.73m2) (Thomsen, Morcos, Almén, et al., 

2013; McDonald, McDonald, Kallmes, et al., 2015; Nezafat, 2015). 

Such advanced renal insufficiency patients cannot be benefitted 
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from LGE imaging-based diagnosis. Besides, even normal renal 

sufficiency patients are reported with gadolinium deposition in 

neuronal tissues (McDonald, McDonald, Kallmes, et al., 2015). 

Inductively coupled plasma mass spectrometry of autopsied 

brain, transmission electron microscopy, and precontrast T1-

weighted imaging have shown the gadolinium deposition in brain 

tissues (McDonald, McDonald, Kallmes, et al., 2015). Therefore, 

LGE imaging may compromise patient safety and care due to 

gadolinium deposition (Bruder, Schneider, Nothnagel, et al., 2011; 

Nezafat, 2015). It should also be acknowledged that LGE imaging 

is reported with higher accuracy and sensitivity (Pennell, 

Sechtem, Higgins, et al., 2004). Another important criterion in 

diagnosing myocardial infarction patients is identifying 

hibernating myocardium (B. and Joseph, 2002). Hibernating 

myocardium refers to the state of dysfunction in the myocardium 

due to a reduction in coronary blood flow (B. and Joseph, 2002). 

Such hibernating myocardium could be fixed with blood 

reperfusion therapy. Therefore, identifying hibernating 

myocardium is helpful for prognosis. Similarly, identifying 

infarcted myocardium is also clinically useful as the large 

infarction can produce alterations in ventricular topography, 

affecting the prognosis in terms of patient survival (Pfeffer and 

Braunwald, 1990).  

Myocardial strain, which is defined as shortening or lengthening 

of the muscle (Lai, Rubin and Krempl, 2010; Smiseth, Torp, 

Opdahl, et al., 2016), can help identify such infarcted 

myocardium. Strain can be calculated during different phases of 

the cardiac cycle. In the cardiac cycle, systole is when muscle 

contraction happens, and blood is pumped out from the 

ventricles, which results in maximum muscle contraction at the 

end of systole (Katz, 2011). Therefore, researchers have utilised 

systolic strain, which is defined as the myocardial strain at the 
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end of systole, as a diagnostic measure (Crosby, Amundsen, 

Hergum, et al., 2009). 

Researchers have created safe clinical tools, based on myocardial 

strain for diagnosis (Gorcsan and Tanaka, 2011; Smiseth, Torp, 

Opdahl, et al., 2016). Strain can be measured by myocardial 

tracking and strain estimation methods using MRI and validated 

against the benchmark framework (Tobon-Gomez, Craene, 

Mcleod, et al., 2013). The benchmark framework has provided an 

open-access 3D dataset, a set of validation methods, and results of 

four leading methods for comparison. Validation methods include 

qualitative and quantitative methods. The benchmark framework 

provides the steps for qualitative assessment of outcomes and 

verified ground truth for quantitative assessment of results. 

Such novel tools and methods could provide an accurate 

diagnosis. Moreover, safety and convenience could be ensured 

while diagnosing, as it does not involve the usage of GBCA. 

 

1.1.2 Justification for the Research 

Drug regulatory agencies, such as the United States Food and 

Drug Administration (FDA), ensure standards and safe drugs 

usage. Official reports and publications of rigorous clinical trials 

provide details of the drug usage. The current clinical gold-

standard of diagnosing cardiac patients involves LGE imaging 

(Pennell, Sechtem, Higgins, et al., 2004). LGE imaging provides 

sufficient accuracy. However, safety concerns such as adverse 

incidents of deaths, allergic reactions, and gadolinium deposition 

in brain tissues, are raised and found in the literature (Ergün, 

Keven, Uruç, et al., 2005; Bruder, Schneider, Nothnagel, et al., 

2011; Nacif, Arai, Lima, et al., 2012; Kanal and Tweedle, 2015; 

McDonald, McDonald, Kallmes, et al., 2015; Nezafat, 2015). Hence, 

to improve the quality of patient treatment and care, clinical 
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experts need innovative tools that provide improved accuracy 

and better safety. Developed tools need to be accurate, safe, 

feasible and timely for clinical experts, and comfortable for 

patients while being used. 

Therefore, this thesis has addressed the research that could help 

in contributing a tool for cardiac diagnosis. The fully-developed 

tool would be utilising material property (i.e. strain) of the 

cardiac muscle in identifying infarcted myocardium, which could 

avoid the use of GBCA and LGE. At this stage, this thesis aims to 

contribute a novel method and show early-stage verifications and 

validations with the benchmark framework (Tobon-Gomez, 

Craene, Mcleod, et al., 2013) and associated clinical dataset. The 

technique would perform myocardial tracking and strain 

calculation using cardiac MRI. The method would be robust and 

flexible to be extended from 2D to 3D. Moreover, a clinical dataset 

of myocardial infarction patients would be used to show the 

developed method's applicability for the clinical problem of 

identifying infarcted myocardium. The addressed research would 

ultimately contribute to creating a tool that can identify infarcted 

myocardium safely and accurately, i.e. without using GBCA and 

LGE. 

 

1.1.3 Research methodology overview 

This thesis has presented the research methodology in three 

stages: 

 Stage 1 – Understanding current clinical gold-standard 

practice, which involves completing the ethics approval 

process, a clinical placement at the NHS unit, 

understanding the clinical diagnosis pipeline, outlining 

strengths and limitations of current clinical tools through 
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clinical literature review, and developing clinical research 

questions. 

 Stage 2 – Developing a technical methodology, which 

involves a technical literature review, understanding 

technical benchmark framework, outlining technical 

requirements, developing a robust method for myocardial 

strain calculation 

 Stage 3 – Validation and testing, which involves selecting 

clinical data cohort, qualitative and quantitative evaluation 

of technical methods, a clinical validation using healthy 

and diseased cohort, and validation through standard 

diagnostic measure tests. 

After evaluating technically and validating clinically, a discussion 

and conclusion could then be drawn regarding the research's 

validity. 

 

1.2  Clinical review – cardiac diagnostic tools 

In this section, a clinical review of cardiac diagnostic tools, which 

includes tools in current practice and emerging research tools, is 

elaborated on their strengths and limitations. This review 

discusses the practical concerns relating to patient treatment and 

care quality while diagnosing myocardial infarction patients. 

GBCA usage is highlighted as the prime safety concern. For 

reference, Chapter 1 covers the fundamentals of cardiac 

physiology and pathophysiology, with a specific focus on cardiac 

chambers, their function and the structure of cardiac wall muscle. 

It demonstrates how the current method has limited safety in 

diagnosing myocardial infarction patients and how emerging 

techniques can help achieve better safety. The reviews are 

summarised in Table 1.1 and Table 1.2. 
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1.2.1 Cardiac physiology and pathophysiology 

1.2.1.1 Cardiac chambers and function 

The human heart is comprised of four chambers: right ventricle 

(RV), left ventricle (LV), right atrium (RA) and left atrium (LA). 

The heart can be visualised as two pumps operating in series: one 

with RA and RV and another with LA and LV (Katz, 2011). The LV 

wall has more mass and thickness than other chambers because 

the LV pumps oxygenated blood at a higher pressure from the 

heart towards the rest of the body (Guyton and Hall, 2011). The 

LV cavity has a conical shape, which changes during different 

cardiac cycle phases (Hawthorne, 1966). The LV tip is called the 

apex, and the muscular area, near the mitral valve, is called the 

base. The mitral valve regulates the blood flow and prevents the 

blood from flowing backwards from the LV to the left atrium. 

The cardiac cycle is comprised of two phases: diastole and 

systole. Diastole is a ventricular relaxation phase, which initiates 

with isovolumic relaxation followed by rapid blood flow, diastasis 

and atrial systole. During the early diastole of ventricles, the 

pressure of ventricles falls, which causes blood to flow into 

ventricles from atria. A fully loaded LV with maximum volume 

and the closed mitral valve is the end of the diastole. The 

ventricular pressure remains lower during the diastole. 

The second phase, systole, is a contraction phase, which starts 

with isovolumic contraction and rapid ejection of blood from LV. 

Once the mitral valve opens, LV squeezes all the blood out with a 

higher pressure. This phenomenon is related to the clinical 

measure, left ventricular ejection fraction (LVEF). The pressure is 

maximum in the middle of the systole and drops at the end of the 

systole. 

LV systole involves complex mechanics such as rotation, torsion, 

twist, vertical and horizontal translation. Due to the non-uniform 

nature of LV mechanics, it is crucial to understand systolic 
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function while diagnosing a cardiac patient. The American Heart 

Association (AHA) has provided clinical guidelines to effectively 

quantify LV into smaller sections (Cerqueira, Weissman, Dilsizian, 

et al., 2002). The details of the AHA model are explained in 

Section 1.2.2.3.1. 

 

1.2.1.2 Cardiac wall muscle 

The heart wall has multiple layers of fibre bundles: the inner layer 

is called the endocardium, the middle layer is called myocardium, 

and the outer layer is called the epicardium. The blood flowing 

through the heart exposes to the endocardium. The myocardium 

covers most of the thickness of the heart wall and contains 

myocytes and connective tissues. Moreover, the myocardium 

contributes to cardiac tensile strength and stiffness. The 

epicardium consists of a network of fibro-elastic connective 

tissues providing a smooth, slippery structure to the surface. The 

epicardium is continuous with the parietal pericardium. It is a 

fibrous sac surrounding the heart, providing smooth functioning 

during a heartbeat (Katz, 2011). 

During systole, the subepicardial layer's myocardial fibres move 

in the left-handed helix direction, the mid-layer fibres move in the 

circumferential direction, and the subendocardial layer fibres 

move in the right-handed helix direction (Nakatani, 2011). As a 

result, the LV base experiences clockwise rotational torque, and 

the apex experiences counter-clockwise torque during systole. 

Coronary arteries supply blood to the LV wall. The major LV 

coronary arteries are: left coronary artery (LCA); right coronary 

artery (RCA); and left circumflex (LCx). Blood flow is from the 

epicardium to the endocardium, via muscular branches that 

traverse the LV wall. Therefore, the arteries are more vulnerable 

to narrowing at the endocardial layer due to blood clotting (Katz, 
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2011). Such blood clotting leads to clinical conditions such as 

myocardial infarction. 

Myocardial infarction patients may have infarcted muscle along 

with healthy muscle. Infarcted muscle is the oxygen-starved 

muscle that has lost its ability to contract and relax. Infarcted 

muscle can be transmural (throughout the cardiac wall) or non-

transmural. Large transmural infarcts are likely to alter 

topography and function in non-infarcted as well as infarcted 

areas of the ventricle (Pfeffer and Braunwald, 1990). Therefore, 

identifying infarcted muscle is clinically essential. 

 

1.2.2 Cardiac muscle characterisation 

Due to the broader scope of cardiac muscle characterisation 

methods and their applications, we have narrowed down our 

literature review’s scope by focusing on coronary syndrome and, 

specifically, myocardial infarction patients. 

 

1.2.2.1 ECG test 

A preliminary and useful assessment test for cardiac muscle and 

function characterisation is a 12-lead ECG test (Martin, 

Groenning, Murray, et al., 2007). Clinical conditions, such as acute 

coronary syndrome, with recent chest pain symptoms, require 

rapid diagnosis regarding the possibility of myocardial infarction 

to provide timely restoration of blood flow, which can preserve 

ventricular function and improve the survival of a patient 

(GUSTO, 1993). In such conditions, ECG remains a cornerstone of 

assessment due to its simplicity and universal availability 

(Martin, Groenning, Murray, et al., 2007). 

In MI patients, ECG could help to localise the territory of an 

infarct safely and conveniently. However, the precision in 
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estimating the size of an infarct using ECG could be limited 

compared to LGE imaging (Martin, Groenning, Murray, et al., 

2007; Goldwasser, Elizari and Bayés de Luna, 2017). After the 

ECG test, advanced imaging tests are considered for further 

diagnosis. 

 

1.2.2.2 Imaging tests 

1.2.2.2.1 Purpose of different tests  

A cardiac patient who presents with the chronic coronary 

syndrome is referred for advanced imaging tests. These tests aim 

to assess (i) ventricular function, (ii) ischaemia (inadequate 

blood flow), and (iii) viability (Flachskampf, Schmid, Rost, et al., 

2011). 

The available tests are echocardiography (Echo), nuclear imaging 

(such as single-photon emission computed tomography - SPECT), 

MRI, computed tomography (CT), and positron emission 

tomography (PET). Echo is usually preferred in the acute 

conditions of less than 48 hours of incidence due to its bed-side 

availability, even though it has low image quality than MRI and 

operator dependent accuracy (Flachskampf, Schmid, Rost, et al., 

2011). SPECT, CT, and PET could provide promising diagnostic 

results, but they involve radiation exposure due to the modalities' 

intrinsic nature, which makes them less preferable. MRI usage 

with a pacemaker or implantable cardioverter-defibrillator 

patients could be prohibitive (Kalin and Stanton, 2005; Strom, 

Whelan, Shen, et al., 2017). However, in routine patients, MRI 

could be an imaging modality of choice, as it provides good 

quality images and utilises non-ionising radiation to capture 

images. 

Within an MRI test, (i) cine MR images are used to visualise 

ventricular function, myocardial thickness, estimate LVEF, and 

detect any morphological abnormalities (Flachskampf, Schmid, 
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Rost, et al., 2011); (ii) ischaemia could be captured through a 

pharmacological stress test (Chotenimitkhun and Hundley, 

2011); (iii) viability test helps in determining the ability of the 

myocardium to live, which involves determining hibernating 

myocardium and identifying infarcted myocardium (myocardium 

with irreversible damage). Infarcted myocardium could be 

identified with high accuracy and sensitivity through LGE imaging 

(Pennell, Sechtem, Higgins, et al., 2004). 

However, LGE imaging has limited patient safety in identifying 

infarction. Therefore, the research scope is narrowed down to 

critically reviewing different tests in identifying infarctions, as 

described in Section 1.2.2.2.2. 

 

1.2.2.2.2 Identifying infarction – review 

Current clinical practice in identifying myocardial infarction 

includes LGE imaging, due to its higher accuracy and sensitivity 

(Pennell, Sechtem, Higgins, et al., 2004). LGE is reported to 

provide such precision that it could detect sub-endocardial 

infarct, when the SPECT report was normal (Wagner, Mahrholdt, 

Holly, et al., 2003). Manual injection of GBCA is given to the 

patient in a typical LGE imaging for a delayed enhancement. Then 

LGE scan sequences are performed before the gadolinium washes 

out from the myocardium. Gadolinium concentration in the 

infarcted myocardium washes out slowly, compared to healthy 

myocardium, and shows infarcted myocardium with bright 

intensity in the MR images. 

It is recommended that the scan should be performed within 10-

30 minutes after injecting gadolinium to acquire good quality 

images (Vogel-Claussen, Rochitte, Wu, et al., 2006; Franco, Javidi 

and Ruehm, 2015). Scanning sequences take approximately 6-9 

minutes (Captur, Lobascio, Ye, et al., 2019), and a complete LGE 

imaging takes about 18-22 minutes. 
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In 2006, a clinical study of 9 end-stage renal disease patients had 

revealed that five out of nine patients developed nephrogenic 

fibrosis in 2-4 weeks after the injection of GBCA for an MR scan 

(Grobner, 2006). A subsequent study of 7 patients has confirmed 

that gadolinium is detectable within 4 of 13 tissue specimens of 

patients with nephrogenic systemic fibrosis (High, Ayers, 

Chandler, et al., 2007). More studies have reported the relation of 

gadolinium deposition within tissues in different patient 

conditions (McDonald, McDonald, Kallmes, et al., 2015). 

Moreover, gadolinium deposition in brain and bone of normal 

renal patients (Kanal and Tweedle, 2015) is reported due to 

GBCA administration. LGE is also said to have limited accuracy in 

conditions like diffuse myocardial fibrosis (Bleumke and 

Pattanayak, 2015). It is reported that LGE imaging causes 

additional cost, time and inconvenience due to safety concerns 

(Nezafat, 2015). An MRI cost-effectiveness study has reported 

that the GBCA usage increases approximately to €50 per patient 

(Boldt, Leber, Bonaventura, et al., 2013). 

T1-weighted mapping (native T1, post-contrast T1, extracellular 

volume-ECV) are emerging and promising modalities in viability 

assessment (Taylor, Salerno, Dharmakumar, et al., 2016). Clinical 

studies with swine (Cui, Wang, Lu, et al., 2018) and canine (Kali, 

Cokic, Tang, et al., 2014) have reported good performance of 

native T1 (T1 mapping without the usage of GBCA) in identifying 

infarction compared to LGE. A clinical study, performed at 3T 

with human participants (Kali, Choi, Sharif, et al., 2015), showed 

that the native T1 mapping has high specificity and modest 

sensitivity in detecting chronic myocardial infarction. Moreover, 

post-contrast T1-weighted mapping is also reported with 

infarction patients (Messroghli, Walters, Plein, et al., 2007), but 

post-contrast and ECV imaging involves GBCA usage and are 

widely reported with cardiomyopathy and diffuse fibrosis 

conditions (Taylor, Salerno, Dharmakumar, et al., 2016). Native 
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T1 does not require GBCA, and therefore, it can be promising to 

patient-safety compared to LGE. The patient-scanning time of the 

T1 mapping scan could remain similar to LGE (Taylor, Salerno, 

Dharmakumar, et al., 2016). 

In emerging methods, strain-based identification of myocardial 

infarction is a promising method that can be performed through 

imaging tests or image analysis tests (Mangion, McComb, Auger, 

et al., 2017). An imaging test directly produces images of 

myocardial strain maps at the scanner. In contrast, an image 

analysis test requires image processing tools to create a 

myocardial strain map using a separate computer. 

A typical strain-based method estimates the mechanical strain in 

cardiac wall muscle during a cardiac cycle to show reduced strain 

in the infarcted muscle. Clinical studies have shown promising 

results. However, the accuracy varies among vendors and imaging 

modalities (Mangion, McComb, Auger, et al., 2017). Echo-based 

strain methods could be more suitable in diagnosing acute 

conditions, due to the bedside availability of Echo (Flachskampf, 

Schmid, Rost, et al., 2011) and lower image processing time 

(Crosby, Amundsen, Hergum, et al., 2009). In chronic conditions, 

MRI-based strain methods could be more suitable, while 

diagnosing, due to good quality images (Flachskampf, Schmid, 

Rost, et al., 2011) and detailed acquisition of the cardiac wall 

structure (Moore, Lugo-Olivieri, McVeigh, et al., 2000). 

Radiologist’s analysis time, which is defined as the time required 

to identify myocardial infarction directly at the scanner or using 

image processing tools, could vary according to the utilised 

imaging modality and could be higher in image processing 

methods compared to LGE imaging. A specific review of strain-

based methods is provided in Section 1.2.2.3.3. 

These tests for identifying myocardial infarction are summarised 

in Table 1.1.  



40 
 

 

 



41 
 

 

1.2.2.3 Strain-based characterisation 

1.2.2.3.1 Definition of standard AHA model 

AHA has standardised the segmentation and nomenclature for 

cardiac imaging (Cerqueira, Weissman, Dilsizian, et al., 2002) to 

maintain consistency among global clinical practices and 

research. According to the AHA model, LV muscle and cavities can 

be captured in short-axis (SAX) and long-axis (LAX) planes. 

Standard SAX planes are (i) basal (at tips of the mitral valve 

leaflets), (ii) mid-ventricular (at papillary muscle), and (iii) apical 

(lower than papillary muscle and prior to the cavity end). Each of 

the SAX planes is further divided into 6, 6, 4 segments, 

respectively. The names of the segments are mentioned in Figure 

1.1. For further details, please refer to the article (Cerqueira, 

Weissman, Dilsizian, et al., 2002). Some of the models consider 

the apex as the 17th segment. In our work, we have followed the 

16-segment model.  
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Figure 1.1| 16-segment AHA model of a human left ventricle 

according to the guidelines of (Cerqueira, Weissman, Dilsizian, et 

al., 2002; Selvadurai, Puntmann, Bluemke, et al., 2018). Three 

short-axis slices - basal, mid-ventricular and apical are shown 

with corresponding AHA defined segments of LV. Basal refers to 

the slice near the mitral valve and before the beginning of the 

papillary muscle, mid-ventricular refers to the slice at the 

approximate middle of the papillary muscle length, and apical 

refers to the slice beyond the papillary muscle and towards the 

apex but above the apex. 

 

1.2.2.3.2 Definition of strain 

Strain is a measure of deformation. In layman’s words, strain 

quantifies how much an object has shortened or lengthened 

compared to its original dimensions. There are multiple technical 

definitions of strain in the literature. We have followed the 

Lagrange strain (Lai, Rubin and Krempl, 2010) definition. It is 

widely used and adopted in the framework of myocardial strain-

based characterisation methods (Tobon-Gomez, Craene, Mcleod, 

et al., 2013). 
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In the context of LV, commonly used directions of strain are 

circumferential, longitudinal, and radial. In general, diagnostic 

tools calculate Lagrange strain and project them in the respective 

directions. A detailed formulation of strain calculation is provided 

in the relevant sections of the methods chapters. 

 

1.2.2.3.3 Strain-based methods – Review 

This section has reviewed strain-based methods, by considering 

structural details of deformation within the cardiac wall; a technical 

review of the myocardial strain calculation is provided in Section 

1.3. 

Strain-based methods are reported with Echo as well as MRI. 

Among them, Echo-based methods are tissue Doppler imaging 

(TDI) (Zhang, Chan, Yu, et al., 2005) and speckle tracking 

echocardiography (STE) (Crosby, Amundsen, Hergum, et al., 

2009). MRI-based methods are strain encoding (SENC) (Oyama-

Manabe, Ishimori, Sugimori, et al., 2011), displacement encoding 

with stimulated echoes (DENSE) (Miyagi, Nagata, Kitagawa, et al., 

2013; Kihlberg, Haraldsson, Sigfridsson, et al., 2015), harmonic 

phase contrast (HARP) (Wong, Leong, Weightman, et al., 2014), 

cardiac magnetic resonance-feature tracking (CMR-FT) (Khan, 

Singh, Nazir, et al., 2015), and tissue tracking (Gavara, Rodriguez-

Palomares, Valente, et al., 2018). 

Tissue Doppler imaging is a real-time strain and strain rate 

imaging method that is promising in identifying infarction 

(Zhang, Chan, Yu, et al., 2005). As it is Echo-based, it is a 

convenient imaging method but suffers from low image quality, 

which limits its accuracy. It is also sensitive to the Echo operator 

as the accuracy is highly dependent on the direction of ultrasound 

probe lines. 

STE is an Echo-based image processing method, which tracks the 

inherent pattern of speckles in Echo images (Crosby, Amundsen, 
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Hergum, et al., 2009). Speckles are intrinsic features of 

ultrasound imaging, which generate due to sub-resolution 

scatterers. These speckles are deterministic. However, they 

change when the myocardial structure deforms during a 

heartbeat or when the angle between the myocardium and 

ultrasound wave changes (Meunier, 1998). The method is 

promising in separating infarcted myocardium from healthy 

myocardium (Sjøli, Ørn, Grenne, et al., 2009). However, the 

speckle pattern generates at the boundaries of the myocardium 

and not within the myocardium. Therefore, the accuracy of the 

calculated strain remains limited to the boundary. Moreover, the 

speckle pattern does not remain stable, which may cause 

measurement error in strain values (Voigt, Pedrizzetti, 

Lysyansky, et al., 2015). 

