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control and data acquisition systems (SCADA) gathering valuable  Accepted 5 February 2021
information. Determining the precise condition of an asset is essential
on achieving the expected operational lifetime and efficiency. Conditi N

. X X . . . ondition monitoring;
Equipment fault detection is necessary to achieve this. This paper SCADA; artificial intelligence;
presents a systematic literature review of machine learning methods machine-learning;
applied to condition monitoring systems, using both vibration supervised learning
information and SCADA data together. Starting with conventional
methods using vibration models, such as Fast-Fourier transforms to five
prominent supervised learning regression models; Artificial neural
network, support vector regression, Bayesian network, random forest
and K-nearest neighbour. This review specifically looks at how
conventional vibration data can be combined with SCADA data to
determine the assets condition.
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1. Introduction

The total capacity in Europe of installed wind power sat at 18,499 MW in 2018 which is an increase
of 2649 MW from 2017 (WindEurope 2019). The industry has tended away from small clusters of
wind turbines where maintenance is more accessible and the overheads of sending a team for regu-
lar intervals were not expensive. For offshore wind farms, the cost of maintenance relative to the
levelised cost of energy (LCOE) is significantly increased compared to onshore. It is reported in
the North-Sea that the operations and maintenance (O&M) cost between 20% and 25% of the
LCOE compared to around 12% onshore (Rockmann, Lagerveld, and Stavenuiter 2017; Tavner
2012). The impact of the offshore environment coupled with increasingly expanding machines
means that the maintenance strategy of planned, scheduled or responsive regime to incorporate
a more proactive, predictive methodology. The key contributor to this shift in the industry is the
intelligent monitoring of the structural health termed condition monitoring. Condition monitoring
systems (CMS) are being developed by several operators. Companies monitor several parameters
including; vibrations, oil quality and temperatures in some of the main assemblies (Martinez-
Luengo, Kolios, and Wang 2016). This information is used to infer the health of the assets to deter-
mine the remaining useful life or to determine if scheduled maintenance is required based on the
monitored irregularities. There is an additional cost of implementing supervisory control systems,
which have deterred operators in the past but the financial benefit has eradicated skepticism (Clark
and DuPont 2018). All large utility-scale offshore wind turbines have supervisory control and data
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acquisition (SCADA) systems to govern the performance. SCADA systems provide a magnitude of
information over the operational life of a turbine providing updates at a resolution of 10 min. This
paper is a continuation of Martinez-Luengo, Kolios, and Wang (2016), which is carried out a
detailed review of CMS, following the statistical pattern recognition paradigm. Developing this
idea, this report seeks to understand the types of maintenance procedures implemented in offshore
wind engineering. Focusing on current detection methods incorporating machine-learning tech-
niques. Currently, there is a variety of review papers on how condition monitoring is beneficial
when implemented correctly (Artigao et al. 2018; Zhou and Yin 2019). Others look at how predict-
ing the structural health of a component using machine learning methods can determine scheduled
maintenance (Scheu et al. 2019; Wan and Ni 2018). Most of which are looking at vibration methods
or SCADA methods individually. This article investigates this but develops on the idea that they can
complement the results from machine learning methods when used together. One of the major
drawbacks of vibration-based methods is that the results are difficult to interpret without the
help of an expert. Combining both sets of information compliment the analysis for easier insight
and implementation on improving offshore-wind turbine operational management.

The remainder of this paper is constructed as follows: A methodology for the systematic review is
portrayed in Section 2. In Section 3 and 4 is a review of 5 different machine learning methods and
condition monitoring strategies. Finally, rounding the remaining sections with a discussion and
conclusion separately.

2. Method

This review paper conducts a qualitative systematic review providing an exhaustive summary of
current systems in place that tackle offshore wind monitoring and maintenance. The purpose of
this review style is to restrict confirmation bias.

The systematic review procedure is developed based on Ioannou, Angus, and Brennan (2017).
This focuses on assessing what methods have been applied towards maintenance and monitoring.
This study is only looking into five different regression type models. Refining this search helped
manage the large volume of literature and streamline the process. The top five most commonly inte-
grated regression methods are implemented in this paper. Observing that there are other regression
methods such; Tobit, Cox, Poisson, Lasso and linear to name a few but they are less commonly
applied in recent papers.

The process is as follows; both Google Scholar and Scopus were used to initialise the database,
searching specifically for condition-based maintenance for offshore-wind turbine operational man-
agement. Then a limitation of the top five most used types of machine learning applied to SCADA
data, and all vibration-based methods were included. Secondly, a limit from 2013 is set, removing
duplicates from both searches. After this process was completed the initial screening process, with
titles and abstracts are checked against a predetermined criterion for relevance. The thorough
search screening for this paper ranks papers with higher citation having more recognition and
importance in the community. At this point, a full paper consideration is taken. Noting, some sig-
nificant works older than 2013 and other with limited citation works that have a large impact in this
field are still included. Following the exhaustive search, a review of the most relevant information
will be transcribed.

3. Machine-learning

Machine-learning is the application of artificial intelligence (AI) that provides systems the ability to
experience without explicitly being programmed. Nevertheless, machine learning is referred to as
an area of artificial intelligence that is solely concerned with identifying patterns from data for pre-
dictions on unseen information. One of the most common definitions, by T. M. Mitchel (1997) ‘A
computer program is said to learn from experience E with respect to some task T and some
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Figure 1. The types of machine learning. This is achieved by supervised learning, unsupervised learning, semisupervised learning,
or reinforcement learning. Both Supervised and unsupervised can be further distinguished with classification and regression for
supervised learning. Finally clustering, dimensionality reduction and Clustering in unsupervised learning.

performance measure P, if its performance on T, as measured by P improves with experience E’. In
this section the types of machine learning methods will be discussed, detailing the nuances and how
they are incorporated into the industry. Following that, a more in-depth discussion on 5 specific
regression models that are both most commonly applied and are widely applicable at time-series
data predictions are discussed. These are support vector regression (SVR), K-Nearest Neighbour,
Bayesian Network, Gaussian Process Regression and Artificial Neural Networks (ANN).

Machine learning demands learning relevant patterns from data to make predictions. There are
various ways in which this can be achieved from a vast variety of learning algorithms to select from
(Figure 1). Common taxonomy organises the different approaches into learning styles, based on this
there are main categories of learning; supervised, unsupervised, semi-supervised and reinforce-
ment. Supervised learning can be further coupled into classification or regression depending on
either categorical or continuous targets respectively. The main task of unsupervised learning
involves clustering and reducing the dimensionality of the input information.

