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Abstract
Motivation: High-throughput biological data, thanks to technological advances, have become cheaper to 
collect, leading to the availability of vast amounts of omic data of different types. In parallel, the in silico 
reconstruction and modelling of metabolic systems is now acknowledged as a key tool to complement 
experimental data on a large scale. The integration of these model- and data-driven information is the-
refore emerging as a new challenge in systems biology, with no clear guidance on how to better take 
advantage of the inherent multi-source and multi-omic nature of these data types while preserving mech-
anistic interpretation.
Results: Here we investigate different regularisation techniques for high-dimensional data derived from 
the integration of gene expression profiles with metabolic flux data extracted from strain-specific metabolic 
models to improve cellular growth rate predictions. To this end, we extend previous regularisation frame-
works including group, view-specific and principal component regularisation, and experimentally compare 
them using data for 1,143 Saccharomyces cerevisiae strains. We observe a divergence between methods 
in terms of predictive accuracy and integration effectiveness based on the type of regularisation employed. 
In general, no method results superior in both aspects, highlighting a widespread limitation in this type of 
model.
Availability: All data, models, and code produced in this work are available on GitHub at 
https://github.com/Angione-Lab/HybridGroupIPFLasso_pc2Lasso.
Contact: C.Angione@tees.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.
Keywords: Machine learning, flux balance analysis, multi-omics, regularisation

1 Introduction
In the past two decades, technological advances have led to the production
of enormous amounts of biological data of different types, named omics.
Each of these data types represents a different facet of an organism and its
functioning. Recently, fuelled by the increasing availability of biological
information, machine learning and deep learning have proven to be capable
of revealing hidden relationships and patterns (Libbrecht and Noble, 2015),

otherwise impossible to highlight by human operators, due to the vast
dimensionality of the data and complexity of its inner relationships. Owing
to the great heterogeneity of these data, the development of multi-view
learning methods in a biological setting has been promoted (Li et al.,
2016).

Unfortunately, even though the most recent machine learning methods
can disclose some relationships among the omics data, important limi-
tations remain. These technologies are mainly used as black boxes and, 
depending on their architecture, may also not be able to produce new 
knowledge on the underlying biological mechanisms. Moreover, limited
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computing resources or data availability may hamper the application of
advanced machine learning methods. In many situations, the use of appro-
priate linear models for high-dimensional data can hence be a preferable
option.

To compensate for these limitations, the reconstruction of genome-
scale models of metabolic systems is opening new avenues for injecting
biological knowledge into data-driven models (Zampieri et al., 2019).
Constraint-based modelling (CBM) can be used to simulate metabolism
on a cellular scale, providing further insights into the biological mechani-
sms underlying cell operation. Metabolic flux data generated in silico have
been previously used with machine learning models (Shaked et al., 2016;
Kim et al., 2016; Yaneske and Angione, 2018; Yang et al., 2019).

In this work, we compare multi-view learning frameworks that utilise
both transcriptomics data and strain-specific metabolic models to predict
cellular growth of Saccharomyces cerevisiae, which is one of the main
eukaryotic platforms for bio-industrial production (Castillo et al., 2019).
Understanding and controlling cellular growth is important in biotechno-
logy for the development of efficient cell factories (Dikicioglu et al., 2013;
Lian et al., 2018). Due to the common problem of interpretability encoun-
tered when using machine learning algorithms, here we focus primarily on
those algorithms that are directly interpretable, thus being able to provide
immediate biological clues to be further investigated.

Mathematical modelling techniques such as CBM have been developed
to simulate the possible outcomes from organisms in different environmen-
tal conditions and genetic characteristics. All the models devised so far
offer quantitative mechanistic representations of biomolecular processes,
but to achieve accurate estimates they often require detailed knowledge on
uptake rates from the environment. On the other hand, it is also possible
to find correlations between gene expression and cell growth only through
data-driven machine learning methods. Previous research focused on buil-
ding linear predictive models for yeast growth (Airoldi et al., 2009), and
more recently machine learning both for E. coli and S. cerevisiae (Wytock
and Motter, 2019). Metabolic activity in combination with machine lear-
ning techniques was taken into consideration and evaluated only lately
(Culley et al., 2020).

Here, we combine regularised statistical learning methods with flux
balance analysis (FBA) for omic data integration, in a setting designed to
exploit the partial information present in the two different views. The goal
is to reveal what characteristics a model should have to take advantage
of this heterogeneous information. Despite superior prediction accuracy
recently observed for multimodal neural networks (Culley et al., 2020),
as noted above there may be several factors hindering their utilisation in
some case studies. Moreover, the interest in combining regularised linear
methods with fluxomics data could also be motivated by the enhancement
of model interpretation in biological terms.

