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ABSTRACT

Computer Aided Synthesis and Design of PID Controllers. (December 2007)

Sandipan Mitra, B.E., National Institute of Technology Karnataka, India

Chair of Advisory Committee: Dr. S.P. Bhattacharyya

This thesis aims to cover some aspects of synthesis and design of Proportional-

Integral-Derivative (PID) controllers. The topics include computer aided design of

discrete time controllers, data-based design of discrete PID controllers and data-

robust design of PID controllers. These topics are of paramount in control systems

literature where a lot of stress is laid upon identification of plant and robust design.

The computer aided design of discrete time controllers introduces a Graphi-

cal User Interface (GUI) based software. The controllers are: Proportional (P),

Proportional-Derivative (PD),Proportional-Integral (PI) and Proportional-Integral-

Derivative (PID) controllers. Different performance based design methods with these

controllers have been introduced. The user can either explore the performance by

interactively choosing controllers one by one from the entire set and visualizing its

performance or specify some performance constraints and obtaining the resulting set.

In data-based design, the thesis presents a way of designing PID controllers

based on input-output data. Thus, the intermediate step of identification of model

from data is removed, saving considerable effort. Moreover, the data required is step

response data which is easier to obtain in case of discrete time system than frequency

response data. Further, a GUI developed for interactive design is also described.

In data-robust design, the problem of uncertainty in data is explored. The design

method developed finds the stabilizing set which can robustly stabilize the plant with

uncertainty. It has been put forward as an application to interval linear programming.

The main results of this research include a new way of designing discrete time
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PID controllers directly from the data. The simulations further confirm the results.

Robust design of PID controllers with data uncertainty has also been established.

Additionally, as a part of this research, a GUI based software has been developed

which is expected to be very beneficial to the designers in manufacturing, aerospace

and petrochemical industries.

PID controllers are widely used in the industry. Any progress in this field is well

acknowledged both in the industry and the academia alike. This thesis attempts a

small step further in this direction.
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CHAPTER I

INTRODUCTION

In today’s world, the importance of control systems cannot be undermined. It is

not only integral part of the various external machines we use in our day to day life

but there exists a large number of control systems exist inside ourselves too. The

basic function of a control system is to make certain physical variables of a system

behave in a prescribed manner like track some given input despite the presence of

uncertainties and disturbances.

The current work concentrates on some aspects of control system design like

computer aided design of discrete time low order controllers, data based design of

discrete time controllers and data based design of controllers against uncertainty in

measurements.

A. Background

By introduction of state-feedback and quadratic optimization theories by Kalman [1],

though the controllers designed could meet many performances simultaneously, the

controllers essentially become high order controllers. But in industry, more than 90%

of the controllers used are essentially low order controllers [2]. This fact has led to a

renewed interest [3] in lower order controllers.

Thus recently a lot of stress has been laid upon design of low order controllers.

Hara, Shiokata, and Iwasaki [4] developed the generalization of KYP lemma designed

to be valid over the prescribed frequency ranges was developed to deal with fixed

order controller synthesis. Henrion et. al [5] proposed a relaxation approach to the

The journal model is IEEE Transactions on Automatic Control.
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design of fixed order controllers. Haddad, Hwang, and Bernstein [6] have discussed

design of fixed order controllers in the discrete-time case. Iwasaki and Skelton [7] have

studied design of H-infinity controllers of fixed order. Dorato [8] has put forward the

use of quantifier elimination (QE) techniques dealing with the fixed order controller

design problem. Gryazina and Polyak [9] have revisited Neimarks D-Decomposition

technique [10],[11] to design fixed order controllers. There have been a number of

papers addressing the fixed order controller design problem using LMI techniques

[12].

Proportional-Integral-Derivative (PID) controllers constitute the major portion

of the low order controller market. This is mainly because of its simple structure

and its functionality which offers treatment of both transient and steady-state re-

sponses.Traditionally PID controller design has been a tuning based approach (Ziegler

Nichols tuning rules [13]) and the methods by which optimum controller parameters

are chosen are ad hoc in nature. Other methods of controller design generally involve

handling a single objective function. This function may not include all the possible

specifications and the whole calculation has to be repeated again if the controller

obtained after solving the objective function is not suitable for some reason .

Recently Bhattacharyya et al. [14] have developed a novel way of calculating

the entire state of stabilizing controllers. This was also extended to the discrete time

systems [15]. Very recently, finding the entire stabilizing region for continuous time

system is extended to model free case [16] where the design was based on frequency

response of the plant and no model of the plant is needed. The essential advantage

of finding the entire stabilizing set lies in the fact that with this, now various perfor-

mance constrains can be imposed on this basic set and subsets achieving the desired

performance objectives can be achieved.
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B. Objective

With the given background above, the objective behind the current work can be

better understood. It consists of three major parts.

• Graphical User Interface (GUI) for discerte time control systems.

• Data based design of discrete time PID Controllers.

• Data-robust design of PID Controllers.

GUI for discrete time control systems: Graphical user interface has been

developed for Proportional, Proportional-Derivative (PD), Proportional-Integral (PI)

and Proportional-Integral-Derivative (PID) controllers in MATLAB. When the plant

parameters are given, these GUIs give the entire stabilizing values for the respective

controller structure. Additionally, when a particular set of controller parameters are

chosen, various performance specifications like gain margin, phase margin, overshoot,

rise time etc. for the closed loop system is displayed. When a few such performance

constraints are given, the GUI also displays the subset of controller parameters ob-

taining the desired objective. Some additional features of simultaneous stabilization

of a set of plants is also developed.

Data based design of discrete time PID controllers: This part consists of

model free design of discrete time PID controllers. When the model of the system is

not available but instead the step response data of the system is available, it is still

possible to design the PID controller. For this case also a GUI has been developed

which can obtain desired performance on the entire stabilizing set obtained. This

work has also been published in [17].

Data-robust design of PID controllers: There may be some uncertainty in

the measurement of data. This may affect the design of PID Controllers. In this part,
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a way of obtaining the stabilizing set of PID controllers which will robustly stabilize

the plant in spite of the uncertainty in measurement has been discussed.

C. Organization of the Thesis

In the following chapters various topics are covered. In Chapter II, the theory of

discrete time controller design is briefly discussed followed by a section on Computer

Aided Design of lower order controllers. In Chapter III, the MATLAB based GUI

for various controllers (Proportional (P), Proportional-Derivative (PD),Proportional-

Integral(PI) and Proportional-Integral-Derivative (PID)) along with their algorithms

and various examples is illustrated. Chapter IV consists of data-based design of

discrete time PID Controller along with GUI based examples. Data-robust design of

PID controllers constitutes Chapter V along with a descriptive example. In the final

concluding Chapter VI, the research work is concluded and future work is discussed.
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CHAPTER II

MATHEMATICAL BACKGROUND

In this chapter, the mathematical background necessary for better understanding of

the concepts used in the following chapters has been discussed. In particular, two

main topics are illustrated. The first section which is about root counting, phase

unwrapping and stability for discrete time systems, is based on the work by Keel and

Bhattacharyya [18]. This has been breifly summarized because it is fundamental for

development of algorithms for computing stabilizing sets for various low order con-

trollers. The other topic is about Computer-Aided design of controllers. It gives a

mathematical description of Computer-Aided design to find set of controllers achiev-

ing various design constraints.

A. Root Counting, Phase Unwrapping and Stability for Discrete Time Systems

1. Tchebychev Representation of Polynomials and Rational Functions

As per [18], let a real polynomial be described as P (z) = anz
n+an−1z

n−1+· · ·+a1z+a0

where ai, i = 0, 1, · · · , n are real numbers. The unit circle image of the real polynomial

P (z) is given by:
{
P (z) : z = ejθ, 0 ≤ θ ≤ 2π

}
. (2.1)

Since ai are real, P
(
ejθ

)
and P

(
e−jθ

)
become conjugate complex numbers, and so

it sufficient to evaluate the image of upper half of the unit circle:

{
P (z) : z = ejθ, 0 ≤ θ ≤ π

}
. (2.2)

Now it is known that

zk
∣∣∣
z=ejθ

= cos kθ + j sin kθ, (2.3)
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such that P
(
ejθ

)
can be written as

P
(
ejθ

)
= (an cos nθ + · · ·+ a1 cos θ + a0)︸ ︷︷ ︸

R̄(θ)

+j (an sin nθ + · · ·+ a1 sin θ)︸ ︷︷ ︸
Ī(θ)

= R̄(θ) + jĪ(θ). (2.4)

Using Tchebychev representation ([19], p. 71) u = − cos θ such that variable z can

be represented as

z = ejθ = cos θ + j sin θ = −u + j
√

1− u2 (2.5)

As θ runs from 0 → π, u runs from −1 to +1. Defining

cos(kθ) : = ck(u)

sin(kθ)

sin(θ)
=

sin(kθ)√
(1− u2)

:= sk(u) (2.6)

where ck(u) and sk(u) are real polynomials in u. These polynomials can be recursively

calculated using the following equations.

sk(u) = −1

k

dck(u)

du
,

ck+1 = −uck(u)− (1− u2)sk(u)

k = 1, 2, · · · (2.7)

From Equation (2.7) ck(u) and sk(u) for all k can be obtained. The first few of these

are shown in the Table I Thus P (z) can now be represented as

P (z) = P
(
ejθ

)∣∣∣
u=− cos θ

= R(u) + j
√

1− u2T (u) =: Pc(u). (2.8)

where Pc(u) is the Tchebycev representation of P (z) and

R(u) = ancn(u) + an−1cn−1(u) + · · ·+ a1c1(u) + a0 (2.9)
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Table I. Tchebychev Representation of ck(u) and sk(u) for k = 1 to 5

k ck(u) sk(u)

1 −u 1

2 2u2 − 1 −2u

3 −4u3 + 3u 4u2 − 1

4 8u4 − 8u2 + 1 −8u3 + 4u

5 −16u5 + 20u3 − 5u 16u4 − 12u2 + 1

T (u) = ansn(u) + an−1sn−1(u) + · · ·+ a1s1(u). (2.10)

As z traverses the upper half of the unit circle, the complex plane image of P (z)

can be obtained by evaluating Pc(u) as u runs from −1 to +1. It is also assumed

that P (z) has no roots on the unit circle. If there are unit circle roots, they can be

displaced out of the circle by replacing z with z/(1 + ε).

Now consider a rational function Q(z) which is the ratio of two real polynomials

P1(z) and P2(z) with no roots on unit circle. Let

Pi(z)|z=−u+j
√

1−u2 = Ri(u) + j
√

1− u2Ti(u), for i = 1, 2. (2.11)

Then the image of Q(z) on unit circle can be computed and its Tchebychev represen-

tation Qc(u) can be written as

Q(z)|z=−u+j
√

1−u2 =
P1(z)

P2(z)

∣∣∣∣∣
z=−u+j

√
1−u2

=
P1(z)P2 (z−1)

P2(z)P2 (z−1)

∣∣∣∣∣
z=−u+j

√
1−u2

(2.12)

=

(
R1(u) + j

√
1− u2T1(u)

) (
R2(u)− j

√
1− u2T2(u)

)
(
R2(u) + j

√
1− u2T2(u)

) (
R2(u)− j

√
1− u2T2(u)

)
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=

R(u)︷ ︸︸ ︷(
R1(u)R2(u) +

(
1− u2

)
T1(u)T2(u)

)
+j
√

1− u2

T (u)︷ ︸︸ ︷
(T1(u)R2(u)−R1(u)T2(u))

R2
2(u) + (1− u2) T 2

2 (u)

= : Qc(u). (2.13)

2. Interlacing Condition for Schur Stability

A polynomial is Schur stable if all the zeros of the polynomial are inside the unit

circle. Below is a theorem which relates the Schur stability with the interlacing of

the zeros of the real and imaginary parts of the Tchebychev representation of the

polynomial P (z). Let P (z) be a polynomial of degree n. As earlier,

P
(
ejθ

)
= R̄(θ) + jT̄ (θ), where u = − cos θ

= R(u) + j
√

1− u2T (u) (2.14)

where R(u) and T (u) are real polynomials of degree n and n− 1, respectively. Now

we state the theorem as given in [18]

Theorem II.1 P (z) is Schur stable if and only if

(a) R(u) has n real distinct zeros ri, i = 1, 2, · · · , n in (−1, 1).