3.1. Supervised learning

For supervised learning, the algorithm must have input variables and the target variables could be;
severity of symptoms, the presence of credit card fraud or future clinical outcomes. The aim here is
to develop an algorithm to determine the optimal function that captures the relationship between
input and output target variables. This type of learning is often related to learning with a teacher, in
this situation the teacher knows the correct answer and corrects the algorithm when a mistake is
made. Therefore, requiring an iterative process of predictions and adjustment until the output pre-
diction and targeted value has reached a maximal efficiency. The performance is estimated by com-
paring targeted values against unseen information.

3.1.1. Classification

The main aim of classification is to predict group membership, labels or classes, from observations.
This type of algorithm is common in brain disorder research. Classification is advantageous for this
problem since it can be broken into a categorical decision; for example, should the patient be medi-
cated with A, B or C. In this case, the algorithm learns to distinguish the patient with a particular
disease from healthy controls. There are a plethora of published articles that have used neuron-ima-
ging data to determine disorders (Scheu et al. 2019; Wan and Ni 2018; Ioannou, Angus, and Bren-
nan, 2017; Mitchell 1997; Kambeitz et al. 2015, 2017). A small niche is using motor signals to
identify Parkinson’s disease (Koutsouleris et al. 2015). This motion can be extended to a multi-
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disorder diagnosis, where the algorithm can predict the probability of a patient having a particular
disease (Schnack et al. 2014).

3.1.2. Regression

For a regression problem, the aim is to determine a score on a continuous scale. There are questions
that cross-over with classifier and regression algorithms, but the outcome is continuous rather than
a categorical variable. This characteristic is useful, when, predicting outcomes such as stock market
trends or predicting meteorological trends, both follow a continuum.

There is a collection of survey articles related to the energy industry, for example (Voyant et al.
2017), applies regression models to determine the solar radiation to make predictions for photo-
voltaic panels (Heinermann and Kramer 2016), similarly makes predictions on wind power fore-
casting (Zemene and Khedkar 2017), has applied various methods to determine consumer electric
power consumption.

The level of functioning is completely different, in the clinical trials for classification models the
output is distinguished between true and false. For the regression models applied to the energy mar-
ket, the output has a quantitative value that can be ranked.

3.2. Unsupervised learning

As appose to supervised learning, in an unsupervised learning environment, there is no target value.
The aim is to uncover underlying structures in data. There are two main approaches to unsuper-
vised learning: clustering and dimensionality reduction.

3.2.1. Clustering

Clustering is an analytical technique to develop meaningful subgroups from large samples, such as
subgroups from published journal papers. In this type of situation, the individual articles could be
classed into smaller mutually exclusive, from non-defined, groups based on the similarities amongst
them. Grid-mapping, used in image recognition or pattern recognition, is another area where clus-
tering is effective. Noise from uncertain sensor measurements can be reevaluated (Zhu et al. 2019),
have highlighted effective results.

3.2.2. Dimensionality reduction

In a situation where the number of features substantially outnumbers the number of observations, a
dimensional reduction can be useful. The greater amount of features increases the visual complex-
ity, a dimensional reduction is a process where reducing the number of random features under con-
sideration replacing it with a principal set.

A dimensional reduction study on three-dimensional shape retrieval carried out in (Wang, Lin,
et al. 2019) aims to gather the most pertinent shapes from two-dimensional images. Another study
takes conventional household objects in CAD, uses ResNet library in Python, which is a deep neural
network, to retrieve the original shape and alleviating computational demand, omitting redundant
information. Shape descriptors are commonly used in text recognition software, A.A. Mohamed
(2020) has reviewed various Dimensionality reduction text recognition methods. The handwritten
text has considerable amounts of ambiguity and redundancies. These methods seek to retrieve the
most relevant information to determine the text.

3.3. Semi-supervised learning

As the title suggests, when target variables are only available for a portion of the data. Semi-super-
vised learning addresses the issue by allowing the model to integrate the available unlabelled fea-
tures for supervised learning. This approach is effective when it is unpractical or expensive to
attain the measured target data.
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Soft sensors or virtual sensors are used in chemical plants, where several measurements are pro-
cessed together where the interaction of the signals can be used to determine quantities that need
not be measured. The process of predicting important, difficult-to-measure quality variables is
investigated by Shao, Ge, and Song (2019). Melt index, concentration and octane numbers are
determined using semi-supervised learning to determine the quality of the ammonia extraction.
This approach maximised the amount of input data in the context of this study with the finite
amount of information from labelled samples.

3.4. Reinforcement learning

Reinforcement learning aims to build a system whereby it can learn from the interactions from its
environment, much like the operant conditioning Sutton and Barto (1998). For this type of learn-
ing, the algorithm’s conduct is shaped by a sequence of rewards and penalties, which are dependant
on whether the decision is towards the final goal, that is set by the programmer. As opposed to
supervised learning, where the examples are given to model the behaviour, reinforcement learning
is allowed to develop its path, based on trial and error. This is one of the most promising areas of
machine learning for autonomous control of vehicles. A model-free reinforcement algorithm devel-
oped by Chen-Huan Pi et al. (2020) has a quad-copter tracing a predetermined path subjected dis-
turbances. The algorithm rewards the system when the trajectory is as efficient at following the
predetermined path subsequently minimising the error.

Machine learning is an emerging topic within artificial intelligence that is gaining momentum in
all research fields. With each individual industry developing different topics within the AI field. The
nature of this, for the most part is open source which allows an easy transfer of knowledge between
industries. Machine learning is concerned with identifying patterns from data and subsequently
using these patterns to make predictions for unseen data. This is a stark contrast from inferential
statistics that seek explanatory power. Contrary to popular belief, classical statistics is not capable of
making inferences at a singular level. It is important to understand that there are significant chal-
lenges with regards to machine learning, it requires a larger number of observations, whereas as
some statistical inferences require less. This issue is being addressed with major developments in
transfer learning or domain adaptation, among other methods.

4. Models

Machine learning is a growing area with a magnitude of methods to select from. In the previous
section, only the basic procedure is explained. Supervised learning is a common type of machine
learning for condition-based maintenance. The following section will provide a more detailed dis-
cussion on classification and regression models, introducing the fundamental concepts behind
them. Before digging into the details of these models it is important to divulge the process of dealing
with raw data.