We investigate a range of regularisation techniques, proposing expansi-
ons of previous frameworks and empirically evaluating them on a common
benchmark. To this end, we use a compendium of 1,143 single gene knock-
out yeast strain expression profiles to predict cell doubling rates. Fluxomics
data are obtained through a parsimonious implementation of flux balance
analysis (pFBA) using the transcriptomics data to generate strain-specific
genome-scale metabolic models. The metabolic model-generated reaction
flux rates are then added to the gene expression profiles as additional
features.

We show that, in our setting, group and view-specific regularisation
achieve higher performance than principal component regularisation, out-
performing multimodal neural networks. On the other hand, the latter
obtains a larger performance improvement when integrating transcriptomic
and fluxomic data. Overall, our results demonstrate the competitiveness
of multimodal regularised linear models compared to data-hungry meth-
ods in a multi-omic task using experimental and model-generated omic
data. At the same time, it highlights the lack of a clearly superior method

for effective and transparent omic data integration, further underlying the
importance of a bespoke selection of both features and machine learning
models for each case study.

2 Methods

2.1 Dataset

We used a transcriptomics dataset generated in a previous study (Kemme-
ren et al., 2014), which contains two-channel microarray profiles for 1,484
single-gene deletion strains of S. cerevisiae during mid-log phase. The data
were downloaded from the supplementary materials of a second study pro-
viding relative growth rates compared to the wild type for 1,312 of the same
strains, expressed as log2 of the doubling times ratio (O’Duibhir et al.,
2014). The final gene expression dataset was composed of 1,143 samples,
and is here denoted as TRSC. Pre-processing was applied separately on the
fluxomics data (denoted as FLUX) and the gene expression profiles. For
the fluxomics data, all the reaction fluxes for which the value was< 10−7

for all the samples were discarded (negligible fluxes in all samples). All
data were standardised, following a preliminary exploration of normali-
sation techniques including also 0-1 normalisation and log-normalisation.
Finally, in addition to these two datasets, a third one was built by joining
the previous two (TRSC + FLUX).

2.2 Genome-scale metabolic modelling

Genome-scale metabolic models (GSMMs) are mathematical models,
representing almost all the known biochemical reactions and transmem-
brane transporters present in an organism. The reaction network is
described by a stoichiometric matrix S, whose entries are the stoichi-
ometric coefficients that characterise every biochemical transformation.
The reaction rates (i.e. the fluxes) are mass- and energy-balanced assu-
ming metabolic steady-state (no change in metabolite concentration). We
utilised the iSce926 yeast GSMM, which includes 926 genes, 3494 reacti-
ons and 2223 metabolites (Chowdhury et al., 2015). Among all the genes
in the TRSC data, a total of 908 (98%) are present in our transcriptomics
dataset.

Parsimonious flux balance analysis (pFBA).
We used pFBA to control the global metabolic activity through a L1-

regularisation for maximising our objective, at the same time making the
solution as sparse as possible. The complete optimisation problem with
constraints that we have to solve is the following:

min
v
‖v‖1

subject to w>v = gmax ,

Sv = 0 ,

vlb Θ ≤ v ≤ vub Θ .

(1)

wherev is the vector of reaction fluxes in the network, whereasvlb andvub
represent their lower and upper bounds respectively. These two constraints
are the mathematical representation of the several genetic or environmen-
tal factors under which the cell has to operate, and give a context-specific
metabolic model that is consistent with experimental data. w is a one-hot
encoding vector identifying the biomass pseudo-reaction as the unique
objective, whereas Θ is a function mapping the gene expression levels to
the reaction rates (Angione, 2018) (see details in Supplementary Mate-
rial). Finally, gmax is the maximal growth rate achievable under these
conditions. To perform the optimisation of Equation 1, the COBRA tool-
box 3.0 (Heirendt et al., 2019) was used with the PDCO solver. The
solutions provide steady-state flux levels for each yeast strain and every
reaction in the iSce926 GSMM.
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2.3 Regularised linear models for omic data

The models that were investigated belong to two different categories of
machine learning techniques: statistical learning algorithms and neural
networks. From the former group, we decided to consider only regularised
linear models (RLMs) due to their inherent interpretability. The following
multi-view approaches on the original omic profiles were employed:

IPF-Lasso L1. Integrative Lasso with Penalty Factors (Boulesteix
et al., 2017) is a variation of Lasso (Tibshirani, 1996) that accounts for
different modalities being used. Specifically, it uses penalty factors λm
to weight the L1 penalty applied to the m-th modality. The objective to
minimise is thus

n∑
i=1

(
yi −

M∑
m=1

pm∑
j=1

x
(m)
ij β

(m)
j

)2

+

M∑
m=1

λm‖β(m)‖1,

(2)

where M is the number of modalities, pm the number of covariates of
the m-th modality, β the regression coefficients and n the total num-
ber of samples. The rationale behind this approach is that each modality
has, in general, a different proportion of relevant variables, hence each
contribution is weighted differently.

