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1. INTRODUCTION 

1.1. Childhood tumours 

The tumours of the blood-forming organs account for more than one third of all malignant 

tumours among children1. Modern treatment of childhood malignancies has markedly changed, 

leading to a higher life expectancy. Over the past 20 years, the possibilities of oncological 

therapy have improved significantly, leading to a better prognosis. Currently, the five-year 

survival rate is more than 70-80% in cases of paediatric tumours1,2. However, infectious 

complications still remain a serious problem, as they considerably worsen mortality and 

morbidity. The mortality is still significant, as the chemotherapy-induced immunosuppression 

increases susceptibility to infections, which contributes to about 10–20 % of mortality in 

paediatric oncology3,4. 

Chemotherapy often induces neutropenia and leukopenia, and therefore impairs cellular 

functions of the adaptive and innate immune systems5. Hence, appropriate function of the 

humoral immune defence mechanisms such as the complement system is essential in protection 

against infections in hemato-oncological patients6.  

1.2. Complement system  

The complement system is an important part of the innate immune system that serves as a first 

line of defence against foreign and altered host cells. This is an essential component of the 

ancient immune response to infections caused by a wide variety of pathogens. 

The complement system consists of more than 50 small proteins that are synthesized by the 

liver. Some of these proteins circulate in the plasma and tissue fluids; some bind to cell 

membranes. The circulating proteins are in an inactive proenzyme formed in the plasma, and 

are activated by a triggered-enzyme cascade. The members of the complement cascades are 

protease enzymes, which cleave and activate the next enzyme, resulting in the amplification of 

every subsequent enzymatic reaction. Several triggers can stimulate the system, leading to 

robust and efficient proteolytic cascades7-9.  

1.2.1. Complement activation 

The complement system is activated through three different pathways on pathogen surfaces. 

The pathways differ from the molecules that initiate the complement cascade, but lead to the 
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activation of the same effector molecules. These three different pathways are referred to as the 

classical, alternative, and lectin pathways10.  

 

Figure 1 Complement cascade, Janeway's Immunobiology (Garland Science 2005)10 

The classical pathway is initiated by antibody-antigen complexes binding to C1q molecules. 

The C1q recognise the Fc region of antibody isotypes IgG or IgM on the surface of the bacteria 

and viruses, binding to apoptotic cells and acute phase proteins. The inactive C1 complex 

consists of the C1q, C1r, and C1s molecules. The next step is the cleaving of C4 and then C2 

to form two large fragments – C4b and C2b – finally leading to the generation of C3 

convertase7,8.  

The alternative pathway is triggered by the C3b protein directly binding to the microbe surface 

through foreign materials and tissue damage. C3b binds to B factor and activates C3 convertase 

(C3bBb), regulated by the D, H, and I factors7,8.  

The mannan-binding lectin pathway is similar to the classical pathway11. Mannose-binding 

lectin (MBL) is an acute-phase protein – one of the most important elements of the lectin 
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pathway. The serum MBL protein recognises the carbohydrate patterns on microbiological 

surfaces, and forms a complex with mannose-binding lectin-associated serine protease 

(MASP1, MASP2). The complex cleaves C4 and C2 to form the C3 convertase C4b2a8-10.  

The classical pathway activation is an immunoglobulin-mediated process. The adequate 

function of the adaptive immune response, such as T and B cell function, is necessary to detect 

and bind to non-self antigens, and finally results in the activation of the cascade.  

The lectin pathway activation is independent of cell count, cell function, and immunoglobulin 

formation; the complement itself can bind to pathogens after detecting their pathogen-

associated molecular patterns (PAMPs) and can immediately activate the cascade7,8,12. 

1.2.2. Complement terminal phase 

The three pathways each result in the formation of a shared C3 convertase, the activation of the 

central element of the complement cascade. The C3 cleaving initiates the splitting of C5 and 

forms the C5 convertase, which finally binds the terminal portion of the complement cascade 

(C6, C7, C8, and C9). 

Complement activation triggers the immune functions, leads to destruction of pathogens or 

abnormal host cells through opsonisation and phagocytosis, activates a cell-killing membrane 

attack complex (MAC), and modulates the inflammation by attracting macrophages and 

neutrophils. Products of the complement cascade also have an important role in modulating 

aspects of humoral and cell-mediated immunity via interactions with B cells and T cells7,8,13. 

1.3. Mannose-binding lectin  

MBL is a member of the family of Ca2+ dependent collagenous lectins. MBL is an essential 

protein of the humoral innate immune system. The serum MBL protein recognises the 

carbohydrate patterns on microbiological surfaces, and activates the complement system 

independent of the C1 complex. 

MBL is a multimeric protein and consists of identical polypeptide chains, each containing the 

same parts: C-terminal, calcium-dependent carbohydrate-recognition domain (CRD); a short, 

a-helical, hydrophobic neck region, a collagenous region containing 19 Gly- Xaa-Xaa triplets, 

and a cysteine-rich N-terminal region. Three polypeptide chains form a triple helix, and these 

formations link to each other via the N-terminal cysteine-rich region. The linkage of 2-6 

subunits results in the final structure of MBL, forming dimers into hexamers. 
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The serum functional MBL concentration is mainly genetically determined. The MBL protein 

is encoded by the MBL2 gene (10q11.2-q21) which consists of four exons. The promoter region 

of the gene contains a single nucleotide polymorphism (SNP) at position‑221, denoted Y/X in 

the literature. In the first exon, the gene may contain three single nucleotide polymorphisms 

causing amino acid substitutions in the protein. The three variant alleles are at codons 54 

(Gly54Asp), 57 (Gly57Glu), and 52 (Arg52Cys) (Figure 2). They are termed B, C, and D 

respectively, and any of these variants on a chromosome is referred to as the 0 allele, while the 

wild type allele without any polymorphic variant is named A14-16.  

 

Figure 2 MBL gene structure 

If the MBL gene contains the wild type allele, the expressed polypeptide chains join together 

in the form of a triple helix. (Figure 3). From these subunits, a tulip bouquet-like oligomer 

structure arises with further linkage. The three SNPs are located in the collagen-like domain, 

which is responsible for the oligomerization that is essential for activation of complement. 

Thus, the occurrence of either of the amino-acid changes causes disturbance in the structure of 

the collagen-like domain and decreased stability of the higher-order forms, resulting in a 

markedly reduced functional MBL level and decreased activation of the lectin pathway. Variant 

MBL oligomers bind with lower affinity to the carbohydrate patterns on microbiological 

surfaces; therefore their occurrence results in a reduced functional MBL level. 

The serum functional MBL level in heterozygotes is much lower, and may be extremely low in 

homozygotes compared to subjects carrying the wild type genotype. The polymorphisms of the 

promoter region can also influence the serum MBL level; the highest effect is attributed to the 

X/Y variation11,14-17 . 
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Figure 3 Structural subunits of mannan-bindinglectin (MBL) and ficolins, Source: Beltrame 

MH et al.: The lectin pathway of complement and rheumatic heart disease, Front Pediatr. 2015 

Jan18  

1.4. Mannose binding lectin and mannose binding lectin associated protein 

However, when the different forms of MBL are artificially bound via an antibody to a 

polystyrene surface, MASP2 interacts with variant MBL forms as well, and complement 

activation may be detected, though markedly reduced compared to normal MBL. Thus, reduced 

serum concentration, disruption of MBL-MASP2 interactions in addition to changes in the 

oligomeric structure, and reduced binding to carbohydrate ligands in variant MBL compared 

with normal MBL all probably account for the biological phenotype in MBL-deficient 

individuals. Moreover, besides MBL, differences in MASP2 protein concentration and 

functional variations of the MASP2 gene may also contribute to the variability in the functional 

activity of the complex. For instance, the MASP2 +359G variant was reported to abolish the 

formation of the MBL-MASP2 complex, and heterozygotes were found to present 

approximately half MASP2 concentration in serum19. Therefore, instead of studying the MBL 

level, measuring the MBL-MASP2 complex activity is more informative about the functionality 

of the lectin pathway17,20,21.  

There are additional MBL-associated serine proteases. The MASP1 gene is located on 

chromosome 3q27-8 (Takada et al., 1995) and contains 18 exons. The role of MASP1 in the 

activation of lectin pathway is controversial. The MASP1 protein probably modulates the 

function of the MASP2 protein and the activation of the lectin pathway. Héja et al. confirmed 

in 2015 the crucial role of the MASP1 protein. When they inhibited the MASP1 protein, the 
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activation of MASP2 was thereby decreased, and the activation of C2a – the molecule 

responsible for C3 convertase formation – was damaged.  

Alternative splicing of the pre-mRNA encoding MASP1 results in two other products: MASP3 

and MAp44. Both proteins have also regulator effect on complement cascade activation and the 

terminal pathway function17,21,22. 

1.5. Ficolins and collectins 

The ficolins and collectins, discovered approximately 20 years ago, are other key elements of 

the lectin pathway activation. Ficolin-1 (M-ficolin), Ficolin-2 (L-ficolin), Ficolin-3 (H-ficolin), 

and collectin-11 also recognize the carbohydrate patterns on microbiological surfaces 

(pathogen associated molecular patterns, or PAMP) and form multimolecular complexes: 

mannose-binding lectin-associated serine protease 2 (MASP2)4,22-25. Ficolins consist of 

homogenous subunits. Three monomers assemble to form a trimeric structure held via 

disulphide bonds, and these units oligomerize to larger multimers. The roles and level-

determining factors of ficolins are not clearly identified. Recently, many reports have shown 

that dysfunction or abnormal expressions of ficolins may play crucial roles in infectious and 

inflammatory diseases. Some single nucleotide polymorphisms in ficolin genes were 

discovered and also seem to have a role in the susceptibility to infections26-28. 

1.6. MBL and infections 

Several studies have explored the role of MBL in the susceptibility and severity of infections. 

Neth et. al studied in 2000 the binding of purified MBL to pathogens isolated from 

immunocompromised children. Table 1. below shows their results29. MBL binds with high 

affinity to several microorganisms, which are frequent pathogens in haematological 

departments and are frequent causes of severe sepsis, such as Gram-negatives 

enterobacteriacea, several types of Streptococcus, Staphylococcus aureus, and Candida 

albicans22,29-31. 
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Table 1 MBL affinity to microorganisms (Neth et. al., 2000)29 

High affinity Moderate affinity Variable affinity 

Neisseria meningitidis Group B Streptococcus Escherichia coli 

Staphylococcus aureus Streptococcus pneumoniae Klebsiella species 

Group A Streptococcus Enterococcus species  

Candida albicans Staphylococcus epidermidis  

Aspergillus fumigatus Haemophilus influenzae  

Cryptococcus neoformans Pseudomonas aeruginosa  

An increasing amount of data suggests an important role for MBL level in immunosuppressed 

conditions among adults. In the case of immunosuppression resulting from bone marrow 

inhibition following chemotherapy, it is becoming increasingly accepted that carrying MBL 

polymorphisms may predispose adults to more frequent and severe infections. However, 

contradictory data have been published concerning childhood malignancies under 

immunosuppressed conditions. What role MBL may play is still unclear, despite research 

having been conducted since the late 1990s.32-35 
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2. AIM OF THE THESIS 

2.1 We studied children who were diagnosed with malignant diseases and treated between 

2001 and 2008 at the 2nd Department of Paediatrics of Semmelweis University in Budapest in 

a retrospective study. 