Pre-processing temporal data are mandatory to improve the final model accuracy. The mote of
errors could be, incomplete data, noisy or inconsistent. The following process can be implemented:

 Feature extraction involves cases where data sources from multiple databases and it may need to
be integrated into a single data set. In the case of offshore wind, one may want to extract
vibrational features from the metalogical data.

 Data reduction involves reducing the size of the data through a subset selection, feature selection
or data transformation. This can be handled using row reduction and column reduction. This
generally improves the efficiency of the algorithm by removing irrelevant records, improving
the quality of the data.

 Data cleaning is a widely studied practice that can be carried out using varying methods for time-
series data (Burman and Otto 1988) and (Fox 1972) have discussed potential options.
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Alternatively, for high dimensional data (Aggarwal and Yu 2001) explores other methods. It
involves potentially removing noisy data points or replacing it. This handles missing and incor-
rect entries.

 Data splitting, consists of three sets; training set, which is used for learning. The Validation set is
used to tune the parameters of the model and the testing set is used to assess the performance of
the fully trained model. This is most commonly used in ANN, however, it is not employed in all
ML process.

This process is carried out to provide more accurate and efficient results. The following subsec-
tions discuss the underlying features of; ANN, SVR, K-nearest neighbours, Dynamic Bayesian net-
work and Gaussian regression.

4.1. Artificial neural network

ANN have developed since the 1940s by McCulloch and Pitts (McCulloch and Pitts 1943) and the
learning rule of ANN is based on simple neuron-like logic called a perceptron. A single neuron
which is a universal approximator of a smooth surface. The connection strength between artificial
neurons is called ‘Hebbian learning’ (Hebb 1949) ANNs took oft in the 1980s when; Werbos (1974),
Parker (1982) and Rumelhart, Hinton, and Williams (1986) all worked on backpropagation; hence,
systematic learning can be achieved. The human brain is a vast network of connections coupled
with sensory receptors that perform the simple task of receiving and passing on signals. If the signal
is strong enough it passes the information on, otherwise, it is rejected. This is the building block for
the ANN, with the structure depending on the architecture. Dendrites are assimilated to the inputs
of the signal, collating the information along the cell body. The myelinated axion is the functioning
body of the neuron processing the information and at the axon terminal, the information is passed
on to the subsequent neuron. Learning in ANNs is commonly carried out using backpropagation
optimisation. Originally it was considered that a synaptic signal was either 1 or 0. For an optimis-
ation problem, discontinuous trends are difficult to solve. Rao and Rao (1998) considered the
synaptic strength to be a continuous fixed function. Recently have been developments implement-
ing the self-adjusting threshold discussed in Werner et al. (2019). One of the most significant
advantages of ANNs is the ability to predict non-linear, complex behaviour effectively. This success
is directly proportional to the selected instances. When presented with incomplete information
ANNs can still produce results. ANNs are dependant on the samples, with limited information
the accuracy is hindered. This also means that large quantities of data are necessarily imposing a
hardware requirement. But there are developments in domain adaptation (Wang, Michau, and
Fink 2019). This method transfers knowledge from other related data-sets to improve the perform-
ance of machine learning methods when there is limited amounts of data for specific tasks.

4.2. Support vector regression

Due to some of the shortcomings from ANN, the so-called SVR was developed in the 1990s for non-
linear regression and classification problems by V. Vapnik (1998). There are three main reasons for
SVR’s success; reliable training efficiency with small samples, the robustness against error models
and its computational efficiency compared to other methods such as ANN (Martinez-Ramon and
Cristodoulou 2006; Wang 2005). In the training process of machine learning techniques, it is often
assumed that the larger the sample, the error function will decrease. This can result in what is
known as overfitting (Duda, Hart, and Stork 2002), where a complicated function is designed to
reduce the loss of estimated target and desired output. This yields very accurate results in the train-
ing stage, but the estimation is poor. This is not consistent with SVRs.

SVRs aim to generate a function by separating the variables with a hyperplane. To determine the
two classes separating the hyperplane a suitable regularisation model is required for the training
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Figure 2. The transformation from input data into feature space for a greater fit (Gholami and Fakhari 2017).

stage. Vapnik-Chervonekis developed the basis of SVR (Cristianini and Shawe-Taylor 2000), the
Kernel function (Mercer 1909), this transforms the input space into feature space or Hilbert
space so that non-linear input data can be modelled more accurately (Figure 2). An approximation
of this can be (Smola and Scholkopf 2004):

N
y= Z (a; — af){xi, x) + b

i=1

where ;& are Lagrange multipliers for N training variables and b is a constant real number. For
this instance a Gaussian radial bias kernel function can be used with o, a tuning parameter:

Xi — X;
k(x;, xj) = exp(— %)

4.3. K-nearest neighbour

Similar to the previous machine learning methods, K-nearest neighbour (K-NN) presumes that the
current time series will exist in the future. This method differs from the other methods in this article
since the training of the algorithm is considered ‘lazy learning’, where learning is a generalisation of
the input data as opposed to training the algorithm before receiving queries in ‘eager learning’. The
objective is therefore to determine the present value based on a generalisation of past values. This is
evolved from Kantz and Schreiber (2004).

The algorithm’s aim is to determine the Euclidean distance from the present and past variables,
while some other less common distances can also be used (O’Hagan 1978). Locating the closest dis-
tance of the variables from the learning data to determine the output. The distance is given by:

N
D(xi, ) = | Y (alx) — ai())’
I=1

where a;(x) denotees the 1st feature instance of x. To determine the K-NNs the value }(xq) as the
estimate of f(x,) is the most frequent value of f among the K-NN can be represented as:

k
}'(xq) < argmax Z o(v, f(x:))

i=1
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with v(a,b) =1 if a = b else v(a,b) = 0. This is one of the simplest machine learning methods. Since
there is no training necessary it can be considered faster at making decisions. However, with large
multidimensional data sets, the algorithm does not perform well since it is more difficult to deter-
mine the Euclidean distance.

4.4. Dynamic Bayesian network

Dynamic Bayesian networks (DBN) are directed graphs representing a set of variables and their
condition dependence (Pearl 1988). BNs constitute both quantitative and qualitative analysis.
The quantitative section involves prior and conditional probabilities for each node and the quali-
tative section involves arcyclic graphs. Each node represents a random variable. The arcs represent
the cause—effect relationships or dependence’s between the nodes. The joint distribution between
variables of vector is X, the network is represented by:

N
pX) = Hp(xilpa(x,-)) Vxi....xy € Qx;...oxy

I=1

with values of variable x; and pa(x;) denoting an instant of the parents of X.

