View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Texas A&amp;M Repository

ON MULTIPLE-ANTENNA COMMUNICATIONS: SIGNAL DETECTION,
ERROR EXPONENT AND QUALITY OF SERVICE

A Dissertation
by
QIANG LI

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2007

Major Subject: Electrical Engineering


https://core.ac.uk/display/4273886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON MULTTIPLE-ANTENNA COMMUNICATIONS: SIGNAL DETECTION,
ERROR EXPONENT AND QUALITY OF SERVICE

A Dissertation
by
QIANG LI

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Costas N. Georghiades
Committee Members, Krishna R. Narayanan
Takis Zourntos
Prabir Daripa
Head of Department, Costas N. Georghiades

December 2007

Major Subject: Electrical Engineering



1l

ABSTRACT

On Multiple-Antenna Communications: Signal Detection,
Error Exponent and Quality of Service. (December 2007)
Qiang Li, B.E., Shanghai Jiaotong University;
M.E., Shanghai Jiaotong University

Chair of Advisory Committee: Dr. Costas N. Georghiades

Motivated by the demand of increasing data rate in wireless communication,
multiple-antenna communication is becoming a key technology in the next genera-
tion wireless system. This dissertation considers three different aspects of multiple-
antenna communication.

The first part is signal detection in the multiple-input multiple-output (MIMO)
communication. Some low complexity near optimal detectors are designed based on
an improved version of Bell Laboratories Layered Space-Time (BLAST) architecture
detection and an iterative space alternating generalized expectation-maximization
(SAGE) algorithm. The proposed algorithms can almost achieve the performance of
optimal maximum likelihood detection. Signal detections without channel knowledge
(noncoherent) and with co-channel interference are also investigated. Novel solutions
are proposed with near optimal performance.

Secondly, the error exponent of the distributed multiple-antenna communication
(relay) in the windband regime is computed. Optimal power allocation between the
source and relay node, and geometrical relay node placement are investigated based
on the error exponent analysis.

Lastly, the quality of service (QoS) of MIMO /single-input single- output(SISO)
communication is studied. The tradeoff of the end-to-end distortion and transmission

buffer delay is derived. Also, the SNR exponent of the distortion is computed for
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MIMO communication, which can provide some insights of the interplay among time

diversity, space diversity and the spatial multiplex gain.
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CHAPTER I

INTRODUCTION

The first and second generation wireless communication systems focus on voice com-
munication. In recent years, the quality and data rate provided by the wireless
system are the most important requirements as data applications become more and
more popular, e.g., video, multimedia. Multiple antennas are an important means
to meet this challenge. It is well understood in systems with multiple transmit and
receive antennas (MIMO systems), the capacity increases linearly with the number
of antennas [1] !.

The gain of multiple antennas is two-fold. First, through space diversity to com-
bat wireless fading which is the key challenge to wireless communication. Essentially,
each pair of transmit and receive antennas provides a signal path from transmitter to
receiver. By sending signals that carry the correlate information through a number
of different paths, multiple independent faded replicas of the data symbol can be
obtained at the receiver end. By averaging these replicas, more reliable data reception
can be obtained. The second factor is the multiplexing gain. Sending independent
data streams through different signal paths by appropriately exploiting the so-called

)

“degree of freedom,” can achieve a much higher data rate of communication. There
is a fundamental tradeoff between these two gains [2, 3.
Unlike conventional point-to-point communication, a wireless network, the over-

all throughput is interference limited. Multiple antennas provide the extra degrees of

freedom to suppress the co-channel interference and effectively detect the intended sig-

The journal model is IEEE Transactions on Automatic Control.

"More accurately, it increases with the minimum of the transmit and receive an-
tenna number.



nal and hence increase the spectrum efficiency of the system. Moreover, one evolution
of multiple-antenna systems distributes the antennas in different mobile terminals to
relax the physical size limitation of the communication device. Hence this creates the
so-called “relay communication” where the relay nodes help the transmission from the
source to destinations [4]. This distributed antenna relay communication poses some
challenges for the transmission protocol design and fundamental limit analysis. Relay
transmission has been adopted in some wideband wireless communication standards,
e.g., IEEE 802.16j.

