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ABSTRACT

On Multiple-Antenna Communications: Signal Detection,

Error Exponent and Quality of Service. (December 2007)

Qiang Li, B.E., Shanghai Jiaotong University;

M.E., Shanghai Jiaotong University

Chair of Advisory Committee: Dr. Costas N. Georghiades

Motivated by the demand of increasing data rate in wireless communication,

multiple-antenna communication is becoming a key technology in the next genera-

tion wireless system. This dissertation considers three different aspects of multiple-

antenna communication.

The first part is signal detection in the multiple-input multiple-output (MIMO)

communication. Some low complexity near optimal detectors are designed based on

an improved version of Bell Laboratories Layered Space-Time (BLAST) architecture

detection and an iterative space alternating generalized expectation-maximization

(SAGE) algorithm. The proposed algorithms can almost achieve the performance of

optimal maximum likelihood detection. Signal detections without channel knowledge

(noncoherent) and with co-channel interference are also investigated. Novel solutions

are proposed with near optimal performance.

Secondly, the error exponent of the distributed multiple-antenna communication

(relay) in the windband regime is computed. Optimal power allocation between the

source and relay node, and geometrical relay node placement are investigated based

on the error exponent analysis.

Lastly, the quality of service (QoS) of MIMO/single-input single- output(SISO)

communication is studied. The tradeoff of the end-to-end distortion and transmission

buffer delay is derived. Also, the SNR exponent of the distortion is computed for
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MIMO communication, which can provide some insights of the interplay among time

diversity, space diversity and the spatial multiplex gain.
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CHAPTER I

INTRODUCTION

The first and second generation wireless communication systems focus on voice com-

munication. In recent years, the quality and data rate provided by the wireless

system are the most important requirements as data applications become more and

more popular, e.g., video, multimedia. Multiple antennas are an important means

to meet this challenge. It is well understood in systems with multiple transmit and

receive antennas (MIMO systems), the capacity increases linearly with the number

of antennas [1] 1.

The gain of multiple antennas is two-fold. First, through space diversity to com-

bat wireless fading which is the key challenge to wireless communication. Essentially,

each pair of transmit and receive antennas provides a signal path from transmitter to

receiver. By sending signals that carry the correlate information through a number

of different paths, multiple independent faded replicas of the data symbol can be

obtained at the receiver end. By averaging these replicas, more reliable data reception

can be obtained. The second factor is the multiplexing gain. Sending independent

data streams through different signal paths by appropriately exploiting the so-called

“degree of freedom,” can achieve a much higher data rate of communication. There

is a fundamental tradeoff between these two gains [2, 3].

Unlike conventional point-to-point communication, a wireless network, the over-

all throughput is interference limited. Multiple antennas provide the extra degrees of

freedom to suppress the co-channel interference and effectively detect the intended sig-

The journal model is IEEE Transactions on Automatic Control.

1More accurately, it increases with the minimum of the transmit and receive an-
tenna number.
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nal and hence increase the spectrum efficiency of the system. Moreover, one evolution

of multiple-antenna systems distributes the antennas in different mobile terminals to

relax the physical size limitation of the communication device. Hence this creates the

so-called “relay communication” where the relay nodes help the transmission from the

source to destinations [4]. This distributed antenna relay communication poses some

challenges for the transmission protocol design and fundamental limit analysis. Relay

transmission has been adopted in some wideband wireless communication standards,

e.g., IEEE 802.16j.

For a communication system, quality of service (QoS) is very important for most

data communication applications. End-to-End distortion and transmission delay are

two fundamental QoS metrics. Usually, the source is continuous amplitude and needs

to be digitalized and transmitted over the wireless channel. Also, there should be a

buffer to store the quantized bits before transmission. Therefore, for such a commu-

nication system with multiple antennas, analyzing the distortion and delay play an

important role for future generation wireless system design.

This dissertation sets two goals in the framework of multiple-antenna communi-

cation systems. The first is physical layer signal processing: signal detection and in-

terference suppression. The second is fundamental limit analysis for multiple-antenna

systems. More specially, this dissertation studies the error exponent of the wideband

relay channel and the distortion-delay tradeoff for an analogue source transmitted

over the MIMO/SISO fading channel.

A. Dissertation Outline

The second chapter introduces the background of MIMO communication. The focus

is the channel model, capacity results and signal processing in the transmitter and
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receiver ends.

Chapter III introduces several low complexity sub-optimal MIMO detection schemes

based on the List-BLAST algorithm which exhausts the constellation points in the

first layer of a BLAST scheme to generate multiple candidate solutions from which

the maximum likelihood solution is determined. The candidates can also be used as

initial points for the space alternating generalized expectation-maximization (SAGE)

algorithm to further improve performance. The proposed schemes can achieve close to

optimal performance for both hard and soft output detection with lower complexity

than that of sphere detection in our simulation settings.

Chapter IV studied decoding orthogonal space-time block codes without channel

state information at the receiver. We used the inherent structure of these codes and

adapted the sphere decoding method previously used under perfect channel knowledge

to efficiently detect transmitted symbols. The resulting performance was within 1.5-

dB of that of coherent detection and the proposed method had low average complexity

in medium and high SNR regions.

In Chapter V, we presented algorithms to suppress the asynchronous co-channel

interference (CCI) in MIMO OFDM systems; this is becoming the dominant limiting

factor in the performance of emerging high-density WLANs. The key challenge is

that the cyclic prefix of the interference signal does not line up with that of the in-

tended signal due to asynchronous transmission in WLAN. Therefore, the orthogonal-

ity among the different tones of the interference signal is destroyed and conventional

frequency domain minimum mean square error (MMSE) cancelation techniques that

estimate the interference channel response for each tone cannot work effectively. To

suppress the asynchronous interference, we designed an efficient estimator to measure

the interference spatial covariance matrix using Cholesky decomposition and low-pass

smoothing. Both an MMSE and a maximum a posteriori (MAP) receiver were de-



4

rived based on estimated interference statistics. Simulation results demonstrated the

effectiveness of our solution.

Chapter VI investigated the error exponent of the wideband relay channel. By

computing the random coding error exponent of three different relay strategies, i.e.,

amplify-and-forward (AF), decode-and-forward (DF) and block Markov code (BMC),

we found that relayed transmission can enhance the wireless link reliability signifi-

cantly in the wideband regime compared to direct transmission. We also studied

optimal power allocation and relay placement by maximizing the reliability function.

For DF and BMC relays, analytical and numerical results show that placing the relay

node in the middle of source and destination provides the best link reliability. But for

the AF relay scheme, the optimal relay placement depends on the path-loss exponent;

for large path-loss exponents, half-way relay placement is also optimal.

Chapter VII examined the end-to-end distortion/delay tradeoff for an analogue

source transmitted over a fading channel. The analogue source was quantized and

stored in a buffer until it was transmitted. There are two extreme cases as far as

buffer delay is concerned: no delay and infinite delay. We observed that there was a

significant power gain by introducing a buffer delay. Our goal was to investigate the

situation between these two extremes. Using the recently proposed effective capacity

concept, we derived a closed-form formula for this tradeoff For the single-input single-

output (SISO) case, an asymptotically tight upper bound for our distortion-delay

curve was derived, which approached the infinite delay lower bound as D∞ exp( C
τn

),

with τn the normalized delay and C a constant. For the more general MIMO chan-

nel, we computed the distortion SNR exponent - the exponential decay rate of the

expected distortion in the high SNR regime. Numerical results demonstrated that

the introduction of a small amount of delay can save significant transmission power.