BNs is a set of conditional independence statements; this is the main consideration when build-
ing the model. This can be determined by employing the rules of d-separation. Using this method
the joint probability distribution for a set of random variables can be determined using the chain
rule. Dynamic BNs are an extension of BNs; typically they partition the variables into input, hidden
and output variables for a state-space model. This can tackle discrete-time stochastic models.

4.5. Gaussian process regression

A Gaussian process (GP) is a multi-variable probabilistic approach applied to regression and
classification machine learning problems. GP algorithms are stochastic processes, that can model
multivariate infinite vectors. The process can be defined for a random set of variables x as mean
m(x) and covariance k(x,x”) (Rasmussen and Williams 2006):

f(x) ~ GP(m(x(x), k(x, x)))

GP regression determines marginal Gaussian distributions from the training data and can describe
non-linear trends as an output function. Essentially GP is a non-parametric generalisation of a
joint-normal distribution of an infinite set on input variables, defined by the mean and karnel func-
tion (Rasmussen and Williams 2006). A typical common karnel is the squared exponential karnel

used in Tolba et al. (2019):
1 Xi Xi 2
k) = exp (1= 4(77))

with / being a length scale. The function determines a probabilistic accuracy, meaning that the out-
put from this process has a predetermined confidence interval. This is advantageous as there is
uncertainty associated with the output function. The Gaussian process is also versatile since
there is a variety of covariance functions for varying problems however, this does raise the issue
of implementing the correct Kalman filter (Hartikainen and Sarkka 2010).

Machine learning is continually adapting, with huge amounts of investment from large inter-
national organisations and research institutions. This article has only selected several models
that are suited towards time-series problems but there are vast amounts of other models for differ-
ent challenges. There is no consensus on what is the most desirable methodology, there are guides
and books but no concrete standardisations for confidant, accurate model implementation.
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5. Data-driven decision making for wind turbine operational management

The maintenance of an offshore wind farm can be categorised into two approaches; preventative
and corrective maintenance. The latter applies to the run-to-failure approach, which inherently
risks cascading failures with the potential of catastrophic loss. This approach is also likely to
cause greater downtimes since planning for maintenance is followed by the failure event.

In contrast, the preventative-based maintenance philosophy aims to repair a component before
failure, this is broken into two subcategories: calendar-based maintenance or condition-based
maintenance. Calendar-based maintenance is performed by annual or semi-annual visits or sched-
uled replacements based on the operational life of the component. A more effective approach is
condition-based maintenance, where the components are repaired based on the health of the
part. This strategy aims to predict failure before it occurs so that the scheduling can be planed ear-
lier in a corrective manner to reduce downtime. Producing accurate predictions of the remaining
useful life of an asset is a complex task, especially so in a complex system with multiple failure
modes.

There are three main requirements of a condition-based maintenance system according to (Wig-
gelinkhuizen et al. 2008):

e Detection of failure mechanism
e Measurable criteria
e Detection of time

These three steps have been interpreted in a variety of different ways, the creativity within the
maintenance sector has resulted in a variety of different models. The following sections will look
into Acoustic and SCADA models for the detection of failure mechanisms and how to use the mea-
surable criterion.

5.1. Acoustic condition modelling

In the context of an offshore wind turbine, with mechanical, electrical and structural components.
There have been various signals and monitoring tools to determine the structural health of the
turbine.

The identification of dynamic system responses has been carried out qualitatively since the intro-
duction of acoustic modelling (Tchakoua et al. 2014), recently with the emergence of condition
monitoring, the maturation and cost reduction of digital computer hardware (Crabtree, Zappala,
and Tavner 2014). Condition monitoring is becoming more attractive and the offshore wind indus-
try is becoming an emerging topic. Monitoring of rotating machinery is most competitive in terms
of profitability and reliability (Qiao and Lu 2015a; Tavner 2012). The failure detection systems
depend on pattern recognition related to displacement, velocity and acceleration time histories.

The sensors are commonly placed on the housing or shafts of the components during the oper-
ation. DNV-GL (GL Renewables Certification 2013) codes on condition monitoring state that the
minimal amount of sensors of geared turbines shall include at least one vibrations sensor on the
main bearing, two on the generator bearing and five for the gearbox sensor. Sensors are predomi-
nantly mounted on the housing of the component. The most common sensor used is a Piezo-elec-
tric accelerometer because of the large bandwidth, ranging from 0.1 to 30 Hz BSI 13373-1 (BSI
2002). Piezo-electrics sensors, unfortunately, suffer from roll-off at lower frequencies.

Raw vibration analysis is no arbitrary task. The data as a whole needs to be analysed in detail.
Common methods are; time-domain analysis, for instance, Hilbert Transform. Statistical analysis,
and frequency domain techniques, such as Fast-Fourier Transform or time-frequency domain tech-
niques like the wavelet transform.
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Fast-Fourier Transform has been the most applied technique in-order to obtain frequency spec-
trum by converting the time domain signals into the frequency domain. Specific harmonics are
directly correlated to the gradation or faults of moving parts. Qiao and Lu (2015b) have explored
this for faults specific to wind turbines. Fast-Fourier transforms are effective in stationary signals
but, may result in indistinct solutions in non-stationary environments. Offshore wind, and
especially floating offshore wind the nacelle oscillates. The IEC-61400-25 (IEC 2011) has suggested
binning vibration measurements over the power band of the operational wind turbine, or using log
mean composition and applying synchrosqueezing transform (Geropp 1997; Sheng 2013).

Envelope analysis is used in signal processing to detect fault frequencies that may not be rep-
resented in the spectrum produced by Fast-Fourier Transform such as shock impulses (Sheng
2012). A Band-pass filter is applied to the time domain signals centreing on the desired energy
region. The amplitude is demodulated in the filtered time-domain signal, extracting this repetition
rate of impact. Applying this process during Fast-Fourier Transform characteristic impact frequen-
cies and their modulations, side-bands, are determined.

Cepstrum involves taking the inverse Fourier transform of the logarithmic power spectrum. This
methodology has been applied in auto-correction ANSIs, which is just performed on the logarithm
of the power spectrum, In Cepstrum the correction is mainly focused on the lower harmonics (Ger-
opp 1997).