For a communication system, quality of service (QoS) is very important for most
data communication applications. End-to-End distortion and transmission delay are
two fundamental QoS metrics. Usually, the source is continuous amplitude and needs
to be digitalized and transmitted over the wireless channel. Also, there should be a
buffer to store the quantized bits before transmission. Therefore, for such a commu-
nication system with multiple antennas, analyzing the distortion and delay play an
important role for future generation wireless system design.

This dissertation sets two goals in the framework of multiple-antenna communi-
cation systems. The first is physical layer signal processing: signal detection and in-
terference suppression. The second is fundamental limit analysis for multiple-antenna
systems. More specially, this dissertation studies the error exponent of the wideband

relay channel and the distortion-delay tradeoff for an analogue source transmitted

over the MIMO /SISO fading channel.

A. Dissertation Outline

The second chapter introduces the background of MIMO communication. The focus

is the channel model, capacity results and signal processing in the transmitter and



receiver ends.

Chapter I1I introduces several low complexity sub-optimal MIMO detection schemes
based on the List-BLAST algorithm which exhausts the constellation points in the
first layer of a BLAST scheme to generate multiple candidate solutions from which
the maximum likelihood solution is determined. The candidates can also be used as
initial points for the space alternating generalized expectation-maximization (SAGE)
algorithm to further improve performance. The proposed schemes can achieve close to
optimal performance for both hard and soft output detection with lower complexity
than that of sphere detection in our simulation settings.

Chapter IV studied decoding orthogonal space-time block codes without channel
state information at the receiver. We used the inherent structure of these codes and
adapted the sphere decoding method previously used under perfect channel knowledge
to efficiently detect transmitted symbols. The resulting performance was within 1.5-
dB of that of coherent detection and the proposed method had low average complexity
in medium and high SNR regions.

In Chapter V, we presented algorithms to suppress the asynchronous co-channel
interference (CCI) in MIMO OFDM systems; this is becoming the dominant limiting
factor in the performance of emerging high-density WLANs. The key challenge is
that the cyclic prefix of the interference signal does not line up with that of the in-
tended signal due to asynchronous transmission in WLAN. Therefore, the orthogonal-
ity among the different tones of the interference signal is destroyed and conventional
frequency domain minimum mean square error (MMSE) cancelation techniques that
estimate the interference channel response for each tone cannot work effectively. To
suppress the asynchronous interference, we designed an efficient estimator to measure
the interference spatial covariance matrix using Cholesky decomposition and low-pass

smoothing. Both an MMSE and a maximum a posteriori (MAP) receiver were de-



rived based on estimated interference statistics. Simulation results demonstrated the
effectiveness of our solution.

Chapter VI investigated the error exponent of the wideband relay channel. By
computing the random coding error exponent of three different relay strategies, i.e.,
amplify-and-forward (AF), decode-and-forward (DF) and block Markov code (BMC),
we found that relayed transmission can enhance the wireless link reliability signifi-
cantly in the wideband regime compared to direct transmission. We also studied
optimal power allocation and relay placement by maximizing the reliability function.
For DF and BMC relays, analytical and numerical results show that placing the relay
node in the middle of source and destination provides the best link reliability. But for
the AF relay scheme, the optimal relay placement depends on the path-loss exponent;
for large path-loss exponents, half-way relay placement is also optimal.

Chapter VII examined the end-to-end distortion/delay tradeoff for an analogue
source transmitted over a fading channel. The analogue source was quantized and
stored in a buffer until it was transmitted. There are two extreme cases as far as
buffer delay is concerned: no delay and infinite delay. We observed that there was a
significant power gain by introducing a buffer delay. Our goal was to investigate the
situation between these two extremes. Using the recently proposed effective capacity
concept, we derived a closed-form formula for this tradeoff For the single-input single-
output (SISO) case, an asymptotically tight upper bound for our distortion-delay
curve was derived, which approached the infinite delay lower bound as D, exp(%),
with 7,, the normalized delay and C a constant. For the more general MIMO chan-
nel, we computed the distortion SNR exponent - the exponential decay rate of the
expected distortion in the high SNR regime. Numerical results demonstrated that
the introduction of a small amount of delay can save significant transmission power.