SENC, DENSE and HARP are reported as promising methods in 

identifying infarction (Oyama-Manabe, Ishimori, Sugimori, et al., 

2011; Miyagi, Nagata, Kitagawa, et al., 2013; Wong, Leong, 

Weightman, et al., 2014). These methods utilise phase-contrast 

and myocardial tagging to track cardiac motion and estimate 

strain values. SENC has a novel advantage of quantifying vertical 

LV movement in SAX images (Osman, Sampath, Atalar, et al., 

2001), whereas DENSE and HARP are advantageous in tracking 

horizontal LV movement. They can combine and utilise each 

other’s technical framework (Osman, Sampath, Atalar, et al., 

2001) to incorporate through-plane motion and estimate 3D 

strain. However, this approach of merging 2D technical methods 

to develop a 3D technical method could limit their accuracy of 3D 

strain calculation, as they are intrinsically developed for 2D. 

CMR-FT and tissue tracking are emerging strain methods in 

identifying infarction using cine MRI (Khan, Singh, Nazir, et al., 

2015; Gavara, Rodriguez-Palomares, Valente, et al., 2018). As they 

use cine MRI, they could be faster in processing, but they do not 
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include structural deformation within the myocardium, which 

could limit their accuracy (Mangion, McComb, Auger, et al., 2017). 

CMR-FT and tissue tracking use cine MRI for strain calculation. 

CMR-FT uses the endocardium to calculate strain, and as an 

extension, tissue tracking also uses epicardium along with the 

endocardium (Mangion, McComb, Auger, et al., 2017). Tissue 

tracking can include points within the myocardium. However, 

these structural deformation points cannot be as realistic as grid 

tagging MRI (Moore, Lugo-Olivieri, McVeigh, et al., 2000). Grid 

tagging MRI can capture more details of structural deformation 

within LV myocardium than cine MRI. 

Table 1.2 summarises the strain-based methods in identifying 

infarction.  
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1.2.3 Discussion 

In this review, various diagnostic tools are scrutinised from the 

clinical perspective, including the issues of accuracy, safety, and 

patient care. Diagnostic tools with different imaging modalities 

are inspected and summarised in Table 1.1 to investigate patient 

safety and care challenges. It is found that the current LGE 

imaging is highly accurate. However, LGE requires gadolinium-

based contrast agent usage which could cause allergic reactions. 

This limiting factor could be improved through other imaging 

modalities. However, other imaging modalities have limited 

accuracy, as highlighted in Table 1.1. Therefore, in Table 1.2, 

strain-based diagnosis tools are examined to show the emerging 

methods' accuracy and robustness. It is found that some of the 

methods are less accurate due to limited details of structural 

deformation within the myocardium, and some of the methods 

are less accurate due to limited technical advancements. The 

following sections discuss diagnostic imaging tests. 

 

1.2.3.1 Discussion of imaging tests 

LGE is preferred due to its accuracy, but clinical studies have 

emphasised patient safety issues concerning advanced renal 

impairment patients due to the risk of nephrogenic systemic 

fibrosis (McDonald, McDonald, Kallmes, et al., 2015). In such 

conditions, patients could not be offered LGE. Moreover, the 

gadolinium deposition within healthy subjects' tissues raises 

concerns in terms of patient care (McDonald, McDonald, Kallmes, 

et al., 2015). Such deposition is unrelated to age, death, GBCA 

exposure, and renal sufficiency. Moreover, such deposition's 

clinical significance is not fully understood yet (Kanda, Matsuda, 

Oba, et al., 2015; McDonald, McDonald, Kallmes, et al., 2015), 

which limits the current clinical practice of LGE imaging. In the 
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literature, clinical experts have also reported similar concerns 

(Nezafat, 2015), and a minor concern is also reported regarding 

the higher diagnostic cost due to GBCA (Boldt, Leber, 

Bonaventura, et al., 2013). As reported in Section 1.2.2.2.2, 

emerging methods, such as T1-weighted mapping and strain 

imaging, are promising for safety, but further technical 

improvements are required to provide as good accuracy and 

reproducibility as LGE imaging. 

Moreover, patient scanning time of T1-mapping and cardiologist 

analysis time is limited in strain-based methods. However, as 

these methods are safe, there is a strong motivation to develop 

faster acquisition and analysis methods further. The advantages 

and limitations of the categories of methods, mentioned above, 

are shown in Table 1.1. 

 

1.2.3.2 Discussion of strain-based characterisation 

In this review, the specific cardiac anatomy is summarised from 

the clinical literature to show the myocardium's complexity. 

These details show that it is crucial to include structural 

deformation details within the myocardium in the methods. 

Moreover, the complex vertical and horizontal motion of LV 

during the systole requires to develop techniques, which are 

robust in 3D. 

A specific explanation regarding strain-based characterisation 

methods in detecting myocardial infarction is described in Section 

1.2.2.3.3. Echo-based methods, such as STE and TDI, could be 

promising in acute conditions when a faster diagnosis is essential, 

even though they have limited accuracy. MRI-based methods 

could be preferable in chronic conditions, when a detailed 

diagnosis is required. 
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Within the scope of MRI-based methods, cine MRI-based 

approaches, such as CMR-FT and tissue tracking, could be 

promising for a faster analysis in a busy clinical environment. 

Still, they do not include structural deformation within the 

myocardium as accurately as grid tagging MRI, thus 

compromising diagnostic accuracy. Phase contrast and 

myocardial tagging-based methods, such as SENC, HARP or 

DENSE, could capture structural deformation within the 

myocardium, which could be advantageous when diagnosis 

accuracy is paramount. Moreover, the heart has complex 

mechanics in vertical and horizontal directions throughout the 

systolic cycle. Therefore, intrinsically 2D methods, such as SENC 

or DENSE or HARP, could compromise horizontal or through-

plane motion accuracy compared to the 3D methods like 3D STE. 

Such limitations show a need for an advanced and robust 3D 

method. Table 1.2 shows the advantages and limitations 

mentioned above. Moreover, a recent systematic review shows 

that most of the studies have limited data samples (less than 50) 

(Mangion, McComb, Auger, et al., 2017), and different vendors 

have varying strain values even for the same datasets (Mangion, 

McComb, Auger, et al., 2017), due to different methods and 

imaging modalities.  

 

1.3  Technical review – Myocardial strain calculation 

The previous section has reviewed diagnostic tools in identifying 

myocardial infarction, including strain-based tools. This section 

includes a review of the technical literature for the myocardial 

strain calculation methods. The overview of the myocardial strain 

calculation pipeline is explained. Then the technical methods are 

reviewed according to their formulations and 2D or 3D 

application. The outcome of the review is summarised in Table 

1.3. The observations regarding the technical robustness of 
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existing methods are explained in the Discussion Section 1.3.3 

regarding the benchmark framework of myocardial tracking and 

strain calculation methods. 

 

1.3.1 Overview of myocardial strain calculation pipeline 

A typical myocardial strain calculation pipeline involves the 

following steps: a selection of cardiac imaging, performing 

myocardial tracking, and formulating strain estimation. These 

steps are elaborated in the following sections. 

 

1.3.1.1 Cardiac imaging 

The selection of cardiac imaging is a crucial step to capture 

sufficient and relevant anatomical details of the cardiac wall and 

cardiac cycle. A stack of 2D SAX and LAX images are routinely 

captured in clinics to assess horizontal and vertical ventricular 

movements. 

Echo has a high spatial and temporal resolution and suitable in 

emergency conditions, but the image quality is very much 

dependent on operator skills and patient characteristics 

(Flachskampf, Schmid, Rost, et al., 2011). Echo images develop an 

intrinsic pattern of speckle features, which are of prime interest 

in calculating myocardial strain using tools such as STE (Crosby, 

Amundsen, Hergum, et al., 2009). 

MRI has a high spatial resolution, sufficiently high temporal 

resolution, and good image quality throughout the cardiac cycle. 

Researchers develop different types of MRI sequences to capture 

different kinds of anatomical details. As shown in Figure 1.2, cine 

MRI shows vessel boundaries (endocardium and epicardium) 

with a higher contrast, which is a prime interest in calculating 

myocardial strain using tools like CMR-FT (Hor, Baumann, 
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Pedrizzetti, et al., 2011). Another cardiac MRI sequence is the grid 

tagging MRI (McVeigh and Atalar, 1992). As shown in Figure 1.2, 

grid tagging MRI captures a detailed structure within the 

myocardium, providing accurate details in calculating strain using 

tools like HARP (Osman, Kerwin, Mcveigh, et al., 1999). 

2D imaging is faster than 3D. However, it could compromise 

quality in the through-plane motion of ventricles, which could 

consequent in less accurate strain measurement. This limitation 

could be overcome by 3D imaging, but it costs in terms of higher 

acquisition time. For research purposes, 3D Echo and 3D MRI are 

reported in the literature (Rutz, Ryf, Plein, et al., 2008; Tobon-

Gomez, Craene, Mcleod, et al., 2013). 

Figure 1.2| Examples of visualising left ventricular myocardial 

wall in (a) cine MRI and (b) grid tagging MRI. In (a), cine MRI 

shows myocardium boundaries (endocardium and epicardium). 

In (b), grid-tagging MRI shows the details of structural 

deformation within the myocardium (using tag lines and tag 

points) better than Cine MRI. Images are from our dataset. 
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1.3.1.2 Myocardial tracking 

After selecting the imaging type, myocardial tracking is the next 

step for the strain calculation pipeline. Commonly, a cardiac cycle 

is captured with a sequence of image frames, and each image 

frame captures the structural deformation of the myocardial wall. 

Myocardial tracking methods aim to establish a correspondence 

among the cardiac frames, in order to track the myocardial 

structure's deformation during a cardiac cycle. Technical and 

anatomical details of myocardial tracking methods could vary 

according to the imaging type. 

In Echo imaging, the pattern of speckles provides a means of 

tracking the myocardium's anatomical change. Tools, such as STE 

(Crosby, Amundsen, Hergum, et al., 2009), utilise these speckles' 

locations through automatic or semi-automatic procedures to 

perform myocardial tracking. In cine MRI, the endocardium and 

epicardium borders are a means of tracking. Tools, such as CMR-

FT (Hor, Baumann, Pedrizzetti, et al., 2011), utilise these borders 

for myocardial tracking. In tagged MRI, the pattern of tag lines 

and tag points provide a means of myocardial tracking. Tools, 

such as HARP (Osman, Kerwin, Mcveigh, et al., 1999), utilise these 

tag lines and points in a coordinate system to develop a 

myocardial tracking model. 

A detailed review of myocardial tracking methods is provided in 

Section 1.3.2. 

 

1.3.1.3 Strain estimation 

The previous step, myocardial tracking, provides the 

correspondence among the myocardial structure in each frame of 

a cardiac cycle. Such information can be used to perform strain 

estimation. 
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The strain estimation step aims to estimate a strain tensor at each 

point of the myocardium. Strain estimation formulation could 

vary according to the myocardial tracking method. For example, 

to estimate end-systolic strain, the Echo-based speckle tracking 

method (Crosby, Amundsen, Hergum, et al., 2009) calculates the 

distance between two neighbour points in the end-systolic frame 

and compares it with the distance between the same points in the 

end-diastolic frame. This comparison is further used to calculate 

the unit change in length and strain. Another formulation (Abd-

elmoniem, Stuber and Prince, 2008; Tobon-Gomez, Craene, 

Mcleod, et al., 2013) takes each point at the end-systolic frame 

and estimates its displacement compared to the end-diastolic 

frame to compute a displacement gradient, which is further used 

to calculate strain. 

After estimating the strain tensor, the strain is projected in 

circumferential, longitudinal and radial directions, as commonly 

known in the clinical environment. 

 

1.3.2 Myocardial tracking methods 

In the literature, myocardial tracking methods are exhaustively 

reviewed (Frangi, Niessen and Viergever, 2001; Wang and Amini, 

2012). According to our research scope, we have reviewed MRI-

based myocardial tracking methods and some of the Echo-based 

established techniques. 

 

1.3.2.1 Overview of formulation categories 

To categorise the technical advancements, the benchmark 

framework (Tobon-Gomez, Craene, Mcleod, et al., 2013) has 

highlighted three main formulation categories: (i) Direct 
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detection-based methods, (ii) Fourier-based methods, and (iii) 

Tracking-based methods. 

 

1.3.2.1.1 Direct detection-based methods 

Direct feature detection-based methods (Young, 1999; Moore, 

Lugo-Olivieri, McVeigh, et al., 2000) extract specific features from 

images and then regularize them. These features could be tag 

points in grid tagging MRI, manually placed fiducial markers, 

scale-invariant features, landmarks, blobs, corner points or 

anatomical features, such as valves. 

 

1.3.2.1.2 Fourier-based methods 

Fourier-based methods (Arts, Prinzen, Delhaas, et al., 2010; 

Tautz, Hennemuth and Peitgen, 2011) utilise an imaging 

property, i.e. a phase shift in the spatial domain is similar to the 

phase shift in the Fourier domain. This phase shift can be used to 

estimate the displacement field among cardiac frames to perform 

myocardium tracking. 

 

1.3.2.1.3 Tracking-based methods   

Tracking-based methods (Chandrashekara, Mohiaddin and 

Rueckert, 2004) utilise image intensity values. A tracking-based 

model commonly transforms one image into another image by 

maximizing the similarity matrix and estimating the deformation 

gradient at each point. This deformation gradient can be utilised 

for strain estimation, as described in the literature (Abd-

elmoniem, Stuber and Prince, 2008). 
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1.3.2.2 Application-based review 

To review the applicability of existing myocardial tracking 

methods and identify the scope for future research, the existing 

literature is reviewed in two categories: (i) 2D myocardial 

tracking and (ii) 3D myocardial tracking. 

 

1.3.2.2.1 2D myocardial tracking 

A well-known, commercially available myocardial tracking 

method is Echo-based STE, which works with 2D and 3D 

(Manovel, Dawson, Smith, et al., 2010). STE tracks the inherent 

pattern of speckle features using block-matching techniques. 

However, Echo images' speckle features are dependent on the 

scanner manufacturer, and Echo has lower image quality than 

MRI, which may limit the accuracy of calculated strain (Manovel, 

Dawson, Smith, et al., 2010). 

Direct detection with MRI-based myocardial tracking is reported 

as promising in the literature. Researchers (Moore, Lugo-Olivieri, 

McVeigh, et al., 2000) have acquired 2D SAX and LAX images with 

tag lines in 31 healthy volunteers using a 1.5T scanner of General 

Electric. A parallel plane tagging method is used in recording 

sequences of cardiac-gated pulses while holding breath (Moore, 

Lugo-Olivieri, McVeigh, et al., 2000). The imaging parameters for 

tagging acquisition are: repetition time is 6.5 msec, echo time is 

2.1 msec, phase-encoding steps are 110, bandwidth is ±32-kHz, 

the temporal resolution of images is 32.5 msec in each subject 

(Moore, Lugo-Olivieri, McVeigh, et al., 2000). The endocardium 

and epicardium of LV are identified, and grid lines are tracked 

using semi-automated software (Guttman, Zerhouni and McVeigh, 

1997). The tracking is further used in the displacement field 

fitting method to calculate the end-systolic strain in 

circumferential, longitudinal, and radial LV directions. However, 
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the technique uses parallel planes of tag lines rather than a grid 

structure of tag lines, limiting the method's accuracy. Gridlines 

capture horizontal and orthogonal motion in the same MR image, 

whereas parallel lines capture either horizontal or orthogonal 

motion of the myocardium in the same image. As a result, grid 

lines can be more accurate than parallel lines, especially at the 

intersection points of horizontal and orthogonal grid lines. Such 

details of intersection points can be helpful to estimate 

deformation in smaller areas of the myocardium. Amini et al. 

(2001) have shown the applicability of grid tag lines in 

myocardial tracking using B-spline models. They acquired 2D 

long- and short-axis images and reconstructed the LV surface in 

each phase. The reconstructed surfaces are compared with the 

reference LV surface to compute the displacement. However, the 

reference LV surface is assumed as a prolate spheroid, limiting 

the method, as the shape and size of LV are not thoroughly 

uniform (Katz, 2011). Remme et al. (2005) have acquired cine 

MRI (with fiducial markers) and grid tagging MRI. After that, each 

marker was assigned with motion parameters derived from grid 

tagging MRI. The whole set of markers was fitted into a finite 

element model to perform myocardial tracking. Such methods 

have limited accuracy in temporal alignment between two 

different imaging modalities, limiting the accuracy of calculated 

strain. Chen et al. (2010) have developed a myocardial tracking 

method using specifically grid tagging MRI, which detects and 

locates tag points using a Gabor filter bank. The technique tracks 

tag points, using a robust point matching method, and it is 

advantageous to calculate smooth and local deformation in LV. 

However, the overall method is only limited to grid tagging MRI. 

A Fourier-based method, Harmonic Phase (HARP), is a promising 

myocardial tracking method (Osman, Kerwin, Mcveigh, et al., 

1999). The extensions of HARP are 3D-HARP and zHARP (Pan, 

Prince, Lima, et al., 2005; Abd-elmoniem, Stuber and Prince, 
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2008). Fundamentally, the HARP method calculates inverse 

Fourier transform of the spectral peaks in SAX grid tagging MRI. 

This calculation is utilized to automatically track myocardial 

points in a mechanical model. However, the mechanical model 

consists of a material mesh that retains particular tissue or 

muscle properties. As these properties are also in emerging 

research, it may limit myocardial tracking accuracy and 

calculated strain (Pan, Prince, Lima, et al., 2005). Besides, it is 

reported in the literature that the HARP underestimates 

myocardial deformation if there are artefacts in images (Arts, 

Prinzen, Delhaas, et al., 2010). To overcome HARP’s limitations, 

researchers have proposed another Fourier-based method, Sine 

Wave Modelling (SinMod) (Arts, Prinzen, Delhaas, et al., 2010). 

SinMod models local image areas as a part of a sine wave and 

considered the phase difference and average frequency at each 

pixel of consecutive cardiac frames to perform myocardial 

tracking. If the local image area has a low image quality texture, 

the method automatically considers a larger area. Therefore, 

SinMod performs better than HARP when images have artefacts 

or aberration in grid lines (Arts, Prinzen, Delhaas, et al., 2010). 

However, similar to HARP, SinMod cannot include a through-

plane motion for a 3D strain calculation (Arts, Prinzen, Delhaas, et 

al., 2010). As a 3D extension of SinMod, multiple 2D SAX and LAX 

slices were combined (Wang and Amini, 2013), limiting the 

number of LAX slices. 

Tracking-based methods can be divided into multiple categories, 

such as demon-based methods, finite element-based methods, 

block-matching based methods, and spline-based methods. Well-

known demons–based method is Optical Flow, which was initially 

proposed with tagged MRI images (Prince, Gupta and Osman, 

2000), and later adapted for echocardiography images (Angelini 

and Gerard, 2006). Fundamentally, the demons-based method 

performs non-rigid image registration by computing 
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diffeomorphic transformation using velocity field parameters. As 

a result, it can effectively handle local deformations of the 

myocardium. However, the method is dependent on Gaussian 

regularisation rather than biologically motivated regularisation. 

To resolve this limitation, an improved method, iLogDemons, is 

developed by integrating elasticity and incompressibility of 

cardiac muscle (Mansi, Pennec, Sermesant, et al., 2011; McLeod, 

Prakosa, Mansi, et al., 2012). However, the theoretical knowledge 

of incompressibility, specifically the local area of 

incompressibility, is limited in terms of evidence within the 

literature, contributing towards limiting the accuracy of 

myocardial tracking (Mansi, Pennec, Sermesant, et al., 2011). 

Researchers have contributed a finite element-based method, 

Hyperelastic Warping, for myocardial tracking (Papademetris, 

Sinusas, Dione, et al., 2002; Veress, Weiss, Klein, et al., 2002). The 

technique utilises MRI images to calculate force values, and these 

values are used to deform a finite element geometry of LV end-

diastole into end-systole. The results are validated with 

physiological load and cardiac material properties. However, the 

estimation of cardiac material properties is an emerging research 

area, and restricted validation could limit myocardial tracking 

accuracy. B-spline based models have received considerable 

attention in the literature because they can handle local and 

complex deformations with comparatively fewer parameters 

(Deng and Denney, 2004). These models are based on non-rigid 

image registration methods, such as free-form deformation 

(FFD). FFD was initially reported to estimate deformation in 

breast MRI (Rueckert, Sonoda, Hayes, et al., 1999). The technique 

was motivated by parametric modelling (Bardinet, Cohen and 

Ayache, 1996) and image similarity measures, such as mutual 

information (Maes, Collignon, Vandermeulen, et al., 1997; 

Rueckert, Hayes, Studholme, et al., 1998). Later, the method was 

adapted in myocardial tracking and extended with multiple grids 
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layers, and SAX and LAX cardiac images (Schnabel, Rueckert, 

Quist, et al., 2001; Chandrashekara, Mohiaddin and Rueckert, 

2004; Shi, Zhuang, Pizarro, et al., 2012; Shi, Zhuang, Wang, et al., 

2012). FFD is a non-rigid image registration method to relate 

image points between two images, which provides LV tracking by 

connecting all the image points among all the cardiac cycle images 

with each other. To perform image registration, FFD optimises a 

cost function which is comprised of a similarity measure term and 

a smoothness term. The similarity measure term is commonly 

defined with normalised mutual information (Collignon, Maes, 

Delaere, et al., 1995; Maes, Collignon, Vandermeulen, et al., 1997), 

which FFD minimizes during optimisation to align intensities 

between two images. The smoothness term, which FFD maximizes 

during optimisation, is defined with a transformation function. The 

transformation function is defined with B-spline based 

transformation. B-spline and hierarchical B-spline (Schnabel, 

Rueckert, Quist, et al., 2001) can relate image points in the local 

image areas. A faster version of FFD, using computer graphics, has 

contributed with a strategy to simultaneously optimize grid 

points (Modat, Ridgway, Taylor, et al., 2010). However, FFD has a 

range of tunable parameters, such as multiple similarity 

measures, grid spacing in axial directions, multiple grid levels, 

regularisation function, a combination of various regularisation 

functions, and a total number of iterations. As a result, the 

accuracy of FFD is highly dependent on finding these parameter 

values. 

Moreover, due to the regularisation function of FFD, the final 

calculation of strain values could be underestimated (Tobon-

Gomez, Craene, Mcleod, et al., 2013). To overcome this limitation, 

cine MRI was introduced in the pipeline with FFD (Shi, Zhuang, 

Wang, et al., 2012). However, it increases an additional 

dependency of spatial and temporal alignment between cine MRI 
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and grid tagging MRI (Shi, Zhuang, Wang, et al., 2012), limiting 

accuracy due to slice misregistration. 