We examined: 

2.1.1. we studied the distribution of MBL level-determining polymorphisms, 

2.1.2. we compared the frequency of MBL2 alleles in children with vs. without 

malignancies, 

2.1.3. we examined the possible role of polymorphisms influencing MBL serum level 

on the incidence, frequency, and duration of febrile neutropenia (FN) in hemato-

oncological patients.  

2.2. We studied children treated between 2009 and 2012 with hemato-oncological diseases 

at the 2nd Department of Paediatrics of Semmelweis University, Budapest and at the 

Department of Haematology of Heim Pál Children’s Hospital, Budapest in a prospective study. 

We examined: 

2.2.1. the role of polymorphisms causing low MBL levels in the frequency of febrile 

neutropenic episodes,  

2.2.2 whether the MBL genotype affects the severity of infections during 

chemotherapy, 

2.2.3.  how the survival rate without infection after the beginning of chemotherapy is 

related to the MBL genotype, 

2.2.4. the relationship between MBL-MASP2 complex activity and MBL genotype, 

2.2.5. the association between polymorphisms resulting in low MBL levels and 

activation of the MBL-MASP2 complex in children suffering from hemato-oncological 

diseases, 

2.2.6. several characteristics of febrile neutropenic episodes occurring within eight 

months of the beginning of therapy. 
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3. MATERIAL AND METHODS 

3.1. Patients 

3.1.1. Retrospective clinical study 

Fifty-four patients (24 girls, 30 boys) diagnosed with malignant diseases and treated between 

2001 and 2008 at the 2nd Department of Paediatrics of Budapest’s Semmelweis University were 

enrolled into our retrospective clinical study. Inclusion criteria were hemato- oncological 

disease and an age of 18 years or younger at the date of diagnosis.  

The diagnoses of enrolled participants were: acute lymphocytic leukaemia (ALL) (N = 30); 

acute myeloid leukaemia (AML) (N = 2); Hodgkin’s disease (N = 7); non-Hodgkin lymphoma 

(NHL) (N = 9), and osteosarcoma (N = 6). Each patient received chemotherapy according to 

protocols ALL (IC) BFM 95/2002, AML BFM 98, COSS 96, Interfant 98, NHL BFM 95 or 

HD 95. Chemotherapy was the only treatment modality used in the study population. 

To assess the frequency of the MBL2 polymorphisms in an age-matched population, 53 children 

with an average age of 6.9 years (range 1–17 years) without malignancies were enrolled as 

controls with the following diagnoses: phimosis; preputial adhesion; hernias (inguinal, 

umbilical and abdominal); pectus excavatum; major labial adhesion; acute appendicitis; acute 

gastroenteritis; celiac disease; carpal ganglion; fractures; verrucas; gland mycosis; varicocele 

or testicular hydrocele. 

3.1.2. Prospective study 

Ninety-seven children treated between 2009 and 2012 with hemato-oncological diseases at the 

2nd Department of Paediatrics of Semmelweis University, Budapest and at the Department of 

Haematology of Heim Pál Children’s Hospital, Budapest were enrolled into our prospective 

clinical study. The inclusion criteria included a newly diagnosed hemato-oncological disease 

and patients under 18 years of age at the time of diagnosis. The diagnoses of participants were 

acute lymphoid leukaemia (ALL) in 76 cases, acute myeloid leukaemia (AML) in 10 cases, and 

non-Hodgkin lymphoma (NHL) in 11 cases. Each patient received myeloablative 

chemotherapy, according to current protocols ALL (IC) BFM 2002/2009, AML BFM 98 and 

NHL BFM 95, respectively. 

Both studies were approved by the National Ethical Committee (TUKEB 180/2007), and 

parents or guardians of all participants gave informed consent.  
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3.2. Study design 

3.2.1. Retrospective study 

Fever episodes that occurred during chemotherapy or shortly after treatment were followed up 

for two years after the diagnosis of patients with hemato-oncologic disorders. Febrile 

neutropenic episode (FN) was defined as an axillary temperature exceeding 38°C and a 

granulocyte count under 0.5G/ l. Several parameters were recorded during each episode, such 

as the date of first and last day of fever, and certain clinical parameters (WBC, Neutrophils and 

CRP) determined at the onset of the episode, at the time of blood culture test, and on the first 

day of normal body temperature. In the case of positive blood culture, the identified microbe, 

its antibiotic resistance, and the treatment (antimicrobial and/or cytokine) were also registered. 

3.2.2. Prospective study 

The children were followed for a period of eight months dating from their diagnosis. The time 

of diagnosis was established by the results of histopathological findings. Patient characteristics, 

such as sex, age, tumour type, stage of disease, time of diagnosis, applied therapy, and mortality 

were collected from patient documentation. Febrile neutropenia (FN) was defined as an axillary 

temperature greater than 38°C and a granulocyte count less than 0.5 G/l. Several parameters of 

each febrile neutropenic episode occurring during the follow‑up period were also recorded, such 

as the date of the first and last day of FN, certain clinical parameters (WBC, neutrophil, CRP), 

antimicrobial treatment, the time of blood culture and, in case of a positive blood culture, the 

identified microbe and antibiotic resistance. 

3.3. Genotyping 

In both studies, EDTA-anticoagulated blood samples were obtained for genomic DNA 

preparation using a salting-out procedure. Genotyping of MBL2 C (rs1800451), D (rs5030737), 

and Y/X (rs7096206) polymorphisms was carried out by real-time PCR with commercially 

available TaqMan® SNP Genotyping Assays (Applied Biosystems, CA, USA), while the B 

allele (rs1800450) was determined by PCR-RFLP . 

3.4. MBL-MASP2 complex activity 

For the measurement of MBL-MASP2 complex activity, native blood serum samples were 

used. Activation of the MBL-MASP2 complex was evaluated by enzyme-linked 

immunosorbent assay (ELISA) from blood serum obtained at the time of diagnosis and during 
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an infection (Figure 4.). This method is based on the C4-cleaving ability of the complex, 

described previously by Presanis et al. (2004)21, with some modifications (Csuka et al. 2010)36.  

 

Figure 4 MBL-MASP2 activation-ELISA 

3.5. Statistical analysis 

Data were evaluated with SPSS 13.0 (SPSS Inc., Chicago IL) and GraphPad Prism 4 (GraphPad 

Software Inc., San Diego, CA) software. Since most variables were non-normally distributed, 

non-parametric tests were applied. The Mann-Whitney U and the Kruskal-Wallis tests were 

used to compare two independent groups, and categorical data were analysed by the Pearson 

and χ2 tests. The survival rate without infection was established by the Kaplan-Meier curve. 

Multiple logistic regression analysis was applied, adjusted to the underlying disease, age, and 

sex of the patient as well as the applied chemotherapy protocol. The difference between MBL-

MSP2 activity at the time of the diagnosis and during an infection was calculated by t-test. All 

tests were two-tailed, and statistical significance for p-values was considered less than 0.05. 

  



18 

 

4. RESULTS 

4.1. Retrospective study 

4.1.1. Patient characteristics 

The average age of the fifty-four enrolled patients (24 girls, 30 boys) at diagnosis was 9.4 years 

(range 3 months-17 years). 

Allele frequencies of the studied SNPs of the MBL2 gene were compared in the groups of 

children with and without hemato-oncologic disorders (Table 2). There were no significant 

differences in the allele frequencies in either the promoter or the exon 1 polymorphisms of this 

gene. 

Table 2 Allele frequencies of MBL2 polymorphisms in children with and without hemato-

oncologic disorders 

Allele 

Children with 

hemato-oncologic 

disorder 

Children without 

hemato-oncologic 

disorder 

Promoter 

region 

Y allele 78.7% 85.8% 

X allele 21.3% 14.2% 

Exon-1 

A allele 79.6% 76.5% 

B allele 11.1% 16% 

C allele 1.9% 1.8% 

D allele 7.4% 5.7% 

4.1.2. Genotype groups 

In our retrospective study, patients were assessed in three groups according to the expected 

serum level of MBL protein encoded by the carried genotype as reported by Garred et al. Group 

1: patients carrying genotypes (YA/YA and YA/XA) encoding normal MBL level; group 2: 

patients with genotypes associated with low protein levels (XA/XA and YA/0); and group 3: 

MBL-deficient (XA/0 and 0/0) subjects15,37. 
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As the incidence of infections and their treatment is different in distinct childhood malignancies, 

the ratio of different diseases was evaluated in the three groups of patients according to the 

carried MBL2 genotype (Table 3). The difference among all groups was not significant (p = 

0.85). 

Table 3 Frequencies of different diseases in the three groups of patients formed according to 

the carried MBL2 genotype 

 

Genotypes  

associated with 

normal MBL level 

(YA/YA and YA/XA) 

Genotypes 

associated with 

low MBL level 

(XA/XA and YA/0) 

Genotypes 

associated with 

MBL deficiency 

(XA/0 and 0/0) 

ALL 
16 

51.6% 

10 

59% 

4 

66.6% 

AML 
2 

6.5% 

0 

0% 

0 

0% 

Osteosarcoma 
4 

12.9% 

2 

12% 

0 

0% 

Hodgkin’s disease 
4 

12.9% 

2 

12% 

1 

16.7% 

NHL 
5 

16.1% 

3 

17% 

1 

16.7% 

Sum 
31 

100% 

17 

100% 

6 

100% 

4.1.3. Febrile neutropenic episodes characteristic 

The analysis of the features of febrile neutropenia during the first two years following diagnosis 

in three genotype groups (Table 4) has revealed a shorter time interval between diagnosis and 

the first episode in individuals with low MBL level (Group 2) and in MBL-deficient patients 

(Group 3) than in subjects with genotypes encoding normal MBL level (Group 1). However, 

this difference was not significant (p = 0.196)  

There was a trend (p = 0.052) that patients with a lower expected MBL level based on the MBL2 

genotype have a longer average duration of FN, indicating an inverse relationship between 

MBL level and duration of FN. Individuals with genotypes associated with lower MBL levels 
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had slightly higher ratio of febrile days during chemotherapy in the first two years following 

diagnosis, but this difference was not significant (p = 0.690). The frequency of FN episodes 

was similar among the genotype groups (median 1–1.25 FN/year). 

In the following analyses, patients carrying the variant allele of exon 1 polymorphism (A/0, 

0/0) and those homozygous for the promoter allele associated with lower MBL expression level 

(XA/XA) were merged (groups 2 and 3 in Tables 3 and 4). The average duration of fever 

episodes was significantly shorter (p = 0.035) in those carrying the AA genotype and maximum 

one X allele (YA/YA and YA/XA) than in patients with genotypes associated with lower 

functional MBL level (group 2 and 3). The median (IQ range) of average fever episode length 

was 3.7 days (0–5.4) in group 1 and 5.0 days (3.8–6.6) in the merged group of 2 and 3.  