Finally, Chapter VIII concludes the dissertation and summarizes the new results



described in the dissertation.

B. A Note on Notation

Throughout this paper, normal letters indicate scalar quantities and boldface fonts
denote matrices and vectors. For any matrix M we wrote its transpose as M7 and M#
as its conjugate transpose. z* denotes the conjugate of x. M~!, ¢tr(M) and det(M)
denote the inverse, trace and determinant of matrix M, respectively; I denotes the
identity matrix; M[i, j] denotes the [i, 7] entry of the matrix M; x; denotes the i"
element of the vector z; ||[M|| and | M||r denotes the L2 and Frobenius norm of the
matrix and vec(M) represents matrix vectorization by stack columns of M. In(-) and

log(-) represents the natural and 2 based logarithm.



CHAPTER II

A BRIEF OVERVIEW OF MULTIPLE-ANTENNA SYSTEMS
This chapter first introduced the system model and the information limits of MIMO
channels. Then briefly overviewed the transmitter techniques and receiver processing
for MIMO communication. Finally, we introduced MIMO combined with orthogo-
nal frequency-division multiplexing (OFDM) to provide high spectral efficiency for

wideband wireless communication.

A. Channel and System Model

The channel model is first described. Fig.1 shows a communications link with M,
transmit antennas and M, receive antennas. At each time instant, M; signals,
[x1, 29, , ], satisfying an average power constraint, are transmitted using M,
antennas. Each of them reaches all M, receive antennas. Mathematically, the chan-

nel model can be expressed as:

g |2
M,

Hx +w , (2.1)
Where H is the channel matrix containing i.i.d. elements h; ; ~ CN(0,1) (Rayleigh
independent amplitude fading). x is the transmitted signal, the power of transmitted
signal x is normalized so that is satisfies tr(E[xx]) < M;. p denotes the signal-
to-noise ratio (SNR), defined as the ratio of the average received signal energy per
receiving antenna to the noise per-component variance. w is the complex additive

Gaussian noise with i.i.d. entries CN(0,1). We defined M, = min(M;, M,) and
M* = max(M,;, M,).
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Fig. 1. Multiple-antennal channel

B. Information Limits of MIMO Channel

The shannon capacity is the maximum achievable rate of a channel with zero error
probability. For infinite block length, the Shannon capacity is not defined since for
any data rate there is a strict possibility that the the channel matrix H is unable to
support it. Therefore, we can classify the capacities as ergodic capacity - averaged
over long block length; and outage capacity - the maximum rate one can communicate
with no more than a defined probability e of channel outage. The mutual information

of MIMO channel can be written as:
I(x;y|H) = logdet(I,;, + HQH) (2.2)

where Q = E(xx") is the input signal covariance.



1. Ergodic Capacity

The ergodic capacity can be expressed as the average mutual information of all the
channel realizations. The MIMO ergodic capacity depends on channel state informa-
tion (CSI). In this section, we assumed the receiver has full CSI and we discussed the
ergodic capacity with/without CSI at the transmitter. For an unknown channel at

the receiver side (noncoherent) case, [5, 6, 7] has investigated the information limits.

a. CSI Perfectly Known Only at the Receiver

For this scenario, An independent (across transmit antennas) Gaussian input will

achieve the capacity, i.e., Q = MLtIMr'

C = E[log det(I,;, + - HH")]

M,
— Eflog det(I,;, + --HYH)] . (2.3)
M,
A lower bound can be derived:
p —
C = M, log, M, + ‘ Z Ellog, X3, (2.4)
i=M*—M,+1

where X3, is chi-square random variable with dimension of 2i. Moreover, this lower
bound is asymptotically tight at high SNR. We observe that this is equivalent to
M, parallelled sub-channels. In other words, MIMO has M, degree of freedom to

communication.