For rotating machinery, fault detection is usually determined by distinguishing specific harmo-
nics or side-bands. Envelope analysis is carried out to specifically locate side-bands using amplitude
demodulation. Cepstrum analysis is carried out to distinguish between different harmonic groups
(Spectra Quest 2006). The combination of this collection of techniques can lead to good failure
detection. They can identify various forms of failures and are incorporated into commercially avail-
able solutions on vibrational analysis for offshore wind turbine condition monitoring. These tools
often require experts to interpret the results to determine whether the information is indicative of a
fault. Efforts have been put to fully automate fault detection with vibrational analysis using the fea-
tures such as sideband energy, Koukoura, Carroll, and Mcdonald (2017), deep learning convolution
networks (Bach-Andersen, Remer-Odgaard, and Winther 2018) or using a system that uses
vibrations analysis combines with wind and rotor speeds (Ha et al. 2017). There is a need for a
more generic approach of fault detection utilising machine learning methods, vibrational analysis
with the minimal amount of human intervention as possible.

Offshore wind turbine condition monitoring is an emerging field with various tools emer-
ging. Roller bearing failure detection using vibrational signals by extracting features with
SVR modelling (Fernandez-Francos et al. 2013). Also, another the same problem using ANN
(Ziaja et al. 2016). Gearbox failures are of interest since it has one of the highest gown time,
these failures have been diagnosed using Von-Kalman filters during operation and in non-
stationary conditions (Feng, Qin, and Liang 2016) also including complex wavelet transform-
ations (Teng, Ding, et al. 2016). Another approach has developed a tool using the angular vel-
ocity data (Nejad et al. 2014), investigating jerk’, using the rate of change of acceleration (Zhang,
Verma, and Kusiak 2012).

CMS have been incorporated in several industries for years, Sky-wise (Airbus 2020) in the
Aerospace or Pulse for the Nuclear industry. The Wind industry operators have only recently
introduced dedicated CMS. The reason this development requires time is largely dependent
on the initial cost being high (Yang, Court, and Jiang 2013), resulting in ambiguity on returns.
The benefit of this investment will take years to impact the cost-benefit analysis. Another aspect
is there probability of false alarms, hence, unnecessary cost from scheduled maintenance. As
some insurance companies dictate that condition monitoring is mandatory the offshore wind
industry will develop more effective mechanisms, according to a study carried out in 2014 by
Yang et al. (2014) only 60-80% accurate diagnosis is necessary to provide adequate returns
to justify the implementation.
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5.2. SCADA modelling

CMS based mostly on vibrational analysis can be costly, the appeal of SCADA bases systems for
condition monitoring is largely due to the sensors already being installed to track the normal oper-
ations of the vessels. This subsection will discuss approaches implemented in the industry using
SCADA data for failure detection and condition monitoring. There are six main approaches; trend-
ing, clustering, normal behaviour modelling (NBM), damage modelling, alarm assessment and per-
formance monitoring. SCADA data typically records the meteorological data, component
temperatures, control variables and electrical characteristics for horizontal offshore wind turbines.
The exact configuration is dependant on the manufacture and operator but is most consistent with
Table 1. The time-step from SCADA systems are typically 10minute averages of 1 Hz values. Some
operators can offer maximum, minimums and standard deviations on each time-step. Some forms
of valuable information are start, stop and alarm logs (Godwin and Matthews 2013), oil pressure
levels coupled with filter status (Yang et al. 2014) and vibrations. There is no standardisation
implemented in the wind industry or any industry. The general trend seems to be more sensors
in modern offshore wind turbines for more data.

Data cleansing is a technique involving the transformation of raw data into an understandable
format. For instance, the data, whether it is missing, inconsistent or noisy data especially in the
offshore wind industry. This has a large influence on meaningful reliability assessment (Farrar
and Worden 2007). Two common methods of addressing this issue; Fuzzy-set theory (Mokhtari
et al. 2011). This aims to distinguish the gradual assessment of membership from elements using
indicator functions. Dempster-Shafer theory (Ferdous et al. 2012) is a framework for reasoning
with uncertainty applying understood connections. These theories can help mitigate the issue of
vague data but do not remove the problem.

There is information that can be utilised from the offshore oil industry or the onshore wind
industry that can be utilised in setting up meaningful databases, taking into consideration the differ-
ent environmental conditions into account (Zhang et al. 2016). Another issue is the changing tech-
nologies of a fast developing industry so the richness of data or cost aspects needs to be tackled in
each of the following models.

5.2.1. Trending

As soon as optimising maintenance strategies grew in the wind industry, so did structural health
monitoring. One key area of interest in SCADA systems is temperature measurements. Thermal-
dynamics of components can directly relate to the efficiency of the system. In the offshore wind,
the gearbox has one of the highest down times causing this keen interest.

A study carried out from 2002 till 2007 (Wiggelinkhuizen et al. 2008), applies SCADA-based
monitoring methodologies consisting of trending methods. Implementing regressions on scatter
diagrams of temperature, power, as well as three-dimensional graphs including the ambient temp-
erature. Manual interpretation of the filtered results was proven to be beneficial for determining
anomalous behaviour. Yang, Court, and Jiang (2013) have concluded that when the gearbox of a
horizontal operational wind turbine efficiency decreases, the gearbox temperature will rise (com-
pared to the ambient temperature), with an expected 6 months before failure. Wilkinson et al.
(2014) investigated condition monitoring methods. One of which was a trending method that com-
pared the temperature difference of separate wind turbines on the same site tries to determine
faults. The authors dismissed the efforts rendering the approach too inaccurate due to the environ-
mental condition disparity between each wind turbine. It could be argued that this method is still
valid but a more complex approach is necessary to irradiate the temporal nature of turbines. The
binning method, where an average is taken, was applied to; the wind speed, generator speed and
output power by Yang et al. (2014). In this case, the trending methods were applied to historic
data and current information to detect levels of damage, the added value is the differing scales of
damage dictated by the damage mode and dependent parameter.
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Table 1. Summary of references relating to the machine learning methods used in the specific types of monitoring and
maintenance technique.