(b) T (u) has n− 1 real distinct zeros tj, j = 1, 2, · · · , n− 1 in (−1, 1).

(c) The zeros ri and tj interlace:

−1 < r1 < t1 < r2 < t2 < · · · < tn−1 < rn < +1. (2.15)

Proof II.1 Let

tj = − cos αj, αj ∈ (0, π), j = 1, 2, · · · , n− 1 (2.16)
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or

αj = cos−1(−tj), j = 1, 2, · · · , n− 1

α0 = 0,

αn = π

and let

βi = cos−1(−ri), i = 1, 2, · · · , n, βi ∈ (0, π) (2.17)

Then (α0, α1, · · · , αn) are the n + 1 zeros of Ī(θ) = 0 and (β1, β2, · · · , βn−1) are the n

zeros of R̄(θ) = 0. The condition (c) means that αi and βj satisfy:

0 = α0 < β1 < α1 < β2 < · · · < βn−1 < αn = π. (2.18)

The condition in Equation (2.18) means that the plot of P
(
ejθ

)
for θ ∈ [0, π] turns

counterclockwise through exactly 2n quadrants. Therefore,

∆π
0 [φP (θ)] = 2n · π

2
= nπ (2.19)

and this condition in Equation (2.19) is equivalent to P (z) having n zeros inside the

unit circle.

To illustrate, consider the following example.

Example II.1 Consider a polynomial

P (z) = z6 + 0.5z5 + 0.3z4 + 0.2z3 + 0.3z2 + 0.5z + 0.7

From this, R(u) and T (u) can be evaluated as

R(u) = 32u6 − 8u5 − 45.6u4 + 9u3 + 16.2u2 − 2.25u− 0.3

T (u) = −32u5 + 8u4 + 29.6u3 − 5u2 − 5.4u + 0.75.
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R(u) is of degree 6 and T (u) is of degree 5.So condition a) and b) of theorem are met.

Further roots of R(u) are [−0.8936, − 0.7331, − 0.0849, 0.2252, 0.7942, 0.9422]

and roots of T (u) are [−0.7758, − 0.5000, 0.1358, 0.5000, 0.8900] such that −1 <

−0.8936 < −0.7758 < −0.7331 < −0.5 < −0.0849 < 0.1358 < 0.2252 < 0.5 <

0.7942 < 0.89 < 0.9422 < 1. This satisfies c) of the theorem that the roots interlace.

Hence the given polynomial is stable. This can be cross checked by finding the

absolute values of the roots of the polynomial directly. They are

[0.9624, 0.9624, 0.9431, 0.9431, 0.9218, 0.9218]

which are less than 1.

3. Root Counting Formulas in Terms of Tchebychev Representations

a. Phase Unwrapping and Root Distribution

To understand the root distribution of a polynomial as the phase changes, a few nota-

tions and lemmas are stated. Let the phase of P (z) evaluated at z = ejθ is denoted as

φP (θ) := Arg
[
P

(
ejθ

)]
.Also, ∆θ2

θ1
[φP (θ)] denotes the net change also called unwrapped

phase of P (ejθ) as θ increases from θ1 to θ2. In terms of Tchebychev representations,

φPc(u) := Arg[Pc(u)] denote the phase of Pc(u) and ∆u2
u1

[φPc(u)] denote the net change

in or unwrapped phase of Pc(u) as u increases from u1 to u2.

Lemma II.1 Let the real polynomial P (z) have i roots in the interior of the unit circle,

and no roots on the unit circle. Then

∆π
0 [φP (θ)] = πi = ∆+1

−1[φPc(u)] (2.20)

Using similar notations for rational function Q(z) Lemma II.1 can be extended to

another lemma
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Lemma II.2 Let Q(z) = P1(z)
P2(z)

where the real polynomials P1(z) and P2(z) have i1 and

i2 roots, respectively in the interior of the unit circle and no roots on the unit circle.

Then

∆π
0 [φQ(θ)] = π (i1 − i2) = ∆+1

−1[φQc(u)] (2.21)

Proofs of the above lemmas are given in [18]

b. Root Counting and Phase Unwrapping

The concept of interlacing conditions for Schur stability and phase unwrapping can

be combined to state a theorem as given in [18]. Let

Sgn[x] =





−1 if x < 0

0 if x = 0

1 if x > 0

The theorem is as follows:

Theorem II.2 Let P (z) be a real polynomial with no roots on the unit circle and let

Pc(u) = R(u) + j
√

1− u2T (u)

be its Tchebyshev representation. Let t1, · · · , tk denote the real distinct zeros of T (u)

of odd multiplicity, for u ∈ (−1, 1), ordered as follows:

−1 < t1 < t2 < · · · < tk < +1

and suppose that T (u) has p zeros at u = −1. Let T (p)(−1) denote the pth derivative

of T (u) evaluated at u = −1. Then the number of roots i of P (z) in the interior of
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the unit circle is given by

i =
1

2
Sgn

[
T (p)(−1)

]

Sgn [R(−1)] + 2

k∑

j=1

(−1)jSgn [R (tj)] + (−1)k+1Sgn [R(+1)]


 .

(2.22)

Proof II.2

P (ejθ) = R̄(θ) + jĪ(θ)

and define θi, i = 1, 2, · · · , k through

ti = − cos θi, for θi ∈ [0, π].

Let θ0 := 0, t0 := −1 and θk+1 := π, and note that the θi, i = 0, 1, 2, · · · , k + 1 are

zeros of Ī(θ). The proof depends on the following elementary and easily verified facts

which are first stated below. The first of these is just the restatement of Lemma II.1:

(a) ∆π
0 [φ(θ)] = πi

(b) ∆π
0 [φ(θ)] = ∆θ1

0 [φ(θ)] + ∆θ2
θ1

[φ(θ)] + · · ·+ ∆π
θk

[φ(θ)]

(c) ∆
θi+1

θi
[φ(θ)] =

π

2
Sgn

[
Ī

(
θ+

i

)] (
Sgn

[
R̄ (θi)

)
− Sgn

[
R̄ (θi+1)

])
, i = 0, 1, 2, · · · , k

(d) Sgn
[
Ī

(
θ+

i

)]
= −Sgn

[
Ī

(
θ+

i+1

)]
, i = 0, 1, 2, · · · , k

(e) Sgn
[
Ī(0+)

]
= Sgn

[
T (p)(−1)

]

(f) Sgn
[
R̄ (θi)

]
= Sgn [R (ti)] , i = 0, 1, 2, · · · , k.

Using (a) - (f),we have

πi = ∆π
0 [φ(θ)] = ∆θ1

0 [φ(θ)] + · · ·+ ∆π
θk

[φ(θ)], by (a) and (b)

=
π

2

(
Sgn

[
Ī(0+)

] (
Sgn

[
R̄(0)

]
− Sgn

[
R̄ (θ1)

])
+ · · ·

· · ·+ Sgn
[
Ī

(
θ+

k

)] (
Sgn

[
R̄ (θk)

]
− Sgn

[
R̄(π)

]))
, by (c)

=
π

2

(
Sgn

[
Ī

(
0+

)] ((
Sgn

[
R̄(0)

]
− Sgn

[
R̄ (θ1)

])
−

(
Sgn

[
R̄ (θ1)

]
− Sgn

[
R̄ (θ2)

])
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+ · · ·+ (−1)k
(
Sgn

[
R̄ (θk)

]
− Sgn

[
R̄(π)

])))
, by (d)

=
π

2
Sgn[T (p)(−1)]

(
Sgn

[
R̄(0)

]
− 2Sgn

[
R̄ (θ1)

]
+ 2Sgn

[
R̄ (θ2)

]
+

· · ·+ (−1)kSgn
[
R̄ (θk)

]
+ (−1)k+1Sgn

[
R̄(π)

])
, by (e)

=
π

2
Sgn[T (p)(−1)] (Sgn[R(−1)]− 2Sgn [R (t1)] + 2sign [R (t2)] + (2.23)

· · ·+ (−1)k2Sgn [R (tk)] + (−1)k+1Sgn[R(+1)]
)
, by (f)

from which the result follows.

This theorem can be better understood with the following example.

Example II.2 Consider the polynomial

P (z) = z6 + 4.7z5 + 8.76z4 + 8.483z3 + 4.8163z2 + 1.5528z + 0.2164

From this, R(u) and T (u) can be evaluated as

R(u) = 32u6 − 75.2u5 + 22.08u4 + 60.068u3 − 42.4474u2 + 0.3962u + 3.1601

T (u) = −32u5 + 75.2u4 − 38.08u3 − 22.4680u2 + 19.4074u− 2.2302.

The real roots of odd multiplicity of T (u) and lying in (−1, 1) are:

−0.6176, 0.1427, 0.6886

By applying the formula of Theorem II.2, we have:

i =
1

2
Sgn [T p(−1)] · (Sgn[R(−1)]− 2Sgn[R(−0.6176)]

+2Sgn[R(0.1427)]− 2Sgn[R(0.6886)] + Sgn[R(+1)])

=
1

2
(+1) [+1− 2 · (−1) + 2 · (+1)− 2 · (−1) + 1] = 4.

Therefore, it can be that the polynomial P (z) has 4 roots in the interior of the unit



14

circle. This is verified by determining the roots of P (z) and these are

−1.5000± j0.3000, −0.3500± j0.4976, −0.5131, −0.4870 .

The above results are very important for developing linear inequalities for calculating

stabilizing sets for controllers as can be seen in following chapters.

B. Computer-Aided Design of Controllers

To continue with mathematical background required for the thesis, it is important to

understand the approach undertaken for performance evaluation of the controllers.

The method discussed below can hold true for any design problem. However in this

thesis, it is used in the context of PID Controllers.

In general any design problem can be formulated as follows:

Let there be a set of n adjustable variables in a system which are labeled as x1, x2, · · · , xn

and let

x̄ = [x1, x2, · · · , xn] ∈ Rn

Consider m performance criteria f1, f2, · · · , fm are functions of these adjustable

variables such that

f1(x1, x2, · · · , xn) ∈ R

f2(x1, x2, · · · , xn) ∈ R

...

f1(x1, x2, · · · , xn) ∈ R (2.24)

Now consider that there are performance requirements like f1 > F1 or f1 < F1

where F1 is some desired value. This in turn gives a solution set S1 ∈ Rn which is a
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set of all values of x which satisfies the above criteria. In general

Si = {x̄|fi(x̄) ≥ Fi}wherei = 1, 2, · · · , k. (2.25)

In case of a real world control design problem there will be a system which will

have multiple such specifications and the objective is to find a set of these adjustable

variables which make the closed loop system stable and also simultaneously satisfy

all performance requirements. In mathematical terms, let

S0 := {x̄|Closed loop system is stable} (2.26)

and Si as described in (2.25), Then our objective is to find a set S such that

S = ∩k
i=1S0 ∩ Si (2.27)

Generally the functions fi are highly non-linear and it is not possible to solve them

analytically. But these can be solved point by point using computer-aided design.