IPF-Lasso L2. We extended the originally proposed IPF-Lasso algo-
rithm, replacing the L1 norm with an L2 norm, which was not tested in
the original paper.

pcLasso. Principal component Lasso is a variation of elastic net that
biases the solution coefficient vector towards the leading singular vectors
of the feature matrix (in case of grouped features, towards the leading
singular vector of each matrix associated with a group) (Tay et al., 2018).
In other words, the solution is pushed towards the most important/identified
pattern to improve prediction accuracy. The objective to minimise is the
following:

1

2

∥∥∥∥Y − P∑
p=1

Xpβp

∥∥∥∥2 + λ‖β‖1+

θ

2

∑
k

βTk (VkDd2
k1
−d2

kj

V Tk )βk,

(3)

where k is a non-overlapping group (fluxomics or transcriptomics data in
this study), βk is the subvector of β corresponding to group k, Vk are the
right singular vectors of the columns of X corresponding to group k, and
D is a diagonal matrix with entries d2k1 − d

2
kj

, which are the singular
values of the columns ofX related to group k (the former associated with
the leading singular vector).

pc2Lasso. We also modified pcLasso and tested a new version, which
shrinks the vector of coefficients towards the first and the second singular
vectors associated with the two largest singular values. In our implementa-
tion, the entries d2k1 − d

2
kj

are substituted with α1d2k1 +α2d2k2 − 2d2kj
,

where d2k2 is the second-largest singular value, while α1 and α2 repre-
sent the quantity of variance explained by the first and the second largest
singular values respectively.

Group Lasso. Group Lasso is a variation of Lasso regression in which
the model is forced to include or disregard entire groups of variables defi-
ned by the user (Yuan and Lin, 2006). Notwithstanding the similarity with
IPF-Lasso, there are two main differences: first, the groups are defined by
the user without necessarily following a strict logic such as the one regar-
ding the modalities; second, the algorithm makes a binary choice for each
group, i.e. whether to include it or disregard it. In biological applications,
this strategy can be justified based on the relationships among genes (e.g.
whether they code the same protein, or regulate the same genes). In this

study, the groups were defined looking at the correlation among the data
in both views separately (TRSC and FLUX), while the number of groups
was chosen to encourage a larger granularity. This was set to 50 groups for
the fluxes, already fairly correlated, and 500 for the transcriptomics data.
We varied these two parameters but a greater number of groups would lead
to non-significant clusters, while a smaller number would lose informa-
tion about the potential aggregations. The R function hclust, with default
parameters, was used to find the clusters. When using both data sources,
we used the same groups we had already defined when using the sources
separately. The minimisation problem we solved is

1

2

∥∥∥∥Y − J∑
j=1

Xjβj

∥∥∥∥2 + λ

J∑
j=1

‖βj‖Kj
, (4)

where ‖β‖Kj
= (β−1Kjβ)

1
2 , while Xj and Kj are respectively a

design matrix identifying a group of covariates and an associated kernel.
Hybrid Group-IPF Lasso. We developed a hybrid method to take into

account both the two modalities and the possible relationships within each
of them. In order to do so, we combined the L1 penalty of IPF-Lasso and
the L2 penalty of Group Lasso on the two different omic levels. This occurs
when choosing, as we did following the suggestion of the original paper,
Kj as the identity matrix multiplied by the square root of the size of the
group. We chose the same groups chosen for the Group Lasso algorithm
to make a fair comparison of the methods. The objective to minimise is
therefore

n∑
i=1

(
yi −

M∑
m=1

pm∑
j=1

x
(m)
ij β

(m)
j

)2

+

M∑
m=1

λm‖β(m)‖1 +
J∑
j=1

λj‖βj‖Kj
,

(5)

where λj = 1 for i = 1, 2, 3, ..., J to reduce the computational burden.
Artificial Neural Networks. Artificial Neural Networks (ANNs) are

models capable of approximating any function, provided they are endo-
wed with enough layers and/or neurons. An ANN is composed by an input
layer, an output layer and one or more hidden layers in between. Each
layer is made up of neurons, which are linked to the neurons assembling
the other layers of the network. When a neural network presents more than
one hidden layer it is defined as a Deep Neural Network (DNN). Numerous
architectures were devised and studied, optimising several hyperparame-
ters (e.g. number of layers, learning rate, optimisation strategy) in order
to choose the best neural network architecture among the possible ones.
Additional information can be found in Supplementary Material.

