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1. Introduction  

Nowadays cerebrovascular diseases are the second most frequent cause of death and the 

most common cause of long-term disability worldwide [1]. Despite this global health problem, 

there are only limited therapeutic possibilities, and none of them is effective for every stroke 

patient. It would be desirable for the medical treatment to target the site of injury selectively, to 

enrich the site of ongoing injury with the protective agent, and to avoid undesirable side effects 

at the same time. We propose that ischemia-induced acid accumulation can be utilized to target 

drug release from nanocarriers. Our aim was to investigate (i) whether tissue acidosis caused 

by ischemia initiates drug release from specific carriers in the nervous tissue, and (ii) whether 

nimodipine administered with nanoparticles exerts its expected vasodilator and neuroprotective 

effect. Ultimately, this approach may offer a new way to treat stroke patients with the hope of 

more effective therapy, and better stroke outcome than achievable at present. 

1.1. Mechanistic insight into cellular pathomechanisms of ischemic stroke  

1.1.1. Disrupted ion homeostasis under cerebral ischemia  

Because of its high metabolic rate and limited storage capacity for oxygen and glucose, 

the brain is extremely vulnerable to ischemia [2]. Global cerebral ischemia, a complete 

cessation of blood supply to the brain is mainly associated with cardiac arrest or cardiac surgery. 

Conversely, focal cerebral ischemia, which accounts for 80 % of all stroke cases, is caused by 

the obstruction of a cerebral blood vessel by atherosclerosis or embolization. The limited supply 

of O2 and nutrients creates a supply-demand mismatch, which compromises neuronal function. 

Most often, cerebral ischemia is incomplete, the brain is partially hypoperfused. Falling cerebral 

blood flow (CBF) from the normal 50 ml/100 g/min value, below 10 ml/100 g/min, causes 

anaerob metabolism and the disruption of cell membrane transport, leading to subsequent 

neuronal death within minutes. In focal ischemia, adjacent to the core of the injury, residual 

blood flow persists, the local CBF ranging between 15-25 ml/100 g/min or 20-40 % relative to 

baseline [3, 4]. This narrow tissue band embracing the infarcted core has been known as the 

ischemic penumbra [4]. In contrast with the necrotic core, the penumbra consists of 

electrophysiologically inactive but viable and, most importantly, salvageable tissue [4-7], 

which places it in the center of ischemic neuroprotective therapy. 

Under physiological conditions, the Na+/K+-ATPase creates Na+- and K+-gradients 

necessary for generating cellular resting potential, the regulation of cell volume and many other 

ion-fluxes through the plasma membrane. This pump consumes as much as two thirds of the 

whole cell’s energy production, which makes it extremely vulnerable to ATP reduction. Under 
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ischemic conditions, the lack of O2 and nutrients results in mitochondrial damage, and ATP 

depletion. Within minutes after the ischemic insult, the failure of Na+/K+-ATPase causes a rapid 

increase of intracellular [Na+] and extracellular [K+]. In addition, the subsequent membrane 

depolarization activates voltage-gated Ca2+ channels (VGCCs), which enable Ca2+-influx. 

Water follows Na+ passively into the cell to cause cell swelling [8] (Fig. 1). Ca2+-overload in 

neurons is implicated in irreversible neuronal damage. On the other hand, Ca2+ accumulation 

in vascular smooth muscle cells (VSMCs) leads to massive vasoconstriction, which exacerbates 

the ischemic injury. Moreover, elevating intracellular [Ca2+] in excitatory neurons causes 

uncontrolled glutamate release. At the same time, the re-uptake of glutamate is impaired due to 

the lack of ATP and the disrupted Na+-gradient. Elevated glutamate level, from the basal 

3-6 M up to the excitotoxic 20 M in the ischemic core region is sustained up to hours after 

the ischemic insult [2, 9]. Expression of astrocytic glutamate-transporters 

(glutamate-transporter 1, glutamate-aspartate transporter) is failed after ischemia, that is why 

the buffering role of these cells is also impaired [9]. Extreme extracellular glutamate 

concentration results in the uncontrolled activation of glutamate-receptors, especially 

ionotropic N-methyl-D-aspartate (NMDA), 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainite receptors in 

neurons. Through the activated receptors, excessive amount of Na+ and Ca2+ enters the cells, 

which activates protein degradation cascades. In neurons, NMDA receptor activation is coupled 

with neuronal NO synthase (nNOS). Under ischemic conditions, NO interacts with superoxide 

to produce peroxynitrite. The interaction of peroxynitrite with cell membrane lipids, proteins 

and DNA cause lipid peroxidation, protein oxidation and DNA fragmentation [10]. 

Additionally, glutamate-overload and excessive Ca2+-influx activate reactive oxygen species 

(ROS) production through mitochondrial dysfunction [8, 9] (Fig. 1). 

Besides Ca2+ channels, there are Ca2+ pumps in the cell membrane (high affinity plasma 

membrane Ca2+ ATPase (PMCA), low affinity Na+-Ca2+ exchanger (NCX)), extruding Ca2+ 

from the cell opposite its gradient. PMCA removes Ca2+ from the cell, coupled with H+ uptake 

[11], but the lack of ATP causes failure of this ATPase. In addition, NCX transports Ca2+ with 

a 10 to 50-fold higher transporting capacity than PMCA, moving 3 Na+ into the cell opposite 1 

Ca2+ at rest, using the power of the electrochemical gradient of Na+. Since NCX is an 

electrogenic transporter, alteration of the membrane potential, or elevated intracellular [Na+] 

can reverse the direction of the exchange, which increases intracellular [Ca2+] [12]. Deficiency 

of these Ca2+ pumps contributes to the ischemia-induced Ca2+ overload, as well (Fig 1). 
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Figure 1. Proposed cellular mechanism of cellular damage in ischemic stroke include Ca2+ 

overload, glutamate excitotoxicity, cell swelling, ROS (reactive oxygen species) production 

and intracellular acidosis. The reduced availability of ATP leads to the failure of the Na+/K+ 

ATPase, the subsequent imbalance of intracellular ion homeostasis (rapid increase of 

intracellular [Na+] and extracellular [K+]) and membrane depolarization. Excessive membrane 

depolarization causes VGCC (voltage-gated Ca2+-channel) activation, contributing to 

intracellular Ca2+ overload (black arrows demonstrate Ca2+ influx), and glutamate 

excitotoxicity (grey arrow demonstrates glutamate influx). Water follows Na+ and Ca2+ 

passively, to cause neuronal swelling. Failure of PMCA (plasma membrane Ca2+ ATPase) and 

NCX (Na+-Ca2+ exchanger) Ca2+ pumps worsens ischemia induced Ca2+ overload. Glutamate 

excitotoxicity and excessive Ca2+ influx activate ROS production through mitochondrial 

dysfunction.  

 

1.1.2. Pathophysiological impact of spreading depolarization 

It is important to realize that the penumbra evolves dynamically in space and time [13]. 

After the onset of cerebral ischemia, spreading depolarization (SD) events evolve 

spontaneously from the border of the core and penumbra regions in clusters for several days 

after the ischemic insult [14, 15], and propagate across tissue at risk [13, 16-19]. In fact, 

recurrent SDs (rSDs), which are appreciated to arise at the inner penumbra, from minutes to 

days after the primary impact, have been understood as a principal mechanism of lesion 

progression in the acutely injured human brain [20, 21]. If the local concentration of 

extracellular K+ and glutamate increases over-threshold, SD evolves and propagates via direct 

neuron-to-neuron gap junctions and volume transmission [22, 23]. SD is a synchronized wave 

of massive depolarization of cortical neurons and glia cells, propagating slowly (2-6 mm/min) 

across the cerebral grey matter [24]. This near complete depolarization is accompanied with 

local brain electrical silence, first identified as spreading depression of electrocorticographic 

activity by Arisitides Leão [14, 15]. SDs occur in hypoperfused nervous tissue due to metabolic 

supply demand mismatch [25], and in turn, exacerbate the ischemia-related metabolic burden 

[20]. The hallmark of SD is the negative shift of the DC (direct current) potential corresponding 
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to a rapid increase of extracellular [K+] (from 3-4 to 30-60 mM) and glutamate, and a rapid 

decrease of extracellular [Na+] (from 140-150 to 50-70 mM) and [Ca2+] (from 1-1.5 to 

0.2-0.8 mM) [26]. Under ischemic conditions, the clearance of K+ and glutamate by astrocytes 

is saturated, which sustains the depolarization and delays the repolarization from SD. (Fig 2).  

Releasing metabolites and ions (K+, lactate, ATP/ADP, and adenosine), the production 

of vasoactive substances (e.g., prostaglandins), and remarkable metabolic demand with SD 

events generate a hemodynamic response typical of the metabolic status of the tissue. In the 

optimally perfused, intact brain, the CBF response to SD consists of three subsequent elements: 

a brief transient hypoperfusion, a transient peak and late hyperemia, and a focal, long-lasting 

oligemia [27]. In contrast, in the injured brain (e. g. ischemic or hemorrhagic stroke, traumatic 

brain injury), vasoconstrictive elements of the CBF response dominate at the expense of 

hyperemia, which is instrumented by the release of vasoconstrictive substances. Depending on 

the severity of ischemia, a theoretical spectrum of the CBF response from reducing hyperemic 

component to spreading ischemia have been established [28] (Fig 2). 

Over the recent years, the opinion has been formulated that the pattern of SD recurrence 

should be considered as a biomarker of metabolic failure in neurointensive care [29], and SDs 

have been proposed as a therapeutic target in the management of acute brain injury, including 

ischemic stroke [30]. 
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Figure 2. The conceptual spectrum of the DC potential shift (blue curves) and hemodynamic 

response (red curves) with spreading depolarization after a focal ischemic insult. Note that the 

local perfusion pressure reduces from penumbra (grey area) to the core region (black area). The 

longer the total depolarization time, the deeper the hypoperfusion is. Moreover, the clearance 

of K+ by Na+/K+ ATPase is diminished in the core region (based on Hoffmann and Ayata, 2013 

[31]). 

 

1.1.3. Mechanisms to cause cerebral ischemic tissue acidosis  

The shortage of metabolic substrates and O2, a condition that characterizes cerebral 

ischemia leads to metabolic acidosis. The limited availability of O2 favors anaerobic glycolysis: 

pyruvate is reduced to lactate at the concomitant generation of a H+, which causes lactic acidosis 

[32]. In turn, tissue pH after cerebral ischemia onset decreases following an inversely linear 

relationship with tissue lactate concentration [32-35]. In addition, tissue pCO2 rises to 3-4 fold, 

which may also contribute to tissue acidosis [36] (Fig 1). 

Even though astrocytes were initially thought to be a major source of acid production 

under cerebral ischemia [37, 38], this interpretation was later contended and compartmentation 

of H+ was found to be negligible in the ischemic nervous tissue [35, 39]. Intra- and extracellular 

acidosis with SD acquired at tissue level also displayed corresponding kinetics [40], indicating 

that acidosis in the intra- and extracellular space must be approximately consistent in 

metabolically challenged tissue. Indeed, intra-, and extracellular pH in the ischemic nervous 

tissue probably equilibrates rapidly, because lactate newly produced in neurons and astrocytes 

is quickly released into the extracellular space as lactic acid via lactate/proton cotransport [41]. 