ANN SVR K-NN DBN GP Other

Vibrational Feng, Qin, and Ziaja et al. Ferndndez- Qiao and Lu
Liang (2016) (2016) Francos et al. (2015b);
(2013) Sheng (2013);
Geropp
(1997);
Koukoura,
Carroll, and
Mcdonald
(2017); Bach-
Andersen,
Rgmer-
Odgaard, and
Winther
(2018); Ha
et al. (2017);
Teng, Ding,
et al. (2016);
Nejad et al.
(2014);
Zhang,
Verma, and
Kusiak
(2012); Zhu
et al. (2018);

Lee and Lee
(2014);
Bouzid et al.
(2015)
Trending Hackell et al. Kang, Zhang, Kang, Zhang, and Skrimpas et al. Yang, Court,
(2016); Wang and Jin Jin (2015) (2015); Saidi and Jiang
et al. (2018); Liu (2015) et al. (2018) (2013); Yang
et al. (2016) et al. (2014)
Clustering Catmull (2011); Hang, Zhang,  Mdller, Herp, Djeziri,
Kim et al. and Cheng Langenkamper, Pedersen, Benmoussa,
(2011); de (2016); and and and Sanchez
Moura et al. Djeziri, Nattkemper Nadimi (2018); Neu
(2016); Mazidi Benmoussa, (2019); Teng, (2016); et al. (2017)
et al. (2016); Yu and Sanchez Wang, et al. Wang,
et al. (2019) (2018); Zhao (2016) Wang,
et al. (2019) et al.
(2019)
Normal Ciulla et al. Aamer Bilal Asghar
behavour (2019); Garcia Xiaodong Liu
modelling et al. (2006); Bi, (2019); Tabib
Zhou, and et al. (2017)
Hepburn
(2017);
Schlechtingen,
Santos, and
Achiche (2013)
Damage Bangalore and Li, Liu, and Ziegler et al. Rocher Cao et al. (2016); Qiu et al.
Modelling Tjernberg Shu (2019); (2019) et al. Sarrafi et al. (2015);
(2015); Dervilis Regan, (2014) (2018) Borchersen
et al. (2014) Beale, and and Kinnaert
Inalpolat (2016); Feng
(2017); and Liang
Regan et al. (2014);
(2016) Joshuva and
Sugumaran
(2017);
Shafiee
(2015)

(Continued)
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Table 1. Continued.

ANN SVR K-NN DBN GP Other
Alarm Pliego Marugan Leahy et al. Wang et al. Qiu and Feng
Assesment and Garcia (2016); (2014); (2020);
Marquez Yang, Zhao Fernandez-
(2019); Jlassi Huang, and et al. Canti et al.
et al. (2015); Yang (2015) (2018) (2015);
Yang et al. Gonzalez,
(2019) Reder, and
Melero
(2016)
Performance  Sales-Setién and Pedersen and
Monitoring Penarrocha- Fossen (2012);
Al6s (2020) Rogers et al.
(2020);
Saravanakumar

and Jena (2013);
Pedersen and
Fossen (2012);
Song et al.
(2018); Astolfi
(2018); Simani
(2015)

The trending method applied to SCADA parameters can observe the development of failure
using past data comparing to the present information. There are several studies indicated here
where the results are case dependant. Particularly in studies using temperature data which is
case-specific and requiring manual interpretation. Attempts to visualise the information have not
provided more insight. If trending methods are to be used for maintenance, the difficulties of
interpretation and variance on individual offshore wind turbines will need to be addressed. If
not, this will likely result in uncertainty and the possibility of false alarms.

5.2.2. Clustering

Visualising trends can be problematic, especially in a wind farm with turbines operating individu-
ally under dissimilar meteorological conditions. The evolution of trending was clustering SCADA
data, where algorithms began to use classification methods to determine either ‘normal’, “faulty’ or
‘error’ observations.

One of the original implementations of clustering using ANN was carried out by Catmull (2011),
incorporating a self-organising map interpretation of SCADA information. The methods built clus-
ters through the organisation of neurons on a regular grid for the training process such that the
neighbouring neurons have similar inputs. To visualise the clustering information a unified dis-
tance matrix is used combined with projections of patterns. In this case, only normal operational
signals are implemented for training. The fault detection operated by determining the distance
between input data and the best-matched neuron, quantisation error, for abnormal behaviour
detection. A similarly, a study by Kim et al. (2011) included failures in the training of the algorithm
and subsequently was able to determine individual failures.

Reviewing clustering methods highlights again that interpreting this information still requires
human intervention. Also developing a tool that requires the faults to have been previously
recorded is not always possible. The advantages from clustering are not dissimilar from trending
hence more suitable methods are necessary.

5.2.3. Normal behaviour modelling

NBM encompasses the previous detection methods in normal operations of an offshore wind tur-
bine but has incorporated a significant development where the tool aims to empirically model the
desired parameter during the training phase. There are two main concepts; full signal
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reconstruction, where only the signals no other than the target are used to predict the desired target
and Auto-Regressive with eXogenouos input modelling, this includes the target value but also
incorporates previous values of the target to be used.

There is a magnitude of authors investigating the validity of artificial neural networks’ ability to
monitor offshore wind turbines. G. Ciulla et al. (2019) have investigated the power curve of a Sen-
vion MM92 aero generator from a 2.05 MW wind turbine. They were able to produce results with
deviations below 1% for the producibility and below 0.5% for the power curve.

Garcia, Sanz-Bobi, and del Pico (2006) devised a predictive maintenance scheme called SIMAP
using Auto-Regressive with eXogenouos artificial neural network. This involved gearbox bearing
temperatures and oil coolant temperature. Measuring the difference from the coolant temperature
before and after the model makes a prediction coupled with selected inputs. Using cross-corre-
lations and the impulse response analysis the scheme can produce results with a confidence level
of 95% for the upper and lower bounds. There is no information on the topology of the artificial
neural network from this study.

Another approach using adaptive neuro-fuzzy logic by Aamer Bilal Asghar and Xiaodong Liu
(2018) for online estimation of the wind speed from the tip speed ratio. This study is carried out
with the NREL 5 MW offshore wind turbine. The wind speed and rotational speed of the rotor
are used in the estimator, the neuro-fuzzy logic generates Boolean logic rules. For this example,
only 216 rules were determined. This study was able to produce results with a testing error of
around 6-7%.

A large number of studies have detailed how NBM is suitable for detecting failure. The concept
of evaluating residual measured values minus modelling signals provides an easier interpretation of
failure indicators than trending. The large dependency on vast amounts of data for the traning
stage, coupled with the data pre-processing stage can produce undetected problems or false alarms.
There has been a variety of different methodologies discussed but to determine the most effective a
more comprehensive study is necessary to evaluate the best solution. Besides, there is no clear uni-
versal strategy or consensus on input and output parameters for NBM.