We used a naive neural network as a regressor, defining its architecture
via hyperparameter optimisation (described in subsection 2.4). We also
trained an identical network with the output of a variational autoencoder
(VAE) (Higgins et al., 2017), optimising it in the same way, the idea being
to investigate whether it would be possible to find a shared projection onto
a common latent space for both the gene expression and the metabolic
fluxes.

Multi-Modal artificial Neural Networks. Multi-Modal artificial
Neural Networks (MMNN) are a particular type of ANNs devised for
learning from different sources of information, in general involving the
use of an independent network for processing each modality and then a
further network for integrating the gathered information and producing an
output. In order to make a fairer comparison between the RLMs and the
neural networks, in this study we trained the architecture devised in (Cul-
ley et al., 2020), which inherently works in our scenario. This network
is composed of two individual networks (one for the fluxomics data and
one for the transcriptomics one) whose outputs are then concatenated and
further processed by another separate network.
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2.4 Training and testing pipeline

We split the dataset into a training set and a test set, with a 80:20 ratio.
Then, we defined a subset of the training set as validation set, we trai-
ned only on the training set, and we optimised the hyperparameters based
on the performance of the model on the validation set. All methods and
models, when applicable, were optimised applying extensive grid-search
over the hyperparameters (details can be found in Supplementary Mate-
rial). In case a grid-search would be too computationally expensive we
applied a consistent number of random-search iterations. In the case of the
neural networks, the number of iterations exceeded 100. Finally, the best
combination of hyperparameters was used to train the final model to make
predictions on the unseen test set.

The explored machine learning models were evaluated over several
metrics: the mean squared error (MSE)

MSE =
1

n

n∑
i=1

(ŷi − yi)2, (6)

where model predictions ŷi are compared with observed growth rates yi
across all the n samples of the test set; the mean absolute error (MAE)

MAE =
1

n

n∑
i=1

|ŷi − yi| ; (7)

the coefficient of determination (R2)

R2 = 1−
∑n
i=1(yi − ŷ)2∑n
i=1(yi − ȳ)2

, (8)

where ȳ =
1

n

n∑
i=1

yi.

We also computed for each method the standard deviation of the error
distribution as a further metric:

σe =

√∑n
i=1(ei − ē)2

n− 1
, (9)

where ei is the difference between the prediction and the ground truth and

ē =
1

n

n∑
i=1

ei.

2.5 Feature relevance analysis

We used enrichment analysis to analyse and interpret our results. For the
fluxes, we performed hypergeometric tests through the hygecdf MATLAB
function, and applied it to those to which the algorithms had attributed
relevant weights (the threshold was chosen so as to reduce the number of
fluxes to an easily interpretable amount). For the genes, we resorted to a
different type of analysis since the lack of annotations for the transcripto-
mics data did not lead to meaningful results. The findings of these analyses
are presented in subsection 3.3.

We also examined the final models by inspecting directly the wei-
ghts attributed to the input features. While this is straightforward with the
RLMs, with the neural network we developed a specific method in order
to quantify the relevance that each feature has to the final prediction (see
Supplementary Material for details).

3 Results
The aim of this study was to explore the predictive ability of multimodal
regularised linear models integrating experimental and simulated omics
data, expanding the current landscape of methods (Figure 1). As a case
study, we focussed on predicting the growth rate of S. cerevisiae. We used

constraint-based modelling (CBM) of metabolism to extract metabolic
information of yeast mutants in the exponential growth phase, employing
transcriptomics information. We then compared regularised linear models
to evaluate the performance on our dataset, and how accurately they overlap
the findings previously known from biological experiments. We also used
ANNs to better understand the advantages and drawbacks of using a less
interpretable method with a high predictive potential.

3.1 Multi-omics prediction of cellular growth

We started from three state-of-the-art RLMs that were previously proposed
for biological data analysis: Integrative Lasso with Penalty Factors (IPF-
Lasso) (Boulesteix et al., 2017), Group Lasso (Yuan and Lin, 2006) and
Principal Component Lasso (pcLasso) (Tay et al., 2018). As described in
Section 2, we then introduced Hybrid Group-IPF Lasso, which accounts
both for different omic domains and intra-domain biological modules.
Moreover, we considered the use of a modified regularisation term for
IPF-Lasso and pcLasso (Section 2) Overall, we therefore tested the follo-
wing RLMs: (i) IPF-Lasso, both L1 and L2, (ii) pcLasso, (iii) pc2Lasso,
(iv) Group Lasso, (v) Hybrid Group-IPF Lasso. As a benchmark, we con-
sidered artificial neural networks (ANN) and multi-modal artificial neural
networks (MMNN).