Although metabolic acidosis may therefore not be restricted to specific tissue 

compartments, the acidosis can be localized to distinct tissue regions, and the magnitude of the 
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pH shift is subject to the type or severity of the ischemic insult. For example, in a feline model 

of complete global forebrain ischemia, tissue pH fell to 6.2-6.6 units [36, 42]. Alternatively, in 

the rat incomplete global forebrain ischemia model achieved with the bilateral occlusion of the 

common carotid arteries (2-vessel occlusion, 2VO), pH 6.9-7.1 indicated relatively mild 

acidosis in the parietal cortex [40]. In focal cerebral ischemia, the degree of acidosis displays 

spatial variation, and particular values are typical for discrete tissue zones. As such, tissue pH 

in the ischemic core may become as low as pH 6.0, while tissue pH fluctuates around pH 6.5-6.9 

in the peri-infarct penumbra, as estimated in the acute middle cerebral artery occlusion (MCAO) 

rodent model of focal ischemic stroke [43, 44].  

Simultaneous with the negative shift of the DC potential, an extracellular pH-change is 

initiated starting with a short alkaline shift, which is followed by a longer lasting transient 

acidosis [45-47], and thus a decrease of tissue pH by around 0.3-0.5 pH units [40, 45]. The 

duration of the SD-related acid burden corresponds to SD duration lasting for a few minutes 

under ischemic penumbra conditions [48], which is increasingly longer in tissue zones 

undergoing more severe metabolic crisis [20, 49]. Moreover, the SD-related acid load is 

remarkably extended with aging in the ischemic nervous tissue, which may contribute to the 

age-related acceleration of ischemic lesion maturation [48, 50]. The SD-related acidosis has 

been understood to reflect lactate accumulation, which corresponds with the duration of the 

negative pH shift with SD, modulates transmembrane ion-transport, and determines the 

amplitude of pH-response [45]. Previous observations show that, lactate accumulation in the 

cortex during SD can be facilitated under ischemic conditions [47, 48]. Lactate, as a product of 

anaerobic glycolysis, plays an important role in neuronal metabolism and signaling. In case of 

an ischemic insult, lactate can be neuroprotective by increasing energy availability, but if rSDs 

are spreading across the ischemic cortex, extra lactate accumulation can deepen the metabolic 

crisis of the damaged tissue [51]. The duration and the magnitude of tissue acidosis influence 

the survival of neurons and glia cells. The acidosis associated with a single SD would probably 

not harm neurons, but rSDs in close succession reduce the tissue pH below 7.0 permanently 

[44, 52, 53]. This is of importance because the prolongation of acid exposure is understood to 

lower the threshold of acidosis-induced cell death [54]. Moreover, transient tissue acidosis 

associated with SD events superimposed on ischemia-related acidosis, deepen tissue pH in the 

penumbra near levels typical of the core (Fig 3). 
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Figure 3. Representative traces demonstrate 

the association of tissue acidosis (blue) with 

ischemia onset (bilateral common carotid 

artery occlusion; red) and spreading 

depolarization (SD; black) in the rat parietal 

cortex. Tissue pH was measured with a 

pH-sensitive microelectrode implanted in 

the cortex, cerebral blood flow (CBF) was 

monitored with laser Doppler flowmetry, 

and the DC potential was acquired with an 

intracortical glass capillary microelectrode. 

 

1.2. Ca2+-channel blockade in the treatment of cerebral ischemia 

1.2.1. Intracellular Ca2+ homeostasis in the nervous system  

The 100 000-fold concentration gradient among the extracellular (1 mM) and cytosolic 

free (100 nM) Ca2+ concentration ([Ca2+]) makes this ion a special second messenger, especially 

in the central nervous system [55]. The intracellular [Ca2+] can increase up to several M during 

various cellular functions, like synaptic transmission in neurons or constriction in contractile 

cells. Because of the low Ca2+-permeability of the cell membrane, highly selective ligand- and 

voltage-gated Ca2+-channels regulate Ca2+-transport, while in the cytosolic Ca2+-binding 

proteins and intracellular stores sustain the level of free Ca2+ in physiological range in each cell 

type of the brain. 

According to the opening mechanism, three major categories of Ca2+-channels in the 

plasma membrane are differentiated: voltage-gated (VGCC), receptor-operated and 

store-operated Ca2+-channels [12]. This thesis focuses on VGCCs, which are important 

regulators of depolarization-induced Ca2+-entry along its electrochemical gradient causing local 

elevation of intracellular [Ca2+] [56]. There are two major types of VGCCs according to the 

rate of the activating voltage-changes: high and low voltage-activated channels (HVA, LVA). 

Among the HVA channels several subtypes have been identified based on their 

pharmacological responsiveness; L-type channels are dihydropyridine-sensitive; P/Q-type 

channels are inhibited by ɷ-agatoxin, N-type channels can be blocked by ɷ-conotoxin, R-type 

channels can be inhibited by SNX-482 tarantula venom, and T-type channels are sensitive to 

cadmium [56]. VGCCs are located on neurons, vascular and skeletal muscle fibres or cardiac 

myocytes [57]. These channels regulate neuronal functions, like gene transcription, synaptic 

transmission, or activation of Ca2+-dependent enzymes in neurons and mediate the 
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excitation-contraction coupling and the repetitive firing of cardiac myocytes and VSMC 

contraction and growth [12, 57]. 

1.2.2. The mechanism of action of the voltage-gated Ca2+ channel-blocker 

nimodipine 

In the last four decades, numerous animal experiments have indicated that 

administration of VGCC blockers is effective in the treatment of cerebral ischemia, at the same 

time, it is hard to translate these data into clinical trials. One of the most potent blockers of 

VGCCs is nimodipine, with relatively selective pharmacological effect on cerebral vessels and 

neurons. This dihydropyridine derivative inhibits Ca2+-influx through vascular and neuronal 

L-type VGCCs, causing vasodilation and neuroprotection in the central nervous system. Due to 

its lipophilicity, it can cross the blood-brain barrier (BBB), augmenting its central effect [58]. 

About four decades ago Steen et al. (1983) found that nimodipine increased CBF after 

complete cerebral ischemia in dogs [59]. In another experiment, nimodipine administered 

intravenously (2 g/kg/min) 1, 4 or 6 hours after the ischemic insult, improved neurological 

outcome and reduced the infarction volume after acute focal cerebral ischemia created by the 

occlusion of middle cerebral artery of rats [60]. The blockade of L-type VGCCs by nimodipine 

reduced the elevation of intracellular [Ca2+] and shortened the duration of membrane 

depolarization in the oxygen-glucose deprivation model of stroke in rat brain slices [61]. This 

finding supports the role of L-type VGCCs in the early phase of ischemic cell damage and 

makes nimodipine a possible candidate for ischemic stroke therapy. Under ischemic conditions, 

nimodipine moderately impedes SD events [62], efficiently improves the hyperemic component 

of SD [63, 64] and converts spreading ischemia to a hyperemic response [65, 66].  

At present, in clinical practice, nimodipine is the only drug available to reduce the risk 

of delayed cerebral ischemia and subsequent delayed ischemic neurological deficit, which are 

the major causes of death and disability in patients with subarachnoid hemorrhage (SAH) [67]. 

Although its efficacy in SAH patients has been proven, the beneficial effects of nimodipine 

remain inconclusive in patients suffering from cerebral ischemia [68]. Under ischemic 

conditions, cerebral autoregulation may be impaired. For this reason, mean arterial blood 

pressure (MABP) must be monitored closely in patients suffering from ischemic stroke: 

cerebral perfusion pressure may decrease together with lowering blood pressure, which is 

accompanied by decreasing CBF due to impaired autoregulation. Although it is relatively 

selective to cerebrovascular VGCCs, nimodipine lowers MABP in a dose-dependent way [69]. 
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That is why, during the therapy of stroke patients with normo- or hypotension, the hypotensive 

effect of VGCC blockers should be avoided. 

1.3. Cerebral tissue acidosis in stroke therapy and nanomedicine 

Brain imaging (computer tomography – CT, and magnetic resonance imaging – MRI) 

is a first step in the diagnosis of stroke. Beyond the primary assessment of the nature (i.e., 

ischemic, or hemorrhagic), location, and volume of the injury of cerebrovascular origin, MRI, 

and positron emission tomography (PET) techniques have been central to identify the ischemic 

penumbra, prognosticate its evolution, aid personalized therapeutic decision making, and 

confirm the fate of the penumbra tissue after treatment [7, 70]. The reliable differentiation of 

the ischemic penumbra from the infarction or benign oligemic regions is, therefore, critical, and 

establishes the need to invent and refine applicable imaging tools [5]. The most recent 

developments in this field suggest that tissue acidosis can be used to distinguish penumbra 

tissue from the ischemic core with confidence, and the inclusion of pH imaging among imaging 

modalities used in stroke diagnostics has been recommended to bring informed decisions on 

patient care [7]. 

Obviously, the ischemic penumbra forms the central target of stroke therapy. Although 

recanalization is clearly intended to reperfuse and ideally save the ischemic penumbra, the 

delivery of pharmacological agents selectively to the penumbra zone is problematic and remains 

a field for exploration. Next to narrow therapeutic time-windows, obvious difficulties hamper 

drug delivery to the ischemic territory, including the vascular occlusion blocking the direct 

vascular route of drug delivery, and the selective permeability of the BBB if it remains intact. 

Yet, the residual blood flow typical of the ischemic penumbra may be sufficient in case the 

efficacy of drug delivery is amplified with specific drug carrier and drug release systems that 

(i) can cross the intact BBB, (ii) respond to the ischemic environment, and (iii) increase the 

local concentration of the therapeutic agent. 

Since nanomaterials have great potential of controlled and sustained drug release as well 

as biocompatibility and lower toxicity to human tissues, nanomedicine is having increasingly 

more significant impact in stroke therapy. Nanoparticles fall under structurally heterogenic 

groups of 1-1000 nm particles, they can potentiate the penetration of agents into the brain by 

prolonging their circulation time and promoting the transport of drugs through biological 

membranes and the BBB [71]. Intensive research in nanomaterial sciences has shown that 

different properties (shape, size, composition, surface charge, hydrophilicity, rigidity, and 

conductivity) of nanoparticles are modified effectively. Drugs can be released temporally or 
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regionally by various internal (pH, redox, specific biomolecules, or enzymes), and external 

(temperature, electromagnetic radiation, ultrasound) stimuli, targeting the drug to the injured 

region (Fig. 4). 

 

Figure 4. Application of pH-sensitive nanoparticles appears to be a feasible solution for 

neuroprotection in ischemic stroke therapy. Tissue acidosis linked to cerebral ischemia and 

spreading depolarization (SD) can be utilized as a trigger for drug release. 