b. CSI Perfectly Known at Both the Transmitter and the Receiver

If the transmitter knows the channel realization, Let the SVD decomposition H =
UDV#, where U and V is the orthogonal matrix and D is a diagonal matrix. Since

the U and V are known at both transmitter and receiver then we can precode (mul-



tiply) the transmit signal by V and post-filtering (multiply) the signal by U to
transform the MIMO channel into M, equivalent parallel channel. We denote these
paralleled channel as eigen-channels. The channel capacity can be achieved by power

water-filling. The water-filling gain is a power gain hence it is more significant at low

SNR.

2. Outage Capacity

When the channel is slow fading the ergodicity does not hold, i.e., the codeword is
no longer enough to average a large number of channel realizations. We can treat
the mutual information as a random variable and assume the channel is quasi-static
(remain constant for one block and change independently from block to block). The

outage probability is given by
Pout(R) = P(I(x;y) < R) . (2.5)

Since the outage probability is a monotonically non-decreasing function of R. The
outage capacity is defined as the the suprimum of the transmission rate that the

outage probability is below some predefined value €, and denoted as C..

C. Transmission Techniques for MIMO Systems

In this section, we reviewed several classical transmission techniques for MIMO com-
munication. This is by no means a complete list and which transmission technique

to be used depends on the system settings and requirements .
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1. Without CSI in the Transmitter
a. Spatial Multiplexing

When the transmitter does not know the channel, the independent Gaussian input
will achieve the ergodic capacity. Transmitting independent data streams from the
different transmit antennas spatial multiplex transmission can almost achieve the
ergodic MIMO capacity although the receiver processing can be very complicated [8].
The spatial multiplexing transmission is sometimes called V-BLAST transmission.
For the slow fading scenario, carefully designed signaling and coding (universal) are
needed to achieve outage capacity. Design universal coding to achieve outage capacity
is still an active research area. Moreover, for slow fading we need to consider two
gains: space diversity and multiplex gain. The proposed space-time code is dedicated

to utilize space diversity.

b. Space-time Coding

Tarokh et. al proposed the space-time code to provide transmitter diversity. The
basic idea is to provide the transmitted signal redundancy and structure to protect
the information from the fading detriment. The starting point was to minimize the
pairwise error probability of two codewords. The conclusion was a design rule of rank
criteria to maximize the diversity order and the determinant criteria to maximize
the code gain. Based on these criteria, the manual designed space-time trellis codes
were proposed to achieve 2 — 3 dB from the outage capacity. However, the decoding
of the space-time trellis code required a maximum-likelihood (ML) Viterbi decoding
algorithm whose complexity increases exponentially as the trellis state number.

To reduce the decoding complexity, the orthogonal space-time block code (OS-

TBC) is proposed, with a very simple - linear ML decoding scheme [9]. Due to the
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orthogonality of the signals emanating from the different transmitter antennas, the
inter-stream interference was avoided and the signals could easily be decoupled by a
linear processing while still providing space diversity. The well-known Alamouti code
[10] belongs to this family of codes with two transmit antennas. Normally, the linear
OSTBC ML decoding requires channel knowledge at the receiver side. In Chapter IV,
we have proposed a noncoherent decoder without CSI at both sides. Most OSTBC
transmissions have some capacity loss and therefore suboptimal with regard to the

information limit, except the 2 x 1 Alamouti code [11].

2. Full CSI at Both Transmitter and Receiver

When channel is known at both transmitter and receiver, the SVD can be used to
decouple the MIMO channel into parallelled channels and water-filling can be used

to achieve the capacity.

a. Transmitter Beamforming

When the water-filling gain is marginal compared with using only the coding and
interleaving! and the transmitter antenna number is greater than the receiver antenna
number then uniform power (equal power for each data stream) beamforming is always
used. The basic idea is to transmit the information in the principal eigen-directions
(the eigen-channels with the largest gain). The beamforming can be realized by pre-
multiply the transmitted signal with the first several columns of V corresponding to
the largest eigenvalues. When the transmitter antenna number is greater than the
receiver antenna numbers (this is a typical setting for downlink transmission), the
gain can be significant. Again, the beamforming gain is also a power gain.