All the above methods (apart from the hybrid method) were tested
over datasets containing three different types of information: (i) only

Data Method MSE MAE R2 σe

(·10−2) (·10−2)

Regularised Linear Models
TRSC + FLUX Group Lasso 0.680 6.32 0.78 0.214

IPF-Lasso L1 0.577 5.76 0.81 0.212
IPF-Lasso L2 0.551 5.61 0.82 0.215
Hybrid Group 0.570 5.75 0.81 0.213
pcLasso∗ 0.812 6.70 0.73 0.206
pc2Lasso∗ 0.702 6.29 0.77 0.209

TRSC Group Lasso 0.558 5.65 0.82 0.219
IPF-Lasso L1 0.577 5.76 0.81 0.212
IPF-Lasso L2 0.544 5.61 0.82 0.216
pcLasso 1.00 7.25 0.67 0.205
pc2Lasso 0.837 6.68 0.72 0.207

FLUX Group Lasso 1.74 9.70 0.43 0.206
IPF-Lasso L1 1.76 9.74 0.42 0.207
IPF-Lasso L2 1.76 9.75 0.42 0.207
pcLasso 1.73 9.74 0.43 0.191
pc2Lasso 1.72 9.72 0.43 0.191

Artificial Neural Networks
TRSC + FLUX ANN 0.664 6.10 0.78 0.209

MMNN 0.631 5.96 0.79 0.214
TRSC ANN 3.33 11.57 -0.02 0.182

MMNN 0.633 5.98 0.79 0.212
FLUX ANN 3.09 11.9 0.05 0.176

MMNN 1.74 9.46 0.42 0.205

Table 1. Multi-view results across all dataset-algorithm combinations. Values
in bold represent the scores of the methods proposed in this work. Asterisks
indicate a statistically significant improvement for methods using TRSC and
FLUX data over TRSC only, showing that some methods benefit more than oth-
ers when fluxomics data is added to transcriptomics data as predictive features.
The best performance is held by our modified version of IPF-Lasso with L2
penalty, which outperforms the other algorithms over almost all the comparison
metrics.
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3.1 Regularised Linear Models

TRSC FLUX
Multi-omic 
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Single-view learning

Genome-scale 
metabolic  model 
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2. Generation of metabolic fluxes

TRSC

GR

FLUX

3.2 Artificial Neural Networks

Multi-view learning

GR

Creation of strain-specific 
genome-scale metabolic 
model via gene expression

Parsimonious flux balance
 analysis to simulate 

metabolic activity

Generation of 
Metabolic fluxes (FLUX)

TRSC and FLUX profiles 
are use separately to 
train the algorithms

TRSC and FLUX profiles 
are integrated to train the 
algorithms and improve 
model performanceGroup regularisation

View-specific regularisation
Principal component regularisation

Multi-omic 
profilesArtificial neural networks

Multimodal artificial neural networks

TRSC

L1 loss L2 loss

FLUX

GR

Hidden integration layer
TRSC + FLUX

Fig. 1. General pipeline adopted. From 1,143 S. cerevisiae strains, the gene expression was used as a starting point (Kemmeren et al., 2014). A genome-scale metabolic model (GSMM)
was then used (panel 1) to generate strain-specific GSMM models. From these GSMMs, metabolic fluxes were generated via parsimonious flux balance analysis (panel 2, see subsection
2.2). The machine learning methods were applied in two different settings: a single-view fashion and a multi-view one. In the former case, transcriptomics and fluxomics data were used
separately as input for regularised linear models and artificial neural networks, while in the latter the two omics were integrated to let the two classes of methods leverage the different
information of both sources (panel 3).

fluxomics data; (ii) only transcriptomics data; (iii) fluxomics and tran-
scriptomics data. In the latter case, the integration was accomplished
through either concatenation or previous elaboration by a beta-variational
autoencoder architecture (β-VAE) (Higgins et al., 2017), which learns a
low-dimensional projection of the data in an unsupervised fashion. We
also explored feature selection techniques prior to applying ANN models,
but we did not proceed further as we obtained a performance decrease in
all cases as also observed before (Culley et al., 2020).

3.2 Comparison of multi-omics models of growth

For each of the described methods, when applicable, we fine-tuned the
hyperparameters dividing the datasets into training, validation and test set.
The algorithms were trained on the training set, while the selection of the
hyperparameters was made using the validation set. The test set was used
only to assess the ability of the algorithms with the best combination of
hyperparameters for comparison. Figure 2 and Table 1 provide a detailed
overview of the results. It can be noted that the performance based only
on reaction fluxes is considerably lower than the performance based on
gene expression, consistently to previous results (Culley et al., 2020).
This is likely to indicate that this source, when used in isolation, has a
smaller amount of information compared to transcriptomics data, thus we
considered the fluxes only for the comparison with the performance in a
multi-view setting.