 

Intriguingly, cancer therapy has already identified low pH typical of the tumor 

environment to direct anticancer drug delivery selectively to a tumor to enrich the tumor tissue 

with anticancer agents [72, 73]. An analogous approach is thought to open up new possibilities 

in ischemic stroke therapy [74, 75], and may advance the management of ischemic stroke in the 

future. 
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2. Experimental hypothesis and aims 

Based on the above, we hypothesized, that: 

• Nanoparticles are suitable for targeting drug release to the ischemic region in the 

nervous tissue. 

o Tissue acidosis caused by ischemia or SD occurrence is a condition that can 

be harnessed to initiate drug release in the injured nervous tissue. 

• Application of nimodipine is suitable for testing a novel pH-sensitive nanocarrier 

system in an in vivo global cerebral ischemia model. 

o Nimodipine is expected to re-establish neurovascular coupling that is injured 

under ischemia. 

o Nimodipine administered with nanoparticles is anticipated to exert 

vasodilator and neuroprotective effect against SD, propagating over the 

ischemic penumbra.  

According to our hypothesis, our aim was: 

• To investigate the impact of topically administered nimodipine in solution in the 

intact and ischemic brain;  

• To design and test a novel treatment strategy resting on pH-sensitive nanoparticles 

carrying nimodipine, to be administered topically in our in vivo global cerebral 

ischemia model. 
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3. Materials and methods 

3.1. Surgical procedures  

All experiments were approved by the National Food Chain Safety and Animal Health 

Directorate of Csongrád County, Hungary. The procedures conformed to the guidelines of the 

Scientific Committee of Animal Experimentation of the Hungarian Academy of Sciences 

(updated Law and Regulations on Animal Protection: 40/2013. (II. 14.) Gov. of Hungary), 

following the EU Directive 2010/63/EU on the protection of animals used for scientific 

purposes and reported in compliance with the ARRIVE guidelines. 

Two sets of experiments are presented in this thesis. In Experimental Project I, 

nimodipine was applied in solution. In Experimental Project II, nimodipine was associated with 

pH-sensitive nanoparticles in suspension. 

Young adult, male Sprague-Dawley rats (Charles River Laboratories) were used in the 

projects. Animals were housed under a normal 12/12 h light/dark cycle and at constant 

temperature (23 °C). Standard rodent chow and drinking water were supplied ad libitum. On 

the day of experiments, animals were anesthetized with isoflurane (1.5-2 % in N2O:O2 

70 %:30 %) and allowed to breathe spontaneously through a head mask. In Experimental 

Project I, isoflurane was substituted by -chloralose (dissolved in saline at a concentration of 

7 mg/ml; administered as a bolus injection of 50 mg/kg for initiation, and then 30 mg/kg/h for 

maintenance, intraperitoneally) for the period of actual data acquisition. In Experimental 

Project II, isoflurane anesthesia was sustained throughout the experimental protocol. Body 

temperature was maintained at 37±0.5 °C by using a servo-regulated heating pad, 

feedback-controlled by a flexible rectal probe (Harvard Apparatus, Holliston, MA, U.S.A.). 

Atropine (0.1 %, 0.05 ml) was administered intramuscularly shortly before the surgical 

procedures to avoid the production of airway mucus. Lidocain (1 %) was administered topically 

before opening each tissue layer. The left femoral artery was cannulated to monitor MABP 

continuously, and to collect samples for arterial blood gas analysis. Samples for blood gas 

analysis were taken prior to the start of the experimental protocol (physiological condition) and 

shortly after the evolution of the last SD event in a train (ischemic condition) (Epoc Reader, 

Epocal, Ottawa, Canada). The depth of anesthesia was regularly checked and controlled with 

the aid of MABP. Both common carotid arteries were carefully separated from the surrounding 

tissue and an occluder was looped around each vessel for later induction of acute, incomplete, 

global forebrain ischemia. 
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The head of the rats was fixed into a stereotactic frame (Stoelting Co., Wood Dale, IL, 

USA) and the skin above the skull and temporal muscle was retracted from the underlying right 

parietal and temporal bones. Two cranial windows (~3x3 mm) were prepared on the right 

parietal bone (3 mm caudal and 5 mm lateral, or 7 mm caudal and 5 mm lateral from bregma; 

in Experimental Project I or II, respectively) with a high precision dental drill (Technobox, 

Bien Air 810, Switzerland; or ProLab Basic, Bien-Air Dental SA, Bienne, Switzerland) under 

saline cooling. The cortical surface was exposed by the careful retraction of the dura mater in 

each cranial window. The rostral window was later used for data acquisition (i.e., reference 

electrode recording local field potential (LFP) filtered in DC mode, and an adjacent Laser-

Doppler probe for electrophysiology and CBF measurement in both experimental projects, and 

a pH sensitive microelectrode for extracellular pH measurement in Experimental Project II) 

and topical drug administration, while the caudal window served SD elicitation (Fig 5). The 

craniotomies were regularly irrigated with artificial cerebrospinal fluid (aCSF; mM 

concentrations: 126.6 NaCl, 3 KCl, 1.5 CaCl2, 1.2 MgCl2, 24.5 NaHCO3, 6.7 urea, 3.7 glucose 

bubbled with 95 % O2 and 5 % CO2 to achieve a constant pH of 7.4). In Experimental Project 

I, experiments were terminated at the end of the experimental protocol by the overdose of the 

anesthetic agent. In Experimental Project II, the animals were sacrificed under deep anesthesia 

with transcardiac perfusion. 

Figure 5. The preparation in 

Experimental Project I 

(Panel A) and II (Panel B). 

The rostral window was used 

for data acquisition (i.e., 

Ag/AgCl electrode recording 

of local field potential 

filtered in DC mode, Laser-

Doppler probe for cerebral 

blood flow measurement, pH 

sensitive microelectrode for 

extracellular pH 

measurement) and topical 

drug administration, while 

the caudal window served 

spreading depolarization 

(SD) elicitation. 
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3.1. Recording of electrophysiological variables and extracellular pH 

A saline-filled glass capillary electrode (20 m outer tip diameter) was inserted 

700-1000 m deep into the cerebral cortex at the rostral window for the synchronous recording 

of the LFP and the slow cortical or DC potential and was also used as reference for the 

pH-sensitive electrode. An Ag/AgCl electrode inserted subcutaneously in the neck served as 

common ground in both experimental projects. 

In Experimental Project I, the electrophysiological signals were recorded via a high 

input impedance pre-amplifier (NL102GH, NeuroLog System, Digitimer Ltd., United 

Kingdom), connected to a differential amplifier (NL106, NeuroLog System, Digitimer Ltd., 

United Kingdom) with associated filter and conditioner systems (NL125, NL530, NeuroLog 

System, Digitimer Ltd., United Kingdom). Potential line frequency noise (50 Hz) was removed 

by a high-quality noise eliminator (HumBug, Quest Scientific Instruments Inc., Canada) 

without any signal attenuation. Analogue to digital conversion was performed by a dedicated 

analog-to-digital converter card (NI USB-6008/6009, National Instruments, Austin, Texas, 

USA) controlled through a custom-made software, written in LabView (National Instruments, 

Austin, Texas, USA).  

In Experimental Project II, ion-sensitive microelectrodes were prepared according to 

Voipio and Kaila (1993) [76]. Glass capillary microelectrode tips (outer diameter: 10-12 m) 

were filled with a liquid H+-ion exchanger, and the shank of the microelectrode was backfilled 

with 150 mM NaC1 + 40 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) + 

20 mM NaOH. Each pH-sensitive microelectrode was calibrated in standard solutions of known 

pH (pH 8.05, 7.02, 6.2; calibration solution containing 150 mM NaCl + 40 mM HEPES). 

Microelectrodes were connected to a custom-made dual-channel high input impedance 

electrometer (including AD549LH, Analog Devices, Norwood, MA, USA) via Ag/AgCl leads. 

The voltage signal recorded by the reference electrode was subtracted from that of the 

pH-sensitive microelectrode by dedicated differential amplifiers and associated filter modules 

(NL106 and NL125, NeuroLog System, Digitimer Ltd, United Kingdom), which yielded 

potential variations related to changes in extracellular [H+]. The recorded signals were then 

forwarded to an analog-to-digital converter (MP 150, Biopac Systems, Inc). In Experimental 

Project II, electric signals were continuously acquired at a sampling frequency of 1 kHz. 

Extracellular pH changes were expressed in mV to be translated into pH units offline, using 

least squares linear regression. The tips of the two electrodes were implanted as near as possible. 
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3.2. Monitoring of local cerebral blood flow 

Laser Doppler flowmetry (LDF) was used to record changes in local CBF in response 

to SD events in both experimental projects, and somatosensory (whisker) stimulation in 

Experimental Project I. A laser Doppler needle probe (Probe 403 connected to PeriFlux 5000; 

Perimed AB, Sweden) was positioned above the barrel cortex. The probe was positioned right 

above the cortical surface at the penetration site of the glass capillary electrodes with a 

micromanipulator, avoiding any large pial vessels. In Experimental Project I, the ideal position 

of the LDF probe was identified prior to the actual experimental protocol: the probe was 

positioned over the region where the amplitude of functional hyperemia in response to whisker 

stimulation proved to be the greatest. In both experimental projects, the signal was digitized 

and acquired, together with the DC potential, LFP and pH signals essentially as described above 

(MP 150 and AcqKnowledge 4.2.0, Biopac Systems, Inc. USA). In Experimental Project II, 

the completed preparation was enclosed in a Faraday cage. 

3.3. Pharmacological treatment 

Animal selection for treatment was random by alternating treatment as the experimental 

work proceeded. In Experimental Project I, the rostral cranial window was incubated with 

nimodipine (Sigma-Aldrich, 100 μM in 0.1 % DMSO (dimethyl-sulfoxide) in aCSF; n=12) 

following 5 min baseline recording. The drug solution was refreshed every 10 min to maintain 

efficacy until the termination of each experiment. In other rats, rinsing the cranial window with 

vehicle served as control for pharmacological treatment (n=17). 

In Experimental Project II, chitosan nanoparticle suspension – either loaded with 

nimodipine, or devoid of the pharmacon (i.e., vehicle) – was prepared in aCSF according to 

Janovák et al. (2018) [74]. The nanoparticle suspension was expected to release nimodipine in 

response to a pH shift from physiological (~pH 7.35) to acidic (~pH 6.75) [74]. The rostral 

cranial window was incubated with the nanoparticle suspension including nimodipine (100 M; 

n=10) or vehicle (n=8). Suspensions were refreshed every 10 minutes until the termination of 

the experiment. 