Next, we performed a multiple logistic regression analysis in order to assess the strength of the 

association between MBL2 genotype groups and the average duration of FN (dichotomized at 

the median: ≤4 days vs. >4 days). The carrier state of genotypes associated with low or deficient 

functional MBL level was found to be a significant risk factor for longer average duration (>4 

days) of fever episodes after adjustment for the diagnosis (OR (95 % confidence interval), 1.84 

(1.04– 3.25), p = 0.037) or the applied chemotherapy protocol (OR: 1.86 (1.05–3.28), p = 0.033) 

or the duration of chemotherapy (days) (OR: 3.34 (1.06–10.56), p = 0.040) as possible 

confounding variables. 

Table 4 Data on fever episodes experienced by patients in the first 2 years after diagnosis in 

the three MBL2 genotype groups 

 N 

Duration between 

diagnosis and the first 

fever episode (days) 

(median (IQ range)) 

Average length of 

fever episodes (days) 

(median (IQ range)) 

Ratio of days with 

fever during 

chemotherapy 

(median (IQ range)) 

YA/YA, 

YA/XA 

 

31 53 (12-730) 3.7 (0-5.4) 2.9 (0-6.7) 

XA/XA,  

YA/0 

 

17 38 (22.5-161) 4.5 (3.4-6.2) 3.2 (1.7-5.9) 

XA/0, 

0/0 

 

6 23.5 (3.2-85.8) 5.3 (4.5-8.7) 3.5 (1.9-6.1) 
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4.2. Prospective study 

4.2.1. Patients: 

We evaluated 97 patients, of which 54 were boys and 37 were girls, and the mean age was 8.03 

± 4.43 years at the time of diagnosis. The patients were followed for 8 months after the 

beginning of therapy. During the study period 12 patients died, and 6 of them died during the 

follow-up period, thus in the end, data from 91 patients were analysed. 

4.2.2. Genotype groups 

By genotyping the enrolled patients, the following minor allele frequencies were found: 13.3, 

1.6, 8.8, and 17.0 for the MBL2 B, C, D, and X alleles, respectively. Genotype distribution 

aligned with the Hardy–Weinberg equilibrium, and allele frequencies corresponded to the 

frequencies described in the Caucasian population (Table 5).  

Table 5 Allele and genotype frequency in the studied group 

Allele 
Number of 

the alleles 

Frequency 

of the 

alleles 

Caucasian 

population 

* 

Genotype 

Number 

of the 

genotype 

Genotype 

frequency 

A allele 139 76.4% 76.3% YA/YA 34 37.4% 

B allele 24 13.2% 15.0% YA/XA 14 15.4% 

C allele 3 1.6% 1.6% XA/XA 2 2.2% 

D allele 16 8.8% 7.1% A/0 39 42.8% 

Y allele 151 82.3% 78.3 % 0/0 2 2.2% 

X allele 31 17.7% 21.7 % 
Hardy-Weinberg equilibrium: 

p <0.05 

Patients were divided into two groups based on genotype classification established in previous 

studies by Frakking et al38. The first group included patients with low expected MBL level 

coding genotypes (YA/0, XA/0, 0/0, XA/XA), while the other group consisted of patients with 

normal expected MBL level coding genotypes (YA/YA, YA/XA). First, we studied whether 

certain diseases occur with the same frequency in both genotype groups. No significant 
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difference was found (p=0.31), so the involvement of patients with different diseases is unlikely 

to have distorted the results of the study (Table 6).  

Table 6 Frequencies of different diseases in the three groups of patients formed according to 

the carried MBL2 genotype 

Diagnosis of the 

patients 

Patients with 

normal expected 

MBL serum level  

Patients with low 

expected MBL 

serum level  P value 

YA/YA, YA/XA XA/XA, A/0, 0/0 

ALL 42 31 

p= 0.31 

AML 3 5 

NHL 3 7 

 48 43 

4.2.3. Febrile neutropenic episodes characteristic 

We then analysed the correlation between the characteristics of febrile neutropenic episodes 

occurring during the follow-up period and the MBL2 genotype groups (Table 7.). FN episode 

was defined as an axillary temperature greater than 38°C and a granulocyte count less than 0.5 

G/l. The total number of febrile neutropenic episodes was significantly higher (p=0.0016) and 

the total length of febrile neutropenic days was significantly longer (p=0.0112) in the group 

with genotypes encoding lower MBL level than in patients with genotypes encoding normal 

MBL level. In line with these findings, there was a trend observed in individuals with genotypes 

associated with lower MBL level having longer average duration of febrile neutropenic 

episodes, but this difference was not significant. Time intervals between the diagnosis and the 

first febrile neutropenic episode was found to be shorter in patients with lower expected MBL 

level (p=0.0018).  
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Table 7 Characteristics of fever episodes experienced by patients in the first 8 months after 

diagnosis in the two MBL2 genotype groups 

Characteristics of FN, 

median (IQ range) 

MBL2 genotype groups 

P value 

(Mann-Whitney 

test) 

Patients with normal 

expected MBL serum 

level (YA/YA, YA/XA) 

n=48 

Patients with low 

expected MBL serum 

level (XA/XA, A/0, 0/0) 

n=43 

The total number of 

febrile episodes 
1.0 (0.25 - 3.0) 3.0 (1.0- 4.0) 0.0016 

The average length of 

febrile episodes (days) 
5.0 (0.25-7.0) 6.0 (3.0-8.0) 0.1532 

The total length of 

febrile episodes (days) 
8.5 (0.25-15.3) 14.0 (5.0-31.0) 0.0112 

The number of days 

until the first FN 
73.5 (30.25-241.0) 23.0 (13.0-74.0) 0.0018 

4.2.4. Survival analysis 

We assessed the likelihood of patients contracting infections during the follow-up period. We 

studied the length of the period until the first febrile neutropenia, i.e. the period without 

infection, in the two genotype groups. According to the Kaplan-Meier survival analysis, 

patients carrying genotypes coding 

normal MBL level have a higher chance 

for a longer period without febrile 

neutropenia (Log-rank test p = 0.0029) 

(Figure 5).  

Figure 5 Survival analysis: Kaplan-

Meier survival analysis. FN-free survival 

of patients with high (green line) or low 

(blue line) MBL level coding genotypes 

during the first 8 months from the 

beginning of chemotherapy  
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We also examined the cofactors influencing infections with a multivariate Cox logistic 

regression model adjusted for the diagnosis, age, or applied chemotherapy. A-genotype 

carrying variant alleles could be a risk factor for infections in the first eight months with a 

hazard ratio of 1.649 (95% CI 1.014-2.681) (p=0.044). These patients are one and a half times 

more likely to contract an infection with febrile neutropenia than patients with a normal MBL 

level. 

4.2.5. Clinical parameters during the febrile neutropenic episodes  

Certain clinical parameters (WBC, neutrophil, CRP) were monitored in the patients for each 

infectious episode during the follow-up period. As these measurements were performed several 

times during an episode, we chose to record for each FN episode: 

- the number of days with an axillary temperature greater than 38°C,  

- the number of days with granulocyte count less than 0.5 G/l,  

- the lowest WBC count, 

- the lowest neutrophil count,  

- the highest CRP level, 

- blood culture tests results. 

As expected, patients had leukopenia in almost all FN episodes: WBC was lower than 

3x109cells/l in 195 episodes, and higher than 7 x109cells/l in the remaining 4 episodes. When 

the FN episodes were categorized according to the lowest WBC levels, the numbers were found 

to be similar in the four groups (Table 8). 

The number of episodes with a neutrophil count lower than 0.1 G/l differed significantly 

between the genotype groups, however, data are not available on the length of the <0.1 G/l 

neutropenic periods. 

For CRP, we chose the 8 mg/dl value as a cut-off point based on the study of Nath et al. (PMID: 

28504925) As expected, CRP was higher than this value in a great portion of all FN episodes 

(170/199, 85%) and no difference was found between the genotype groups in the number of FN 

episodes with a CRP value below the cut-off point (Table 9). 
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Table 8 WBC level during the FN episodes 

Lowest WBC in 

the FN episode 

(x109cells/l) 

FN episodes (n=77) of 48 patients 

with normal expected MBL 

serum level (YA/YA, YA/XA)  

FN episodes (n=122) of 43 

patients with low expected MBL 

serum level (XA/XA, A/0, 0/0) 

WBC <1 67 87.01% 102 83.61% 

1≤ WBC <2 8 10.39% 11 9.02% 

2≤ WBC <3 1 1.30% 6 4.92% 

3≤ WBC 1 1.30% 3 2.46% 

Table 9 CRP level and neutrophil count in the two genotype groups 

 

MBL2 genotype groups 

P value 

(Mann-Whitney 

test) 

Patients with normal 

expected MBL serum 

level (YA/YA, YA/XA) 

n=48 

Patients with low 

expected MBL serum 

level (XA/XA, A/0, 0/0) 

n=43 

The number of FN 

episodes with a lowest 

neutrophil count less 

than 0.1 G/l  

1.0 (0.0 - 2.0) 2.0 (1.0- 4.0) 0.007 

The number of FN 

episodes where the 

highest CRP level is 

lower than 8 mg/dl 

0.0 (0.0 - 0.0) 0.0 (0.0 - 1.0) 0.159 

Altogether, 20.1% (40/199) of blood culture tests were positive for various pathogens (13 

Coagulase-negative Staphylococcus, 6 Streptococcus spp, 5 Micrococcus spp, 2 

Staphylococcus aureus, 2 Pseudomonas aeruginosa, 2 Klebsiella pneumoniae, 1 E. coli, 1 

Corynebacterium spp, 1 ESBL-producing bacterium, and 7 patients with multiple pathogens). 

We compared the microbes identified in the normal MBL group to those detected in the low 

expected MBL group, but no considerable difference was detected. 
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4.2.6. MBL-MASP2 complex activation 

We analysed the correlation between the MBL-MASP2 complex activation and the MBL2 

genotype. From the pre-chemotherapy samples available from 64 patients we obtained the 

expected result that the MBL2 polymorphisms considerably determine the MBL-MASP2 

complex activation. In patients with the lower MBL level coding genotype, the activation level 

of the MBL-MASP2 complex is significantly lower (p <0.00001) (Figure 6).  

 

Figure 6 MASP2 complex activation at the time of diagnosis. Activation level of the MBL-

MASP2 complex in patients with high (triangles) or low (squares) MBL level coding genotypes 

measured in samples collected at time of diagnosis. Solid lines represent medians and 

interquartile ranges. MBL-MASP2 indicates mannose-binding lectin-associated serine 

protease 2. 