Amongst all the presented methods, only our proposed pc2Lasso mana-
ged to achieve an improvement in the performance when using more than
one view, together with the original pcLasso and the MMNN. Instead,
IPF-Lasso L1 fails to learn from the fluxes and the gene expression jointly.
Indeed, its error scores remain unchanged when moving from one view
to two and a Wilcoxon signed-rank test confirmed the overlap between
their error distributions over the test set (p = 0.19). Moreover, we could

have further confirmation of this by looking at the weights IPF-Lasso L1
attributes to the fluxes, which are all zeros.

Likewise, it is possible to gain some interesting insights by inspecting
the weights IPF-Lasso L2 gives the fluxes and the transcriptomics data,
albeit the method does not show actual improvement. While the weights of
the fluxes are all zeros, the weights of the genes are significantly different
from the weights the algorithm attributes when trained only on transcri-
ptomics, and an even smaller amount of them is selected. This could be
interpreted as a particular indirect form of regularisation that reaction flu-
xes apply over the gene expression with this algorithm, which suggests
that this multi-modal approach utilises profitably metabolic modelling to
gain information that cannot be acquired from the transcriptomics alone.

In general, the best-performing methods in the integration case (TRSC
+ FLUX), which adopt group and view-specific regularisation, do not
display improved metrics over the TRSC case. On the other hand, meth-
ods employing principal component regularisation clearly display such
improvement but remain with worse scores.

3.3 Interpretation of biological predictors

One of the purposes of adding a second view such as the metabolic fluxes
was to improve the biological understanding and thus the interpretability
of the input features, and consequently of the predicted output. From this
perspective, we decided to look at the weights attributed to the metabolic
fluxes by the algorithms and to conduct an enrichment analysis over the
two different data types.

Regarding the weights, thanks to their transparent structure, RLMs
can be interpreted immediately, as they directly assign a weight to each
input feature. Since a typical characteristic of Lasso is the inner feature
selection due to the fact that some input features are given zero as weight
(which means that they are not used to make any prediction), all the RLMs
share a similar property. Our analysis on the relevance of certain features
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takes thus into account solely the features that are not disregarded by the
methods (i.e. with a non-zero weight). Figure 2 illustrates the outcome for
the most common pathways that were found enriched for the RLMs. In
the case of the genes, the pathways most present in the pool of the selected
genes were considered.

Looking exclusively at the metabolic fluxes that were given the high-
est weights by each method, it is possible to draw some parallels between
the algorithms. All the algorithms, except IPF-Lasso L1, Group Lasso
and our hybrid Group Lasso, select phenylalanine-involving reactions.
Furthermore, all the algorithms except Group Lasso select tyrosine tran-
saminase as a key reaction. It is widely known that in yeast these two
compounds take part in the Ehrlich Pathway, which is directly related to
fermentation. Moreover, it is noteworthy that while the two pcLasso ver-
sions find only one of the two PS decarboxylases, the two IPF-Lassos find
the other one. Both these reactions have been found to support growth in
S. cerevisiae (Griac, 1997). Finally, phosphatidyl-L-serine and phospha-
tidylethanolamine are once again, like tyrosine transaminase, common to
all but IPF-Lasso L1, Group Lasso and the hybrid method. The former
has been proven to be essential for cell growth (Kuge et al., 1986) while
the latter, under certain condition, takes on crucial importance for yeast
growth (Kodaki and Yamashita, 1989).

Enrichment analyses were conducted to further validate the above fin-
dings. Due to the diverse nature of the two types of data, the analyses were
performed in different ways based on the dataset considered. As regards
the reaction fluxes, in addition to the importance of phenylalanine, tyro-
sine and tryptophan, the enrichment highlighted the relevance of cysteine
and methionine as previously known (Sutter et al., 2013; Yoshida et al.,
2011), 2-Oxocarboxylic acid and Lysine when considering IPF-Lasso
and aminoacyl-tRNA synthesis, arginine, alanine aspartate and glutamate
when looking at the results from pcLasso and pc2Lasso (the exact p-values
can be found in Supplementary Material). We also made a comparison
between the fluxes and the related genes, i.e. the genes associated with the
enzymes that catalyse each reaction, selected by the algorithms in order
to see whether there was a correspondence between them. Therefore, the
genes associated with the reactions with the largest weights were consi-
dered and compared with the genes selected by the same method. The
results showed that the genes associated with the selected reactions are
not significantly present in the set of selected genes. This further strength-
ens our hypothesis for which fluxes and genes carry qualitatively different
information, increasing the accuracy of a multimodal method compared
to a single-view one.