Consider the special case of a PID controller in which there are adjustable vari-

ables kp, ki and kd. The closed loop system has some performance criteria like

gain margin,phase margin, overshoot, rise-time etc. For this case, firstly the entire

set S0 of kp, ki and kd which stabilizes the given plant is determined. The design

objective is to find the set S given the performance specifications gain-margin >

FGM , phase-margin > FPM , over-shoot < FOS etc. Then with the aid of computer the

setS = SGM ∩ SPM ∩ SOS · · · is obtained which lies within S0. This set meets all the

design objectives.

The above concept is used for performance evaluation of controllers in the fol-

lowing chapters.
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CHAPTER III

GUI BASED DESIGN OF DISCRETE TIME CONTROLLERS

In this chapter, the design of Proportional (P), Proportional-Derivative (PD), Propor-

tional -Integral (PI) and Proportional-Integral-Derivative (PID) controllers is studied.

In the first section, the theory and algorithm is stated for each of the above types

of controllers. One example to illustrate each of the above cases is also provided. In

the next section, a description about the GUI and its functioning is given along with

brief description of the main functions used. In the last section, a variety of examples

illustrating different aspects of GUI based design are described.

A. Theory and Algorithm

1. Proportional Controllers

The theory is based on the mathematical background provided in the previous chapter

and in [18]. Consider a discrete time plant represented by its transfer function

P (z) =
N(z)

D(z)
(3.1)

where N(z),D(z) are real polynomials. Let degree[D(z)] = n and degree[N(z)] ≤ n.

The plant is stabilized by a controller C(z) as shown in Fig. 1. For a proportional

controller,

C(z) = K (3.2)

The closed loop characteristic equation of this system, δ(z) is given by

δ(z, K) = D(z) + KN(z) (3.3)
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Fig. 1. Block diagram of a discrete time closed loop system

The closed loop system is stable if and only if δ(z) is Schur stable. Therefore, the

problem is to find the values of K for which δ(z) is Schur stable. For this, Tchebychev

representation of D(z) and N(z) is obtained as

D
(
ejθ

)
= RD(u) + j

√
1− u2TD(u)

N
(
ejθ

)
= RN(u) + j

√
1− u2TN(u) (3.4)

Also, N(z−1) can be represented as

N
(
e−jθ

)
= RD(u)− j

√
1− u2TD(u) (3.5)

and

N
(
z−1

)
=

Nr(z)

zl
(3.6)

where Nr(z) is the reverse polynomial and l is the degree of N(z). Next a rational

function ν(z) is constructed so that

ν(z) = δ(z, K)N
(
z−1

)
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= D(z)N
(
z−1

)
+ KN(z)N

(
z−1

)
. (3.7)

Finding the Tchebychev representation of the above equation,

ν(z) =
δ(z, K)Nr(z)

zl

∣∣∣∣∣
z=ejθ

=
(
RD(u) + j

√
1− u2TD(u)

) (
RN(u)− j

√
1− u2TN(u)

)

+K
[
R2

N(u) +
(
1− u2

)
T 2

N(u)
]

= RD(u)RN(u) +
(
1− u2

)
TD(u)TN(u) + K

[
R2

N(u) +
(
1− u2

)
T 2

N(u)
]

︸ ︷︷ ︸
R(u,K)

+j
√

1− u2 [TD(u)RN(u)−RD(u)TN(u)]︸ ︷︷ ︸
T (u)

= P1(u) + KP3(u) + j
√

1− u2P2(u)

= R(u,K) + j
√

1− u2T (u). (3.8)

where

P1(u) = RD(u)RN(u) +
(
1− u2

)
TD(u)TN(u)

P2(u) = RN(u)TD(u)−RD(u)TN(u)

P3(u) = R2
N(u) +

(
1− u2

)
T 2

N(u) (3.9)

It is observed that the real part of the polynomial depends on K while the

imaginary part is independent of K. Let ti, i = 1, 2, · · · , denote the real zeros of odd

multiplicity of the polynomial T (u), for u in (−1, 1). To ti, t0 = −1 and tk+1 = 1 is

appended such that ti varying from t0 to tk+1. Also let

Sgn [R (tj, K)] = ij, j = 0, 1, · · · , k + 1 (3.10)

wheret each ij can be either +1,−1 or 0. A particular choice of [i0, i1, · · · , ik+1] is

called a string.
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Further let iδ, iNr are the number of zeros of δ(z, K) and Nr(z) inside unit circle.

It is assumed that N(z) has no unit circle zeros and hence neither does Nr(z). Now

applying of the formula gin Theorem II.2 gives:

iδ + iNr − l =
1

2
Sgn

[
T (p)(−1)

]
(3.11)


Sgn [R(K,−1)] + 2

k∑

j=1

(−1)jSgn [R (K, tj)] + (−1)k+1Sgn [R(K, +1)]




For closed loop stability iδ = n. iNr and l are also known as iN is known. Thus

the equation yields the sets of strings corresponding to stability known as the set of

feasible strings. Each feasible string gives a set of linear inequalities in K. The entire

set of stabilizing gains is obtained by solving such sets of linear inequalities.

Thus, the algorithm for stabilizing Constant gain controller is as follows:

Step 1: Express N(z) and D(z) in terms of their Tchebychev representation as given

in equation (3.4).

Step 2: Obtain P1(u),P2(u) and P3(u) as given in equation (3.9).

Step 3: Obtain the required signature of ν as

σ(ν) = iδ + iNr − l (3.12)

Step 4: Find the real distinct finite zeros of odd multiplicities of T (u) between

(−1, +1) and arrange them as −1 < t1 < t2 < · · · < tk < +1 where k is the number

of roots.

Step 5: Construct the sequence of numbers i0, i1, · · · , ik, ik+1 having values 1 or −1

such that it covers all possible combinations. This set is defined as Ak such that

Ak := {i0, i1, · · · , ik, ik+1}.
Step 6: Determine the set of admissible strings I = {i0, i1, · · · , ik, ik+1} in Ak such
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that the equation

iδ + iNr − l =
1

2
Sgn

[
T (p)(−1)

]

i0 + 2

k∑

j=1

(−1)jik + (−1)k+1ik+1


 (3.13)

Step 7: If there is no admissible string, go to Step 10.

Step 8: For an admissible string I = {i0, i1, · · · , ik, ik+1}, determine the set of values

of K which will simultaneously satisfy the inequalities

[P1(u) + KP3(u)]it > 0 (3.14)

for all t = 0, 1, · · · , k + 1.

Step 9: Repeat Step 8 for all admissible strings I1, I2, · · · , Iv to obtain the corre-

sponding K ranges as S1, S2, · · · , Sv.The entire stabilizing set of K is given by

S = ∪v
k=1Sk (3.15)

Step 10: Terminate the algorithm.

The above process is illustrated through the following example.

Example III.1 Consider the following plant

P (z) =
N(z)

D(z)
=

z − 0.3

z3 + 0.6z2 + 0.5z + 0.25
(3.16)

As per equation (3.4)

Rn(u) = −u− 0.3

Tn(u) = 1

Rd(u) = −4u3 + 1.2u2 + 2.5u− 0.35

Td(u) = 4u2 − 1.2u− 0.5 (3.17)
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From this, the polynomials P1(u),P2(u) and P3(u) can be constructed as

P1(u) = −1.2u3 + 2.36u2 − 0.1u− 0.6050

P2(u) = 1.2u2 − 2.36u + 0.2

P3(u) = −0.6u + 1.09 (3.18)

The signature σ can be evaluated using equation (3.12) as

σ(ν) = 3 + 0− 1 = 2 (3.19)

Also, Sgn[T (−1) = 1. Therefor the only possible string satisfying equation

(3.13) is [1,−1, 1]. The real root of odd multiplicity lying between (−1, 1) is 0.0888.

Arranging them in increasing order, −1 < 0.0888 < 1. With this data, using equation

(3.14), the following inequalities are generated.

1.6900K > −3.0550

1.0367K < 0.5961

0.4900K > −0.4550

(3.20)

The range of K satisfying the above inequalities is −0.9286 < K < 0.5750. This is

the range of K that stabilizes the given plant.

2. PD Controllers

As before, the theory is based on the previous chapter and [18]. Consider the same

plant P (z) as described in equation (3.1) and Fig. 1. Consider a typical PD controller
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of the form

C(z) = KP +
KD

T
· z − 1

z
=

(KP T + KD) z −KD

Tz

=

(
KP + KD

T

) (
z −

KD
T

KP +
KD
T

)

z
(3.21)

which can be re-written in the form

C(z) =
K1 (z −K2)

z
(3.22)

where

KP = K1 −K1K2 and KD = K1K2T (3.23)

The characteristic equation δ(z) with the above controller structure will become

δ(z) = zD(z) + K1 (z −K2) N(z) (3.24)

As in previous section, a rational function ν(z) is constructed

ν(z) = δ(z)N
(
z−1

)

= zD(z)N
(
z−1

)
+ K1 (z −K2) N(z)N

(
z−1

)
(3.25)

In Tchebychev representation,

ν(z) = δ(z)N
(
z−1

)∣∣∣
z=ejθ,u=− cos θ

= R (u,K1, K2) + j
√

1− u2T (u,K1) (3.26)

where

R (u,K1, K2) = −uP1(u)−
(
1− u2

)
P2(u)−K1 (u + K2) P3(u) (3.27)

T (u,K1) = K1P3(u) + P1(u)− uP2(u). (3.28)
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and P1,P2,P3 are as described in equation (3.9). It is observed that the real part has

K1 and K2 while the imaginary part has only K1. If K1 is fixed, the roots of T (u,K1)

can be obtained. With this, linear inequalities in K2 are obtained using theorem II.2.

The algorithm for computing the stabilizing set of PD controllers is as follows:

Step 1: Express N(z) and D(z) in terms of their Tchebychev representation as given

in equation (3.4).

Step 2: Obtain P1(u),P2(u) and P3(u) as given in equation (3.9).

Step 3: Obtain the required signature of ν as

σ(ν) = iδ + iNr − l (3.29)

Step 4: In order to satisfy equation (3.29), T (u,K1) should have atleast

2(iδ + iNr − l)− 2

2
(3.30)

real distinct finite zeros of odd multiplicities of T (u,K1) between (−1, +1). From

this, the allowable ranges of Pi,i = 1, 2, · · · , d of K1 are determined. These resulting

ranges of K1 are the only vlues of K1 for which stabilizing values of K2 may exist.

Step 5: If there exists no value of K1 satisfying Step 4, then output NO SOLUTION

and go to Step 16.

Step 6: Initialize j = 1 and P = Pj.

Step 7: Pick a range [Klow, Kupp] in P and initialize K1 = Klow.

