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“In retrospect, Euler’s unintended message is very simple: Graphs or networks have properties, 

hidden in their construction, that limit or enhance our ability to do things with them. For more 

than two centuries the layout of Konigsberg’s graph limited its citizens’ ability to solve their 

coffeehouse problem. But a change in the layout, the addition of only one extra link, suddenly 

removed this constraint” 

Albert Barabasi 
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Abstract 
Complex networks have recently become a vibrant branch of complexity science. Their 

ability to describe a variety of interacting systems, appearing in the natural and man-

made environment, has led to its increased popularity in multiple scientifc felds such 

as mathematics, physics, biology, computer science, sociology, epidemiology and many 

others. This thesis aims to further broaden the scope of complex networks by investi-

gating physical models at a microscopic, mesoscopic and macroscopic scale. First we 

study the shapes of tree-like polymers comparing three different numerical and analyt-

ical methods (Wei, Benhamou and Monte Carlo methods). We fnd excellent agreement 

across all methods, indicating that increased branching generates more spherical ob-

jects. Secondly, UK Public transport networks are studied. Topological measures of 

robustness are investigated via the Molloy-reed parameter. Using fractal properties we 

extract information on the serviceability of stations and their effciency. Thirdly, large 

scale structures of the universe are investigated. Here, we generate a network of the 

cosmic web to study its topological properties. Our main results indicate a correla-

tion between clustering coeffcient and the astrophysical properties of colour index and 

stellar mass. 
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Chapter 1 

Introduction 

Complexity Science is a relatively new term which has become quite popular over the 

last few decades. Often associated to multi-disciplinary research topics, Complexity 

Science does not refer to one particular area, but could be defned by the set of the-

ories, and concepts from a variety of felds. One should mention that the defnition 

of complexity itself is not unique, and strongly dependent on the scientifc feld. For 

example, in computation theory, time and space complexity refers to the amount of 

time and memory space needed to reach the solution of a given problem. However, in 

physics, applied-mathematics, economics, biophysics and mathematical biology, Com-

plexity Science regroups, research focused on so called complex systems. Such systems 

are composed of elements (agents) connected to each other via relationships (interac-

tions). The sum of these interactions often lead to a non-trivial collective behaviour 

which emerge naturally from the underlying rules governing each element. In physics, 

the study of self-organisation and critical phenomena gives a perfect illustration of 

what emerging collecting behaviour refers too. In particular, we talk about "emergence" 

when referring to macroscopic phenomenon, induced by the interaction of a large num-

ber of microscopic elements. 

Many complex systems are perfectly described within the complex network formalism. 

The notion of a complex network itself has become one of the central notions of modern 

scientifc discourse [1]. It is straightforward to fnd many examples of complex systems 

(natural or man-made), which one can present to the reader. The Internet is, most likely, 

one of the most cited examples. To cite just a few others, one can mention the brain 

(connection between neurons), social networks (interaction between individual), gene 
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Chapter 1. Introduction 

co-expression networks (relation between genes involved in protein production), public 

transport networks, ... . 

It appears that many real world systems can quite simply be mapped onto a complex 

network. Under the right assumptions, elements of a given problem are reduced to 

nodes of a network while their interactions are mapped onto edges. While in some 

cases, interactions between agents may be tangible (the wires connecting electrical cir-

cuits or the synaptic nerves joining neurons), they may also refect more abstract rela-

tions (the ties in the social networks or the trades and exchanges between countries). 

In epidemiology for example, the problem of diffusion of an infectious disease can be 

mapped onto a simple two-states (susceptible or infected) model evolving on a complex 

network (refecting the structure of the social interactions). 

The theory of complex network science can be traced back to the birth of graph theory 

and the famous seven bridges of Königsberg problem [2]. More than 250 years later, 

this theory has began to fourish. Receiving notable contributions from the felds of 

statistical physics, information theory and non-linear dynamics. Complex networks 

have successfully been applied to describe numerous natural and artifcial systems. 

These include but are not limited to the study of protein interactions [3], mythological 

narratives [4], [5], archeology [6], scientifc collaborations [7] and zoological systems 

[8]. 

Given the versatility and ability of Complexity Science to describe a range of interacting 

systems, it is unsurprising that the feld has continued to grow, fnding new applica-

tions, and often facilitating inter-disciplinary research [9]. This thesis offers further such 

examples. Applying the theory of networks to identify alternative perspectives from 

which to view a range of complex problems within the Sciences and beyond. Usually, 

the primary goal of representing a complex system as a network is to single out its topo-

logical features and analyse the impact of these features on the behaviour of the system 

as a whole. However, recently, emphasis has been placed in analysing the interplay 

between a systems topology and its geometry, i.e. its properties in Euclidean (usually 

2D or 3D) space. In this thesis we aim to further contribute to this feld. Studying the 

topology, shape and spatial embedding of several network-like systems of different ori-

gin, covering all scales from the microscopic to the macroscopic. In particular in this 

2 
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thesis we will investigate the following properties of three different complex network 

systems: 

• Polymers: Shape properties such as g-ratio, asphericity, prolateness, and form 

factors, of ideal comb and dendritic polymers. 

• Public transport networks (PTN): The topological and geographical features of 

public transport networks in London, Manchester, the West Midlands and Bristol, 

together with the UK coach and rail networks. 

• Large scale structures of the universe: Correlations that exist between the topo-

logical features of a network generated of the cosmic web and the astrophysical 

properties of galaxies. 

This work aims to highlight the adaptiveness of complex network science and identify 

ways to further broaden its scope. The case studies presented exist on vastly different 

scales, and are formed via both natural and man-made phenomena. On the microscopic 

scale, natural or synthetic polymers are defned by the connection of multiple monomer 

units (via covalent bonds) to form long chain-like structures. At the opposite end of 

the spectrum, on a macroscopic scale, is the cosmic web, a conglomeration of many 

galaxies formed under the infuence of gravity, dark energy and dark matter. Between 

these two extremes we consider public transport networks, a man-made mesoscopic 

system that is governed by economic forces stemming from the demand to facilitate 

large-scale human movement. 

The layout of the rest of this thesis is as follows: 

• In Chapter 2, we start with an introduction on complex network theory. We defne 

fundamental tools such as the adjacency and Kirchhoff matrices, the average de-

gree, degree distribution, as well as other notions such as assortativity, centrality, 

preferential attachment and small worldedness. 

• In Chapter 3, we study the shape properties of several polymer macromolecules 

of different topology. The shape of polymers is known to signifcantly affect many 

physical properties such as their viscosity and melting point. We consider comb 

and dendritic polymers in the ideal regime in both 2D and 3D. Applying both 

3 
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analytical and numerical approaches we compute shape parameters that appear 

to be in excellent agreement with each other. We confrm that comb polymers with 

a complete set of interior branches display a more spherical shape. In addition, 

dendrimers with increased branching also tend to be more spherical. 

• In Chapter 4, we investigate public transport networks PTN using data derived 

from the National Public Transport Data Repository. We study the topological and 

spatial features of public transport networks including London, Manchester, West 

Midlands, Bristol, national coach and rail. We are able to rank PTNs in relation 

to their stability using methods from statistical physics. Moreover studying the 

fractal nature of these networks, allows for useful interpretations regarding the 

serviceable area of stations. 

• In Chapter 5, we study the cosmic web; the network describing the large-scale 

structure of the Universe. Our goal is to fnd correlations between galaxy astro-

physical (colour index and stellar mass) and topological (defned by location in 

the network) properties. We study 2D projections of galaxies spatial distributions 

in different redshift slices. For different galaxy samples, our results show a high 

similarity level in topology. We discuss statistically signifcant correlation found 

when selecting galaxies according to different modes of clustering coeffcient. 

Personal contribution of the researcher 

The work presented was carried out by the author except in the case of collaborative 

research, as outlined below: 

• The Monte Carlo simulations for shape properties of comb and dendritic poly-

mers in section 3, were carried out by Marvin Bishop, John Stone, Adam Barillas 

and Tylor Borgeson at Manhatten College, Manhattan, New York, United States. 

• The astrophysical interpretation of network properties in section 5, were carried 

out by Stepan Apunevych and Bohdan Novosyadlyj at the Ivan Franko National 

University of Lviv, Ukraine. 
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Research connection with scientifc programs, plans and themes 

This thesis has been prepared at Coventry University under the support the follow-

ing projects: PhD program Collège Doctoral ”Statistical Physics of Complex Systems” 

Leipzig-Lorraine-Lviv-Coventry (L4), FP7 EU IRSES projects 269139 "Dynamics and 

Cooperative Phenomena in Complex Physical and Biological Media" (DCP-PHYSBIO), 

295302 "Statistical Physics in Diverse Realizations" (SPIDER), 612707 "Dynamics of and 

in Complex Systems" (DIONICOS). 

Thesis approbation 

The results of this thesis have been reported and discussed at the following scientifc 

meetings: 

• "Research Symposium"(Coventry, 6th May, 2014); 

• VIII Scientifc Conference "Selected Issues of Astronomy and Astrophysics (Lviv, 

Ukraine, 17th-20th Oct 2016); 

• Joint Steering Committee meeting of the IRSES projects DIONICOS and STREVCOMS 

(Lviv, Ukraine, 14th-16th June 2017); 

• 80th Annual meeting and spring meeting of the German Physical Society (Re-

gensburg, Germany, 6th-11th March 2016); 

• Cost meeting (Sofa, Bulgaria, 13th-14th March) and three seminars at the Statis-

tical Physics of Complex Systems (ICMP, Lviv, Ukraine). 

Publications 

Material in this thesis has been published in: four papers, two in a peer reviewed jour-

nal [10], [11] and two on ArXive as preprints [12], [13] for which [12] has been accepted 

for publication in the journal: Monthly Notices of the Royal Astronomical Society and [13] 

is currently under going review at the journal: Transportmetrica A: Transport Science; and 

in fve conference abstracts [14]–[18]. 
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Chapter 2 

Complex networks: a brief 

introduction 

In this thesis we consider three different case studies, namely: the shape properties 

of comb and dendritic polymers; public transportation networks in the UK; and the 

COSMOS galaxy feld all viewed as a complex networks. The methodology employed 

to investigate these three objects, is the common feature linking them. For this reason, 

this chapter focuses on the theory of complex networks. Here, we present the tools and 

main characteristics used to investigate their properties. Initially, in section 2.1 we give 

a brief historic account of signifcant events and contributions to the theory. In section 

2.2 we introduce the main network observables and some classical models that have 

been developed, to describe complex networks. 

2.1 Main historic events in complex network development 

Complex network science can be traced back to 1741, when Leonhard Euler famously 

solved the seven bridges of Königsberg conundrum [2]. The problem consists of de-

termining whether a path existed, such that, all seven bridges of Königsberg could be 

traversed once and once only (see Figure 2.1). Euler solved the puzzle by reducing it 

to a set of nodes and edges, showing that for such a path to exist at least one of two 

conditions must hold: 

• either all nodes must have an even number of adjacent edges, so that a closed 

path can be drawn; 
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• only two nodes can possess three adjacent edges while all other nodes have an 

even number of connections. Under this constraint, the path must start and end 

on the two "odd nodes" (with an odd number of adjacent edges). 

In so doing Euler proved that, in Königsberg, no such path existed. In general, a path 

satisfying the frst or second condition is called a Eulerian path or semi-Eulerian path 

respectively. This historical event marked the beginning of a new form of discrete math-

ematics called graph theory. 

Subsequently, what began as trivial pursuit started to fnd applications in the nineteen 

century when, in 1845, Gustav Kirchhoff, whilst attending the university of Königsberg, 

formulated the laws that govern the fow of electricity within circuits. Kirchhoff’s laws 

have had a signifcant impact to the feld of electrical engineering and are still taught 

in undergraduate classes to this day. In 1861, graph theory also became one of the 

founding blocks of algebraic chemistry when Alexander Brown published his thesis 

entitled ’Theory of Chemical Combination’ [19]. Here, he linked valence electrons to 

the number of edges adjacent a node (atom) and used this to determine the number of 

confgurations of a chemical compound. 

In the twentieth century a number of other scientifc disciplines began to contribute 

and apply the theory of networks within other felds. Sociologist, started to use the 

concept of networks in their research. The most famous example being Stanley Mil-

gram’s experiment, in 1967, when he applied the concepts of networks to determine 

how connected people were to the rest of the world [20]. A decade earlier, in 1959, 

the famous mathematician, Erdös with his colleague Rényi [21] frst published their 

work on random graphs. Such objects have been the subject of numerous studies ever 

since.However, it was not until the 1990s, after a number of complex networks had 

been studied, that scientist started to realise that rare events in complex networks oc-

curred far more often than randomly expected. This realisation sparked the interest of 

the physics community and subsequently two more famous models of network gener-

ation were postulated. The frst model, suggested by Watts and Strogatz [22], in 1998, 

offered insight into how a probabilistic model could generate networks that were both 

locally, highly correlated and globally, compactly connected at the same time. The sec-

ond model, suggested by Albert and Barabási [23], in 1999, reproduced the power law 
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Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry University.

FIGURE 2.1: From left to right: Euler’s frst fgure in Ref.[2], where he de-
picts the seven bridges of Königberg; Euler’s graph representation of the 
seven bridges of Königsberg where nodes and edges refect land masses 
and bridges respectively. 

degree distributions, otherwise known as scale free behaviour, very often seen in com-

plex networks. 

During the course of the development of complex network science a large number of 

network observables have been developed. In the next section the network observables 

applied within this thesis are introduced and discussed in detail. 

2.2 Network Observables 

Let us start by defning a graph, G as a pair (V, E) where V and E are the sets of nodes 

and edges respectively. We write N = |V | the total number of nodes. Note that E is 

a subset of Ω = = {(u, v)|u, v ∈ V }, with |Ω| = N2 so that |E| ≤ N2. One should V 2 

mention that in some cases, E is a multiset (instead of a set). This re-defnition of E 

allows for the consideration of multi-edges (see next section for details) and for the 

construction of networks with a high number of edges i.e. |E| > N2 . In general, a 

network can be represented by various matrices, such as the adjacency matrix ( K̂) and 

the Kirchhoff matrix ( L̂). Both matrices and typical networks characteristics are defned 

in the following sub-sections. On numerous occasions we will refer to the book of 

Newman, "Networks: An introduction" [1]. This book provides extensive and detailed 

information on the fundamentals of network theory. It also includes many empirical 

studies on real complex networks. It is an ideal starting point for the reader looking for 

a more comprehensive and detailed overview of complex network theory. 
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2.2.1 Adjacency Matrix 

A graph, G with N nodes can be represented by an N × N adjacency matrix Â with 

elements 

Âi,j = 

⎧ ⎪⎪⎨ ⎪⎪⎩ 
wi,j , if (i, j) ∈ E, 

0, if (i, j) ∈/ E, 

where wi,j is the weight associated to the edge (i, j). In the most general case, a network 

can be i) directed, ii) weighted, iii) accept multi-edges and iv) accept loops. 

i) We talk about directed networks (or directed edges) when an edge (i, j) is said 

to be pointing from node i to node j. For such networks (i, j) and (j, i) are two 

distinct connections and the total number of edges is given by M = |E|. However, 

when the direction of an edge does not matter, we talk about undirected graphs. 

In this case, (i, j) and (j, i) represent the same link so that we have (i, j) ∈ E ⇔ 

(j, i) ∈ E. It follows that the total number of (undirected) edges is M = |E|/2, 

when self-edges (loops) are not permitted. 

ii) Networks are said to be weighted, when a weight is associated to each edge. Ar-

tifcial neural networks, some social networks, and numerous others fall into this 

category. The weights are usually positive numbers but, in some cases, negative 

weights are considered. For example, in the study of social networks generated 

from epic narratives, friendly and hostile interactions are associated with positive 

and negative weights respectively [5]. However, when all edges carry identical 

weight wi,j = 1 we talk of unweighted networks. 

iii) A network is said to have multi-edges when two nodes i and j can be connected 

by more than one single edge. In this case the set E should be extended to a 

multi set, allowing for the count of multi-edges. It follows that wi,j represents the 

number of multi-edges between nodes i and j. A graph is usually considered as 

not having multi-edges unless stated otherwise. 

iv) Loops or self-edges appear in graph for which a node can connect to itself. The 

loop attached to node i is represented by the couple (i, i). Once again, unless 
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explicitly mentioned a graph is assumed to have no loops. 

Simple networks (or simple graphs) are defned as unweighted, undirected graphs, 

presenting no multi-edges and no loops. For simple graphs, elements Âi,j (and wi,j ) 

are either 0 or 1. Moreover, the adjacency matrix is symmetric and presents zeros along 

the diagonal. In our work we will consider both undirected, weighted and unweighted 

networks. 

The number of edges adjacent to a given node i is known as the node degree, ki. With 

the help of the adjacency matrix we can now defne the node degree and its distribution. 

We should mention that for directed networks, it is useful to defne an in- and out-

degree, associated to the number of edges pointing to or from a given node respectively. 

However, restraining ourself to undirected networks, the node degree (defned in terms 

of the adjacency matrix) reads: 
NX 

ki = Âi,j . (2.1) 
j=1 

The mean of kn, for arbitrary n, is defned by averaging of over all nodes in the network: 

NX1 hkni = ki
n . (2.2)

N 
i=1 

In particular it is easy to show that hki = 2M/N . The variance is defned in the usual 

way: 
NX 

Var(k) = h(k − hki)2i = 1 
(ki − hki)2 . (2.3)

N 
i=1 

Together hki and hk2i (or Var(k)) offer a description (up to second order) of the distri-

bution of interactions within the network. 

2.2.2 Degree distribution 

The degree distribution and cumulative degree distribution are ubiquitous quantities 

in network theory. To introduce the degree distribution P (k) it is convenient to rewrite 

Eq.(2.2) as X 
hkni = P (k)kn , (2.4) 

k 
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where the sum over k spans all possible values of the node degree. P (k) satisfes P 
P (k) = 1 and is given by P (k) = Nk/N , with Nk being the number of nodes with k 

degree k. From here, the cumulative distribution is defned by: 

X 
P≥(k) = P (q) . (2.5) 

q≥k 

In simple words, the distribution P≥(k) gives the probability of selecting a node of 

degree greater than or equal to k. In fact, the degree distribution of complex networks, 

generated by real world data, often exhibits a signifcant amount of noise. This noise 

can usually be smoothed out by considering the cumulative distribution. 

Investigations of the degree distribution of real networks has lead to the observation 

that numerous networks present a positively skewed degree distributions [1], [24]–[26]. 

This behaviour, for large degree k, signals the existence within a given network of high-

degree nodes (also called hubs). In the presence of such a distribution, we commonly 

refer to the degree distribution as fat tailed. 

2.2.3 Functional forms of the degree distribution 

Many different functional forms have been used to describe the degree distribution of 

real networks. Amongst them; the Poissonian distribution and power law distribution 

(also called scale free) are described in this section. The reader may often encounter 

other distributions such as: truncated power-law distributions, exponential or Gaus-

sian distributions, log-normal distributions, stretched exponential and Weibull distri-

butions [1]. 

The Poisson distribution 

In 1959, two models for random network generation were published: the Erdös-Rényi 

model, G(N, M, p) [21], and the Gilbert model, G(N, p) [27]. In the G(N, M, p) model, 

one starts to generate a fxed set of nodes and proceeds by: 

1. Connecting two nodes, which are randomly selected, 
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2. Iterating the previous step until a total of M edges are generated. 