4 Discussion
In this work, we proposed and tested approaches for multimodal lear-
ning, integrating information from metabolic models and experimentally-
obtained gene expression data. We showed that the metabolic information
represented by model-derived flux rates is relevant for interpreting the
predictions from machine learning models, and for better understanding
the interplay among genes, metabolism and growth. More specifically, we
found that that multi-omics data integration through principal component
regularisation leads to predictive improvements in our setting, while other
forms of regularisation appear less effective in such task. While the meta-
bolic fluxes were calculated through pFBA, it must be noted that there are
several methodologies that can be used to compute flux rates, which can
hence better exploit it and further improve the integration results.

Finally, we found that regularised linear models can outperform neu-
ral networks, without taking into account their intrinsic interpretability,
even after extensive fine-tuning of the hyperparameters. This suggests that
powerful methods such as neural networks cannot always be easily used

as black boxes to improve the performance of a predictor, because their
optimisation in this case would not be straightforward.

5 Conclusion
We investigated the predictive power of existing and novel multimodal
regularised linear models in predicting S. cerevisiae growth using experi-
mental and metabolic model-derived multi-omics data. Our experiments
included state-of-the-art regularisation methods such as group-based,
view-specific and principal component regularisations. These were applied
to a combination of genome-wide gene expression data and model-
generated metabolic information. In our task, we found that linear
interpretable methods such as variations of Lasso can perform better than
artificial neural networks even on a relatively large dataset.

We also observed that accurate state-of-the-art regularisation methods
conceived for data integration fail in achieving accuracy improvements in
our multi-omics setting, highlighting the need for new solutions that can
exploit the cross-modal information, in addition to the information held in
the individual modalities. Albeit still at the beginning of the exploration
of this field, we believe that our results constitute a valuable benchmark
for future investigation into multi-omics integration, again stressing the
validity of linear regression methods in scenarios characterised by complex
and high-dimensional data such as molecular biology.
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1 Genome-scale metabolic modelling

Context-speci�c metabolic modelling. Each of the metabolic reactions is controlled by a
speci�c combination of genes named gene sets. In a GSMM, the gene sets are represented using
AND/OR operators. For example, if a reaction can be equally catalysed by two enzymes (namely, the
two enzymes are isozymes), this relationship will be encoded through an OR operator between the two
corresponding genes. Conversely, an AND relation identi�es enzymatic complexes where both genes are
necessary for the reaction to occur. GEMsplice [1] changes the reaction bounds by designating an
e�ective gene expression value to each gene set. Such expression is obtained by converting the logical
operations into maximum/minimum rules, according to the following map:

Θ(g1 ∧ g2) = min{θ(g1), θ(g2)}
Θ(g1 ∨ g2) = max{θ(g1), θ(g2)},

(1)

where θ(g) represents the expression level of gene g and Θ represents the e�ective expression level
of the gene set {g1, g2}. GEMsplice thus works as a further constraint inside the FBA optimisation.
Following [2] and unlike its original version [3], we opted for the following map from gene set expressions
Θ to reaction bounds vub and vlb:

vub ← vub Θγ

vlb ← vlb Θγ ,
(2)

where γ is a hyperparameter expressing the relevance of the gene expression in in�uencing the reaction
bounds. We set γ = 1 according to [2], as this value minimises the linear correlation between predicted
biomass accumulation rates and experimentally-available relative doubling times over all strains.
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2 Interpretation of weights in neural networks

Let us consider a neural network with one-dimensional output and three hidden layers. Following
the notation adopted in the paper, it is possible to describe it mathematically in the following way:

o =f(f(f(f(XW1 +B1)W2 +B2)W3+

B3)W4 +Bo).
(3)

Being almost all the activation functions currently used in research monotonic (included the ones used
in the networks of interest in this study), and in view of the fact that only the relative importance
of the features is of relevance for us, it is reasonable to ignore the functions and consider only the
following expression

o =(((XW1 +B1)W2 +B2)W3+

B3)W4 +Bo,
(4)

from which, generalising, we can obtain that

o = X

I∏
i=1

Wi +

I−1∑
j=1

Bj

I∏
k=j+1

Wk. (5)

It is hence evident the fact that the weight in�uencing the input features is just the product of the
weights that each linked neuron possesses.

3 Final neural network models

TRSC ANN. Selected hyperparameters: batch_size = 32, epochs = 2400, learning_rate =
10−2, neurons_first_layer = 3500, neurons_second_layer = 4000, optimiser = RPROP, dropout =
0.6, loss = Smooth_L1.

FLUX ANN. Selected hyperparameters: batch_size = 32, epochs = 400, learning_rate =
10−5, neurons_first_layer = 1200, neurons_second_layer = 1800, optimiser = SGD, dropout =
0.6, loss = Smooth_L1.
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Table 1: List of nutrients allowed to be imported when performing �ux balance analysis, together with their
corresponding exchange reactions in the iSce926 metabolic model [4]. These correspond to commonly
used media [5, 6].