5.2.4. Damage modelling

Effective modelling can be carried out when an entire system can be observed at every detail, unlike
NBM, where most of the modelling is considered ‘black box’. Damage modelling compares the
desired signals with empirical models of normal operation. The interpretation of information
involves physical models that can better represent the damage development and provide accurate
results.

An electro-thermal analysis of a doubly-fed induction generator in a wind turbine using a geared
transition conducted in Qiu et al. (2015) used thermal-dynamic theory and combined it with temp-
erature trending methods. The study made a few assumptions consisting of the rotor aerodynamics
are steady-state and the drive-train is considered as rigid body dynamics. This case study used
SCADA information of a 1.5 MW wind turbine with gear teeth failures, vibration faults and gen-
erator winding imbalances. The diagnostic rules determined faults for power transmission
efficiency, generator winding and lubricant temperature.

Switching generators require cooling to sustain the operation. Borchersen and Kinnaert (2016),
devised a physics-based numerical model of the coil temperatures. The model was developed using
Kalman filters of the actual system. The damage is determined using the values from the physical
model on the three coils coupled with a cumulative sum algorithm. This study has used three years
of historical data for 43 offshore wind turbines with an 88% fault detection success rate.

The comparison from measured signals and physical turbine damage models has shown success
when applied to failure detection, significant challenges still exist with regards to the accuracy. Due
to the lack of studies conducted on varying failure modes and from different turbines the full extent
of this method of condition monitoring is not yet established.
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5.2.5. Alarm assessment

Interpreting the information from complex failure detection strategies is one of the leading causes
of discontinuity from development to delivering a condition monitoring system. There are a variety
of tools constructed to provide better insight into the outputs of SCADA control alarms or Normal
Behaviour Modelling. In general, alarms are usually broken into system operation, environmental
and communication/software to indicate system malfunctions.

A fault diagnostic tool for a wind turbine developed by Yingning Qui and Yahuni Feng (2020)
used SCADA alarm material and is based on Dampster-Shafer theory. Dampster-Shafer theory is a
multidimensional probability theory that takes each alarm as an item of evidence which supports
different possible failures. The system verification was carried out using battery failures producing
false-negatives and false-positive rates with an accuracy of 76%.

An analysis for detecting false alarms conducted by Pliego Marugan and Garcia Mdarquez (2019)
uses artificial neural networks. There are three trained ANN in this approach, one of which deals
with vibration information, the second deals with SCADA data and both of which are fed into a
final model which also includes the alarm information. The system verification model involved a
fuzzy logic-based methodology, where fuzzification was applied to each input and output variable
and was critically analyses in a fuzzy data set. The final results of this tool ranged from 80% to 90%
false alarm detection.

Evaluating alarm assessments for condition monitoring has shown benefits for fully autonomous
fault detection systems. There is a severe lack of information regarding industrial algorithms for
alarm assessment in offshore wind. The lack of clarity, highlighted was the large discrepancy in
accuracy of outcomes, for the results status code consistency to increase these articles underline
how necessary it is for more work in this area to reach full condition monitoring autonomy.

5.2.6. Performance monitoring

Monitoring the operations of an asset is essential to review the performance. Equally the perform-
ance of the turbine can be evaluated in terms of health, assessing the degradation in terms of health
has opened up an opportunity to assess the performance in greater detail.

Addressing the performance of an operational wind turbine has been standardised in the IEC
61400-12 (Zhao et al. 2018), discretising the power curve into bins of 0.5 m/s wind speeds and cal-
culating the mean power value for each bin. Applying this method does not consider the non-linear
power to wind relationship (IEC 61400-12-2:2013, IEC 2013). There are a variety of probabilistic
methods (Pedersen and Fossen 2012; Rogers et al. 2020; Saravanakumar and Jena 2013) and
non-parametric (Pedersen and Fossen 2012) that encapsulate the power curve of a wind turbine.
This aspect is crucial to effective power modelling.

A robust diagnosis of a wind turbine pitch failure conducted by Song et al. (2018) uses power
estimation to diagnose the fault. This method involves a pitch misalignment estimation using a stat-
istically based fault scheme. This model incorporates the wind and wake model to determine the
power curve, the fault detection is conducted using a model bases observer including a closed-
loop. One of the main characteristics of this scheme is the performance improvement by building
a bank of observers that lead to the decision to create consensus. This system can determine pitch
errors at 0.1 deg at low wind speeds and 1 deg at high.

Another area that affects the output power is the yaw alignment, this is another area that has
significant developments for performance monitoring. Sales-Setién and Pefarrocha-Alds (2020)
details two favourable yaw control systems. The China Ming Yang 1.5 W wind turbine is assessed
in this case. Two yaw control systems are constructed using low pass filters. An Auto-Regressive
Integrated Moving Average is used to predict future wind speed and direction. A Kalman filter
is then used to determine the manoeuvre of yaw rotation. This method increased the performance
by 15% however, the frequency of this SCADA data is every 10 s and would benefit with a higher
frequency of results.
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Performance monitoring is beneficial, increasing the efficiency of the operational wind turbine
and assessing the condition of the turbine. Research has indicated that SCADA data are suitable for
this task but a higher resolution is necessary for a more optimal tool. Again there is a limited
amount of resources from the industrial sector and the standardisation is not implemented in
most academic papers.

6. Discussion

There have been a variety of different machine learning methods’ main features discussed. The five
popular methods strengths and limitations for; ANN, SVR, GPR, DBN and K-NN are compared:

Given the capabilities and limitations for the above models it is difficult to advise a specific type.
They can all provide reasonable results for condition-based maintenance. Whether you are looking
to understand the contributions towards the outcome or not would be a consideration among
many. One main significant capability all models have is the ability to develop an individual pre-
diction from historical data, something that cannot be carried out with conventional statistical
methods or physical models. This comes with the cost of computational effort in comparison to
statistical data fitting. Conversely, physical models can be too computationally expensive and hin-
der productivity but can provide more insight (Table 2).

The majority of discussion has strictly tackled the individual ML models applied to condition
monitoring, but in more recent studies which include multi-agent systems, combinations of algor-
ithms used to gain improved results, is gaining traction in the offshore wind industry. Yin and Zhao
(2019) effectively applied this technique using multiple ML methods gaining impressive results in
predicting the thrust of the operational wind turbine.