Step 8: Pick up the number of grid points N and set

step =
Kupp −Klow

N + 1
(3.31)

Step 9: Increase K1 as K1 = K1 + step. If K1 > Kupp go to Step 16.

Step 10: For a fixed value of K1, find the real distinct finite zeros of odd multiplicities

of T (u) between (−1, +1) and arrange them as −1 < t1 < t2 < · · · < tk < +1 where
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k is the number of roots.

Step 11: Construct the sequence of numbers i0, i1, · · · , ik, ik+1 having values 1 or

−1 such that it covers all possible combinations. This set is defined as Ak such that

Ak := {i0, i1, · · · , ik, ik+1}.
Step 12: Determine the set of admissible strings I = {i0, i1, · · · , ik, ik+1} in Ak such

that the equation

iδ + iNr − l =
1

2
Sgn

[
T (p)(−1)

]

i0 + 2

k∑

j=1

(−1)jik + (−1)k+1ik+1


 (3.32)

If there is no admissible string, go to Step 16.

Step 13: For an admissible string I = {i0, i1, · · · , ik, ik+1}, determine the set of values

of K2 which will simultaneously satisfy the inequalities

[−uP1(u)−
(
1− u2

)
P2(u)−K1 (u + K2) P3(u)]it > 0 (3.33)

for all t = 0, 1, · · · , k + 1.

Step 14: Repeat Step 13 for all admissible strings I1, I2, · · · , Iv to obtain the corre-

sponding K2 ranges as S1, S2, · · · , Sv.The entire stabilizing set of K2 is given by

S = ∪v
k=1Sk (3.34)

Step 15: Go to Step 9.

Step 16: Set j = j + 1 and P = Pj. If j ≤ d, go to Step 7, else Terminate the

algorithm.

Example III.2 Consider the same plant as in example III.1. The polynomials Rn(u),

Rd(u), Tn(u), Td(u) and P1(u), P2(u), P3(u) are same as previous example. The
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signature is given by The signature σ can be evaluated using equation (3.12) as

σ(ν) = 4 + 0− 1 = 3 (3.35)

This implies that the minimum number of real distinct roots of odd multiplicites

of T (u) between −1 and 1 should be 2. The values of K1 for which this condition

is satisfied is [−2.8, 0.5]. Choosing K1 = −1.0, Sgn[T (−1,−1) = 1. Therefore

the only possible string satisfying equation (3.32) is [1,−1, 1,−1]. The real root of

odd multiplicity lying between (−1, 1) are −0.5543 and 0.6983. Arranging them in

increasing order, −1 < −0.5543 < 0.6983 < 1. With this data, using equation (3.33),

the following inequalities are generated.

1.6868K2 > −1.3682

1.4199K2 < 1.8767

0.6698K2 > −0.8628

0.4891K2 < −0.0341

(3.36)

The range of K2 satisfying the above inequalities is −0.8111 < K2 < −0.0607. This

is the range of K2 that stabilizes the given plant for K1 = −1. The entire stabilizing

set of K1 −K2 is shown in Fig. 2.

3. PI Controllers

The same plant P (z) as described in equation (3.1) and Fig. 1 is considered for this

case also. However, for a PI controller, C(z) is of the form

C(z) = KP + KIT · z

z − 1
=

(KP + KIT ) z −KP

z − 1
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Fig. 2. Stabilizing set of PD controller for example III.2

=
(KP + KIT )

(
z − KP

KIT+KP

)

z − 1
(3.37)

re-writing in a different form,

C(z) =
K1 (z −K2)

z − 1
(3.38)

where

KP = K1K2 and KI =
K1 −K1K2

T
. (3.39)

The characteristic polynomial δ(z) is given by

δ(z) = (z − 1)D(z) + K1 (z −K2) N(z). (3.40)

To achieve parameter separation, ν(z) is defined as

ν(z) = δ(z)N
(
z−1

)

= (z − 1)D(z)N
(
z−1

)
+ K1 (z −K2) N(z)N

(
z−1

)
(3.41)
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In Tchebychev representation,

ν(z) = δ(z)N
(
z−1

)∣∣∣
z=ejθ,u=− cos θ

= R (u,K1, K2) + j
√

1− u2T (u,K1) (3.42)

where

R (u,K1, K2) = −(u + 1)P1(u)−
(
1− u2

)
P2(u)−K1 (u + K2) P3(u) (3.43)

T (u,K1) = K1P3(u) + P1(u)− (u + 1)P2(u). (3.44)

and P1,P2,P3 are as described in equation (3.9). It is observed that the real part has

K1 and K2 while the imaginary part has only K1. If K1 is fixed, the roots of T (u,K1)

can be obtained. With this, linear inequalities in K2 are obtained using Theorem

II.2.

The algorithm for PI Controller is almost the same as of a PD Controller and

hence is omitted.

Example III.3 Consider the same plant as in example III.1. The polynomials Rn(u),

Rd(u), Tn(u), Td(u) and P1(u), P2(u), P3(u) are same as previous example.The sig-

nature σ can be evaluated using equation (3.12) as

σ(ν) = 4 + 0− 1 = 3 (3.45)

This implies that the minimum number of real distinct roots of odd multiplicites

of T (u) between −1 and 1 should be 2. The values of K1 for which this condition

is satisfied is [−1.8, 0.8]. Choosing K1 = −0.1, Sgn[T (−1,−0.1) = 1. Therefore

the only possible string satisfying equation (3.32) is [1,−1, 1,−1]. The real root of

odd multiplicity lying between (−1, 1) are −0.4514 and 0.4468. Arranging them in

increasing order, −1 < −0.4514 < 0.4468 < 1. With this data, using equation (3.33),
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Fig. 3. Stabilizing set of PI controller for example III.3

the following inequalities are generated.

0.0473K2 > 0.0473

0.0777K2 < 1.1361

0.1326K2 > −1.4515

0.1632K2 < 1.5268

(3.46)

The range of K2 satisfying the above inequalities is 1.0 < K2 < 9.3259. This is

the range of K2 that stabilizes the given plant for K1 = −0.1. The entire stabilizing

set of K1 −K2 is shown in Fig. 3.

4. PID Controllers

For PID controller, C(z) is given by

C(z) = KP + KIT
z

z − 1
+

KD

T

z − 1

z
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=
K2z

2 + K1z + K0

z(z − 1)
(3.47)

where

KP = −K1 − 2K0,

KI =
K0 + K1 + K2

T
(3.48)

KD = K0T.

The technique described in [15] to find the stabilizing set is as follows. Let the

plant be as described in equation (3.1).Therefore, the characteristic equation is

δ(z) := z(z − 1)D(z) +
(
K2z

2 + K1z + K0

)
N(z). (3.49)

Multiplying with z−1N(z−1),

z−1δ(z)N(z−1) = (z − 1)D(z)N(z−1) (3.50)

+
(
K2z + K1 + K0z

−1
)
N(z)N(z−1).

Now using Tchebychev representation

z−1δ(z)N(z−1)

= −(u + 1)P1(u)− (1− u2)P2(u)

− [(2K2 −K3) u− k1] P3(u)

+
√

(1− u2) [−(u + 1)P2(u) + P1(u) + K3P3(u)]

= R(u,K1, K2, K3) + 
√

(1− u2)T (u,K3) (3.51)

where P1(u),P2(u) and P3(u) is as described in equation (3.9)

Note that the parameters K1, K2 and K3 instead of KP , KI and KD without

any loss of flexibility as these 2 sets are related to each other by simple coordinate
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transformation



KP

KI

KD




=




−2 −1 0

1

T

1

T

1

T

T 0 0







K0

K1

K2




=




−2 −1 0

1

T

1

T

1

T

T 0 0







0 1 −1

1 0 0

0 1 0







K1

K2

K3




(3.52)

It is noted that the imaginary part T (u) is dependent only on K3. Now using the The-

orem II.2, the following inequalities are obtained which have K1 and K2 as unknowns

when we fix K3.

[R(u)|u=−1] i0 > 0

[
R(u)|u=−tj

]
ij > 0

[R(u)|u=−] ik+1 > 0 (3.53)

where j = 1, · · · , k.

These inequalities gives feasible regions in K1-K2 space for fixed K3. As K3 is

varied, the entire stabilizing set is obtained.

The algorithm for computing stabilizing set of PID controllers is as follows:

Step 1: Express N(z) and D(z) in terms of their Tchebychev representation as given

in equation (3.4).

Step 2: Obtain P1(u),P2(u) and P3(u) as given in equation (3.9).

Step 3: Obtain the required signature of ν as

σ(ν) = iδ + iNr − (l + 1) (3.54)
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Step 4: In order to satisfy equation (3.54), T (u,K3) should have atleast

2(iδ + iNr − (l + 1))− 2

2
(3.55)

real distinct finite zeros of odd multiplicities of T (u,K3) between (−1, +1). From

this, the allowable ranges of Pi,i = 1, 2, · · · , d of K3 are determined. These resulting

ranges of K3 are the only values of K3 for which stabilizing values in K1 −K2 may

exist.

Step 5: If there exists no value of K3 satisfying Step 4, then output NO SOLUTION

and go to Step 16.

Step 6: Initialize j = 1 and P = Pj.

Step 7: Pick a range [Klow, Kupp] in P and initialize K1 = Klow.

Step 8: Pick up the number of grid points N and set

step =
Kupp −Klow

N + 1
(3.56)

Step 9: Increase K3 as K3 = K3 + step. If K3 > Kupp go to Step 16.

Step 10: For a fixed value of K3, find the real distinct finite zeros of odd multiplicities

of T (u) between (−1, +1) and arrange them as −1 < t1 < t2 < · · · < tk < +1 where

k is the number of roots.

Step 11: Construct the sequence of numbers i0, i1, · · · , ik, ik+1 having values 1 or −1

such that it covers all possible combinations. This set is defined as Ak3 such that

Ak3 := {i0, i1, · · · , ik, ik+1}.
Step 12: Determine the set of admissible strings I = {i0, i1, · · · , ik, ik+1} in Ak3 such

that the equation

iδ + iNr − (l + 1) =
1

2
Sgn

[
T (p)(−1)

]

i0 + 2

k∑

j=1

(−1)jik + (−1)k+1ik+1


 (3.57)

If there is no admissible string, go to Step 16.
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Step 13: For an admissible string I = {i0, i1, · · · , ik, ik+1}, determine the set of values

of K1 −K2 which will simultaneously satisfy the inequalities

[−(u + 1)P1(u)−
(
1− u2

)
P2(u)− [(2K2 −K3)u−K1]P3(u)]it > 0 (3.58)

for all t = 0, 1, · · · , k + 1.

Step 14: Repeat Step 13 for all admissible strings I1, I2, · · · , Iv to obtain the corre-

sponding K1−K2 sets as S1, S2, · · · , Sv.The entire stabilizing set of K1−K2 is given

by

S = ∪v
k=1Sk (3.59)

Step 15: Go to Step 9.

Step 16: Set j = j + 1 and P = Pj. If j ≤ d, go to Step 7, else Terminate the

algorithm.

To illustrate this procedure, consider the following example.