IThis is the case for most MIMO OFDM systems that use spatial-frequency inter-
leaver and coding.
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For time division duplex (TDD) systems, the CSI can be estimated at the trans-
mitter by channel reciprocity. For frequency division duplex (FDD) systems, the
channel is usually estimated at the receiver and beamforming matrix V has to fed-
back to the transmitter via a capacity limited link. The feedback overhead can be
very large for some wideband MIMO-OFDM systems. Hence to efficiently transfer

the CSI from the receiver to transmitter requires a carefully design.

D. Classical Detection Scheme

In this section, we review some classical signal processings at the receiver side. For
OSTBC and beamforming transmission, usually an equivalent channel can be formal-
ized, e. g., let the precode matrix of beamforming be F, we can consider the matrix
H = FH as the equivalent channel. Hence, with regard to the receiver design, there
is no difference from the spatial multiplex transmission by letting H = H. Therefore,
without loss of generality, we can introduce MIMO signal detection techniques based
on spatial multiplex transmission. We used the symbol-error rate for the uncoded

system as the measure to compare the performance of different detectors.

1. Linear Detection

Assume M, > M,, the linear detector takes the received vector y and premultiplies it
by a matrix BY. The resulting product X is passed to the minimum distance symbol
by symbol decision. The matrix B can be optimized by different criteria. Two of the
most popular schemes are zero-forcing (ZF), B = %H(HH H)~! ; minimum mean
square receiver (MMSE), B = (HH" + &t)7!, /AL H = | /At H(HPH + 24)~!. The
above equivalence of the two forms of the MMSE detector can be proved by the matrix

inversion Lemma. The ZF detection chooses the pre-filter B to totally eliminate
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inter-stream interference in x, while the MMSE criteria chooses B to minimizing the
variance of the error e = x —X. When the SNR goes to large, the MMSE receiver
will converges to the ZF receiver, as the interference dominates the noise in the high
SNR.

The main disadvantage of linear detectors is poor performance in a symbol-error-
rate (SER) sense. Since linear pre-filtering B makes the noise correlated, symbol-by-
symbol detection, although very simple, is not optimal. From the more fundamental
receiver diversity angle, ZF and MMSE have only diversity M, — M, + 1, compared
to the diversity order of M, for the ML detector. Hence, for a square matrix H,
the diversity order of such linear detectors is only 1. Intuitively, the ZF project the
received signal in the null space of the H; matrix, where H; is the H matrix to
remove the i"® column. The dimension of this null space is M, — M, + 1. Therefore,
the resulted diversity order is M, — M, + 1 for the ZF detector. Since MMSE will

converge to ZF in high SNR, MMSE has the same receiver diversity as ZF.

2. Decision Feedback Detection

Decision feedback detection, also called BLAST (nulling and canceling) is built on the
linear detector by adding a feedback loop. Instead of making the decision concurrently
for all of filtered output X, decisions are made sequentially. One component a time.
At the beginning, the detector first make decision on the first symbol of X, denoted by
21, then the feedback loop is used to subtract the interference caused by x; from the
remaining components of Bfr. Assuming that #, is a correct decision, the process
continues until all the components have been detected. Due to error propagation, the
first symbol detection will dominate the vector error rate. Hence, usually the detected
order is from the highest SNR information symbol to the lowest SNR to minimize

error propagation. Since the performance is dominated by the first layer, the receiver
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diversity order of this V-BLAST detection is the the same as the linear detection
(M, — M; + 1) even with the optimal detection order. In this dissertation, we have
proposed a modified BLAST detection, called “Ordered List BLAST” to improve the

performance of BLAST detection.