Gilbert’s model (G(N, p)) has a slightly different algorithm. Starting with a fxed set of 

nodes, we frst: 

1. Connect two nodes with probability p, 

2. Repeat the previous step, iterating through all pairs of nodes once and once only. 

While in the frst model, the number of links is fxed to M , in Gilbert’s model this 

number can fuctuate between 0 and N − 1. However, when averaged over many con-

fgurations both models present a Poisson distribution. One should mention that other 

network characteristics such as average path length (l ' ln(N)) and average clustering 

coeffcient (C ' p) are also common to these two models. The latter quantities will be 

defned later in this chapter. 

In Gilbert’s model we can easily evaluate the degree distribution P (k). We frst note 

that the probability for a vertex to have degree k is proportional to pk(1 − p)N−1−k . 

Keeping count of all arrangements of k links, amongst N − 1 we have 

P (k) = CN−1 p k(1 − p)N−1−k , (2.6)k 

where CN−1 is the binomial coeffcient. From the degree distribution one can easily k 

estimate the mean and variance: 

hki = p(N − 1) (2.7) 

Var(k) = p(1 − p)(N − 1). (2.8) 

It is when taking the limit N large, that the Poisson distribution arrises. Using the 
√ 

Stirling’s approximation N ! ' 2πNN+1/2e−N on the binomial coeffcient, leads to 

(Np)k 
−NpP (k) ' e , (2.9)

k! 

with hki ' pN . 
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The Power laws distribution 

In 1999, Albert and Barabási (AB) published a model reproducing the scale free be-

haviour prevalent in many complex systems [23]. At frst, they tried growth models 

followed by preferential attachment models to no avail. It was not until they included 

both features of growth and preferential attachment into one model that scale free be-

haviour was observed. The algorithm developed is as follows: 

1. Start with an initial confguration m0 nodes. 

2. Add a node u and from u generate m0 links with the existing nodes. 

3. Add a node u + 1. The probability to attach u + 1 to an existing node i is now 

chosen to be proportional to the degree ki. 

4. Iterate step three until the desired number of nodes is reached. 

Figure 2.2 presents a network generated following the AB algorithm where N = 20 and 

m0 = 2. The value of each node represents the order which nodes enter the network. As 

a result of preferential attachment it can be seen that earlier nodes tend to have higher 

degree nodes. A network generated under these rules of construction present a power 

law degree distribution of the form 

P (k) ∝ k−α . (2.10) 

In general, we say that a network has a power laws distribution (or is a scale free net-

work) when its degree distribution can be approximated with P (k) ∼ Ck−α, for some 

constant C. This is a common characteristic of a large number of networks for which 

typical values of α fall in the range 2 ≤ α ≤ 3 [24], [28]. We should mention that for 

a given network, the functional form is not expected to ft all k values (especially not 

small values of k) [29]. Usually, the expression Ck−α is ftted to the tail of the data. 

Given P (k) ∝ k−α, we easily see by integration, that the cumulative distribution is also 

a power law distribution, 

P≥(k) ∝ k1−α . (2.11) 
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FIGURE 2.2: Example of Albert-Barabási preferential attachment net-
work of twenty nodes and initialising with two nodes (m0 = 2). The 
values for each node represents the sequence which these nodes where 
added to the network. 

2.2.4 Kirchhoff matrix for simple graphs 

For simple graphs the Kirchhoff matrix is defned as: K̂ = D̂ − Â, where D̂ is diag-P 
onal (Di,j = 0 for i 6 j) with elements given by = = j The Kirchhoff = D̂i,i ki Âi,j . 

matrix is another useful representation of a network. The Kirchhoff matrix appears 

in many problems including random walks, resistor networks, graph partitioning. Its 

eigenvalue spectrum gives insight into some of the properties of networks. Written λi 

ˆ(i ∈ {1, 2, ..., N}) the eigenvalues of K are conventionally sorted in decreasing order 

λ1 ≥ λ2 ≥ ...λn ≥ 0. For simple graphs, the following properties hold: 

NP • The number of sub connected components s in G is given by s = δ(λi) with 
i=1 

δ(x) = 1 if x = 0 and zero otherwise. 

N NP Pˆ• Ki,i = λi, 
i=1 i=1 

NQ• | K̂| = λi, 
i=1 

• The eigenvalues of K̂q (for positive integer values of q) are λq
i , 
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• For a fully connected graph G, the number of spanning trees t is given by t = � � 
NQ−1 

1 λi , where t is a subgraph that is a tree which includes all nodes of G.N 
i=1 

2.2.5 Clustering coeffcient 

There exist two defnitions of the so called clustering coeffcient, one is a local quan-

tity while the other is defned globally. The global clustering coeffcient is often called 

transitivity and is commonly used in sociology [30]. This quantity is defned by the 

ratio of total number of triangles NT and the total number of triplets Nt (a triplet be-

ing defned by the nodes on a path of length 2) in the network: CT = 3NT /Nt. In this 

section we will focus on the local defnition, the reader interested in learning more on 

the global clustering coeffcient is invited to read [1]. The clustering coeffcient can be 

understood as the measure of the average probability that two neighbours of a vertex 

are themselves neighbours. Let us consider a node i and all its nearest neighbours. The 

clustering coeffcient Ci is defned by 

2yi
Ci = , ki ≥ 2, (2.12)

ki(ki − 1)

where yi is the number of links, between the ki nearest neighbours of the node i [22]. 

If neighbours of i are fully connected then yi = ki(ki − 1)/2 so that Ci = 1 whereas if 

none of them are connected we have Ci = 0. Once all Ci, are known for all nodes, the 

average clustering coeffcient is defned as 

NX1 
C = Ci. (2.13)

N 
i=1 

The clustering coeffcient for a given graph is often compared with the clustering coef-

fcient derived for a classical Erdös-Rényi random graph [21], [22] of the same size. The 

latter quantity being defned by: 

hki 
Cr = . (2.14)

N − 1 

Note that in the limiting case of a fully connected graph one has hki = N − 1 leading 

to Cr = 1 while for an empty graph we have hki = 0 so that Cr = 0. Often, real social 
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networks appear to present a high clustering coeffcient. This characteristic is induced 

by the underlaying rules governing the formation of social networks. In Ref.[31], New-

man studies the network of collaborations between physicists and shows how social 

dynamical rules tend to favour the creation of triangles. However, other networks, such 

as non-social networks (governed by rules other than human interactions) are believed 

to have a relatively lower clustering coeffcients. The Internet’s clustering coeffcient 

has been evaluated [1] to be about 0.012, which is far lower than the "expected" value 

which would have been obtained if connections were random (0.84). 

2.2.6 Assortativity 

Agents in many complex systems tend to have similar attributes, this feature is often 

summarised in the well known saying "Birds of a feather fock together". This tendency 

is also known as homophily [32]. The degree assortativity r (or simple assortativity) 

provides a mathematical measure for the tendency to connect nodes of similar degree. 

This is given by the Pearson correlation coeffcient [1] and is calculated as: 

P 
i,j Âi,j (ki − E[k])(kj − E[k]) 

r = , (2.15)
E[k2] − E[k]2 

where the expectation E[.] is defned by: 

X1 mE[kn q m] = Âi,j ki
n qj . (2.16)

2M 
i,j 

It is important to note that E[k] 6 hki. In fact one can show that E[k] = A= hk2i/hki. 

better understanding can be reached by expressing the assortativity as a function of 

E[kq]: 
E[kq] − E[k]E[q] 

r = . (2.17)
E[k2] − E[k]2 

It is then clear that a positive assortativity will be associated to network for which 

E[kq] > E[k]E[q]. For such networks nodes of similar degree tend to associate (share 

edges) with one another. A negative assortativity will appear when E[kq] < E[k]E[q]. 

Such networks are said to be disassortative; nodes of high degree tend to link with 

nodes of low degree. Finaly, if one considers, uncorrelated networks, for which one can 
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approximate Âi,j ∝ kikj , it is easy to show that E[kn] = E[qn] and E[kq] = E[k]E[q] 

leading to a vanishing assortativity where r = 0. 

2.2.7 Paths 

Let us start by defning three notions which, though being similar, have different mean-

ings: a walk, a trail and a path. A walk in a network is a sequence of edges for which 

edges are not necessarily distinct. A trail however, is a walk where all edges are dis-

tinct, while a path is a trail in which all nodes are distinct. The number of walks of 

length q between two nodes i and j can easily be obtained via the element (Âq)i,j . The 

shortest walk between two nodes is also the shortest path. Thus the shortest path be-

tween nodes i and j can be found by observing successive powers of Â. As we increase 

the power from q to q + 1, the shortest path is given by ` i,j = q + 1 when Âi,j jumps 

from 0 to 1. 

We should point out that many complex networks tend to be fragmented into discon-

nected sub components. The largest of these sub components is known as the giant 

connected component (GCC). Let us use the symbol C1 to refer to the set of nodes in 

the GCC. All other components will be denoted by Cj (j > 1). We should point out that 

between nodes of distinct sub-components the shortest path can not be defned. For 

this reason the mean shortest path length h`im is defned on the component Cm as the 

average number of steps along the shortest path ` i,j for all possible pairs of nodes i, j: 

X 
h`im =

2 
` i,j , (2.18)|Cm|(|Cm| − 1) 

i,j∈Cm 

where |Cm| is the number of nodes in component Cm, with the summation running over 

nodes belonging to the Cm component only. Note that if i = j one has ` i,j = 0 which 

simply does not contribute to the summation. Measuring how closely connected nodes 

are within the GCC is often a point of interest as it gives an indication of a network’s 

connectivity. In fact, the measure of shortest path are often restricted to the giant com-

ponent, only. Hence, h`i simply refers to h`i1: the shorted path in the GCC. 
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For a given network, the shortest path is often compared to average path length of a 

G(N, p)-random network h` ri of the same size [33]: 

ln N − α 1 h` ri = + , (2.19)
ln(Np) 2 

where α ≈ 0.5772 is the Euler-Mascherroni constant. The average path length can 

be extended to weighted networks. Here the shortest path is not always the shortest 

sequence of distinct edges but rather the path carrying the least weight. Finally, the 

diameter D of a network is defned as the largest shortest path in the GCC. 

2.2.8 Degree, Betweenness, and Closeness Centrality 

In a network the importance of a node can be defned in different ways depending on 

the property we investigate. In fact, a number of centrality measures have been devel-

oped. In the following section we give a brief defnition of the degree, betweenness and 

closeness centrality which has been well documented in Ref.[34]. 

Degree Centrality 

One measure of the importance of a node is to consider the number of other nodes it is 

directly associated with. The degree centrality of a node is defned by, 

kj
Cd(j) = . (2.20)

N − 1 

This can be seen as the amount of infuence a node has within its local vicinity and 

provides a certain measure of its importance within the network. 

Betweenness centrality 

The betweenness of a node determines a nodes importance by considering how often 

this node appears on the shortest paths between other nodes in the network. It is cal-

culated by X ρ(j, i, k)
Cb(i) = , i 6= j 6= k , (2.21)

ρ(j, k)
j,k 
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where ρ(j, k) is the number of shortest paths between nodes j and k and ρ(j, i, k) is the 

number of shortest path that go through i. 

Closeness centrality 

The closeness centrality reveals how central a node is in the network. It is defned as: 

Cm − 1 Cm − 1 
Cc(j) = , (2.22)PCm−1N − 1 ` j,t t=1 

given j, t ∈ Cm. If the network is disconnected, as is the case for many networks, the 

frst term will act to normalise the centralities for each fully connected subcomponent. 

2.2.9 Small world model 

A network is said to be ”small world” if the typical distance between two random 

nodes scales approximately according to log(N) and the network is highly correlated 

(i.e. C � Cr) [22]. The notion of a small world was frst introduced by a writer, called 

Frigyes Karinthy, in the 1920s when he published the short story "Chain-Links" [35]. 

Here, he theorised of a world that was becoming more inter-connected due to advances 

in communication. It was only in the 1960s that this hypothesis was tested by Stanley 

Milgram in his famous experiment [20]. In this experiment, people selected at random 

in the US cities of Omaha and Wichita where asked to send a letter directly to a per-

son (once again selected at random) in Boston if and only if they knew them on a frst 

name basis. If they did not know the designated person they were asked to send the 

letter to a person they thought more likely to know the person of interest. The aim of 

this experiment was to determine the average path length in social networks. Milgram 

found this to be six which was extremely small considering the population of the US 

and geographical divide between cites. This resulted in the coining of the term ”Six de-

grees of separation”. The random networks hypothesised by Erdös-Rényi and Gilbert 

have the feature of a relatively small average path length, seen in Milgram’s experi-

ment, however these models failed to explain the high correlation observed on a local 

scale in many complex networks. 
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Some materials have been removed due to 3rd party 
copyright. The unabridged version can be viewed in 
Lancester Library - Coventry University.

FIGURE 2.3: Watts and Strogatz Small world: Clustering coeffcient C 
and average path length h`i as a function of p for N = 100 and M = 1500 
[22]. 

Three decades later, in 1998, Watts and Strogatz (WS) developed a model that could 

account for both of these features [22], where simultaneously h`i ≈ log(N) and C � Cr. 

The WS model is defned by the following algorithm: 

1. Begin by setting the initial condition of a ringed lattice where all neighbours are 

linked. 

2. Pick an edge (u, v) and with probability p randomly rewire the edge to (u, x). 

3. Apply step two, iterating through pairs of edges once and once only, until all 

n(n − 1)/2 pairs of edges are exhausted. 

Figure 2.3 shows the clustering coeffcient C and mean path length h`i as a function of 

the rewiring probability p. If p equals zero the initial confguration remains unchanged 

and as the parameter p increases C remains large but h`i becomes relatively small, thus 

displaying the characteristics for a small world network. If however p continues to 

increase, p → 1, the network becomes completely random showing small C and h`i, the 

features of a random network. One should note that the WS model does not produce 

the scale free behaviour observed in the degree distribution of many complex networks. 
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2.3 Conclusion 

In this chapter we discussed some of the contributing events to the development of 

complex network science and the main theory applied in this thesis. Complex networks 

are useful in quantifying processes in complex systems involving interacting agents. It 

has become a large feld of science which has brought together many researchers from 

areas of science such as mathematics, physics, computer science, biology and sociol-

ogy [9] amongst others. Whilst being a well established feld it is still developing and 

evolving. In this thesis we have chosen to further contribute to this feld of science by 

considering three different object all studied under the umbrella of complex networks. 

In the chapters that follow the methods discussed here will be applied to polymers, 

transport public networks and large scale structures of the universe. 
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Chapter 3 

Shape properties of ideal, ramifed 

tree-branched polymers 

It is well known that the branching structure affects the behaviour of polymer systems 

[36], [37]. For example, branching can affect the shape of a polymer which will, in turn, 

affect properties such as the viscosity and melting points of polymer conglomerations. 

This has a signifcant effect on the strength and durability of polymers. Knowledge of 

the shape properties of different polymeric confgurations can aid in the development 

of more purpose built materials. One specifc form of branched polymer is dendrimers 

(see Figure 3.1). Shaped like concentric branching trees, these structures, have the abil-

ity to fold up to form a molecular cage [38]. Dendrimers have attracted attention within 

medical sciences as they can be used to ”carry” drugs to areas of the body that are typ-

ically hard to reach [39], [40]. 

In this chapter we investigate the shape parameters of two types of polymers: comb 

polymers with two, three, four and fve junctions and frst and second generation den-

drimers in 3D (see Figure 3.1). The shape parameters investigated include: g-ratio, 

asphericity, prolateness and form factor, analysed by three different techniques. In the 

frst method (M1), we apply a Monte Carlo Growth Algorithm (MCGA), where poly-

mers are grown randomly on square and triangular lattices. Method two (M2), is de-

rived from a method developed by Wei [41], [42], where only the topology of polymers 

is required to determine the shape properties. This is done by representing the poly-

mer as a graph G(V, E) where V and E are the monomers and covalent bonds between 

monomers respectively. The third method (M3), the Benhamou method [43], is used to 
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FIGURE 3.1: Ramifed polymeric networks. The frst row shows the two, 
three, four, and fve junction comb polymers. The second row displays 
the dendrimers structures. 

calculate the exact form factor of polymers employing Debeye scattering techniques for 

Gaussian chains. 

In Ref.[41], [42], Wei analytically determines various universal shape parameters for 

certain types of comb-like structures which are precise in 2D and very accurate in 3D. 

Here, however we redesign this method to extrapolate results by generating shape pa-

rameters for fnite size systems and then extrapolating to an infnite size system. The 

advantage of this new approach is that the shape properties of any tree-like structure, 

whereby the Kirchoff matrix can be generated, can be semi-analytically evaluated in a 

quick and effcient manner. These results are then compared with the more traditional 

methods of Monte Carlo simulations. 

The chapter is laid out with the following structure. In section 3.1 the gyration tensor 

and the resulting shape properties are defned and discussed. In section 3.2, methods 

applied in the analysis are explained. In section 3.3, we present our results for two, 

three and four junction combs in 2D (subsection 3.3.1), 5-junction combs in 2D and 3D 

(subsection 3.3.2) and frst and second generation polymers (subsection 3.3.3). Finally, 

some concluding remarks are offered in section 3.4. 

As we have shown in this study, all three methods show excellent agreement with 

each other and available theory. The main results of this work have been published 

in Refs.[11], [13]. 
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3.1. Gyration tensor and shape of complex structures 

3.1 Gyration tensor and shape of complex structures 

Here, ramifed comb and dendrimer polymers of various topologies are studied. A 

ramifed polymer can be described as a tree network, connected by long fexible chains 

where each chain has the same degree of polymerisation. If m is the number of monomers 

in a branch (or chain) and b is the number of branches, then there are a total of N = 

bm + 1 monomer units in the network. 

The size of an ideal linear polymer chain can be measured by studying its end to end 

distance, Re. The mean end to end distance hRei for an ideal chain constructed of N 

monomers with a diameter σ can be easily calculated by considering a random walk in 

one dimension. In this scenario, hRei = 0 because the mean number of steps in the left 

direction will equal the means number of steps in right direction. The variance can then 

be determined in the usual way, Var(Re) = hR2i − hRei2. This leads to Var(Re) = hR2ie e 

as hRei = 0 which then gives a mean end to end distance, 

hR2i = Nσ2 , (3.1)e

for an ideal linear chain in one dimension. This can be extended into higher dimen-

sions, where hR2 i = hR2 i = hR2 i = Nσ2 
. Finally leading to an end to end distance ex ey ez 3 

distribution, 

� 3 �3/2 3hR2 
e i−P (Re) = e 2Nσ2 . (3.2)

2πNσ2 

So the size of a linear chain can be measured via an end to end distance. However, 

for more complex polymeric structures this measure is not well defned. For example 

branched polymers will have many ends and ringed polymers no ends at all. Hence 

when measuring polymers a different mechanism for measuring the size of a polymer 

is required. 

A measure that is well defned to determine the size of all kinds of polymers is the 

mean-square radius of gyration, hS2i. For a polymer, hS2i can be determined using the 
(α)gyration tensor Q. If Xj denotes the α component of the position vector of the j-th 
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monomer, then the center of mass coordinates (X(α) ) for a given confguration is given CM 

by 

(α)
XCM = 

1 
N 

NX 
(α)

Xj , for α = 1, 2 or 3 (3.3) 
j=1 

and the matrix components of the gyration tensor (Q) may be written in the form 

NX1 (α) (α) (β) (β)
= (X − X )(X − X ). (3.4)Qαβ 

N j CM j CM 
j=1 

The square radius of gyration of this confguration is calculated in three dimensions as 

S2 = Q11 + Q22 + Q33 = e1 + e2 + e3, (3.5) 

and in two dimensions as 

S2 = Q11 + Q22 = e1 + e2. (3.6) 

It is well known [44] that for large polymers, with or without branches, hS2i follows the 

scaling law : 

hS2i = CN2ν . (3.7) 

The coeffcient, C, is a model dependent amplitude but the exponent, 2ν, is universal 

and equal to 1 for all ideal polymers, irrespective of topology. This leaves, 

hS2i = CN , (3.8) 

remembering the end to end distance defned in Eq.(3.1), hS2i can then be defned as, 

hS2i = ChR2i , (3.9)e

Thus highlighting the relation that exists between the end to end distance and the ra-

dius of gyration of polymeric structures. It can easily be shown that C = σ2/6 for both 

linear and acyclically branched polymers. 