Both a pre-chemotherapy sample and a sample obtained during a febrile neutropenic episode 

were available for 42 patients, enabling us to study the changes in MBL-MASP2 activation 

during a febrile neutropenic episode (Table 10). The activation decreased significantly during 

infections in patients with low MBL level coding genotypes. In this group, 81% of patients 

displayed reduced or unaltered MBL-MASP2 activation, while in the normal MBL level coding 

group this ratio was 60%. 
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Table 10 MBL-MASP2 complex activation at diagnosis and during a febrile neutropenic 

episode 

 

MBL-MASP2 activation (%), median (IQ range) 

Patients with normal 

expected MBL serum level 

(YA/YA, YA/XA) 

n=20 

Patients with low expected MBL 

serum level 

(XA/XA, A/0, 0/0) 

n=22 

Time of diagnosis 82.9 (70.1-98.8) 59.7 (16.7-72.1) 

During FN 85.7 (54.1-98.7) 42.1 (0-64.7) 

paired t-test 

p = 0.123 

(60% reduced or unchanged) 

p = 0.006 

(81% reduced or unchanged) 
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5. DISCUSSION 

An increasing amount of data suggests an important role for MBL level in immunosuppressed 

conditions among adults, however contradictory data have been published concerning 

childhood malignancies.  

In 2007 we began a retrospective study on the role of MBL SNPs in infections following 

chemotherapy in a study of paediatric oncological patients. Our study evaluated the influence 

of MBL2 gene polymorphisms on the incidence, frequency, and duration of febrile neutropenia 

in hemato-oncological patients. Our results showed that genotypes encoding high MBL level 

are associated with shorter-duration fever episodes in the first two years after the diagnosis of 

malignancy. Frequency of variant alleles of Y/X and A/0 polymorphisms in our patients was 

21.3 and 20.4 – similar to that found in the general population. A previous paper reported that 

MBL2 variant alleles occur significantly more frequently in children with ALL compared to 

healthy individuals, however only adults comprised the control group39. In our study, oncologic 

paediatric patients were compared with non-oncologic age-matched controls, and no difference 

was found in the allele distribution. 

Analysing the characteristics of fever episodes in the first two years after the diagnosis of 

malignancy, we have found that patients carrying high MBL level coding genotypes (YA/YA 

and YA/XA) had shorter average duration of febrile neutropenia than individuals with 

genotypes coding for lower MBL serum levels (XA/XA, XA/0, YA/0 and 0/0). Differences 

were also found in time interval between the diagnosis and the first fever episode and the ratio 

of days with fever during chemotherapy among patients grouped by MBL2 genotypes, but none 

of these were significant. Therefore, we continued our study and designed a prospective 

examination. 

The prospective study explored the relationship between the presence of MBL2 gene 

polymorphisms, the level of the MBL-MASP2 complex activation, and the increased risk of 

infection with febrile neutropenia in children suffering from hemato-oncological disease. We 

analysed the correlation between the incidence, frequency, and duration of febrile neutropenic 

episodes, and the expected MBL level based on MBL2 gene polymorphisms and MBL-MASP2 

complex activation. 

We found a correlation between the presence of MBL2 polymorphisms and the incidence of 

infections in children suffering from hemato-oncological diseases. The total number of febrile 
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neutropenic episodes during the first eight months after the beginning of chemotherapy was 

significantly higher in the group with genotypes encoding lower MBL level. In line with this 

finding, the total number of febrile neutropenic days was higher during the follow-up period. 

The average length of the febrile neutropenic episodes was not significantly different in the two 

groups, showing that the severity of infections is not influenced considerably by MBL level, 

presumably because of the intensive medication applied. The chance of a longer period without 

infection is more likely in patients with normal MBL level. In these patients the chance of 

suffering from an infection during the follow-up period is lower or, if they contract an infection, 

it typically occurs later. We considered the age and the applied chemotherapy through a Cox 

regression analysis, which supported the positive and predictive effect of the MBL2 genotype 

on the infections. 

In the literature, several studies discuss the role of MBL in diseases co-occurring with an 

immunosuppressive state, especially in patients with chemotherapy-induced neutropenia. 

Although research has been ongoing since the 1990s, the obtained results are contradictory. We 

have found 10 articles since 1999 which sought answers to the above questions. Five of these 

studies feature discussions which assume the effect of MBL on infection incidence and 

severity38,40-43, while six research papers contradicted this assumption and dismissed the role of 

MBL44-48. In one case the result was surprising: Schlapbach et al. found a controversial 

correlation between MBL level and infection42. 

Table 11 summarizes the characteristics of the ten studies, analysing the points at which a 

significant differences can be observed.  

The possible reasons of these contradictory results are as follows: 

a. Study characteristics 

Three of these studies examined the role of MBL in a retrospective study; seven studies were 

prospective. The disadvantage of the retrospective studies is that the patients who were dying 

during the study period were not included in the studies. 

We assume that the variant allele carrying genotype predisposes to severe infections. The 

mortality among children receiving chemotherapy is higher partly due to severe infection. 

Consequently, certain patients with severe infections could have been excluded from the study. 



30 

 

Therefore, this method may distort the results. Rubnitz et al., Zehnder et al. didn’t find a 

correlation between the low MBL coding genotype and the infectious complications. In one 

case, the results were surprising: Schlapbach et al. found increased risk for infection in patients 

with serum MBL level 100-999 µg/l compared with patients with very low (<100 µg/l) or high 

(>1000 µg/l) serum MBL level. 

Therefore we planned our second study as a prospective, cohort study. The prospective cohort 

study is suitable for assessing the consequences of various biological, mostly pathological 

processes. 

Table 11 List and type of publications studying the role of MBL in children suffering from 

hemato-oncologic disease 

Publication 
Type of 

study 

Number 

of 

examined 

patients 

Diagnoses of 

the examined 

patients 

Poly-

morphisms 

Classification of MBL 

level  

Lehrnbecher 

et al. 199945 

Prospective 

cohort study 
n=56 

ALL,AML, 

lymphoma, solid 

tumour 

no data no data 

Neth et al. 

200141 

Prospective 

cohort study 
n=100 

ALL, AML, 

NHL, MDS, 

neuroblastoma 

-B, C, D, 

-Y/X, 

-P/Q 

low (<1000 µg/l) 

normal (>1000 µg/l) 

Lausen et al. 

200546 

Prospective 

cohort study 
n=137 non-B ALL 

-B, C, D, 

-Y/X 
not studied 

Frakking et 

al. 200648 

Prospective 

cohort study 
n=110 

 

Hematologic 

disease 

lymphoma, solid 

tumour 

-B, C, D, 

-Y/X, 

-P/Q 

-H/L 

low (<1000 µl) 

normal (>1000 µl) 

Schlapbach 

et al. 200742 

Retrospective 

cohort study 
n=94 

ALL, AML, 

lymphoma, solid 

tumour 

not studied 

normal (>1000 µg/l) 

low (100-999 µg/l) 

extremely low (<100µg/l) 

Rubnitz et 

al. 200744 

Retrospective 

cohort study 
n=91 ALL, AML not studied 

low (<500 µg/l) 

normal (>500 µg/l) 

Zehnder et 

al. 200947 

Retrospective 

cohort study 
n=372 

ALL, AML, 

lymphoma, solid 

tumour 

not studied MBL, MASP2 level measure 

Frakking et 

al. 201138 

Prospective 

cohort study 
n=220 

ALL, AML, 

lymphoma, solid 

tumour 

-B, C, D, 

-Y/X, 

-P/Q 

-H/L 

low (<200 µg/l) 

normal (>200 µg/l) 

Ghazi et al. 

201243 

Prospective 

cohort study 
n=75 ALL not studied 

low (<1000 µl) 

normal (>1000 µl) 

Dommett et 

al. 201340 

Prospective 

cohort study 
n=220 

ALL, AML, 

lymphoma, solid 

tumour 

-B, C, D, 

-Y/X, 

-P/Q 

-H/L 

normal (>1000 µg/l) 

low (100-999 µg/l) 

extremely low (<100µg/l) 
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b. Patients’ characteristics  

The number and the diagnoses of the enrolled patients were highly varied. Lehrnbecher and 

colleagues examined 56 patients, while Zehnder et al. enrolled 372 children in their study.  

The diagnoses of the examined patients were different in each study. For example, Lausen et 

al. solely enrolled children suffering from B-cell acute lymphoblastic leukaemia; the other 

studies enrolled children suffering from lymphoma, leukaemia, and solid tumours. The type of 

solid tumours could be Wilms tumour, Ewing sarcoma, retinoblastoma, and all tumours which 

occur in childhood, as found in previous studies.  

We enrolled in our studies patients with different hemato-oncological diseases. The different 

chemotherapy protocols likely have varying effects on bone marrow damage and the degree of 

immunosuppression, but the low incidence of hemato-oncological disease does not allow the 

statistical analysis of one patient group. We studied whether certain diseases occur with the 

same frequency in both genotype groups. No significant difference was found, therefore the 

involvement of patients with different diseases probably did not distort the results of the study. 

c. MBL deficiency 

The definition of MBL deficiency was different in each study. In some studies, MBL deficiency 

was defined as low serum MBL concentration measured by the ELISA technique; in other 

studies the serum functional deficiency was defined based on the low MBL level coding 

genotype. 

However, in experimental studies it was found that the opsophagocytosis was damaged below 

500 µg/l. Ghazi et el. defined the low level of MBL concentration at below 1000 µg/l. 

Schlapbach et al. created three groups in which the ranges of MBL level were >1000 µg/l, 1000 

µg/l-100 µg/l, and <100 µg/l. 

The definition of MBL2 gene polymorphisms was also different. In some studies the SNP in 

the structure gene was examined; in other studies the promoter region was included. Finally, 

the created genotype groups were also very heterogeneous.  

In our study, we aimed to examine a wide range of MBL polymorphisms. We determined the 

MBL2 gene B allele (rs1800450) C (rs1800451), D (rs5030737) and Y/X (rs7096206) 

polymorphisms by the real-time PCR technique. Further, instead of studying simply the MBL 

level, we found the measure of the MBL-MASP2 complex activity to be more informative about 



32 

 

the functionality of the lectin pathway. This technique is a sensitive specific method, which 

gives information exclusively about the MBL-MASP2 complex activity and eliminates all other 

influencing factors.  

Although inherited MASP2 deficiency occurs very rarely, the protein concentration can show 

variability, and therefore should not be ignored. As expected, genotype of the MBL2 

polymorphisms considerably influenced the complex activity: in patients carrying a variant 

allele, the MBL-MASP2 activation was significantly lower. Moreover, we found a correlation 

between the decrease in complex activation during febrile neutropenia and the genotype groups. 

A possible reason for the decrease of the MBL-MASP2 complex activation during an infection 

could be the consumption of these molecules. The MBL marks pathogens as an opsonin, leading 

to the chemically modified molecules having stronger interactions to cell surface receptors on 

phagocytes and thus enhancing phagocytosis. The explanation of the difference between the 

two genotype groups could be that in patients with normal genotype the consumption is less 

significant or the expression of the protein is more inducible. Therefore when the protein level 

decreases, the production could compensate the consumption. 

d. Outcome 

The studies analysed the infectious outcomes in different ways. Some of these examined the 

frequency and severity of infections and the length of the febrile neutropenic episodes. Others 

analysed the occurrence of sepsis, bacteraemia, or invasive fungal diseases; admission to an 

intensive care unit; survival rate; or survival time. These different aspects raise the 

heterogeneity of the studies (Table 12). 