Finally, Chapter VIII concludes the dissertation and summarizes the new results
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described in the dissertation.

B. A Note on Notation

Throughout this paper, normal letters indicate scalar quantities and boldface fonts

denote matrices and vectors. For any matrix M we wrote its transpose as MT and MH

as its conjugate transpose. x∗ denotes the conjugate of x. M−1, tr(M) and det(M)

denote the inverse, trace and determinant of matrix M, respectively; I denotes the

identity matrix; M[i, j] denotes the [i, j]th entry of the matrix M; xi denotes the ith

element of the vector x; ‖M‖2 and ‖M‖F denotes the L2 and Frobenius norm of the

matrix and vec(M) represents matrix vectorization by stack columns of M. ln(·) and

log(·) represents the natural and 2 based logarithm.
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CHAPTER II

A BRIEF OVERVIEW OF MULTIPLE-ANTENNA SYSTEMS

This chapter first introduced the system model and the information limits of MIMO

channels. Then briefly overviewed the transmitter techniques and receiver processing

for MIMO communication. Finally, we introduced MIMO combined with orthogo-

nal frequency-division multiplexing (OFDM) to provide high spectral efficiency for

wideband wireless communication.

A. Channel and System Model

The channel model is first described. Fig.1 shows a communications link with Mt

transmit antennas and Mr receive antennas. At each time instant, Mt signals,

[x1, x2, · · · , xMt ], satisfying an average power constraint, are transmitted using Mt

antennas. Each of them reaches all Mr receive antennas. Mathematically, the chan-

nel model can be expressed as:

y =

√
ρ

Mt

Hx + w , (2.1)

Where H is the channel matrix containing i.i.d. elements hi,j ∼ CN (0, 1) (Rayleigh

independent amplitude fading). x is the transmitted signal, the power of transmitted

signal x is normalized so that is satisfies tr(E[xHx]) ≤ Mt. ρ denotes the signal-

to-noise ratio (SNR), defined as the ratio of the average received signal energy per

receiving antenna to the noise per-component variance. w is the complex additive

Gaussian noise with i.i.d. entries CN (0, 1). We defined M∗ = min(Mt,Mr) and

M∗ = max(Mt,Mr).
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Fig. 1. Multiple-antennal channel

B. Information Limits of MIMO Channel

The shannon capacity is the maximum achievable rate of a channel with zero error

probability. For infinite block length, the Shannon capacity is not defined since for

any data rate there is a strict possibility that the the channel matrix H is unable to

support it. Therefore, we can classify the capacities as ergodic capacity - averaged

over long block length; and outage capacity - the maximum rate one can communicate

with no more than a defined probability ε of channel outage. The mutual information

of MIMO channel can be written as:

I(x;y|H) = log det(IMr + HQHH) , (2.2)

where Q = E(xxH) is the input signal covariance.



8

1. Ergodic Capacity

The ergodic capacity can be expressed as the average mutual information of all the

channel realizations. The MIMO ergodic capacity depends on channel state informa-

tion (CSI). In this section, we assumed the receiver has full CSI and we discussed the

ergodic capacity with/without CSI at the transmitter. For an unknown channel at

the receiver side (noncoherent) case, [5, 6, 7] has investigated the information limits.

a. CSI Perfectly Known Only at the Receiver

For this scenario, An independent (across transmit antennas) Gaussian input will

achieve the capacity, i.e., Q = ρ
Mt

IMr .

C = E[log det(IMr +
ρ

Mt

HHH)]

= E[log det(IMt +
ρ

Mt

HHH)] . (2.3)

A lower bound can be derived:

C ≥ M∗ log2

ρ

Mt

+
M∗∑

i=M∗−M∗+1

E[log2 χ2
2i] , (2.4)

where χ2
2i is chi-square random variable with dimension of 2i. Moreover, this lower

bound is asymptotically tight at high SNR. We observe that this is equivalent to

M∗ parallelled sub-channels. In other words, MIMO has M∗ degree of freedom to

communication.

b. CSI Perfectly Known at Both the Transmitter and the Receiver

If the transmitter knows the channel realization, Let the SVD decomposition H =

UDVH , where U and V is the orthogonal matrix and D is a diagonal matrix. Since

the U and V are known at both transmitter and receiver then we can precode (mul-
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tiply) the transmit signal by V and post-filtering (multiply) the signal by UH to

transform the MIMO channel into M∗ equivalent parallel channel. We denote these

paralleled channel as eigen-channels. The channel capacity can be achieved by power

water-filling. The water-filling gain is a power gain hence it is more significant at low

SNR.

2. Outage Capacity

When the channel is slow fading the ergodicity does not hold, i.e., the codeword is

no longer enough to average a large number of channel realizations. We can treat

the mutual information as a random variable and assume the channel is quasi-static

(remain constant for one block and change independently from block to block). The

outage probability is given by

pout(R) = P(I(x;y) < R) . (2.5)

Since the outage probability is a monotonically non-decreasing function of R. The

outage capacity is defined as the the suprimum of the transmission rate that the

outage probability is below some predefined value ε, and denoted as Cε.

C. Transmission Techniques for MIMO Systems

In this section, we reviewed several classical transmission techniques for MIMO com-

munication. This is by no means a complete list and which transmission technique

to be used depends on the system settings and requirements .
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1. Without CSI in the Transmitter

a. Spatial Multiplexing

When the transmitter does not know the channel, the independent Gaussian input

will achieve the ergodic capacity. Transmitting independent data streams from the

different transmit antennas spatial multiplex transmission can almost achieve the

ergodic MIMO capacity although the receiver processing can be very complicated [8].

The spatial multiplexing transmission is sometimes called V-BLAST transmission.

For the slow fading scenario, carefully designed signaling and coding (universal) are

needed to achieve outage capacity. Design universal coding to achieve outage capacity

is still an active research area. Moreover, for slow fading we need to consider two

gains: space diversity and multiplex gain. The proposed space-time code is dedicated

to utilize space diversity.

b. Space-time Coding

Tarokh et. al proposed the space-time code to provide transmitter diversity. The

basic idea is to provide the transmitted signal redundancy and structure to protect

the information from the fading detriment. The starting point was to minimize the

pairwise error probability of two codewords. The conclusion was a design rule of rank

criteria to maximize the diversity order and the determinant criteria to maximize

the code gain. Based on these criteria, the manual designed space-time trellis codes

were proposed to achieve 2 − 3 dB from the outage capacity. However, the decoding

of the space-time trellis code required a maximum-likelihood (ML) Viterbi decoding

algorithm whose complexity increases exponentially as the trellis state number.

To reduce the decoding complexity, the orthogonal space-time block code (OS-

TBC) is proposed, with a very simple - linear ML decoding scheme [9]. Due to the
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orthogonality of the signals emanating from the different transmitter antennas, the

inter-stream interference was avoided and the signals could easily be decoupled by a

linear processing while still providing space diversity. The well-known Alamouti code

[10] belongs to this family of codes with two transmit antennas. Normally, the linear

OSTBC ML decoding requires channel knowledge at the receiver side. In Chapter IV,

we have proposed a noncoherent decoder without CSI at both sides. Most OSTBC

transmissions have some capacity loss and therefore suboptimal with regard to the

information limit, except the 2 × 1 Alamouti code [11].