The overall shape of a polymer can be determined using the gyration tensor Q. If the 
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eigenvalues of Q are ordered by magnitude: ei ≤ ej for i < j. These are the principal 

moments of gyration along the principal orthogonal axes [45]. Rudnick and Gaspari 

[46], [47] have defned the average asphericity, hAi, of a polymer in d dimensions as 

+* Pd (ei − ej )2 

hAi = i>j 
. (3.10)Pd(d − 1)( i=1 ei)

2 

The g-ratio is a dimensionless parameter that measures the compactness of a polymer. 

It is defned by the radius of gyration of a branched polymer hS2ib and a linear polymer 

chain hS2il, containing the same number of monomers, 

hS2ib 
g = . (3.11)hS2il 

Casassa and Berry [48] obtained a general equation for the g-ratio of uniform, ideal 

comb polymers, where n is the number of junctions with three branches adjacent, which 

are regularly spaced along the backbone: 

h2(1 − h) 2h(1 − h)2 (3n − 2)(1 − h)3 

g = 1 − h − + + . (3.12)
2n + 1 n n

Here, h is the ratio of the number of units in the comb backbone to the total number of 

units in the polymer. Table 3.1 displays the h, n and g-ratio values obtained for uniform 

junction combs. 

Structure h n g-ratio 
5-branch 3/5 2 0.7120 
7-branch 4/7 3 0.6676 
9-branch 5/9 4 0.6379 
11-branch 6/11 5 0.6168 

TABLE 3.1: g-ratios for uniform ideal comb polymers with a junction 
functionality of three for 2, 3, 4 and 5 junctions. 

The g-ratios for other non uniform junction combs and dendrimers studied here are 

derived from the form factor S(k) (later defned in this chapter). In Ref.[49], von Ferber 

et al. found g-ratios values of 37/64 (0.5781) and 683/1331 (0.5131) for eight and eleven 

branch combs, respectively. 
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The shape of a two (three) dimensional linear polymer can vary from a fully extended 

rod in which e2 completely vanishes leaving hAi = 1, to a circle (sphere) for which all 

the eigenvalues e are equal. In the latter case hAi is zero. In between the extremes of 

a rod and a circle (sphere), a polymer confguration can be imagined as approximately 

enclosed inside an ellipse (ellipsoid). 

In addition to the asphericity, other properties can be calculated to identify the overall 

shape of a polymer. In two (respectively three) dimensions, the shape factor parameter 

hδ1i (Prolateness hP i) is used: 
he1i hδ1i = hS2i , (3.13) 

and * + 
hP i = 

27(e1 − ē)(e2 − ē)(e3 − ē)P3( i=1 ei)
3 

, (3.14) 

where, ē is 

ē = 
e1 + e2 + e3 

3 
. (3.15) 

Note that hAi and hP i involve an average of a ratio whereas hδ1i involves a ratio of 

averages. 

Another important structural property is the scattering function, S(k) which provides 

information on the spatial distribution of monomers. When a laser beam is directed at 

a polymer solution most of the photons from the incident beam go straight through. 

However, some of the molecules in the path of the beam scatter a small fraction of 

the photons. The scattering vector k is given by the change in the wave vector upon 

scattering, 

k = ks − ki (3.16) 

2πwhere ki if the wave vector of the incident beam which has a magnitude of λl/nsol 

(λl/nsol is the wave length of light in a solution of refractive index nsol) and ks is the vec-

tor of the scattered beam. For static light scattering (i.e when monomers are assumed 
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to be static in a solution) the magnitude of ki and ks are equal. Thus the magnitude or 

change in scattering wave vector, |k| = k is given by, 

4πnsol
k = sin(θ/2) , (3.17)

λl 

where θ is the scattering angle. We can see that as θ increases for 0 ≤ θ ≤ 180, k also 

increases in magnitude. 

As the incident beam ki propagates forward its orthogonal electric feld Ei will oscil-

late with an angular frequency and thus Ei will depend on the position r and time t 

according to: 

i(ki·r−ωt)Ei = Ei0e , (3.18) 

where Ei0 is the complex amplitude of the feld and ω is the angular frequency. 

As the laser beam travels through a polymer solution photons will collide with monomers 

polarising them at a given position ri and time ti and thus the scattering radiation Esi 

for each monomer will be different and described by, 

i(ks ·r−ri)−ω(t−ti)Esi = Esme , (3.19) 

where Esm is the complex amplitude of the beam scattered by a monomer propagated 

in direction of the scattering wave vector ks. 

By summing Esi for all monomers and with some simple derivation 

Flory and Volkenstein, in Ref.[50], formally defne the Fourier transform for the density-

density autocorrelation function: 

NX1 ik·(rn−rm))i .S(k) = he (3.20)
N2 

m,n 

Here, N is the number of monomers in the polymer, k is the scattering vector, and 

rm and rn are the positions of the m-th and n-th monomers. The values given by this 

29 



 

 

Chapter 3. Shape properties of ideal, ramifed tree-branched polymers 

function depend on the dimension that the polymer occupies. This is a laser beam 

has a large coherence meaning that photons perpendicular to ki are all assumed to 

be in phase. So in two dimensions the phase angle for polarisation will always be 

the same whereas in three dimension this changes. After averaging over the angles in 

two dimensions, the scattering function is defned as the zeroth order Bessel function, 

J0(x). Whereas in three dimensions, the scattering function is defned as sin(x)/x where 

2x = k2hS2i. To compute S(k) using the generated MC confgurations, we frst average 

Eq.(3.20) over the angle between k and (rn − rm) to fnd that in two dimensions 

NX1 
S(k) = hJ0[k(rn − rm)]i , (3.21)

N2 
m,n 

and in three dimensions 

N
1 X� 

sin[k(rn − rm)] 
� 

S(k) = . (3.22)
N2 [k(rn − rm)]m,n 

In an ideal polymer, the confgurations have a Gaussian distribution. Casassa and Berry 

[48] used this fact to obtain the form factor for uniform ideal combs with single branches 

attached to the backbone: 
2(A + B + C)

S(k) = , (3.23)
2x

where 

−xhA = x − 1 + e , (3.24) 

! � � −xhn/(n+1)1 − e−x(1−h)/nB = 1 − e n + 2 , (3.25)
xh/(n+1)1 − e

and 

! � �2 xh/(n+1) − 1) − (1 − e−xh(n−1)/(n+1))(n − 1)(e−x(1−h)/nC = 1 − e . (3.26)
xh/(n+1))2(1 − e

In these equations x = khS2i` where hS2i` is the radius of gyration of an ideal linear 

polymer with N units. hS2i` is related to hS2ib by the g-ratio. The form factor of a 

uniform junction comb polymer is easily obtained from these equations. 
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3.2. Numerical and analytical approaches to quantify shape properties of tree like 

polymer networks 

In the next section we discuss the methods that have been applied to determine the 

shape parameters introduced here. 

3.2 Numerical and analytical approaches to quantify shape prop-

erties of tree like polymer networks 

3.2.1 Monte Carlo growth algorithm 

For the MC simulations, linear chains are grown on simple square and triangular lat-

tices in 2D and cubic lattices in 3D, to generate ideal polymers. For two-dimensional 

structures, where polymers are grown on a regular are triangular grid, there are four 

(North, South, East, West) or six (East, West, North East, North West, South East, South 

West) directions which could be chosen. In three dimensions, there also are six (North, 

East, South, West, up, Down) possible directions. Once a direction is randomly selected, 

a new monomer is placed in that direction. For the ideal regime considered here, over-

lapping beads are allowed. This process is repeated m times to generate a branch. 

All polymers studied are generated by implementing the above linear polymer growth 

algorithm, with slight modifcations. For all combs, a three branched star is grown by 

placing the frst monomer at the origin (0, 0). The frst branch is grown from the origin 

to include m monomer units. Then, two other branches of the same size are grown 

again starting at the origin. The origin is then moved to the end of the third branch, 

where new branches are subsequently grown. From here the process for generating 

polymers with a complete and an incomplete set of internal branches differs: 

• Complete set: The process of generating a three branched star is repeated until 

b − 2 branches exist in the network. At this point only two additional branches 

are subsequently added. 

• Incomplete set: After a three branched star is generated, two branches are grown 

from the new origin where the origin is then moved to the end of the second 

branch. This iterative process continues until b-branches exist in the comb poly-

mer. 
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In the case of dendrimers, initially a linear branch is generated. Then, all connect-

ing branches are grown from the junction at the end of this branch. In the case of 

the second-generation twenty one branch and thirty nine branch structures, additional 

branches are then grown from the end junctions of the inner branches. Once a com-

plete multi branch component is grown, the algorithm cycles back to the initial seed 

monomer to repeats the process two more times. 

After each polymer is completely constructed, the shape properties discussed in section 

3.1 are calculated for each confguration. In the simulated systems for combs, the num-

ber of monomers N ranged from 1001 to 7001 monomers. For dendrimers, N ranged 

from 55 to 1342 monomers. To determine the mean and the standard deviation for each 

simulated system, 1.6 × 105 and 105 samples were generated for comb and dendrimers 

polymers respectively. 

For the computation of S(k), the number of monomers N has a smaller range (from 

127 to 701), due the computational complexity. Moreover, each form factor calculation 

involves two simulation runs: one to determine hS2i, and a second to calculate S(k). 

As we demonstrate, later in this chapter, these smaller systems are still large enough to 

probe the asymptotic regime. The set of confgurations for S(k) was further averaged 

over 104 samples. 

3.2.2 Wei method 

In 1995, Wei designed a method that determines the universal shape parameters of 

Gaussian macromolecules. In general this method can be applied to any polymer net-

work where the Kirchhoff matrix (defned in section 2.2.4) and its corresponding eigen-

values can be determined. In Refs.[41], [42], Wei analytically derives the shape param-

eters for star and simple combs structures. These results are exact in 2D and give a 

extremely good approximation in 3D. A particular component of the present execution 

of this approach is that we determine the shape parameters by extrapolating in the limit 

N → ∞. This is done by following a simple algorithm. First, we construct a ramifed 

comb or dendrimer network that has m = 64 monomers per chain. Here the initial 

number of monomers N depends on the polymer architecture. We then determine the 
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polymer networks 

shape parameters for a polymer of size N . In the next step, we increase the size of each 
√ 

chain in the network by a factor of 2 and then calculate the new shape parameters for 
√ 

the same polymer architecture that is now 2N larger. For combs and 9-branch den-

drimers this process is repeated until a chain size of 4096 monomers is reached. How-

ever, due to the computational complexity of computing eigenvalues for large Kirchhoff 

matrices larger dendrimer networks could only be determine for smaller N . The small-

est number of polymers per branch considered was 724 monomers for the 39-branch 

dendrimer. From here we can extrapolate in the thermodynamic limit. This is shown in 

Figure 3.2, where we show the extrapolation process for the shape parameter aspheric-

ity for nine and eleven branch combs in 2D. 

To calculate shape parameters after constructing the polymer network, we frst deter-

mine the non-zero eigenvalues λ1, . . . , λN −1 of the N × N Kirchhoff matrix K̂ for a 

Gaussian polymer with N monomers. The diagonal matrix is defned as, 

ΛN (y) = 

⎛ ⎜⎜⎜⎜⎝ 
λ1 + y 0 

. . . 

⎞ ⎟⎟⎟⎟⎠ . (3.27) 

0 λN−1 + y 

With this matrix at hand a reduced variant of the characteristic polynomial of K̂ can be 

expressed as, 

NY−1 

PN (x) = Det[ΛN (−x)] = (λj − x) , (3.28) 
j=1 

where Det[.] represents the determinant of a matrix. The N − 1 zeros of the polynomial 

PN are the non-zero eigenvalues of K̂. We are now in the position to defne the func-

tions DN (x), S1,N (x) and S2,N (x) essential for the calculation of the shape parameters 
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hAi, hδ1i and hP i. Using the notation y = x/N we defne 

DN (x) = Det[Λ−1(0)]Det[ΛN (y 2)]N 

2x
= P −1(0)PN (− )N N2 (3.29) 

NY−1 2λj + y
= ,

λjj=1 

and 

N−1X1 1 2)−1S1,N (x) = Tr[Λ−1(y 2)] = (λj + y , (3.30)
N2 N N2 

j=1 

where Tr is the trace of a matrix. Following the work of Wei, the functions for Sk,N for 

k = 2, 3, .. correspond to traces of higher powers of Λ−1 ,N 

N−1X1 2)−2S2,N (x) = (λj + y , (3.31)
N4 

j=1 

and 

N−1X 
S3,N (x) = 

1 
(λj + y 2)−3 . (3.32)

N6 
j=1 

1The two-dimensional shape parameter δ1,N = − χ1,N is calculated with help of 2 

Z ∞ 

χ1,N = S1,N (0)
−1 |xDN (x + ix)|−1Im(S1,N (x + ix))dx . (3.33) 

0 

Using Eq.(3.33) and the substitution y = x/N we fnd after some algebra 

N−1 Z NY−1 N−1X ∞ Xλj 1 
χ1,N = −2 λj q dy. (3.34)

4λ2 + 4y
i=0 0 j=1 λ2 

j + 4y
4 

k=0 k 

The asphericity parameters for d = 2, 3 can then also be derived using 
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Z ∞d(d + 2) −d/2hAdi = x 3D (x)S2,N (x)dx (3.35)N2 0 Z " #d/2 ∞ N−1 3 NY−1Xd(d + 2) y λk 
= dy . (3.36)

22 (λj + y2)2 λk + y0 j=1 k=1 

The prolateness parameter in d = 3 dimensions gives 

Z ∞105 −3/2hP3i = x 5D (x)S3,N (x)dx (3.37)N8 0 " #3/2Z ∞ N−1 5 NY−1X105 y λk 
= dy . (3.38)

28 (λj + y2)3 λk + y0 j=1 k=1 

Finally, independent of the dimension the g-ratio is given by 

g = Sbranch (0)/Schain(0)1,N 1,N 

N−1 N−1X X (3.39) 
λ−1 λ̃−1 = /j k 

j=1 k=1 

where λj and λ̃k is the non-zero eigenvalues of the Kirchhoff matrix of a branched and 

linear chain with N monomers. 
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a b 

FIGURE 3.2: Extrapolation for the two dimensional asphericities hAi of 
a: nine branch and b: eleven branch ideal ramifed comb polymers as 
a function of 1/N . Here markers are the actual values of hAi calculated 
applying the Wei method and the dotted lines are their respective fts. 
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3.2.3 Benhamou method 

The form factor of an ideal ramifed polymeric network can be derived by applying 

a method developed by Benhamou [43]. Here, Benhanou applies Debye scattering 

techniques to tree networks, where each chain is formed by an ideal linear polymer. 

For these networks the form factor can be decomposed into intra-chain and inter-chain 

contributions, each involving two distinct chains in a network. 

The contribution of the intra-chain component S1(k) is directly related to the scattering 

function of an ideal linear polymer Sl(k): 

1 
S1(k) = Sl(k) , (3.40)

b 

for which the Debye scattering function of a linear polymer is given by 

Sl(k) = 
2
(x − 1 + e −x) , (3.41)

2x

where x = khS2i` and hS2i` = σ2N/6. 

The inter-chain contribution mainly depends on the distance between chains in the net-

work. More specifcally, by this we mean the distance between chains refers to the 

length of a unique path that exists and includes any combination of chains in the poly-

mer network. As we are only dealing with tree-like structures in this study, a unique 

path will always exist between all combinations of chains. The inter-chain contribution 

of all these combinations of chains is found to lead to 

2(e2x − 2ex + 1) X −|ζ|xS2(k) = e , (3.42)
bx2 

ζ⊂G;|ζ|≥2 

where ζ is the length of a connected path between two branches in the network G, with 

| ζ |≥ 2. 
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polymer networks 

These two intra and inter contributions then combine to give the exact form factor equa-

tion for ideal ramifed polymers with a tree branching topology 

h iX2 −x (e2x − 2ex + 1) −|ζ|xS(k) = x − 1 + e + e . (3.43)
bx2 b 

ζ⊂G;|ζ|≥2 

It is shown that in the case of comb polymers Eq.(3.43) can be expressed as a function 

of the internal and external junctions. If b and b − 1 is the number branches adjacent the 

inner and outer junctions of a comb polymers respectively. The form factor is derived 

as 

� � �(n) (n+2)xS (k) = − b2 − 3b + 2 ne(n+1)x − 2(b − 1)(b + n − 3)eb,b−1 � 
4x+(b − 1)(bn − 4)e(n+3)x + 2(b − 2)2 e 2x + 4(b − 2)e 3x + 2e 

−(n+3)xe 2 (x + e−x − 1)× + , (3.44) 
x2((b − 1)n − 1)2 x2((b − 1)n − 1) 

where n is the number of junctions of a comb polymer. 

For combs, where all junctions have the same number of branches b, the form factor 

may be written as 

� � 
(n) (n+2)x + bne(n+4)x − 2(b + n − 1)e 3xS (k) = −(b − 2)ne (n+3)x + 2(b − 1)eb,b 

−(n+4)x(b − 1)e 2 (x + e−x − 1)× + . (3.45) 
x2((b − 1)n + 1)2 x2((b − 1)n + 1) 

In the special case of the fourteen branch combs, when we normalize x → x/14, we 

obtain 

� � 
−x/14 − 15e −5x/14 −2x/7) ,S(k) = 

2 
(10 + x − 4e −x/7 + 4e −3x/7 + 4e + e (3.46)

2x

which can be used to determine the g-ratio. This is done by dividing this expression 

for the fourteen branch comb with S(k) for a linear chain. To do this we write the frst 

order Taylor expansion for a fourteen branch comb 

163 
S(k) = 1 − x + ... , (3.47)

1029 
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and linear chain 
1 

S(k) = 1 − x + ... , (3.48)
3 

leading to a g-ratio of 163/343 (0.47522). Applying the same method enables exact g-

ratios to be obtained for other structures (see results section for theoretical g-ratios). 

3.3 Results 

In both MC and Wei methods the results are computed for a fnite number of monomers 

N . Whereas the theoretical results are valid in the limit N → ∞. For the MC method 

infnite N shape parameter values are obtained by ftting a scaling law 

� � 
K 

S = S∞ 1 − , (3.49)
N4 

where S∞ is the value of a shape parameter for an infnite size polymer and 4 is the 

fnite-size scaling exponent. The value for S∞ is then determined by ftting a weighted 

least-squares [51] line in 1/N4 for MC data, as shown in Zweier and Bishop [52]. 

The Wei method implements a nonlinear least-squares (NLLS) Marquardt-Levenberg 

algorithm [53] to extrapolate shape parameters in the thermodynamic limit. The error 

bars of the Wei method indicate the root mean-square (RMS) of the residuals corre-

sponding to the errors of the ftted data. For the results reported in this section, the 

number in parenthesis denotes one standard deviation in the last displayed digits. 