3. Maximum Likely Detection (Sphere Decoding)

When we assume all the vectors x are equally likely, the detector that maximizes the

probability:
X = arg rggf{f(ﬂx) (2.6)

is optimal, where Q* denotes the set of constellation points in the complex M;-
dimenstion space. Assuming the noise is independent of x and i.i.d. Gaussian, the

maximum likelihood (ML) detector is simplified to the minimum distance detector

X = arg min ||y — iHX||2 , (2.7)

xeQMi Mt

where H is perfectly known. Since the transmitted signal is from the uncoded QAM
or QPSK symbols. the optimization of (2.7) is an integer programming problem and
NP-hard. Exhaustive search has exponential complexity and is practically impossible
to implement. Sphere decoding (SD) can be used to reduce the complexity [12].
Let’s Assume the QAM modulation has been used with the constellation size (2.

We then transform the channel matrix as:

12p Re{H} —Im{H}

B=,—<"
My(Q* — 1) Im{H} Re{H}

(2.8)
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and let y, = [Re{y} Im{y}|’. Then the ML detector has following form

x = arg min ||y, — Bs|s, (2.9)
sez "t
Q
where Zg £ {0,1,---,Q — 1}. We can consider B as a lattice generate matrix.

Hence, the optimization problem is reduced to a closest lattice point search algorithm.

Applying the QR decomposition to B, we have

B:{Q Q/] 1; , (2.10)

where R is an M; x M, upper triangle matrix with positive diagonal elements, and
Q (resp. Q') is an M, x M, (resp. M, x (M, — M,)) unitary matrix. Predefined
a hypersphere S(y,, /7o) centered on the received signal , which is large enough
to be included inside the optimal point with minimum Euclidean distance. Let the
initial sphere radius be ry. Therefore, the condition of the lattice points lies in the

hypershpere, i.e., Bx € S(y,, \/To) can be written as

Iy, — Bx||* <
T R

[Q Q/:| Yr — X STO
0

1Q%y, — Rx||* < o — [|(Q) "y [I”

Iy = Rx|* <5, (2.11)

where y' £ QTy, and 7}, = 79 — [|(Q')"y.,||>. Due to the upper triangular form of R,

the last inequality implies series of conditions

My My
STl = P <y, i=1 M, (2.12)
=i k=j
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. . A
Therefore, given the last M; — ¢ component values Xli\/[t £ [xiy1, - ,Tp], an upper

and lower bound of x; can be derived from the set of inequalities:

1 Mt Mt Mt
U-(XMt>_ - /o - / /o roox
i) = | | Y Tijxj To Yj 4.k Lk
L j=i+1 \ j=i+1 k=j
2
1 M; M, M,
Mgy _ / / /
Lixiv) = | — | v~ > rigmi [T — D Y= D ikt - (213)
Lt j=i+1 \ j=i+1 k=j
If
M; M,
/ 2 /
> s =l > (2.14)
j=i+1 k=j

then there is no value of z; satisfying the inequality (2.12) and all the lattice points
corresponding this choice of xi]\fl do not belong to the sphere S(y, s,/7¢), and can be
pruned from the search space.

The search is started from the last layer and sequentially goes to the first layer as
shown in Fig. 2. If the search engine arrives at the first layer, i.e., all the inequalities
(2.12) are satisfied and a valid lattice point within the sphere has been computed.
We then shrink the sphere radius to the distance of the found lattice point to the
received signal. This radius update is very important to reduce the search complexity.
The process is repeated until only the optimal point is left in the sphere. Essentially,
sphere decoding is a depth first tree search process or branch-and-bound technique in
the dynamic programming. It is a powerful method to solve the discrete ML optimal
point search problem. Like the Viterbi ML search utilizes the finite state machine
(FSM) trellis, the SD search reduces the complexity by the upper triangle structure
of the lattice generating matrix.