2. Full CSI at Both Transmitter and Receiver

When channel is known at both transmitter and receiver, the SVD can be used to

decouple the MIMO channel into parallelled channels and water-filling can be used

to achieve the capacity.

a. Transmitter Beamforming

When the water-filling gain is marginal compared with using only the coding and

interleaving1 and the transmitter antenna number is greater than the receiver antenna

number then uniform power (equal power for each data stream) beamforming is always

used. The basic idea is to transmit the information in the principal eigen-directions

(the eigen-channels with the largest gain). The beamforming can be realized by pre-

multiply the transmitted signal with the first several columns of V corresponding to

the largest eigenvalues. When the transmitter antenna number is greater than the

receiver antenna numbers (this is a typical setting for downlink transmission), the

gain can be significant. Again, the beamforming gain is also a power gain.

1This is the case for most MIMO OFDM systems that use spatial-frequency inter-
leaver and coding.
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For time division duplex (TDD) systems, the CSI can be estimated at the trans-

mitter by channel reciprocity. For frequency division duplex (FDD) systems, the

channel is usually estimated at the receiver and beamforming matrix V has to fed-

back to the transmitter via a capacity limited link. The feedback overhead can be

very large for some wideband MIMO-OFDM systems. Hence to efficiently transfer

the CSI from the receiver to transmitter requires a carefully design.

D. Classical Detection Scheme

In this section, we review some classical signal processings at the receiver side. For

OSTBC and beamforming transmission, usually an equivalent channel can be formal-

ized, e. g., let the precode matrix of beamforming be F, we can consider the matrix

H̃ = FH as the equivalent channel. Hence, with regard to the receiver design, there

is no difference from the spatial multiplex transmission by letting H̃ = H. Therefore,

without loss of generality, we can introduce MIMO signal detection techniques based

on spatial multiplex transmission. We used the symbol-error rate for the uncoded

system as the measure to compare the performance of different detectors.

1. Linear Detection

Assume Mr ≥ Mt, the linear detector takes the received vector y and premultiplies it

by a matrix BH . The resulting product x̃ is passed to the minimum distance symbol

by symbol decision. The matrix B can be optimized by different criteria. Two of the

most popular schemes are zero-forcing (ZF), B =
√

Mt

ρ
H(HHH)−1 ; minimum mean

square receiver (MMSE), B = (HHH + Mt

ρ
)−1

√
Mt

ρ
H =

√
Mt

ρ
H(HHH + Mt

ρ
)−1. The

above equivalence of the two forms of the MMSE detector can be proved by the matrix

inversion Lemma. The ZF detection chooses the pre-filter B to totally eliminate
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inter-stream interference in x̃, while the MMSE criteria chooses B to minimizing the

variance of the error e = x − x̃. When the SNR goes to large, the MMSE receiver

will converges to the ZF receiver, as the interference dominates the noise in the high

SNR.

The main disadvantage of linear detectors is poor performance in a symbol-error-

rate (SER) sense. Since linear pre-filtering B makes the noise correlated, symbol-by-

symbol detection, although very simple, is not optimal. From the more fundamental

receiver diversity angle, ZF and MMSE have only diversity Mr − Mt + 1, compared

to the diversity order of Mr for the ML detector. Hence, for a square matrix H,

the diversity order of such linear detectors is only 1. Intuitively, the ZF project the

received signal in the null space of the Hi matrix, where Hi is the H matrix to

remove the ith column. The dimension of this null space is Mr − Mt + 1. Therefore,

the resulted diversity order is Mr − Mt + 1 for the ZF detector. Since MMSE will

converge to ZF in high SNR, MMSE has the same receiver diversity as ZF.

2. Decision Feedback Detection

Decision feedback detection, also called BLAST (nulling and canceling) is built on the

linear detector by adding a feedback loop. Instead of making the decision concurrently

for all of filtered output x̃, decisions are made sequentially. One component a time.

At the beginning, the detector first make decision on the first symbol of x̃, denoted by

x̂1, then the feedback loop is used to subtract the interference caused by x1 from the

remaining components of BHr. Assuming that x̂1 is a correct decision, the process

continues until all the components have been detected. Due to error propagation, the

first symbol detection will dominate the vector error rate. Hence, usually the detected

order is from the highest SNR information symbol to the lowest SNR to minimize

error propagation. Since the performance is dominated by the first layer, the receiver
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diversity order of this V-BLAST detection is the the same as the linear detection

(Mr − Mt + 1) even with the optimal detection order. In this dissertation, we have

proposed a modified BLAST detection, called “Ordered List BLAST” to improve the

performance of BLAST detection.

3. Maximum Likely Detection (Sphere Decoding)

When we assume all the vectors x are equally likely, the detector that maximizes the

probability:

x̃ = arg max
ΩMt

f(r|x) (2.6)

is optimal, where ΩMt denotes the set of constellation points in the complex Mt-

dimenstion space. Assuming the noise is independent of x and i.i.d. Gaussian, the

maximum likelihood (ML) detector is simplified to the minimum distance detector

x̃ = arg min
x∈ΩMt

‖y − ρ

Mt

Hx‖2 , (2.7)

where H is perfectly known. Since the transmitted signal is from the uncoded QAM

or QPSK symbols. the optimization of (2.7) is an integer programming problem and

NP-hard. Exhaustive search has exponential complexity and is practically impossible

to implement. Sphere decoding (SD) can be used to reduce the complexity [12].

Let’s Assume the QAM modulation has been used with the constellation size Q2.

We then transform the channel matrix as:

B =

√
12ρ

Mt(Q2 − 1)

 Re{H} −Im{H}

Im{H} Re{H}

 (2.8)
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and let yr = [Re{y} Im{y}]T . Then the ML detector has following form

x̃ = arg min
s∈Z2Mt

Q

‖yr − Bs‖2 , (2.9)

where ZQ , {0, 1, · · · , Q − 1}. We can consider B as a lattice generate matrix.

Hence, the optimization problem is reduced to a closest lattice point search algorithm.

Applying the QR decomposition to B, we have

B =

[
Q Q′

] R

0

 , (2.10)

where R is an Mt × Mt upper triangle matrix with positive diagonal elements, and

Q (resp. Q′) is an Mr × Mt (resp. Mr × (Mr − Mt)) unitary matrix. Predefined

a hypersphere S(yr,
√

r0) centered on the received signal , which is large enough

to be included inside the optimal point with minimum Euclidean distance. Let the

initial sphere radius be r0. Therefore, the condition of the lattice points lies in the

hypershpere, i.e., Bx ∈ S(yr,
√

r0) can be written as

‖yr − Bx‖2 ≤ r0∥∥∥∥∥∥∥
[

Q Q′

]T

yr −

 R

0

x

∥∥∥∥∥∥∥ ≤ r0

‖QTyr − Rx‖2 ≤ r0 − ‖(Q′)Tyr‖2

‖y′ − Rx‖2 ≤ r′0 , (2.11)

where y′ , QTyr and r′0 , r0 − ‖(Q′)Tyr‖2. Due to the upper triangular form of R,

the last inequality implies series of conditions

Mt∑
j=i

‖y′
j −

Mt∑
k=j

rj,kxk‖2 ≤ r′0 , i = 1, · · · ,Mt . (2.12)
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Therefore, given the last Mt − i component values xMt
k , [xi+1, · · · , xMt ], an upper

and lower bound of xi can be derived from the set of inequalities:

Ui(x
Mt
i+1) =

 1

ri,i

y′
i −

Mt∑
j=i+1

ri,jxj −

√√√√r′0 −
Mt∑

j=i+1

∣∣∣∣∣y′
j −

Mt∑
k=j

rj,kxk

∣∣∣∣∣
2


Li(x
Mt
i+1) =

 1

ri,i

y′
i −

Mt∑
j=i+1

ri,jxj +

√√√√r′0 −
Mt∑

j=i+1

∣∣∣∣∣y′
j −

Mt∑
k=j

rj,kxk

∣∣∣∣∣
2
 . (2.13)

If

Mt∑
j=i+1

‖y′
j −

Mt∑
k=j

rj,kxk‖2 ≥ r′0 , (2.14)

then there is no value of xi satisfying the inequality (2.12) and all the lattice points

corresponding this choice of xMt
i+1 do not belong to the sphere S(y, s

√
r0), and can be

pruned from the search space.