3.4. Experimental protocol 

In Experimental Project I, after drug incubation for 30 min, both common carotid 

arteries were permanently occluded by pulling on the occluder lines until resistance was felt, 

and then the occluders were secured in place (n=14). Successful 2VO was confirmed by an 

immediate, sharp drop of the LDF-signal displayed live. Rats with no occlusion served as 
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control for 2VO (i.e., intact, n=15). Fifteen minutes after 2VO onset, whisker stimulation 

involving the entire left whisker pad was performed mechanically. Stimulation frequency was 

set at 2-3 Hz, each stimulation lasting for 25 s. The stimulation was repeated 4 times with 2 min 

intermissions. Subsequently, three SD events were triggered by placing a 1 M KCl-soaked tiny 

cotton ball in the caudal craniotomy. The cotton ball was removed, and the craniotomy rinsed 

with aCSF after each successful SD elicitation, to allow the evolution of a single SD in response 

to each triggering. SDs were provoked at an inter-SD interval of at least 15 min. Considering 

the combination of 2VO and pharmacological manipulations, 4 experimental groups were 

established (Fig. 6A). 

In Experimental Project II, after a baseline period of 10 minutes, the nanoparticle 

suspension was washed to the brain surface. Ten minutes later, incomplete, global forebrain 

ischemia was induced by 2VO, as described above. Fifteen minutes after 2VO onset, three SD 

events were evoked by the topical administration of 1 M KCl. According to the 

pharmacological treatment, 2 experimental groups were formed (Fig. 6B). 

 

 

Figure 6. Timelines of the protocols implemented in Experimental Project I (Panel A) and II 

(Panel B). Abbreviations: 2VO, permanent, bilateral occlusion of the common carotid arteries 

(“two-vessel occlusion”); SD, spreading depolarization; SD1, first spreading depolarization in 

a train; rSD, recurrent spreading depolarization. 
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3.5. Histology 

In Experimental Project II, 1-1.5 h after ischemia induction, animals (n=16) were 

transcardially perfused in deep anesthesia with physiological saline followed by 4 % 

paraformaldehyde (PFA). The brains were removed and postfixed overnight in 4 % PFA. 

Coronal forebrain sections of 20 μm thickness were cut with a vibratome (Leica VT 1000S; 

Leica Microsystems, Wetzlar, Germany). Microglia were labelled with Iba1 (ionized calcium 

binding adaptor molecule 1; rabbit anti-Iba-1 primary antibody, 1:3000, 019-19741, Fujifilm 

Wako Chemicals Europe GmbH, Neuss, Germany) to explore whether the experimental 

procedures or the topical application of the nanoparticle suspension by itself induced microglial 

activation. To estimate neuronal loss due to SD, and neuroprotection offered by nimodipine, 

neurons in free floating slices were labelled for the marker NeuN (neuronal nuclei) with 

immunohistochemistry (rabbit anti-NeuN primary antibody; 1:300, ab177487, AbCam, 

Cambridge, UK). Endogenous peroxidase activity was blocked with 5 % H2O2, the nonspecific 

protein binding sites were blocked with 5 % normal goat serum (Merck, Kenilworth, New 

Jersey, USA) and the slices were permeabilized with Triton X-100 (Merck, Kenilworth, New 

Jersey, USA). Color reaction was developed with a Polink-2 Plus HRP Detection Kit for rabbit 

primary antibody with DAB (diaminobenzidine) chromogen (GBI Labs, Bothell, WA, USA). 

The slices were mounted on microscopic slides with Eukit® (Merck, Kenilworth, New Jersey, 

USA) and digitally recorded with a microscope slide scanner (Zeiss Mirax Midi Slide Scanner, 

Carl Zeiss MicroImaging GmbH, Jena, Germany) operated by a CaseViewer software (3D 

Histech Ltd., Budapest, Hungary). The slides were evaluated with ImageJ (Wayne Rasband, 

NIH) software. 

Microglial activation was characterized with a ramification index calculated according 

to previously established principles [77, 78]. In each animal, 3 coronal brain slices were selected 

for the analysis. In each slice, 3 photomicrographs were taken at 20x magnification along the 

depth of the parietal cortex in both hemispheres. A 126x126 μm grid was placed on each of the 

9 photomicrographs. Microglial branches/grid intersections (B) as well as microglial cell bodies 

within the grid (CBD) were counted manually with the Cell Counter plugin of ImageJ. The 

ramification index (RI) was calculated according to the following formula: RI=B2/CBD. Since 

activated microglia are characterized by the retraction of their processes (i.e., amoeboid shape), 

high ramification index corresponds to the resting state of microglia, while low ramification 

index reflects microglial activation. 

Neuronal loss in the ipsi- and contralateral parietal cortex was characterized by the 

estimation of NeuN positive immunolabeling in a cortical area of a standard size. In each 
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animal, 3 coronal brain slices were selected for the analysis. In each slice, 2 photomicrographs 

were taken at 5x magnification along the depth of the parietal cortex in both hemispheres. After 

masking binary images in ImageJ, the relative surface covered by NeuN-positive cell bodies 

was expressed. 

3.6. Data processing and analysis 

All variables (i.e., DC potential, LDF signal, MABP and extracellular pH) were 

simultaneously acquired, displayed live, stored, and analyzed using a personal computer 

equipped with a custom-made software in LabView in Experimental Project I (National 

Instruments, Austin, Texas, USA) or with a dedicated software in Experimental Project II 

(AcqKnowledge 4.2 for MP150, Biopac Systems, Inc., USA). Raw LDF recordings were down 

sampled to 1 Hz and then expressed relative to baseline by using the average CBF value of the 

first 5 minutes (100 %) and the recorded biological zero obtained after terminating each 

experiment (0 %) as reference points. In Experimental Project I, evoked field potentials (EFP) 

during whisker stimulation were analyzed in the original LFP recordings acquired at 2000 Hz, 

while raw DC recordings were also down sampled to 1 Hz in both experimental projects. 

Offline analysis was assisted by the inbuilt instructions of the software AcqKnowledge 4.2 for 

MP 150 (Biopac Systems, Inc., Goleta, USA). In Experimental Project II, full data analysis was 

conducted for animals whose cerebrocortical tissue pH varied in the physiological range prior 

to the application of nanoparticles (n=9). 

In Experimental Project I, in case of whisker stimulation, the peak amplitude of evoked 

potentials was assessed to reveal drug effect, if any. The efficacy of hyperemia was 

characterized by measuring the maximum amplitude of the CBF response (mean of 15 s at the 

plateau of the hyperemia).  

For SD events, data were evaluated separately for the first SD (SD1), and rSD events, 

because of the known differences in the kinetics of the SD-associated CBF response [79]. 

SD-associated hyperemia was characterized by; (i) the amplitude of the peak hyperemia, (ii) 

the duration of peak hyperemia at half amplitude and (iii) the magnitude (i.e., area under the 

curve, AUC) of the hyperemic response. SDs on the DC potential trace were analyzed by the 

following parameters: (i) amplitude of depolarization, (ii) duration of depolarization at half 

amplitude, (iii) AUC of the negative DC shift, (iv) rate of depolarization and (v) repolarization. 

SD events, which exceeded the selection criteria for the time at half amplitude (>200 seconds) 

were excluded from the analysis. In Experimental Project II, extracellular pH signal indicative 
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of SD was characterized by (i) amplitude of the transient acidosis, (ii) duration at half amplitude, 

(iii) AUC of the pH response, and (iv) rate of acidosis and (v) recovery.  

Blinding data analysis was intended by assigning codes to files and recordings, which 

do not reveal the experimental condition (i.e., date of the experiment). All recordings were first 

screened for events suitable for comprehensive analysis. Data are given as mean ± standard 

deviation (stdev). The results were statistically analyzed with the software SPSS (IBM SPSS 

Statistics for Windows, Version 22.0, IBM Corp., USA). A repeated measure, a one-way or a 

two-way analysis of variance (ANOVA) model was used, dependent on the type of data set. 

Tukey, Games-Howell, or Fisher post hoc test was used for group comparisons, whenever 

applicable. Levels of significance were defined as p<0.05* and p<0.01**. Non-parametric data 

were statistically evaluated with a Pearson Chi-Square Test for Association. All relevant 

statistical methods are given in each figure legend. 
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4. Results 

4.1. Physiological variables 

Physiological variables (arterial blood pH, partial arterial pressure of O2 and CO2, 

MABP) are presented in Table 1. Statistical analysis did not reveal any significant ischemia- or 

treatment-related difference across experimental groups. Variables were in the physiological 

range prior to the initiation of the experimental protocol (pO2=144.424.4 mmHg, 

pCO2=39.89.9 mmHg, blood pH=7.360.03), with a shift to higher pCO2 and lower pH values 

45-50 min after ischemia onset (pO2=128.029.3 mmHg, pCO2=48.714.2 mmHg, blood 

pH=7.280.06). 

 

Table 1. Physiological variables and number of animals included in each experimental 

group. Data are given as mean±stdev. Abbreviations: Exp. Project: Experimental Project, 

Pharm. treatm.: pharmacological treatment, Isch. induction: ischemia induction, Art. pCO2: 

arterial partial pressure of CO2, Art. pO2: arterial partial pressure of O2, Nimo: nimodipine, NP: 

nanoparticle, 2VO, permanent, bilateral occlusion of the common carotid arteries (“two-vessel 

occlusion”); MABP, mean arterial blood pressure. 

 
Exp. 

Project 

Pharm. 

treatm. 

Isch. 

induc-

tion 

n Body 

weight 

(g) 

Art. 

blood 

pH 

Art. pO2 

(mmHg) 

Art. 

pCO2 

(mmHg) 

MABP 

prior to 

drug/ 

vehicle 

admin. 

(mmHg) 

MABP 

after 

drug/ 

vehicle 

admin. 

(mmHg) 

Exp. 

Project 

I 

Vehicle Intact 9 335±32 7.33±0.07 140.4±29.6 47.4±11.4 92±14 100±22 

  
2VO 8 326±48 7.33±0.03 127.0±32.8 39.9±6.3 100±1 102±8 

 
Nimo Intact 6 331±31 7.39±0.06 103.4±16.1 44.8±8.1 103±18 106±15 

  
2VO 6 313±25 7.30±0.05 99.8±4.4 56.2±11.2 89±12 92±15 

Exp. 

Project 

II 

NP only 2VO 8 335±21 7.37±0.03 158.9±21.4 34.8±11.2 86±5 95±10 

 
Nimo + 

NP 

2VO 10 342±48 7.35±0.03 131.6±20.5 44.0±7.3 89±11 88±10 

 

4.2. Baseline variations of cerebral blood flow, mean arterial blood pressure and 

tissue pH, and the evidence for drug release from nanoparticles 

Typical, original recordings of the DC potential and CBF variations over the full 

experimental protocol of Experimental Project I are shown in Figure 7. Variation of baseline 

CBF was assessed at selected time points of the experimental protocol, to evaluate the impact 

of pharmacological treatments (Fig. 8).  
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Figure 7. Representative direct current (DC) potential and cerebral blood flow (CBF) traces of 

the full experimental protocol including common carotid artery occlusion (2VO) under vehicle 

(upper box) or nimodipine (lower box) treatment. The traces were downsampled to 1 Hz 

frequency, and the CBF traces were smoothed by median filtering for 6 data points. Note that 

nimodipine gradually elevated baseline perfusion, increased the amplitude of functional 

hyperemia to whisker stimulation, and enlarged hyperemia in response to the first (SD1) and 

recurrent spreading depolarizations (rSDs). Also, nimodipine reduced SD amplitude. Note also 

the strikingly different size of the CBF response to whisker stimulation and SD within the same 

preparation. 