3.3.1 Two, three and four junction combs polymers in 2D 

The MC simulation results are contained in Tables 3.2, 3.3, 3.4, 3.5 and 3.6. In all cases, 

hS2i vs (N − 1)2ν gave 2ν = 1.00 ± 0.01, in excellent agreement with the well-known 

result of 2ν = 1, for random walks. 

The growth MC simulation results for asphericity hAi contained in the tables 3.2, 3.3, 

3.4, 3.5 and 3.6 display only a weak dependence on N . As expected, the results for 

extrapolated values of hAi (Table 3.7) indicate that polymers become more circular in 
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Property N = 1001 N = 1501 N = 2001 N = 2501 
he1i 92.83(15) 139.14(22) 185.58(29) 232.37(36) 

Sq 
he2i 
hS2i 

25.48(3) 
118.31(16) 

38.26(5) 
177.39(23) 

51.03(7) 
236.61(31) 

63.84(8) 
296.20(39) 

hAi 0.310(1) 0.310(1) 0.310(1) 0.310(1) 
hS2il 166.71(27) 249.39(40) 333.72(53) 416.95(66) 
he1i 92.85(14) 139.65(22) 186.13(29) 233.04(36) 

Tri 
he2i 
hS2i 

25.58(3) 
118.43(15) 

38.40(5) 
178.05(23) 

51.21(7) 
237.34(31) 

64.03(8) 
297.07(39) 

hAi 0.310(1) 0.310(1) 0.310(1) 0.310(1) 
hS2il 166.81(26) 250.13(40) 334.29(53) 418.45(66) 

TABLE 3.2: Properties of 5-branch combs, for different number of 
monomers N , on a square (Sq) and triangular (Tri) lattice. 

their shape as the structure changes to higher branching and a complete set of interior 

branches. 

The MC g-ratios in Table 3.7 have been calculated from the radius of gyration data and 

the errors in these quantities have been computed from the standard equation relating 

the error in a ratio to the errors in the numerator and denominator. These extrapo-

lated g-ratios for ideal systems are compared with other fndings in Table 3.7. Both 

Wei’s method and the MC simulations are in excellent agreement with each other and 

the theoretical predictions. The g-ratios of the eight and eleven branch (four junction) 

combs, which have a complete set of interior branches, have a relatively lower value 

than that found for the fve, seven and nine branch combs. 

The shape factor, hδ1i is contained in Table 3.7. The values for both lattices give sim-

ilar results to each other and the predicted values of the Wei method. As expected, 

the results again indicate that comb polymers become more circular in their shape (less 

stretched out) as the structure changes to higher branching and a complete set of inte-

rior branches. 

Two dimensional ideal fve branch combs were also investigated by Perrelli and Bishop 

[54] and Gorry and Bishop [55]. Perrelli and Bishop [54] employed a MC growth algo-

rithm on a square lattice but for a smaller range of N (100 to 800) and for a much smaller 

number of simulations (104). They found that g = 0.704 ± 0.005, hAi = 0.311 ± 0.002, and 

hδ1i = 0.785 ± 0.005. These values are well within two standard deviations of the mean 

or in the 95% confdence interval compared to the results reported here. 
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Property N = 1401 N = 2101 N = 2801 N = 3501 
he1i 121.91(19) 182.69(29) 244.15(38) 305.17(48) 

Sq 
he2i 
hS2i 

33.53(4) 
155.44(21) 

50.33(6) 
233.02(31) 

67.19(8) 
311.34(41) 

84.08(10) 
389.26(51) 

hAi 0.306(1) 0.305(1) 0.306(1) 0.306(1) 
hS2il 233.37(37) 349.77(56) 466.76(74) 584.39(93) 
he1i 122.05(19) 183.14(29) 244.04(38) 305.42(48) 

Tri 
he2i 
hS2i 

33.71(4) 
155.75(21) 

50.52(6) 
233.66(31) 

67.45(8) 
311.49(41) 

84.18(10) 
389.60(51) 

hAi 0.304(1) 0.305(1) 0.305(1) 0.305(1) 
hS2il 233.96(37) 351.00(56) 468.44(74) 584.08(93) 

TABLE 3.3: Properties of 7-branch combs, for different number of 
monomers N , on a square (Sq) and triangular (Tri) lattice. 

Property N = 1601 N = 2401 N = 3201 N = 4001 
he1i 117.76(17) 176.49(26) 235.72(34) 294.43(43) 

Sq 
he2i 
hS2i 

36.13(4) 
153.89(19) 

54.21(6) 
230.71(28) 

72.26(8) 
307.98(37) 

90.55(11) 
384.99(46) 

hAi 0.274(1) 0.274(1) 0.275(1) 0.274(1) 
hS2il 266.39(42) 400.36(64) 534.05(85) 667.03(106) 
he1i 117.74(17) 177.07(26) 235.70(34) 295.05(43) 

Tri 
he2i 
hS2i 

36.19(4) 
153.93(18) 

54.41(6) 
231.48(28) 

72.64(9) 
308.34(37) 

90.61(11) 
385.65(46) 

hAi 0.274(1) 0.274(1) 0.273(1) 0.274(1) 
hS2il 267.04(42) 401.71(64) 534.70(85) 667.85(106) 

TABLE 3.4: Properties of 8-branch combs, for different number of 
monomers N , on a square (Sq) and triangular (Tri) lattice. 

Property N = 1801 N = 2701 N = 3601 N = 4501 
he1i 150.23(24) 224.80(36) 300.54(48) 375.90(60) 

Sq 
he2i 
hS2i 

40.97(5) 
191.20(26) 

61.45(7) 
286.25(38) 

82.27(10) 
382.81(51) 

102.83(12) 
478.72(64) 

hAi 0.305(1) 0.305(1) 0.304(1) 0.305(1) 
hS2il 299.81(48) 450.31(71) 600.03(95) 750.46(119) 
he1i 150.16(24) 225.68(36) 300.95(48) 375.78(60) 

Tri 
he2i 
hS2i 

41.06(5) 
191.22(25) 

61.71(7) 
287.39(38) 

82.29(10) 
383.24(51) 

102.77(12) 
478.55(63) 

hAi 0.304(1) 0.305(1) 0.305(1) 0.305(1) 
hS2il 300.33(48) 451.13(72) 601.47(96) 752.39(12) 

TABLE 3.5: Properties of 9-branch combs, for different number of 
monomers N , on a square (Sq) and triangular (Tri) lattice. 
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Property N = 2201 N = 3301 N = 4401 N = 5501 
he1i 143.30(21) 214.72(32) 287.01(42) 358.52(52) 

Sq 
he2i 
hS2i 

44.68(5) 
187.98(23) 

67.05(7) 
281.77(34) 

89.52(10) 
376.53(45) 

112.02(12) 
470.54(57) 

hAi 0.265(1) 0.265(1) 0.265(1) 0.265(1) 
hS2il 366.87(58) 550.73(87) 733.82(117) 918.03(146) 
he1i 143.45(21) 214.80(31) 287.14(42) 358.85(53) 

Tri 
he2i 
hS2i 

44.83(5) 
188.28(23) 

67.13(7) 
281.93(34) 

89.67(10) 
376.81(45) 

112.24(12) 
471.09(57) 

hAi 0.265(1) 0.265(1) 0.265(1) 0.264(1) 
hS2il 367.58(58) 550.83(88) 734.66(117) 918.83(146) 

TABLE 3.6: Properties of 11-branch combs, for different number of 
monomers N , on a square (Sq) and triangular (Tri) lattice. 

Property Branch � Lattice 4 Lattice Wei Theory 

g-ratio 

5-branch 
7-branch 
8-branch 
9-branch 
11-branch 

0.710(2) 
0.666(2) 
0.576(2) 
0.638(2) 
0.514(2) 

0.712(2) 
0.666(2) 
0.577(2) 
0.636(2) 
0.514(2) 

0.7120(11) 
0.6676(2) 
0.5781(7) 
0.6379(4) 
0.5131(5) 

0.7120a 

0.6676a 

0.5781b 

0.6379a 

0.5131b 

hAi 

5-branch 
7-branch 
8-branch 
9-branch 
11-branch 

0.310(2) 
0.306(1) 
0.275(1) 
0.304(2) 
0.265(2) 

0.310(2) 
0.306(2) 
0.274(2) 
0.306(2) 
0.265(2) 

0.3095(5) 
0.3047(4) 
0.2736(3) 
0.3042(2) 
0.2640(2) 

hδ1i 

5-branch 
7-branch 
8-branch 
9-branch 
11-branch 

0.783(1) 
0.784(1) 
0.765(1) 
0.784(2) 
0.762(2) 

0.784(2) 
0.783(2) 
0.764(2) 
0.785(2) 
0.762(2) 

0.7838(2) 
0.7835(1) 
0.7645(1) 
0.7850(1) 
0.7615(1) 

TABLE 3.7: Comparison of g-ratios, hAi and hδ1i for extrapolated Square 
Lattice MC �, Triangular Lattice MC4 and Wei method also including g-
ratios for theoretical infnite monomers values reported in the literature. 
For values with subscript a and b see reference [48] and [49] respectively. 
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Chapter 3. Shape properties of ideal, ramifed tree-branched polymers 

Gorry and Bishop [55] used a pivot MC algorithm, where the initial polymer confgu-

ration is constructed by linking together tangent circular units with a diameter of one. 

Here the polymer is not restricted to a fxed lattice. A random number is used to select 

one of the monomers as a pivot and a second random number is employed to gener-

ate a random angle between 0◦ and 360◦. All the monomers further along the branch 

containing the pivot monomer are rotated by this angle. In this MC method successive 

samples are not independent and it is necessary to both discard the beginning phase 

of the simulation and to collect data at suffciently large intervals so as to avoid corre-

lation effects. Gorry and Bishop [55] found that the g-ratio = 0.713 ± 0.002 and hAi = 

0.310 ± 0.001, which concur with the current results. 

3.3.2 Five junction comb polymers in 2D and 3D 

The hS2i data is reported in Tables 3.8 and 3.9. It was found that 2ν had the value of 

1.00 ± 0.02 for both eleven and fourteen branched combs in two dimensions and 1.00 ± 

0.01 for both branched combs in three dimensions. These results are perfectly consistent 

with the theoretical value (ν = 0.5). 

The MC g-ratios have been calculated from the radius of gyration data in tables 3.8 and 

3.9. These extrapolated g-ratios for the comb systems are compared to other fndings 

in Table 3.10. Both Wei’s method and the MC simulations produce similar results to 

each other and the theoretical predictions derived from form factor calculation when 

applying the Benhamou method. The g-ratios of the fourteen branch comb, which has 

a complete set of interior branches, have a relatively lower value than those found for 

the eleven branch combs. 

The MC simulation results for asphericity hAi are also contained in Tables 3.8 and 3.9. 

The asphericity data display only a weak dependence on N . In Table 3.10 the extrapo-

lated values found for hAi of ideal eleven and fourteen branch comb polymers concur 

with the theoretical prediction of the Wei method. As expected, the results indicate that 

the polymers become more symmetric in their shape as the structure changes to higher 

branching and a complete set of interior branches. Table 3.10 also demonstrates the 

similarity found between the analytical and MC results for the shape parameters hδ1i 
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3.3. Results 

Property N = 2201 N = 3301 N = 4401 N = 5501 
he1i 177.87(29) 266.89(43) 356.33(58) 444.52(72) 

11-branch 
he2i 
hS2i 

47.86(6) 
225.73(31) 

71.81(8) 
338.69(46) 

95.75(11) 
452.08(61) 

119.75(14) 
564.27(76) 

hAi 0.307(1) 0.307(1) 0.307(1) 0.307(1) 
hδ1i 
hS2il 

0.788(1) 
366.87(58) 

0.788(1) 
550.73(87) 

0.788(1) 
733.8(12) 

0.788(1) 
918.0(15) 

Property N = 2801 N = 4201 N = 5601 N = 7001 
he1i 169.70(25) 255.02(38) 339.39(51) 423.65(64) 

14-branch 
he2i 
hS2i 

52.34(6) 
222.04(27) 

78.50(9) 
333.52(41) 

104.75(11) 
444.14(54) 

130.79(14) 
554.45(60) 

hAi 0.265(1) 0.265(1) 0.265(1) 0.264(1) 
hδ1i 
hS2il 

0.764(1) 
466.76(74) 

0.764(1) 
701.5(11) 

0.764(1) 
935.1(15) 

0.764(1) 
1170.0(19) 

TABLE 3.8: Properties of 11-branch, 14-branch and linear chains, for dif-
ferent numbers of monomers N , in two dimensions. 

and prolateness hP i. These quantities further indicate that the 14-branch structures are 

more compact than the 11-branch ones. 

The form factor S(k) results are presented in Figures 3.3, 3.4 and 3.5. The reciprocal 

of the form factor is plotted to emphasize differences at higher values of k. Figure 3.3 

illustrates the number dependence of the three dimensional 14-branch MC simulation. 

The solid curve is the exact result for an infnite polymer whereas the squares, the di-

amonds, and the circles are the MC values when N = 127, 267, and 687, respectively. 

Clearly, comb systems with N = 687 are large enough to match the infnite system 

prediction. 

The three dimensional results are given in Figure 3.4a. The dashed curve, solid curve 

and dotted curve are the exact results for the 14-branch combs, the 11-branch combs, 

and linear chains, respectively. The circles, the diamonds, and the triangles are the MC 

values for the 14-branch combs when N = 687, the 11-branch combs when N = 683, 

and the linear chains when N = 680. The exact predictions and the MC simulations 

follow approximately the same function, except at the largest values of x, where these 

larger values of x examine smaller values of distance. At this scale, the detailed struc-

ture of a polymer has a signifcant effect on the form factor. Increased crowding is 

clearly seen as the polymer is changed from a linear to an 11-branch and then to a 

14-branch comb. 
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Property N = 2201 N = 3301 N = 4401 N = 5501 
he1i 159.38(23) 238.09(34) 317.71(46) 397.06(58) 
he2i 46.87(5) 70.16(7) 93.49(9) 116.80(12) 
he3i 20.75(2) 31.04(3) 41.37(4) 51.75(5) 

11-branch hS2i 226.99(25) 339.28(37) 452.58(50) 565.61(62) 
hAi 0.299(1) 0.299(1) 0.299(1) 0.299(1) 
hP i 0.308(1) 0.308(1) 0.308(1) 0.308(1) 
hS2il 366.98(47) 550.18(71) 732.75(94) 915.0(12) 

Property N = 2801 N = 4201 N = 5601 N = 7001 
he1i 148.73(20) 223.14(30) 297.59(40) 371.26(51) 
he2i 49.65(5) 74.44(7) 99.26(9) 123.97(11) 
he3i 23.74(2) 35.59(3) 47.40(4) 59.30(5) 

14-branch hS2i 222.15(22) 333.18(33) 444.25(44) 554.43(55) 
hAi 0.256(1) 0.256(1) 0.256(1) 0.255(1) 
hP i 0.240(1) 0.240(1) 0.240(1) 0.239(1) 
hS2il 466.46(60) 700.32(90) 933.4(12) 1166.4(15) 

TABLE 3.9: Properties of 11-branch, 14-branch and linear chains, for dif-
ferent numbers of monomers N , in three dimensions. 

Similar behaviour in two dimensions is displayed in Figure 3.4b. The curves represent 

the exact equations as in Figure 3.4a. The exact expressions for ideal systems do not 

depend upon the spatial dimension. Here the circles are the MC values for the 14-

branch combs when N = 701, the diamonds are the MC values for the 11-branch combs 

when N = 694, and the triangles are the MC values for the linear chains when N = 680. 

As was the case in three dimensions, similar behaviour is observed between the MC 

simulations and the exact predictions. 

Figure 3.5 presents a direct comparison of the MC data in two and three dimensions. 

Here, lines represent the three dimensional data and markers the two dimensional data. 

The results indicate that indeed the spatial dimension does not effect the behaviour of 

ideal polymers. 

Wei’s and Benhamous’s methods and a Monte Carlo growth algorithm have been used 

to investigate branched fve junction comb polymers in the ideal regime. The g-ratio, 

the asphericities (with their respective error bars) and the form factor have been deter-

mined for a wide range of N . It is found that the values obtained by of all the techniques 

are in excellent agreement with each other and the available theory. 
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3.3. Results 

Property MC 2D Wei 2D Exact MC 3D Wei 3D 
11-branch g-ratio 0.616(2) 0.61683(0) 0.61683 0.617(1) 0.61683(0) 

hAi 0.307(2) 0.30616(0) 0.299(1) 0.29919(9) 
hδ1i 
hP i 

0.788(2) 0.78750(8) 
0.308(2) 0.15401(5)a 

14-branch g-ratio 0.473(2) 0.47521(9) 0.47522 0.475(2) 0.47521(9) 
hAi 0.264(2) 0.26441(0) 0.255(2) 0.25566(6) 
hδ1i 
hP i 

0.764(2) 0.76393(6) 
0.239(2) 0.11976(5)a 

TABLE 3.10: Results for eleven and fourteen branch comb polymers in 
two and three dimensions. Note that the Wei method defnes hP i with 
an additional factor of 1/2. 
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FIGURE 3.3: Inverse of the form factor S(k) as a function of x = khS2i1/2 
` 

for different values of N for a fourteen branch comb. The solid curve is 
the exact result for infnite N . The squares, diamonds and circles are the 
MC values for N equal to 167, 267 and 687 respectively. 

3.3.3 Dendrimers 

Here, we present the results found for frst and second generation dendrimers, in 3D 

considering the shape parameters: g-ratio, asphericity and prolateness. These struc-

tures have a different branching system to that of the comb polymers as described in 

subsection 3.2.1 and depicted in Figure 3.1. For all dendrimers the scaling exponent, 2ν 

was found to be: 0.992(1), 0.986(1), 0.992(1), and 0.992(1) for nine, twelve, twenty one 

and thirty nine branches, respectively. 

In Tables 3.12 and 3.11, we present the MC simulations results for the shape parameters: 

g-ratio, hAi and hP i for fnite N . The extrapolated results for these parameters are then 
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FIGURE 3.4: Comparison of the two and three dimensional MC simula-
tion for the reciprocal of the form factor to the exact results. In both: a) 2D 
and b) 3D, the dashed curve is the exact result for the 14-branch combs, 
the solid curve is the exact result for the 11-branch combs, and the dotted 
curve is the exact result for linear chains. The circles are the MC values 
for the 14-branch combs when N = 687(2D) and 701(3D), the diamonds 
are the MC values for the 11-branched combs when N = 683(2D) and 
694(3D), and the triangles are the MC values for the linear chains when 
N = 680 for both 2 and 3D. 

given in Table 3.13. As was the case with the combs structures we fnd all calculated 

values for various shape parameters to be in good agreement with each other. All shape 

parameters values decrease as the number of generations and branches per junction are 

increased. These results indicate that dendrimers with more generations and branches 

per junction tend to be more symmetric and compact in nature. 

3.4 Conclusions 

We have applied the Wei and Benhamou method in conjunction with Monte Carlo sim-

ulations on square, triangular and cubic lattices to investigate two and three dimen-

sional branched comb and dendrimers polymers in the ideal regime. The g-ratios, the 

asphericities, shape factors in two and three dimensions including their respective error 

bars and form factors have been calculated for a wide range of number of monomers N . 

It is found that the extrapolated values of all the techniques are in excellent agreement 

with each other and the available theory. 
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FIGURE 3.5: Comparison of the three and two dimensional MC simula-
tions for the reciprocal of the form factor to the exact results. The dashed 
curve is the 3D MC results for the 14-branch combs, the solid curve is the 
3D MC result for the 11-branch combs, and the dotted curve is the 3D 
MC result for linear chains (Debye equation). The circles are the 2D MC 
values for the 14-branch combs, the diamonds are the 2D MC values for 
the 11-branched combs, and the triangles are the 2D MC values for the 
linear chains. 