In our study, we describe the infectious episodes with several parameters, such as the number 

of infectious episodes, the total and average numbers of the febrile neutropenic days, and the 

number of the days until the first neutropenic episode. We also attempted to determine the 

chances of children with different genotypes developing an infectious episode in the first eight 

months of chemotherapy. Further, certain clinical parameters (WBC, neutrophil, CRP) were 

monitored in the patients for each infectious episode during the follow-up period. 
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Table 12 Results of publications studying the role of MBL in children suffering from hemato-

oncologic disease 

Publication Outcome 
FN 

characteristics 
Groups Result 

Lehnbecher 

et al. 199945 

-FN 

-Bacteraemia 

-Fungemia 

-Virus infection 

axillary T >38,5°C 

or >38,0°C two 

times<4 h 

neu <1000/µl 

no data no correlation 

Neth et al. 

200141 

-FN number/length 

-Bacteraemia 

-Fungal infection 

axillary T >38,5°C 

or >38,0°C two 

times <12h 

neu <1000/µl 

AA vs. A0+00 
low MBL: more and 

longer FN   

Lausen et 

al. 200546 

-Infection 

-Pneumonia 

-Bacteraemia 

-Fungemia 

T> 38,5°C 

neu <500/µl 

MBL level: 

high (YA/YA,YA/XA) 

intermediate (YA/0, 

XA/XA)  

low (XA/0, 0/0) 

no correlation 

Frakking et 

al. 200648 

-FN number 

-Bacteraemia 

-Sepsis 

-Admission to ICU 

ear T> 38,5°C 

neu <500/µl 

severe neu <100/µl 

MBL level: 

high (YA/YA,YA/XA) 

intermediate (YA/0, 

XA/XA) 

low (XA/0, 0/0) 

no correlation 

Schlapbach 

et al. 200746 

-FN 

-Bacteraemia 

-severe bact. inf. 

-virus infection 

axillary T> 38,5°C 

> 2h or once >39°C 

neu <500 µl 

normal (>1000 µg/l) 

low (100-999 µg/l) 

extremely low 

(<100µg/l) 

normal and extremely 

low MBL level higher 

risk to FN 

Rubnitz et 

al. 200744 

-FN 

-Bacterial infection 

-Fungal infection 

no data 
low (<500 µg/l)  

normal (>500 µg/l) 
no correlation 

Zehnder et 

al. 200947 

-time to the first FN 

-survival time 
no data no data no correlation 

Frakking et 

al. 201138 

-time to the first FN 

-survival time  

-sepsis, MOF 

no data 

MBL level 

high (YA/YA,YA/XA) 

intermediate (YA/0, 

XA/XA) 

low (XA/0, 0/0) 

low MBL: time to the 

firs FN shorter; 

sepsis, MOF, death: 

higher risk 

 

Ghazi et al. 

201243 

-FN number/ 

severity 

ear T> 38,5°C 

neu <500 µl 

severe neu <100 µl 

low(<1000 µl) 

normal(>1000 µl) 

low MBL: severe 

infection, more major 

infection 

 

Dommett et 

al. 201340 

-FN number/length 

-Bacteraemia 

-Fungal infection 

T>38°C, 4h 

T> 38,5°C, 2 two 

times 

neu <1000/µl 

AA vs. A0+00 

low MBL causing 

genotype group: 

severe infection, more 

major infection 

e. Definition of febrile neutropenic episodes 

Most of the studies examined the occurrence of infectious complication and characteristic 

parameters. Each study used a different definition of the febrile neutropenic episodes in terms 

of fever temperature and the length of the episodes. 

Lausen et al. took into account when the body temperature exceeded 38.5°C. Neth et al. gave a 

much more precise definition. They defined febrile neutropenic episode less strictly, when the 
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axillary body temperature was more than 38.5°C measured at least once, or more than 38.0°C 

measured at least twice within 12 hours. 

The neutropenia definition was also variable, with the neutrophil count in the blood lower than 

either 500/µl or 1000/µl.  

Frakking et al. also published a comprehensive review in 2011 which attempted to clarify the 

reason behind these conflicting findings49. They systematically searched for articles in the main 

databases (Embase, Medline, Cochrane Central Register) between 1966 and April 2010 which 

discuss the role of MBL in paediatric oncologic patients. The reviewers extracted from the 

articles the design and characteristics of studies, study group, tumour type, method of MBL 

analysis, definition of MBL deficiency, definition of outcome, methods used to detect infection, 

follow-up, and risk factor analysis. They concluded that the contradictory results of the 

examined studies might be explained by several clinical and methodological inconsistencies. 

Another possible reason may be that none of these studies examined the question as a 

multivariate risk analysis. In the immune response of younger children, innate immunity 

outweighs adaptive immunity; as a result, the role of MBL is re-evaluated depending on age. 

The tumour type and intensity of chemotherapy could also be risk factors as the administration 

of certain chemotherapeutic drugs appears to be directly related to functional complement 

defects. The results of this systematic review showed that the MBL is probably not an 

independent risk factor for susceptibility to or severity of infection in paediatric oncologic 

patients. However, these results are refutable; therefore a clinically relevant study with a unified 

definition would be necessary to explain the role of MBL allowing for other risk factors. 

Increasing evidence suggests that besides MBL, variability of other constituents of the 

complement pathways or their combinations may also influence the occurrence of infections in 

immunocompromised patients. For instance, deficiency of MASP2, ficolin-3, as well as single 

or combined deficiencies of MBL2 and ficolin-2 were reported to be associated with an 

increased risk of infections and prolonged duration of febrile neutropenic episodes in leukemic 

children20,28,50. 

5.1. MBL substitution therapy  

Despite the contradictory results reported concerning the role of MBL, the efficiency and safety 

clinical trials of substitution therapy have begun in parallel with genetic testing. Currently two 

types of MBL preparations are in clinical phase trials: plasma delivered and human recombinant 
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MBL. The phase I clinical trial, analysing safety and pharmacokinetics, found neither clinical 

nor laboratory changes. The biological activity, safety, and stability were similar in the two 

different preparations51-55. 

In 2014, Keizer et al. published an overview of literature about MBL replacement studies, and 

the possibilities of MBL substitution therapy56. He found five clinical studies: two of these were 

case reports, the rest were phase I/II pdMBL clinical studies. The early studies verified the 

safety and efficacy of pdMBL infusions in MBL-deficient individuals. The activated MASPs 

could form a complex with C1-inh leading to ineffective lectin pathway activation. The 

recombinant MBL is produced by the Escherichia coli or other insect cells, but the oligomer 

does not form the specific higher oligomers resulting a suboptimal restoration of LP functional 

activity. 

Limited information is available regarding the safety and efficacy of rMBL. In 2006, Petersen 

et al. examined MBL-deficient healthy adult males in a placebo-controlled double-blind study. 

After the substitution therapy the MBL levels were in the therapeutic range, and there were no 

adverse events during or after the therapy57.  

Brouwer et al. examined the effect of MBL therapy in vitro and found an increase in 

complement activation and opsonophagocytosis after plasma-delivered MBL substitution 

therapy. However, the opsonophagocytosis recovery was suboptimal, and the function 

increased after repeated MBL infusions. 58 

Therefore the results are promising, yet a phase II/III randomized, placebo-controlled, double-

blind clinical trial is still necessary to determine the clinical efficacy of MBL therapy. 

5.2. Summary  

In summary, our results support the importance of the MBL molecule in infectious 

complications of paediatric hemato-oncological patients, but further analysis would be 

necessary to confirm these results and to study other molecules of complement pathways that 

may influence the development of infections and could explain previous contradictory results. 

Careful evaluation of all available data is of utmost importance in analysing the role of 

complement factors in immunosuppressed patients, as inter-individual differences, which may 

influence infection risk, are not limited to single gene variations but rather to a combination of 

genetically determined predispositions that can also be affected by acquired defects caused by 
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the applied chemotherapeutic drugs. Some of the possible important molecules are the ficolins 

and collectins, as well as other heretofore unknown and undiscovered molecules.  

The aim of these studies is to create an individual, personalized therapy based on genetic 

predisposition. Our study could help to define those patients who have susceptibility and risk 

for infection during chemotherapy. And the long-term benefit would be to determine those 

patients who may benefit from prophylactic MBL therapy or from infection prophylaxis by 

antibiotics that could be applied simultaneously with myeloablative chemotherapy to prevent 

infections. Further studies are necessary to examine the complement molecules and find new 

influencing factors, and to finally analyse this complicated and very complex system.   
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Abstract Despite significant changes in pediatric oncological
therapy, mortality is still high, mainly due to infections. Com-
plement system as an ancient immune defense against micro-
organisms plays a significant role in surmounting infections,
therefore, deficiency of its components may have particular
importance in malignancies. The present paper assesses the
effect of promoter (X/Y) and exon 1 (A/0) polymorphisms
of the MBL2 gene altering mannose binding lectin (MBL)
serum level in pediatric oncological patients with febrile neu-
tropenia. Furthermore, frequency distribution ofMBL2 alleles
in children with malignancies and age-matched controls was
analysed. Fifty-four oncohematological patients and 53 chil-
dren who had undergone pediatric surgery were enrolled into
this retrospective study. No significant differences were found
in the frequency of MBL2 alleles between the hemato-
oncologic and control group. The average duration of fever
episodes was significantly shorter (p = 0.035) in patients car-
rying genotypes (AY/AY and AY/AX) that encode normal
MBL level, compared to individuals with genotypes associat-
ed with lower functional MBL level (AX/AX, AY/0, AX/0, or

0/0) (days, median (IQ range) 3.7(0–5.4) vs. 5.0(3.8–6.6),
respectively). In conclusion, our data suggest that MBL2
genotypes may influence the course of febrile neutropenia in
pediatric patients with malignancies, and may contribute to
clarification of the importance of MBL in infections.

Keywords MBL . Polymorphism . Febrile neutropenia .

Oncohematology

Introduction

Modern treatment of childhoodmalignancies have beenmark-
edly changed leading to a higher life expectancy; the overall 5-
year survival rate is 70–80 %. Nonetheless, the mortality is
still significant, as the chemotherapy-induced immunosup-
pression increases susceptibility to infections, which contrib-
utes to about 10–20 % of mortality in pediatric oncology.

As a sequel of treatment, pediatric oncology patients may
often become neutropenic, leukopenic or pancytopenic that em-
phasizes the importance of innate immune defense against mi-
crobes. The complement system, activated through the classi-
cal, alternative or lectin pathways, is an essential component of
the ancient immune response to infections caused by a wide
variety of pathogens. The lectin pathway can be initiated by a
circulating protein called mannose binding lectin (MBL) that
binds to carbohydrates found on the surface of many pathogens
[1, 2]. MBL binds with high affinity to microbes often detected
in hematology departments and can cause severe sepsis, such as
diverse Candida species, group A Streptococci or Staphylococ-
cus aureus with specific antibiotic resistance (MRSA) [3].