Medium component Exchange reaction name Exchange reaction ID

ammonium ammonium exchange r_1654
sulphate sulphate exchange r_2060
biotin biotin exchange r_1671
(R)-pantothenate (R)-pantothenate exchange r_1548
folic acid folic acid exchange r_1792
myo-inositol myo-inositol exchange r_1947
nicotinate nicotinate exchange r_1967
4-aminobenzoate 4-aminobenzoate exchange r_1604
pyridoxine pyridoxine exchange r_2028
H+ H+ exchange r_1832
ribo�avin ribo�avin exchange r_2038
thiamine(1+) thiamine(1+) exchange r_2067
sulphate sulphate exchange r_2060
potassium potassium exchange r_2020
phosphate phosphate exchange r_2005
sulphate sulphate exchange r_2060
sodium sodium exchange r_2049
L-alanine L-alanine exchange r_1873
L-arginine L-arginine exchange r_1879
L-asparagine L-asparagine exchange r_1880
L-aspartate L-aspartate exchange r_1881
L-cysteine L-cysteine exchange r_1883
L-glutamate L-glutamate exchange r_1889
L-glutamine L-glutamine exchange r_1891
glycine glycine exchange r_1810
L-histidine L-histidine exchange r_1893
L-isoleucine L-isoleucine exchange r_1897
L-leucine L-leucine exchange r_1899
L-lysine L-lysine exchange r_1900
L-methionine L-methionine exchange r_1902
L-phenylalanine L-phenylalanine exchange r_1903
L-proline L-proline exchange r_1904
L-serine L-serine exchange r_1906
L-threonine L-threonine exchange r_1911
L-tryptophan L-tryptophan exchange r_1912
L-tyrosine L-tyrosine exchange r_1913
L-valine L-valine exchange r_1914
oxygen oxygen exchange r_1992
adenine adenine exchange r_1639
uracil uracil exchange r_2090
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Table 2: Hyperparameters spaces for the ANN and the β-VAE explored during Random Search. For not
mentioned parameters, default values were used.

Method Hyper-parameters search space

Arti�cial Neural Networks batch_size ∈ {32, 64, 128}
epochs ∈ {400, 800, 1200, 1600, 2000, 2400}
learning_rate ∈ {10−2, 10−3, 10−4, 10−5}
neurons_first_layer =
range depending on the input data
neurons_second_layer =
range depending on the input data
optimiser ∈ {ADAM,SGD,RPROP,ADADELTA}
dropout ∈ {0, 0.3, 0.6}
loss ∈ {L1,MSE, Smooth_L1}

β-Variational AutoEncoder batch_size ∈ {32, 64, 128}
epochs ∈ {400, 800, 1200, 1600, 2000, 2400}
learning rate ∈ {10−2, 10−3, 10−4, 10−5}
neurons_first_layer =
range depending on the input data
bottleneck_layer = range depending on the input data
optimiser ∈ {ADAM,SGD,RPROP,ADADELTA}
dropout ∈ {0, 0.3, 0.6}
reconstruction_loss ∈ {L1,MSE, Smooth_L1}
beta ∈ {3, 4, 5}

Table 3: Flux Enrichment Analyses for all the regularised linear models. For each method we display the
p-value associated to the pathway found (when present). As it can be noticed, phenylalanine- and
tyrosine-related pathways are common to almost all the methods. All the p-values are below the
de�ned threshold of 0.05. The results for pcLasso and the hybrid Group-IPF Lasso are not shown
since the only enriched pathway for the former was the Aminoacyl-t RNA biosynthesis, with a p-
value of 1.50 · 10−2, while the latter was enriched in Valine, leucine and isoleucine biosynthesis with
a p-value of 2.06 · 10−2.

Pathway IPF-Lasso L1 IPF-Lasso L2 pc2Lasso Group Lasso

Phenylalanine, tyrosine and tryptophan biosyn-

thesis

1.33 · 10−5 1.52 · 10−4 9.30 · 10−3 1.79 · 10−12

Phenylalanine metabolism 1.79 · 10−2 8.21 · 10−8 9.30 · 10−3

Tyrosine metabolism 4.71 · 10−2 1.52 · 10−4 9.30 · 10−3 2.74 · 10−2

Biosynthesis of amino acids 9.68 · 10−4 1.62 · 10−7

Biosynthesis of antibiotics 3.90 · 10−3 1.62 · 10−7

Biosynthesis of secondary metabolites 3.90 · 10−3 1.58 · 10−4

Cysteine and methionine metabolism 1.44 · 10−2

Aminoacyl-t RNA biosynthesis 9.30 · 10−3

2-Oxocarboxylic acid metabolism 1.45 · 10−2

Lysine biosynthesis 1.45 · 10−2
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