Property N = 55 N = 181 N = 442 N = 892 N = 1342 
he1i 3.76(1) 12.22(2) 29.73(5) 60.07(9) 90.27(14) 
he2i 1.39(1) 4.40(1) 10.64(2) 21.38(3) 32.14(5) 
he3i 0.57(1) 1.81(1) 4.33(1) 8.71(1) 13.08(2) 

9-branch hS2i 5.73(1) 18.43(2) 44.71(5) 90.17(11) 135.50(16) 
hAi 0.255(1) 0.262(1) 0.264(1) 0.266(1) 0.266(1) 
hP i 0.215(1) 0.226(1) 0.230(1) 0.233(1) 0.233(1) 
hS2il 9.16(1) 30.16(5) 73.60(12) 148.32(24) 223.33(4) 
Property N = 148 N = 232 N = 1030 N = 2080 N = 3120 
he1i 6.88(1) 10.73(1) 47.31(6) 95.50(13) 143.53(20) 
he2i 2.93(1) 4.53(1) 19.77(2) 39.84(5) 59.85(8) 
he3i 1.34(1) 2.08(1) 8.99(1) 18.07(2) 27.13(3) 

21-branch hS2i 11.16(1) 17.34(2) 76.07(8) 153.41(16) 230.51(24) 
hAi 0.203(1) 0.206(1) 0.210(1) 0.211(1) 0.211(1) 
hP i 0.143(1) 0.147(1) 0.152(1) 0.153(1) 0.153(1) 
hS2il 24.66(4) 38.61(6) 171.24(28) 345.21(56) 521.73(85) 

TABLE 3.11: Properties of 9-branch, 21-branch and linear chains, for dif-
ferent numbers of monomers N , in three dimensions. 
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Property N = 109 N = 289 N = 409 N = 589 
he1i 5.87(1) 15.40(2) 21.77(3) 31.27(5) 
he2i 2.22(1) 5.72(1) 8.06(1) 11.54(2) 
he3i 1.00(1) 2.54(1) 3.57(1) 5.12(1) 

12-branch hS2i 9.08(1) 23.66(3) 33.40(4) 47.93(6) 
hAi 0.236(1) 0.242(1) 0.243(1) 0.244(1) 
hP i 0.195(1) 0.203(1) 0.205(1) 0.206(1) 
hS2il 18.15(3) 48.23(8) 68.20(11) 97.91(16) 
Property N = 547 N = 937 N = 1912 N = 2887 
he1i 14.39(2) 24.52(3) 49.90(6) 75.34(9) 
he2i 6.72(1) 11.41(1) 23.18(2) 34.90(4) 
he3i 3.52(1) 5.97(1) 12.06(1) 18.16(2) 

39-branch hS2i 24.63(2) 41.91(4) 85.14(8) 128.40(12) 
hAi 0.162(1) 0.163(1) 0.164(1) 0.165(1) 
hP i 0.101(1) 0.102(1) 0.102(1) 0.104(1) 
hS2il 90.89(15) 155.45(25) 317.37(52) 480.86(78) 

TABLE 3.12: Properties of 12-branch, 39-branch and linear chains, for 
different numbers of monomers N , in three dimensions. 

Property MC Wei Exact 
g-ratio 0.606(1) 0.60493(0) 0.6049 

9-branch hAi 0.266(1) 0.26583(9) 
hP i 0.233(1) 0.11613(0)a 

g-ratio 0.486(1) 0.48611(0) 0.4861 
12-branch hAi 0.211(1) 0.21076(9) 

hP i 0.208(1) 0.10438(0)a 

g-ratio 0.442(1) 0.44152(0) 0.4415 
21-branch hAi 0.246(1) 0.24560(1) 

hP i 0.154(1) 0.07633(0)a 

g-ratio 0.267(1) 0.26586(0) 0.2658 
39-branch hAi 0.169(1) 0.16484(4) 

hP i 0.109(1) 0.05193(0)a 

TABLE 3.13: Results for nine, twelve, twenty one and thirty nine branch 
dendrimers in three dimensions. Note that the Wei method defnes hP i 
with an additional factor of 1/2. 
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3.4. Conclusions 

The branching of the ideal polymer strands does not affect the universal two-dimensional 

ideal (non interacting) scaling behaviour. Thus indicating the end-end distances within 

strands, as well as for the branched structure as a whole, will scale with the scaling 

exponent ν = 1/2. In three dimensions this has been verifed by Kosmas et al. [56] who 

found that the interior branches and the overall four junction comb structure had the 

same ideal exponent in the ideal regime. 

This behaviour will break, however, if we take into account an environment with corre-

lated disorder. Under the infuence of such a correlated (disordered) environment the 

polymer strands, even if they display no self-interaction, will change their conforma-

tion due to the disordered background [57]. 
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Chapter 4 

Public transportation networks in 

the UK: topology and spatial 

embedding 

Over the last few decades society has become increasingly dependent on public trans-

port networks (PTN) to facilitate commuters and the movement of commodities on 

both a local and global scale. With transport playing such an signifcant role in the 

economy of cities and countries, it is becoming increasingly important to better under-

stand the underlying structure and properties within these complex systems. A deeper 

knowledge will assist in the development of cost effective methods to evaluate the ef-

fciency and robustness of existing PTNs. This chapter is dedicated to studying these 

properties. 

This is achieved by applying methods in network science and percolation theory to es-

timate the stability of a network to random failure and employing fractal analysis to 

determine the serviceability of stations. Here, PTNs on both a local and global scale, 

within the UK are investigated. These include the local municipal areas of Bristol, 

Greater Manchester, West Midlands, Greater London and the national rail and coach 

networks of mainland, UK. 

One approach to study these networks is offered through complex network science, 

a recently established research feld with a frm theoretical background and a broad 

range of applications. It has successfully explained numerous phenomena that have 
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emerged in natural and man made systems involving separate agents connected via 

various types of interactions (Albert and Barabási, 2002; Dorogovtsev and Mendes, 

2003; Barrat et al., 2008; Newman, 2010). 

The purpose of this chapter is to investigate the properties of PTN in the UK using both 

complex networks (i.e. topological) as well as spatial descriptions in order to gain use-

ful insights into robustness and effciency of PTN. Currently, there exists a relatively 

broad literature on the application of a complex networks for public transport analysis 

(see, in particular, the discussion below). Here, we add to the existing analysis and 

further explore certain topological measures which can be used to classify PTN with 

respect to their stability to random failures. We add to this analysis by studying the 

fractals properties of these systems which offer insight into the serviceability and ef-

fciency of PTN. Together both the topological and spatial features studied here may 

contribute to a better understanding of the underlying mechanisms governing PTN 

growth and modeling. 

Out of those, two PTN operate on an nation-wide scale (national coach and rail net-

works) and the remaining four are PTN of Bristol, Manchester, West Midlands and 

Greater London. By this choice we attempted to have examples of areas of different 

geographical and economical scales. In turn, this enables one to seek for general (uni-

versal) characteristics of transportation system as a whole. 

Our main practical results include the link found between topology, stability and eff-

ciency of networks. This highlights the interplay that exists between the effciency and 

stability, for not only PTNs but networks in general. The fractal methods applied here 

are able to extrapolate useful information in terms of the serviceable area of stations. 

The layout of the chapter is as follows: In the next section 4.1, an overview of the pre-

vious analysis of PTN where a complex network approach is applied is given; section 

4.2 discusses the data set; section 4.3 considers the topological properties of PTN in-

cluding measures of robustness; section 4.4 covers fractals methods in determining the 

serviceability of stations; and fnally, in section 4.5 some concluding remarks are given. 

The main results of this chapter have been published in [13]. 
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4.1. Complex network and Statistical physics approaches in quantifying the 

behaviour of public transport 

4.1 Complex network and Statistical physics approaches in quan-

tifying the behaviour of public transport 

Complex network analysis of PTNs began comparatively recently when, in 2002, Latora 

and Marchiori published their work analysing the topological properties of the Boston 

subway [58]. Subsequently, similar analysis has been performed for many other PTNs 

around the world. This can be seen in Figure 4.1, where black dots indicate the approx-

imate geographical positions of PTNs that have been analysed via a complex network 

approach. The size of these PTNs have ranged from 152 to 45000 stations. The types 

of PTNs investigated include the subway [58], [59], bus [60]–[63], rail [64], air [65]–[67] 

and various combinations of these [68]–[71]. 

Thus far, a number of different topological representations of a network have been de-

veloped, by attributing different constituents of a network to vertices and edges. This is 

for the purpose of extracting different information about the PTN. For example one can 

represent each station as a node. Then link together all nodes that belong to a particular 

route, to form a complete subgraph (clique). Different subgraphs will then be joined via 

common stations, that share different routes. This representation is called P-space and 

has been applied in many studies [59], [60], [64], [68], [69], [72]. It is useful, in particular 

for determining the mean number of vehicle changes when traveling between any two 

points on a PTN service network. 

In the so-called B-space [68], [73] one constructs a bipartite graph that contains nodes of 

two types: node-stations and node-routes. Only nodes of different types can be linked: 

a node-station is linked to the node-route if it belongs to that route. One can pass 

from such representation to a graph where only nodes of one type are present. This is 

achieved by the so-called single-mode projection, when all nodes of similar type that 

are linked to the common node of another type are represented as a complete subgraph. 

Naturally, the single-mode projection of the B-space graph to the nodes-stations leads 

to P-space. In turn, an analogous projection to the nodes-routes leads to the so-called 

C-space [68]. Here, one considers how routes are connected to each other and describes 

how routes are linked throughout the network. In C-space if any two routes service the 

same station they are obviously linked. 
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Some materials have been removed due to 3rd party copyright. The 
unabridged version can be viewed in Lancester Library - Coventry 
University.

FIGURE 4.1: Map indicating various locations of the world where PTN 
have been analysed within the complex network science framework. 
Topological characteristics of some of them are further displayed in Table 
4.2. 

In this study we use the so-called L-space [58], [60], [68], [69], [74]. As we will see below 

it most naturally describes the properties of PTNs we are interested in. In this repre-

sentation, a node in a graph corresponds to a PTN station. The L-space representation 

is constructed following a simple process. If two stations are adjacent in a route, a link 

is formed between the two stations, as it can be seen in Figure 4.2. However, if there 

are multiple routes going through the same two stations, L-space will not refect this as 

it does not permit multiple links. This topology is ideal for studying the connectivity 

of networks. For example calculating metrics like mean shortest path length h`i, Giant 

Connected Component (GCC) size and other similar metrics. This space is probably the 

most commonly used topology and has been applied in many different studies of real 

world networks [68], [69]. The L-space topology can further be extended to a weighted 

network. Where, weights indicate a distance or time between stations [58]. This added 

dimension, can often give a more realistic view of real world systems. 

Over the years, features such as ’harness’ behaviour have become of interest. This con-

cept describes how different routes tend to follow similar paths for a certain number 

of stations. The harness distribution P (r, s) is defned as the number of sequences of 

consecutive stations s, serviced by r parallel routes. This distribution has been anal-

ysed in Refs.[68], [75]. A similar feature has also been studied for weighted networks 
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behaviour of public transport 

Some materials have been 
removed due to 3rd party 
copyright. The unabridged version 
can be viewed in Lancester Library 
- Coventry University.

a b 

c d 

FIGURE 4.2: A fragment of London PTN and its representations in the 
form of a graph. a: a piece of the city map that includes several PTN sta-
tions (such representation will be called the geo-space onwards). Lines 
of different colour on the map correspond to different PTN routes; b: the 
stations on map a shown as graph nodes with links indicating out- and -
incoming routes; c: the same as b, but directions of routes are not shown; 
d: the same as c but multiple links are reduced to single ones. This is the 
L-space used in our analysis. 

in Ref.[60]. In both studies the harness distributions produced, exhibited scale free be-

haviour. 

The question of PTN robustness to random break down or targeted removal of their 

constituents has also been considered in Refs.[76]–[78]. One of the goals of such studies 

is to present criteria, that allow priori quantifcation of the stability of real world cor-

related networks of fnite size. Moreover, to investigate how these criteria correspond 

to analytic results available for infnite uncorrelated networks. The analysis focused on 

the effects that defunct or removed constituents (stations or joining links) have on the 
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properties of PTNs. Simulating different directed attack strategies, vulnerability crite-

ria have been derived that result in minimal strategies that have a substantial impact 

on these systems. 

The above empirical research has revealed that PTNs constructed in cities with differ-

ent geographical, cultural and historical background share a number of basic common 

topological properties. They appear to be strongly correlated structures with high val-

ues of clustering coeffcients and comparatively low mean shortest path values. More-

over, their node degree distributions are often found to follow exponential or power-

law decay. 

In turn, collected empirical data has lead to the development of a number of simu-

lated growth models for PTNs. In Ref.[75] interacting self avoiding walks on a 2D 

lattice, with preferential attachment rules are applied to produce similar statistics to 

those found in PTNs. In Ref.[62], PTNs are grown one route at a time by employing an 

ideal n-depth clique topology. In Ref.[61] the optimised growth of a route is studied by 

considering two competing factors: investors and clients. Clients want routes to be as 

direct as possible to save time. Whereas, investors want routes to meander, in order to 

collect as many passengers to maximising profts. 

Thus far, the main subject of analysis concerned topology. This analysis has lead to 

substantial progress in understanding the collective phenomena taking place on PTN 

networks. Another essential ingredient in the analysis of PTNs is the spatial embedding 

of networks. 

There have been a few studies that directly consider PTN spatial analysis which mainly 

focus on modes of transport such as railway and subway [61], [68], [79]–[83] and with 

the availability of data improving more studies are sure to follow. In general, the fractal 

dimension, df (see section 4.4.1 and Eq.4.2 for a more detailed explanation of df ) of a 

PTN in these studies were determined by counting the number of stations as a function 

of the radius from the centre of the city, N(r). One of the earliest studies performed was 

by Thibault in Ref.[79] where in three Lyon regions the rail, bus and drainage networks 

were analysed and shown to have fractal dimension ranging between 1.64-1.88, 1-1.45 

and 1.21-1.79 respectively. These fractal dimensions all show that as the radius from 
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4.2. Description of PTN database 

the centre of a city increases the density of rail, bus and drainage decreases. Rail dis-

plays the largest values of fractal dimensionality with the least variance thus indicating 

that the length of track decreases more slowly than the number of bus stations as the 

distance is increased from the centre of the city. In other studies the Stuttgart railway 

fractal dimension df was found to be df = 1.58 [84]. The Paris railway was estimated 

to have df = 1.47 [82]. In Ref.[80], exponents of df = 1.70 ± 0.05 for the Moscow and 

Rhinetowns railways were found. The Paris metro was also found to produce a value of 

df = 1.80 ± 0.05. In Ref.[85], the Seoul transportation network had the value of df = 1.5 

for stations and df = 1.35 for the railway track. 

The majority of the above mentioned research has considered either mainly the topo-

logical or spatial properties of PTN. A particular feature of the research we present 

below is a cumulative analysis of both the topological and geographical characteristics 

of PTN. To this end we have chosen to consider six GB PTN using the data available 

on the National Transport Data Repository [86]. From these, two PTN operate on an 

nation-wide scale (national coach and rail networks) and the remaining four are local 

PTN for Bristol, Manchester, West Midlands and Greater London. In the next section 

we explain the origin of the data and how it will be used in our analysis. 

4.2 Description of PTN database 

The data for this study originates from the National Transport Data Repository (NTDR) 

website [86]. The website has an Open Government License meaning it is open to the 

public. It contains information on public transport travel and facilities throughout the 

UK for the years 2004 to and including 2011. The information provided, is a yearly 

snapshot of the public transport network for a sample week in each year. The week on 

which the data is usually recorded is either the frst or second week in October to avoid 

recording during school holidays or other seasonal variations which are at a minimum 

during this period according to NTDR. 

The data is collected and assembled following a decentralised system where individual 

regional travel lines (RTL) are responsible for recording the travel within their allocated 

districts. These records are then sent to the NTDR to be collated into one comprehensive 
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database. There are 11 RTLs that provide the NTDR with data, these are: Scotland, 

North East and Cumbria, North West, Yorkshire, Wales, West Midlands, East Midlands, 

East Anglia, South East, South West and London. The data for national coach and rail 

are the only data sets to be compiled centrally. Using a decentralised method for data 

retrieval may have benefts especially when it comes to effciency, however, it does 

create more opportunity for errors. For example duplication of routes and stations 

on routes that span borders of two or more RTLs. Other complications, result from 

slight differences occurring in the formatting of the data sent to the NTDR. However, 

to prevent such errors the NTDR has an explicit document detailing the format of the 

data. Nevertheless, there remain slight differences in the format which need to be taken 

into account when analysing the data. Figure 4.3 is a snapshot of data taken from the 

Bristol bus network in its raw form. 

The data set includes transport modes for national coach and rail which span UK’s 

mainland. Bus networks for all cities in the UK are covered. Metro systems for larger 

Metropolis areas such as: London, Greater Manchester and the West Midlands. Some 

of these networks are subsets of others i.e. one PTN might cover a county and another 

a city within that particular county. 

FIGURE 4.3: A snapshot of data from the Bristol bus network in its raw 
form. Each line starting with QS represents a route, each line beginning 
with QO, QI, QT represent the start, intermediate and terminal station 
respectively for route. The following 12 characters on these lines are the 
unique station identifers which is directly followed by the times station 
arrive and leave. Lines starting with QL and QB provide information on 
spatial coordinates. 

For each mode of transport that a city or county offers, which could be any combination 

of coach, train, metro, and ferry, a separate fle is held in the records. For each station 
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the type of information that can be extracted is the following: the location of the station 

within a particular route; frst, intermediate or last; number of times a station is visited 

throughout the day; geographical coordinates, using an Easting and Northing reference 

system; whether the route is incoming or outgoing and which routes these nodes belong 

to. 

In the analysis we consider only outgoing routes. The reason for this is that in general 

the incoming and outgoing stations are usually on opposite sides of the road or very 

nearby. So instead of having a directed network one can assume both incoming and 

outgoing stations are the same and reduce the network to an undirected network. This 

approach allows a more intuitive interpretation of the network statistics. For example 

if two stations are next to each other where one is on the incoming and the other on the 

outgoing line. Then in a directed network they are actually far apart as the passenger 

would have to travel all the way to the beginning of the line and return on correspond-

ing opposite route to reach the station across the road. This is avoidable in the case of 

an undirected network. Using this method would obviously cause problems if these 

incoming and outgoing stations were not close to each other, but we discard such situ-

ations as highly improbable. 

There are a few errors in the data that do require attention and there is some missing 

data that needs to be considered. However, in general the database provides a rich 

platform which we intend to use to analyse the topological and spatial aspects of PTNs 

in the UK. 

4.3 Topological properties of PTNs 

With the available data on each PTN connectivity, it is straightforward to get their rep-

resentation in the form of graphs in the L-space. As we will demonstrate below, such 

graphs posses a number of highly non-trivial features and thus can be considered as 

complex networks [1], [24]–[26]. Each network can be uniquely described in terms of 

its adjacency matrix Â, as described in subsection 2.2.1. In turn, based on the adjacency 

matrix constructed for each PTN under consideration, we are in the position to extract 

the main observables that are commonly used to quantify network properties. 
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4.3. Topological properties of PTNs 

The frst two columns in Table 4.1 give the number of nodes N and edges M for each 

network.1 The number of nodes directly corresponds to the number of PTN stations. 