CMR-FT utilises cine MRI and performs myocardial tracking by 

tracking and matching techniques (Hor, Baumann, Pedrizzetti, et 

al., 2011). Due to the simple approach of CMR-FT, it is promising 

for faster results in a demanding clinical environment. CMR-FT 

identifies the boundary of LV in one arbitrary cardiac frame by 

manual outlining LV border. Such a line represents a set of points. 

Each of these points is automatically tracked in a hierarchical 

matching, including 1D tracking methods. In the first step, the line 

passing through each of these points and the myocardium's 

transmural cavity are tracked with a cross-correlation matrix. In 

the second step, each of the border points is independently 

tracked with 2D windows (matrices) of different sizes (Hor, 

Baumann, Pedrizzetti, et al., 2011). In these steps, the CMR-FT 

and cine MRI do not consider the myocardium's structural 

deformation as accurately as grid tagging MRI does. Hence, CMR-FT 

tracking can be limited in accuracy compared to the grid tagging 

MRI-based method's tracking. 

With the advancements of imaging methods, 3D cardiac imaging 

has enabled researchers to develop robust methods to improve 

strain calculation. 

 

1.3.2.2.2 3D myocardial tracking 

In literature, LV is known to shrink, expand, translate vertically, 

translate horizontally, rotate, and develop twist and torsion 

during a cardiac cycle (Katz, 2011). As a result, a common 

complication in the myocardial tracking methods is the inclusion 

of longitudinal heart movement. 

Myocardial tracking methods are initially developed by utilizing a 

sequence of 2D SAX images over a cardiac cycle at different LV 
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levels (Radeva, Amini and Huang, 1997). However, this approach 

is limited to the horizontal movement of LV and is missing 

vertical or through-plane movement along with the horizontal 

movement. Later, researchers have combined 2D LAX images 

with 2D SAX images, in one model, to consider out-plane 

(through-plane) vertical LV movement (Radeva, Amini and 

Huang, 1997; Chandrashekara, Mohiaddin and Rueckert, 2004). 

However, a limited number of LAX images could limit the method. 

This approach is also prone to misregistration of 2D slices, patient 

cooperation, and subjective to the radiographer’s approach in the 

conduct of the imaging examination (Rutz, Ryf, Plein, et al., 2008). 

Later, after the technical advancements of 3D imaging, 

researchers have acquired 3D volumes over a cardiac cycle and 

extended their method for 3D (Tobon-Gomez, Craene, Mcleod, et 

al., 2013). Figure 1.3 shows an example of a stack of 2D SAX 

images, a combined 2D SAX and LAX images, and a 3D volume of 

LV.  
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Figure 1.3| (a) A stack of 2D short-axis MRI and LV contours (b) A 

combined 2D short-axis and long-axis MRIs and contours (c) 3D 

cardiac MRI and left ventricle (Bhalodiya, Palit, Ferrante, et al., 

2019). 
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The Fourier-based method, HARP, was initially proposed for 2D 

imaging. However, the original HARP method could not estimate 

through-plane 3D motion and strain (Wang and Amini, 2012). For 

3D strain calculation, SENC was combined with HARP (Sampath, 

Osman and Prince, 2013) and SENC with DENSE. Moreover, HARP 

was extended as 3D HARP by combining a few LAX slices with a 

stack of SAX slices which enabled the estimation of in-plane and 

through-plane motion (Pan, Prince, Lima, et al., 2005; Abd-

elmoniem, Stuber and Prince, 2008). However, these approaches 

are prone to misregistration of slices, and strain accuracy is 

limited to the number of LV slices. Besides, another 3D extension 

of HARP was proposed by incorporating an original regularisation 

function, which was based on the anatomical space of coordinates 

and incompressibility constraints (Zhou, Bernard, Saloux, et al., 

2015). This method has reported a similar myocardial tracking 

accuracy to the benchmark methods (Tobon-Gomez, Craene, 

Mcleod, et al., 2013). However, the method can be affected by the 

unrecorded tag points and limited knowledge of local 

incompressibility constraints (Zhou, Bernard, Saloux, et al., 

2015). Tag point jumps refer to the cases in which the grid 

tagging points are not adequately recorded in some of the images 

due to technical or scanner limitations, and incompressibility 

refers to the tissue material property of myocardial tissues. 

A Fourier-based method, which Fraunhofer-Institut für Digitale 

Medizin (MEVIS) (Tobon-Gomez et al., 2013) contributed, is also 

a promising 3D myocardial tracking method. The MEVIS method 

is fundamentally based on the Morphon algorithm designed to 

morph an N-dimensional model onto N-dimensional data in a 

segmentation task (Knutsson and Andersson, 2005). The MEVIS 

method estimates 3D displacement by combining 1D 

displacements in all three directions using quadrature filters. 

Moreover, displacement calculation is performed iteratively by 

the accumulation of displacement fields at multiple scales. During 
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this accumulation, the displacement field is weighted differently 

for different scales. For example, a higher weight for fine 

resolution scale compared to coarse resolution scale (Knutsson 

and Andersson, 2005). The MEVIS method is flexible to adapt 

different data sets, imaging modalities, and even different 

anatomies. The method is independent of dimensions, and it can 

be extended for higher-dimensional images. However, the MEVIS 

method could accumulate errors, produce large error outliers, 

and be temporal inconsistent (Tobon-Gomez, Craene, Mcleod, et 

al., 2013). 

A tracking-based method, which is contributed by the National 

Institute for Research in Computer Science and Automation-

Asclepios project (INRIA) (Tobon-Gomez, Craene, Mcleod, et al., 

2013), is also a promising method in 3D myocardial tracking. The 

INRIA method is based on the iLogDemons method (Mansi, 

Pennec, Sermesant, et al., 2011; McLeod, Prakosa, Mansi, et al., 

2012). The method utilizes a regularization function that consists 

of incompressibility criteria and velocity-based formulation. The 

INRIA method is flexible to incorporate physiological priors and 

their constrained values. The method has managed to capture 

radial strain while using 3D volumes of healthy volunteers. 

However, the local area of incompressibility is not considered in 

the method due to limited knowledge of cardiac tissue material 

properties, which is an emerging research area. 

Moreover, the performance of the regularisation function is 

patient-specific, which could create inconsistent results with 

different datasets. Such limitations could limit the accuracy of 

myocardial tracking. Universitat Pompeu Fabra (UPF) has 

reported a promising 3D myocardial tracking method using the 

benchmark dataset (Tobon-Gomez, Craene, Mcleod, et al., 2013). 

The UPF method is based on temporal diffeomorphic free form 

deformation-based transformation and velocity-based 
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formulation. The method is robust to handle a low signal to noise 

ratio and has temporal consistency. However, the approach could 

over-smooth deformation, underestimating the myocardial strain 

(Tobon-Gomez, Craene, Mcleod, et al., 2013). 

A tracking-based method, which utilised the FFD formulation, is 

also a promising 3D method. Rueckert et al. (1999) have 

developed a non-rigid image registration approach, using FFD, for 

2D breast MRI. The method is extended for simultaneous 

registration of 2D SAX and LAX cardiac MRI for myocardial 

tracking (Chandrashekara, Mohiaddin and Rueckert, 2004). 

Further, the method is developed for 3D myocardial tracking and 

strain calculation (Shi, Zhuang, Wang, et al., 2012). 3D extension 

of this method has reported results with a benchmark framework, 

as the Imperial College London -University College London (IUCL) 

method (Tobon-Gomez, Craene, Mcleod, et al., 2013). The method 

is based on cross-correlation-based FFD, and it is well localised. It 

also includes automatic segmentation of the LV contours, which is 

a complementary advantage. However, the method fundamentally 

uses a bending energy-based regularisation function, which could 

underestimate the myocardial strain values due to the smoothing 

effect (Tobon-Gomez, Craene, Mcleod, et al., 2013). 

The CMR-FT and tissue tracking methods utilise 3D cine MRI to 

perform myocardial tracking with matching techniques and be 

promising in a demanding clinical environment (Schuster, 

Stahnke, Unterberg-Buchwald, et al., 2015). However, cine MRI 

may limit the accuracy of calculated strain compared to grid 

tagging MRI as it does not reflect the structural deformation 

within the myocardium. 

A summary of myocardial tracking methods is provided in Table 

1.3.  
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1.3.3 Discussion 

1.3.3.1 Overall pipeline 

This section provides an overview of the strain calculation 

pipeline and a review of myocardial tracking methods. The details 

of the myocardial wall are highlighted with cine and tagged MRI 

examples. Cine MRI captures only the endocardium and 

epicardium efficiently. In contrast, grid tagging MRI captures 

better myocardial structure and deformation throughout the 

myocardium, making grid tagging preferable when the accuracy is 

essential. Grid tagging could be disadvantageous if a patient has 

difficulties holding their breath while capturing MRI as it may 

lead to faded texture in MR images. 

Moreover, grid tagging MR images could suffer from fading grid 

lines and grid tagging points. In such conditions, the algorithms 

which are dependent on grid tagging MR images might not be 

able to perform accurate myocardial tracking. The gradient-based 

formulation could be preferable for accuracy in the strain 

calculation step, as it utilises individual points to calculate strain. 

Moreover, the formulation is adopted in the benchmark 

framework to compare existing methods (Tobon-Gomez, Craene, 

Mcleod, et al., 2013). 

 

1.3.3.2 Myocardial tracking 

From the review of myocardial tracking methods, it is observed 

that the myocardial tracking methods are initially developed for 

2D, making them limited to either tracking in-plane motion or 

through-plane motion. Researchers have combined different 2D 

images and 2D methods to calculate strain in 3D to overcome 

such limitations. However, these approaches' accuracy is prone to 

slice misregistration and limited to the 2D slices’ numbers. A 

similar observation is reported in the literature (Rutz, Ryf, Plein, 
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et al., 2008). Later, researchers have developed fully 3D 

myocardial tracking methods, which utilised fully 3D volumes. 

Researchers have reported their results of 3D myocardial 

tracking and strain. However, as discussed in the benchmark 

framework (Tobon-Gomez, Craene, Mcleod, et al., 2013), there is 

still research scope to improve tracking methods and accuracy. 

Due to the technical and knowledge-based limitations of existing 

methods, myocardial tracking's accuracy and consistency are still 

limited (Tobon-Gomez, Craene, Mcleod, et al., 2013). 

From the review summary of Table 1.3, it is observed that the 

existing myocardial tracking methods have considerable 

advantages such as being sufficient for 3D cardiac motion, flexible 

to include physiological priors (priors such as tissue 

incompressibility, tissue elasticity) and image dimensions, and 

robust to tracking error and image noise. However, the tracking 

accuracy of the methods is limited due to various technical and 

knowledge-based limitations. For example, the UPF and IUCL 

methods underestimate deformation due to the regularisation 

function. HARP and INRIA methods have limited accuracy due to 

the limited knowledge of patient-specific tissue material 

properties. It is summarised in Table 1.3 that an established 

Echo-based method and a recent cine MRI–based FT method are 

technically advantageous over these limitations, as they do not 

require physiological priors. However, the Echo has lower image 

quality, and Cine-MRI includes limited myocardial structure 

deformation within the myocardium. As a result, these methods 

can give faster results in a demanding clinical environment, but 

they may limit the accuracy of calculated strain values. 

Techniques such as IUCL, UPF, HARP, and INRIA could be more 

promising for the complete inclusion of myocardial structure 

deformation as they utilise tagged MRI. A summarised table of 

our review, with key strengths and limitations of the existing 

methods, is provided in Table 1.3. A detailed list of literature is 
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provided in Section 1.3.2.2. Furthermore, we have discussed the 

possible way of overcoming limitations with a novel method in 

Section 1.3.3.3. 

Tracking-based deformable methods, such as the B-spline and 

FFD-based methods (Chandrashekara, Mohiaddin and Rueckert, 

2004), could overcome the limitation of requiring patient-specific 

tissue properties. However, these methods have dependency of 

the regularisation function and the tunable parameters associated 

with them. It is reported that the regularisation function may over 

smooth the calculated strain and underestimates strain values 

(Tobon-Gomez, Craene, Mcleod, et al., 2013). Besides, the usage of 

the B-spline function in myocardial tracking methods is 

complicated. It is reported in the literature (Deng and Denney, 

2004) that the B-spline models, with a Cartesian coordinate 

system, are prone to ill-conditioned polynomials. Such issues 

were addressed by including LV periphery measurements 

(Ozturk and Mcveigh, 2000) and a cylindrical coordinate system 

with B-spline (Deng and Denney, 2004). However, these 

approaches could overcomplicate the method and introduce 

additional dependencies, such as different coordinate systems 

(Deng and Denney, 2004). 

 

1.3.3.3 Direction for a new method 

As the B-spline function has origin in the transformation function 

literature, we have explored additional literature regarding 

different transformation functions. It is reported in the literature 

that the spline-based functions can generate large errors when 

the spacing among points is irregular (Zagorchev and Goshtasby, 

2006), which could happen in myocardial tracking methods due 

to the non-uniform shape of a cardiac vessel. To overcome the B-

spline function's limitations, a local weighted mean (LWM) 
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function is proposed by (Maude, 1971). LWM is concise and less 

complicated than B-spline, and it was adapted for the non-rigid 

image registration of 2D geo-spatial images (Goshtasby, 1988). 

LWM is an interpolation function that maps corresponding points 

between two images. For the correspondence establishment, 

LWM uses locally weighted polynomials passing over the image 

points. LWM function has a similarity with the human 

draughtsman method of drawing functions through given points. 

LWM and its first derivative are continuous at all points for a 

smooth interpolation (Maude, 1971). LWM has a range of 

advantages compared to other transformation functions - 

including spline functions: (i) LWM does not need an extensive 

system of equations during computation, making it numerically 

stable (Goshtasby, 1988). It computes transformation by utilizing 

the coordinates of the corresponding control points. (ii) LWM 

computation involves averaging weights of control points; 

therefore; as a result, it can smooth out noise in the 

correspondences, making it preferable over multiquadratics, 

spline-based function, and piecewise linear function (Zagorchev 

and Goshtasby, 2006). (iii) LWM can adapt the density of points 

by stretching towards the gap, and the derivative of weight 

function is zero, making it continuous and smooth all over the 

image (Goshtasby, 1988; Zagorchev and Goshtasby, 2006). (iv) 

The normalized computation of LWM adapts the local image 

areas, making it more robust to handle local deformations 

(Zagorchev and Goshtasby, 2006). 

To the best of our knowledge, the LWM function has not received 

attention from the researchers working on myocardial tracking 

and strain calculation methods. The LWM function's novel 

advantages motivate the development of a myocardial tracking 

method, which incorporates LWM. Moreover, it is reported that 

block matching-based myocardial tracking is promising with the 

use of 3D Echo images (Crosby, Amundsen, Hergum, et al., 2009). 
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However, 3D MRI has received less attention with the block-

matching technique (Tobon-Gomez, Craene, Mcleod, et al., 2013), 

especially with a benchmark dataset. 

Such observations motivated this work to develop of a novel 

method, which creatively performs block-matching and utilises 

the LWM function to perform 2D and 3D myocardial tracking. 

 

1.4  Research hypothesis/aims 

The research problem, which is addressed in this thesis, is as 

follows: 

 

How can a myocardial tracking and strain calculation tool be 

developed to calculate myocardial strain to safely and accurately aid 

diagnostic decisions of myocardial infarction patients? 

 

This thesis argues that a cardiac diagnosis tool can be developed, 

which can help identify infarcted myocardial segments of the left 

ventricle. This tool will assist clinical experts seeking to diagnose 

myocardial infarction patients safely and accurately. This 

research problem raises the following research questions: 

1. How can a 2D myocardial tracking and strain calculation 

method be developed using the 2D local weighted mean 

function and structural deformation within the 

myocardium? 

2. How can a 3D myocardial tracking and strain calculation 

method be developed using the 3D local weighted mean 

function to calculate 3D myocardial strain? 
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3. How can 2D circumferential strain of myocardium be used 

in identifying infarcted left ventricular segments for the 

diagnosis of myocardial infarction patients? 

The aforementioned research questions are addressed in this 

thesis. 

 

1.5 Summary 

This chapter has introduced the research area of diagnosing 

myocardial infarction patients to address safety issues of LGE 

imaging. The myocardial strain is identified as a safety measure in 

identifying infarcted myocardium. Later, in this chapter, the 

reviews of diagnostic tools, myocardial tracking and strain 

calculation methods are provided. The reviews' highlighted 

points are the inclusion of structural deformation within the 

myocardium and the usage of local weighted mean 

transformation function for myocardial tracking and strain 

calculation. Chapter 1 concludes with the thesis’s stated research 

problem and a set of associated research questions. The 

subsequent chapters of this thesis address each of these research 

questions.  
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Chapter 2 

Novel Method – 2D Myocardial Tracking 

 

2.1 Introduction 

In this chapter, the Hierarchical Template Matching (HTM) 

method is proposed for 2D myocardial tracking. HTM is 

independent of tissue material properties. Moreover, the 

methodology uses the LWM function, as directed in Chapter 1 

Section 1.3.3.3, making HTM robust to prevent ill-conditioned 

polynomials' errors. The method has utilised grid tagging MRI, 

which is vital to capture structural deformation within the 

myocardium. Therefore, the calculated strain values reflect the 

whole myocardium rather than just borders. The proposed 

method, HTM, is published in a journal article (Bhalodiya, Palit, 

Tiwari, et al., 2018). 

 

2.2  Proposed HTM method 

2.2.1 Overview 

The proposed method aims to calculate 2D myocardial strain 

values. It tracks the myocardium and calculates 2D myocardial 

strain by following non-rigid image registration. The image 

registration is performed with “point set”, which refers to the set 

of point locations within the image. The mathematical definitions 

of each “point set” is further elaborated within Section 2.2.3 and 

Section 2.2.4.  Initially, the LV myocardium is segmented and 

given as input. After that, as shown in Figure 2.1, image 

registration of HTM is designed in three steps: (i) retrieving a 

point set from a moving image, (ii) finding a corresponding point 

set from the reference image, and (iii) calculating geometric 

transformation among point sets of moving and reference images. 
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The reference image is an end-diastolic image of the respective 

SAX slice. HTM uses local image areas defined as Template, 

Segment, Chunk and Window, which are pictorially illustrated in 

Figure 2.2. The word ‘part’ is used to refer to any of those four 

words throughout the explanation. The phrase ‘target sliding 

region’ refers to the image area of the reference image.  
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Figure 2.1| Overview of HTM steps to perform image registration 

in each image pair of a cardiac cycle. (a) Step 1 is to generate a 

moving image point set as defined in Section 2.2.3. (b) Step 2 is to 

find the corresponding reference image point set using the 

hierarchical template matching process described in Section 2.2.4. 

(c) Step 3 is to perform geometrical transformation using the 

local-weighted mean function as per Section 2.2.5. 

 

 

Figure 2.2| Pictorial representation of Template, Segment, Chunk, 

Window, and Representative Point of a part used in the 

hierarchical template matching method. 
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2.2.2 LV segmentation 

The entire cardiac cycle is captured with a sequence of grid 

tagging MRI at different SAX planes of LV. The end-diastolic slice 

of each SAX plane of LV is manually segmented to identify the LV 

myocardium. The segmented LV myocardium and original grid 

tagging MRI are registered using Digital Imaging and 

Communications in Medicine (DICOM) (Mildenberger, Eichelberg 

and Martin, 2002) header information. DICOM headers contain 

imaging-specific information such as coordinate values, which are 

used during registration. The strain values of this segmented LV 

myocardium are used while reporting final results. 

 

2.2.3 Retrieving moving point set 

This section explains the process to create a point set of moving 

image points. The moving image refers to any image of the cardiac 

cycle. The moving image is divided into the image areas of size 𝑡 ×

𝑡, which are called Templates. Templates are used to create 

Segments of size 𝑡 2⁄ × 𝑡 2⁄ . Each Segment is divided into Chunks 

of size 𝑡 4⁄ × 𝑡 4⁄ . Each Chunk is divided into Windows of size 

𝑡
8⁄ × 𝑡 8⁄ . Initially, the value of 𝑡 is set as 16, which is discussed in 

the Discussion Section 2.5.2. Accordingly, the parts have sizes as 

Template 16 × 16, Segments 8 × 8, Chunks 4 × 4, and Windows 

2 × 2. The first point of each part is retrieved in a separate set 

𝑀 = {𝑚1, 𝑚2, 𝑚3, … , 𝑚𝑛}. Representative point of all Windows 

collectively defines a dense and uniform point set, which is 

referred to as a moving point set 𝑃 = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛}. 

 

2.2.4 Finding the reference point set 

A hierarchical matching structure is used to find reference image 

points corresponding to the moving image points. Hierarchical 
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matching is designed with a template matching method using 

normalised cross-correlation (NCC) (Haralick and Shapiro, 1993; 

Lewis, 1995). Template matching can be performed by matching 

an area of one image over the other image's area. This process is 

commonly referred to as “sliding”, and the associated image area 

of the other image is referred to as “sliding area”. NCC algorithm 

takes two images as inputs and provides a matrix of correlation 

coefficient (CC) as an output. The range of CC values is from −1.0 

to +1.0. The highest value in the CC matrix leads to the matching 

location between the images. The NCC (Haralick and Shapiro, 

1993; Lewis, 1995) is adopted as three steps procedure: (i) select 

each moving image part and determine its relevant cross-

correlation with the corresponding sliding area of the reference 

image, (ii) determine local sums by calculating running sums in 

advance (Lewis, 1995), and (iii) normalise values of cross-

correlation by applying local sums to cross-correlation values 

which ultimately gives CC matrix. 

The overlapping layers are designed as a part of the matching 

structure, highlighted in Figure 2.1 step 1. Three overlapping 

layers between Template and Segment layers are designed with 

parts of sizes 14 × 14, 12 × 12, and 10 × 10. One overlapping 

layer, between the Segment and Chunk layer, is created, which 

has parts of size 6 × 6. The overlapping layers play a crucial role 

in reducing the sliding area of the reference image during the 

hierarchical matching process. The mathematical definition of 

NCC is mentioned in Equation 2.1. 

𝛾(𝑢, 𝑣) =
∑ [𝑓(𝑥, 𝑦) − 𝑓𝑢̅,𝑣][𝑝(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑝̅]𝑥,𝑦

{∑ [𝑓(𝑥, 𝑦) − 𝑓𝑢̅,𝑣]2∑ [𝑝(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑝̅]2𝑥,𝑦𝑥,𝑦 }
0.5 

(2.1) 

where 𝑓 refers to the reference image, 𝑝̅ refers to the mean of the 

moving image template, 𝑓𝑢̅,𝑣 refers to the mean of 𝑓(𝑥, 𝑦), which is 

the image area of the reference image under the part of the 
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moving image. The highest value of 𝛾(𝑢, 𝑣) leads to the matching 

location of the reference image area. 

A pictorial representation of the hierarchical matching process is 

shown in Figure 2.3, and the mathematical expression is shown in 

Equation 2.2 to Equation 2.7. Overlapping layers are not shown, 

in the pictorial representation, to avoid the overly complicated 

illustration. However, they are mentioned in the mathematical 

equations.  
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Figure 2.3| Pictorial representation of the hierarchical template 

matching process using normalised cross-correlation. Pictorial 

examples of Moving Template, Moving Segment, Moving Chunk, 

Moving Window, Reference Template, Reference Segment, 

Reference Chunk, and Reference Window. 