The search is started from the last layer and sequentially goes to the first layer as

shown in Fig. 2. If the search engine arrives at the first layer, i.e., all the inequalities

(2.12) are satisfied and a valid lattice point within the sphere has been computed.

We then shrink the sphere radius to the distance of the found lattice point to the

received signal. This radius update is very important to reduce the search complexity.

The process is repeated until only the optimal point is left in the sphere. Essentially,

sphere decoding is a depth first tree search process or branch-and-bound technique in

the dynamic programming. It is a powerful method to solve the discrete ML optimal

point search problem. Like the Viterbi ML search utilizes the finite state machine

(FSM) trellis, the SD search reduces the complexity by the upper triangle structure

of the lattice generating matrix.

The beauty of the SD algorithm lies in its approximated polynomial complexities

for typical MIMO communication settings [13, 14]. In fact, for most case its expected
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Fig. 2. Sample of the SD tree search in 4-dimensional hypersphere

search operation is around M3
t . This low complexity is due to the fact that the

received signal y is the transmitted lattice point perturbed by a Gaussian noise. Due

to the the statistical distribution of channel matrix H and noise W, SD is an efficient

approximated polynomial complexity search algorithm for MIMO detection. For more

general settings, [15] shows the expected search step can be expressed as QγMt , where

γ ∈ (0, 1] depending on the SNR value. Hence, strictly speaking, the algorithm is not

polynomial. However, for large SNR, the factor γ << 1. This mean the complexity

of SD is dominated by the polynomial term. As the SNR decreases, the γ increases.

Therefore, SD has a lower complexity at high SNR than when operating at the low

SNR.

4. Lattice Reduction Detection

Fig. 3 plot the decision boundary of different detectors for the 2 × 2 MIMO system.

The red lines correspond to the two column vectors [h1 h2] of the channel matrix

which are not orthogonal due to their random distribution. The red circle denotes

the correct decision region. The larger the circle, the more noise power can be tol-
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a.  Received
 lattice
        b. Linear detector


       c. Decision feedback detector
 d. ML detector


Fig. 3. A performance comparison of different detectors Yao’03
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erated. Obviously, the ML has a large circle or better performance than the other

detectors. To get the performance of the linear detector to achieve that of the ML de-

tectors, one valid method is to make the columns of channel matrix H as orthogonal as

possible. Hence some lattice reduction algorithms, e.g., Lenstra-Lenstra-Lovsz(LLL)

algorithm, can be used to preprocess the channel matrix [16]. After the lattice reduc-

tion, the resulting matrix has quasi-orthogonal columns. Therefore, low complexity

linear detectors can nearly achieve the ML performance.

E. Information Theory Aspect of MIMO Receiver

The previous comparison of MIMO detectors is based on the uncoded symbol error

rate. The suboptimality of linear detection and decision feedback detection is due to

the linear equalizer introduced correlation of noise across the antennas. Hence, uni-

form symbol-by-symbol quantization of equalizer output x̃ is suboptimal and causes

significant information loss. With respect to information theoretical comparison, the

ML receiver is information lossless; hence, the sphere decoder algorithm can be easily

extended to a “list sphere decodind” to generate the soft information. [8] Showing the

list sphere decoding joint with turbo code can achieve near ergodic MIMO capacity

though the complexity of such an ML receiver is very high.

The linear MMSE detector is seriously suboptimal in regard to the symbol error

rate, however, the MMSE itself is information lossless. The output of MMSE equalizer

is a sufficient statistic to detect x, i.e.,

I(x;y) = I(x;WMMSEy) (2.15)
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Therefore, according the chain rule of mutual information

I(x;y) = I(x1, x2, · · · , xMt ;y)

= I(x1;y) + I(x2;y|x1) + · · · + I(xMt ;y|x1, · · · , xMt−1) , (2.16)

The decision feedback MMSE receiver is optimal for achieving the capacity of the

MIMO channel. This is a well-known fact proved by [3, 17]. Hence, if we use different

capacity achieving codewords for each layer, the MMSE DFE is an optimal receiver

to achieve MIMO ergodic capacity. This only applies to the MMSE receiver and

is not suitable for other linear receivers, such as zero-forcing. As for the outage

capacity, the capacity achieved scheme investigation will be more involved, since it

is required to design the so-called universal code to be adapted with the different

channel realizations. We have omitted the introduction here.

F. MIMO OFDM

The MIMO OFDM is a natural combination of two powerful techniques and has

often been used in many high speed wireless communication standards, e.g., 3GPP

LTE, 802.16 (WIMAX), 802.11 (WIFI). MIMO provides space diversity and multiplex

gain. OFDM transforms the frequency selective wideband channel into parallelled flat

fading channels while providing some frequency diversity. Hence, for each subcarrier,

all the previously introduced techniques can be used accordingly. The subcarrier

channels across the frequency are correlated. The correlation depends on the channel

delay spread (frequency selectivity). Usually, a carefully designed interleaver is used

across the subcarrier to utilize frequency and space diversity. The combination of

MIMO and OFDM provides high speed reliable wireless data communication.
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CHAPTER III

NEAR OPTIMAL LOW COMPLEXITY COHERENT MIMO DETECTOR

A. Introduction

The received signal at each receive antenna in a MIMO system is a superposition

of transmitted signals from different transmit antennas. If the MIMO system has

Mt transmit antennas and uses a constellation of size Q, maximum-likelihood (ML)

detection, which searches through all the possible transmitted symbols, requires a

complexity proportional to O(QMt), which is hard to implement when Q and Mt are

large. A number of suboptimal detectors were proposed to reduce complexity, such

as BLAST detection [18, 19], zero-forcing (ZF) and MMSE detection. However, all

these schemes perform fairly far from the ML detection scheme. Recently, the sphere

detection algorithm which searches in the vicinity of the received signal vector for

the optimum solution was proposed [12]. The average complexity of the proposed

sphere detection algorithm in general is exponential in the problem dimension Mt

[15], but could be dominated by polynomial terms of Mt, when Mt is small and the

corresponding signal-to-noise ratio is chosen sufficiently large [15, 13, 14].

In this Chapter, we propose a suboptimal detection algorithm for MIMO systems

based on searching a subset of all the possible transmitted symbols. The proposed al-

gorithm, which we will refer to as the List-BLAST algorithm, is introduced in Section

B with two improved versions. Section C derives the space alternating generalized

expectation-maximization (SAGE) algorithm [20] for MIMO detection as a further

enhancement to the List-BLAST. Section D compares the complexity of the proposed

algorithms with that of the sphere detection. Section E discusses soft-output detec-

tion. Section F provides simulation results and Section G concludes. Most of the
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work presented here is included in [21].