The beauty of the SD algorithm lies in its approximated polynomial complexities

for typical MIMO communication settings [13, 14]. In fact, for most case its expected
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k = 4
Mt= 4
k=3
k =2
k = 4

Fig. 2. Sample of the SD tree search in 4-dimensional hypersphere

search operation is around M}. This low complexity is due to the fact that the
received signal y is the transmitted lattice point perturbed by a Gaussian noise. Due
to the the statistical distribution of channel matrix H and noise W, SD is an efficient
approximated polynomial complexity search algorithm for MIMO detection. For more
general settings, [15] shows the expected search step can be expressed as Q7 where
v € (0,1] depending on the SNR value. Hence, strictly speaking, the algorithm is not
polynomial. However, for large SNR, the factor v << 1. This mean the complexity
of SD is dominated by the polynomial term. As the SNR decreases, the v increases.
Therefore, SD has a lower complexity at high SNR than when operating at the low
SNR.

4. Lattice Reduction Detection

Fig. 3 plot the decision boundary of different detectors for the 2 x 2 MIMO system.
The red lines correspond to the two column vectors [hy hy] of the channel matrix
which are not orthogonal due to their random distribution. The red circle denotes

the correct decision region. The larger the circle, the more noise power can be tol-
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erated. Obviously, the ML has a large circle or better performance than the other
detectors. To get the performance of the linear detector to achieve that of the ML de-
tectors, one valid method is to make the columns of channel matrix H as orthogonal as
possible. Hence some lattice reduction algorithms, e.g., Lenstra-Lenstra-Lovsz(LLL)
algorithm, can be used to preprocess the channel matrix [16]. After the lattice reduc-
tion, the resulting matrix has quasi-orthogonal columns. Therefore, low complexity

linear detectors can nearly achieve the ML performance.

E. Information Theory Aspect of MIMO Receiver

The previous comparison of MIMO detectors is based on the uncoded symbol error
rate. The suboptimality of linear detection and decision feedback detection is due to
the linear equalizer introduced correlation of noise across the antennas. Hence, uni-
form symbol-by-symbol quantization of equalizer output X is suboptimal and causes
significant information loss. With respect to information theoretical comparison, the
ML receiver is information lossless; hence, the sphere decoder algorithm can be easily
extended to a “list sphere decodind” to generate the soft information. [8] Showing the
list sphere decoding joint with turbo code can achieve near ergodic MIMO capacity
though the complexity of such an ML receiver is very high.

The linear MMSE detector is seriously suboptimal in regard to the symbol error
rate, however, the MMSE itself is information lossless. The output of MMSE equalizer

is a sufficient statistic to detect x, i.e.,

I(x;y) = I(x; Wanmsey) (2.15)
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Therefore, according the chain rule of mutual information

I(X7y) = [(xlwav'“ 7$Mt;y)

= [(I’l,}’) + [(x27y|331) + -+ [(xMt;y‘xlu e 7',1:Mt*1) ) (216)

The decision feedback MMSE receiver is optimal for achieving the capacity of the
MIMO channel. This is a well-known fact proved by [3, 17]. Hence, if we use different
capacity achieving codewords for each layer, the MMSE DFE is an optimal receiver
to achieve MIMO ergodic capacity. This only applies to the MMSE receiver and
is not suitable for other linear receivers, such as zero-forcing. As for the outage
capacity, the capacity achieved scheme investigation will be more involved, since it
is required to design the so-called universal code to be adapted with the different

channel realizations. We have omitted the introduction here.

F. MIMO OFDM

The MIMO OFDM is a natural combination of two powerful techniques and has
often been used in many high speed wireless communication standards, e.g., 3GPP
LTE, 802.16 (WIMAX), 802.11 (WIFT). MIMO provides space diversity and multiplex
gain. OFDM transforms the frequency selective wideband channel into parallelled flat
fading channels while providing some frequency diversity. Hence, for each subcarrier,
all the previously introduced techniques can be used accordingly. The subcarrier
channels across the frequency are correlated. The correlation depends on the channel
delay spread (frequency selectivity). Usually, a carefully designed interleaver is used
across the subcarrier to utilize frequency and space diversity. The combination of

MIMO and OFDM provides high speed reliable wireless data communication.
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CHAPTER III