The initial step of the hierarchical matching process is to perform 

NCC between the reference image and the moving image 

template, which is shown in Equation 2.2. 

𝐼𝑀 = ∑ 𝑀𝑇𝑖
𝑡
𝑖=1    𝑅𝑇𝑖 = 𝑁𝐶𝐶(𝑀𝑇𝑖, 𝐼𝑅)   (2.2) 

where 𝐼𝑀 refers to moving image, 𝐼𝑅 refers to the reference image, 

𝑀𝑇 refers to moving template, 𝑅𝑇 refers to reference template, 𝑖 

points to 𝑖𝑡ℎ template, and 𝑁𝐶𝐶 is normalised cross-correlation. 
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Each moving template is used as NCC input for overlapping 

layers. Equation 2.3 shows the matching process in overlapping 

layers. 

𝑀𝑋𝑖𝑚 ⊂ 𝑀𝑇𝑖  𝑅𝑋𝑖𝑚 = 𝑁𝐶𝐶(𝑀𝑋𝑖𝑚, 𝑅𝑇𝑖) (2.3) 

where 𝑀𝑋 has a size (𝑠𝑡 − 2) × (𝑠𝑡 − 2), and 𝑠𝑡 × 𝑠𝑡 is the size of 

a parent template. 𝑀𝑋 refers to the moving template section, 𝑅𝑋 

refers to the reference template section, 𝑖 = 𝑖𝑡ℎ template, 𝑚 =

𝑚𝑡ℎ section of the template, 𝑁𝐶𝐶 is normalised cross-correlation, 

𝑀𝑇 refers to moving template, 𝑅𝑇 refers to a reference template. 

The process of Equation 2.3 is carried out three times with three 

different sizes of moving sections. The output 𝑅𝑋 is used as input 

to the next step of matching in Equation 2.4. Equation 2.4 

performs matching between a reference template section and a 

moving segment. 

𝑀𝑇𝑖 = ∑ 𝑀𝑆𝑖𝑗
4
𝑗=1   𝑅𝑆𝑖𝑗 = 𝑁𝐶𝐶(𝑀𝑆𝑖𝑗, 𝑅𝑋𝑖𝑚)  (2.4) 

where 𝑅𝑆 refers to a reference segment, 𝑀𝑆 refers to moving 

segment, 𝑅𝑋 refers to a reference template section, 𝑖 = 𝑖𝑡ℎ 

template, 𝑚 = 𝑚𝑡ℎ  section, 𝑗 = 𝑗𝑡ℎ segment, 𝑁𝐶𝐶 is normalised 

cross-correlation, 𝑀𝑇 refers to moving template. 

Equation 2.5 shows the matching of overlapping layer between 

segment and chunk layer. Each reference segment and moving 

segment section are input to NCC to find the output reference 

segment section. 

𝑀𝑌𝑖𝑗𝑦 ⊂ 𝑀𝑆𝑖𝑗  𝑅𝑌𝑖𝑗𝑦 = 𝑁𝐶𝐶(𝑀𝑌𝑖𝑗𝑦, 𝑅𝑆𝑖𝑗) (2.5) 

where 𝑀𝑌 refers to moving segment section, 𝑅𝑌 reference 

segment section, 𝑀𝑆 refers to moving segment,  𝑖 = 𝑖𝑡ℎ template, 

𝑗 = 𝑗𝑡ℎ segment, 𝑦 = 𝑦𝑡ℎ segment section, 𝑅𝑆 refers to a reference 

segment, 𝑁𝐶𝐶 is normalised cross-correlation. 
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In Equation 2.6, it is shown that the reference segment section 

and moving chunk are used as input in NCC to find matching 

reference chunk. 

𝑀𝑆𝑖𝑗 = ∑ 𝑀𝐶𝑖𝑗𝑘
4
𝑘=1   𝑅𝐶𝑖𝑗𝑘 = 𝑁𝐶𝐶(𝑀𝐶𝑖𝑗𝑘, 𝑅𝑌𝑖𝑗𝑦)  (2.6) 

where 𝑅𝐶 refers to reference chunk, 𝑀𝐶 refers to moving chunk, 

𝑅𝑌 refers to a reference segment section, 𝑀𝑆 refers to moving 

segment, 𝑁𝐶𝐶 is normalised cross-correlation, 𝑖 = 𝑖𝑡ℎ template, 

𝑗 = 𝑗𝑡ℎ segment, 𝑘 = 𝑘𝑡ℎ chunk, and 𝑦 = 𝑦𝑡ℎ segment section. 

In Equation 2.7, matching the moving window and reference 

chunk is performed to find a matching reference window. The 

matching provides a reference window corresponding to each 

moving window. 

𝑀𝐶𝑖𝑗𝑘 = ∑ 𝑀𝑊𝑖𝑗𝑘𝑙
4
𝑖=1  𝑅𝑊𝑖𝑗𝑘𝑙 = 𝑁𝐶𝐶(𝑀𝑊𝑖𝑗𝑘𝑙, 𝑅𝐶𝑖𝑗𝑘)   (2.7) 

where 𝑅𝑊 refers to a reference window, 𝑀𝑊 refers to moving 

window, 𝑀𝐶 refers to moving chunk, 𝑁𝐶𝐶 is normalised cross-

correlation, 𝑅𝐶 refers to reference chunk, 𝑖 = 𝑖𝑡ℎ template, 𝑗 = 𝑗𝑡ℎ 

segment, 𝑘 = 𝑘𝑡ℎ chunk, 𝑙 = 𝑙𝑡ℎ window. 

The outcome of the reference image point set (𝑃𝑅𝑊) 

corresponding to moving image point set (𝑃𝑀𝑊) is shown in 

Equation 2.8. 

𝑃𝑀𝑊 = ∑ ∑ ∑ ∑ 𝑀𝑊𝑖𝑗𝑘𝑙(1,1)
4
𝑙=1

4
𝑘=1

4
𝑗=1

𝑡
𝑖=1  ,    

𝑃𝑅𝑊 = ∑ ∑ ∑ ∑ 𝑅𝑊𝑖𝑗𝑘𝑙(1,1)
4
𝑙=1

4
𝑘=1

4
𝑗=1

𝑡
𝑖=1     (2.8) 

where 𝑃𝑅𝑊 is reference image point set, 𝑃𝑀𝑊 is moving image 

point set, 𝑅𝑊 refers to a reference window, 𝑀𝑊 refers to moving 

window, 𝑖 = 𝑖𝑡ℎ template, 𝑗 = 𝑗𝑡ℎ segment, 𝑘 = 𝑘𝑡ℎ chunk, 𝑙 = 𝑙𝑡ℎ 

window. 

The set of matching points is referred to as ‘control points’ in the 

next Section 2.2.5, which explains the moving and reference 

image points' geometrical transformation. 
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2.2.5 Geometric transformation 

This section explains the function to transform all the points of 

moving image to the reference image points to find the 

deformation at each point, which can be utilised to calculate 

strain values further. A radial basis transformation function, 

LWM, is utilised for transformation. A moving image point set, 

mentioned in Equation 2.8, is used and referred to as landmarks 

or control points of moving image during this transformation 

step. Similarly, the reference image has N control points 

corresponding to the moving image's N control points. Moving 

image control points are denoted as (𝑋𝑖, 𝑌𝑖), and reference image 

control points are denoted as (𝑥𝑖 , 𝑦𝑖) in Equation 2.9, Equation 

2.10 and Equation 2.11. 

{(𝑥𝑖, 𝑦𝑖) , (𝑋𝑖, 𝑌𝑖): 𝑖 = 1,… ,𝑁}    (2.9) 

𝑋𝑖 = 𝑓𝑥(𝑥𝑖, 𝑦𝑖),  𝑌𝑖 = 𝑓𝑦(𝑥𝑖, 𝑦𝑖)   (2.10) 

or,  𝑋𝑖 ≈ 𝑓𝑥(𝑥𝑖, 𝑦𝑖),  𝑌𝑖 ≈ 𝑓𝑦(𝑥𝑖, 𝑦𝑖)   (2.11) 

where (𝑋𝑖, 𝑌𝑖) is a moving image control point, (𝑥𝑖 , 𝑦𝑖) is a 

reference image control point, 𝑁 is the number of control points, 

𝑓 is a symbol of function. 

The points are organised as tuples in a surface representation, 

which is shown in Equation 2.12. 

{(𝑥𝑖, 𝑦𝑖, 𝑓𝑖): 𝑖 = 1, … , 𝑁}     (2.12) 

where (𝑥𝑖, 𝑦𝑖, 𝑓𝑖) is the 𝑖𝑡ℎ point, 𝑁 is the number of control points. 

For each 𝑖𝑡ℎ point, a polynomial which is passing through the 

point (𝑥𝑖, 𝑦𝑖 , 𝑓𝑖) and its (𝑛 − 1) closest neighbour control points 

are calculated. A weight function is computed at each 𝑖𝑡ℎ point, as 

shown in Equation 2.13. 

𝑊𝑖(𝐷) = 1 − 3𝐷2 + 2𝐷3, 0 ≤ 𝐷 ≤ 1  

𝑊𝑖(𝐷) = 0, 𝐷 > 1           (2.13) 
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where 𝐷 = [(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2]1/2/𝐷𝑛 and 𝐷𝑛 = distance 

between (𝑥𝑖, 𝑦𝑖) and (𝑛 − 1)𝑡ℎ closest control point, 𝑊 is the 

weight function. 

Due to the 𝐷𝑛, if the control point has a higher distance from the 

point, it will have a lesser effect on the transformation, which 

ensures the local transformation. The derivatives of 𝑊 with 

respect to 𝐷 at locations 0 and 1 are zero. Therefore, the weighted 

sum at all points remains smooth and continuous. The 

transformation function at any point (𝑥, 𝑦) is defined as 

mentioned in Equation 2.14. 

𝑓(𝑥,𝑦) =
∑ 𝑊{[(𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2]
1/2

/𝐷𝑛}
𝑁
𝑖=1 𝑃𝑜𝑙𝑦𝑖(𝑥,𝑦)

∑ 𝑊{[(𝑥−𝑥𝑖)
2+(𝑦−𝑦𝑖)

2]1/2/𝐷𝑛}
𝑁
𝑖=1

  (2.14) 

where 𝑓(𝑥,𝑦) is the transformation function at any point (𝑥, 𝑦), 

(𝑥𝑖, 𝑦𝑖) is a reference image control point, 𝐷𝑛 = distance between 

(𝑥𝑖, 𝑦𝑖) and (𝑛 − 1)𝑡ℎ closest control point, 𝑊 is the weight 

function, 𝑃𝑜𝑙𝑦𝑖(𝑥, 𝑦) is the polynomial passing through (𝑥𝑖, 𝑦𝑖 , 𝑓𝑖) 

and its (𝑛 − 1) closest neighbour control points. 

 

2.3 Formulation of strain estimation 

This section describes the strain estimation formulas adapted 

from the literature (Abd-elmoniem, Stuber and Prince, 2008). The 

strain is estimated by utilising the transformation at each point, 

as derived in the previous section. 

The displacement gradient at each point is calculated with respect 

to the reference end-diastolic image. Equation 2.15 shows the 

calculation of the displacement gradient. 

∇𝑈 = [
𝑈𝑥𝑥 𝑈𝑥𝑦
𝑈𝑦𝑥 𝑈𝑦𝑦

] = ∇(𝐿𝑐𝑢𝑟 − 𝐿𝑟𝑒𝑓)   (2.15) 

where ∇𝑈 refers to the displacement gradient, 𝑈𝑥𝑥 is derivative of 

displacement in 𝑥 with respect to 𝑥, 𝑈𝑥𝑦 is derivative of 
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displacement in 𝑥 with respect to 𝑦, 𝑈𝑦𝑥 is derivative of 

displacement in 𝑦 with respect to 𝑥, 𝑈𝑦𝑦 is derivative of 

displacement in 𝑦 with respect to 𝑦, 𝐿𝑐𝑢𝑟 refers to the point 

coordinates in the current image of the cardiac cycle, 𝐿𝑟𝑒𝑓 refers 

to the point coordinates in the reference image of the cardiac 

cycle. 

The displacement gradient is utilised to calculate deformation 

gradient 𝐹, which is mentioned in Equation 2.16. 

𝐹 = (𝐼 − ∇𝑈)−1      (2.16) 

where 𝐹 is deformation gradient, 𝐼 is the identity matrix, and ∇𝑈 

refers to the displacement gradient 

The deformation gradient is utilised to calculate Eulerian strain 

tensor 𝐸, which is defined in Equation 2.17. 

𝐸 =
1

2
[𝐼 − (𝐹𝐹𝑇)−1]     (2.17) 

where 𝐸 is Eulerian strain, 𝐼 is the identity matrix, 𝐹 is the 

deformation gradient 

𝐸 is projected in the circumferential and radial directions 

according to the equation 𝐸𝑝 = 𝑝𝑇 ∙ 𝐸 ∙ 𝑝, where 𝑝 represents a 

given direction. The definition of projecting strain adopted from 

the literature (Moore, Lugo-Olivieri, McVeigh, et al., 2000; Tobon-

Gomez, Craene, Mcleod, et al., 2013). The longitudinal direction of 

LV is from the apex to the base, which is defined as 𝐿. Accordingly, 

the radial direction 𝑅 is perpendicular to the epicardium and 

pointing outwards, which is defined as 𝑅 = 𝑀 − (𝑀 ∙ 𝐿)𝐿, where 

𝑀 refers to the normal of the node. The circumferential direction 

𝐶 is in SAX plane and parallel to the epicardium. It is counter-

clockwise when it is observed from the base. 𝐶 is defined as a 

cross product of 𝑅 and 𝐿. 
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2.4  Validation of 2D myocardial tracking 

2.4.1 Dataset details 

The required institutional ethical approval to conduct research 

was obtained from the Biomedical and Scientific Research Ethics 

Committee (BSREC), under the application number REGO 2016-

1865. For a thorough understanding of myocardial infarction 

patients' diagnosis, an Honorary placement at an NHS unit was 

completed. Data collection from an NHS unit, Royal Brompton and 

Harefield NHS Foundation Trust (RBHT), was performed to test 

and validate the technical models, with required ethical approval 

and official guidelines. 

A dataset of 1140 SAX images of 15 healthy human subjects was 

used to validate the 2D method explained in this chapter. The 

data acquisition was from a 3T SKYRA of Siemens MRI Scanner, 

from RBHT, London. The images have pixel sizes of 1.48 ×

1.48𝑚𝑚 and 1.69 × 1.69𝑚𝑚. The data was acquired with steady-

state free precession (SSFP) using proper breath holds and ECG-

gating. The standard imaging sequence of grid tagging MRI was 

used for the acquisition with the following sequence parameters: 

slice thickness 6 (two patients have slice thickness 8), imaging 

frequency 123.22, number of phase encoding steps 156, 

repetition time 46.8 (two patients have repetition time 46.44), 

Echo time 2.46 (two patients have Echo time 2.42), Echo train 

length 1, Echo numbers 1. As mentioned in Figure 2.4, the data 

images are from four SAX slices of LV.  
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Figure 2.4| (a) Four short-axis MRI slices of human left ventricle: 

basal, upper mid-ventricle, lower mid-ventricle, and apical. (b) An 

example of six regions of left-ventricular myocardium in the mid-

ventricular short-axis slice. 

 

2.4.2 Validation methods 

The validation is performed by calculating target registration 

error (TRE) (Fitzpatrick and West, 2001; Chandrashekara, 

Mohiaddin and Rueckert, 2004) of myocardial tracking and 

comparing the registration error with the 2D method of one of the 

benchmark methods (Chandrashekara, Mohiaddin and Rueckert, 

2004; Modat, Ridgway, Taylor, et al., 2010). 

TRE is adapted as an error measure, which gives root mean 

square error (RMSE) between corresponding points. In grid 

tagging MRI, grid points are manually tracked in the whole 

myocardium, and these locations are used as known ground truth 

landmarks. After that, the same points are tracked using the 2D 

HTM method, which are considered tracked landmarks. The 

distance between locations in each ground truth landmark and 

the corresponding tracked landmark is calculated as RMSE in 

millimetre (mm). The mean RMSE is plotted for each LV SAX slice 

and each phase of a cardiac cycle. Similarly, the mean RMSE using 
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the benchmark method of free form deformation (FFD) 

(Rueckert, Sonoda, Hayes, et al., 1999; Chandrashekara, 

Mohiaddin and Rueckert, 2004) is evaluated. 

FFD is a non-rigid image registration method to relate image 

points between two images, which provides LV tracking by 

connecting all the image points among all the cardiac cycle images 

with each other. To perform image registration, FFD optimises a 

cost function which is comprised of similarity measure term and 

smoothness term. Similarity measure term is commonly defined 

with normalised mutual information (Collignon, Maes, Delaere, et 

al., 1995; Maes, Collignon, Vandermeulen, et al., 1997), which FFD 

minimizes during optimisation to align intensities between two 

images. A smoothness term, which FFD maximizes during 

optimisation, is defined with a transformation function. The 

transformation function is defined with B-spline based 

transformation. B-spline and hierarchical B-spline (Schnabel, 

Rueckert, Quist, et al., 2001) can relate image points in the local 

image areas. To perform optimisation, FFD has the following 

tuning parameters, which are selected according to the details of 

their articles (Rueckert, Sonoda, Hayes, et al., 1999; 

Chandrashekara, Mohiaddin and Rueckert, 2004): similarity 

measure is normalised mutual information, regularisation 

function (smoothness term) is bending energy, the value of 

bending energy is 0.001, the linear energy term (acts as a weight 

to the smoothness term) is 0.01, control point grid levels are 3. In 

the literature (Rueckert, Sonoda, Hayes, et al., 1999), it is 

mentioned that the accuracy of their method is promising, when 

the distance between grid points are reduced. Therefore, we 

selected grid spacing in initial, middle and final levels as 4 × 4, 

2 × 2 and 1 × 1. The results are derived and compared with our 

results. 
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2.5 Discussion 

2.5.1 Strengths 

This chapter described a 2D myocardial tracking and strain 

estimation method that can help mitigate or overcome the 

technical limitations of existing methods to improve tracking 

accuracy. The proposed method, HTM, does not require tissue 

material properties. Moreover, the method is robust to prevent 

ill-conditioned polynomials' error due to the LWM 

transformation function. Due to such technical advantages, the 

accuracy of the myocardial tracking is expected to improve with 

respect to the benchmark method as these limitations are 

reported in the literature as factors to the reduced tracking 

accuracy. The comparative results and validation with the 

benchmark method are provided in Chapter 6. The method is 

published in Bhalodiya et al. (2018). 

 

2.5.2 Parameter selection 

During the development of this method, in Section 2.2.4, we have 

considered the size of the template as 16 × 16. After performing a 

small in-house Matlab study, we selected this value to understand 

the accuracy of the template matching algorithm. Templates of 

different sizes are randomly extracted from grid tagging images 

of the entire cardiac cycle. The total number of templates for each 

size is 800. Each of the extracted templates is performed template 

matching with its corresponding image according to the 

normalised cross-correlation (Haralick and Shapiro, 1993; Lewis, 

1995). The number of templates that have incorrect matchings is 

counted. The percentage of incorrect matchings with each 

template size is reported in Figure 2.5.  
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Figure 2.5| The percentage of incorrect matchings for different 

template sizes are plotted. The template matching is performed 

with normalised cross-correlation, and the total number of 

templates for each size is 800. The numbers on the y-axis are 

multipliers of 100, as shown above the axis (e.g., 0.16×100). 

Numbers on the x-axis are the number of local points 𝑛 as defined 

in Section 2.2.5. 

Moreover, in literature, a similar myocardial tracking method 

(Pedrizzetti, Claus, Kilner, et al., 2016) has mentioned that the 

value should be at least 8 × 8 for sufficient accuracy, and another 

literature (Crosby, Amundsen, Hergum, et al., 2009) noted that 

the smaller values are vulnerable to inaccurate matching in Echo 

images. Therefore, after performing the above study with our MRI 

dataset, we selected the initial template size as 16 × 16 to 

maintain size order in our hierarchical matching process. We 

observe that a higher value may lead to a higher processing time 

for the method, but it provides better matching accuracy than 

smaller values. 

In Equation 2.13 and 2.14, it is crucial to select the appropriate 

value of 𝑛 and accordingly 𝐷𝑛. A too-large value may result in 

underestimated deformation and strain values, whereas a too 
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small value may not perform matrix operations. The selection of 𝑛 

is performed after a small in-house Matlab study. 𝑛 values 

starting from 𝑛 = 5 up to 𝑛 = 150 with an interval of 5 are tested 

for 2D error analysis, and it is assumed that the values within 

them will not significantly reduce target registration error. The 

process is repeated for randomly selected 10 (out of 15) subjects. 

8 out of 10 subjects have the least error at 𝑛 = 45, 1 has the least 

error at 𝑛 = 40, and 1 has the least error at 𝑛 = 35. An analysis 

plot for different 𝑛 values is shown in Figure 2.6.

Figure 2.6| Analysis of root mean square error for different 𝑛 

values. 𝑛 refers to the number of local points for the local 

weighted mean function, and root mean square error refers to the 

target registration error. More details of root mean square error 

values using target registration error are in Section 2.4.2, and the 

details of the local weighted mean function and local points are in 

Section 2.2.5.  

Moreover, it has been observed in our experiments that the 

values less than 𝑛 = 15 are giving computation error to proceed, 

the values between 𝑛 = 15 and 𝑛 = 40 have higher myocardial 

tracking error which decreases from 𝑛 = 15 to 𝑛 = 45, and values 

greater than 𝑛 = 45 up to 𝑛 = 150 have higher error compared to 
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𝑛 = 45. Therefore, value 𝑛 = 45 was selected for our results, 

giving the least target registration error. 

 

2.5.3 Limitations 

HTM requires a manually segmented myocardium of the initial 

end-diastolic slice. The accuracy of HTM is sensitive to the 

selection of initial template size and value of 𝑛, which could be 

considered as limitations of the proposed method. Moreover, if 

the grid tagging images have faded texture or artefacts due to 

patient breathing, then the proposed method may cause 

inaccurate matchings and consequences in incorrect tracking. 

Such cases may require external smoothing and gives less 

accurate tracking. 

 

2.6  Summary 

In this chapter, a 2D myocardial tracking and strain calculation 

method, HTM, is described, which follows non-rigid image 

registration. HTM has three main stages to perform myocardial 

tracking. After the myocardial tracking, the strain calculation is 

formulated, which has adapted formulas from the literature. The 

validation method to examine the tracking accuracy of the HTM 

method is described. The strengths of HTM compared to existing 

methods, parameter selection, and limitations of HTM are 

discussed. The results are reported in Chapter 6. 3D extension of 

the proposed HTM method is described in Chapter 3.  
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Chapter 3 

Extended Method – 3D Myocardial Tracking 

 

3.1 Introduction 

This chapter elaborates on the 3D extension of the HTM method 

for 3D myocardial tracking and strain calculation. The 3D 

extension of the LWM function is described, and 3D LWM is 

introduced in the 3D myocardial tracking pipeline. The validation 

methods of the benchmark framework for 3D myocardial tracking 

and strain calculation are described in this chapter. Moreover, the 

details of an open-access dataset, used to validate the 3D HTM 

method, are also described. This 3D extension of the HTM is 

published in a journal article, (Bhalodiya, Palit, Ferrante, et al., 

2019). 