B. List-Blast Detection

Consider the discrete-time model of a MIMO frequency non-selective fading channel

with Mt transmit antennas and Mr (Mr ≥ Mt) receive antennas:

y = Hx + w, (3.1)

where H = [h1,h2, . . . ,hMt ] is a Mr × Mt MIMO channel assumed to be perfectly

known at the receiver side (We have incorporateed the SNR factor
√

ρ
Mt

into the

channel matrix H without loss of generality). The maximum-likelihood (ML) detector

then is:

x̂ml = arg min
x∈ΩMt

||y − Hx||2 (3.2)

where ΩMt denotes the set of constellation points in the complex Mt-dimensional

space. Since an exhaustive search for the ML solution over the whole set of ΩMt

is too complex, we take a different approach by searching through only a subset of

the candiates generated by manipulating the well-known BLAST detection scheme.

We refer to this new approach and its various extensions as List-BLAST detection

schemes in the sequel.

Let the QR decomposition of the channel matrix be H = QR, where Q is

a unitary matrix and R is an upper triangular matrix. Letting y′ = QHy, the

system in (3.1) can be expressed as y′ = Rx + w′, where w′ = QHw has the same

distribution as w since Q is unitary. In the triangularized model above, each row

denotes a different transmission/detection layer with the kth layer interfered only by

layers with indices larger than k. In BLAST, one first detects x̂Mt ; assuming x̂Mt is

correct, the interference of rMt−1,Mt x̂Mt can be subtracted from layer Nt−1 and x̂Nt−1
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can be detected as in a scalar channel. Similarly, layers Nt − 2, Nt − 3, · · · , 1 can be

detected in order. In the proposed list-BLAST scheme, we perform an exhaustive

search over all C discrete values x̂Mt could take; for a given x̂Mt , we use the BLAST

algorithm to detect the remaining elements of the vector [x̂Mt−1, x̂Mt−2, . . . , x̂1]. This

results in a list of C candidate points, each of which is a vector in the complex Mt

dimensional space. Finally, we select the one which minimizes ||y′ − Rx̂||2 as the

detected symbol vector. It can be easily shown that the list-BLAST algorithm for

Mt = 2 is actually maximum-likelihood.

It is well known that the performance of BLAST detection can be improved by

ordering the sequence of nulling and canceling. Each different order corresponds to a

unique ranking of the columns of the channel matrix H in the above implementation

using a QR decomposition. Thus, we can also extend the list-BLAST algorithm as

follows.

• List-Ranked-BLAST: In this extension, the least reliable layer with the lowest

signal-to-noise ratio is detected, or more accurately, listed first; the remaining

layers are detected from the most reliable (with the highest SNR) to the least

reliable. This is quite different from the optimal detection sequence in the

traditional Ranked-BLAST detection, which is from the most reliable layer to

the least reliable layer. The motivation is as follows: Since we do an exhaustive

search over all transmitted symbols in the first layer, it is the most protected

layer and therefore should be used against the lowest SNR. For each symbol

in the list of all possible symbols in the first layer, the remaining layers are

detected in the normal way, i.e. from the highest SNR to the lowest to minimize

the chance of error propagation.

• List-Shifted-BLAST: We cyclicly shift (either right or left) the columns of H by
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one, and apply the List-BLAST algorithm as described above to each shifted

H. If shifting is performed K times, where 1 ≤ K ≤ Mt, we will have C × K

candidates, from which the final detected signal vector will be selected based on

Maximum Likelihood (ML) criterion. A larger value of K results in better per-

formance, as will be shown in the simulation, but higher complexity. Therefore,

the List-Shifted-BLAST algorithm provides a flexible trade-off between com-

plexity and performance. Instead of cyclicly shifting the columns of H, random

permuting can also be used in a similar way.

C. SAGE-Aided List Blast Detection

Fessler and Hero [20] extended the classical EM algorithm [22, 23] to the SAGE

algorithm, applied it to estimate superimposed signals in Gaussian noise and showed

that SAGE converges more quickly than EM in this case. SAGE were applied to

resolve interfering signals in CDMA multi-user detection [24] and channel estimation

for multiple-antenna OFDM systems [25]. We will consider using SAGE algorithm to

improve the List-Blast detection. In a detection problem where the parameter set is

discrete, the convergence of the EM algorithm to even a local maximum has not been

proven [26]. To improve the likelihood of converging to the true ML solution, we use

the listed candidates as multiple initial points in SAGE to converge to another set

of C points. We then compare these C points and select the one which minimizes

||y′ − Rx̂||2. We refer to this scheme as SAGE-aided List-BLAST detection in the

sequel.

We include below a brief derivation for MIMO detection using SAGE. We choose

the hidden data space zi with respect to xi for i = 1, 2, · · · ,Mt alternately in each
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iteration and associates all the noise variance with it. Therefore, we have

zi = hixi + w, 1 ≤ i ≤ Mt, (3.3)

y = zi +
Mt∑

j=1,j 6=i

hjxj. (3.4)

Let f(zi;xi) be the probability density function of zi parameterized by xi and x̂(k)

the estimate of x at the k-th iteration. In the E-step we compute Ui(x, x̂(k)) ,

E{log f(zi;xi)|y, x̂(k)} as expressed below, where the expectation operation E{·} is

with respect to the conditional distribution of f(zi|y, x̂(k)). We have:

U(x, x̂(k)) = c + x∗
i h

H
i z̄i + xiz̄

H
i hi − |xi|2‖hi‖2, (3.5)

where c is a constant not a function of xi; z̄i = E[zi|y, x̂(k)] is the conditional mean

of zi given y and x̂(k). Since zi and y are jointly Gaussian, we have

z̄i = hix̂
(k)
i +

(
y −

Mt∑
j=1

hjx̂
(k)
j

)
. (3.6)

Maximizing U(x, x̂(k)) with respect to x in the M-step, we have

x̃
(k+1)
i =

hH
i z̄i

‖hi‖2
, 1 ≤ i ≤ Mt. (3.7)

To account for the fact that x is discrete and xi (1 ≤ i ≤ Mt) must be a

constellation point, we invariably quantize x̂
(k)
i to its nearest constellation point in

each iteration. Let ai,j , hH
i hj/‖hi‖2 and bi , hH

i y/‖hi‖2. Substituting (3.6) in

(3.7) and considering the quantization process we can summarize the SAGE iteration

as follows:

• Initialize with some x̂
(0)
i for 1 ≤ i ≤ Mt.

• At the (k + 1)th iteration (k = 0, 1, 2, ...):
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For i = 1 + [k mod Mt], compute

x̂
(k+1)
i = Q

(
x̂

(k)
i +

[
bi −

Mt∑
j=1

ai,jx̂
(k)
j

])
, (3.8)

for 1 ≤ j ≤ Mt and j 6= i, x̂
(k+1)
j = x̂

(k)
j .

D. Implementation and Complexity

For PSK modulation, sphere decoding can be implemented over the Mt dimensional

complex space [8]. However, QAM modulation is usually handled by decoupling the

real and the imaginary components; thus, the sphere detector need to search over a

2Nt dimensional real space. In contrast, the SAGE-aided List-BLAST schemes solve

both QAM and PSK detection in the same fashion.