NEAR OPTIMAL LOW COMPLEXITY COHERENT MIMO DETECTOR

A. Introduction

The received signal at each receive antenna in a MIMO system is a superposition
of transmitted signals from different transmit antennas. If the MIMO system has
M, transmit antennas and uses a constellation of size ), maximum-likelihood (ML)
detection, which searches through all the possible transmitted symbols, requires a
complexity proportional to O(Qt), which is hard to implement when @ and M; are
large. A number of suboptimal detectors were proposed to reduce complexity, such
as BLAST detection [18, 19], zero-forcing (ZF) and MMSE detection. However, all
these schemes perform fairly far from the ML detection scheme. Recently, the sphere
detection algorithm which searches in the vicinity of the received signal vector for
the optimum solution was proposed [12]. The average complexity of the proposed
sphere detection algorithm in general is exponential in the problem dimension M,
[15], but could be dominated by polynomial terms of M;, when M, is small and the
corresponding signal-to-noise ratio is chosen sufficiently large [15, 13, 14].

In this Chapter, we propose a suboptimal detection algorithm for MIMO systems
based on searching a subset of all the possible transmitted symbols. The proposed al-
gorithm, which we will refer to as the List-BLAST algorithm, is introduced in Section
B with two improved versions. Section C derives the space alternating generalized
expectation-maximization (SAGE) algorithm [20] for MIMO detection as a further
enhancement to the List-BLAST. Section D compares the complexity of the proposed
algorithms with that of the sphere detection. Section E discusses soft-output detec-

tion. Section F provides simulation results and Section G concludes. Most of the
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work presented here is included in [21].

B. List-Blast Detection

Consider the discrete-time model of a MIMO frequency non-selective fading channel

with M, transmit antennas and M, (M, > M,) receive antennas:
y = Hx +w, (3.1)

where H = [hy, hy, ... hy,] is a M, x M; MIMO channel assumed to be perfectly
known at the receiver side (We have incorporateed the SNR factor i into the
channel matrix H without loss of generality). The maximum-likelihood (ML) detector

then is:

R, = arg min ||y — Hx||? (3.2)

xeQMt

where QM denotes the set of constellation points in the complex M;-dimensional
space. Since an exhaustive search for the ML solution over the whole set of QM
is too complex, we take a different approach by searching through only a subset of
the candiates generated by manipulating the well-known BLAST detection scheme.
We refer to this new approach and its various extensions as List-BLAST detection
schemes in the sequel.

Let the QR decomposition of the channel matrix be H = QR, where Q is
a unitary matrix and R is an upper triangular matrix. Letting y' = Qy, the
system in (3.1) can be expressed as y’ = Rx + w/, where w = Q¥w has the same
distribution as w since Q is unitary. In the triangularized model above, each row
denotes a different transmission/detection layer with the k% layer interfered only by
layers with indices larger than k. In BLAST, one first detects Z,,; assuming 2, is

correct, the interference of 57,1 17,2, can be subtracted from layer Ny —1 and 2y,
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can be detected as in a scalar channel. Similarly, layers N, — 2, N; — 3,--- ,1 can be
detected in order. In the proposed list-BLAST scheme, we perform an exhaustive
search over all C discrete values ), could take; for a given z,;,, we use the BLAST
algorithm to detect the remaining elements of the vector [Zy, 1, Zas,—2, - - -, Z1]. This
results in a list of C' candidate points, each of which is a vector in the complex M,
dimensional space. Finally, we select the one which minimizes |ly’ — Rx||*> as the
detected symbol vector. It can be easily shown that the list-BLAST algorithm for
M, = 2 is actually maximum-likelihood.

It is well known that the performance of BLAST detection can be improved by
ordering the sequence of nulling and canceling. Each different order corresponds to a
unique ranking of the columns of the channel matrix H in the above implementation
using a QR decomposition. Thus, we can also extend the list-BLAST algorithm as

follows.

e List-Ranked-BLAST: In this extension, the least reliable layer with the lowest
signal-to-noise ratio is detected, or more accurately, listed first; the remaining
layers are detected from the most 