 

3.2 Dataset details  

An open-access benchmark dataset (Tobon-Gomez, Craene, 

Mcleod, et al., 2013) of 15 healthy subjects is used for the 

validation. The dataset contains 3D imaging of healthy subjects 

and segmented left ventricular volume using end-diastolic cine 

SSFP MRI. 3D volumes of grid tagging MRI and segmented LV 

mesh of cine SSFP MRI of each subject are used from the dataset 

for the 3D HTM method. Grid tagging MRI has a voxel size 

0.96𝑚𝑚 in each dimension. The characteristic details of the 

dataset are mentioned in Table 3.1.  
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3.3 Validation methods – Benchmark framework 

Benchmark framework (Tobon-Gomez, Craene, Mcleod, et al., 

2013) has provided an open-access dataset and validation 

methods to assess 3D myocardial tracking and strain calculation 

algorithms. Moreover, researchers working on biomechanic 

models have also reported a validation method (Evangelista, 

Gabriele, Nardinocchi, et al., 2015, 2016; Gabriele, Nardinocchi 

and Varano, 2015). The validation methods are (i) tracking of 

ground truth landmarks, (ii) visualising myocardial points’ 

displacement, (iii) performing strain calculation, (iv) analysing 

the eigenvalue curve. 

The first validation method is to calculate myocardial tracking 

error with respect to the ground truth landmarks. The details of 

ground truth landmarks are obtained from the benchmark 

dataset provider (Tobon-Gomez, Craene, Mcleod, et al., 2013). 
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Twelve landmark points at different anatomical locations of LV 

are provided. One landmark, per each anterior, septal, posterior 

and lateral wall at three LV levels basal, mid-ventricular and 

apical, is provided. These landmarks are tracked using 3D HTM, 

and the spatial difference between ground truth landmarks and 

tracked landmarks is calculated at end-systolic frames, at final 

frames and combinedly at all frames. The error is calculated as 

Euclidean distance in millimetre, and box-plots of median error 

are reported compared to benchmark methods. The benchmark 

framework has used only 12 ground-truth landmark points for an 

entire LV volume. The points are distributed all over the LV and 

cover crucial LV anatomical sections, which justifies its use for 

validity at this stage. 

The second validation method is visualising displacement of 

myocardial points. The displacement is visualised at the end-

systolic frame and the final frame. The end-systolic frame should 

have a higher displacement compared to the final frame. The 

displacement is calculated as a point-to-surface distance in 

millimetre, defined as a distance of a point from the end-diastolic 

surface. 

The third validation method is an analysis of myocardial strain 

values. Myocardial strain at each frame is calculated with respect 

to the end-diastolic frame. The strain values are plotted as a line 

graph, and the curve is visualised with respect to the 

physiological ground truth of LV function, which expects a bell 

type of shape due to LV contraction and expansion. Moreover, the 

end-systolic peak is compared with literature (Moore, Lugo-

Olivieri, McVeigh, et al., 2000) values. 

The fourth validation strategy is eigenvalue analysis adopted 

from a biomechanics protocol literature (Evangelista, Gabriele, 

Nardinocchi, et al., 2015, 2016; Gabriele, Nardinocchi and Varano, 

2015). At each point of LV myocardium, strain tensor is 
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calculated, which provided three eigenvalues at each point. 

Eigenvalues are organised into three sets, and the median of each 

set is calculated. These median values of each frame are plotted in 

a curve. The validation is performed by observing the shape of 

this curve, which should be the bell type of shape, due to the LV 

contraction and expansion's physiological ground truth. 

 

3.4 Extension of HTM to 3D 

3.4.1 Overview 

The 3D HTM aims to calculate 3D myocardial strain. 3D HTM can 

be divided into four steps: (i) segmentation of 3D LV volumes, (ii) 

3D hierarchical block-matching, (iii) 3D LWM transformation, and 

(iv) 3D strain estimation. 

 

3.4.2 Segmentation of 3D LV volumes 

Cardiac volumes of the whole cardiac cycle are recorded using 

grid tagging MRI sequence and steady-state free precession 

(SSFP) MRI sequence (Schär, Kozerke, Fischer, et al., 2004). Grid 

tagging volumes are used to perform 3D myocardial tracking, 

whereas 3D SSFP volumes are utilised to segment end-diastolic 

LV myocardium. The segmented LV volumes are registered with 

grid tagging MRI volumes using DICOM header details as 

suggested by the benchmark framework (Tobon-Gomez, Craene, 

Mcleod, et al., 2013). An example is shown in Figure 3.1. All the 

3D MRI and segmented volumes are collected from an open-

access data repository provided by the benchmark framework 

(Tobon-Gomez, Craene, Mcleod, et al., 2013).  
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Figure 3.1| An example of registering 3D grid tagging MRI volume 

with 3D SSFP segmented LV myocardium using DICOM header 

information. 

 

3.4.3 3D hierarchical block-matching 

Figure 3.2 shows the steps of 3D hierarchical block-matching and 

3D LWM transformation-based non-rigid image registration 

between a moving image and a reference image. The reference 

image is the end-diastolic image, and the moving image could be 

any cardiac cycle image. The entire process is divided into three 

steps: (i) selecting a point set from a moving image, which is 

referred to as a set of control points or landmarks, (ii) finding 

matching reference image points corresponding to each moving 

point, (iii) estimating dense transformation function among all 

moving image and reference image points using sparsely matched 

control points. The first two steps provide control points and are 
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explained in this section, and the third step is explained in the 

next Section 3.4.4.

Figure 3.2| Overview of 3D hierarchical block-matching and 3D 

LWM transformation. 3D MRI of moving image and the reference 

image are given as input, which are divided into Templates, 

Segments, Chunks, and Windows to perform 3D Hierarchical 

Template Matching using normalised cross-correlation. After 

matching, the derived point sets are performed local 

transformation using the local weighted mean function.  

Selecting a point set from a moving image is performed by 

dividing the moving image into multiple blocks of size 𝑡 × 𝑡 × 𝑡, 

which provides uniform spacing among points. These blocks are 

referred to as Templates. Figure 3.3 shows the pictorial definition 

of these blocks. Each template is divided into eight Segments of 

size 𝑡/2 × 𝑡/2 × 𝑡/2. Each segment is divided into eight chunks of 

size 𝑡/4 × 𝑡/4 × 𝑡/4, and each chunk is divided into eight 

windows of size 𝑡/8 × 𝑡/8 × 𝑡/8. The word ‘block’ refers to any of 

the template, segment, chunk, or window interchangeably in this 

chapter. The first point of each window is defined as a 
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representative point. The set of representative points is defined 

as a moving image point set. 𝑃𝑚 = {𝑚1, 𝑚2, … ,𝑚𝑛 | 𝑛 =

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠}. The value of 𝑡 is selected as 16 and 

accordingly template size as 16 × 16 × 16, which is discussed in 

the discussion Section 3.5.

Figure 3.3| Pictorial definitions of 3D blocks: template, segment, 

chunk and window for the hierarchical matching process. 

Matching corresponding reference image points through block-

matching is performed hierarchically, as shown in Figure 3.4. 3D 

NCC is calculated using Equation 3.1 to perform block-matching. 

NCC gives CC values, and the maximum value of CC is used to find 

matching block-location. The value of CC ranges from −1.0 to 

+1.0, which shows the worst and the best matching, respectively.  
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Figure 3.4| Details of hierarchical 3D block-matching process. (a) 

Hierarchical matching between moving image and reference 

image with 3D Templates, 3D Segments, 3D Chunks and 3D 

Windows using normalised cross-correlation (NCC) is shown. (b) 

Pictorial representation of overlapping 3D blocks between 3D 

Template and 3D Segment is shown. 
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𝛾 =
∑[𝑓(𝑥, 𝑦, 𝑧) − 𝑓𝑝̅,𝑞,𝑟][𝑏(𝑥 − 𝑝, 𝑦 − 𝑞, 𝑧 − 𝑟) − 𝑏̅]

√∑[𝑓(𝑥, 𝑦, 𝑧) − 𝑓𝑝̅,𝑞,𝑟]
2
∑[𝑏(𝑥 − 𝑝, 𝑦 − 𝑞, 𝑧 − 𝑟) − 𝑏̅]

2
 

(3.1) 

where 𝑏 refers to 3D moving block, 𝑏̅ refers to the mean intensity 

value of the block 𝑏, 𝑓 refers to the reference image, 𝑓 ̅refers to 

the mean intensity of the reference image, which is under block 𝑏, 

𝑥, 𝑦, 𝑧 and 𝑝, 𝑞, 𝑟 refers to three dimensions in a 3D block. 

Each 3D template is slid over the reference image, and CC at each 

location is calculated as mentioned in Equation 3.1. The maximum 

CC is used to find a matching 3D template from the reference 

image. In the next step, each template is divided into eight 

segments, and each segment is slid over the corresponding parent 

template of the reference image. The CC value for each segment is 

calculated at locations of the reference template, and the 

maximum CC value is used to find the corresponding segment of 

the reference image. After that, each segment of the moving image 

is divided into eight chunks, and each of them is slid over the 

corresponding segment of the reference image. Accordingly, 

maximum CC values are used to find matching chunks of the 

reference image. Similarly, each chunk is divided into eight 

windows, and each window is slid over the corresponding 

reference chunk to find matching windows of the reference 

image. 

During this hierarchical matching, additional blocks of 

overlapping layers are used. These blocks are used to ensure the 

accuracy of matchings. Blocks of overlapping layer surround a 

segment block in a pyramid structure, as shown in Figure 3.4 (b). 

When a moving segment block and its surrounding blocks of 

overlapping layers match in the same hierarchy within the 

corresponding reference template block, segment matching is 

considered an actual match. Similarly, each chunk block is 
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surrounded by an overlapping block. If a moving chunk and its 

overlapping block match in the same hierarchy within the 

corresponding reference segment, it is considered an actual 

match. In both cases, if the match is not an actual match, then the 

block is regarded as a non-displaced block. 

 

3.4.4 3D LWM transformation 

This section explains the calculation of a dense transformation 

function between a moving image and the reference image. LWM 

is a radial basis function, and it maps all the points of the moving 

image to the reference image by calculating local transformations. 

LWM function takes control points of moving and reference image 

as inputs, which are found in the previous Section 3.4.3. 

Moreover, the local transformation is estimated by an input 

variable 𝑛. The control points are sparse matches, which LWM 

uses to provide the outcome of dense matches. 

The initial step for 3D LWM is to organise the matching control 

points {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖), (𝑋𝑖, 𝑌𝑖, 𝑍𝑖): 𝑖 = 1,… ,𝑁 } according to Equation 

3.2. 

{(𝑥𝑖, 𝑦𝑖, 𝑧𝑖 , 𝑋𝑖): 𝑖 = 1,… ,𝑁 }, 

{(𝑥𝑖, 𝑦𝑖, 𝑧𝑖 , 𝑌𝑖): 𝑖 = 1,… , 𝑁 }, 

{(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑍𝑖): 𝑖 = 1,… ,𝑁 }     (3.2) 

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and (𝑋𝑖, 𝑌𝑖, 𝑍𝑖) are control points of the reference 

image and moving image, 𝑁 is the total number of control points. 

The next step is to compute three polynomials 𝑃𝑜𝑙𝑦𝑖,𝑥, 𝑃𝑜𝑙𝑦𝑖,𝑦, 

and 𝑃𝑜𝑙𝑦𝑖,𝑧 that fit the corresponding 𝑖𝑡ℎ control point and the 

closest (𝑛 − 1) neighbours of that control point. The order of each 

polynomial is the second, and the coefficients used to define the 

polynomials are 10. 𝑃𝑜𝑙𝑦𝑖,𝑥, 𝑃𝑜𝑙𝑦𝑖,𝑦, and 𝑃𝑜𝑙𝑦𝑖,𝑧 are used to 
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calculate 𝑋-component, 𝑌-component, and 𝑍-component, 

respectively, of the transformed point. 

3D transformation of any point 𝑝 = (𝑥, 𝑦, 𝑧) can be computed by 

calculating the weighted mean of all polynomials, passing over 

that point-𝑝. The transformation of each 𝑋-component, 𝑌-

component, and 𝑍-component can be found according to Equation 

3.3. 

𝑋(𝑥, 𝑦, 𝑧) =

∑ 𝑊

{
 

 [(𝑥−𝑥𝑖)
2
+(𝑦−𝑦𝑖)

2
+(𝑧−𝑧𝑖)

2
]

1
2

𝑅𝑛

}
 

 
𝑃𝑜𝑙𝑦𝑖,𝑥(𝑥,𝑦,𝑧)

𝑁
𝑖=1

∑ 𝑊{[(𝑥−𝑥𝑖)
2+(𝑦−𝑦𝑖)

2+(𝑧−𝑧𝑖)
2]1/2/𝑅𝑛}

𝑁
𝑖=1

, 

𝑌(𝑥, 𝑦, 𝑧) =

∑ 𝑊

{
 

 [(𝑥−𝑥𝑖)
2
+(𝑦−𝑦𝑖)

2
+(𝑧−𝑧𝑖)

2
]

1
2

𝑅𝑛

}
 

 
𝑃𝑜𝑙𝑦𝑖,𝑦(𝑥,𝑦,𝑧)

𝑁
𝑖=1

∑ 𝑊{[(𝑥−𝑥𝑖)
2+(𝑦−𝑦𝑖)

2+(𝑧−𝑧𝑖)
2]1/2/𝑅𝑛}

𝑁
𝑖=1

, 

𝑍(𝑥, 𝑦, 𝑧) =

∑ 𝑊

{
 

 [(𝑥−𝑥𝑖)
2
+(𝑦−𝑦𝑖)

2
+(𝑧−𝑧𝑖)

2
]

1
2

𝑅𝑛

}
 

 
𝑃𝑜𝑙𝑦𝑖,𝑧(𝑥,𝑦,𝑧)

𝑁
𝑖=1

∑ 𝑊{[(𝑥−𝑥𝑖)
2+(𝑦−𝑦𝑖)

2+(𝑧−𝑧𝑖)
2]1/2/𝑅𝑛}

𝑁
𝑖=1

  (3.3) 

where 𝑅𝑛 refers to the distance between 𝑝 and its (𝑛 − 1)𝑡ℎ 

nearest control point. 𝑃𝑜𝑙𝑦𝑖,𝑥 refers to the polynomial passing 

through the point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑋𝑖), 𝑃𝑜𝑙𝑦𝑖,𝑦 refers to the polynomial 

passing through the point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖 , 𝑌𝑖), 𝑃𝑜𝑙𝑦𝑖,𝑧 refers to the 

polynomial passing through the point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑍𝑖). 𝑊 is 

mentioned in Equation 3.4 and Equation 3.5. 

𝑊(𝑅) = 1 − 3𝑅2 + 2𝑅3, 0 ≤ 𝑅 ≤ 1, 

𝑊(𝑅) = 0, 𝑅 > 1      (3.4) 

𝑅 = [(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + (𝑧 − 𝑧𝑖)
2]1/2/𝑅𝑛   (3.5) 

where 𝑛 refers to the number of local control points, 𝑅𝑛 refers to 

the distance between 𝑝 and its (𝑛 − 1)𝑡ℎ nearest control point, 𝑊 

is the weight function. 
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According to the definition of 𝑊, the transformation polynomials 

can only affect local points of a control point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), who have 

a distance less than 𝑅𝑛 from that control point. Therefore, 3D 

LWM is capable of providing local transformation. Moreover, the 

derivative of 𝑊 with respect to 𝑅 is zero for values 𝑅 = 0 and 𝑅 =

1. This property is mentioned in Equation 3.6, and it ensures 

smoothness and continuity of the weighted sum for all image 

points without being restricted to the local distance. 

[
𝑑𝑊

𝑑𝑅
]
𝑅=0

= [
𝑑𝑊

𝑑𝑅
]
𝑅=1

= 0     (3.6) 

The transformation functions in all pairs of images are calculated 

with respect to the reference end-diastolic image. The value of 𝑛 

is selected as 𝑛 = 100, which is discussed in the discussion 

Section 3.5.2. 

These transformations are used to calculate displacement 

tensors, which are further used for 3D strain calculation, as 

formulated in Section 3.4.5. 

 

3.4.5 3D strain estimation 

In this section, the 3D strain calculation is described by utilising 

the transformations calculated in the previous Section 3.4.4. The 

formulation follows the continuum mechanics and medical 

imaging literature (Abd-elmoniem, Stuber and Prince, 2008; Lai, 

Rubin and Krempl, 2010). The segmented LV myocardium points 

are tracked in all the images of a cardiac cycle in a forward 

tracking manner. The location of a myocardial point 𝑝(𝑥, 𝑦, 𝑧) is 

[𝑥, 𝑦, 𝑧]𝑇 = 𝑓𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑡) at time 𝑡. The displacement vector 

𝑢(𝑥, 𝑡) = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]
𝑇

 is calculated as a difference in spatial 

locations with respect to the reference end-diastolic frame. The 

displacement gradient tensor is defined in Equation 3.7. 
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𝑈 =

[
 
 
 
 
𝜕𝑢𝑥

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑦

𝜕𝑢𝑥

𝜕𝑧

𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑦

𝜕𝑧

𝜕𝑢𝑧

𝜕𝑥

𝜕𝑢𝑧

𝜕𝑦

𝜕𝑢𝑧

𝜕𝑧 ]
 
 
 
 

     (3.7) 

where 𝑢 refers to the 3D displacement vector. 

After calculating the displacement gradient tensor 𝑈, the 

deformation gradient tensor 𝐹 is calculated according to Equation 

3.8. The code is adapted from MATLAB (Kroon), which is updated 

with the Lagrange strain definition. 

𝐹 = (𝐼 − 𝑈)−1      (3.8) 

where 𝐹 is deformation gradient, 𝐼 is the identity matrix, 𝑈 is 

displacement gradient. 

Using F, the 3D strain tensor of Lagrange strain is estimated 

according to Equation 3.9. 

𝐸 =
1

2
(𝐹𝑇𝐹 − 𝐼)      (3.9) 

where 𝐸 is Lagrange strain, 𝐹 is deformation gradient, 𝐼 is the 

identity matrix. 

After the strain estimation, the strain 𝐸 is projected in the 

circumferential, radial and longitudinal directions using the local 

coordinate system. Strain projection definitions are followed from 

the benchmark framework literature (Tobon-Gomez, Craene, 

Mcleod, et al., 2013). The projected strain is described by 𝐸𝑝 =

𝑝𝑇 ∙ 𝐸 ∙ 𝑝, where 𝑝 is a respective direction (circumferential, 

longitudinal, radial). The definition of longitudinal direction (𝐿) is 

a line from the apex to the mitral valve of the base. The radial 

direction is 𝑅 = 𝑀 − (𝑀 ∙ 𝐿)𝐿, where 𝑀 refers to the nodal 

normal at each point. Therefore, the radial direction is pointing 

outwards and at 90 degrees to the epicardial surface. 

Circumferential direction (𝐶) is a cross product between 𝐿 and 𝑅. 

Therefore, the circumferential direction is in the SAX plane, 
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parallel to epicardium, and counter-clockwise, if observed from 

the base. 

 

3.5 Discussion 

This chapter has elaborated 3D extension of the HTM method, 

allowing for 3D myocardial tracking and strain calculation. The 

accuracy of the calculated strain is discussed in Chapter 6, with 

results and validation. The technical strengths, parameter 

selection and limitations of 3D HTM are explained in the 

following sections. 

 

3.5.1 Strengths 

In the literature review of Chapter 1 and Table 1.3, it is 

highlighted that some of the methods are natively 2D, and some 

of the techniques require to merge with other methods to 

perform 3D myocardial tracking, which are technical limitations 

to accurately calculate strain values. 3D HTM can perform 

myocardial tracking by directly incorporating the through-plane 

motion of LV. As a result, at each myocardial point, a 3D strain 

tensor can be estimated. Moreover, 3D LWM, which is 

incorporated in 3D HTM, is robust to prevent errors of ill-

conditioned polynomials due to its mathematical advantages of 

efficiently solving system of equations. Besides, some of the 

existing methods require tissue material properties as a part of 

the technique, reported in the literature as limiting factors. HTM 

does not require such dependencies. 
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3.5.2 Parameter selection 

In Section 3.4.4 Equation 3.5, the value of 𝑛 is selected as 𝑛 = 100 

after performing a small in-house study. We have randomly 

selected 10 out of 15 patients and performed experiments of 

myocardial tracking using ground truth myocardial points. The 

benchmarking framework provides 12 anatomical locations as 

these ground truth points. We have selected different 𝑛 values 

starting from 𝑛 = 10 to 𝑛 = 200, and assumed that the values 

within these values would not significantly change the results. 

The experiments of tracking ground truth myocardial points have 

reported tracking error in terms of Euclidean distance in 

millimetre. An analysis of 𝑛 values is given in Figure 3.5. 

Figure 3.5| Myocardial tracking error of 3D HTM with a different 

number of local points (𝑛) in 3D local weighted mean function. Y-

axis shows Euclidean distance of myocardial tracking, which is 

defined in Section 3.3, and the number of local points and local 

weighted mean function are defined in Section 3.4.4. 

As shown in Figure 3.5, the error values associated with 𝑛 are 

higher in the beginning compared to the minimum error. The 

error values are gradually decreasing from 𝑛 = 20 to 𝑛 = 100. At 

𝑛 = 100, the tracking error is reported minimum, and the error is 

increasing from 𝑛 = 100 to 𝑛 = 200. 8 out of 10 subjects have 
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reported minimum myocardial tracking error at 𝑛 = 100, and two 

subjects have reported minimum error at 𝑛 = 110. Therefore, we 

have selected the parameter value of 𝑛 = 100. It is observed that 

the higher and much lower values of parameter 𝑛 can produce a 

higher error while tracking myocardial points.   

In Section 3.4.3, the value of 𝑡 is selected as 16, and the template 

size is chosen as 16 × 16 × 16. This value of 𝑡 is selected 

according to the experimental discussion of Chapter 2, Section 

2.5.2. Moreover, the overlapping layers in the hierarchical 

matching are used to ensure the matching accuracy with this 

template size. From the experiments of Chapter 2 Section 2.5.2, 

the smaller values of 𝑡 (less than 16 in each dimension) may give 

more incorrect matchings during the template matching step. 

The input of 3D HTM is grid tagging MRI volumes for the 

myocardial tracking. 