Assume a block fading channel. We need to consider the computational complex-

ity for a whole block and that for each vector symbol in the block [27]. We denote the

first kind of complexity as pre-detection complexity and the second kind as detection

complexity. For List-BLAST detection, the pre-detection complexity requires O(M3
t )

computations for the QR decomposition. If ordered BLAST is required, the asymp-

totic computational complexity is still of O(M3
t ) by using some fast algorithm [28].

If SAGE is used, {ai,j} and {bi} can be pre-computed with complexity of O(M3
t ).

Similarly, sphere detection requires computing of both the QR decomposition and

pseudo-inverse H with a complexity of O(M3
t ) [8].

In the case of very slow fading, the channel remains constant during each trans-

mission block which could be composed of hundreds of vector symbols, the pre-

detection complexity can be very low per vector symbol and the detection complex-

ity dominates. For computational overhead for each vector symbol detection, the

List-BLAST and the List-Ranked-BLAST algorithms require the same computation
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Fig. 4. Average detection complexity in number of FLOPS for sphere detectors.

m = 2Nt

complexity of O(CM2
t ). The List-Shifted-BLAST requires complexity of O(KCM2

t ).

Each run of SAGE starting from a single initial point requires a complexity of O(M2
t ).

Note that most of the time the SAGE algorithm converges in 1 − 3 iterations; the

number of iterations does not seem to be a function of Mt according to the obser-

vation in our simulations. Therefore, if we perform SAGE aided detection on top of

List-BLAST or List-Ranked-BLAST, the complexity is still at O(CM2
t ). If SAGE

aided List-Shifted-BLAST is performed with K = Mt, the complexity is O(CM3
t ).

In contrast, the complexity of sphere detection is closely related to SNR and channel

realizations. For practical value of Mt, at low SNR, it could require an average com-

plexity of O((2Mt)
4) - O((2Mt)

4.5) [29]. Some “bad” (with spread singular values of

H) channel realizations require more computation.

Besides asymptotic complexity measured with respect to Mt, we also compare

the complexity in terms of average number of flops (floating point operations). The
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Table I. Detection Complexity (log2Mt(·)) of List-BLAST Algorithms

Settings List-BLAST SAGE-aided List-Shifted- SAGE-aided List-

List-BLAST BLAST Shifted-BLAST

4 × 4, 4PSk 2.6025 3.4754 3.2860 4.1449

4 × 4, 16QAM 3.2860 4.1449 3.9527 4.8115

8 × 8, 4PSk 2.4645 3.0916 3.2176 3.8421

8 × 8, 16QAM 2.9676 3.5921 3.7176 4.3421

average detection complexity of sphere decoding is shown in Fig. 4. The detection

complexity of the list-BLAST algorithms is shown in Table I. The List-BLAST/List-

Ranked-BLAST algorithm is the most efficient and has less complexity than that of

sphere detection in low and medium SNR region. At high SNR, depending on the

constellation size C and the number of shifts K ( K = Mt in Table I), SAGE-aided

List-BLAST and List-Shifted-BLAST may have higher complexity than that of the

sphere detection. The SAGE-aided List-Shifted-BLAST algorithm has relative higher

complexity, therefore may not be efficient for hard detection. However, since it can

list 2MtC candidates without extra computations, it is highly efficient in soft-output

detection as will be introduced next.

E. Soft-output Detection

The list-BLAST type algorithm provides us a natural way to decode and generate soft-

information. We assume that the information bits have been encoded with a channel

code, randomly interleaved, Gray-mapped to the constellation and then transmit-

ted through Mt different antennas. Therefore, MtM coded bits are transmitted per

channel use, where M = log2 C.
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At the receiver, MAP joint demodulation and detection can be used. The a priori

L-value of the coded bits bk, k = 0, 1, . . . ,MtM −1, is defined as LA(bk) = ln P [bk=1]
P [bk=−1]

.

We can use the SAGE-aided List-Shifted-BLAST algorithm to generate a candidate

signal set L, which can be divided into two sets: Lk,+1 if bk = 1 and Lk,−1 otherwise.

Using the max-log approximation, the extrinsic L-value can be approximated as [?]

LE(bk|y) ≈ max
x∈Lk,+1

{
−||y − Hx||2

N0

+
1

2
bT

[k]LA,[k]

}
− max

x∈Lk,−1

{
−||y − Hx||2

N0

+
1

2
bT

[k]LA,[k]

}
, (3.9)

where b[k] denotes the sub-vector of b omitting its kth element, and LA,[k] is the vector

of all LA values, also omitting its kth element. It is more desirable to include both

the List-Shifted-BLAST solutions (the initial points in the SAGE algorithm) and the

converged points after the SAGE iterations in L for two reasons. First, the List-

Shifted-BLAST algorithm ensures that Lk,+1 and Lk,−1 will not be a null set due to

the exhaustive listing of the constellation points for each transmit antenna. Second,

the SAGE iteration will likely produce some candidates in the vicinity of the received

vector 1. These candidates are more reliable to be used in computing (3.9) using the

max-log approximation. We note that the ML solution x̂ml may not necessarily be the

candidate x which maximizes one of the two terms in the RHS of (3.9), which could

be relatively far away from y due to the fact that turbo-coded systems usually operate

at very low SNR. Therefore, if one uses sphere decoder to list the candidates as in

[?], the search radius of the sphere decoder should be much larger than that in the

case of high SNR, let alone one need to search back and forth in order to get multiple

candidates. Therefore, in our simulations, we found that sphere detection requires

significantly higher complexity than SAGE-aided List-Shifted-BLAST detection.

1x is in the vicinity of y in the sense that ||y − Hx|| < δ, where δ is small.
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8-PSK modulation

F. Simulation Results

In the following simulations, we define Eb as the signal energy per transmitted infor-

mation bit at the receiver. Thus, we have Eb

N0
= Es

N0
+ 10 log10

Mr

RNtM
, where M is the

number of bits per transmitted symbol and R is the rate of the channel code. We

assume an independently faded MIMO channel in each channel use. Note that for

uncoded systems, the average bit error rate (BER) of the independently faded MIMO

channel is the same as that of the block faded MIMO channel. We first consider an

uncoded system, in which the channel code rate is R = 1.

Fig. 5 shows the BER of the ML detector implemented by sphere detection,

the ZF detector, the zero-forcing BLAST detector with optimal detection order (the
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layer with the highest SNR is detected first), the List-BLAST detector, the List-

Ranked-BLAST detector, and the SAGE-aided detectors for a 4 × 4 MIMO system

with uncoded 8PSK. Fig. 6 shows the BER of the different detectors for the same

MIMO system with uncoded 16QAM. The ML detector achieves a spatial diversity

order of four in this case, while the ZF detector achieves no spatial diversity. For

both the QAM and the PSK modulation, the BLAST detector with optimal detec-

tion order, denoted as “OP-BLAST” in all the figures, achieves a spatial diversity

order greater than one, but is outperformed by the list-BLAST detector denoted as

“LIST-BLAST” and the List-Ranked-BLAST detector denoted as “LIST-RBLAST”.

Because of the exhaustive search in the first detection layer (the M th
t layer) of the

list-BLAST algorithm, the error probability is dominated by the (Mt − 1)th layer,

which has spatial diversity of order two. We can achieve a further 2.5 dB gain by per-

forming SAGE iterations as shown by the curve denoted as “SAGE-LIST-BLAST”.

In the List-Ranked-BLAST case, diversity order is further improved by ordering the

nulling and cancelling as described in Section B. Actually, the List-Ranked-BLAST

algorithm performs almost the same as the ML detector in this 4 × 4 MIMO case.