 

In Experimental Project I, ischemia induction caused a marked reduction of CBF (to 

53±23 %), which stabilized in the vehicle-treated group at 74±11 % prior to SD1, and at 

67±15 % prior to rSDs (Fig. 8B, C and D). The occurrence of SD produced long-lasting 

oligemia, the final element of the CBF response to SD, which was apparent between SD events 

in the intact groups, as well. Nimodipine treatment increased baseline CBF significantly by the 

time of ischemia induction with respect to the pre-treatment CBF level (131±43 vs. 104±12 %, 

nimodipine vs. vehicle) (Fig. 8A). Further, nimodipine counteracted CBF reduction due to 2VO 

(CBF shift from baseline: 22±11 vs. -26±11 pp., nimodipine vs. vehicle), and prevented the 

evolution of post-SD oligemia (CBF shift from baseline: 11±24 vs. -30±12 pp., nimodipine vs. 

vehicle in the intact group) (Fig. 8B, C and D). 

In Experimental Project II, CBF elevation was taken as a reliable read-out of the 

efficacy of nimodipine treatment and was expected to confirm drug release from nanoparticles. 

In contrast with Experimental Project I, local CBF remained level during the incubation period 

prior to ischemia onset (99.22.6 vs. 99.93.0 %, 30 min after vs. before the application of 

nimodipine associated to nanoparticles) (Fig. 8A) in the face of invariable tissue pH (pH 

7.290.22 vs. 7.280.18, 30 min after vs. before the application of nimodipine associated to 
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nanoparticles) ((a) and (b) in Fig. 8E). Ischemia induction produced a sharp drop of CBF to 

29.410.2 %, and an acidic tissue pH shift to 7.060.30 ((c) in Fig. 8E). From this point on, 

CBF sampled prior to SD events increased in the nimodipine group, and was higher than in the 

vehicle group, particularly prior to rSDs (47.823.7 vs. 29.36.96 %, nimodipine vs. vehicle) 

((f) in Fig. 8E), which were triggered subsequent to the transient reduction of tissue pH to 

6.710.29 with SD1 ((e) in Fig. 8E). At the same time, the expected release of nimodipine from 

the nanoparticles ((d) in Fig. 8E) did not exert any discernible impact on MABP (e.g., 

96.714.3 vs. 92.010.9 mmHg, nimodipine vs. vehicle, after ischemia induction – and thus 

the initiation of drug release). 
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Figure 8. Variation of baseline cerebral blood flow (CBF, i.e., in between stimulations) with 

respect to pharmacological treatments.  

A) CBF baseline after 30 min of drug incubation, prior to the induction of ischemia in 

Experimental Project I and II. The intact group and the group of animals later undergoing 

bilateral common carotid artery occlusion (2VO) are merged, because they received identical 

handling until this point of the experimental protocol. Bars in front of white background 

represent Experimental Project I, while the bars in front of dark gray background stand for 

Experimental Project II. B) CBF before the induction of the first SD (SD1) in Experimental 

Project I. Data are expressed as change with respect to the corresponding baseline. C) CBF 

before the induction of recurrent SD events (rSD) in Experimental Project I. Note, that 

nimodipine significantly elevated baseline perfusion in each selected point of the experimental 

protocol. In panel B and C, bars in front of white background represent the intact condition, 

while the bars in front of dark gray background stand for bilateral common carotid artery 

occlusion (2VO). 

D) Variation of baseline cerebral blood flow (CBF) with respect to pharmacological 

treatment at selected points of Experimental Project I. Selected points of the experimental 

protocol: (a) before treatment initiation; (b) after treatment initiation; (c) minimum after 

ischemia induction; (d) prior to the first spreading depolarization (SD1); (e) prior to recurrent 

SD (rSD) events. E) CBF variation and tissue pH at selected points of Experimental Project II. 

Selected points of the experimental protocol: (a) before treatment initiation; (b) after treatment 

initiation; (c) minimum after ischemia induction; (d) prior to the first spreading depolarization 

(SD1); (e) pH minimum with SD1; (f) prior to recurrent SD (rSD) events. Note that CBF 

becomes significantly higher in the nimodipine group compared to the vehicle group following 

the tissue pH drop with ischemia induction. Data are given as meanstdev. Statistical analysis 

relied on one-way ANOVA paradigm. The level of significance was defined as p<0.05* vs. 

vehicle. 
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4.3. The impact of nimodipine on neurovascular coupling 

The impact of nimodipine (in solution) on neurovascular coupling under intact and 

ischemic conditions was measured in Experimental Project I. For the estimation of drug effect 

on physiological neurovascular coupling, somatosensory EFPs and the associated CBF 

response provoked by whisker stimulation were evaluated in the somatosensory barrel cortex 

(Fig. 9). The amplitude of EFPs was considerably attenuated under ischemia with respect to the 

intact condition (107.7±19.5 vs. 418.9±53.5 V, 2VO vs. intact after vehicle treatment). The 

application of nimodipine dramatically decreased the amplitude of evoked potentials, in the 

intact cortex (128.0±58.6 vs. 418.9±53.5 V, nimodipine vs. vehicle in the intact group) 

(Fig. 9A and B). 

The relative amplitude of the hyperemic response was notably smaller under ischemia 

than in the intact brain (6.2±2.9 vs. 12.9±5.4 %, 2VO vs. intact, after vehicle treatment). 

Treatment with nimodipine recovered the relative amplitude of the CBF response to the intact 

level (15.4±6.7 vs. 6.2±2.9 % vs. 12.9±5.4 %, 2VO nimodipine vs. 2VO vehicle vs. intact 

vehicle). Additive to the elevation of baseline CBF achieved by nimodipine, the further 

improvement of the CBF response to whisker stimulation in the ischemic cortex was highly 

remarkable (Fig. 9C and D).  
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Figure 9. The impact of ischemia or pharmacological treatments on evoked field potentials 

(EFPs) and the coupled cerebral blood flow (CBF) response during whisker stimulation in 

Experimental Project I. Traces and bars in front of white background were taken from intact 

animals, while the traces and bars in front of dark gray background represent ischemia achieved 

with bilateral common carotid artery occlusion (2VO). A) Representative local field potential 

(LFP) traces display somatosensory EFPs during whisker stimulation. B) The peak amplitude 

of EFPs. C) Traces (each is the mean of 4 stimulations in an animal representative of each 

condition) show the CBF response to whisker stimulation. Each trace is the average of a number 

of individual events and are presented as mean±stdev. D) The relative amplitude of the CBF 

response to whisker stimulation. The base of each bar in the chart is set to the CBF level directly 

preceding whisker stimulation. Note that, nimodipine significantly decreased the amplitude of 

EFP in the intact cortex and recovered the amplitude of CBF response to intact level under the 

ischemic condition. In panel B and D, data are given as mean±stdev; sample size (i.e., the 

number of events analyzed) is indicated in each bar. Statistical analysis relied on a two-way 

ANOVA paradigm (factors: 2VO and treatment). The level of significance was defined as 

p<0.05*. A Games-Howell post hoc test was applied for group comparisons (p<0.05*vs. 

vehicle; p<0.05# vs. respective intact). 

 

4.4. The impact of nimodipine on spreading depolarization  

SD events were experimentally triggered in the intact brain (Experimental Project I) or 

under global forebrain ischemia (Experimental Project I, II) to evaluate the potential impact of 

nimodipine on the kinetics of SD, the associated CBF response and tissue pH variation 

(Fig. 10-13).  

4.4.1. The DC potential signature of spreading depolarization  

SD occurrence was confirmed by the transient negative shift of the DC potential 

(Fig 10A). In Experimental Project I, nimodipine in solution significantly decreased SD 

amplitude (-13.2±2.5 vs. -15.1±2.1 mV, nimodipine vs. vehicle in the intact condition) 

(Fig. 10B). In addition, nimodipine shortened SD duration in the ischemic cortex to the intact 

level (31.1±7.4 vs. 61.4±41.9 vs. 31.5±9.5 s, 2VO nimodipine vs. 2VO vehicle vs. intact 

vehicle) (Fig. 10C).  
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Figure 10. The impact of ischemia or nimodipine treatment on recurrent spreading 

depolarizations (rSDs) A) Traces (each is the mean of rSDs in an animal representative of each 

condition) demonstrate the negative DC potential shift indicative of rSDs, triggered after the 

ischemia onset in Experimental Project I. Each trace is the average of a number of individual 

events and are presented as mean±stdev. B) Amplitude of the negative DC potential shift with 

rSDs. C) Duration of the negative DC potential shift with rSDs, measured at half amplitude. In 

B and C, bars in front of white background represent the intact condition, while the bars in front 

of dark gray background stand for bilateral common carotid artery occlusion (2VO). Data are 

given as mean±stdev; sample size (i.e., the number of events analyzed) is indicated in each bar. 

Statistical analysis relied on a two-way ANOVA paradigm (factors: 2VO and treatment). The 

level of significance was defined as p<0.05* vs. vehicle. Tukey’s HSD (B) or a Games-Howell 

(C) post hoc test was applied for group comparisons. 

 

As expected, in Experimental Project II, the analysis of the DC potential signature of 

SDs demonstrated that nimodipine applied in the nanoparticle suspension shortened the 

duration of rSDs significantly with respect to control (48.07±23.29 vs. 76.25±17.2 s, 

nimodipine vs. vehicle) (Fig. 11C). Moreover, it facilitated the rate of repolarization of rSD 

events in particular (0.8±0.523 vs. 0.279±0.153 mV/s, nimodipine vs. vehicle) (Fig. 11B). 
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Figure 11. The impact of ischemia or nimodipine treatment on recurrent spreading 

depolarizations (rSDs). A) Traces demonstrate the negative DC potential shift indicative of 

rSDs in Experimental Project II. Each trace is the average of a number of individual events and 

are presented as mean±stdev. B) Rate of repolarization of the negative DC potential shift with 

rSDs. C) Duration of the negative DC potential shift with rSDs, measured at half amplitude. 

Data are given as mean±stdev; sample size (i.e., the number of events analyzed) is indicated in 

each bar. Statistical analysis relied on a one-way ANOVA paradigm. The level of significance 

was defined as p<0.05* vs. vehicle.  

 

4.4.2. The local cerebral blood flow response to spreading depolarization  

The share of the individual elements in the CBF response to SD is variable across animal 

species and anesthesia protocols and appears to change remarkably according to the actual 

metabolic status of the tissue [27]. Considering the different anesthesia protocols during the 

period of actual data acquisition (i.e., -chloralose in Experimental Project I, and isoflurane in 

Experimental Project II), we found different kinetics of the CBF responses in Experimental 

Project I and II. The initial hypoperfusion proved to be detectable only occasionally, therefore 

the analysis focused on the peak hyperemic element of the CBF response. 