 

3.5.3 Limitations 

3D HTM has used grid tagging MRI for myocardial tracking and 

SSFP MRI to segment the LV mesh. Therefore, the registration 

between image volume and segmented LV is prone to 

misregistration of slices, limiting the accuracy of myocardial 

tracking and strain calculation. The accuracy of the method is 

sensitive to selecting parameters 𝑛 and 𝑡, which could be the 

technique's limitations. Moreover, image artefacts and tag fading 

issues in image volumes may cause myocardial tracking errors as 

HTM is fundamentally developed upon image intensity values. As 

future work, it is recommended that the 3D HTM is technically 

extended with other imaging modalities, such as Echo, so that the 

3D local weighted mean function can be tested with speckle 

tracking methods. 
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3.6 Summary 

In this chapter, the 3D extension of HTM is described to 

characterise 3D myocardial strain using MRI volumes. 3D HTM 

method is developed upon block-matching, LWM transformation 

and strain calculation. LWM function is introduced in the 

myocardial tracking and strain calculation pipeline through HTM. 

The 3D extension of LWM and technical details to calculate 3D 

strain is described. The technical strengths and limitations of 3D 

HTM and discussion of parameter selection are provided. The 

results and validations with the benchmark framework are 

reported in Chapter 6. The 3D HTM method has been published in 

a journal article (Bhalodiya, Palit, Ferrante, et al., 2019). Further 

technical extension of HTM is considered as future work.  
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Chapter 4 

Application Method – Application for Myocardial 

Infarction Patients 

 

4.1 Introduction 

In this chapter, an application method of myocardial strain 

identifies infarcted myocardial LV segments without using GBCA. 

The myocardial strain is utilised as a basis of the method to 

separate infarcted and non-infarcted myocardium. A clinical 

dataset of myocardial infarction patients is used with the 2D HTM 

method. The description of the technical steps and characteristics 

of the data cohort are explained. The discussion of strengths and 

limitations, along with justification for technical steps, are 

detailed. The results, validation and potential clinical implications 

are reported in Chapter 7. The method has been published as an 

article (Bhalodiya, Palit, Giblin, et al., 2021). 

 

4.2  Dataset of myocardial infarction patients 

A dataset of 38 MI patients and 5 healthy volunteers were 

collected from the cardiac magnetic resonance (CMR) unit of the 

Royal Brompton and Harefield NHS Trust (RBHT). Ethical 

approval for retrospective data collection was obtained from the 

NHS (IRAS project ID: 211977). Additionally, Biomedical and 

Scientific Research Ethics Committee (BSREC) approval (REGO 

2016-1865) was obtained from the University of Warwick to 

process the anonymised data. 

All the subjects were selected retrospectively. Patients with an MI 

identified on CMR were determined from the referral details and 

scan reports. The inclusion criteria are: (i) a patient, who has a 

known history of infarcted myocardium, or (ii) a patient referred 
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for a clinically indicated CMR scan, based on symptoms 

suggestive of myocardial ischemia, with or without an elevation 

in serum troponin levels, and with a confirmed myocardial infarct 

on the subsequent CMR. The included patients underwent a 

standard departmental CMR using either a vasodilator stress 

perfusion protocol or a viability protocol, including 

comprehensive late gadolinium enhancement imaging. Patients 

without known infarction and other clinical conditions, such as 

cardiomyopathy, were excluded. All the MI subjects have 

anonymised images of LGE imaging and grid-tagging MRI. The 

images were acquired with three different 1.5T Siemens MRI 

scanners, with ECG triggering. LGE images were acquired with 

sequences that allowed the patient's normal breathing and have 

infarcted myocardium with high-intensity values due to post-

gadolinium enhancement. Grid-tagging MRI was obtained with 

breath-holds, having a grid structure of myocardial tagging lines 

with a spacing of 6mm. In healthy subjects, LGE imaging is not 

available. 

In all the data subjects, images from three short-axis (SAX) LV 

planes are processed: basal, mid-ventricular and apical SAX 

planes of LV. MRI SAX plane covers a lot of anatomical details of 

the chest. Therefore, to efficiently process data, the LV area of 

each image is cropped using ImageJ software. While cropping 

images, we ensured that all subjects' images were well-registered 

and had the same image dimensions. 

The characteristic details of the dataset are mentioned in Table 

4.1.  
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4.3 Validation and image analysis 

The validation of the 2D application method is performed through 

LGE (Pennell, Sechtem, Higgins, et al., 2004) and the ROC test 

(Šimundić, 2009; Hajian-Tilaki, 2013) for diagnostic performance 

evaluations. The validity of comparison with LGE is justifiable, as 

LGE is the gold-standard clinical method in CMR to identify 

infarcted myocardium. 

In each patient, infarcted segments (AHA segments) are identified 

using LGE imaging by a cardiothoracic consultant and surgeon 

with more than ten years of experience. LV segments revealed 

with gadolinium enhancement during LGE imaging are 

considered infarcted segments. Note that the transmural or non-

transmural both conditions of LV segments are regarded as 
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infarcted. Transmurality is not separately assessed. Basal grid 

tagging with the basal LGE slice, mid-ventricular grid tagging with 

mid-ventricular LGE, and apical grid tagging with apical LGE 

imaging slice are matched. Infarcted LV segments identified from 

LGE imaging are used as ground truth to validate the proposed 

Hierarchical Template Matching-Circumferential Strain (HTM-

CS)-based predictions. Therefore, the validation hypothesis for 

the statistical analysis is that the infarcted LV myocardial AHA 

segments identified using HTM-CS would be the same as the 

ground truth of LGE. More details of 𝑘-fold cross-validation tests 

are mentioned in Section 4.4.6.2.  

According to the AHA model, LV myocardium is segmented 

(manually outlined) for each basal, mid-ventricular, and apical 

slices (Cerqueira, Weissman, Dilsizian, et al., 2002). Then, for each 

basal, mid-ventricular and apical slices, the area under the curve 

(AUC) values of ROC tests are used to validate detection 

performance compared to LGE performance. AUC refers to the 

area under the sensitivity vs 1-specificity curve. Moreover, 

subject-specific results of identifying infarcted LV segments 

compared to LGE are validated with true positives, true negatives, 

false positives, false negatives, true positive rate and false-

positive rate to understand the subject-specific validity of 

detections. 

 

4.4 Method to identify infarcted myocardium 

4.4.1 Overview 

The method aims to identify infarcted myocardial segments of LV 

using circumferential strain. The overview of the method is 

shown in Figure 4.1. The five steps of the method are as follows, 

which are explained in the following sections: (i) segmentation, 

(ii) image registration, (iii) myocardial strain estimation, (iv) LV 
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classification as per the AHA model, and (v) detection of infarcted 

LV segments.  
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Figure 4.1| Flowchart of the proposed applied method to identify 

infarcted LV segments using circumferential strain 

values(Bhalodiya, Palit, Giblin, et al., 2021). Here, Hhealthy_same 

could be Hhealthy_basal or Hhealthy_mid or Hhealthy_apical, which are defined 

in Section 4.4.6.1. α and αcorrect are defined in Section 4.4.6.2. 

ESliterature refers to the end-systolic circumferential strain reported 

in Table 4.2 from literature(Moore, Lugo-Olivieri, McVeigh, et al., 

2000).  
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4.4.2 Segmentation – step 1 

The endocardium and epicardium are segmented (manually 

outlined) using the software package ImageJ (ImageJ). LV 

segmentation was performed using SAX slices of the base, mid-

ventricle and apical level. The segmentation was verified by a 

cardiothoracic consultant and surgeon with more than ten years 

of experience. 

 

4.4.3 Image registration – step 2 

Image registration to perform myocardial tracking is carried out 

using the 2D HTM method, elaborated in Chapter 2. An overview 

of the 2D HTM method is shown in Figure 4.2. Myocardial points 

are tracked in all the frames of a cardiac cycle from end-diastole 

to end-systole. As mentioned in Equation 4.1, the tracking is used 

to calculate displacement vector 𝑉(𝑥, 𝑦) of each myocardial point 

in all the frames with respect to the end-diastolic frame. The 

gradient of each displacement vector, ∇𝑉, is calculated according 

to Equation 4.2. 

𝑉(𝑥, 𝑦) = 𝑃𝑒𝑛𝑑−𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑒(𝑥1, 𝑦1) − 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑓𝑟𝑎𝑚𝑒(𝑥2, 𝑦2) (4.1) 

where 𝑃 refers to the spatial position of a point. 

∇𝑉 = (

𝜕𝑉𝑥

𝜕𝑥

𝜕𝑉𝑥

𝜕𝑦

𝜕𝑉𝑦

𝜕𝑥

𝜕𝑉𝑦

𝜕𝑦

)      (4.2) 

where ∇𝑉 refers to the displacement gradient.  
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Figure 4.2| Overview of HTM-based myocardial tracking and 

strain. (a) MRI scans of a cardiac cycle at three LV levels: Basal, 

Mid-ventricular, and Apical. (b) HTM method to calculate strain 

values at each muscle point. V refers to the displacement vector. 

∇𝑉 refers to the displacement gradient. (c) LV strain values, 

which are analysed using the 16-segment AHA model. In panel (a) 

and (c), basal refers to the slice near the mitral valve and before 

the beginning of papillary muscle, mid-ventricular refers to the 

slice at the approximate middle of papillary muscle length, and 

apical refers to the slice towards the apex but above the 

apex(Cerqueira, Weissman, Dilsizian, et al., 2002; Selvadurai, 

Puntmann, Bluemke, et al., 2018).  
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4.4.4 Myocardial strain estimation – step 3 

The myocardial strain is estimated according to the Green-

Lagrange strain definition (Lai, Rubin and Krempl, 2010). The 

selection of Lagrange strain is further discussed in the Discussion 

Section 4.5.2. As mentioned in Equation 4.3, the displacement 

gradient is used to estimate deformation gradient (Abd-

elmoniem, Stuber and Prince, 2008), which is used to estimate 

Lagrange strain in LV myocardium (Tobon-Gomez, Craene, 

Mcleod, et al., 2013), as mentioned in Equation 4.4. 

𝐷 = (𝐼 − ∇𝑉)−1      (4.3) 

𝐸 =
1

2
(𝐷𝑇𝐷 − 𝐼)      (4.4) 

where 𝐷 is deformation gradient, ∇𝑉 is displacement gradient, 𝐼 is 

the identity matrix, 𝐸 is Lagrange strain. 

Lagrange strain, 𝐸, is estimated at each myocardial point using a 

global coordinate system. 𝐸 is projected in the circumferential 

direction using the local coordinate system according to the 

literature (Moore, Lugo-Olivieri, McVeigh, et al., 2000). The 

circumferential strain has a positive direction in the SAX plane 

and counter-clockwise, if observed from the base. The direction is 

parallel to the epicardium border and at the right angle to the 

longitudinal line joining the apex to the mitral valve. 

 

4.4.5 LV classification as per AHA model – step 4 

Circumferential strain values are organised according to the 16-

segment AHA model of LV classification (Cerqueira, Weissman, 

Dilsizian, et al., 2002), explained in Chapter 1, Section 1.2.2.3.1. 

Each SAX slice of the basal and mid-ventricular level is 

partitioned into six segments: anterior, inferior, anterolateral, 

anteroseptal, inferolateral, and inferoseptal. Each apical SAX slice 
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is divided into four segments: anterior, inferior, lateral, and 

septal. 

 

4.4.6 Detection of infarcted segments – step 5 

This section defines the 𝐻-spread in the context of myocardial 

strain and describes steps to detect infarcted LV segments 

through 𝑘-fold cross-validation. 

 

4.4.6.1 H-spread and detection 

Infarcted myocardium does not elongate or shorten like healthy 

myocardium. As a result, the strain patterns of infarcted and non-

infarcted myocardium during the cardiac cycle are different. Such 

strain patterns can be shown with a median and 𝐻-spread of 

strain values, as shown in Figure 4.3. Median strain values are 

used to avoid any large errors in strain values.  
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Figure 4.3| An example of comparing strain at the end-systolic 

frame, strain at each frame, and strain 𝐻-spread between healthy 

and infarcted LV segment. (a) An example of comparing only end-

systolic strain values between healthy and infarcted myocardial 

segment. (b) An example of comparing strain values of individual 

frames of a cardiac cycle between a healthy and infarcted 

myocardial segment. (c) An example of comparing strain H-

spread between healthy and infarcted myocardial segment. 
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𝐻-spread of an LV segment is defined as a union (union refers to 

the mathematical union operation of set theory) of median strain 

values in each cardiac cycle frame ranging from end-diastole to 

end-systole. For example, as shown in Figure 4.3(c) and Equation 

4.5, 𝐻-spread of an infarcted segment is calculated by the union of 

values 𝑝1, 𝑝2,…, 𝑝8. Similarly, the union of values 𝑞1, 𝑞2, . . . , 𝑞8 

shows 𝐻-spread of a healthy segment. 

 

𝐻𝑆𝑝𝑟𝑒𝑎𝑑 𝑜𝑓 𝑎𝑛 𝐿𝑉 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  𝐻𝑆𝑝𝑟𝑒𝑎𝑑(⋃ 𝑆𝑓𝑖
𝑖=𝐸𝑆
𝑖=𝐸𝐷 )  (4.5) 

where ED refers to the end-diastolic frame, ES refers to the end-

systolic frame, 𝑈 refers to the mathematical union operation of 

set theory, and 𝑆𝑓𝑖 = 𝑀𝑒𝑑(𝐶𝑆𝑒𝑛𝑑−𝑠𝑦𝑠𝑡𝑜𝑙𝑒) at 𝑖𝑡ℎ frame. 

 

Infarction Condition: A potentially infarcted segment has at least 

α% reduced strain H-spread compared to the mean H-spread of 

remaining LV segments of the same LV slice. If all segments of a 

slice are infarcted, then healthy segments of the whole LV are 

considered instead of only considering the same slice. 

 

After calculating the H-spread of “potentially infarcted” segments, 

“Infarction Condition” is checked to decide whether the 

“potentially infarcted” segment is an infarcted segment or not. 

During this step, H-spread values are calculated, as described in 

Equation 4.6.  
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𝐻𝑖𝑛𝑓𝑎𝑟𝑐𝑡𝑒𝑑 = 𝐻𝑆𝑝𝑟𝑒𝑎𝑑𝐿𝑉−𝑠𝑒𝑔𝑚𝑒𝑛𝑡 

𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑏𝑎𝑠𝑎𝑙 =  𝜇𝑏𝑎𝑠𝑎𝑙(𝐻𝑆𝑝𝑟𝑒𝑎𝑑𝐿𝑉−𝑠𝑒𝑔𝑚𝑒𝑛𝑡) 

𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑚𝑖𝑑 =  𝜇𝑚𝑖𝑑(𝐻𝑆𝑝𝑟𝑒𝑎𝑑𝐿𝑉−𝑠𝑒𝑔𝑚𝑒𝑛𝑡) 

𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑎𝑝𝑖𝑐𝑎𝑙 =  𝜇𝑎𝑝𝑖𝑐𝑎𝑙(𝐻𝑆𝑝𝑟𝑒𝑎𝑑𝐿𝑉−𝑠𝑒𝑔𝑚𝑒𝑛𝑡) 

𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑎𝑙𝑙 =  𝜇𝑏𝑎𝑠𝑎𝑙−𝑚𝑖𝑑−𝑎𝑝𝑖𝑐𝑎𝑙(𝐻𝑆𝑝𝑟𝑒𝑎𝑑𝐿𝑉−𝑠𝑒𝑔𝑚𝑒𝑛𝑡)   

  

𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦

= 𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑏𝑎𝑠𝑎𝑙  𝑂𝑅 𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑚𝑖𝑑  𝑂𝑅 𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑎𝑝𝑖𝑐𝑎𝑙 𝑂𝑅 𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑎𝑙𝑙  

 (4.6) 

Where 𝜇 refers to the mathematical mean, and 

𝐻𝑆𝑝𝑟𝑒𝑎𝑑𝐿𝑉−𝑠𝑒𝑔𝑚𝑒𝑛𝑡 is as per Equation 4.5. 

α could be any value greater than 0 and less than 100. For 

example, assume that segment 1 and 2 of a basal slice are 

“potentially infarcted” segments. These segments will be 

considered as actually infarcted if 𝐻𝑆𝑝𝑟𝑒𝑎𝑑𝐿𝑉−𝑠𝑒𝑔𝑚𝑒𝑛𝑡 is at least 

α% reduced compared to the mean H-spread of other segments in 

the basal slice (𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑏𝑎𝑠𝑎𝑙) which includes segments 3, 4, 5 and 

6. When all the segments of a slice are “potentially infarcted”, 

then healthy segments of basal, mid-ventricular, and apical slices 

are used to calculate (𝐻ℎ𝑒𝑎𝑙𝑡ℎ𝑦_𝑎𝑙𝑙). For example, suppose that 

segments 13, 14, 15, and 16 of an apical slice are “potentially 

infarcted”. In that case, the healthy segments of basal and mid-

ventricular slices are considered together during the H-spread 

comparison of the “Infarction Condition”. 

In this work, the following values of α are considered (Equation 

4.7). It was assumed that the values within this range of α values 

would not change the results considerably. 
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α =  {10, 20,30,… , 100}                                              (4.7) 

The α value corresponding to the highest accuracy with the 

training dataset is called αcorrect, described later in this section. 

Tests are performed using 𝑘-fold cross-validation (Molinaro, 

Simon and Pfeiffer, 2005; Kuhn and Johnson, 2013). Peak systolic 

circumferential strain values of Table 4.2 are adapted from the 

literature (Moore, Lugo-Olivieri, McVeigh, et al., 2000). The 

literature has mentioned strain values for the septal and lateral 

wall of LV without further dividing it into inferolateral, 

inferoseptal, anterolateral, and anteroseptal segments. Therefore, 

to enable using the literature values in our method, the same 

values for both anterolateral and inferolateral are used. Similarly, 

the same values for anteroseptal and inferoseptal are used.  
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4.4.6.2 𝒌-fold cross-validation 

In each patient, infarcted LV segments are identified using LGE 

imaging. LV segments (transmural and non-transmural) revealed 

with gadolinium enhancement during the LGE test are considered 

infarcted segments. Transmural or non-transmural, both 

conditions of LV segments are regarded as infarcted. 

Transmurality is not separately assessed. These segments are 

used as ground truth and compared with HTM-CS-based 

detections of infarcted segments. This section explains 𝑘-fold 

cross-validation(Kuhn and Johnson, 2013) using the ROC curve 

test(Šimundić, 2009; Hajian-Tilaki, 2013), which is used to 

validate the method.  

The area under the curve (AUC) of true negative rate (sensitivity) 

and the false positive rate (1-specificity) are calculated from ROC 

curve tests(Šimundić, 2009; Hajian-Tilaki, 2013), as prediction 

performance criteria, where AUC 1.0 is the highest accuracy, and 

AUC 0.5 is the least accuracy. ROC tests have a confidence interval 

of 95%. Data were prepared by dividing each LV into 16 AHA 

segments, and the segments are arranged as per basal, mid-

ventricular, and apical slice. Total segments of basal are 258 

(258=43×6), mid-ventricular are 258 (258=43×6), and apical 

are 172 (172=43×4). Each segment is assigned a label, as 

infarcted or healthy, according to LGE ground truth. Then, HTM-

CS H-spread reduction is assigned to each “potentially infarcted” 
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segment (healthy segments are considered 0% H-spread 

reduction). 

During 𝑘-fold tests, “Infarction Condition” is evaluated, using each 

α value (Equation 4.7). Each test assigns a score to each segment 

as infarcted or healthy. For example, an evaluation test with α=10 

scores a potentially infarcted LV segment as infarcted if it satisfies 

the “Infarction Condition”; otherwise, it scores as healthy. As 

aforementioned, these scores and ground truth labels of each 

segment are given as input to the ROC test. α value is selected as 

αcorrect if the corresponding ROC test has the highest AUC. This 

αcorrect is used with the test dataset during the 𝑘-fold test to 

calculate the absolute accuracy. ROC curve tests are performed 

for each slice. Therefore, three separate αcorrect-basal, αcorrect-mid-

ventricular, and αcorrect-apical are identified. 

The results of detecting infarcted segments in the test dataset 

using three ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 values are reported as part of results and 

validation in Chapter 7. The selection of 𝑘 value in the 𝑘-fold test 

is mentioned in the Discussion Section 4.5.2. 

 

4.5  Discussion 

4.5.1 Strengths 

The described method does not require the use of GBCA like LGE. 

Therefore, the described method can extend the use of MRI based 

diagnosis in advanced renal impairment patients and overcome 

the concerns regarding GBCA. The described method uses grid 

tagging MRI to ensure the inclusion of structural deformation 

within the myocardium. Previously, Chapter 3 has reported a 3D 

technical extension for robust 3D strain calculation. 
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4.5.2 Justification for technical steps 

In step 1 (Section 4.4.2), the described method performs manual 

segmentation of LV myocardium to ensure the accuracy of 

included myocardium and 16-segments. Manual segmentation 

could be a tedious task. However, as the method uses these 

segments as a basis, it is more justifiable to perform manual 

segmentation for accuracy. 

In step 2 (Section 4.4.3), the method utilises 2D HTM for 

myocardial tracking because HTM includes structural 

deformation within the myocardium for strain calculation with 

grid tagging MRI. Structural deformation refers to the 

physiological change in the myocardium during a cardiac cycle. 

For example, if a cardiac cycle is recorded with a sequence of 20 

MR images, then the structure of the myocardium in image one 

and image ten would be different. These details of the structure 

are essential details for myocardial tracking methods. Our 

infarction detection method is based on circumferential strain, 

which includes these crucial details of structural deformation 

within the myocardium. We have also shown images for 

structural details in the literature review Section 1.2.1 of Chapter 

1.  

In step 3 (Section 4.4.4), the method uses the Lagrange definition 

of strain as it is widely used in the clinical literature. 

In step 4 (Section 4.4.5), the method uses three SAX slices of LV: 

basal, mid-ventricular and apical. Moreover, the literature's strain 

values (Moore, Lugo-Olivieri, McVeigh, et al., 2000), as mentioned 

in Table 4.2, are also using grid tagging MRI of basal, mid-

ventricular and apical LV SAX slices. Therefore, the described 

method has enabled the use of the literature strain values. This 

comparison should be limited for method development due to the 

difference in slice location, subject to different radiographers and 
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different LV sizes in human subjects. In future work, while 

performing a clinical study of the method, patients with all 

matching criteria should be recruited. To include a higher number 

of LV slices, strain value range in other SAX slices should be 

identified from the literature. At this stage of the described 

method, it is justifiable to use three slices and literature values, as 

it follows standard AHA guidelines. The technique is an applied 

method, and it does not perform a clinical study. 

In step 5 (Section 4.4.6), the described method has used 𝑘 = 5 to 

perform 𝑘-fold cross-validation. The values 𝑘 = 5 or 𝑘 = 10 are 

commonly preferred, as suggested in the literature (Kuhn and 

Johnson, 2013). Initially, we selected 𝑘 = 10 in detecting 

infarcted segments using test dataset, and validation results of 

AUC values in ROC tests are reported with AUC=1 in three tests 

(1 out of 10 tests for basal LV segments, 1 out of 10 tests of mid-

ventricular LV segments, and 1 out of 10 tests of apical LV 

segments) and AUC=0.5 in one test (1 out of 10 tests of basal LV 

segments). In contrast, when we repeated the same tests with 𝑘 =

5, zero tests were reported with AUC=1 or AUC=0.5. Note that 

AUC=1 refers to the 100% accurate detection, and AUC=0.5 

refers to the 0% accurate detection of the HTM method compared 

to the LGE imaging. Therefore, we have selected 𝑘 = 5 as it was 

giving more realistic results compared to 𝑘 = 10. Moreover, 𝑘 =

5 is also a common choice for 𝑘-fold validation tests as mentioned 

in the literature(Kuhn and Johnson, 2013). We have plotted 

results with 𝑘 = 5 in Chapter 7. 