Therefore, SAGE iterations cannot further improve its performance and are not re-

quired in this case. Since the List-Ranked-BLAST detection scheme has much lower

complexity than that of the sphere detection, it is an excellent candidate for detection

of 4 × 4 uncoded MIMO systems.

Fig. 7 shows the BER of the List-Ranked-BLAST scheme for an 8 × 8 MIMO

system with uncoded 16-QAM modulation. In contrast to Fig. 6, the List-Ranked-

BLAST detector is 2.5 dB worse at BER = 10−6 than that of the ML detector. The

SAGE-aided List-Ranked-BLAST detector can achieve an additional gain of 0.5 dB.

Although not plotted, the performance of the List-Shifted-BLAST detector (K = Mt)

in the 8 × 8 and the SAGE-aided List-Shifted-BLAST is almost the same as that of
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the ML detector. However, they are more computationally complex than the List-

Ranked-BLAST detector.

Finally, we compared the BER performance of the SAGE aided List-Shifted-

BLAST algorithm and the sphere detection in a turbo-coded 4 × 4 MIMO system in

Fig. 8. We choose the same system parameters as used in [8]. So, 16-QAM with Gray

mapping and the rate R = 1/2 four state parallel turbo code with polynomial (7, 5)

are used. The interleaver size of the turbo code is 9216 information bits and a random

interleaver is used between the modulator and the turbo encoder. Both the initial

points generated using the List-Shifted-BLAST algorithm (K = 4) and the converged

points generated using the SAGE algorithm are included in the candidate set L whose

size is 128, the same as used in the sphere detection. The curves associated with “4

iter” are generated using four Joint Demodulation and Detection (JDD) iterations. In
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each JDD iteration, the soft-output generated by the MIMO demodulator is passed to

the turbo decoder, which has 8 iterations; the a posteriori probability of the coded bits

after turbo-decoding is passed back to the demodulator for improved detection. The

curves associated with “1 iter” are generated without feedback of decoder soft-output

to the demodulator. The SNR at which the given rate is equal to the capacity of the

MIMO systems is 3.7 (dB). The performance of the SAGE-aided List-Shifted-BLAST

detection scheme without JDD is similar (surprisingly a little better) to that of the

corresponding sphere detection. However, after four JDD iterations, the SAGE-aided

List-Shifted-BLAST scheme is about 3 dB away from the capacity and 1 dB worse

than that of the corresponding sphere detection scheme.

G. Conclusion

We introduce some low complexity sub-optimal MIMO detectors, which use the list-

BLAST algorithm to generate multiple candidates from which a final one is selected

based on ML principle. For hard-decision, we show that the List-Ranked-BLAST,

which has a different detection order compared to the usual Ranked-BLAST, can

achieve performance close to the ML detection with lower complexity at low and

medium SNR than that of the sphere detection in our simulation settings. For soft-

output detection, SAGE aided List-Shifted-BLAST can also achieve performance close

to that of the sphere detection with much lower complexity.
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CHAPTER IV

SPHERE DECODING OF ORTHOGONAL SPACE-TIME BLOCK CODES FOR

NONCOHERENT CHANNELS

A. Introduction

Space-time codes are an efficient transmit diversity scheme that combats fading and

achieves the high capacity promised by the multi-antenna systems. Orthogonal space-

time block codes (OSTBC) [9] in particular provide a practical way to achieve the

promise of spatial diversity at a reasonably low decoding complexity. Much of the

previous work on decoding for space-time systems assumes knowledge of the channel

fading coefficients at the receiver. There is some work for noncoherent multiple-

antenna communication. For example, Hochwald and Marzetta [30] proposed unitary

space-time modulation, but it suffers from exponential decoding complexity in rate

and block length.

In this chapter, we propose a maximum-likelihood space-time decoding scheme

that requires no channel state information at the receiver. By utilizing the struc-

ture imposed by orthogonal space-time block codes, we can convert this noncoherent

detection problem into an integer quadratic programming problem and solve it ef-

ficiently by the sphere decoding algorithm. In the recent past, some attention has

been paid to this problem; Ma et al., [31] use semi-definite relaxation (SDR) to solve

this problem, but it is suboptimum and the complexity is of O(N3.5), where N is the

total number of symbols to be detected. Stoica and Ganesan [32] developed a blind

cyclic detector to approximate the blind ML decoding problem by iterative channel

estimation and symbol detection; there is some performance loss compared to our

method and SDR. Uysal and Georghiades [33] implemented the ML detector with a
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Viterbi algorithm. However, its complexity is exponential in the truncated memory

length. The results was first included in [34].

The chapter is organized as follows. Section B introduces the signal transmission

model. Section C details the ML detector for OSTBC without channel knowledge

and Section D presents the sphere decoding solution for this problem. Complexity

analysis and simulation results are provided in Section E and Section F concludes

this paper.

B. Data Transmission Model

Consider space-time block coded transmission with Mt transmit antennas and Mr

receive antennas. We assume the channel is block fading and frequency non-selective.

Each space-time coded block consists of K channel uses and L space time blocks are

concatenated as a long block for joint detection. The channel remains unchanged for

L × K transmissions and then changes into another independent realization. The

transmitted information symbols are denoted as {s(l)
k }K,L

k=1,l=1. K consecutive infor-

mation symbols {s(l)
1 , . . . , s

(l)
K } are linearly mapped into one space-time code matrix

C(l). Mathematically, C(l) can be written as:

C(l) =
K∑

k=1

Xks
(l)
k ∈ RMt×K , (4.1)

where Xk ∈ RMt×K are fixed “elementary” code matrices; l represents the lth space-

time code block in the L concatenated data blocks. For OSTBC, the code matrices

Xk satisfy the following condition:

XiX
H
j =


I, i = j

−XjX
H
i , i 6= j

, (4.2)
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with Mt < K, (see[?, 35]). For simplicity, we assume that Xk is real-valued. Using

the properties (4.1), (4.2) of OSTBC, it can be easily shown that

C(l)C
H
(l) = C(l)C

T
(l) = (s2

1 + s2
2 + . . . + s2

K)I . (4.3)

If we assume the symbols are from a unitary constellation (constant energy), e.g.,

BPSK, then C(l)C
T
(l) = KI. Obviously, this product is independent of the transmitted

symbols and can be omitted in the ML receiver design. Such orthogonal space-time

structure satisfies Hochwald and Marzetta’s unitary space-time modulation scheme

[30]. As we will show later, the noncoherent ML OSTBC detector has polynomial

decoding complexity.