In Experimental Project I, the CBF response to SD consisted of 4 elements, starting with 

a transient hypoperfusion, followed by a peak and then a late hyperemia, and concluded by a 

long-lasting oligemia [27]. The kinetics of the observed CBF responses exhibited a spectrum 

considering the weight of late hyperemia in the signature. Further, the presence of the late 

hyperemic element served as the basis for CBF response classification to distinguish CBF 
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response Type 1 characterized by peak hyperemia only, from CBF response Type 2 that 

included late hyperemia in addition to the peak hyperemia (Fig 12A). A semi-quantitative 

approach of ours indicated that the likelihood for Type 1 and Type 2 CBF responses to evolve 

was near equal in the vehicle-treated, intact condition. Conversely, ischemia, or treatment with 

nimodipine, allowed late hyperemia to emerge at a clearly higher incidence (Fig 12B). The 

amplitude of peak hyperemia was conserved over experimental groups, except for nimodipine 

treatment in the ischemic condition, which augmented peak hyperemia amplitude (relative 

change: 185±62 vs. 131±66 %, nimodipine vs. vehicle in the 2VO group) (Fig 12C). The 

duration of hyperemia (i.e., peak, and late hyperemia together) was not significantly altered by 

ischemia or the treatment. 
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Figure 12. The impact of ischemia or pharmacological treatments on the cerebral blood flow 

(CBF) response to recurrent spreading depolarization (rSD) events in Experimental Project I. 

A) Representative traces demonstrate the spectrum of the kinetics of the CBF response 

considering the weight of late hyperemia in the signature. The CBF response was classified as 

Type 1 whenever peak hyperemia was obvious, with late hyperemia being undetectable. The 

CBF response was labelled Type 2, when both peak and late hyperemia could be identified. B) 

Occurrence of Type 1 and Type 2 CBF responses is depicted with respect to all of the CBF 

responses analyzed being taken as 100% in each experimental group. Horizontal bars with black 

outline (left) depict the share of Type 1, while bars with grey outline (right) represent the ratio 

of Type 2 CBF responses. Note that the two types were represented equally (i.e., near 50%) in 

the vehicle-treated, intact groups. Pearson chi-square test for association indicated a significant 

effect (value: 16.996, P < 0.017). Calculating column proportion by z test with Bonferroni 

correction identified a significant shift in Type 1 and Type 2 ratios for groups labelled (*). C) 

Amplitude of peak hyperemia. The base of each bar in the chart is set to the CBF level preceding 

rSD events. Bars in front of white background represent the intact condition, while the bars in 

front of dark gray background stand for bilateral common carotid artery occlusion (2VO). Data 

are given as mean ± stdev; sample size (i.e., the number of events analyzed) is indicated in each 

bar. Statistical analysis relied on a two-way ANOVA paradigm (factors: ischemia, and 

treatment). The level of significance was defined as *p<0.05. Tukey's HSD test was applied for 

group comparisons.  

 

In contrast with the CBF response to SD under -chloralose anesthesia, SD related CBF 

response in isoflurane anesthetized rats in Experimental Protocol II, included an initial transient 

hypoperfusion, followed by a peak hyperemia and a long lasting oligemia [40], but we did not 

detect the late hyperemic element. As expected, nimodipine delivered by nanoparticles 

significantly enhanced the amplitude (48.15±42.04 vs. 17.29±11.03 %, nimodipine vs. vehicle) 

(Fig. 13B) and the magnitude of peak hyperemia in response to rSDs (4604.43±2572.3 vs. 

2368.05±1324.71 %*s, nimodipine vs. vehicle) (Fig. 13C). 
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Figure 13. The impact of ischemia or pharmacological treatments on the cerebral blood flow 

(CBF) response to recurrent spreading depolarization (rSD) events in Experimental Project II. 

A) Traces demonstrate the kinetics of CBF response to rSD events. Each trace is the average of 

a number of individual events and are presented as mean±stdev. B) Magnitude (i. e. area under 

the curve, AUC) of peak hyperemia. C) Amplitude of peak hyperemia. The base of each bar in 

the chart is set to the CBF level preceding rSD events. Data are given as mean±stdev; sample 

size (i.e., the number of events analyzed) is indicated below each bar. Statistical analysis relied 

on one-way ANOVA paradigm. The level of significance was defined as p<0.05* vs. vehicle. 

 

4.4.3. Tissue pH variations related to spreading depolarization 

In Experimental Project II, we measured extracellular tissue pH variations 

corresponding to ischemia induction and SD events. As presented above, ischemia induction 

causes an acidic tissue pH shift from the neutral 7.3-7.4 to 7.060.30. Tissue pH variations 

associated with SD events started with a rapid, short alkaline shift followed by a longer-lasting, 

dominant, transient acidosis [40] (Fig. 14). Tissue pH did not fully recover and remained 

typically mildly acidic after SD1 (pH 7.14±0.29 vs. 7.23±0.28, prior to rSDs vs. prior to SD1). 

Nimodipine treatment had no measurable impact on the initial alkaline shift but modified the 

kinetics of the subsequent transient acidosis. As such, nimodipine delivered by nanoparticles 

facilitated the rate of return from the acidic shift with rSDs (0.01±0.006 vs. 0.005±0.002 pH 

unit/s, nimodipine vs. vehicle) (Fig. 14C) and shortened the duration of acidosis with rSDs 

(65.46±20.2 vs. 138.3±66.07 s, nimodipine vs. vehicle) (Fig. 14B). Consequently, the 

magnitude of acidosis expressed as AUC was substantially reduced in the nimodipine compared 

to vehicle group (25.75±10.69 vs. 49.46±23.38 pH unit*s, nimodipine vs. vehicle) (Fig. 14D). 
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Figure 14. The impact of nimodipine delivered with nanoparticles on the tissue pH response 

related to recurrent spreading depolarization events (rSDs) in Experimental Project II. A) 

Traces demonstrate the kinetics of pH response to rSD events. Each trace is the average of a 

number of individual events taken from separate animals and are presented as mean±stdev. B) 

Duration of tissue acidosis taken at half amplitude. C) Rate of return from tissue acidosis. D) 

Magnitude (i. e. area under the curve, AUC) of tissue acidosis. Note that, nimodipine facilitated 

the rate of return from acidosis, moreover it shortened the duration and reduced the magnitude 

of the acidotic shift with SD. Data are given as mean±stdev, sample size (i.e., the number of 

events analyzed) is indicated near each bar. Statistical analysis relied on one-way ANOVA 

paradigm. The level of significance was defined as p<0.05* vs. vehicle. 

 

4.5. Histology 

In order to explore whether the chitosan nanoparticles used here might trigger 

neuroinflammatory reactions (a potential unfavorable side effect of the drug delivery approach), 

we estimated microglial activation in immune-stained brain sections, at the end of Experimental 

Project II. Microglia immunolabeled for Iba1 appeared to be activated in the cerebral cortex 

ipsilateral to the initiation of SD events, as shown by their sparser processes and rounded, 

amoeboid shape (Fig. 15A). Microglia activation was quantitatively expressed by a 

ramification index [78] representing the density of microglial processes. The ramification index 

was remarkably reduced in the ipsilateral compared to the contralateral somatosensory cortex 

(e.g., 398203 vs. 1118300, ipsi- vs. contralateral in the vehicle group) (Fig. 15A). The 

hemisphere-specific reduction of the ramification index was attributed to SD, because it was 

observed in rats with bilateral craniotomy (unilateral SD induction), as well (201102 vs. 
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483244, ipsi- vs. contralateral). The application of the nanoparticle suspension alone (vehicle) 

or incorporating nimodipine did not reduce the ramification index any further compared to 

aCSF-rinsed preparations (control) (443208 vs. 398203 vs. 284107, nimodipine vs. vehicle 

vs. control; ipsilateral) (Fig. 15A). Thus, the administration of nanoparticles on the cortical 

surface did not produce a detectable potentiation of microglia activation. 

We labeled viable neurons with NeuN immunohistochemistry to estimate (i) the degree 

of early neurodegeneration SD might cause in the acute phase of global forebrain ischemia, and 

(ii) the potential neuroprotection achieved by nimodipine (Fig. 15B). We screened the 

somatosensory cortex (i.e., over the striatum) distant to the site of SD elicitation (i.e., over the 

hippocampus), with the aim to exclude areas from the analysis, in which neurodegeneration 

might have been caused by topical KCl application to trigger SD. In some animals, the reduced 

relative area covered by NeuN-immunolabeled neurons indicated early neurodegeneration in 

the cerebral cortex ipsilateral to the initiation of SD events (Fig. 15B), albeit the quantitative 

analysis did not reveal significant SD-related neuron loss (26.95.0 vs. 29.14.7 %, ipsi- vs. 

contralateral in the vehicle group) (Fig. 15B). NeuN labeling was not enhanced in the 

nimodipine-treated group in a statistically meaningful manner (29.04.8 vs. 26.95.0 %, 

nimodipine vs. vehicle in the ipsilateral cortex) (Fig. 15B). 
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Figure 15. The impact of the topical application of the nanoparticle suspension with or without 

nimodipine on microglia activation and neuronal viability in Experimental Project II. A) 

Microglia immunolabeled for Iba1 appeared to be activated in the cerebral cortex ipsilateral to 

the initiation of spreading depolarization (SD) and craniotomy. The application of the 

nanoparticle suspension alone (vehicle) or incorporating nimodipine did not trigger additional 

microglia activation compared to aCSF-rinsed preparations (control). Microglia activation was 

expressed by a ramification index representing the density of microglial processes. B) The 

relative area covered by NeuN-immunolabeled neurons expressed early signs of 

neurodegeneration in the cerebral cortex ipsilateral to the initiation of SD and craniotomy. 

Nimodipine did not prevent neurodegeneration in a statistically meaningful manner. Data are 

given as mean±stdev, sample size (i.e., the number of events analyzed) is indicated below each 

bar. Statistical analysis relied on a two-way ANOVA paradigm. The level of significance was 

defined as p<0.05*. 
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5. Discussion  

Here we set out to explore whether nanoparticles designed to release nimodipine in 

response to pH decreasing below the physiological range (pH 7.3-7.4) are effective to 

counteract some injury markers in experimental cerebral ischemia. The model used reproduces 

conditions typical of the ischemic penumbra [3, 40], which is indicated by tissue perfusion 

ranging between 20 and 40 % of baseline, and tissue pH dropping to 6.9–7.1 after ischemia 

induction (Fig 3). We hypothesized, that nanoparticles are suitable for targeting drug release to 

the ischemic region in the nervous tissue. Tissue acidosis caused by ischemia or SD occurrence 

was supposed to trigger effective drug release in the injured region. We have selected 

nimodipine, an L-type VGCC antagonist as the drug to be delivered, because its cerebral 

vasodilator, SD limiting and neuroprotective actions have been widely acknowledged [67, 80-

83] to be used as a reference for the nanoparticle study. We presumed that nimodipine 

administered with nanoparticles should exert its expected vasodilator and neuroprotective 

effects and should impede SDs propagating over the penumbra. 