The MBL protein is encoded by the MBL2 gene (10q11.2-
q21) comprising 4 exons. The promoter region of the gene
contains a single nucleotide polymorphism (SNP) at position
−221 denoted as Y/X in the literature. The most widely studied
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variations of the gene are three polymorphisms in the first exon
causing aminoacid substitutions in the protein. The wild type
allele without any polymorphic variant is named A, while the
alleles with amino acid changes at codon 54 (Gly54Asp), 57
(Gly57Glu) or 52 (Arg52Cys) are termed as B, C or D, respec-
tively and any of these variants on a chromosome is referred to
as a “0 allele”. Serum concentration of functional mannose
binding protein shows close correlation with the genotype of
MBL2 polymorphisms. Thewild typeA allele is associated with
normal plasma level, while all variant alleles (B, C andD) have
a dominant effect lowering the level of functional MBL. Poly-
morphism of the promoter region also influences the circulating
MBL level in particular the variant allele (X) is associated with
lower MBL expression [4, 5].

A growing body of evidence suggests that functional MBL
deficiency may be associated with an increased risk of infections
especially in malignancies; however, contradictory results have
also been reported [6, 7]. Present paper deals with the possible
role of polymorphisms influencing MBL serum level on the
incidence, frequency and duration of febrile neutropenia (FN)
in oncohematological patients. Moreover, frequency of MBL2
alleles was compared in children with vs. without malignancies.

Materials and Methods

Fifty-four patients (24 girls, 30 boys) diagnosed with malig-
nant diseases and treated between 2001 and 2008 at the 2nd
Department of Pediatrics of the Budapest Semmelweis Uni-
versity were enrolled into our retrospective clinical study. In-
clusion criteria were oncohematological disease and age of
18 years or younger at the date of diagnosis. The average
age at diagnosis was 9.4 years (range 3 months-17 years).
The diagnoses of enrolled participants were: acute lymphocyt-
ic leukemia (ALL) (N = 30); acute myelocytic leukemia
(AML) (N = 2); Hodgkin’s disease (N = 7); non-Hodgkin
lymphoma (NHL) (N = 9), and osteosarcoma (N = 6). Each
patient received chemotherapy according to protocols ALL
(IC) BFM 95/2002, AML BFM 98, COSS 96, Interfant 98,
NHL BFM 95 or HD 95 and chemotherapy was the only
treatment modality used in the study population.

To assess the frequency of theMBL2 polymorphisms in an
age-matched population, 53 children of average age of
6.9 years (range 1–17 years) without malignancies were en-
rolled as controls with following diagnoses: phymosis; adhe-
sion of preputium; hernias (inguinal, umbilical and abdomi-
nal); pectus excavatum; major labial adhesion; acute appendi-
citis; acute gastroenteritis; celiac disease; carpal ganglion;
fractures; verrucas; gland mycosis; varicocele or testicular hy-
drocele. The study was approved by the National Ethical
Committee (TUKEB 180/2007), and parents or guardians of
all participants gave informed consent.

Fever episodes occurred during chemotherapy or shortly
after treatment were followed up for 2 years after the diagnosis
of patients with hemato-oncologic disorders. Febrile neutrope-
nic episode (FN)was defined as an axillary temperature exceed-
ing 38 °C for at least 2 days and granulocyte count under 0,5G/
l. Several parameters were recorded during each episode, such
as the date of first and last day of fever, certain clinical param-
eters (WBC, Neutrophils and CRP) determined at the onset of
the episode, at the time of hemoculture test, and on the first day
of normal body temperature. In case of positive hemoculture,
the identified microbe, its antibiotic resistance and the treatment
(antibiotic and/or citokin) were also registered.

EDTA-anticoagulated blood samples were obtained for ge-
nomic DNA preparation using a salting-out procedure.
Genotyping of MBL2 C (rs1800451), D (rs5030737) and
Y/X (rs7096206) polymorphisms was carried out by real-
time PCR with commercially available TaqMan® SNP
Genotyping Assays (Applied Biosystems, CA, USA), while
the B allele (rs1800450) was determined by PCR-RFLP [8].
In our study patients were assessed into three groups accord-
ing to the expected serum level of MBL protein encoded by
the carried genotype as repoterted byGarred et al. [5, 9] Group
1: patients carrying genotypes (YA/YA and YA/XA) encoding
normal MBL level; group 2: patients with genotypes associ-
ated with low protein levels (XA/XA and YA/0) and goup 3:
MBL-deficient (XA/0 and 0/0) subjects.

Statistical analysis was performed with the GraphPad
Prism 4.0 (GraphPad Software Inc., San Diego, CA) and
SPSS 13.0 (SPSS Inc., Chicago, IL) software. Categorical
data were analyzed by the χ2 test and between-group differ-
ences were evaluated by theMann-Whitney or Kruskal-Wallis
tests. Multivariate analyses were performed by multiple logis-
tic regression adjusted to the diagnosis of the patients or the
applied chemotherapy protocol.

Results

Allele frequencies of the studied SNPs of theMBL2 gene were
compared in the groups of children with or without hemato-
oncologic disorders (Table 1). There were no significant

Table 1 Allele frequencies of MBL2 polymorphisms in children with
and without hemato-oncologic disorders

Allele children with hemato-
oncologic disorder

children without hemato-
oncologic disorder

Promoter Y 78.7 % 85.8 %

X 21.3 % 14.2 %

Exon-1 A 79.6 % 76.5 %

B 11.1 % 16 %

C 1.9 % 1.8 %

D 7.4 % 5.7 %
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differences in the allele frequencies in either the promoter, or
the exon 1 polymorphisms of this gene.

As the incidence of infections and their treatment is
different in distinct childhood malignancies, the ratio of
different diseases was evaluated in the three groups of
patients according to the carried MBL2 genotype
(Table 2). The difference between all groups was not
significant (p = 0.85).

The analysis of the features of febrile neutropenia during
the first 2 years following the diagnosis in 3 genotype groups
(Table 3), have revealed a shorter time interval between diag-
nosis and the first episode in individuals with low MBL level
(Group 2) and in MBL-deficient patients (Group 3), than in
subjects with genotypes encoding normal MBL level (Group
1), however, this difference was not significant (p = 0.196).
There was a trend (p = 0.052) that patients with a lower ex-
pected MBL level based on theMBL2 genotype have a longer
average duration of FN, that indicates an inverse relationship
between MBL level and duration of FN. Individuals with ge-
notypes associated with lower MBL levels had slightly higher
ratio of febrile days during chemotherapy in the first 2 years
following the diagnosis, but this difference was not significant
(p = 0.690). Frequency of FN episodes was similar among the
genotype groups (median 1–1.25 FN/year).

In the following analyses patients carrying the vari-
ant allele of exon 1 polymorphism (A/0, 0/0) and those
homozygous for the promoter allele associated with
lower MBL expression level (XA/XA) were merged
(group 2 and 3 in Tables 2 and 3). Average duration
of fever episodes was significantly shorter (p = 0.035)
in those carrying the AA genotype and maximum one
X allele (YA/YA and YA/XA) than in patients with
genotypes associated with lower functional MBL level
(group 2 and 3). The median (IQ range) of average
fever episode length was 3.7 days (0–5.4) in group 1
and 5.0 days (3.8–6.6) in the merged group of 2 and 3.

Next, we performed a multiple logistic regression analysis
in order to assess the strength of the association between
MBL2 genotype groups and the average duration of FN (di-
chotomized at the median: ≤4 days vs. >4 days). The carrier
state of genotypes associated with low or deficient functional
MBL level was found to be a significant risk factor for longer
average duration (>4 days) of fever episodes after adjustment
for the diagnosis (OR (95 % confidence interval), 1.84 (1.04–
3.25), p = 0.037) or the applied chemotherapy protocol (OR:
1.86 (1.05–3.28), p = 0.033) or the duration of chemotherapy
(days) (OR: 3.34 (1.06–10.56), p = 0.040) as possible con-
founding variables.

Table 3 Data on fever episodes experienced by patients in the first 2 years after the diagnosis in the three MBL2 genotype groups

N Duration between diagnosis
and the first fever episode
(days) (median (IQ range))

Average length of fever
episodes (days) (median
(IQ range))

Ratio of days with fever
during chemotherapy
(median (IQ range))

YA/YA, YA/XA 31 53 (12–730) 3.7 (0–5.4) 2.9 (0–6.7)

XA/XA, YA/0 17 38 (22.5–161) 4.5 (3.4–6.2) 3.2 (1.7–5.9)

XA/0, 0/0 6 23.5 (3.2–85.8) 5.3 (4.5–8.7) 3.5 (1.9–6.1)

Table 2 Frequencies of different
diseases in the three groups of
patients formed according to the
carried MBL2 genotype

Genotypes associated
with normal MBL level
(YA/YA and YA/XA)

Genotypes associated
with low MBL level
(XA/XA and YA/0)

Genotypes associated
with MBL-deficiency
(XA/0 and 0/0)

ALL 16

51.6 %

10

59 %

4

66.6 %

AML 2

6.5 %

0

0 %

0

0 %

Osteosarcoma 4

12.9 %

2

12 %

0

0 %

Hodgkin’s disease 4

12.9 %

2

12 %

1

16.7 %

NHL 5

16.1 %

3

17 %

1

16.7 %

Sum 31

100 %

17

100 %

6

100 %
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Discussion

Our study evaluated the influence of MBL2 gene polymor-
phisms on the incidence, frequency and duration of febrile
neutropenia in oncohematological patients. Our results
showed that genotypes encoding high MBL level are associ-
ated with shorter duration of fever episodes in the first 2 years
after the diagnosis of malignancy.

Frequency of variant alleles of Y/X and A/0 polymor-
phisms in our patients was 21.3 and 20.4 that is similar to that
found in the general population. A previous paper reported
that MBL2 variant alleles occur significantly more frequently
in children with ALL compared to healthy individuals, how-
ever only adults comprised the control group [10]. In our
study oncologic pediatric patients were compared with non-
oncologic age-matched controls and no difference was found
in the allele distribution.

Analyzing the characteristics of fever episodes in the first
2 years after the diagnosis of malignancy, we have found that
patients carrying high MBL level coding genotypes (YA/YA
and YA/XA) had shorter average duration of febrile neutrope-
nia than individuals with genotypes coding for lower MBL
serum levels (XA/XA, XA/0, YA/0 and 0/0). Differences were
also found in time interval between the diagnosis and the first
fever episode and the ratio of days with fever during chemo-
therapy among patients grouped by MBL2 genotypes, but
none of these were significant.