Example III.4 Consider the same plant as in example III.1. The polynomials Rn(u),

Rd(u), Tn(u), Td(u) and P1(u), P2(u), P3(u) are same as previous example. The

signature is given by The signature σ can be evaluated using equation (3.54) as

σ(ν) = 5 + 0− 1 = 3 (3.60)

This implies that the minimum number of real distinct roots of odd multiplicites of

T (u) between −1 and 1 should be 2. The values of K3 for which this condition is

satisfied is [−1.8, 0.8]. Choosing K3 = −1, Sgn[T (−1,−1) = 1. Therefore the only

possible string satisfying equation (3.57) is [1,−1, 1,−1]. The real root of odd multi-

plicity lying between (−1, 1) are −0.8653 and 0.4959. Arranging them in increasing

order, −1 < −0.8653 < 0.4959 < 1. With this data, using equation (3.58), the
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Fig. 4. Stabilizing set of PID controller at K3 = −1 for example III.4

following inequalities are generated.

1.6900K1 + 3.3800K2 > −1.6836

1.6092K1 + 2.7849K2 < −0.3252

0.7925K1 − 0.7860K2 > −0.4476

0.4900K1 − 0.9800K2 < 1.3981

(3.61)

The range of K1−K2 satisfying the above inequalities is shown in Fig. 4 This is

the range of K2 that stabilizes the given plant for K1 = −0.1. The entire stabilizing

set of K1 −K2 −K3 is shown in Fig. 5
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Fig. 5. 3D stabilizing set of PID controller for example III.4

B. GUI for Discrete Time Controller Design

1. The Interface

GUIs have been developed for P, PI, PD and PID controllers in MATLAB. The

interface for all types of controllers is almost similar. The two variations of GUIs

are as shown in Fig. 6 and Fig. 7. The inputs for the programs are the numerator,

the denominator and the sampling time of the discrete time plant. The numerator

and denominator are entered as an array with the leading coefficient denoting the

coefficient of the highest degree of the polynomial. The sampling time is entered in

seconds.

On pressing Start Button, the GUI gives the range of values of one of the pa-

rameters which is fixed which is called the free parameter. In case of PID Controller,

this is K3 while in case of PI or PD controller it is K1. On selecting a particular

value of the free parameter, the set of K2 or K1 −K2 values is obtained depending

on the type of controller.

The performance is evaluated in two ways:
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• Performance Specifications Various important time and frequency domain

performance criteria are considered. These involve phase margin, gain margin,

over shoot, rise time and settling time. In case of P, PD and PI controllers, for

a chosen value of K1, on clicking the ‘View Performance ’ button, the variation

of the above mentioned performance criteria along the set of stabilizing values

of K in case of P and K2 in case of PI and PD are displayed. This gives

a general idea of how the performance varies along the set. This is of great

help to the designer who can see all the performances in one screen and hence

can decide on the best possible value for the controller. In case of PID, for a

chosen value of K3, a convex K1 − K2 set is obtained. On clicking the ‘View

Performance ’ button, a cursor appears on the K1 − K2 set. On choosing a

particular value of K1 and K2 in that set, all the performance appear as sticks

on the GUI. As the designer clicks on different K1−K2 values, the performance

specifications change. The increasing or decreasing values of the performance

along any particular direction gives the designer a good insight of the controller

values ideal for the system. It also gives the idea of the performance that can

be expected out of the PID controller. For example, after exploring different

K1−K2 values for different K3, the designer may see that Gain Margin greater

than 10db is not possible to achieve with PID controllers alone. Further, as the

designer clicks on any controller value, the step response, the error signal and

the control signal for that chosen controller value is displayed. The designer

gets to see the transient response and the control signal from which it can be

decided if these signals are desirable or feasible in real applications.

• Performance Subset The other possible scenario is taken into account in
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this block. Suppose the desired performance specifications are known and the

designer wants to find the controller parameters achieving this set. The designer

has to enter the desired performance and check the corresponding box. It is

considered that the designer will need gain and phase margin greater than the

specified value while rise time, overshoot and settling time should be less than

the specified value. On clicking the ‘Find Subset ’ button, the subset satisfying

the desired values are shown. If no set exists achieving the given performance

specifications, an empty set is shown.

Apart from this, the entire 2 − D set in case of PI and PD controllers and the

3−D set for PID controller can be seen on clicking the appropriate button. For PID,

both K1 −K2 −K3 and Kp −Ki −Kd sets are observed.

2. Functions Used

The functions provide the building blocks for the program. The basic functions for

all the controllers are similar and are described below.

• Digi K.m, Digi PI.m, Digi PD.m, Digi PID.m : These are the main

functions respectively for computing the stabilizing sets. Digi K.m finds the

entire set of K values stabilizing the system while the other 3 find a range

of value of the free parameter and on choosing a particular value gives the

stabilizing set in other parameters.

• z2tcheby.m When a polynomial and its degree are passed on as input param-

eters, this function gives the Tchebychev representation, R(u) and T (u) of the

given polynomial.

• create poly.m This function gives the polynomials P1(u), P2(u) and P3(u)

when the numerator and denominator of the transfer function is given.



39

• signature.m Calculates the signature of the rational function ν for a given

transfer function. When type= 0 or 1, it is for P or PI/PD controller respectively

and when type= 2, it is PID controller.

• RangeofK.m This function determines the valid ranges of the free parameter

based on the number of real, distinct roots of odd multiplicities in [−1, 1] of the

imaginary part of the rational function ν.

• RootsatK.m Given the imaginary part of ν and a particular value of the free

parameter, this function gives the real, distinct roots of odd multiplicities in

[−1, 1] of the imaginary part of the rational function ν.

• sgnT.m This function evaluates the sign of T (u,K3) that is Sgn[T p(−1)] where

p is no. of times −1 is a root of T (u,K3).

• stringgen.m This function generates the strings [1,−1, ..] which satisfy the

signature criterion for the given value. The inputs to the function are number

of real roots between −1 and 1 and 2.signature.Sgn[T p(−1)].

• inequalsol.m This function solves the linear inequalities and finds the edges

of the polygon which satisfy the given inequalities.

• lineq1d.m This function solves 1 dimensional linear inequalities.

• viewperformance.m Given the chosen controller parameters and the transfer

function, this function finds the values of the performance indices like gain

margin, phase margin etc and displays them.

• determsubset.m, determsubset K.m, determsubset PI.m, determsub-

set PD.m These functions grid the stabilizing set in a number of points. The

performance specifications is then evaluated for each point on the grid and
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compared with the given performance indices. If the point satisfies all the given

criteria, then it is marked.

C. Illustrative Examples

In this section various aspects of performance based controller design are discussed

in different problems and their solutions are obtained using the GUI based software.

1. Constant Gain Controller Examples

Example III.5 Consider a discrete time transfer function

P (z) =
−0.2z − 0.3

z3 − 0.4z2 − 0.15z − 0.2

The sampling time, T = 0.001s. When the numerator, denominator and sampling

time is input to the GUI, the stabilizing set of gain values is obtained as shown in

Fig. 8. The stabilizing values lie between −2.7 < K < 0.5. The variation of various

performance indices like gain margin, phase margin, overshoot, rise time, settling

time and steady state error along the range of K is also shown.

Further, consider that some design constraints are imposed.

Phase Margin> 50◦

Settling Time< 0.05s

Gain Margin> 3db

The subsets achieving these criteria are shown in Fig. 9, Fig. 10 and Fig. 11. It is

observed that as more conditions are imposed the set shrinks and and is a subset of

the previous set.
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−1

0

1
Phase margin >50°

Fig. 9. The stabilizing set for example III.5 with phase margin > 50◦

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−1

0

1

Phase margin >50°,Settling Time <0.05 sec  

Fig. 10. The stabilizing set for example III.5 with phase margin > 50◦ and settling

time< 0.05s

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−1

0

1
Phase margin >50°,Settling Time <0.05 sec , Gain Margin >3db 

Fig. 11. The stabilizing set for example III.5 with phase margin > 50◦, settling

time< 0.05s and gain margin> 3db
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Example III.6 In this example, consider a discrete time transfer function

P (z) =
0.8z + 0.5

z4 − 0.3z3 + 0.7z2 + 0.9z + 0.25

The sampling time, T = 0.001s. The GUI is as shown in Fig. 12.

When the conditions, Gain Margin> 0.8db and Phase Margin> 2◦ are imposed,

it is observed that two disjoint sets are obtained which satisfy these conditions as

shown in Fig. 13.

2. PD and PI Controller Examples

Example III.7 For designing a PD controller,consider the plant

P (z) =
z − 0.2

z3 + 0.7z2 + 0.3z + 0.8

The sampling time, T = 0.001s. When the numerator, denominator and sampling

time is input in the GUI as shown in Fig. 14, a set of valid values of K1 is obtained.

−1.5 < K1 < 0.8. When a particular value of K1 say K1 = −0.5 is chosen, the set

of stabilizing values of K2 is obtained to be −2.7 < K2 < −1.3. Variation of various

performance indices along this range of K2 is also displayed. The entire K1 −K2 set

is as shown in Fig. 15. The subset satisfying the conditions Gain Margin> 1db and

Rise Time< 0.001s is also shown in Fig. 14.

Example III.8 Consider the plant

P (z) =
−0.2

z3 + 0.7z2 + 0.3z + 0.8

The sampling time, T = 0.001s. The objective is to find the entire set of stabilizing

values for a PI controller and then find the subset achieving desired performance
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−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6
−1

0

1
Gain Margin>0.8db and Phase Margin> 2°

Fig. 13. The stabilizing set for example III.6 with phase margin > 2◦ and gain

margin> 0.8db

specifications. When the numerator, denominator and sampling time is input in the

GUI as shown in Fig. 16, a set of valid values of K1 is obtained. −2.8 < K1 < 5.7.

When a particular value of K1 say K1 = 4 is chosen, the set of stabilizing values of K2

is obtained to be 0.18 < K2 < 0.46. Variation of various performance indices along

this range of K2 is also displayed. The entire K1−K2 set is as shown in Fig. 17. The

subset satisfying the conditions Gain Margin> 1db and Settling Time< 0.25s is also

shown in Fig. 16.

3. PID Controller Examples

In this section, we consider two examples for PID controller design.

Example III.9 Consider the plant

P (z) =
z3 + 0.25z2 + 0.5z

z3 + 10.7z2 + 10z + 0.5

The sampling time, T = 0.01s. The GUI for the example is shown in Fig. 18. On

entering the numerator, denominator and sampling time, a range of K3 values is

obtained for which the plant can be stabilized. For this example, the entire range of

scanning i.e.from −50 to 50 is a valid range. On selecting a particular value of K3,

say K3 = −2, the K1−K2 set of stabilizing values is obtained. In this case, 2 distinct

regions are obtained. This is because there are two strings satisfying the required
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Fig. 15. The entire K1 −K2 set of stabilizing values for example III.7

signature. They are [1, − 1, − 1] and [−1, − 1, 1]. The K1 −K2 set is unbounded

and is bounded by a square of length 1000 centered at origin. On selecting a particular

value of K1 = −300 and K2 = −250 for K3 = −2, various performance indices are

displayed in the GUI. The step response for the above controller parameter values is

shown in Fig. 19

The 3-D stabilizing set is shown in Fig. 20. The corresponding Kp − Ki − Kd

set is shown in Fig. 21. It is observed that 2 disjoint sets are formed which stabilizes

the plant. Further, when some performance criteria are specified, say Phase Margin

> 30◦ and Settling time< 0.4s, the subset satisfying these conditions are obtained as

shown in Fig. 22

Example III.10 Consider another example for design PID controllers. Let the plant

be

P (z) =
z3 + 3z2 − 2z + 1

z4 + 0.8z3 + 0.6z2 + 0.25z + 0.8

The sampling time, T = 0.001s. The GUI is as shown in Fig. 23. On selecting K3 =
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Fig. 17. The entire K1 −K2 set of stabilizing values for example III.8

−0.1, the K1 −K2 set is obtained. To find the subset for which Gain Margin> 1db,

the data is fed to the GUI and the subset obtained is as shown in Fig. 24. If further

constraint Rise Time< 0.01s is imposed, the set shrinks as shown in Fig. 25. The

set further shrinks and becomes two disjointed subsets when the condition Settling

Time< 0.16s is imposed as shown in Fig. 26. However even these 2 subsets are a

subset of the previous set. This example shows that though the stabilizing set is

continuous, the performance subsets can be disjoint.