 

4.5.3 Limitations 

The method uses manual segmentation of LV, which could be 

subjective. The method is limited to use three slices of LV. The 

method is flexible for the 3D extension. The number of data 
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samples is limited. The method uses circumferential strain 

calculated with HTM, which is based on image texture tracking. 

Therefore, as an inherited limitation of HTM, detecting infarcted 

segments may not be promising in the subjects having artefacts 

and blurred texture images. 

   

4.6  Summary 

In this chapter, a diagnostic application method for myocardial 

infarction patients is described, based upon the review included 

in Chapter 1. The method aims to diagnose infarcted myocardium 

using strain values. The technical strengths, a justification for 

technical steps and limitations are discussed. However, to 

understand the method's clinical implications, the method needs 

to be validated with clinical studies. At this stage, the method 

used data of 43 human subjects as part of the method and results. 

The characteristic details of the dataset are described in this 

chapter. The results are described in Chapter 7.  



128 
 

 

Chapter 5 

Results – 2D Myocardial Tracking 

 

5.1 Introduction 

This chapter reports the validation results and discussion of the 

2D myocardial tracking method described in Chapter 2. The used 

validation method of target registration error (TRE) and 

parameter details to develop comparative results of the 

benchmark - free form deformation (FFD) method are described 

in Chapter 2 Section 2.4.2. The dataset used to derive this 

chapter's results is detailed in Chapter 2 Section 2.4.1, 

representing the used sequence, magnetic field strength in Tesla, 

and details about patients. The results are published in a journal 

article (Bhalodiya, Palit, Tiwari, et al., 2018). 

 

5.2 Results of 2D myocardial tracking 

TRE results of 2D myocardial tracking are calculated at four LV 

levels: basal, upper mid-ventricular, mid-ventricular and apical. 

The results are measured as the root mean square error in 

millimetre between actual myocardial point locations and the 

estimated locations with the HTM method. The details of the 

validation method are described in Chapter 2, Section 2.4.2. In 

Figure 5.1(a), the results are visualised according to the LV slices. 

In Figure 5.1(b), the results are elaborated for each LV slice and 

each cardiac cycle frame.  
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Figure 5.1| (a) TRE in basal, upper mid-ventricular, mid-

ventricular, and apical SAX slices of LV. Each slice includes all 

segments of the respective slice and all frames of a cardiac cycle. 

The mid-ventricular slice has a 4% higher (P=0.05) mean error 

than the apical slice and 9% higher (P=0.15) mean error than the 

basal slice. No significant difference is found among upper mid-

ventricular, basal, and apical slices. (b) TRE in each image frame 

of a cardiac cycle. 
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As mentioned in Figure 5.1 (a), basal SAX slice has a mean error 

of 0.31 ± 0.07 𝑚𝑚, upper mid-ventricular level slice has a mean 

error of 0.37 ± 0.06 𝑚𝑚, mid-ventricular level slice has a mean 

error of 0.41 ± 0.05 𝑚𝑚, and apical level slice has a mean error of 

0.32 ± 0.08 𝑚𝑚. It can be seen in Figure 5.1 (b) that the TRE is 

less than half a millimetre in most of the images of the cardiac 

cycle. 

To further validate our results, we have compared our results 

with the benchmark FFD method. The details of the FFD method 

can be found in Chapter 2, Section 2.4.2. The HTM and FFD results 

are compared (Figure 5.2), and a t-test is performed to 

understand the significance of the results. In Figure 5.2 (a), the 

overall results for all the images are shown. In Figure 5.2 (b), the 

results are compared for individual frames of the cardiac cycle.  
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Figure 5.2| (a) Comparison of mean TRE in the proposed 2D HTM 

method with FFD-based benchmark method using 1080 short-

axis images, including basal, mid-ventricular, upper mid-

ventricular and apical images. HTM has a 17% reduced (P=0.07) 

error compared to FFD in a paired sample t-test. (b) Comparison 

of TRE in HTM and FFD in each image of a cardiac cycle. The 

yellow bar refers to FFD as the base, and with respect to each 

yellow bar, the corresponding green bar shows percentage error 

using 2D HTM. The height difference in each yellow and green bar 

graph shows the percentage error reduction using 2D HTM. 
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As shown in Figure 5.2, 2D myocardial tracking of HTM has 

reduced RMSE compared to FFD. Paired sample t-test is 

performed to check the significance level with the hypothesis that 

the HTM has x% reduced error compared to FFD. It is found that 

the HTM has 17% (P=0.07, CI:[-0.01,0.35]) reduced RMSE 

compared to FFD. 

Moreover, in Figure 5.3, qualitative examples to compare the FFD 

method and the HTM method are shown. During the myocardial 

tracking, the FFD method and HTM method perform non-rigid 

image registration. Ideally, the derived output images with non-

rigid registration should be the same as the cardiac cycle images. 

We compared both methods, with a couple of examples, to 

highlight the error issues of FFD. The reasons for the difference in 

results are discussed in the discussion section of this chapter.  
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Figure 5.3| In both examples (a) and (b), the left image is FFD-

based output, the right image is HTM output, and the middle 

image is Expected output. Expected output refers to the original 

image, and FFD and HTM output refer to the derived images while 

performing myocardial tracking. The derived images (or 

registered images with image registration) of FFD are derived 

while tracking LV myocardium according to the parameters 

mentioned in Chapter 2, Section 2.4.2. HTM images are derived 

according to the method of Chapter 2 Section 2.2. The red circle 

shows error using the FFD-based benchmark method. 

 

The strain values are reported with the results of the 2D 

application method, which is explained in Chapter 7 Section 7.2. 

 

5.3 Discussion of results 

As shown in the results of Figure 5.1, 2D myocardial tracking 

using HTM show improved accuracy with approximately half a 

millimetre error in most of the images of a cardiac cycle. The 

potential reason is dense and uniform hierarchical point matching 

of the HTM, which allows HTM to efficiently track the local 



134 
 

 

myocardial areas. Images from four LV slices have been 

examined, and it has been found that the RMSE of TRE is higher in 

the mid-ventricular slice compared to RMSE in other slices. The 

paired sample t-test shows that, within the same patient, the 

mean error reported in a mid-ventricular and apical slice has a 

significant difference (mid-ventricular slice has a 4% higher mean 

error with P=0.05). However, the difference in error among other 

slices is not significant. Then, we performed a t-test among FFD 

and HTM to understand the difference in error. We used images 

from all four LV slices and all frames of the cardiac cycle. The 

hypothesis tested is that the HTM has x% reduced error 

compared to FFD in a paired sample t-test. It is found that the 

HTM has 17% (P=0.07, CI:[-0.01,0.35]) reduced RMSE compared 

to FFD. 

Moreover, quantitative examples have been shown in Figure 5.3 

to highlight the reason for the higher error in FFD and the 

benefits of HTM. It can be seen in Figure 5.3 that FFD can produce 

a high error (highlighted in red circle) due to the ill-conditioned 

polynomials while doing computation. Such errors happen due to 

the spline-based transformation function. Previously, such 

observations have been reported in the literature (Deng and 

Denney, 2004). In contrast, our HTM method controls such errors 

with the LWM transformation function for geometric point 

transformation. LWM is a radial basis function. It can calculate the 

transformation function with a small system of equations. It is 

less complicated than the B-spline function while calculation, 

detailed in the literature (Maude, 1971; Goshtasby, 1988). Due to 

that, LWM can avoid ill-conditioned polynomials during 

computation and has the potential to perform better than spline-

based and multi-quadratics transformation functions (Zagorchev 

and Goshtasby, 2006). Such LWM advantages have enabled HTM 

for better 2D myocardial tracking than the FFD-based benchmark 

method, shown in Figure 5.3. Moreover, the FFD-based 
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benchmark method needs a lot more tuning parameters, as listed 

in Chapter 2 Section 2.4.2, than HTM, limiting the accuracy of FFD 

on the subjective selection of values for tuning parameters. 

However, HTM is also sensitive to the image quality and signal-to-

noise ratio as HTM is fundamentally based on texture tracking, 

limiting the accuracy of 2D tracking of HTM in low-quality images. 

Moreover, the least number of local points, such as less than 6, 

may cause ill-conditioned polynomials and not allow LWM to 

perform transformation step and myocardial tracking. This 

limitation could be resolved by selecting a sufficiently more 

extensive number of local points, as explained in Chapter 2, 

Section 2.5.2. 

The strain values related discussion is reported in Chapter 7, 

Section 7.3. 

 

5.4 Summary 

In this chapter, the results of 2D myocardial tracking using the 

HTM method are reported. Comparative results and discussion 

with the benchmark FFD method are provided. Results and 

discussion of statistical tests have been reported. The limitations 

regarding parameter selection are discussed in method Chapter 2 

Section 2.5.2, and discussion of strain value analysis is written 

with results of the 2D application method in Chapter 7 Section 

7.3.  
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Chapter 6 

Results - 3D Myocardial Tracking and Strain Calculation 

 

6.1 Introduction 

This chapter reports on the 3D myocardial tracking and strain 

calculation method results, a method which is described in 

Chapter 3. Moreover, a comparative discussion of results with 

benchmark methods (Tobon-Gomez, Craene, Mcleod, et al., 2013) 

is also presented in this chapter. Validation methods from the 

benchmark framework (Tobon-Gomez, Craene, Mcleod, et al., 

2013) and additional validation methods are described in 

Chapter 3 Section 3.3. The open-access 3D dataset used to derive 

the results of this chapter is detailed in Chapter 3 Section 3.2. 3D 

method and derived results are published in a journal article 

(Bhalodiya, Palit, Ferrante, et al., 2019). 

 

6.2 Results of 3D myocardial tracking and strain calculation 

3D myocardial tracking is performed with an open-access dataset 

provided by the benchmark framework (Tobon-Gomez, Craene, 

Mcleod, et al., 2013). This dataset has manually tracked points in 

the LV myocardium used by benchmark methods and our method 

to compare myocardial tracking results. The myocardial points 

are tracked from the end-diastole to the end-systole until the end 

of the cardiac cycle in each patient using the 3D HTM method. The 

tracking error is calculated with respect to the manually tracked 

ground truth landmarks from the dataset provider(Tobon-Gomez, 

Craene, Mcleod, et al., 2013). The results are reported for three 

cases: error in all cardiac frames, error in final cardiac frames, 

and error in end-systolic cardiac frames. The error plots are 

shown in Figure 6.1, which includes all 15 patients from the 
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dataset. Details of dataset and validation method results are 

described in Chapter 3 Section 3.2 and Section 3.3.  
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Figure 6.1| (a) Myocardial tracking error of 3D HTM method for 

three cases: error in all frames, error in final frames, and error in 

end-systolic frames, (b) comparison of median error among 3D 

HTM and benchmark methods for all frames. 
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As shown in Figure 6.1 (a), the 3D myocardial tracking of HTM 

has a median error 1.49𝑚𝑚, 1.73𝑚𝑚 and 2.88𝑚𝑚 in cases of all 

frames, final frames and end-systolic frames, respectively. Figure 

6.1 (b) compares the median tracking error among benchmark 

methods and the 3D HTM method for all frames. Benchmark 

methods are MEVIS, IUCL, UPF, and INRIA. The median errors of 

3D myocardial tracking are MEVIS=1.33𝑚𝑚, IUCL=1.52𝑚𝑚, 

UPF=1.09𝑚𝑚, INRIA=1.32𝑚𝑚, and 3D HTM=1.49𝑚𝑚. As 

shown, the median error of 3D HTM is similar to one of the 

benchmark method and half a millimetre higher than other 

benchmark methods. 

Figure 6.2 shows the displacement of myocardial points at end-

systolic frames and final frames.  
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Figure 6.2| Displacement at the end-systolic frame and final frame 

in patients V6, V10, and V16. Point-to-surface distance shows the 

distance of a point from the reference end-diastolic surface. 

The end-systolic frames are reported with an average 8𝑚𝑚 to 

18𝑚𝑚 of point-to-surface distance, and the final frames are noted 

with an average of 0 to 6𝑚𝑚 of point-to-surface distance. The 

images of the dataset are divided into three categories according 

to the quality of the images: (i) average, (ii) good, and (iii) 
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excellent. Average quality 3D images have localised artefacts in 

more than one plane or non-localised artefacts in one image-slice. 

Good quality images have localised artefacts in no more than one 

image-slice, and excellent quality images do not have artefacts. 

This categorisation is followed from the benchmark 

paper(Tobon-Gomez, Craene, Mcleod, et al., 2013). Figure 6.2 has 

shown an example from each image quality category. It can be 

observed in patient V6 that the end-systolic frame has higher 

displacement in basal, mid-ventricular and partially apical areas 

compared to the final frame. 

Similarly, V10 also has a higher displacement at the end-systolic 

frame than the final frame, especially in basal, mid-ventricular, 

apical, and partially apex areas. The patient V16 has higher end-

systolic displacement in the mid-ventricular area compared to the 

final frame. Benchmark framework (Tobon-Gomez, Craene, 

Mcleod, et al., 2013) has also reported similar results. 

Figure 6.3 shows the strain curve results.  
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Figure 6.3| Strain plots of longitudinal, circumferential, and radial 

strain. Longi, Circ and Rad refer to longitudinal, circumferential, 

and radial strain, respectively. 

As shown in Figure 6.3, the strain curves using all LV myocardial 

points are plotted with 3D data of patients. Longitudinal and 

circumferential strain curves are reported with negative values. 

End-systolic strain can be observed with peak values. The bell 

type of shape shows increasing strain in the beginning and 

decreasing strain in later cardiac cycle frames. Similar 

observations are reported in the literature (Tobon-Gomez, 

Craene, Mcleod, et al., 2013). 

Figure 6.4 shows the results of eigenvalue analysis in a patient V8.  
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Figure 6.4| (a) Eigenvalue curves of patient V8, (b) strain value 

curves of patient V8. Rad, Circ, Longi refer to radial, 

circumferential, longitudinal strain, respectively. 

As shown in Figure 6.4, the eigenvalue curves are reported with 

bell shape of increasing and decreasing values. Moreover, 

eigenvalue curves show end-systolic peak values similar to strain 

curves. Eigenvalue 1, eigenvalue 2, longitudinal strain and 

circumferential strain are noted similarly to physiological LV 

contraction and expansion. Eigenvalue 3 and radial strain are 

noted with almost zero values. 

The discussion of 3D myocardial tracking and strain calculation 

results is included in the following section. 
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6.3 Discussion of results 

3D myocardial tracking using HTM has reported a few advantages 

as follows: (i) numerical stability in the calculation which 

reported promising 3D tracking with 1.49𝑚𝑚 median error and a 

very few outliers, (ii) 3D strain calculation can be performed at all 

the myocardial points without merging multiple methods or 

multiple 2D orientation images. 

As shown in the results of Figure 6.1, 3D HTM has reported a 

similar median error to a benchmark method and half a 

millimetre higher error compared to the remaining benchmark 

methods. However, contrary to benchmark methods, 3D HTM 

does not have large error outliers at all frames, final frames and 

end-systolic frames. The reason is the technical advantages of 

HTM inherited from mathematically robust 3D LWM function. 

LWM function performs computation with a small number of 

polynomials and a system of equations, which provides LWM 

with the ability to avoid ill-conditioned polynomials (Goshtasby, 

1988; Zagorchev and Goshtasby, 2006). Accordingly, the 

computation is numerically stable with fewer error outliers and 

lower maximum error. 

Moreover, LWM can adapt to the various density of points and 

local geometrical variations in shape. Therefore, a specific 

coordinate system is not required, such as (Deng and Denney, 

2004). Co-ordinate systems, like the Cartesian co-ordinate B-

spline model, are prone to ill-conditioned polynomials and large 

error outliers (Deng and Denney, 2004). 

Such limitations could be mitigated with LWM and, accordingly, 

3D HTM. As shown in Figure 6.2, LV myocardial displacement is 

higher at the end-systolic frame and lower at the final frame. 

These results are aligned with the physiological ground truth of 

LV contraction and expansion, i.e. a healthy human heart LV 
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contracts maximum at end-systole to pump the blood out from LV 

(Katz, 2011). The smoothness of displacement agrees with the 

mathematical ability of the LWM function for providing smooth 

transformation, which is mentioned in Chapter 3 Equation 3.6. 

According to LV physiological behaviour (Katz, 2011), LV 

contracts in longitudinal and circumferential directions and 

expands in a radial direction during systole. As shown in Figure 

6.4, the longitudinal and circumferential strain are reported with 

negative values, which agree with LV contraction. Moreover, the 

bell type of shape of strain curves agrees with LV contraction and 

expansion behaviour. However, the maximum values of strain are 

lower compared to the expected values. Expected values are -

20% in circumferential (-0.20 circumferential strain), -16% in 

longitudinal (-0.16 longitudinal strain), and +45% in radial 

direction (+0.45 radial strain)(Tobon-Gomez, Craene, Mcleod, et 

al., 2013). The reported circumferential and longitudinal values 

are almost half of the expected maximum values, and radial 

values are almost zero. The potential reasons could be a 

limitation of methodology or limitation of image acquisition 

protocol for 3D grid tagging MRI. A similar type of observation is 

reported by the researchers (Tobon-Gomez, Craene, Mcleod, et al., 

2013), who have used the same dataset in the literature. 

To understand our results more in detail, we have performed an 

additional validation test based on eigenvalue analysis. The 

results are reported in Figure 6.3. Eigenvalue curve should also 

follow LV physiological behaviour because eigenvalues are 

components of principal strain (principal strain refers to the 

diagonal elements of strain tensor when off-diagonal (shear) 

components are zero). As shown in Figure 6.3, eigenvalue 1 and 

eigenvalue 2 curves have bell type shape, which agrees to LV 

contraction and expansion. Our results show that an eigenvalue 

less than zero leads to LV contraction, whereas literature 

(Gabriele, Nardinocchi and Varano, 2015) suggests that an 
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eigenvalue less than one shows LV contraction. This difference is 

because of the different definitions of strain tensors followed by 

both literature works (Tobon-Gomez, Craene, Mcleod, et al., 2013; 

Gabriele, Nardinocchi and Varano, 2015). Eigenvalue 3 is 

reported with almost zero values. The maximum values of all 

three eigenvalue curves are lower than the literature (Gabriele, 

Nardinocchi and Varano, 2015). 

These findings could be insightful to further improve 3D 

myocardial tracking and strain calculation. Circumferential, 

longitudinal, and radial strain directions are convenient for 

interpretation with clinical literature, and eigenvalue analysis of 

principal strain directions is insightful to understand results. 

Therefore, we have reported our results with both examples. 

 

6.4 Summary 

In this chapter, the results of 3D myocardial tracking and strain 

estimation are presented. An open-access 3D dataset is used 

(Tobon-Gomez, Craene, Mcleod, et al., 2013). Comparative 

discussion with the benchmark methods is provided.  
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Chapter 7 

Results - 2D Application Method for Myocardial 

Infarction Patients 

 

7.1 Introduction 

This chapter reports on the results of the 2D application method 

for myocardial infarction patients, as described in Chapter 4. 

Discussion of clinical validations is also presented in this chapter. 

The clinical dataset, validation methods, and image analysis 

methods are described in Chapter 4, Section 4.2 and Section 4.3. 

2D application method and derived results are submitted in a 

journal article. 

 

7.2 Results of the 2D application method for myocardial infarction 

patients 

In this section, the results of identifying infarcted myocardial LV 

segments are reported. As detailed in Chapter 4 Section 4.2, the 

dataset of 43 subjects (38 myocardial infarction and 5 healthy) is 

divided into a training set and test set. The results derived with 

the training set to find ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 values for basal, mid-ventricular 

and apical slices are shown in Figure 7.1. These three ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

values are used with the test dataset, and the results are shown in 

Figure 7.2.  

Figure 7.1 shows the results of detecting infarcted segments using 

the training dataset of 𝑘-fold tests with 𝑘 = 5. 𝑘 = 5 refers to 5% 

random data samples as test dataset. In Figure 7.1, the x-axis 

shows the ∝ value, and the y-axis shows the corresponding area 

under the curve (AUC) value. AUC values are derived from the 

ROC tests with training dataset and test dataset described in 

Chapter 4 Section 4.4.6.2. In summary, the ROC test calculates 
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sensitivity vs 1-specificity values and plots them as a curve, and 

the area under this curve is referred to as the AUC value. The ROC 

tests' input is infarcted LV segments identified in LGE imaging 

and corresponding infarcted LV segments identified using our 

method. The total number of infarcted segments in 38 MI patients 

is 109, and the total number of healthy segments is 579. The 

distribution of the infarcted segments and healthy segments per 

short-axis slice is (total: 109, basal: 38, mid-ventricular: 44, 

apical: 27), and (total: 579, basal: 220, mid-ventricular: 214, 

apical: 145), respectively. Among 579 healthy segments, 499 

segments are from MI patients, and 80 segments are from healthy 

subjects. Healthy subjects do not have infarcted segments. 

Transmuralities of infarcts is not identified because our research 

question is limited to identify the infarcted LV segments only.  
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Figure 7.1| Results of 10 𝑘-fold tests with different ∝ values in 

each short-axis slice (a) basal slice, (b) mid-ventricular slice, and 

(c) apical slice. AUC refers to the area under the curve of 

sensitivity vs 1-specificity curve as a ROC test output. ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 

values correspond to the maximum AUC values in each slice. 
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As shown in Figure 7.1, AUC values corresponding to each ∝ value 

are shown in box-plots to find the maximum AUC value. Such 

maximum AUC has a corresponding ∝ value which is referred to 

as ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 value for each basal, mid-ventricular and apical SAX 

slice. According to that, ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡−𝑏𝑎𝑠𝑎𝑙= 30, 

∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡−𝑚𝑖𝑑−𝑣𝑒𝑛𝑡𝑟𝑖𝑐𝑢𝑙𝑎𝑟= 30, and ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡−𝑎𝑝𝑖𝑐𝑎𝑙= 20. Similar to 

that, it concludes that the strain H-spread of infarcted segments is 

at least 30% reduced in basal slices, at least 30% reduced in mid-

ventricular slices, and at least 20% reduced in apical slices with 

respect to the H-spread of healthy segments in respective SAX 

slices. These ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 values are used with test datasets of 𝑘-fold 

tests. The results of AUC values with test datasets are shown in 

Figure 7.2. 

Figure 7.2| Accuracy of detecting infarcted LV segments in basal, 

mid-ventricular and apical slices using a test dataset. AUC refers 

to the area under the curve of sensitivity vs 1-specificity curve of 

detecting infarcted LV segments using our method and LGE 

imaging. ∝ values are ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 values found using the training 

dataset. 