5.1. Acidosis linked to cerebral ischemia can be employed as a trigger for targeted 

drug delivery 

In Experimental Project II, nimodipine associated to pH-responsive nanoparticles did 

not achieve CBF elevation prior to ischemia induction, when tissue pH was physiological, 

which confirms that nimodipine was not dissociated from the nanoparticles at near neutral tissue 

pH. Subsequent to the induction of ischemia and the related transient tissue acidosis, baseline 

CBF was found to be higher in the nimodipine-treated compared to the vehicle group, which is 

consistent with the known cerebrovascular action of nimodipine [84], and we interpreted it as 

the in vivo verification of pH-sensitive drug release [74] (Fig 8). 

5.1.1. Recent advantages in nanomedicine 

Although disorders of the brain (i.e., cerebrovascular disorders, neurodegenerative 

diseases, or tumors) are one of the leading causes of death and long-term disability worldwide, 

the barriers of the central nervous system (BBB and blood-cerebrospinal fluid barrier) represent 

important pharmacological challenges of systemic drug-treatment. Nanotechnology can be 

applied in a wide range of diseases for diagnostic and therapeutic drug delivery of brain 

disorders. Compounds fabricated by this advanced technology can promote drug transport 

through a variety of biological membranes and/ or prolong their circulation time in the blood 

[71, 85]. 
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Nanoparticles fall under a structurally heterogenic group of nano-sized drug delivery 

systems (DDSs), with different preparation, composition, shape, size, hydrophilicity, 

penetration properties, conductivity, or surface charge [86]. Due to their special properties, 

nano-sized DDSs could become potential therapeutic methods. Their surface to volume ratio is 

relatively high, that is why reactions (i.e., drug release, penetration, binding to specific 

receptors) between particles and their environment take place on a relatively large surface. They 

can interact with biological systems at a molecular and supra-molecular level, so their biological 

responses can be designed to minimize their side effects [87]. Nano-sized DDSs can modify 

and ameliorate the biodistribution, bioavailability and pharmacokinetics of agents. Moreover, 

they can carry various types of molecules (i.e., nucleotides, peptides, proteins or low-molecular 

weight compounds), or more agents simultaneously for combination therapy. The design of the 

nano-sized DDSs can protect the drugs from disadvantageous metabolism. We can target their 

release to specific cell types or via small changes of an environmental factor (i.e., pH, 

temperature, magnetic field, light, ultrasound) [71].  

5.1.2. Tissue acidosis to guide neuroprotective intervention in ischemic 

stroke 

Over the last few years, an increasing number of studies addressed the application of 

nanotechnology for the treatment of ischemic stroke. Nano-sized DDSs to cross the BBB should 

be smaller than 100 nm, biodegradable, biocompatible, non-toxic, and stable in blood. They 

should be able to penetrate the BBB, to carry different types of agents, and should not trigger 

neuroimmune reactions. In the best scenario, nano-sized DDSs have prolonged circulation time 

and controlled drug release [88]. The application of biocompatible and biodegradable, natural, 

or synthetic macromolecular polymeric nanocarriers offers substantial promise in therapeutics 

[89-91]. Among others, stimulus responsive nanoparticles present the opportunity to initiate 

drug release by local (patho)physiological biochemical stimuli (e.g., homeostatic, redox, 

enzymatic, tissue pH) [92-94], which are intrinsic and restricted to the diseased tissue, and are 

closely related to the progression of the disease condition. These bioresponsive nanomaterials 

are also known as “smart” nanosystems [95]. A negative pH shift from the neutral 7.3-7.4 to 

below 7.0 units, for instance, can initiate conformational or solubility changes in various smart 

nanosystems, including polysaccharide chitosan nanoparticles, to allow drug release [73, 74, 

95]. In accordance, the acidic local tumor environment created by intensive or dysregulated 

glucose metabolism [96-98] has been utilized as a specific trigger for drug release in the 

treatment of solid cancers [73, 99, 100]. 
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The achievements of cancer nanomedicine have inspired the application of 

nanotechnology in the therapy of ischemic stroke, especially because these diverse disease 

entities share some distinct pathophysiological processes [101]. Along with the disintegration 

of microvascular ultrastructure, intensified generation or failing clearance of ROS, and cellular 

immune reactions [101], tissue acidosis occurs in tumors [96-98], as well as in ischemic brain 

tissue.  

5.1.3. Neuroimmune responses against nanoparticles 

In Experimental Project II, we intended to examine whether chitosan nanoparticles may 

induce a neuroimmune response at the brain tissue in contact with the nanoparticles. Chitosan, 

a derivative of chitin, is a biocompatible, biodegradable, natural polysaccharide, which has been 

considered as immune adjuvant in cancer therapy [102, 103]. Microglia form the active immune 

defense of the brain, and their reaction to inflammatory stimuli is accompanied by their typical 

morphological alteration (i.e., retraction of processes, amoeboid form). We, therefore, labeled 

microglia to estimate their potential activation by chitosan nanoparticles in our experimental 

model. The application of chitosan nanoparticle suspension to the exposed cortical surface did 

not enhance microglia activation with respect to aCSF rinsed preparations in our experiments, 

which suggests that chitosan nanoparticles themselves did not trigger a detectable local immune 

reaction in the cerebral cortex (Fig 15). 

Administration of nano-sized particles to the body, irrespectively of the route of 

administration (i.e., topical, enteral, parenteral routes), inevitably initiates an interaction with 

the immune system, so understanding the potential risk of application of new nanomaterials is 

a fundamental question. Nanoparticles can interact with cellular and subcellular (i.e., receptors, 

proteins) parts of the immune system, activating signaling cascades, causing unpredictable, 

harmful immune responses (i.e., allergy, autoimmune diseases, cancer). The interaction of 

nanoparticles with the immune system is determined by their physicochemical properties (i.e., 

size, shape, surface, hydrophobicity). The bigger the nanoparticle, the smaller its surface to 

volume ratio, which influences the immune response. Although, there is no linear correlation 

between nanoparticle size and immune response, several studies described that, smaller 

nanoparticles (up to 200 nm) are drained to the lymph nodes (resident dendritic cells), while 

larger ones (500-1000 nm) accumulate in the macrophages of the liver (Kupffer cells). It was 

demonstrated, that increasing level of hydrophobicity of nanoparticles leads to better cellular 

internalization and costimulatory marker-expression in immune cells [104]. 
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5.2. The effect of nimodipine on the regulation of local cerebral blood, neuronal 

function, and local tissue pH 

Nimodipine, a dihydropyridine derivative, inhibits Ca2+ influx to VSMCs and causes 

vasodilation. In addition, nimodipine blocks neuronal L-type VGCCs, as well, mitigates 

neuronal Ca2+ overload, and achieves neuroprotection under ischemic stress [82]. In the 

incomplete global forebrain ischemia model used, we first assessed drug effect on physiological 

neuronal activation (i.e., achieved by somatosensory stimulation) and the coupled functional 

hyperemic response. Next, we focused on the impact of the pharmacological treatments on SD 

and the associated CBF and pH response. SD is an ischemic preconditioning stimulus when 

triggered in intact tissue [105] and represents a pathophysiological process as it occurs due to 

extracellular K+ and glutamate accumulation in ischemic brain [20, 26]. 

Before the detailed discussion of drug effects, it must be appreciated that hyperemia in 

response to SD was markedly accentuated under α-chloralose anesthesia (used in Experimental 

Project I) (relative amplitude: 191 ± 61 and 151 ± 96 %, intact and under ischemia, 

respectively), with respect to that seen under isoflurane anesthesia (used in Experimental 

Project II) in our previous work (e.g., 51 ± 38 and 21 ± 11 %, intact and under ischemia, 

respectively, Varga et al., 2016; 76 ± 12 and 21 ± 9 %, intact and under ischemia, respectively, 

Menyhárt et al., 2017). Moreover, late hyperemia in the CBF response to SD was revealed very 

often under α-chloralose anesthesia as seen in Experimental Project I, while it was seldom 

encountered in many of our previous studies using isoflurane [40, 106, 107], and in 

Experimental Project II. Finally, the global ischemia model we routinely use produces a 

considerable drop of CBF following 2VO under isoflurane anesthesia (e.g., to 27 ± 13%, Varga 

et al., 2016, to 41 ± 9%; Menyhárt et al., 2015) – this drop proved to be considerably more 

moderate under α-chloralose anesthesia in Experimental Project I (Fig 8) [106, 107]. 

5.2.1. Nimodipine effectively improves neurovascular coupling, 

subsequently augments functional hyperemia  

In Experimental Project I, the impact of nimodipine on the regulation of local CBF was 

investigated by somatosensory stimulation. In our experiments, whisker stimulation was 

applied to investigate functional hyperemia in the barrel cortex of anaesthetized rats. In the 

barrel cortex of rats somatotopy is noticeable, stimulation of a distinct whisker evokes neuronal 

activation, and subsequent CBF elevation, in the adherent cortical region [108]. 

Since the brain has limited capacity to store energy, it needs continuous energy supply, 

which is maintained by continuous perfusion through its complex web of blood vessels. Several 
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mechanisms guarantee the continuous nutrient and O2 transport to the brain. One of them is 

neurovascular coupling, which is a coordinated interaction among activated neurons, astrocytes, 

and contractile cells of the vessel wall. At different levels of the vascular tree, different cell 

types regulate local CBF. At the level of penetrating arteries and parenchymal arterioles, 

neurons, astrocytes and VSMCs compose the unit of local CBF regulation, called neurovascular 

unit. At the capillary level, the contractile cells are pericytes, that share a common basement 

membrane with endothelial cells. VSMCs and pericytes are covered by the endfeet of 

astrocytes, and all these three cell types are innervated by neurons at each level of the vascular 

tree. Because of their proper anatomical position, astrocytes transfer the information from 

activated neurons directly to contractile cells, regulating the cerebral microcirculation [109]. 

It is a novel finding of the presented work, that, in addition to baseline CBF elevation, 

nimodipine profoundly augmented functional hyperemia in response to somatosensory 

stimulation, without enhancing EFP amplitude under ischemia. Nimodipine remarkably 

decreased EFP amplitude in the intact cortex, while the relative magnitude of the flow response 

was maintained (Fig 9). Both observations imply that the enhancement of functional hyperemia 

by nimodipine is disproportionate with respect to EFP amplitude. This suggests that nimodipine 

augmented the amplitude of the CBF response (irrespective of the intensity of neuronal 

activation initiated by somatosensory stimulation), possibly by potentiating the release of 

vasodilator substances or the efficacy of vasodilator signaling cascades. Since vasodilator 

prostaglandins and epoxyeicosatrienoic acids are produced by astrocytes during neurovascular 

coupling [110], and L-type VGCCs are present in the astrocyte plasma membrane [111], 

astrocytes may be involved in the nimodipine-related enlargement of functional hyperemia, 

without neuronal contribution being proportionally increased in the first place. 