Another interesting aspect is bringing combinations of condition monitoring methods. Multi-
agent systems are ones that share features that are used to determine different objectives.
M’hammed et al. (2014) applied both clustering techniques measuring the vibrations of multiple
components and an alarm assessment to determine the most effective maintenance strategy.

The challenges that arise from CMS of offshore wind turbine systems are discussed. Currently,
vibration-based condition monitoring depends on advanced signal processing methods coupled
with expert insight. With regard to SCADA-based condition monitoring, there are various techniques
addressed. The principal methods in addition to novel ideas are gathered and presented as follows:

o Trending methods have demonstrated an effective ability at detecting anomalies. The specific cases
have highlighted those specific configurations and interpretations are necessary for different
machines. Automated trend monitoring systems are unlikely to provide accurate and adequate alarms.

e Clustering a more effective method than trending at determining the differentiation between
normal operation and anomaly but still has similar limitations. This also requires historical fail-
ure information to develop an effective diagnostic tool and it is unlikely that the full extent of
faults is determined.

¢ Normal Behaviour Modelling is the main focus for SCADA data condition monitoring because
of the simplicity of anomaly detection, by using the trained model modelled versus the measured
variable. This article has detailed machine learning methods that can be used to determine fail-
ures effectively. But there is no clear comprehensive technique described as the best. From the
variety of cases reviewed, it was difficult to determine with certainty if the fault detection tech-
nique is lacking or the method used to determine the behaviour. The specific type of configur-
ation of the model also remains unclear to determine if specific issues like overfitting are present.
There is also a lack of published standards to understand the performance of individual models
to benchmark tools.

o Damage Modelling is effective at specifically looking at the physical cause of failure for offshore
wind turbines. This will be no easy feat since reliable and accurate damage models encompassing
all failure modes are difficult. There is limited information on this with limited studies being
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Table 2. Summary of the benefits and limitations for the 5 individual regression machine learning methods.

Method Capabilities Limitations

ANN No Prior knowledge needed: since the algorithm is based Unexpected behaviour: One of the major drawbacks of
only on historical data. Processing incomplete data: A an ANN. When an ANN produces a probing result there
trained network can still produce results with is no insight on how these anomalous results are
incomplete knowledge. The accuracy is dependent on produced. Hardware dependence: ANNs accuracy is
the importance of the information. Can be updated in directly dependent on the amount of information used
real-time: The program can run while updating the to train the network. The network requires a large
firmware reducing downtime. amount to learn correctly. Black Box: it is incredibly

difficult to understand the network within this type of
model.

SVM Rationalisation and training efficiency: As opposed to Parameter selection: One of the major drawbacks for
other methods the probability of local optima during SVRs is the correct implementation of the Kernel
training is unlikely since Quadratic programming is function. The function represents the data in the
formulated in the development. This is rewarded with Hilbert space. Other parameters need to be adjusted to
the goodness of fit with unseen information. Outlier reach the desired fitting. Computational Effort: SVRs
Suppression: Unlike other methods, SVRs consider trade- usually have good performance with limited data. With
off parameters when processing information an increased magnitude of data, the time required to

solve the dual optimisation problem and Lagrange
multipliers increases significantly.

K-NN Simple and effective: This is a well understood Slow algorithm: As the dataset increases the inverse will
methodology. The decision rule is extensively happen to the efficiency. Especially with increased
researched. The number of classes reduces the error dimensionality, the accuracy of the algorithm declines.
twice that of a Bayes probability. No assumptions: Unlike Outlier sensitivity: The K-NN algorithm is
other methods K-NN is a non-parametric therefore hypersensitive to outliers as the neighbours are
requires no presumptions to be made. No training selected based on the selected distance criteria.
necessary: This methodology does not explicitly build a Unkonwn amount of clusters: It is difficult to
model. It uses previous information to infer new data. determine the right amount that produces the most

meaningful results.

DBN Overfitting control: Since Bayesian statistical methods are  Unknown amount of arcs: For many cases the number of
encapsulated in the model local maximums can be arcs and nodes could be in the thousands hence a
avoided. Unaffected by parameterisation: DBN looks for closed-form solution cannot be achievable.
interdependence hence they are not adversely affected
with more variables.

GP Directly captures uncertainty: in regression models the Computationally demanding: For more than a few

prediction is given as a value and a distribution. This is
not directly captured in other methods. Prior knowledge
implementation: when designing the model, if the path
of the trend is known a specific kernel function that
correlates can be implemented.

hundred data points the time to process this
information is longer than other methods due to the
cubic inversion issue.

7.

published. Inferring different models for varying turbines for different environments cannot be
examined yet.

Alarm Assessment combined with probabilistic methods and or physical rules has provided
promise at reducing the frequency of alarms to more a critical catalogue of alarms. The studies
have shown limited industrial developments that back this. Expert systems with fuzzy interfer-
ence working together can interpret complex information and deliver easily understood
information.

Performance Monitoring tools effectively determine the difference in power output from the
environmental conditions, operations and health of the turbine. This tool is necessary to deter-
mine the performance of the offshore wind turbine, aid the optimisation of power extraction and
maintenance.

Conclusion

This article has given a systematic review of how monitoring for maintenance can be carried out,
detailing specific measures that can be taken for condition-based maintenance. This article has
addressed the types of machine learning, providing a review of models suited to condition
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maintenance for offshore wind turbines. Bringing both of these components together is a trend
across all industries, the offshore wind industry is catching up to the oil sector or aerospace.
There are consistencies across all sectors; there are no design principles for implementing these
tools and there is no consensus on the best-suited machine learning methodology.

Monitoring and maintenance carried out on an offshore wind turbine are implementing
vibrational analysis, but limited studies are incorporating the vibrations analysis coupled with
SCADA data to determine faults. This journal paper has discussed in detail how machine-learning
can be used to detect faults with a variety of approaches. Another powerful tool of machine-learning
is that specific faults can be categorised into alarms for immediate action to be taken.

Common issues when implementing data-driven approaches is the prepossessing of the data.
Since there are no specific standards on how this is carried out, each individual producing a ML
model may have dissimilar results when using the same architecture. This could be a result of
many different approaches to anomaly detection, the variation in the opinion of experts, or the
magnitude of dimensional reduction among some possibilities.

Lastly, current methods usually require experts to implement and understand the results of the
monitoring systems. Exploring the automation of CMS could remove the complexity of the results
decreasing the ambiguity on the condition of the asset.
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