Previous studies analyzing the role of MBL in infections in
children with cancer showed contradictory results. Neth et al.
found that the median duration of febrile neutropenic episodes
was longer inMBL deficient children receiving chemotherapy
than in patients with normal MBL coding genotypes [11].
Similarly, other studies also showed association between low
concentrations of MBL or low-producing MBL2 genotypes
and serious infections related to chemotherapy [12–15], while
a recent paper showed that MBL deficiency was associated
with decreased event-free survival in children with cancer
[16]. However, several reports failed to find relationship be-
tween the incidence or duration of fever episodes and MBL
levels in patients with different malignancies [17–21]. Anoth-
er recent paper retrieving data from six cohorts studies failed
to identify MBL deficiency as an independent risk factor for
febrile neutropenia or infection in pediatric oncology patients
[22]. Although inconsistent results have been published,MBL
therapy for MBL deficient immunocompromised patients is
an area of ongoing research [23–25]. Phase I and II trials have
already been performed with plasma-derived MBL in small
populations and as recombinant human MBL has recently
become available, more resultes are expected to be published
in the near future.

We are aware of the limitations of our study, namely low
sample size and the heterogenous patient group in terms of
diagnosis. However, as the multivariate analyis including

diagnosis or the applied chemotherapy has confirmed that low
MBL level coding genotypes confer risk of longer FN episodes,
our results may contribute to clarify previous controversial find-
ings. Further studies on the role ofMBL as a clinical prognostic
factor in febrile neutropenia are needed to verify present results
on a larger population of pediatric oncologic patients and to
assign candidates for MBL replacement therapy.
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Immunology and Host Response

Abstract: The complement system is essential for protection against infec-
tions in oncologic patients because of the chemotherapy-induced immuno-
suppression. One of the key elements in the activation of the complement 
system via the lectin pathway is the appropriate functioning of mannose-
binding lectin (MBL) and mannose-binding lectin-associated serine 
protease 2 (MASP2) complex. The objective of our study was to find an 
association between polymorphisms resulting in low MBL level and activa-
tion of the MBL-MASP2 complex. Also, we aimed at finding a connec-
tion between these abnormalities and the frequency and severity of febrile 
neutropenic episodes in children suffering from hemato-oncologic diseases. 
Ninety-seven patients had been enrolled and followed from the beginning of 
the therapy for 8 months, and several characteristics of febrile neutropenic 
episodes were recorded. Genotypes of 4 MBL2 polymorphisms (-221C/G, 
R52C, G54D, G57E) were determined by real-time polymerase chain reac-
tion. Activation of the MBL-MASP2 complex was evaluated by enzyme-
linked immunosorbent assay at the time of diagnosis and during an infec-
tion. The number of febrile neutropenic episodes was lower, and the time 
until the first episode was longer in patients with normal MBL level than in 
patients with low MBL level coding genotypes. The MBL-MASP2 complex 
activation level correlated with the MBL genotype and decreased signifi-
cantly during infections in patients with low MBL level. Our results suggest 
that infections after immunosuppression therapy in children suffering from 
hemato-oncologic diseases are associated with the MBL2 genotype. Our 
results may contribute to the estimation of risk for infections in the future, 
which may modify therapeutic options for individuals.

Key Words: complement system, pediatric hemato-oncologic diseases, 
neutropenia, mannose-binding lectin

(Pediatr Infect Dis J 2021;40:154–158)

The tumors of the blood-forming organs account for more than 
one-third of all malignant tumors among children. 1 Over the 

past 20 years, possibilities of oncologic therapy have improved 
significantly leading to a better prognosis and higher life expec-
tancy. Currently, the 5-year survival rate is more than 70%–80% in 
case of pediatric tumors.1,2 However, infectious complications still 
remained a serious problem, as they considerably worsen mortality 
and morbidity.3,4

Chemotherapy often induces neutropenia and leukopenia 
and therefore impairs cellular functions of the adaptive and innate 

immune systems.5 Hence, appropriate function of the humoral 
immune defense mechanisms such as the complement system is 
essential in protection against infections in hemato-oncologic 
patients.6

The complement system is activated through the classical, 
alternative, and lectin pathways. Mannose-binding lectin (MBL) is 
an acute-phase collectin, one of the most important elements of 
the lectin pathway.7,8 The serum MBL protein recognizes the car-
bohydrate patterns on microbiologic surfaces, forms a complex 
with mannose-binding lectin-associated serine protease (MASP2) 
and activates the proteolytic cascade system, which facilitates the 
elimination of microorganisms.9–13

MBL binds with high affinity to several microorganisms, 
which are frequent pathogens in hematologic departments and are 
frequent causes of severe sepsis, such as Gram-negatives entero-
bacteriacea, several types of Streptococcus, Staphylococcus aureus, 
and Candida albicans.14–17

The serum functional MBL concentration is mainly geneti-
cally determined.18 The MBL protein is encoded by the MBL2 gene 
(10q11.2-q21) comprising 4 exons. The promoter region of the 
gene contains a single nucleotide polymorphism at position -221 
denoted as Y/X in the literature. In the first exon, the gene may 
contain 3 single nucleotide polymorphisms causing amino acid 
substitutions in the protein. The 3 variant alleles are at codons 54 
(Gly54Asp), 57 (Gly57Glu), and 52 (Arg52Cys). They are termed 
B, C, or D, respectively, and any of these variants on a chromo-
some is referred to as the 0 allele, while the wild-type allele without 
any polymorphic variant is named A. The 3 SNPs are located in 
the collagen-like domain, which is responsible for oligomerization 
that is essential for activation of complement. Thus, occurrence of 
either of the amino acid changes causes disturbance in the structure 
of the collagen-like domain and decreased stability of the higher-
order forms, and therefore results in markedly reduced functional 
MBL level and decreased activation of the lectin pathway. Serum 
functional MBL level in heterozygotes is much lower and may be 
immensely low in homozygotes compared with subjects carrying 
the wild-type genotype. The polymorphisms of the promoter region 
can also influence the serum MBL level; the highest effect is attrib-
uted to the X/Y variation.19,20

While increasing data suggest an important role of MBL 
level in immunosuppressed conditions among adults, contradictory 
data have been published concerning childhood malignancies.21–23 
Therefore, in 2007, our research group started a study on the role 
of MBL2 SNPs in infections following chemotherapy in a retro-
spective study of pediatric oncologic patients. Having analyzed 
infectious periods of 54 patients, no significant differences were 
found; however, a tendency for more severe infections was detected 
in patients carrying a variant allele of MBL2. As a result, a prospec-
tive study comprising more patients was initiated.24

The aim of this prospective cohort study was to evaluate the 
role of polymorphisms causing low MBL level in the total number 
and severity of febrile neutropenic episodes and to find an asso-
ciation between polymorphisms resulting in low MBL level and 
activation of the MBL-MASP2 complex in children suffering from 
hemato-oncologic diseases.
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MATERIALS AND METHODS
Ninety-seven children treated between 2009 and 2012 with 

hemato-oncologic diseases at the Second Department of Pediatrics 
of the Semmelweis University, Budapest, and at the Department 
of Hematology of Heim Pál Children’s Hospital, Budapest, were 
enrolled into our prospective clinical study. The inclusion criteria 
included a newly diagnosed hemato-oncologic disease and patients 
under 18 years of age at the time of diagnosis. The diagnoses of 
participants were acute lymphoid leukemia in 76, acute myeloid 
leukemia in 10, and non-Hodgkin lymphoma in 11 cases. Each 
patient received myeloablative chemotherapy, according to current 
protocols, acute lymphoid leukemia (IC) BFM 2002/2009, acute 
myeloid leukemia BFM 98, and non-Hodgkin lymphoma BFM 95, 
respectively. The study was approved by the National Ethical Com-
mittee, and a written informed consent from parents or guardians 
was obtained.

Febrile neutropenia (FN) was defined as an axillary tem-
perature greater than 38°C and granulocyte count less than 0.5 
G/L. The children were followed for a period of 8 months dating 
from the diagnosis. The time of diagnosis was established by the 
results of histopathologic findings. Patient characteristics, such as 
sex, age, tumor type, stage of disease, time of diagnosis, applied 
therapy, and mortality, were collected from patient documentation. 
Several parameters of each febrile neutropenic episode occurred 
during the follow-up period were also recorded, such as the date of 
the first and last day of FN, certain clinical parameters (white blood 
cells, neutrophil, C-reactive protein), antibiotic treatment, the time 
of hemoculture and, in case of a positive hemoculture, the identified 
microbe, and antibiotic resistance.

Blood samples were collected at the time of diagnosis and 
during the first 2 febrile neutropenic episodes. DNA was isolated 
from EDTA-anticoagulated whole blood samples using salting-out 
procedure. Commercially available TaqMan® SNP Genotyping 
Assays (Applied Biosystems, Carlsbad, CA) were used for geno-
typing of MBL2 B (rs1800450), C (rs1800451), D (rs5030737), and 
Y/X (rs7096206) polymorphisms by real-time polymerase chain 
reaction.

For the measurement of MBL-MASP2 complex activity, 
native blood serum samples were used. Activation of the MBL-
MASP2 complex was evaluated by enzyme-linked immunosorbent 
assay from blood serum obtained at the time of diagnosis and dur-
ing an infection. This method is based on the C4-cleaving ability 
of the complex, described previously by Presanis et al,25 with some 
modifications.26

Data were evaluated with the SPSS 13.0 (SPSS Inc., Chi-
cago IL) and the GraphPad Prism 4 (GraphPad Software Inc., San 
Diego, CA) software. Since most variables were nonnormally dis-
tributed, nonparametric tests were applied. The Mann-Whitney  
U test was used to compare 2 independent groups, and categorical 
data were analyzed by the Pearson test. The survival rate without 
infection was established by the Kaplan-Meier curve, and multiple 
logistic regression analysis was applied adjusted to the underlying 
disease, age, and sex of patients. The difference between MBL-
MSP2 activity at the time of the diagnosis and during an infection 
was calculated by t-test. All tests were two-tailed and statistical sig-
nificance for P values was considered <0.05.

RESULTS
We evaluated 97 patients, of which 54 were boys and 37 

were girls, and the mean age was 8.03 ± 4.43 years at the time of 
diagnosis. The patients were followed for 8 months after the begin-
ning of chemotherapy. During the study period, 12 patients died, 6 
of them during the follow-up period; thus, in the end, data from 91 
patients were analyzed.

By genotyping the enrolled patients, the following minor 
allele frequencies were found, 13.3, 1.6, 8.8, and 17.0 for the MBL2 
B, C, D, and X alleles, respectively. Genotype distribution aligned 
with the Hardy–Weinberg equilibrium and allele frequencies cor-
responded to the frequencies described in the Caucasian popula-
tion. Patients were divided into 2 groups based on genotype clas-
sification established in previous studies by Frakking et al.27 The 
first group included patients with low-expected MBL level coding 
genotypes (YA/0, XA/0, 0/0, XA/XA), while the other group com-
prised patients with normal expected MBL level coding genotypes 
(YA/YA, YA/XA). First, we studied whether certain diseases occur 
with the same frequency in both genotype groups. No significant 
difference was found (P = 0.31), so involvement of patients with 
different diseases probably did not distort the results of the study.