These examples described above show various aspects of Controller design through

the GUIs developed.
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Fig. 19. Step response for K1 = −300,K2 = −250 and K3 = −2 for the plant in

example III.9
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Fig. 20. 3D K1 −K2 −K3 stabilizing set for the plant in example III.9
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Fig. 21. 3D Kp −Ki −Kd stabilizing set for the plant in example III.9
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Fig. 22. Subset satisfying phase margin > 30◦ and settling time< 0.4s for the plant in

example III.9
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Fig. 24. Subset satisfying gain margin > 1db for the plant in example III.10
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Fig. 25. Subset satisfying gain margin > 1db and rise time< 0.01s for the plant in

example III.10
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CHAPTER IV

DATA BASED DESIGN OF DISCRETE TIME PID CONTROLLERS ∗

A. Introduction

In model based methods, there has always been the problem of identifying the system

before any design can be done. In this chapter, a new method of obtaining the set of

controller parameters for the discrete-time PID controller is discussed which is based

on directly on the input output data obtained from the plant. This method doesn’t

need any identification of the plant before the design is carried out.

First, the step response data of the system is obtained experimentally. Next,

the Markov parameters are obtained by using simple transformations. The data is

truncated to a certain number of samples and the z-transform of the output is ap-

proximated. The unit circle evaluation of the latter is obtained using the Tchebyshev

representations as discussed in [18].

Now using the results described in [15], the set of PID controllers are obtained as

linear inequalities in two variables while one of them is kept constant. By sweeping

over the third parameter the entire stabilizing set can be obtained.

Various performance specifications like gain margin, phase margin and overshoot

can be achieved on the sets thus obtained. The results are illustrated by examples.

A GUI based program developed for this case has been discussed at the end of the

chapter.

∗Reprinted with permission from ”Data based design of digital PID controllers” by
S. Mitra, L.H. Keel and S.P. Bhattacharyya in Proceedings of 2007 American Controls
Conference, New York, NY, Copyright[2007] by American Automatic Control Council
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B. Formulation of the Problem

Consider the unit step response of a discrete time system. The output of the step

signal can be described as

ys[k] = [y0, y1, y2, ..., yk, ...] (4.1)

where k is a positive integer. For a stable system, as k increases, the response attains

a steady state value. Taking z-transform, (4.1) can be written as

Ys(z) = y0 + y1z
−1 + y2z

−2 + · · ·+ ykz
−k + · · · (4.2)

It is also known that

Y (z) = H(z)U(z) (4.3)

where Y (z) is the output of a plant described by transfer function H(z) when an

input U(z) is applied. For a unit step input, U(z) = z/(z − 1), therefore the output

Ys(z) can be written as

Ys(z) = H(z)U(z)

= H(z)
[

z

z − 1

]
(4.4)

From (4.2) and (4.4),

H(z) =
Y (z)

U(z)

= Y (z)
[
z − 1

z

]

= Y (z)
(
1− z−1

)
(4.5)

=
(
1− z−1

) (
y0 + y1z

−1 + y2z
−2 + · · ·+ ykz

−k + · · ·
)

Also, it is known [20] that any plant H(z) can be expressed in terms of its Markov
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parameters

m0,m1, · · · ,mk, · · · as

H(z) = m0 + m1z
−1 + m2z

−2 + · · ·+ mkz
−k + · · · (4.6)

Equating (4.5) and (4.6) we obtain

m0 = y0, m1 = y1 − y0, m2 = y2 − y1, · · · ,mk = yk − yk−1, · · · (4.7)

Alternatively, the impulse response of a system can be obtained directly and can

be approximated as the system transfer function [21]. Denoting the impulse response

of a system as yi,

yi[k] = [m0, m1, m2, · · · , mk, · · ·] (4.8)

where k is a positive integer.

Note that the Markov parameters approach zero with increasing value of k, be-

cause the system is stable.

Taking the z-transform of the above sequence,

Yi[z] = H(z) = m0 + m1z
−1 + m2z

−2 + · · ·+ mkz
−k + · · · . (4.9)

Now, for both the cases, the plant transfer function H(z) can be approximated

by truncating the series up to n points. That is, H(z) ≈ Pn(z) where

Pn(z) = m0 + m1z
−1 + m2z

−2 + ... + mnz−n

=
m0z

n + m1z
n−1 + ... + mn

zn
. (4.10)

Lemma IV.1 The relative degree of a system, r, is the number of leading zeros in its

impulse response.

Proof IV.1 On expanding any rational function as a power series of the variable, the
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first r non-zero term in the series is always the relative degree (n− l) of the function

where m is the degree of numerator and l is the degree of the denominator.

Now, consider that this plant is being stabilized by a PID controller. As shown in

[15], the controller is defined as,

C(z) = KP + KIT
z

z − 1
+

KD

T

z − 1

z

=
K2z

2 + K1z + K0

z(z − 1)
(4.11)

where

KP = −K1 − 2K0,

KI =
K0 + K1 + K2

T
(4.12)

KD = K0T.

Let the plant Pn(z) is given by

Pn(z) =
N(z)

D(z)
. (4.13)

Rest of the analysis and the algorithm is similar to the one described in previous

chapter and [15].

C. An Illustrative Example

1. Finding the Stabilizing Set

To illustrate with an example, take the step response of the system used in [15]. The

step response of the system is

ys[k] = [0, 0, 1, 1, 1.25, 1.25, 1.3125, 1.3125, 1.328125, 1.328125, 1.33203125, · · ·]
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The sampling time T = 0.001sec. Using 4.5, The markov parameters of the system

can be computed to be

m[k] = [0, 0, 1, 0, 0.25, 0, 0.0625, 0.015625, 0, 0.00390625, · · ·]

Consider data points up to n = 3. Writing the equivalent z-transform, we obtain

Pn(z) = 0 + 0.z−1 + 1.z−2 + 0.z−3

=
1

z2
. (4.14)

The signature of the above plant is

iδ + iNr − (l + 1) = n + 2 + z0 − l − 1 = r + z0 + 1 = 2 + 0 + 1 = 3,

where the value of r is obtained using Lemma IV.1 and zo is the number of zeros

outside the unit circle for the approximated plant.

Now to obtain the stabilizing set for this plant, choose a particular value of K3,

say K3 = 1.2. Then the real roots of T (u, K3) in (−1, 1) are

−0.3618 and − 0.1382.

Furthermore,

sgn[T (−1)] = 1.

Using the signature formula,

3 =
1

2
sgn[T (−1)]

(
sgn[R(−1)]− 2sgn[R(−0.3618)]

+2sgn[R(−0.1382)]− sgn[R(+1)]
)
.

Here there is only one sequence of signs satisfying the above equation.

sgn[R(−1)] = 1
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Fig. 27. The stabilizing set in K1-K2 space when K3=1.2

sgn[R(−0.3618)] = −1

sgn[R(−0.1382)] = 1

sgn[R(+1)] = −1

so that

2(i1 − i2) = 6.

From this sequence, the following inequalities are obtained.

K1 + 2K2 > 1.2

K1 + 0.7236K2 < 0.5919

K1 + 0.2674K2 > −0.3913

K1 − 2K2 < 0.8

Solving these inequalities, the stabilizing region in K1-K2 space is obtained as shown

in Fig. 27. As K3 is varied, the entire set is obtained as shown in Fig. 28.
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Fig. 28. The 3D stabilizing set for the given example

Continuing with n = 5, n = 7, n = 10, the respective stabilizing sets are obtained

in a similar way. The results for all the system with K3 = 1.2 is shown in Fig. 29.

It is observed that as n increases, the sets get closer and closer to the actual

stabilizing region.It is also seen that the sets for n = 10 and actual system almost

match each other. For more than 10 samples, for example 20 points, the area remains

exactly the same. The thin line in Fig.29 is barely visible as it coincides with n = 10.

This shows convergence of region with respect to number of terms in the Markov

parameters. It is seen that a good choice of n is always after the step response has

almost reached steady state value.

2. Set Satisfying Performance Requirements

The subsets achieving some performance specifications on the PID stabilizing sets

obtained above can also be computed. In this case we consider gain margin and

phase margin of the open loop and overshoot of the closed loop.
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Fig. 29. Stabilizing set at K3 = 1.2 for n = 3, 5, 7, 10 and actual set

For the gain margin and the phase margin, the approximated open loop system

Gn(z) is

Gn(z) = C(z)Pn(z). (4.15)

From the frequency response of the above rational function, the gain and phase margin

is obtained. To obtain the time response and hence the over-shoot, the close the loop

with unity feedback is computed. The feedback system is

GCL(z) =
Gn(z)

1 + Gn(z)
. (4.16)

Next the step response of the above rational function is obtained and the overshoot

is computed from this data. Fig. 30, Fig. 31 and Fig. 32 show the subsets achieving

gain margin more than 1 db, phase margin more than 20 degrees and overshoot less

than 100% corresponding to n = 5, n = 7 and n = 10 respectively.



64

Fig. 30. The shaded region indicates a gain margin greater than 1db, phase margin

greater than 20 degrees and overshoot less than 100% for that region. This

was obtained for approximation n = 5

Fig. 31. The shaded region indicates a gain margin greater than 1db, phase margin

greater than 20 degrees and overshoot less than 100% for that region. This

was obtained for approximation n = 7
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Fig. 32. The shaded region indicates a gain margin greater than 1db, phase margin

greater than 20 degrees and overshoot less than 100% for that region. This

was obtained for approximation n = 10

D. GUI for Data Based Discrete Time PID Controllers

The GUI for data based design is very similar to the GUI for model based PID

Controller design. Here, instead of the numerator and denominator, the step response

data of the plant is the input as a text file. Once the user uploads the step response

data, the GUI displays the step response as a plot. The user can select the number of

points after which the data is to be truncated. Once the number of data points and

the sampling time is given, the GUI gives a feasible set of K3 values for which valid

K1 −K2 set may exist. On selecting a particular K3, the K1 −K2 stabilizing set is

obtained. As in model based GUI, the performance specifications can be obtained in

two different ways. This is explained below with the help of the following example.

Example IV.1 Consider the step response data of the plant as shown in Fig. 33. The

GUI is as shown in Fig. 34.

On entering the number of points as 10 and sampling time of 0.001s, the set of
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Fig. 33. Data for the plant in example IV.1

valid K3 is displayed. On selecting K3 = 0.2, the corresponding K1−K2 stabilizingset

is obtained. On selecting K1 = 0.0 and K2 = 0.2, various time and frequency perfor-

mance parameters like gain margin, rise time, overshoot etc. are displayed for this

chosen controller. The step response, error signal and control signal for this system

is also obtained as shown in Fig. 35.