The number of edges in L-space gives a reduced value of real linkage between the 

stations, see Figure 4.2. In the table we also display the number of routes R̂ for each 

PTN, this does not have its counterpart in network topology in the L-space. 

Table 4.1 gives mean hki, mean square hk2i and maximal values kmax of k for each of 

the networks. It can be seen that hki for rail is slightly higher than for the other PTNs. 

Which is a result of railway networks tending to possess more high degree nodes, also 

known as hubs, than other modes of public transport studied here. 

One of the indicators to measure the distance between nodes, providing a useful mea-

sure of the effciency of a PTN, is given by the mean shortest path length h`i. It is 

instructive to compare properties of the networks under consideration with those of 

the Erdös-Rényi classical random graph of the same size, i.e. when the same number 

of nodes N are randomly linked together by M links. To proceed, we simply calculate 

` η = h`i/h` ri, where a larger value of ` η represent a less effcient network. It can be seen 

in Table 4.1 that larger PTNs tend to be less effcient than their smaller counterparts. 

It is instructive also to calculate the mean shortest path for weighted networks. For 

national networks, on average, it takes twice as long to get to any other station within 

the network on coach as it does on rail. One has to bear in mind a limitation of this 

measure when relating to PTN effciency. As PTN routes will not necessarily follow the 

shortest path between two points. 

Local correlations, often present in real-world complex networks are measured by the 

clustering coeffcient C, see Eq.(2.13). The comparison of data for PTN clustering coef-

fcients C with that of the random graph of the same size Cr gives undoubted evidence 

of strong correlations in PTN networks: C/Cr ∼ 102 for almost all networks. 

Much attention has recently been paid to small-world networks [22] characterised by 

strong local correlation and small topological distance. We know that PTNs are highly 

correlated (see previous paragraph). However, in Table 4.2, comparatively large mean 

1Data for London’s PTN slightly differs from those presented in Ref.[68]. This is because an updated 
database has been used in our study. 
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shortest path lengths are found when comparing to random networks. Therefore, cau-

tion is to be taken when attributing small world properties to PTNs. This may be un-

derstandable as many nodes of degree two exist in PTNs. 

Correlation between degrees of neighbouring nodes in a network are usually mea-

sured in terms of the assortativity r, defned by Eq.(2.17). The values of r found in 

this study, although small, clearly indicate assortative mixing, see from table 4.2, where 

0.1 ≤ r ≤ 0.3, for the PTNs under consideration. This means that links tend to con-

nect nodes of similar degree. Let us note, that it is not always the case for PTN. As 

analysed in Ref.[68], the PTN of Düsseldorf, Moscow, Paris, São Paolo, show no prefer-

ence in linkage between nodes with respect to node degrees (r ' 0). So in this respect 

PTN analysed in our study belong to a group which includes the cities of Berlin, Los 

Angeles, Rome, Sydney, Taipei (0.1 ≤ r ≤ 0.3) [68]. 

It is worth noting from the above observations, although PTNs studied span over dif-

ferent distances in the geographic space, their topological features manifest striking 

similarities! Indeed, all the networks considered in this study possess comparatively 

low values of the mean node degree, high clustering coeffcients, they are disassorta-

tive with respect to node-node correlations. Moreover, the presence of high clustering 

in these networks is not accompanied by a low value of the mean shortest path length, 

as is usually expected for small world networks. 

4.3.1 Topological measures of robustness 

Obviously, network integrity plays a crucial role for various processes occurring on the 

network. In particular, transportation can not be maintained between nodes belonging 

to different network fragments that are not joined together. As one can see from Table 

4.1, the largest connected component of each PTN, also known as the giant connected 

component GCC, includes almost all nodes, making any location on the network reach-

able from any other location. 

The analysis of topological features of real-world networks aids in the prediction of 

their behaviour under removal of their constituents [24], [29], [87], [88]. A useful cri-

terion, that originates from percolation theory, which allows one to evaluate network 
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City Type n R̂ κ α 
Dallas B 5366 117 2.35 5.49 
London B 16397 767 2.46 4.25 
West Midlands B 11743 521 2.56 3.10 
Manchester B 10742 862 2.56 4.36 
Istanbul BST 4043 414 2.69 4.04 
Los Angeles B 44629 1881 2.73 4.85 
Bristol B 2580 172 2.74 3.56 
Berlin BSTU 2992 211 3.16 4.30 
Düsseldorf BST 1494 124 3.16 3.76 
Hamburg BFSTU 8084 708 3.26 4.74 
Rome BT 3961 681 3.67 3.95 
Taipei B 5311 389 4.02 3.74 
Sydney B 1978 596 4.37 4.03 
Hong Kong B 2024 321 5.34 2.99 
Saõ Paolo B 7215 997 5.95 2.72 
Paris BS 3728 251 6.93 2.62 
Moscow BEST 3569 679 7.91 3.22 

TABLE 4.2: Molloy-Reed parameter κ (4.1) for several PTNs of the UK 
cities (our data: frst three lines of the table) in comparison with PTNs 
of some other cities of the world, as obtained in [76]. The type of trans-
port taken into account are: Bus:B; Electric trolleys:E; Ferry:F; Subway:S; 
Tram:T; and Urban train:U. PTN size is given in terms of number of sta-
tions N and of routes R̂. The last column gives an exponent α for a the 
power law (2.10) ft for node degree distribution. 

vulnerability is known as the Molloy-Reed criterion [89]. It states that in any uncorre-

lated network the GCC is present if: 

κ = hk2i/hki ≥ 2 . (4.1) 

The Molloy-Reed parameter κ allows one to evaluate network stability to random fail-

ures. The higher the value of κ, the more stable a network, i.e. a larger number of 

nodes are required to be removed to destroy a given GCC. Although Eq.(4.1) has been 

obtained for infnite uncorrelated networks, its utility for PTN analysis has been proven 

recently by analysing the vulnerability of PTNs of different cities in the world [76], [77], 

[83]. In particular, it has been shown, that networks with higher values of κ are more 

stable to random removal of their nodes. In table 4.2 we compare values of κ for several 

UK city PTNs where κ is obtained by us with other city PTNs from around the world. 

The obtained values give a measure of stability of the networks considered. 

It is also instructive to determine the values of κ for the PTN that cover larger geo-

graphic areas of the UK. In this case we get, κ = 4.72, and κ = 5.79 for national coach 
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FIGURE 4.4: The normalized size of the largest connected component 
GCC of the coach and rail PTN as function of the share c of randomly 
removed stations. The insert represents the distribution of network ro-
bustness, measured as the area under the curve, for 100 simulations of 
random failure. 

and rail networks, respectively. This signals an even higher stability of these networks 

in comparison to PTNs of some UK cities reported in Table 4.2. It will be interesting to 

check these values against their counterparts for networks covering larger geographic 

space in other regions of the world. 

To further support the claim that the Molloy-Reed parameter is indeed a good indicator 

of network stability we performed a numerical simulation. Here, we simulate 100 ran-

dom failures on both national, coach and rail PTNs to determine their mean robustness. 

For each simulation we begin with the original network, following this algorithm: 

1. Determine the size of the GCC, 

2. Randomly select 1% of the nodes in the network, 

3. Remove the nodes selected in step 2, such that, when a node is removed the adja-

cent edges are also removed, 

4. Calculate the new GCC, 
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5. Repeat steps 2-4 until all nodes are exhausted. 

In Figure 4.4, we plot the normalised size of the largest connected component GCC, for 

coach and rail PTNs, as function of the fraction of randomly removed stations c. The 

area under the curve, acts as an analogue for robustness, where a larger area indicates 

a more robust network. Qualitatively, for this particular simulation, rail is more robust 

than coach. This measure of robustness can be quantifed by simply integrating over 

the function c. As previously mentioned, we performed 100 simulations, where for each 

simulation the value for robustness is calculated. The distributions of this robustness 

measure, for both coach and rail, are plotted in the inset of Figure 4.4. Here, it can be 

seen that the robustness for rail is larger than its national counterpart, thus indicating 

rail as a more robust PTN. This confrms the original prediction of the Molloy-Reed pa-

rameter where values of κ = 4.72, and κ = 5.79 are obtained for coach and rail respec-

tively. Thus supporting the idea that this easily determined metric can be employed to 

measure the stability of a PTN. 

4.3.2 Degree distribution 

As already highlighted in section 2 of this Thesis, cumulative distributions generally 

have smoother functions and their functional dependence enables a more accurate de-

termination of P (k). Hence, the corresponding cumulative distributions for all PTNs 

are plotted in Figure 4.5 in both log-linear and double logarithmic scales. On inspection 

it seems that the degree distributions of these networks show clear preference with re-

−ξk spect to the power law decay P (k) ∝ k−α rather than an exponential decay P (k) ∝ e . 

For confrmation, using a nonlinear least-squares (NLLS) Marquardt-Levenberg algo-

rithm [53], we have produced the fts for these distributions and display the ftted val-

ues of α and ξ in Table 4.3. As it follows from our analysis, the node degree distribu-

tions are better ftted by the power-law than by the exponential decay (for a detailed 

explanation of the method used to determine the best ft, see Appendix A). 

Scale-free networks are characterised by unique properties, in particular with respect 

to their stability [90], [91]. Networks that have smaller values of the exponent α should 
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FIGURE 4.5: Cumulative degree distribution P≥(k) for six PTNs under 
consideration in log-lin (left) and log-log (right) scales. 

Coach Rail Bristol Manchester West Mid London 
α 5.06 ± 0.15 2.5 ± 0.07 3.56 ± 0.09 4.36 ± 0.04 3.10 ± 0.07 4.25 ± 0.05 
ξ 2.08 ± 0.09 0.90 ± 0.06 1.37 ± 0.07 1.73 ± 0.05 1.15 ± 0.05 1.67 ± 0.05 

TABLE 4.3: Fitted degree distribution exponents α and ξ. For all PTN 
considered here, the P (k) dependency is much better ftted by the 
power-law than by the exponential decay. 

manifest stronger stability with respect to the removal of their constituents, see also Ta-

ble 4.2. A prominent example, follows from the comparison of the UK national coach 

and rail networks: the α exponent for the rail PTN is only half that of its coach coun-

terpart. This brings about higher stability in the former, under random removal of its 

constituents. It can seen in Figure 4.6 that a negative correlations exists between the 

Molloy-Reed parameter and degree distribution. 
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FIGURE 4.6: Correlation between Molloy-Reed parameter κ and degree 
distribution exponent α for PTNs in Table 4.2. 
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4.4 Geospatial properties of PTN 

Thus far we have studied the properties of a PTN that originate from their topology. 

Such analysis is usual for the complex networks, even though the spatial embedding 

plays an important role for some, as in the case of PTN [92]. Very often data about net-

work topology is not accompanied by their location in the embedding, Euclidean space. 

The advantage of the database we are using in our analysis is that it contains the geo-

graphic coordinates of stations. This gives us the unique possibility to complete analy-

sis of topological properties by examining properties in the Euclidean two-dimensional 

(d = 2) space, which will be called geospace from here onwards. This neglects the slight 

curvature in the earth but does not effect calculations over the area considered in our 

analysis. Unveiling and understanding such properties may help in future modeling of 

transport networks. Insets in Figures 4.7, 4.8 display positions of PTN in the geospace. 

It is the distribution of these positions that will be of interest in this section. 

4.4.1 Mass fractals: critical radius for homogeneous service 

The notion of fractal dimension is often used to quantify development and growth of 

cities and of their communication and transportation systems. City growth has been 

shown to exhibit self-similar behaviour, an observation that might imply a universality 

of processes that drive city agglomeration and clustering [93], [94]. Moreover, several 

physical growth processes such as, percolation or diffusion limited aggregation, are 

known to lead to such geometry have been exploited to explain city growth [93]–[96]. 

Correspondingly, transportation lines of some cities have been shown to behave as frac-

tal structures too. Usually, to this end one measures the number of stations N(R) that 

are located inside a circle of radius R. If a scaling of, 

N(R) ∼ Rdf , (4.2) 

is observed with non-integer value in the exponent df , the exponent is associated with 

the fractal dimension of the network. Indeed, if the stations in the PTN were equidis-

tantly distributed along straight lines, this would correspond to the exponent df = 1. 
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Likewise, constant station density (number of station per unit area) would lead to 

df = 2. The two cases described above, correspond to one- and two-dimensional sys-

tems. However, the real-world transportation networks were reported to be charac-

terised by different results, as discussed in section 4.1. 
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FIGURE 4.7: Number of stations N(R) in the circle of radius R for the 
UK national coach and train networks. The ft of the dependence to the 
straight line on the log-log plot brings about the exponent close to df = 2 
(dashed line). The inset shows the networks in geospace. 

In order to determine the mass fractals we frst fnd the centre of mass for a PTN (see 

Eq.(3.3)). Then moving out in concentric circles of radius R, the number of stations 

as a function of the radius N(R) is calculated, see Eq.(4.2). For national networks 

1 km ≤ R ≤ 600 km, whereas for local networks 100 km ≤ R ≤ 100 km. The out-

come of this analysis is plotted in Figures 4.7 and 4.8 for both the national and local 

PTNs respectively. 

One can see from Figure 4.7, that the fractal dimension of national networks, in the 

range of distances 1 km ≤ R ≤ 200 km is close to df = 2. Thus indicating that these net-

works tend to uniformly cover this region they are servicing. The outcome for the same 

analysis for local PTNs is shown in Figure 4.8. These networks tend to also uniformly 
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FIGURE 4.8: Number of stations N(R) in the circle of radius R for the 
PTNs of Bristol, Greater Manchester, West Midlands, and Greater Lon-
don. The bold dashed line (green online) corresponds to the exponent 
df = 2. The inset shows the networks in geospace, together with a part 
of the UK coastline. The radius Rc corresponds to the transition from the 
compact central area to the rarefed space with df < 2. The value of Rc 

is shown for each network. 

cover the central area with what we call a critical radius Rc, see Figure 4.9, where Rc for 

the London PTN is shown. The radius Rc corresponds to the transition from a compact 

central area to the rarefed space with df < 2. In the inset of Figure 4.8, the value of 

Rc is shown for each local network. This transition can be interpreted as the point at 

which a PTN ceases to provide uniform access to commuters using public transport. 

This is an important consideration when modeling PTN. If Rc, is too large, this would 

be a waste of resources and this would scale rather penally as R2. Alternatively, if Rc, 

is too small, the PTN would be neglecting many citizens living on the periphery of the 

city. Either of the two cases mentioned above are important to avoid when modeling 

PTN. 
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FIGURE 4.9: Example of the PTN of Greater London. The radius Rc 

(' 15.4 km) corresponds to the transition from the compact central area 
to the rarefed space with df < 2. 

4.4.2 Surface fractals: serviceable area of stations 

In this section, we consider an alternative method to investigate the fractal properties 

of a PTN. Now we will calculate its fractal dimension by considering a box counting 

method where circles of different radius’s are used to cover the object of interest, see 

inset in Figure 4.10. Obviously, the fractal dimensionality dsf calculated within this 

method depends on the size of the circles rs, used to cover the object. As one can see 

in Figure 4.10, the fractal dimensionality changes from dsf ' 1.28 to dsf = 1.91 as rc is 

increased. An interesting interpretation of the fractal dimensionality, as determined by 

this method, can be achieved by considering the size of a box as an area serviced by 

separate public transportation stations. When boxes are small one ends up with the 

structure where dsf < 2: effectively, the service area of all network is smaller than the 

dimensionality of the geospace d = 2. In turn, increasing the service area of each station 

(i.e. increasing of the box size) leads to an increase of dsf , fnally leading to a dsf ' 2. 

The derivative of this function determines the rate at which df reaches its asymptote. 
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This may offer some insight into how evenly distributed PTN stations are across its 

serviceable area. This is an important consideration as more evenly distributed PTNs 

can provide fairer access to cities commuters, when should be taken into account when 

planning and modeling public transport. 
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FIGURE 4.10: Fractal dimension dsf of the UK coach network calculated 
by considering a boxing method where circles of different size rs (% 
of maximum size of the object) are used to cover the object of interest. 
Depending on the boxes size, one gets the value that spans the region 
ds = 1.28 − 1.91. The inset shows examples of the networks in geospace f 
at different values of rs. 

4.5 Conclusions 

A feature of this analysis is that although the samples chosen included both local and 

national public transport networks, we show that they share a lot of common proper-

ties. The main topological features are summarized in Table 4.1. Comparison of data for 

PTNs with that of a classical random graph of the same size gives signifcant evidence 

that these networks are strongly correlated assortative structures with comparatively 
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small typical mean shortest path length (although caution is to be made when attribut-

ing to them small world properties). Their node degree distributions are well described 

by the power law decay, which brings about their scale-free properties, at least for a cer-

tain range of node degree values k. 

Analysis of PTN topological features also aids us to predict their behaviour under ran-

dom failures. Table 4.2 shows the Molloy-Reed parameter for UK networks, which may 

serve as a measure of PTN stability in comparison with that for some other cities in the 

world. To the best of our knowledge, it has never been calculated so far for large-scale 

transportation networks. In this sense our data for the UK national rail and coach net-

works provide the frst example of such calculations and we wait for their comparison 

with their counterparts for the networks covering larger geographic space in other re-

gions of the world. 

One of the corner stones of modern complexity science is making analogies between 

statistical properties of systems of interacting agents of different nature. In particular, 

to study the sensitivity of such systems to changes in their parameters (as in the men-

tioned above case random failures), to analyse emergent collective phenomena, to shed 

light on the origin of power laws that very often govern the statistics of such systems 

(for a recent review see Ref.[95] and references therein). These features are very often 

refected in the application of concepts and methods borrowed from physics in the out-

of-physical felds. Examples from our analysis are given by using concepts of fractal 

dimension to quantify PTN properties in geospace. We believe that further work in this 

direction will be useful for better understanding the complex structure of PTNs and its 

modeling. 

——————————————————————— 
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Chapter 5 

Network analysis of the COSMOS 

galaxy feld 

In this chapter we investigate how network science can be applied in the analysis of the 

large scale structures in the universe. Here, we search for correlations between metrics 

in network science and astrophysical properties. We further investigate the possibility 

of applying network science to defne important structures that can be observed in the 

cosmic web: flaments, clusters and backbones. 

In comparison with already existing methods developed for Cosmic Web analysis, net-

work analysis has a number of potential benefts: (a) it is not built on some ad-hoc 

assumptions on the nature of the data, e.g. the existence of a continuous density feld; 

(b) it’s computationally effective in treating discrete data, as no density estimator or 

Hessian is computed; (c) it is capable of describing and quantifying the content of data 

at an adjustable level of detail and complexity; (d) it’s equally applicable to the results of 

simulations and real observational data, thus allowing for direct comparison between 

them; (e) it can go beyond the classifcation of environments as clusters or flaments, by 

providing a more holistic view on the topology of the multi-scale phenomenon of the 

Cosmic Web. Thus, network analysis can complement other methods and effectively 

integrate them into a framework capable of investigating the complexity of large-scale 

structures of the Universe. 

The research presented here allows one to approach probably the most important prob-

lem in cosmology, the mapping of the observable distribution of luminous matter to the 
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underlying dark matter distribution, sometimes called the problem of biasing. The re-

sults here are derived from real-world observational data, so they are not just a descrip-

tion of the spatial structure, they encode information of extremely complex processes of 

star formation, gas and radiation transfer in different environments. So, our fndings on 

the common behaviour in the evolution of stand-alone galaxies and cliques bring im-

portant confrmation for the Cosmic Web Detachment model Argon2016, identifying 

the events of detachment in real observations. 