Then we analyzed the correlation between the characteris-
tics of febrile neutropenic episodes occurred during the follow-up 
period and the MBL2 genotype groups (Table 1). The total number of 
febrile neutropenic episodes was significantly higher (P = 0.0016), 
and the total length of febrile neutropenic days was significantly 
longer (P = 0.0112) in the group with genotypes encoding lower 
MBL level than in patients with genotypes encoding normal MBL 
level. In line with these findings, there was a trend observed in indi-
viduals with genotypes associated with lower MBL level having 
longer average duration of febrile neutropenic episodes, but this 
difference was not significant. Time intervals between the diagnosis 
and the first febrile neutropenic episode were found to be shorter 
in patients with lower expected MBL level (P = 0.0018). Regard-
ing the other parameters recorded (white blood cells, C-reactive 
protein, identified microbe), no significant difference was found 
between the genotype genotypes.

Further, we assessed the likelihood of patients contracting 
infections during the follow-up period. We studied the length of 
the period until the first febrile neutropenia, ie, the period without 
infection in the 2 genotype groups. According to the Kaplan-Meier 
survival analysis, patients carrying genotypes coding normal MBL 
level have a higher chance for a longer period without febrile neu-
tropenia (Log-rank test, P = 0.0029) (Fig. 1).

We also examined the cofactors influencing infections with 
multivariate Cox logistic regression model adjusted for the diag-
nosis, age, or applied chemotherapy. A genotype carrying variant 
alleles could be a risk factor for infections in the first 8 months with 
a hazard ratio of 1.649 (95% confidence interval: 1.014–2.681) 
(P = 0.044). These patients are 1½ times more likely to contract an 
infection with febrile neutropenia than patients with normal MBL 
level coding groups.

Finally, we analyzed the correlation between the MBL-
MASP2 complex activation and the MBL2 genotype. From the 
prechemotherapy samples available from 64 patients, we obtained 
the expected result that the MBL2 polymorphisms considerably 
determine the MBL-MASP2 complex activation. In patients with 
lower MBL level coding genotype, the activation level of the MBL-
MASP2 complex is significantly lower (P < 0.00001) (Fig. 2). Both 
prechemotherapy sample and a sample obtained during a febrile 
neutropenic episode were available in 42 patients that enabled us to 
study the changes in MBL-MASP2 activation during a febrile neu-
tropenic episode (Table 2). The activation decreased significantly 
during infections in patients with low MBL level coding genotypes. 
In this group, 81% of patients displayed reduced or unaltered MBL-
MASP2 activation, while in the normal MBL level coding group, 
this ratio was 60%.

DISCUSSION
This study explored the relationship between the presence of 

MBL2 gene polymorphisms, the level of the MBL-MASP2 complex 
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activation, and the increased risk of infection with febrile neutropenia 
in children suffering from hemato-oncologic disease. We analyzed 
the correlation between the incidence, the frequency, and duration of 
febrile neutropenic episodes, and the expected MBL level based on 
MBL2 gene polymorphisms and MBL-MASP2 complex activation.

In the literature, several studies discuss the role of MBL in dis-
eases cooccurring with immunosuppressive state, especially in patients 
with chemotherapy-induced neutropenia. Although research has been 
ongoing since the 1990s, the obtained results are contradictory. We 
have found 11 articles since 1999, which were seeking answers to the 
above-mentioned questions. Five of these studies feature discussions 
which assume the effect of MBL on infection incidence and sever-
ity,27–31 while 5 research papers contradicted this assumption and dis-
missed the role of MBL.32–36 In 1 case, the results were surprising. 
Schlapbach et al29 found increased risk for infection in patients with 
serum MBL level 100–999 µg/L compared with patients who have 
very low (<100 µg/L) or high (>1000 µg/L) serum MBL level.

Frakking et al27 also published a comprehensive review in 
2011, which attempted to clarify the reason behind these conflicting 
findings. They systematically searched for articles in the main data-
bases (Embase, Medline, Cochrane Central Register) between 1966 
and 2010 April, which discuss the role of MBL in pediatric onco-
logic patients. The reviewers extracted from the articles the design and 
characteristics of studies, study group, tumor type, method of MBL 
analysis, definition of MBL deficiency, definition of outcome, meth-
ods used to detect infection, follow-up, and risk factor analysis. They 
concluded that the contradictory results of the examined studies might 
be explained by several clinical and methodologic inconsistencies. 
Another possible reason may be that none of these studies examined 
the question as a multivariate risk analysis. In the immune response 
of younger children, innate immunity outweighs adaptive immunity, 
as a result, the role of MBL is reevaluated depending on age. The 
tumor type and intensity of chemotherapy could be also risk factors 
as administration of certain chemotherapeutic drugs appears to be 
directly related to functional complement defects.37 The results of this 
systematic review showed that the MBL is probably not an independ-
ent risk factor for susceptibility to or severity of infection in pediatric 
oncologic patients. However, these results are refutable; therefore, a 
clinically relevant study with a unified definition would be necessary 
to explain the role of MBL, allowing for other risk factors.

We tried to plan and carry out our study considering the 
above-mentioned aspects. We found a correlation between the pres-
ence of MBL2 polymorphisms and the incidence of infections in 
children suffering from hemato-oncologic diseases. The total num-
ber of febrile neutropenic episodes was significantly higher in the 
group with genotypes encoding lower MBL level during the first 
8 months after the beginning of chemotherapy. In line with this 
finding, the number of the total febrile neutropenic days was higher 

TABLE 1.  Characteristics of Fever Episodes Experienced by Patients in the First 8 Months 
After the Diagnosis in the 2 MBL2 Genotype Groups

Characteristics of FN, Median (IQR)

MBL2 Genotype Groups

P
(Mann-Whitney test)

Patients With Normal  
Expected MBL Serum Level  

(YA/YA, YA/XA) n = 48

Patients With Low-expected  
MBL Serum Level  

(XA/XA, A/0, 0/0) n = 43

The total number of FN episodes 1.0 (0.25–3.0) 3.0 (1.0–4.0) 0.0016
The average length of FN episodes (d) 5.0 (0.25–7.0) 6.0 (3.0–8.0) 0.1532
The total length of FN episodes (d) 8.5 (0.25–15.3) 14.0 (5.0–31.0) 0.0112
The number of days until the first FN 73.5 (30.25–241.0) 23.0 (13.0–74.0) 0.0018

FN indicates febrile neutropenia; IQR, interquartile range.

FIGURE 1.  Kaplan-Meier survival analysis. FN-free survival 
of patients with high (green line) or low (blue line) MBL 
level coding genotypes during the first 8 months from 
the beginning of chemotherapy. MBL indicates mannose-
binding lectin. 

FIGURE 2.  MBL-MASP2 complex activation at the time of 
diagnosis. Activation level of the MBL-MASP2 complex in 
patients with high (triangles) or low (squares) MBL level 
coding genotypes measured in samples collected at time of 
diagnosis. Solid lines represent medians and interquartile 
ranges. MBL-MASP2 indicates mannose-binding lectin-
associated serine protease 2.
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during the follow-up period. The average length of the febrile neu-
tropenic episodes was not significantly different in the 2 groups, 
showing that the severity of infections is not influenced consider-
ably by the MBL level, presumably because of the intensive medi-
cation applied. The chance of a longer period without infection is 
more likely in patients with normal MBL level. In these patients, 
the chance to suffer from an infection during the follow-up period 
is lower or, if they contract an infection, it typically occurs later. We 
considered the age and the applied chemotherapy through a Cox 
regression analysis, which supported the positive and predictive 
effect of the MBL2 genotype on the infections.

Increasing evidence suggest that, besides MBL, variability 
of other constituents of the complement pathways or their combi-
nations may also influence the occurrence of infections in immu-
nocompromised patients. For instance, deficiency of MASP2, 
ficolin-3 as well as single or combined deficiencies of MBL2 and 
ficolin-2 were reported to be associated with an increased risk of 
infections and prolonged duration of febrile neutropenic episodes 
in leukemic children.38–40

In accordance with these studies, we decided to analyze 
the MBL-MASP2 complex activation together with the MBL2 
polymorphisms in pediatric hemato-oncologic patients. The 
MBL-MASP2 complex activation assay is a specific and sensi-
tive method, which can eliminate all influential factors, and give 
information solely about the MBL-MASP2 complex function. The 
benefit of this method is receiving more information about lectin 
pathway and the functional activity of the MBL-MASP2 complex. 
Although the inherited MASP2 deficiency occurs very rarely, the 
protein concentration can show variability, and therefore it should 
not be ignored. As expected, genotype of the MBL2 polymorphisms 
considerably influenced the complex activity: in patients carrying a 
variant allele, the MBL-MASP2 activation was significantly lower. 
Moreover, we found a correlation between the decrease in complex 
activation during the febrile neutropenia and the genotype groups.

A possible reason for the decrease of the MBL-MASP2 
complex activation during an infection could be the consumption of 
these molecules. The MBL marks pathogens as an opsonin leading 
to the chemically modified molecules having stronger interactions 
to cell surface receptors on phagocytes and thus enhancing phago-
cytosis. The explanation of the difference between the 2 genotype 
groups could be that in patients with normal genotype, the con-
sumption is less significant or the expression of the protein is more 
inducible. Therefore, when the protein level decreases, the produc-
tion could compensate the consumption.

Despite the contradictory results reported concerning the 
role of MBL, the efficiency and safety clinical trials of substitu-
tion therapy have started parallel to the genetic testing. Currently, 

2 types of MBL preparations are in clinical phase trials: plasma 
delivered and human recombinant MBL. The phase I clinical trial, 
analyzing safety, and pharmacokinetics found neither clinical nor 
laboratory changes. The biologic activity, safety, and stability were 
similar in the 2 different preparations.41–44

Brouwer et al examined the effect of MBL therapy in 
vitro, and they found an increase in complement activation and 
opsonophagocytosis after plasma delivered MBL substitution ther-
apy. However, the opsonophagocytosis recovery was suboptimal, 
the function increased after repeated MBL infusions. Therefore, 
the results are promising, yet a phase II/III randomized, placebo-
controlled, double-blind clinical trial is still necessary to determine 
the clinical efficacy of the MBL therapy.45

In summary, our results support the importance of the MBL 
molecule in infectious complications of pediatric hemato-onco-
logic patients, but further analysis would be necessary to confirm 
these results and to study other molecules of complement pathways 
that may influence the development of infections and could explain 
previous contradictory results. Careful evaluation of all available 
data is of utmost importance in analyzing the role of complement 
factors in immunosuppressed patients as interindividual differ-
ences, which may influence infection risk are not limited to single-
gene variations but rather a combination of genetically determined 
predispositions that can also be affected by acquired defects caused 
by the applied chemotherapeutic drugs. The long-term benefit of 
these studies would be to determine those patients who may benefit 
from prophylactic MBL therapy or from infection prophylaxis by 
antibiotics that could be applied simultaneously with myeloablative 
chemotherapy to prevent infections.

Pediatric hemato-oncologic patients carrying low MBL level 
coding genotypes are prone to infections following chemotherapy 
as indicated by higher frequency of febrile neutropenia and shorter 
infection-free survival. Besides, in these patients, MBL-MSP2 acti-
vation level showed marked decrease in infections, supporting the 
importance of a well-functioning MBL pathway in immunocom-
promised patients.
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