Further on specifying some performance objectives, say Gain Margin > 1db,Phase

Margin> 30◦ and Overshoot< 50%, the subset achieving these performances are as

shown in Fig. 36.

The 3-D stabilizing set is shown in Fig. 37. The corresponding Kp − Ki − Kd

set is shown in Fig. 38.
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Fig. 35. Step response for K1 = 0.0,K2 = 0.2 and K3 = 0.2 for the plant in example

IV.1
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Fig. 36. Subset satisfying gain margin > 1db, phase margin> 30◦ and overshoot< 50%

for the plant in example IV.1
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CHAPTER V

ROBUST, DATA BASED DESIGN OF PID CONTROLLERS

A. Introduction

The model free part of classical control theory mainly rests on the Nyquist criterion

and Bode plots. See [22] ,[23] . The Nyquist criterion predicts the closed loop stability

based on the frequency response measurements made on open loop system. Bode and

others developed a graphical approach to reshape the open loop frequency response

by a simple cascaded compensator to achieve closed loop stability margins.

Recently a new approach is developed by Keel and Bhattacharyya [16] introduced

a model free PID controller design which was based on frequency response data. In

this section this theory is extended to robust stabilization for continuous time plants.

In this, the PID controller parameters are evaluated assuming some uncertainty

in the measurement of the frequency response data. This robust stabilization problem

under data uncertainty is transformed to a linear programming problem with interval

coefficients. The set thus obtained will robustly stabilize the given set of plants.

In the next few sections, first the necessary background regarding stabilization of a

continuous time plant with just the frequency response data is provided. Later it is

illustrated how this can be extended to robust stability with an example.

B. Background for Data Based Design

In this section the algorithm for finding the entire stabilizing set of PID controllers

based on the frequency response data of the plant is described. Detailed theory can

be obtained in [16] . It is assumed that the only information available to the designer

is the frequency response of the plant P (ω) for ω ∈ [0,∞) when the plant is stable
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or the knowledge of a stabilizing controller C(s) and the frequency response of the

corresponding closed loop system G(ω) for ω ∈ [0,∞).

Let

P (ω) = |P (ω)|eφ(ω) = Pr(ω) + Pi(ω)

= |P (ω)| cos(φ) + |P (ω)| sin(φ) (5.1)

where |P (ω)| denotes the magnitude and φ(ω) the phase of the plant, at the frequency

ω. Let the PID controller be of the form

C(s) =
Ki + Kps + Kds

2

s(1 + sT )
, T > 0 (5.2)

where T is assumed to be fixed and small.

Also define

F (s) := s(1 + sT ) +
(
Ki + Kps + Kds

2
)
P (s).

and

F̄ (s) = F (s)P (−s).

Then

F̄ (ω) = F (ω)P (−ω)

= F̄r (ω,Ki, Kd) + ωF̄i (ω, Kp)

The algorithm is as follows:

For stable systems: 0.1 Determine relative degree of the plant rP := n−m

from the high frequency slope of the Bode magnitude plot of P (ω) where n and m
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are degree of denominator and numerator of plant respectively.

rP = −High frequency slope (in dbs/decade)

20
(5.3)

0.2 Let ∆∞
0 [φ(ω)] denote the net change of phase in radians, of P (ω) for ω ∈

[0,∞). Determine the number of right half plane zeros z+ from

∆∞
0 [φ(ω)] = −

[
rP + 2z+

] π

2
(5.4)

For unstable systems: 0.1 Compute the frequency response P (ω) as

P (ω) =
G(ω)

C(ω)(1−G(ω))
(5.5)

0.2 Determine the relative degree of the plant rP from the high frequency slope

of the Bode magnitude plot of P (ω).

0.3 Determine the number of right half plane zeros and relative degree of the

controller, z+
c and rC respectively from C(s).

0.4 Compute σ(G) as

σ(G) =
2

π
∆∞

0
6 G(ω). (5.6)

0.5 Compute z+ as

z+ =
1

2

[
−rP − rC − 2z+

c − σ(G)
]

(5.7)

1. Fix Kp = K∗
p , solve

K∗
p = −Pr(ω) + ωTPi(ω)

|P (ω)|2

= −cos φ(ω) + ωT sin φ(ω)

|P (ω)| =: g(ω) (5.8)
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and let ω1 < ω2 < · · · < ωl−1 denote the distinct frequencies of odd multiplicities

which are solutions of (5.8).

2. Set ω0 = 0, ωl = ∞ and j = sgn[F̄i(−∞−, K∗
p)]. Determine all strings of integers

it ∈ {+1,−1} such that:

For n−m even :

[i0 − 2i1+

· · ·+ (−1)i−12il−1 + (−1)lil](−1)l−1j

For n−m odd :

[i0 − 2i1+

· · ·+ (−1)i−12il−1](−1)l−1j





= rP + 2z+ + 2. (5.9)

3. For the fixed Kp = K∗
p chosen in Step 1, solve for the stabilizing (Ki, Kd) values

from

[ Ki −Kdω
2
t (5.10)

+
ωt sin φ(ωt)− ω2

t T cos φ(ωt)

|P (ωt)| ]it > 0

for t = 0, 1, · · · , l.
4. Repeat the previous three steps by updating Kp over prescribed ranges. The

ranges over which Kp must be swept is determined from the requirements that (5.9)

are satisfied for at least one string of integers.

C. Data Robust PID Design

The motivation for robust design comes from the fact that in reality there is uncer-

tainty in the measured data P (ω). Thus equation (5.8) and equation (5.10) have

uncertainties. We can convert equation (5.10) into an inequality with interval co-
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efficients [24] and can proceed towards the solution with the help of the following

theorem.

Theorem V.1 Consider the interval inequality

[y −mx− c] i > 0 (5.11)

where m ∈ [m−m+] and c ∈ [c−c+] are slope and intercept of the straight line

equation above and are intervals varying from a minimum value to maximum value.

i = {−1, 1} such that i = 1 means y > mx + c and i = −1 means y < mx + c. Then

the region which will satisfy all the inequalities of (5.11) will be the intersection of

the regions described by

[
y −m−x− c−

]
i > 0

[
y −m−x− c+

]
i > 0

[
y −m+x− c−

]
i > 0

[
y −m+x− c+

]
i > 0 (5.12)

Proof: Consider the ‘m-c’ plane. The intervals of m and c form a rectangle in

the above plane. Further, consider a fixed m. As can be seen from the Fig. 39 ,the

area which satisfies all the inequalities y > mx+c is bounded by c+. Now let us vary

m. It can be seen in figure that as m varies from m− to m+, the area described by

(5.11) with i = 1 is bounded by the lines y = m−x+ c+ and y = m+x+ c+. Similarly

it can be shown that when i = −1, the inequality y < mx + c is bounded by the

lines y = m−x + c− and y = m+x + c−. This shows that it is enough to evaluate

the inequalities at the vertices of the m-c rectangle in order to determine the solution

that will satisfy the equation (5.11) .
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Fig. 39. Top:‘m-c’ plot. Bottom:‘x-y’ plot with varying slope m and intercept c

The objective now is to find the intervals for the equation (5.10), This is illus-

trated with the help of the following example.

Consider the frequency response P (ω) as shown in Fig.(40).For sake of simplicity,

consider that the number of right half zeros of the plant is known to be 2 . Otherwise

RHP poles can be determined along the equation (5.4) or equation (5.7).Let there be

an uncertainty of ±20% around the real and imaginary part of the response . It is

also assumed that there are no ω axis zeros in this example. If there are ω zeros in

the plant, slightly perturb the plant can be slightly perturbed to get rid of them. If

ω zeros are unavoidable, those terms can be lumped with the controller.

Denoting the maximum and minimum of the real and imaginary parts as Pmax
r (ω),

Pmin
r (ω), Pmax

i (ω) and Pmin
i (ω) respectively. We now compute the g(ω)max for
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the above data as follows.

g(ω)max = max[g(ω, Pmax
r (ω), Pmax

i (ω))

, g(ω, Pmax
r (ω), Pmin

i (ω))

, g(ω, Pmin
r (ω), Pmax

i (ω))

, g(ω, Pmin
r (ω), Pmin

i (ω))] (5.13)

for 0 ≤ ω ≤ ∞ and g(ω) is evaluated from (5.8) where T = 0.001s .Similarly g(ω)min

can also be obtained. These are shown in Fig. 41.

Now, the high frequency slope is −20db/decade. Therefore, from equation (5.3),

rP = 1. The right hand side of the equation (5.9) is given by

rP + 2z+ + 2 = 1 + 2.2 + 2 = 7 (5.14)
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where z+ = 2 was obtained from the fact that the plant has 2 RHP zeros as mentioned

above. It is observed that Kp = 5 cuts the g(ω) plot at 3 frequencies. Using equation

(5.9) for the case where n−m is odd, the only possible string satisfying the equation

is

F = {i0, i1, i2, i3} = {1, − 1, 1, − 1}. (5.15)

Let the roots be ω1, ω2 and ω3. From Fig. 41 it is observed that ω−t ≤ ωt ≤ ω+
t

and for a fixed ωt define

Pr(ωt)
− := min(Pr(ωt)), Pr(ωt)

+ := max(Pr(ωt))

Pi(ωt)
− := min(Pi(ωt)), Pi(ωt)

+ := min(Pr(ωt)).

These bounds are evaluated by finding the values from the ‘Pr-ω’ and ‘Pr-ω’ graphs

as shown in Fig.42 and a zoomed version in Fig.43.

Pr(ωt)
min : = min

ω−t ≤ωt≤ω+
t

Pr(ωt)
−
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Pr(ωt)
max : = max

ω−t ≤ωt≤ω+
t

Pr(ωt)
+

Pi(ωt)
min : = min

ω−t ≤ωt≤ω+
t

Pi(ωt)
−

Pi(ωt)
max : = max

ω−t ≤ωt≤ω+
t

Pi(ωt)
+ (5.16)

Defining the constant coefficient, bt of (5.10) as

bt :=
−ωtPi(ωt) + ω2

t TPr(ωt)

|P (ωt)| (5.17)

Now comparing equation (5.11) with equation (5.10) and equation (5.17), it is

observed that m = [(ω−t )2, (ω+
t )2] and c = [b−t , b+

t ] where b−t and b+
t are the minimum

and maximum values of bt at wt. These b−t and b+
t depend on the quadrant at which

wt is in the ‘Pr-Pi’ graph. This graph is shown in Fig.44.

For example if wt lies in first quadrant i.e. Pr > 0 and Pi > 0 , then

b+
t =

−ω−t Pi(ωt)
min + (ω2

t )
+TPr(ωt)

max

|(Pr(ωt)min)2 + (Pr(ωt)min)2|



81

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Re(P(jω))

Im
(P

(jω
))

ω
0

ω
1

ω
2

ω
3

Fig. 44. Nyquist plot of the given plant

b−t =
−ω+

t Pi(ωt)
max + (ω2

t )
−TPr(ωt)

min

|(Pr(ωt)max)2 + (Pr(ωt)max)2| . (5.18)

Carrying out the calculations it is found that for this example,

ω−t = [0 1.3790 3.0052 85.1289]

ω+
t = [0 1.6174 3.4297 108.3767]

b−t = [0 1.7982 − 47.6582 1574.0669]

b+
t = [0 20.1039 − 4.6160 13934.0711]

Using equation (5.10) and theorem V.1, following inequalities are to be solved.