5.2.2. Nimodipine inhibited spreading depolarization evolution and 

augmented hyperemia in response to SD events  

Nimodipine application reduced SD size (amplitude, and duration at half amplitude), in 

agreement with previous reports applying nimodipine at the concentration used in our studies 

[62, 63] (Fig 10, 11). Neurons express L-type VGCCs, which have been implicated in the 

modification of neuronal excitability and are a well-known target of nimodipine [82]. Although 

pharmacologically decreased SD amplitude is often interpreted as a sign of protection [112], 

the lack of a clear-cut association between SD amplitude and histological or neurological 

damage imposed creates persistent controversies. Our data support earlier observations that the 

number of rSDs, the cumulative duration of SDs, and the inability of the tissue to recover from 
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SD (i.e., long SD duration) correlate with injury progression [20]. Nimodipine shortened SD 

duration, which may be accepted as a sign of its protective potential. SD is associated with 

neuronal Ca2+ loading, in part via ionotropic glutamate receptors, such as the NMDAR [26]. 

The reduction of the SD-associated Ca2+ accumulation has thus emerged as a promising target 

to achieve SD inhibition. For example, low dose ketamine (an NMDAR blocker) applied to 

brain slices was shown to reduce Ca2+ load and to facilitate the recovery from SD [113]. In our 

study, nimodipine is thought to have inhibited Ca2+ influx to neurons via L-type VGCCs, which 

also caused the more rapid recovery from SD. These results suggest that the attenuation of 

neuronal Ca2+ load (either via NMDAR blockade or L-type VGCC inhibition) shortens SD 

duration. To further evaluate the neuroprotective potential of the treatment, we labeled viable 

neurons with NeuN immunocytochemistry and quantified neuronal density in the cerebral 

cortex. Even at this early time point after ischemia induction, we observed in some animals less 

dense NeuN staining in the parietal cortex where SDs propagated, compared to the contralateral 

hemisphere exposed to ischemia alone, but nimodipine did not rescue neurons to a statistically 

meaningful degree at this endpoint (Fig 15). 

5.2.3. Nimodipine potently reduced the degree of SD-related acidosis 

The use of pH-sensitive microelectrodes in our preparation offered the unique 

opportunity to assess the impact of nimodipine on the SD associated transient tissue acidosis 

(Fig 14), an action of nimodipine not screened before. The SD-related acidosis, which has been 

linked to the accumulation of lactate [45, 46] was previously contemplated to exacerbate 

ischemic injury and jeopardize the survival of penumbra tissue [40], therefore its inhibition is 

expected to be beneficial. Here we have observed that nimodipine potently reduced the degree 

of SD-related acidosis. Similarly, intravenously administered nimodipine was shown to 

moderate tissue acidosis in experimental focal cerebral ischemia [114, 115], which was 

attributed to the direct facilitation of metabolic lactate clearance, independent of perfusion rate 

[115, 116]. It is thus conceivable that the inhibition of Ca2+ entry to neurons by nimodipine [82] 

may support mitochondrial function and oxidative lactate degradation [116], which may reduce 

the acid load associated with SD, as seen here. It is also reasonable to argue that the shorter 

duration of SD related acidosis due to nimodipine is consistent with the shorter duration of SD 

itself, and the primary effect of nimodipine was the inhibition of SD, causing a secondary 

reduction of the associated tissue acidosis. 
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6. Main observations and conclusion  

The aim of our study was to explore whether nimodipine loaded pH-sensitive 

nanoparticles can be used effectively to reduce detrimental outcomes in experimental global 

cerebral ischemia.  

• The work demonstrates that tissue acidosis linked to cerebral ischemia can be 

employed as a trigger for targeted drug delivery. Nimodipine associated to 

pH-responsive nanoparticles did not achieve CBF elevation prior to ischemia 

induction, when tissue pH was physiological, which confirms that nimodipine 

was not dissociated from the nanoparticles at physiological tissue pH (pH 

7.3-7.4). After the induction of ischemia and the related transient tissue acidosis, 

baseline CBF was found to be higher in the nimodipine-treated compared to the 

vehicle group, which is interpreted as the in vivo verification of pH-sensitive 

drug release [74].  

• Moreover, immunohistochemical examinations showed that the applied 

chitosan nanoparticles did not activate microglia in the brain. 

Additionally, we investigated the impact of topically administered nimodipine in the 

intact and ischemic rat brain.  

• By the topical application of nimodipine, we found that nimodipine inhibited 

SD evolution, possibly by blocking Ca2+ entry to nerve cells, and augmented 

hyperemia in response to SD events in the ischemic rat brain. Moreover, it 

potently reduced the degree of SD-related acidosis. 

• The data generated here support the concept that L-type VGCC inhibition by 

nimodipine effectively improves neurovascular coupling, particularly under 

cerebral ischemia, augments functional hyperemia in response to 

somatosensory stimulation especially under ischemia, in addition to achieving a 

general, constitutive vasodilator effect. 

• In addition, nimodipine-mediated vasodilation and neuroprotection can be 

achieved by pH-responsive chitosan nanoparticles applied directly to the brain 

surface.  
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7. Future perspectives  

These results are encouraging, and also raise a number of further considerations for the 

potential biomedical application of the principle of acidosis guided drug targeting. We washed 

the nanoparticle suspension directly to the exposed cortical surface in our pre-clinical model, 

which offers data relevant for potential intracerebroventricular, intraparenchymal or intrathecal 

drug delivery [117]. Yet, all these methods are significantly invasive. Therefore, other routes 

of administration that are more realistic in routine clinical care need to be tested. An obvious 

option appears to be intravenous infusion. For this approach, the BBB permeation of the 

chitosan nanospheres must be evaluated, because particles larger than 12-30 nm may not cross 

the BBB [118]. Further, the retention of nanoparticles in non-target tissues (e.g., cells of the 

reticuloendothelial system) could decrease the number of circulating nanoparticles before their 

penetration to the brain [119]. Finally, potentially low tissue pH prevailing in peripheral organs 

or body fluids (e.g., in the respiratory system or the gastrointestinal tract) would perceivably 

cause off-target drug release. Although the size of the nimodipine-loaded nanoparticles in our 

study was small enough for BBB penetration (i.e., 4-6 nm) [74], the BBB permeability of 

chitosan nanoparticles may be improved by functionalizing chitosan with antibodies that 

recognize receptors specific to BBB endothelial cells (e.g., transferrin receptors) [120, 121]. 

This should initiate the receptor-mediated transcytosis of the nanospheres. In addition, cerebral 

ischemia may derange the BBB and enhance non-selective transendothelial vesicular transport 

or loosen the tight junctions between adjacent endothelial cells [122]. This may allow drug 

carriers to reach the nervous tissue along with the extravasation of blood plasma. Of note, SD 

itself can increase endothelial transcytosis and paracellular diffusion at the BBB [123, 124], 

and was found to facilitate drug delivery to the brain tissue [123]. Finally, the intracarotid, 

rather than intravenous route of infusion of drug-loaded nanocarriers should provide direct 

access to the brain [125], which could substantially reduce off-target retention and drug release 

at the periphery.  

The intranasal application of the nanoparticles may be an alternative route of drug 

administration. Chitosan, in fact, displays very good adhesion to the nasal mucosa due to the 

positively charged nanoparticle surfaces [126], and enhances absorption through the nasal 

mucosa by disrupting the intercellular tight junctions of the epithelium [127, 128]. However, 

the nasal mucosa is acidic (pH 5.5-6.5). This condition contraindicates the nasal administration 

of acid responsive nanoparticles targeting the brain, unless the nanoparticles are supplied with 

a protective coating during their passage through the nasal mucosa, which the particles should 

shed before reaching the brain.  
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8. Summary 

Background: Ischemic stroke is a leading cause of death and disability worldwide. Yet, the 

effective therapy of focal cerebral ischemia has been an unresolved challenge. We propose here 

that ischemic tissue acidosis, a sensitive metabolic indicator of injury progression in cerebral 

ischemia, can be harnessed for the targeted delivery of neuroprotective agents. Ischemic tissue 

acidosis, which represents the accumulation of lactic acid in malperfused brain tissue is 

significantly exacerbated by the recurrence of SD events. Deepening acidosis itself activates 

specific ion channels to cause neurotoxic cellular Ca2+ accumulation and cytotoxic edema. 

These processes are thought to contribute to the loss of the ischemic penumbra. Importantly, 

acidosis in the ischemic penumbra may also be used to guide therapeutic intervention. 

Nimodipine, an L-type VGCC antagonist dilates cerebral arterioles, but its systemic 

administration may cause potential side effects (mainly hypotension). We have constructed 

chitosan nanoparticles as drug carriers, which release nimodipine in response to decreasing pH 

typical of cerebral ischemia. Here we have set out to evaluate this nanomedical approach to 

deliver nimodipine selectively to acidic ischemic brain tissue. 

Methods: Two sets of experiments are presented in this thesis. In Experimental Project I, 

nimodipine was applied in solution (100 μM), then global forebrain ischemia was induced in 

half of the animals by bilateral common carotid artery occlusion under isoflurane anesthesia. 

Functional hyperemia in the somatosensory cortex was created by mechanical stimulation of 

the contralateral whisker pad under α‐chloralose anesthesia. SD events were elicited 

subsequently by 1 M KCl. LFP and CBF in the parietal somatosensory cortex were monitored 

by electrophysiology and LDF. In Experimental Project II, nimodipine was associated with 

pH-sensitive nanoparticles in suspension. After washing the nanoparticle suspension with or 

without nimodipine (100 μM) on the exposed brain surface of anesthetized rats, both common 

carotid arteries were occluded to create forebrain ischemia. SDs were elicited by 1 M KCl to 

deepen the ischemic insult. LFP, CBF and tissue pH were recorded from the cerebral cortex. 

Microglia activation and neuronal survival were evaluated in brain sections by 

immunocytochemistry. 

Results: Nimodipine in solution attenuated evoked potentials and SD. In addition to the 

elevation of baseline CBF, nimodipine augmented hyperemia in response to both 

somatosensory stimulation and SD, the drug effect was particularly discernable under ischemia. 

Ischemia-induced tissue acidosis initiated nimodipine release from nanoparticles, confirmed by 

the significant elevation of baseline CBF. Nimodipine shortened the duration of both SD itself, 



49 

 

and the associated tissue acidosis, moreover it enhanced the SD-related hyperemia. Chitosan 

nanoparticles did not activate microglia. 

Conclusions: The administered nanoparticles release nimodipine in acidic tissue 

environment, which reliably delineates sites at risk of injury. The data support the concept that 

tissue acidosis linked to cerebral ischemia can be employed as a trigger for targeted drug 

delivery. Nimodipine-mediated vasodilation and SD inhibition can be achieved by 

pH-responsive chitosan nanoparticles applied directly to the brain surface. Ultimately, this 

approach may offer a new way to treat stroke patients with the hope of more effective therapy, 

and better stroke outcome. 
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