As shown in Figure 7.2, the basal slice has an accuracy of median 

AUC=0.85, the mid-ventricular slice has a median AUC=0.82, and 

the apical slice has a median AUC=0.87. Further, considering the 

mean values of AUC with 95% confidence level, the confidence 
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intervals of lower and upper AUC values in basal, mid-ventricular 

and apical slices are [0.80, 0.89], [0.74, 0.85], and [0.78, 0.91], 

respectively. The significance of the t-test (with results of 30 tests 

with randomly selected test data samples) shows that our 

method can significantly identify infarcted LV segments with AUC 

0.73 (P=0.05) compared to LGE imaging. It has been 

hypothesised that the LGE imaging has 100% accuracy (i.e. AUC 

1.0) in detecting infarcted LV segments, and accordingly, our 

method has AUC 0.73 with P=0.05. A patient-specific example of 

detections is shown in Table 7.1.  
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In Table 7.1, Truth refers to the clinical finding of LGE imaging 

and Detected relates to the results using the proposed method. An 

analysis summary of a test dataset is mentioned in Table 7.2. 

 

In Table 7.2, higher true positive rate (tpr=1) and lower false-

positive rate (fpr=0) together refers to ideal detections (same as 

LGE imaging) of infarcted LV segments in an MI patient, whereas 

in a healthy subject, fpr=0 is the perfect case of detections. 
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The sensitivity and 1-specificity of detecting infarcted LV 

segments with respect to LGE imaging are individually calculated 

for a test data set, which provides an overall sensitivity of 0.84 

and specificity of 0.90 using our applied method.  

An example of detecting infarcted LV segments using the clinical 

gold-standard LGE method and the proposed method is shown in 

Figure 7.3. 

Figure 7.3| (a) Infarcted LV myocardial segments (white colour 

area) and healthy segments (black colour area) shown in LGE 

MRI findings, (b) infarcted LV myocardial segments (white colour 

area) and healthy segments (red colour area) shown with the 

proposed method. 

As shown in Figure 7.3, LGE imaging findings show infarcted 

myocardium with enhancement (white colour), due to 

gadolinium deposition, and non-infarcted tissues without 

enhancement (black colour). A higher strain refers to healthy 

myocardium (red colour), and reduced strain values refer to 

infarcted myocardium (white colour) in the proposed method’s 

results. Some of the segments have both red and white colour 

mixed. According to the infarction condition, such segments are 

decided as healthy or infarcted, as mentioned in Chapter 7 Section 

7.3.6. 
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Strain values (end-systolic circumferential strain) calculated with 

the HTM method in healthy and infarcted LV segments are 

reported in Table 7.3.  
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The validity of the results is reported in the discussion section of 

this chapter. 
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7.3 Discussion of results 

The method for detecting infarcted LV segments is applied, 

fundamentally based on the 2D HTM method. Therefore, it 

inherits the strengths and limitations of 2D HTM. In Chapter 2, 2D 

HTM is described with Eulerian strain definition, an adopted 

strain calculation step from the literature. In Chapter 4, the 2D 

application method is described with the Lagrange strain 

definition, which is also an adopted strain calculation step from 

the literature (Tobon-Gomez, Craene, Mcleod, et al., 2013). These 

Lagrange strain values in each LV segments are shown in Table 

7.3. To validate and ensure consistency of our strain values with 

literature, we have incorporated the first step of our 2D 

application method as comparing end-systolic circumferential 

strain values with literature (Moore, Lugo-Olivieri, McVeigh, et al., 

2000). The strain values reported in that literature is calculated 

using semi-automatic myocardial tracking with manual 

corrections. Therefore, those values can be used for comparison. 

Besides, they have used the same imaging modality as ours for 

strain calculation, which is grid tagging MRI. 

Moreover, the same literature (Moore, Lugo-Olivieri, McVeigh, et 

al., 2000) is referred to by the benchmark framework (Tobon-

Gomez, Craene, Mcleod, et al., 2013) while discussing the 

validation of end-systolic peak strain values of the 3D myocardial 

tracking and strain calculation methods. Therefore, we have 

compared our strain values with the same literature to validate 

our end-systolic strain values in the application method. 

However, the human subjects dataset used in that literature 

(Moore, Lugo-Olivieri, McVeigh, et al., 2000), is different from our 

dataset, limiting the comparison. That literature has used 31 

healthy volunteers, whereas we have used 5 healthy and 38 

myocardial infarction patients. Due to this difference, we have not 

entirely relied on only end-systolic strain comparison. Our 
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method utilises the H-spread of strain value in healthy LV 

segments and infarcted LV segments within the same patient. As 

these H-spread is compared within the patient and not with 

literature data, they can be reliable. Within the same patient, 

infarcted muscle are clinically known to have reduced strain 

compared to healthy muscle. This limitation could be mitigated or 

overcome in future after the clinical consensus (standardisation 

of the utility of strain by global clinical committees). Currently, 

the strain-based methods are emerging research and lack of 

standardised strain values. After the clinical researchers 

standardise the clinical utility of strain values, the proposed 

method will need to be updated with new strain values. 

Accordingly, the updated results will need to be reported. 

As shown in Figure 7.1 and Figure 7.2, the proposed method has 

analysed the infarcted segments at three different LV levels, 

which are basal, mid-ventricular and apical. The reason is that the 

mechanics of the myocardium is non-uniform throughout the LV. 

At the end-systolic phase of LV, the basal, mid-ventricular and 

apical areas contract an average of 18.5%, 19.25%, and 22.25%, 

respectively (Moore, Lugo-Olivieri, McVeigh, et al., 2000). 

Accordingly, three separate ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 values are found which are 

∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡−𝑏𝑎𝑠𝑎𝑙= 30, ∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡−𝑚𝑖𝑑−𝑣𝑒𝑛𝑡𝑟𝑖𝑐𝑢𝑙𝑎𝑟= 30, and 

∝𝑐𝑜𝑟𝑟𝑒𝑐𝑡−𝑎𝑝𝑖𝑐𝑎𝑙= 20. These values show that the circumferential 

strain H-spread of infarcted LV segments in basal, mid-ventricular 

and apical areas is reduced 30%, 30%, and 20%, respective, 

compared to healthy LV segments of the same slice. The 

difference among them is due to partially infarcted LV segments. 

In the proposed method, the comparison of healthy and infarcted 

segments are happening within the same slice. If all the same slice 

segments are infarcted, then the comparison is extended with 

healthy segments of other LV slices, detailed in Chapter 4 Section 

4.4.6.1 (Equation 4.6). 
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Figure 7.2 shows different accuracy for each LV level and Table 

7.2 shows that some of the infarcted segments are detected as 

healthy, causing false negatives in detection. This difference and 

limitation could be due to the fundamental texture tracking 

nature of the 2D HTM method, which may cause incorrect 

tracking and detection. As the 2D HTM method tracks the image 

texture, it could be affected by faded images or artefacts, which 

could happen due to blood flow or patient breathing or patient 

movement. Low-quality images lead to incorrect myocardial 

tracking using HTM, resulting in an error in calculated strain 

values and erroneous detections of infarcted LV segments. Table 

7.2 shows the results of a test dataset of 9 infarcted patients and 2 

healthy subjects. In healthy subjects, true positives and false 

negatives are zero, and the true positive rate is not a number 

(NaN), as healthy subjects do not have infarcted segments. 

However, false-positive detections are reported, potentially due 

to reduced strain values, calculated by HTM. 

As shown in Figure 7.3 and Table 7.1, the method's potential 

implication could be in identifying infarcted LV segments without 

using the GBCA-based LGE method. Such advantages can extend 

the utility of MRI in detecting infarcted LV segments, specifically 

in renal impairment patients, as they are clinically contra-

indicated to the use of GBCA due to patient safety concerns 

(McDonald, McDonald, Kallmes, et al., 2015). Moreover, the 

patient care concerns of gadolinium deposition in tissues and 

bones (McDonald, McDonald, Kallmes, et al., 2015) could be 

avoided with the proposed application method. Moreover, GBCA 

usage costs an additional €50 per patient MRI (Boldt, Leber, 

Bonaventura, et al., 2013); hence, avoiding GBCA could be more 

economical. A practical limitation of this method could be grid 

tagging MRI. Grid tagging MRI requires a patient to hold the 

breath to capture good quality images. If the patient finds it 

difficult to control the breath, then there could be blur texture of 
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images which may give an error in myocardial tracking and 

strain. 

The proposed method is limited to detecting infarcted LV 

segments only. In contrast, the current gold-standard LGE 

imaging can provide higher accuracy, such as detecting sub-

endocardial infarction and separating transmural and non-

transmural infarctions. Therefore, the proposed method will need 

to be improved and validated with more datasets and clinical 

studies. Moreover, the proposed method could detect infarcted 

LV segments only in basal, mid-ventricular and apical slices. 

Therefore, a potential future work could be extending the method 

for detecting infarcted myocardium in the entire LV volume. The 

proposed method is limited to the LV classification according to 

the 16-segment AHA model, which could be adapted for different 

LV model after a rigorous literature review to find appropriate 

strain value ranges. 

 

7.4 Summary 

In this chapter, identifying infarcted LV segments using 2D 

application method is reported with respect to the LGE imaging. 

The area under the curve of sensitivity vs 1-specificity curve is 

used to show the method's performance. Circumferential strain 

values of healthy and infarcted LV segments are reported. A 

discussion of results and potential clinical implications are 

provided.  
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Chapter 8 

Conclusion 

 

8.1 Introduction 

This thesis aims to create a safe diagnostic tool without using a 

gadolinium-based contrast agent. It is shown, within the thesis, 

that the strain analysis based method can help in identifying 

infarcted myocardial segments, which are crucial findings in 

diagnosing myocardial infarction patients. 

In this thesis, the following research problem is addressed: 

 

How can a myocardial tracking and strain calculation tool be 

developed to calculate myocardial strain to safely and accurately aid 

diagnostic decisions of myocardial infarction patients? 

 

Three research questions have been formulated to address this 

research problem, following a clinical and technical literature 

review. A novel method - Hierarchical Template Matching has 

been proposed for 2D and 3D myocardial tracking. A clinical 

application method to use 2D circumferential strain in identifying 

infarcted left ventricular segments has been described, and 

results are derived with a clinical dataset of myocardial infarction 

patients. A summary of key findings is presented in this chapter 

with potential clinical implications and future work direction. 

 

8.2 Key research findings 

This thesis has addressed three research questions, and key 

findings with each research question are as follows: 

Research question 1: How can a 2D myocardial tracking and strain 

calculation method be developed using the 2D local weighted 

mean function and structural deformation within the 

myocardium? 
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A novel method – Hierarchical Template Matching (HTM) has 

been proposed to perform 2D myocardial tracking to address this 

research question. HTM utilises grid tagging MRI to include the 

details of structural deformation within the myocardium. The 

method is validated at basal, mid-ventricular, upper mid-

ventricular and apical left ventricular slices using target 

registration error, with respect to the manually tracked 

myocardial points of grid tagging MRI. It is found that the root 

mean square error of the HTM in tracking LV myocardium is: 

basal 0.31±0.07 mm, upper mid-ventricular 0.37±0.06 mm, mid-

ventricular 0.41±0.05 mm, and apical 0.32±0.08 mm. The mid-

ventricular slice has a significantly 4% (P=0.05) higher tracking 

error compared to other slices. However, other slices do not have 

a significant difference among them. The overall tracking error of 

HTM is 0.35±0.05 mm, which is 17% (P=0.07, CI:[-0.01, 0.35]) 

reduced compared to the benchmark method – free form 

deformation (FFD). The reason for this is the difference in 

transformation function in HTM and FFD. HTM uses the local 

weighted mean (LWM) transformation function while 

computation, whereas FFD uses a spline-based function. A list of 

advantages of LWM is detailed in Chapter 1, Section 1.3.3.3. 

 

Research question 2: How can a 3D myocardial tracking and strain 

calculation method be developed using the 3D local weighted 

mean function to calculate 3D myocardial strain? 

We have extended our HTM method for 3D to address this 

research question and introduced the 3D extension of the LWM 

function in the 3D myocardial tracking and strain calculation 

pipeline. As described in Chapter 1, Section 1.3.2.2.2, many 

methods, reported in the literature, require multiple 2D 

orientation images or tissue material properties to calculate 3D 

strain. In comparison, we have shown 3D strain calculation by 

utilising direct 3D images and without requiring tissue material 
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properties. Results of 3D HTM are validated with the benchmark 

framework (Tobon-Gomez, Craene, Mcleod, et al., 2013). We 

found that our method does not have better accuracy in terms of 

myocardial point tracking's median error. Our tracking error is 

1.49 mm, whereas benchmark methods have a tracking error of 

1.33 mm (MEVIS), 1.52 mm (IUCL), 1.09 mm (UPF), and 1.32 mm 

(INRIA). However, benchmark methods have reported a large 

number of outliers, whereas HTM has a few outliers. This 

advantage is mainly due to the 3D LWM function used in HTM. 

LWM can avoid errors of ill-conditioned polynomials during 

computation, and as a result, the error outliers are very few. Due 

to the inaccessibility of all the error values from the benchmark 

framework, we are unable to do the significance test. The strain 

values with HTM and with benchmark methods are less than the 

expected strain values as discussed in Chapter 6 Section 6.3, 

which shows further to improve 3D myocardial tracking and 

strain calculation methods. 

 

Research question 3: How can 2D circumferential strain of 

myocardium be used in identifying infarcted left ventricular 

segments for the diagnosis of myocardial infarction patients? 

In this research question, we have addressed to develop an 

applied method using strain values calculated by HTM. We have 

used grid-tagging MRI-based circumferential strain values. We 

show that the infarcted left ventricular segments can be identified 

with strain H-spread from end-diastolic to end-systolic cardiac 

frames without using a gadolinium-based contrast agent. We 

compare our results with LGE imaging. Our method's 

performance is reported in terms of the area under the curve 

(AUC) of sensitivity vs 1-specificity of a ROC test. For LV segments 

in the basal slice, we have achieved an accuracy of AUC 0.85. For 

the mid-ventricular slice, AUC is 0.82, and for the apical slice, AUC 

is 0.87. Calculating AUC with 95% confidence level, the 
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confidence intervals of lower and upper mean AUC values in 

basal, mid-ventricular and apical slices are [0.80, 0.89], [0.74, 

0.85], and [0.78, 0.91], respectively. Moreover, our method has 

AUC 0.73 (P=0.05) in detecting infarcted left ventricular 

segments with respect to LGE imaging. Our method does not 

require a gadolinium-based contrast agent. Hence, it is safe. 

However, our method does not separate transmural and non-

transmural infarction, which is discussed in limitations. 

 

8.3 Potential implications 

The research described in this thesis is aiming to reduce the 

mortality and morbidity regarding cardiovascular diseases. The 

addressed research problem is centred around developing a 

diagnostic tool to aid clinical decisions with better patient safety 

and care. The overall research has shown technical and clinical 

methods to create a diagnostic tool. The clinical method is 

reported with preliminary results of detecting infarcted 

myocardium in myocardial infarction (myocardial infarction) 

patients. 

The described method shows that the circumferential strain 

analysis can identify the infarcted myocardium. The method does 

not require GBCA injection, which helps to overcome patient 

safety concerns and mitigate patient care concerns compared to 

current clinical practice. The described method could be offered 

in clinical condition, such as advanced renal impairment, which is 

contraindicated with the GBCA-based LGE imaging. Moreover, the 

GBCA usage increases the cost by approximately €50 per patient 

for LGE imaging. Therefore, the described method could be more 

economical in practice. 

The described tool is in its early stage of research, and it has 

several limitations as well, which are described in Section 8.4. 
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8.4 Limitations of the research 

This research is limited to the myocardial strain-based diagnostic 

tools, and precisely, image processing-based tools. Regarding 

clinical conditions, the research is limited to myocardial 

infarction patients, specifically identifying infarcted LV segments, 

only in three SAX slices, i.e. basal, mid-ventricular, and apical 

slices. The research is based at a non-clinical organisation, limited 

to method developments. Dataset of myocardial infarction 

patients is collected from a clinical unit. However, the research 

does not represent a clinical study. The number of data samples is 

limited to only one clinical centre, and it does not have multi-

centre clinical data. The technical validations are limited to the 

benchmark methods of literature and a limited number of data 

samples from healthy subjects. The described methods are not 

ready to use in clinical units, though it has shown early-stage 

promising results. The code developed during the research is 

limited to academic research. 

 

8.5 Future Work 

As future work, performing the 3D application method would be a 

relevant task. In specific, collecting 3D data of myocardial 

infarction patients and then developing a clinical application 

method to verify and validate the usage of the proposed 3D 

method would be relevant. Moreover, the 3D LWM function, 

which is mentioned in Chapter 3, as a part of the 3D method, 

would be used with 3D Echo data to perform speckle tracking-

based myocardial tracking. This future work should be performed 

before proceeding to the 3D clinical application work because 

these findings would be insightful to improve the 3D technical 

method further. The 3D strain value curves would be developed 

using Echo data of the same patients as MRI to enable 

comparative analysis of myocardial tracking accuracy. 



173 
 

 

Regarding the 2D application method, even though it has better 

patient safety than LGE imaging, the accuracy is still not as good 

as the current gold-standard LGE imaging. For example, LGE 

imaging can identify the transmurality of an infarct, and it can 

locate sub-endocardial infarction. Such accuracy is not observed 

in our results, which suggests improving technical and clinical 

application methods before proceeding to the clinical studies. 

From the point of view of strain components, the proposed 

method has utilised circumferential strain. The methods have 

used grid tagging MRI (2D SAX slices in the 2D method and 3D 

volumes in the 3D method), which is accurate to capture 

circumferential motion. As future work, the strain components 

such as radial strain, longitudinal strain, the shear strain could be 

calculated by merging multiple imaging modalities. For example, 

cine MRI could capture radial motion more accurately than grid 

tagging MRI and could be integrated with grid tagging MRI using 

MRI header information. Also, 2D LAX slices can be promising to 

capture longitudinal strain, which would be interesting to explore 

as future work. 

Future work for associated clinical studies would potentially 

include collecting a dataset of myocardial infarction patients from 

multiple clinical institutes, with patient data comprised of 

different geographical locations, age groups, sex, and imaging 

scanners. Such datasets would be used to validate the methods 

with respect to the gold-standard LGE imaging. Later, the 

validation results would be used to revise the developed 

procedures, followed by validation and standard diagnostic tool 

development.  
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APPENDIX 2 

ALGORITHM AND CODE 

 HTM Algorithm 

Algorithm | HTM-based Myocardial Tracking                                                   

Parameters: I: set of N images, IM: Moving Image, IR: Reference Image, 

NCC: Normalized Cross-Correlation, TM: Moving Template, TR: 

Reference Template, SM: Moving Segment, SR: Reference Segment, CM: 

Moving Chunk, CR: Reference Chunk, WM: Moving Window, WR: 

Reference Window, Tsize: Template Size, PM: Moving Points Set, PR: 

Reference Point Set, Pmyo: Myocardial Point Set, i: ith template, j: jth 

segment, k: kth chunk, l: lth window, N: Number of images 

Require: I, set of N images 

initialize: Tsize = 16×16 

repeat 

for each: im ϵ I do 

initialize: IR = im, IM = next( im ) 

calculate: TM locations 

for each: movingT ϵ TM do 

referenceT ← NCC (movingT, IR) 

calculate: SM locations 

for each: movingS ϵ SM do 

referenceS ← NCC(movingS, referenceT) 

calculate: CM locations 

for each: movingC ϵ CM do 

referenceC ← NCC(movingC, 

referenceS) 

calculate: WM locations 

for each: movingW ϵ WM do 
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referenceW←NCC(moving

W, referenceC) 

    WR[l] ← referenceW 

end for 

CR[k] ← referenceC 

end for 

SR[j] ← referenceS 

   end for 

   TR[i] ← referenceT 

  end for 

PM ← WM locations 

PR ← WR locations 

function: track_myocardial_points (Pmyo, PM, PR) 

    tform ← Local_Weighted_Mean (PM, PR) 

    calculate: Rmyo ← f ( tform, Pmyo ) 

    return: Rmyo 

end function 

end for 

until index( im ) < N                                                                                              

 

 

 

 



 
 

 Strain calculation MATLAB code 

function [E, D]=strain(Ux,Uy,Uz) 

% Calculate the Lagranje strain from displacement images 

% 

%  E = STRAIN(Ux,Uy)   or (3D)  E = STRAIN(Ux,Uy, Uz) 

% 

% inputs, 

%   Ux,Uy: The displacement vector images in 

%           x and y direction 

%   Uz: The displacement vector image in z direction. 

% 

% outputs, 

%   E the 3-D Lagranje tensor images defined by Lai et al. 1993 

%      with dimensions [SizeX SizeY 2 2] or in 3D [SizeX SizeY SizeZ 

3 3] 

% 

% Source used: 

% Abd-elmoniem, K. Z., Stuber, M. and Prince, J. L. (2008) ‘Direct 

three-dimensional myocardial strain tensor quantification and 

tracking using z HARP’, Medical Image Analysis. Elsevier B.V., 

12(6), pp. 778–786. doi: 10.1016/j.media.2008.03.008. 

 

% 

 

if(~exist('Uz','var')) % Detect if 2D or 3D inputs 
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    % Initialize output matrix 

    E=zeros([size(Ux) 2 2]); 

    % displacement images gradients 

    [Uxy,Uxx] = gradient(Ux); 

    [Uyy,Uyx] = gradient(Uy); 

    % Loop through all pixel locations 

    for i=1:size(Ux,1) 

        for j=1:size(Ux,2) 

            % The displacement gradient 

            Ugrad=[Uxx(i,j) Uxy(i,j); Uyx(i,j) Uyy(i,j)]; 

            % The (inverse) deformation gradient 

            F=inv([1 0;0 1]-Ugrad);  % F=inv(Finv); 

            D(i,j,:,:)=F; 

            % the 3-D Lagranje strain tensor 

            e=(1/2)*(F'*F-[1 0;0 1]); 

            % Store tensor in the output matrix 

            E(i,j,:,:)=e; 

        end 

    end 

else 

    % Initialize output matrix 

    E=zeros([size(Ux) 3 3]); 

    % displacement images gradients 

    [Uxy,Uxx,Uxz] = gradient(Ux); 
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    [Uyy,Uyx,Uyz] = gradient(Uy); 

    [Uzy,Uzx,Uzz] = gradient(Uz); 

    % Loop through all pixel locations 

    for i=1:size(Ux,1) 

        for j=1:size(Ux,2) 

            for k=1:size(Ux,3) 

                % The displacement gradient 

Ugrad=[Uxx(i,j,k) Uxy(i,j,k) Uxz(i,j,k); Uyx(i,j,k) 

Uyy(i,j,k) Uyz(i,j,k);Uzx(i,j,k) Uzy(i,j,k) Uzz(i,j,k)]; 

                % The (inverse) deformation gradient 

                F=inv([1 0 0;0 1 0;0 0 1]-Ugrad); %F=inv(Finv);  

                D(i,j,k,:,:)=F; 

                % the 3-D Lagranje strain tensor 

                e=(1/2)*(F'*F-[1 0 0;0 1 0;0 0 1]); 

                % Store tensor in the output matrix 

                E(i,j,k,:,:)=e; 

            end 

        end 

    end 

end 