Moreover, the application of complex networks to the Cosmic Web analysis places the 

research into a more general context of complex systems thus creating opportunities to 

search for analogies between different phenomena that occur in systems of interacting 

agents of various nature. 

The main results of this study include the tentative classifcation of flaments, clusters 

and backbones within the cosmic web, with the use of network science. Another no-

table result is the identifcation of correlation found between the topological metric of 

clustering coeffcient and the astrophysical metrics of stellar mass and colour index. 

The chapter is laid out in the following way. Initially, in section 5.1 a brief description 

of the problem is given. In section 5.2 the origins of the data are discussed. Section 5.3 

discusses the methods employed to construct the network of the comic web. Finally, in 

sections 5.4 and 5.5 the results of analysis are given and discussed in section 5.6. 

5.1 Cosmic web: large-scale structure of the universe viewed 

as a complex network 

The large scale structure of the Universe is generally explored by analysing the ob-

servations of spatial distributions and motions of galaxies. It appears to be rich in a 

variety of shapes and topological features. We can identify structures such as voids, 

walls, clusters and flaments. Voids represent large areas of empty space, typically be-

tween 10-100 mega parsecs (1 parsec ∼ 3.3 light years) in diameter, where either no or 

only a few galaxies exist. Whereas, walls are regions in space that contain a typical 

mean density of matter abundance and can be split into two sub-structures: flaments 
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and clusters. Here, flaments are branch-like structures, often tens of mega parsecs in 

length, which join clusters, which are high galaxy density areas, together. Altogether, 

they comprise the cosmic web, a term coined in Ref.[97], to be hereafter treated as a 

graph or complex network, see Refs.[1], [24], [26], [98] and references therein. 

Numerous approaches have been devised in an attempt to properly describe and anal-

yse the geometry and topology of large scale structures of the universe, see for exam-

ple the list of recent studies [99]–[110]. Methods and approaches of complex network 

science have recently entered cosmology [103], [111], [112]. In astrophysics, complex 

network methods are believed to assist in solving various open problems. These are 

related to the evolution of galaxies, the geometry and topology of large scale structures 

and the nature and properties of dark matter and dark energy. This is performed by 

promoting a better understanding of the formation of the phase-space distribution of 

dark and luminous matter, and its impact on environments of galaxies [113], [114]. 

Here, we aim to study the cosmic web with the aid of complex network theory. First, 

by estimating the global and local properties of galaxy samples. Then investigating 

for correlations between observable astrophysical properties of galaxies and the local 

and global features of the cosmic web. We follow the pioneering research of Hong and 

Dey [103], where three network measures of topological importance (degree centrality, 

closeness centrality and betweenness centrality) have been derived from the COSMOS 

(COSMOlogical evolution Survey) catalogue by Ilbert et al. [115], to estimate the rela-

tionship of galaxy parameters to their topological environment. Hong and Dey [103], 

in turn, follow Scoville et al. [116], where the same problem was addressed using “tra-

ditional” methods with the same data source. 

We extend this analysis by investigating how the above mentioned properties are evolv-

ing, by considering neighbouring redshift values. We further complement these inves-

tigations, by introducing other network metrics of interest like the number of edges, 

mean node degree, size of the giant connected component, clustering coeffcient, as-

sortativity, average path length and diameter. Moreover, we assess the applicability, 

restrictions and accuracy of network analysis with respect to real observational data. 
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5.2 COSMOS catalogue 

The dataset is based on the catalogue built by Ilbert et al. [115] for studying the mass 

assembly of galaxies in the COSMOS feld. This data has been used in previous studies 

[103], [116]. Thus, this data set provides a benchmark for different kinds of large scale 

structure analysis. 

The COSMOS Collaboration is a huge astronomical effort to integrate the data pro-

duced by a variety of space and ground-based telescopes. The survey is aimed at 

analysing galaxy evolution and is designed to collect essentially all possible objects 

in the feld of view, so it is meant to be as deep as possible, meanwhile covering an 

area of celestial sphere large enough to mitigate for the infuence of cosmic variance. 

For this reason the volume surveyed is restricted to a box region of 1◦ 
.0 in height and 

width, which corresponds to ∼ 54 mega parsecs in co-moving space. This region of sky 

is given by the coordinates: right ascension (R.A.) 149◦ 
.4 − 159

◦ 
.4 and declination (Decl.) 

1
◦ 
.7 − 2

◦ 
.7. While the height and width of this box is measured in degrees. The depth is 

measured in redshift values z. Here, z is defned by 

aobsv1 + z = , (5.1) 
aemit 

where aemit is the wavelength of the light emitted by an object and aobsv is the observed 

wavelength. Larger values of z represent a deeper measurement within this box which 

relates to an earlier time in the age of the universe. 

The catalogue is selected using the UltraVISTA ultra-deep near-infrared survey, data re-

lease one [117]. It includes directly observable quantities, such as celestial coordinates 

for galaxies and photometric magnitudes for a number of broad bands. This data is 

complemented by quantities that are indirectly estimated from photometric data, as de-

scribed in Ref.[115]. It also includes the redshifts for galaxies (colour corrected for dust 

extinction), galaxy classifcations according to colour (quiescent or star-forming), stellar 

mass and other physical galaxy parameters estimated as best-of-ft to some model. 

To investigate how the structure is changing in time and to estimate the robustness of 
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the method, our analysis includes three galaxy slices at neighbouring ranges of red-

shifts, 0.88 ≤ z ≤ 0.91, 0.91 ≤ z ≤ 0.94 and 0.94 ≤ z ≤ 0.97, hereafter named z1, z2 and 

z3 respectively. By this choice we extend the data analysed by Hong and Dey [103] for 

redshift z2 to include neighbouring redshift values z1 and z3. Note that the slices sam-

ple completely different galaxies and do not refect the evolution of the same galaxies 

in time. The redshift ranges for the slices are chosen because there are a similar number 

of galaxies in each sample, which provide a dense enough populations of the various 

types of galaxies, including a large fraction of early-type (red) galaxies. Moreover, the 

central slice recreates the one used in Ref.[116], where it was shown that when z > 1, 

the relation of galaxy properties within a local environment abruptly diminishes. 

The elaborated analysis of multi-band photometry data estimates the redshifts of galax-

ies with high accuracy (at 1% level), but it is still not accurate enough to treat as a full 

3D picture of galaxy spatial distribution. The errors in z are comparable to the slices of 

redshift z1, z2 and z3 and so we analyse these slices in 2D. 

5.3 Constructing the cosmic web 

Contrary to the data coming from computer science, industrial databases and social 

networks, data in cosmology is inherently non-networked and contains a substantial 

amount of noise. Hence, a network must be constructed from the data set (catalogue) 

using appropriate criteria and methodology. This is equivalent to the transformation 

of data from an unstructured representation to a structured network representation 

(nodes and edges). As with any transformation, this one can not always be performed 

in a lossless manner. 

The task is to encode as much information of interest as possible, in this case the exis-

tence of structure over a random distribution of galaxies. This aspect of the problem 

resembles the studies of clustering, commonly found in cosmology. There is no uni-

versal technique to construct the network from the data for any situation, however the 

major steps to consider are the following: 

1. Capture similarity between data points. 
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2. Adopt some rules based on a similarity function for establishing the links between 

data points. 

3. Implement some criteria to judge whether the network is properly built, analo-

gous to a “goodness-of-ft” approximation procedure. 

Initially, Hong and Dey in Ref.[103] introduced a similarity parameter called "linking 

length" which they used to generate the cosmic network. With this method one starts 

with a network of N galaxy-nodes with no links (i.e. no edges). Then by considering the 

spatial position of galaxies-nodes an undirected network is generated by adding edges 

between galaxy-nodes, if and only if, the euclidean distance between two galaxy-nodes 

is less or equal to the prescribed linking-length. 

As mentioned, the aim here is to generate a network whereby the networks topological 

features can classify some of the structural and astrophysical features of the cosmic 

web. If the linking length l is to small, no edges will be generated leaving the network 

as a set of disconnected nodes. Whereas, if l is to large, the network will tend towards 

a complete graph. In both cases this will result in no useful information being encoded 

into the topology of the network. So one has to vary l until useful information can be 

encoded into the topology of the network. For example in sparser regions of space a 

larger linking length would be required to generate networks with enough structure 

to extract useful information. Such a method appears to be robust as Hong and Dey 

generate a network where its properties can classify various structural features of the 

cosmic web. 

In a subsequent study various other similarity parameters for constructing complex 

networks from galaxy survey data were discussed [111]. Here they considered similar-

ity parameters such as: 

• Linking length: as describe above, 

• Nearest neighbour: galaxies are linked to their nearest n neighbours, 

• Mass: linking length varies for each galaxies according to its mass, 

• Relative velocity: linking length are related to a galaxies relative velocity to other 

galaxies. 
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In this study it was concluded that the linking length criterion seemed to be the most 

relevant method for galaxy property studies. This simple recipe for analysing clustering 

was used for decades as “top-hat fltering” [118] and is closely related to the “friend-

of-friend” algorithm [119], which is used in cosmology for the study of the large-scale 

structure of the Universe. It is however not universal, as different samples may require 

a different linking length to generate meaningful statistics. Thus, the choice of linking 

length l, especially when comparing samples, is crucial and requires some measure of 

consideration to ensure unbiased sampling. 

In our analysis we extend Hong and Dey’s network generation approach by determin-

ing the critical point at which the complex network "equilibrates" in terms of topological 

structure. This can be done by considering clustering coeffcient, as defned in subsec-

tion 2.2.5 by Eq.(2.13), as this quantity essentially gives a measure of how correlated a 

network is at local scale. If plotted as a function of linking length clustering coeffcient 

may offer some insight into the best choice of l. In Figure 5.1 we plot C as a function of l 

for all redshift slices. Observing Figure 5.1, it can seen that as l is increased and at some 

value of l the clustering coeffcients (local strucutre) equilibrates and stabilises. It is at 

this point that the network should offer suffcient topological structure to encode use-

ful information on the astrophysical properties of the cosmic web. For these samples 

we can see that see clustering coeffcient stabilises at l ≈ 0
◦ 
.0216, the value chosen to 

construct the cosmic web (see Figure 5.2), this corresponds to C1 = 0.604, C2 = 0.612, 

C3 = 0.603 for z1, z2 and z3 accordingly. It is at this value of l, C for all networks 

stabilise. This is approach allows for a more systematic and unbiased approach to de-

termining linking length. This supports what appears to be an optimal value of l as 

shown frst in Ref.[103] and further confrmed here. 

So, hereafter a fxed linking length is predefned to be equal to 0◦ 
.0216, this corresponds 

to a linear scale of 1.2 Mega parsecs in standard ΛCDM cosmology (also known as the 

standard model of Big Bang cosmology). This value was derived by Hong and Dey 

[103] by considering Poissonian node degree distributions. 

To summarise, we generate three neighbouring cosmic networks over the different red-

shifts, using the same linking length as the clustering coeffcient for all three samples 

stabilise at approximately the same value of l. This is done to have consistency between 
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FIGURE 5.1: Clustering coeffcient C as a function of linking length l for 
the red shifts z1, z2 and z3 . 

samples and enable tracking of the evolution of galaxy populations over the time. In 

Figure 5.2 we show the cosmic networks generated using this prescribed linking length 

for each redshift. 

5.4 General network properties 

Our results for different network metrics are listed in the Table 5.1 for the three net-

works visualised in Figure 5.2. From a network perspective, we can confrm that we 

have a robust network generation method that creates a network providing suffcient 

structure, where relevant information can be obtained from the network metrics. To 

show this we can compare the average path length h`i and the average clustering co-

effcient C, defned in subsections 2.2.7 and 2.2.5, with their random counterparts h`ir 

and Cr. When comparing these metrics one can see from Table 5.1, that the networks 

generated are similarly, highly correlated structures. Similar results can be seen when 

comparing h`i with h`ir. This provides evidence of some regular structure within the 

giant connected component GCC. These comparisons point to a method of network 
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FIGURE 5.2: Complex networks constructed on the base of the photomet-
ric redshift slices 0.88 ≤ z ≤ 0.91, 0.91 ≤ z ≤ 0.94, and 0.94 ≤ z ≤ 0.97 
(top to bottom) from the COSMOS feld using linking length of 0 ◦ 

.0216 
degrees. The middle fgure recovers that formerly obtained in Ref.[116]. 
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0.88≤ z <0.91 0.91≤ z ≤0.94 0.94< z ≤0.97 
Mean [1σ, SE] Mean [1σ, SE] Mean [1σ, SE] 

N 3318 3678 3606 
M 11747 14317 12206 
r 0.85 0.86 0.80 
D 116 113 117 
GCC 2079 2369 2828 
hki 7.08 [5.02, 0.087] 7.79 [5.68, 0.093] 6.77 [4.36, 0.071] 
h`i 37.5 [22.63,0.011] 33.6 [19.00, 0.008] 39.8 [21.31, 0.008] 
h` ri 3.06 3.00 3.12 
C 0.6040 [0.263, 0.0048] 0.6120 [0.261, 0.0043] 0.6030 [0.264, 0.0044] 
Cr 0.0021 0.0021 0.0019 
Cc1 0.0019 [0.0001, 0.00003] 0.0028 [0.0018, 0.00003] 0.0018 [0.0013, 0.00005] 
Cc2 0.0180 [0.0041, 0.00009] 0.0206 [0.0052, 0.00009] 0.0210 [0.0052, 0.00010] 
Cd 0.0021 [0.0015, 0.00003] 0.0021 [0.0015, 0.00003] 0.0019 [0.0012, 0.00002] 
Cb 0.0043 [0.0146, 0.00025] 0.0037 [0.0097, 0.00016] 0.0066 [0.0172, 0.00029] 
Colour1 0.64 [0.66, 0.012] 0.63 [0.68, 0.012] 0.61 [0.67, 0.012] 
Colour2 4.02 [0.54, 0.033] 4.20 [0.61, 0.032] 4.13 [0.66, 0.036] 
log Mstellar 9.29 [0.67, 0.012] 9.50 [0.69, 0.011] 9.44 [0.66, 0.011] 

TABLE 5.1: Mean values and 1σ range of network characteristics of the 
COSMOS galaxy samples for three redshift slices. N is number of nodes, 
M is number of edges, hki is mean node degree, GCC is number of nodes 
in the Giant Connected Component, C is mean clustering coeffcient, h`i 
is mean shortest path of the network, r is assortativity, D is diameter 
(maximal shortest path length), Cd is Degree centrality, Cb is Between-
ness centrality, Cc1 is Closeness centrality for the distribution of fragment 
clusters, Cc2 is Closeness centrality for the distribution of GCC, h` ri is the 
mean shortest path and mean clustering coeffcient of the random graph 
of corresponding size. Colour1 and Colour2 are mean colour indexes 
for both modes of bimodal distributions shown in the top panels of Fig. 
5.7; log Mstellar is the logarithm of mean stellar mass (in units of solar 
one) of galaxies for the distributions shown in the bottom panels of Fig. 
5.7.Information in brackets represents [Standard deviation, Standard er-
ror]. Where there are no brackets this indicates that we do not have a 
distribution to measure. 

generation that is unbiased and yet able to provide suffcient structure to retrieve use-

ful information about the distribution of these galaxies. 

The GCC, is analogous to the largest cluster and the diameter D, is analogous to the 

spine or backbone, of this largest cluster. From Table 5.1 we see that all networks have 

slightly different GCCs, with similar backbones. This indicates a variance in the largest 

cluster size between samples, with z3 having the largest cluster and z2 the smallest. 

We have computed the centrality measures for betweenness, closeness and degree that 

Hong and Dey [103] consider in their paper and estimated their standard errors for 

three galaxy samples z1, z2 and z3. They are presented in Table 5.1 and their distribu-

tions are shown in Figure 5.3. 
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ness Cb, closeness Cc and clustering coeffcient C (from top to bottom) 
for three redshift intervals 0.88 ≤ z < 0.91, 0.91 ≤ z ≤ 0.94 and 
0.94 ≤ z ≤ 0.97. 
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5.4.1 Degree Centrality: Geometry of clusters 

Degree centrality distribution Cd(j), as defned in subsection 2.2.8, describes the node 

degree distribution. The mean of Cd(j) similar to the average degree hki, defned by 

Eq.(2.1) and listed in Table 5.1 for each redshift. We can also see by inspecting Figure 

5.3 (top row), the degree distribution for each redshift is Poissonian in nature, with 

z1 and z2 slices having more extended tails than z3. An extended tail is an indication 

of high degree nodes which means that z1 and z2 have some tightly packed galaxies 

within clusters. Whereas in z3, within the clusters the distances between galaxies are 

more evenly distributed. 

5.4.2 Betweenness Centrality: Filaments 

Betweenness centrality Cb(j), as defned in subsection 2.2.8, measures the importance 

of a node in terms of communication between other nodes. A node that is involved in 

the most number of shortest paths will be the most important node according to this 

centrality (see Eq.(2.21)). By this defnition nodes that join two clusters (object with a 

large number of galaxies) will have a high betweenness centrality. This is because many 

nodes will exist in each cluster, meaning that many paths will have to go through the 

nodes joining these clusters. This would not be the case however, if one of the clus-

ters was signifcantly smaller than the other. Galaxies that display a high betweenness 

centrality are then galaxies that reside in these branch like structure joining clusters. 

Remembering that this is the very defnition of a flament, this centrality offers a viable 

method from which to search for flamentary structures in the cosmic web. From Fig-

ure 5.3 (second row) we can see that the distribution is positively skewed in a log-log 

scale indicating only a few high betweenness galaxies. The surrounding area of these 

galaxies might be classifed, in astrophysical terms, as flaments that link the larger seg-

ments of clusters together. For example, in Figure 5.4, we show the position of nodes 

representing galaxies with betweenness centrality greater then 0.02 by red squares and 

others by blue circles. We see that there are only a few nodes where Cb > 0.02 and they 

all tend to be galaxies that form paths between the larger segments within the GCC. 
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FIGURE 5.4: Galaxies in z2-slice with betweenness centrality greater than 
0.02 are red squares and galaxies with lower value are noted by blue 
circles. 

5.4.3 Closeness Centrality: Cluster distributions 

The closeness centrality Cc(j), as defned in subsection 2.2.8, measures how close nodes 

are to each other in terms of path length `. Its distribution is shown in Figure 5.3 (third 

row) for three different redshift values. As one can see from the fgures, these distri-

butions are bimodal, with two peaks centered about values ≈ 0.002 and ≈ 0.02. The 

more precise values together with intervals are given in Table 5.1. Note that the two 

peaks are characterised by different widths, in turn, leading to different variance of the 

distributions as given in Table 5.1. As it follows from a more thorough analysis of the 

data, the population of galaxies that belong to the second peak corresponds to the Gi-

ant connected component of the network (GCC). In turn, the nodes in the centre of the 

GCC are characterised by shorter distances to the rest of the nodes, leading by Eq.(2.22), 

to larger values of Cc(j). The periphery nodes are characterised by larger distances to 

the rest of the nodes, therefore they have smaller values of Cc(j). In a similar way, one 
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Chapter 5. Network analysis of the COSMOS galaxy feld 

can identify the population of galaxies that give rise to the second peak in the closeness 

centrality distribution. These are the galaxies that belong to the smaller clusters, that 

are not attached to the GCC. Here, the central nodes of the clusters correspond to the 

right wing of the frst peak and the periphery nodes are those, contributing to the left 

wing. The possibilities to fnd two distinct populations in the distribution is caused 

by the difference in sizes of the GCC and the other smaller sub components in the net-

work. The larger the difference, the more distinct the peaks. Indeed, as one can see 

from Table 5.1, the largest size of GCC (78%), corresponds to the largest redshift value 

0.94 < z ≤ 0.97. It is in this case that the gap between two peaks is most pronounced. 