(
ki − (ω−t )2kd − b−t

)
it > 0

(
ki − (ω−t )2kd − b+

t

)
it > 0

(
ki − (ω+

t )2kd − b−t
)
it > 0

(
ki − (ω+

t )2kd − b+
t

)
it > 0 (5.19)

where t = 0, 1, 2, 3
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Solving these inequalities for each of the four ωt’s, the region that robustly sta-

bilizes the given plant is obtained for Kp = 5 as shown in Figure 45(shaded region).
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CHAPTER VI

THE COMMERCIAL PRODUCT IN LABVIEW

A PID design software similar to the ones described in previous chapters was also

developed in LabVIEW. This software has been productized by National Instruments

and is released in their latest control systems toolkit version 3.0 along with LabVIEW

8.5. In this chapter a brief overview of the LabVIEW program designed called a ’VI’

designed by them is presented.

A. Description of the VI

The VI is designed for PID controller design for discrete time systems. The name of

the vi is: CD Design PID For Discrete Systems. The VI calculates the proportional

gain Kp, integral gain Ki, and derivative gain Kd that stabilize the specified controller

model(s). When a specified gain margin and/or phase margin specification is given,

the vi finds out the controller parameter values satisfying these performance criteria.

The VI is only for discrete single-input single-output (SISO) models. However, more

than one SISO model at a time can be specified by using the two-dimensional transfer.

The main inputs and outputs of the VI are as follows. A detailed help is given in

[25] Model specifies a state-space/transfer fucntion/ zero-pole representation of the

controller model for which this VI calculates the PID gains.

Num K Grid Points indicates the number of points into which the VI grids the

range of K3. The default value is 50.

Num Search Points specifies the number of K1 −K2 sets of PID gain values to be

chosen at each possibleK3 value.The default value is 50.

Min Gain and Phase Margins denote the optional performance constraints on

the PID controller model. If a value of 0 for either of these constraints, is specified,
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the VI considers that as no argument. A nonzero value for either of the parameters

returns PID gain values that satisfy the performance constraint(s).

Design PID Gains returns the PID gain values that are closest to the centroid of

all intersecting planes. If nonzero Min Gain and Phase Margins are specified, these

gain values also satisfy those performance constraints.

Stable Set Boundary returns the boundary od stabilizing PID gain values. All

gain values within the stable boundary are guaranteed to be stable for the PID con-

troller. Stable Set Interior Points returns the sets of gain values that lie within

the Stable Set Boundary. All gain values are guaranteed to meet any performance

criteria specified by using the Min Gain and Phase Margins parameter.

For more than one transfer functions, the VI finds the set of K3 values which is

common for all the plants, and then finds the K1−K2 polygon which is the intersection

of the stabilizing set of each of the transfer functions.

B. Examples

Three examples are shown to illustrate different aspects of the VI.

Example VI.1 Consider a liquid level control system as described in [26]. The system

gain is 0.001476. It has 2 zeros at −0.31461, −4.4523 and 3 poles at 1,0.5353 and

0.9512.Let the sampling time be 50ms. The stabilizing set of PID values is shown in

Fig. 46. The central point has the values Kp = 5.1375,Ki = 57.1102 and Kd = 2.8565.

Example VI.2 Consider a set of plants given by

P1(z) =
1

z2 − 0.25

P1(z) =
1

z2 − 0.375
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Fig. 46. LabVIEW VI showing results for example VI.1
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Fig. 47. LabVIEW VI showing results for example VI.2

and

P1(z) =
1

z2 − 0.5

The sampling time is 100ms. The set of stabilizing values for all the plants is as

shown in Fig. 47.

Example VI.3 Consider a plant

P1(z) =
1

z2 − 0.25

Let the sampling time be 100ms. It is required to find the PIDvalues which have gain

margin> 1db and phase margin> 10◦. The above data is input to the VI. The output
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Fig. 48. LabVIEW VI showing results for example VI.3

is as shown in Fig. 48. The median point has the values Kp = 0.2822,Ki = 4.9523

and Kd = 0.0108.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

A. Summary

In this thesis, many aspects of synthesis and design of PID controllers have been

discussed. The thesis presents computer aided design of discrete time controllers, data

based design of discrete PID controllers and Data-robust design of PID controllers.

These topics are very important in control system literature where identification of

the plant and robust stability have always been important areas of research.

In the Computer Aided Design of discrete time controllers, a GUI based software

is presented. Various ways of designing controllers based on performance has been

introduced. The user can either explore the performance by interactively picking

controllers one by one from the entire set and visualizing its performance or can

specify some performance constraints and obtaining the resulting set.

In the data based design, a new way of designing PID Controllers based on input-

output data has been developed. With this, the intermediate step of identification

of model from data is removed saving considerable effort.the data required is step

response data which is easier to obtain in case of discrete time system than frequency

response data as introduced in [27]. Further, a GUI is developed for interactive design

in this case too.

In data-robust design, the problem of uncertainty in measured data is considered.

The design method developed finds the stabilizing set which can robustly stabilize

the plant. It has been put forward as an application to interval linear programming.
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B. Future Work

In future, a complete interactive menu driven software for general 3-term controller

can be designed. The user will have option of choosing discrete time or continuous

time system, model based or data based, delay or delay free design and a variety of

controller structures to choose from. Some works has already been done in this area

[28],[29]. Many new performance constraints can be included based on the need of

the industry.

This software can be applied for automating the design in some practical scenario.

By integrating this with hardware, a novel method can be developed which will take

input as the data from the system or model provided by the user and output the

most suitable value of the controller in runtime so that the new controller can be

implemented instantly.

For data based design, the current method is only for stable systems. For the

future, unstable system design can be considered. Robust design for data corrupted

with noise for discrete time system also needs to be studied.Further, performance

specification on the robustly stabilized data can also be looked upon.

Three term controllers are widely used in the industry. Any progress in this field

will be well acknowledged both in the industry and the academia alike.



90

REFERENCES

[1] R.E. Kalman, “Contribution to the theory of optimal control,” Boletin de la

Sociedad Mathematica Mexicana, vol. 5, pp. 102–119, 1960.

[2] K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning,

Instrument Society of America, Research Triangle Park, NC, 1995.

[3] “Special Issue on PID 2006,” IEEE Control Systems Magazine, February 2006.

[4] D. Shiokata S. Hara and T. Iwasaki, “Fixed order controller design via general-

ized kyp lemma,” in Proceedings of the IEEE Conference on Control Applica-

tions, Taipei, Taiwan, September 2004.

[5] A. Hansson D. Henrion and R. Wallin, “Reduced lmis for fixed order polynomial

controller design,” in Proceedings of the Symposium on Mathematical Theory

of Networks and Systems (MTNS), Leuven, Belgium, July 2004.

[6] H.H. Huang W.M. Haddad and D.S. Bernstein, “Robust stability and perfor-

mance via fixed-order dynamic compensation: the discrete time case,” IEEE

Transactions on Automatic Control, vol. 38, pp. 776–782, July 1993.

[7] T. Iwasaki and R.E. Skelton, “All fixed order h-infinity controllers: observer

based structure and covariance bound,” IEEE Transactions on Automatic Con-

trol, vol. 40, pp. 512–516, March 1995.

[8] P. Dorato, “Quantified multivariable polynomial inequalities: The mathematics

of (almost) all practical design problems,” in Proceedings of the Sixth IEEE

Mediterranean Conference on Control and Systems, Alghero, Italy, June 1998.



91

[9] E.N. Gryazina and B.T. Polyak, “On the root invariant regions structure for

linear systems,” in Proceedings of the 16th IFAC World Congress, Prague,

Czech, July 2005.

[10] Yu. I. Neimark, Stability of Linearized Systems, Leningrad Aeronautical Engi-

neering Academy, Leningrad, Russia, 1949.

[11] D.D. Siljak, Nonlinear Systems: The Parameter Analysis and Design, Wiley,

NY, 1969.

[12] E. Feron S. Boyd, L. El Ghaoui and V. Balakrishnan, “Linear matrix inequalities

in system and control theory,” in SIAM, Philadelphia, PA, 1994.

[13] Arthur Author and Joe Author, “Optimum settings for automatic controllers,”

Trans. ASME, vol. 64, pp. 759–768, 1942.

[14] A. Datta, M. Ho, and S.P. Bhattacharyya, Structure and synthesis of PID

Controllers, Springer-Verlag, Berlin, Germany, 2000.

[15] J.I. Rego L.H. Keel and S.P. Bhattacharyya, “A new approach to digital PID

controller design,” IEEE Transactions on Automatic Control, vol. 64, pp. 687–

692, April 2003.

[16] L.H. Keel and S.P. Bhattacharyya, “PID controller synthesis free of analytical

models,” in Proceedings of the 16th IFAC World Congress, Prague, Czech, July

2005.

[17] L.H. Keel S. Mitra and S.P. Bhattacharyya, “Data based design of digital PID

controller,” in Proceedings of the 2006 American Control Conference, New York,

NY, July 2007.



92

[18] L.H. Keel and S.P. Bhattacharyya, “Root counting, phase unwrapping, stability

and stabilization of discrete-time systems,” Linear Algebra and its Applications,

vol. 351–352, pp. 501–508, 2002.

[19] G. Szego G. Polya, Problems and Theorems in Analysis II, Springer, NY, 1974.

[20] J.-N. Juang, Applied System Identification, PTR Prentice Hall, Englewood

Cliffs, NJ, 1994.

[21] J.G. Proakis and D.G. Manolakis, Digital Signal Processing,Principles, Algo-

rithms and Applications, Prentice Hall, NJ, 3rd edition, 2006.

[22] H. Nyquist, “Regulation theory,” Bell System Technical Journal, vol. 11, pp.

126–147, 1932.

[23] H.W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand,

Princeton, NJ, 1945.

[24] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,

with examples in parameter and state estimation, robust control and robotics,

Springer, Londres, 2001.

[25] LabVIEW Help, CD Design PID For Discrete Systems (Control Design Toolkit)

documentation, National Instruments, Austin, Texas, 2007.

[26] B.C. Kuo, Digital Control Systems, Oxford University Press, New York, NY,

2nd edition, 1995.

[27] L.H. Keel and S.P. Bhattacharyya, “Data driven synthesis of three term digital

controllers,” in Proceedings of the 2006 American Control Conference, Min-

neapolis, MN, June 2006.



93

[28] Bharat Narsimhan, “An automated virtual tool to compute the entire set of

proportional integral derivative controllers for a continuous linear time invariant

system,” M.S. thesis, Texas A&M University, College Station, TX, December

2007.

[29] Indu Ramamurthi, “A versatile simulation tool for virtual implementation of

proportional integral derivative (PID) controllers,” M.S. thesis, Texas A&M

University, College Station, TX, May 2007.



94

VITA

Name: Sandipan Mitra

Address: Prasanta Smriti, Kalibari Rd, Noapara, Barasat,

Kolkata - 700124, India

E-mail ID: sandipan.mitra@gmail.com

Education: Master of Science

Electrical Engineering, Dec 2007

Texas A&M University

College Station, Texas, USA

Bachelor of Engineering

Electrical and Electronics Engineering, June 2005

National Institute of Technology Karnataka, Surathkal,India

Experience: Software Developer

Infosys Technologies Limited, India

(August 2004 - July 2005)