5.4.4 Clustering Coeffcient: Galaxy selections 

The clustering coeffcient, as defned in section 2.2.5 by Eq.(2.12), is a useful index to 

measure the correlation on a local scale. It provides information about the elementary 

substructures (patterns) that exist in a network. The high values of clustering coeff-

cient obtained for all redshifts (C1 = 0.604, C2 = 0.612, C3 = 0.603, see Table 5.1) 

brings about the presence of real pattern-groups of tightly connected galaxies on differ-

ent sites, as can be seen from Figure 5.2. 

The local clustering of each node can also be considered in an effort to help elaborate a 

more robust method of defning structures in the cosmic web. From the histograms of 

clustering coeffcient in Figure 5.3 it can be seen that it has the complex discrete distri-

bution with three main peaks at 0, 0.66 and 1. In most cases, galaxies with a clustering 

coeffcient less than 0.1 will have less then two neighbours. This intuitively indicates 

that these galaxies are most likely located in some sparse region of space. There, the 

mean distance between galaxies is larger than the prescribed linking length, and this 

selection can be called “stand-alone” galaxies. The nodes with clustering coeffcient 

ranging between 0.1 − 0.9, describe galaxies that are tightly packed next to one another. 

Galaxies, with a clustering coeffcient larger than 0.9 tend to highlight small clusters in 

these large voids, or in other words participate in some “cliques”. 

In Figure 5.5 we show the selections of galaxies according to the clustering coeffcient 

on the spatial distributions of galaxies, for three redshift slices. 
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FIGURE 5.5: The spatial coordinates of galaxies from different selections 
according to clustering coeffcient. Red squares denote the “stand-alone” 
galaxies, green circles denote the galaxies with interim values of cluster-
ing coeffcient, and small “cliques” are denoted by blue crosses. 
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Chapter 5. Network analysis of the COSMOS galaxy feld 

The reason for nodes within denser clusters not exhibiting higher clustering than their 

sparser counterparts is mainly due to the fxed linking length. In these large clusters, 

node i will link to all nodes within the prescribed linking length, including for example 

node j on the edges of linking length. However, due to linking length being smaller 

than cluster of galaxies, node j will link to other nodes in this cluster that are outside 

the range of node i. Meaning not all of its neighbour will be linked to node i. Hence 

the reason, counter intuitively, smaller clustering coeffcients are found among highly 

clustered galaxies rather than in the smaller groups of galaxies found in voids. 

5.4.5 Average path length: Large world 

When calculating h`i, as defned in section 2.2.7 by Eq.(2.18), in cosmic network the 

GCC can only be used. This is because disconnected nodes will have no path and hence 

an infnite path which cannot be calculated. From Table 5.1 we can see that h`i for all 

redshifts range between 33 and 40. This can then be compared with the h` ri, defned 

in section 2.2.7 by Eq.(2.19), of a random network of the same size. In network theory 

the idea of small worldedness, as discussed in section 2.2.9, has received signifcant 

amounts of attention [22]. The cosmic network, which we analyse, does not display the 

small world characteristics so often seen in complex networks. Here, the frst condition, 

where C � Cr holds. However, on the second, where h`i > h` ri, the cosmic web fails. 

Thus, the cosmic network in network science can be considered a ”large world”, in 

this context. This is almost certainly as a result of the geometric constraint imposed by 

linking length, as it restricts galaxies outside a certain range from forming edges. 

5.4.6 Assortative nature of the cosmic web 

For a disassortative network the value of r, as described by Eq.(2.17) in subsection 2.2.6, 

would be negative. Thus indicating that nodes of low degree tend to associate with 

nodes of high degree. In turn, when this value is positive this indicates an assortative 

network where nodes of similar degree link with one another. Figure 5.6 provides a 

qualitative perspective, where it can be clearly seen that the cosmic network displays 

positive correlation and this can be further confrmed quantitatively in Table 5.1 with r 
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5.5. Astrophysical quantities vs Topology 
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FIGURE 5.6: Node degree correlations for z2 redshift slice: If a node of 
degree 1 is linked to a node of degree 10 the data point plotted will be 
(1,10). The Colour map indicates the amount a particular combination 
occurs. It can be clearly seen that the network displays positive corre-
lation: nodes of similar degrees tend to be linked to each other. This is 
further confrmed quantitatively with assortativity r being 0.86. 

for all redshifts being ≥ 0.80. This indicates that in the cosmic network, galaxies with a 

similar number of links tend to be connected to one another. 

5.5 Astrophysical quantities vs Topology 

The principal goal of this chapter is to search for relationships that exist between the 

topological environment generated by the cosmic web and the astrophysical properties 

of galaxies. For this we consider the topological selections of clustering coeffcient and 

the astrophysical properties of colour index and stellar mass. Colour index measures 

the colour of a galaxy. From this measure the temperature of galaxies can be derived, 

where a smaller value of colour index represents a hotter galaxy. Stellar mass gives the 

mass of a galaxy which is usually normalised according to the mass of the sun. 

When searching for these correlations there are a number of limitations to consider. 

One fundamental limitation is due to the non-Gaussian nature of the galaxy parame-

ter distributions, studied here. This invalidates classical statistical methods of corre-

lation analysis such as: Pearson coeffcient, t-tests, regression analysis and ANOVA. 
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Chapter 5. Network analysis of the COSMOS galaxy feld 
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FIGURE 5.7: The statistical distributions of galaxy parameters for three 
ranges of z: 0.88 ≤ z1 < 0.91, 0.91 ≤ z2 ≤ 0.94, and 0.94 < z3 ≤ 0.97. 

The framework of null hypothesis signifcance testing, however, allows us to run non-

parametric two-sample tests, to evaluate, with a certain degree of confdence, whether 

the distributions are similar or not. In this case, the null hypothesis assumes both sam-

ples are drawn from the same distribution. 

Usually, the Kolmogorov-Smirnov test [120], [121] is used as a non-parametric test, as in 

Ref.[103]. Although this test is widely applied, it can have problems with complex dis-

tributions and thus should be cross-validated by other approaches, like the Anderson-

Darling [122] or Mann-Whitney-Wilcox [123], [124] tests. 

5.5.1 Distributions of galaxy parameters 

First we analyse the distributions of colour and stellar masses over the redshift slices, 

as seen in Figure 5.7. The means and standard deviations of these distributions are 

included in Table 5.1. Applying the Hartigans’ dip test [125], we have found that the 

bimodality of the colour index distributions are statistically signifcant i.e. the null 

hypothesis of unimodality is rejected with p-value � 0.05. 
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5.5. Astrophysical quantities vs Topology 

For colour index, the hypothesis of samples, originating from a common distribution is 

strongly rejected when comparing z1 and z3 subsamples, mildly rejected for z1 and z2 

subsamples, and mildly accepted for z2 and z3 subsamples. Therefore, the tests clearly 

indicate a weak yet still signifcant evolutionary trend for colour index, over the redshift 

span. 

The distribution of stellar mass indicate the strong and clear evolutionary trend over 

redshift values, albeit more mild for z2 and z3. Note that colour index is derived di-

rectly from observed photometric measurements, meanwhile the stellar mass of galax-

ies is computed from the same photometric data with a number of approximations and 

elaborate modeling of spectral energy distributions of galaxies. 

5.5.2 Selections by clustering coeffcient 

To fnd the correlations between the clustering coeffcient and colour index or stellar 

mass we should compare the probability distributions of galaxy properties for differ-

ent samples, drawn according to their clustering coeffcient values. These probability 

distributions are visually inspected by building histograms, whereas the estimations 

and signifcance testing are usually performed by analysing the empirical distribution 

function. 

Here, we split the galaxy samples into three selections according to local clustering 

coeffcient: selection I (stand-alone galaxies) C = 0; selection II (intermediately packed 

galaxies) 0 < C < 1; selection III (compact cliques of galaxies) C = 1. We then run 

two-sample tests over the different selections, within each redshift slice. 

The cumulative distributions of colour index and stellar mass for different populations 

according to local clustering coeffcient I (red squares), II (green circles) and III (blue 

crosses), for redshift sample z2 are shown in Figure 5.8. The colour index and stellar 

mass distributions for I and III selections are similar for all z-slices. Qualitatively, the 

distribution for stellar mass for selection II differs from selection I and III for all z-slices, 

while the distribution of colour index differs only for the z2-slice. 
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FIGURE 5.8: The cumulative distributions of colour index (left) and stel-
lar mass (right) for different populations according to local clustering 
coeffcient, coloured in red, green and blue for clustering coeffcients se-
lections I, II and III respectively for redshift sample z2. 

Quantitatively, these distributions were tested to determine if they, do indeed, differ 

from each other by applying a non-parametric Anderson-Darling test. In Table 5.2, re-

sults of these tests are presented. Here, a signifcance value of 0.05 is chosen. With 

this, the following conclusions can be deduced: the selections I and III (stand-alone 

and densely packed in small-groups) are coming from non-distinguishable samples; 

the clearest distinction appears to be between selections I and II (stand-alone and with 

interim clustering coeffcient); colour distributions are not the same, only for cases as-

sociated with the z2 slice; the z3 slice reveals different behaviour in comparison with 

other slices. The smallness of the evolutionary effects is understandable since the age 

differences of the nearest and farthest sample of galaxies, do not exceed 400 million 

years. 

Colour Stellar Mass 

I vs II 

II vs III 

I vs III 

z1 

0.062 

0.29 

0.74 

z2 

0.018 

0.025 

0.79 

z3 

0.31 

0.37 

0.49 

z1 

5·10−6 

0.0032 

0.19 

z2 

0.0048 

0.0018 

0.91 

z3 

0.00023 

0.014 

0.18 

TABLE 5.2: The results of Anderson-Darling tests (p-value) for colour 
and stellar mass distributions for selections: I C = 0; II 0 < C < 1; III 
C = 1. 
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5.6. Conclusions 

We have to bear in mind the caution already expressed in section 5.2. One of the lim-

itations of the database is that it does not allow, high enough precision of coordinates 

for galaxies in 3D. Indeed, the 2D slices of the real-world pictures result from the pro-

jection of their 3D counterparts. According to Scoville et al. [116], the binning matched 

the accuracy of the redshifts, thus providing optimal signal-to-noise ratio. For the den-

sity estimation, the 2D projections are linearly related to a 3D volume. Whereas, for the 

topological environment, this might not be the case. Despite this obvious limitation, 

one can still retrieve information on the correlations, we are interested in. 

5.6 Conclusions 

In this chapter we have presented the complex network analysis of some part of the 

cosmic web. For this purpose, we have used the data from the COSMOS catalogue of 

galaxies [115]. A distinct feature of this study is that we analyse galaxy samples in the 

same region 1◦ × 1◦ of the celestial sphere with coordinates R.A.=149◦ 
.4 ÷ 150

◦ 
.4 and 

Decl.=1◦ 
.7 ÷ 2

◦ 
.7 for three neighbouring redshift intervals 0.88 ≤ z < 0.91, 0.91 ≤ z ≤ 

0.94 and 0.94 ≤ z ≤ 0.97, marked by z1, z2 and z3 accordingly. Where networks are 

generated using a linking length of 0◦ 
.0216, proposed by Hong and Dey [103]. 

We have calculated the local complex network measures of degree centrality Cd(j), 

closeness centrality Cc(j), betweenness centralityCb(j), clustering coeffcientC(j), node 

degree k(j) as well as the global ones (average path length h`i, diameter D, average 

clustering coeffcient C, number of nodes g and diameter D of the giant connected 

component GCC, mean node degree hki, assortativity r. 

Analyses of the distributions of the local complex network measures and corresponding 

global measures, show that all three galaxy samples are similar and variations of mean 

values of network measures are in the range of their standard deviations. We have not 

seen apparent signs of evolutionary changes of network measures, maybe because the 

difference of cosmological ages of the samples of galaxies are not suffcient. 

The comparison of the computed measures of our networks with corresponding mea-

sures of random ones, give us some global characteristics of the cosmic web, in the 
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context of complex network theory in that they are ”large worlds”. The GCC and di-

ameter are found to be viable analogues to the super clusters and backbones found in 

cosmology. The high value of assortativity coeffcient r ∼ 0.80 ÷ 0.86 indicates that in 

the cosmic network, galaxies with similar number of links tend to be connected to one 

another. 

We have calculated various centrality measures. All of which offer more insight into 

the structure of the cosmic web: degree centrality provide some information on how 

clusters are geometrically distributed; the closeness centrality is useful for determining 

cluster size distribution and the betweenness centrality measure, if turned correctly, can 

describe the flamentary structures in the cosmic web. 

Most of the local network measures have non-Gaussian distributions, often bi- or multi-

modal ones (Figure 5.3). The local clustering of each node C(j), in the cosmic network, 

shows a three mode distribution, which allows for the discrimination between singlets 

and dumbbells of galaxies (C = 0) on the one hand and cliques of galaxies (C = 1) 

on the other. So, the network metrics analysed here allow for discrimination between 

topologically different structures. 

Another goal of our study was to analyse the impact of galaxy surroundings on their 

astrophysical properties, in particular the colour indices and stellar masses of galax-

ies. Doing so, besides studying the obvious impact of a galaxies closest neighbourhood 

(which can be and is done by means of other methods too) we present here, an elabo-

rated way to study the subtle topological features of galaxy distribution. 

The mean values and distributions of colour indices and stellar masses of galaxies (Ta-

ble 5.1) in the redshift slices z1, z2 and z3 (Figure 5.7) are found to be similar. Mean-

while, the non-parametric tests used for distributions of colour indices of galaxies in 

z1, z2 and z3 slices, show a weak evolutionary trend over the redshift span 0.88-0.97. 

Using the non-parametric Anderson-Darling test for the distributions of astrophysical 

characteristics, the statistically signifcant differences and correlations have been indi-

cated in (Table 5.2 and Figure 5.8), for different selections defned by a different mode 

of clustering coeffcient distribution. In particular, it was shown that stand-alone galax-

ies with C(j) = 0 (I) and galaxies densely packed in small cliques with C(j) = 1 (III) 
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are not distinguishable by colour indices and stellar masses distributions. Stellar mass 

distributions for galaxies with interim clustering coeffcient (selection II) differ from the 

corresponding distributions in selections I and III. This difference holds for all redshift 

slices. The analogous difference in colour index distributions holds, however, only in 

the z2 redshift slice. The latter z2-sample has been intensively studied by other methods 

in the papers [116] and [103]. 

The presented results demonstrate the promising use of complex network theory in the 

study of the Cosmic Web. We hope that in future, with improving accuracy in defning 

redshift values for galaxies, this will allow the cosmic network to be determined in 3D 

which will, in turn, provide more accurate results. 
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Chapter 6 

Conclusions 

One of the corner stones of modern complexity science is to form analogies between 

statistical properties of different systems of interacting agents. Complex networks is 

one avenue from which this can be achieved. It has successfully explained many phe-

nomena that have emerged in natural and man-made systems. A relatively new feld 

of science, its ability to describe different types of interacting systems has sparked its 

rapid growth. In this thesis, we have sought to add to the body of knowledge on com-

plex networks by studying the properties of three different networks: ideal polymer 

macromolecules, public transportation networks and Cosmic Web. 

Complex network formalism have played a central role in explaining collective phe-

nomena, that have emerged in all three case studies. Another common feature of net-

works considered, in this thesis, is their spatial embedding. This, in turn, opened a 

perspective of analysing the interplay between network, topological features and their 

properties in Euclidean (2D or 3D) space. The main conclusions of our analysis are 

given in sections 3.4, 4.5 and 5.6. Here, we briefy summarise our main fndings. 

In chapter 3, we present a study on the shape properties of ideal comb and dendritic 

polymers. To produce high precision numerical shape parameters, we redesign and 

apply a scheme proposed by Wei [41], [42]. Generating a polymer network of nodes 

(monomers) and edges (covalent bonds) this method takes advantage of the eigenvalue 

spectrum of the Kirchhoff matrix to determine the shape properties: g-ratio, aphericity 

hAi, shape factor hδ1i, prolateness hP i. We also determine the form factors S(k) ap-

plying a scheme proposed by Benhamous [43]. These results are compared to Monte 
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Carlo simulations on both square and triangular lattices. The extrapolated values pro-

duced (for all of these methods) are in excellent agreement with each other. We confrm 

that comb polymers with a complete set of interior branches display a more spherical 

shape. This is also refected in dendritic polymers as increased generations and branch-

ing per junction also generate more spherical structures. The redesigned Wei method 

has shown itself to be an accurate model in determining the shape parameters of comb 

and dendritic polymers. Here, more scope exists to further investigate other tree-like 

polymeric structures to determine their shape parameters. 

In chapter 4, we investigate the topological and spatial features of UK public transport 

networks, using data derived from the National Public Transport Data Repository. We 

study the bus networks of London, Manchester, West Midlands, Bristol and national 

networks of rail and coach for 2011. We are able to rank networks in relation to their 

stability using the so called, Molloy-Reed parameter. Moreover, studying the fractal 

nature of these networks allows for useful interpretations regarding the serviceable 

area of stations. These models can be used to determine the accessibility, robustness and 

effciency of networks. The next step in transport analysis is to consider their dynamical 

features. Answering questioning like how robustness is affected as a function of load? 

Are these systems correlated in time and space? and do dynamical properties correlate 

with topological properties? All these question remain open to future research. 

Finally, in chapter 5, we present a complex network analysis for a region of the Cos-

mic Web, using data from the COSMOS catalogue [115]. We analyse galaxy samples in 

the same region 1◦ × 1◦ of the celestial sphere with coordinates R.A.=149◦ 
.4 ÷ 150

◦ 
.4 and 

Decl.=1◦ 
.7÷2◦ 

.7, for three neighbouring redshift ranges: 0.88 ≤ z < 0.91, 0.91 ≤ z ≤ 0.94 

and 0.94 ≤ z ≤ 0.97. Results show the distribution of the network metrics for all 

galaxy samples are similar, showing no evolutionary change. We show how centrality 

measures can describe certain structures seen in the cosmic web. For example the de-

gree centrality provides information on how clusters are geometrically distributed; the 

closeness centrality is useful for determining cluster size distribution and the between-

ness centrality measure, if turned correctly, can describe the flamentary structures in 

the cosmic web. Our most signifcant fnding is the correlation found between the as-

trophysical quantities: colour index and stellar mass and the network metric clustering 
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coeffcient. These promising results open the door to future studies of the cosmos, using 

complex network approaches. 
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Appendix A 

Goodness-of-ft method 

Here we show the method we use to determine the function that best describes a given 

set of data. So for example when determining whether data is best described by a 

power law ∼ ak−α or an exponential ∼ be−ξ/k. First, we determine the standard errors 

for the free parameters (i.e. the coeffcient and exponent in the above cases) applying a 

nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm [53]. 

The standard errors are given in different scales (i.e log-lin and log-log), making them 

diffcult to compare. Instead, we consider functions in linear space and apply integrals 

to determine the best ft. We fnd the difference in area, for each function, where stan-

dard errors give the upper and lower bound in area. From example below we give the 

areas calculated for a power law Ap and exponential function Ae 

kZmax kZmax

Ap = (a + δ)k−(α−σ) − (a − δ)k−(α+σ) , (A.1) 

kmin kmin 

and 
kZmax kZmax

−(ξ−σ)/k − −(ξ+σ)/kAe = (b + δ)e (b − δ)e , (A.2) 

kmin kmin 

where δ and σ is the standard error for the prefactors and exponents respectively. The 

function that gives the least area is then considered the best ft for the given data. 
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