For L continuous OSTBC transmissions, the received signal model is:

Y =

√
ρ

Mt

HC + W , (4.4)

Y ∈ CMr×KL is the received signal matrix for L space-time blocks, Y = [Y(1), . . .Y(L)];

Y(l) denotes the received signal for one OSTBC block transmission; H ∈ CMr×Mt is

the complex channel matrix, whose (i, j) element hi,j is the complex fading gain from

transmit antenna j to receive antenna i and is modeled as a circularly symmetric,

complex, Gaussian random variable with zero mean and unit variance; the fading

gains are assumed independent. C ∈ RMt×KL contains the L concatenated OSTBC

transmitted matrices, C = [C(1), . . .C(L)], where C(l) denotes the lth OSTBC trans-

mission with dimension Mt×K; W ∈ CMr×KL represents complex, additive, circularly

symmetric i.i.d. Gaussian noise with zero mean and unit variance. ρ is the average

signal-to-noise ratio (SNR) at each receiving antenna.
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C. The Maximum-Likelihood Noncoherent Detector

Given the transmitted matrix C which satisfies CHC = KLI, the ML (incoherent)

detector is is derived in [30] from the channel model and the statistics of random

channel distribution:

Ĉ = arg max
C

P (Y | C) = arg max
C

tr{CYHYCH} . (4.5)

The Noncoherent can also derived as the generalized likelihood ratio testing (GLRT)

Ĉ = arg max
C

tr

{
−

[
Y −

√
ρ

Mt

CĤ

]H

·
[
Y −

√
ρ

Mt

CĤ

]}
, (4.6)

which use the coherent ML receiver with the unknown value of H replace by its ML

estimate under the assumption the space-code matrix C is transmitted. Hence

Ĥ =

(
ρ

Mt

)−1/2

(KL)−1CHY . (4.7)

The maximum-likelihood interpretation for the noncoherent receiver (4.5) assumes

the channel matrix has independent elements that are distributed as CN (0, 1), while

the GLRT interpretation is less restrictive because it does not assume any thing

about the statistics of the propagation matrix. Since the detector performance will

depend on how good is the ML channel estimation Ĥ. It is well known that the

unitary space-time signal constitute the optimal training signal. Specifically, if a

known signal is transmitted to ML estimate the channel H, the energy-constraint

signal that minimizes the total error variance is a unitary space-time signal. Hence

the fact of GLRT interpretation is further strengthened.
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Similar to [31] and [32], we reformulate equation (4.5) into a quadratic form:

Ĉ = arg max
C

tr {CYHYCH}

= arg max
C(l),l=1,...,L

‖
L∑

l=1

C(l)Y
H
(l)‖2

F

= arg max
C(l),l=1,...,L

‖
L∑

l=1

vec{C(l)Y
H
(l)}‖2 . (4.8)

Writing C(l) as the linear combination of transmitted symbols using (4.1), we obtain:

vec{C(l)Y
H
(l)} =

K∑
k=1

vec{XkY
H
(l)}s

(l)
k = A(l)s(l) , (4.9)

where A(l) = [vec(X1Y
H
(l)), . . . , vec(XKYH

(l))] ∈ CMtMr×K and s(l) = [s
(l)
1 , . . . , s

(l)
K ]T

represents the information symbols of one OSTBC block transmission. With this

result, we can further simplify the objective function, and rewrite the ML detector

as:

ŝ = arg max
s(l),l=1,...,L

‖
L∑

l=1

A(l)s(l)‖2

= arg max
s

sHRs (4.10)

where vector s = [sT
(1), . . . , s

T
(L)]

T is the transmitted data symbols over L transmission

blocks, and R is a block positive definite matrix with (p, q) block given by

Rp,q = <{AH
(p)A(q)} (4.11)

So far we have formulated the ML detection problem for the noncoherent channel

into an integer quadratic optimization problem (symbols s have discrete values). If

there was no constraint on s, a well-known solution is the eigenvector corresponding to

the largest eigenvalue of R. In our case, s belongs to a discrete signal constellation and

the optimization problem involved is known to be NP hard. However, the optimization
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problem can be solved efficiently using an integer programming algorithm, sphere

decoding [12], presented briefly in the next section.

D. MIMO Sphere Decoding

We first transform the maximization problem into a minimization problem:

ŝ = max
s

sHRs

= min{ξI − sHRs}

= min
s

sH (κI − R)︸ ︷︷ ︸
W

s (4.12)

(a)
= min

s
sHUHUs = min

s
‖Us‖2 . (4.13)

κ is a constant that makes the matrix W strictly positive definite and ξ = sHκs;

step (a) uses the Cholesky factorization of the positive definite matrix W and U is

an upper triangular matrix. κ can take any value that is greater than the largest

eigenvalue of matrix R, e.g., tr(R) or λmax(R) + ε, where λmax(R) is the largest

eigenvalue of R and ε is a positive value. We will optimize κ to reduce the decoding

complexity in the next section. The optimization problem in (4.13) can be solved

efficiently with Fincke and Pohst’s lattice closest point search algorithm [36].

Brute-force searching of the whole signal space has an exponential complexity

of 2QKL, where Q is the signal constellation size. It’s computationally intractable

with large KL. Some suboptimal solutions have been proposed to reduce the search

complexity at the cost of a considerable performance loss. Sphere decoding is an ef-

ficient optimal search algorithm with polynomial complexity. Instead of exhaustively

searching the whole signal space, sphere decoding constraints the search in a prede-

fined sphere. With the upper triangular structure of the lattice generator matrix U,
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upper and lower bounds for each dimension (symbol) can be recursively obtained.

Updating the sphere radius with the norm of the latest valid lattice point (the latest

output lattice point satisfying the upper and lower bounds for each dimension), the

algorithm converges quickly to the optimal solution, especially for high SNRs.

Choose an M = KL dimensional sphere with center at the origin and radius r,

large enough to include at least one valid lattice point. U is the lattice generator

matrix and Us is a lattice point corresponding to a valid transmitted signal s; ‖Us‖

is the norm of the lattice point. We wish to find the minimum norm lattice point

that lies within the sphere, i.e. the minimum norm lattice point satisfying

‖Us‖2 =
M∑
i=1

u2
ii

[
si +

M∑
j=i+1

uij

uii

sj

]2

< r2 . (4.14)

The sphere decoder establishes the bounds on s1, . . . , sM , recursively from M to 1

[12]. For any lattice point within the sphere, the necessary condition for sM is

d− r

uMM

e ≤ sM ≤ b r

uMM

c , (4.15)

where d·e and b·c are the standard ceiling and floor functions, respectively. Given

sM , . . . si+1, we can establish an admissible value for si recursively using:

d 1

uii

(−
M∑

j=i+1

uijsj −

√√√√r2 −
M∑

j=i+1

|
M∑
l=j

ujlsl|2)e ≤ si

≤ b 1

uii

(−
M∑

j=i+1

uijsj +

√√√√r2 −
M∑

j=i+1

|
M∑
l=j

ujlsl|2)c . (4.16)

The decoding algorithm is summarized as follows:

Sphere decoding algorithm (input: (r,U), output: ŝ)

Step 1. Set i := M,PM := 0, ηM := 0, D = r2
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Step 2. If D < Pi go to Step4; otherwise

LB(si) := max{0, d−ηi −
√

D − Pi

uii

e} ,

UB(si) := min{Q − 1, b−ηi +
√

D − Pi

uii

c} . (4.17)

set si = LB(si) − 1.

Step 3. si := si + 1 if si ≤ UB(si)go to step 5, else go to step4.

Step 4. If i = M terminate; else set i := i + 1 and go Step3.

Step 5. If i > 1, then let ηi−1 :=
∑M

j=i ui−1,jsj, Pi−1 := Pi+|ηi+uiisi|2, let i := i−1

and go to Step2.

Step 6. Update the sphere radius as D := P1 + |η1 + u11s1|2, update the solution

as ŝ = s, and update all the upper boundaries

UB(sl) = min{Q − 1, b−ηl +
√

D − Pl

ull

c}

for all l = 1, . . . ,M ; go to Step3.

Sphere decoding has been shown to have polynomial complexity (approximately

O(N3)) [13, 14] for the problem at hand.

E. Performance

1. Complexity Analysis

In the implementation of the sphere decoder above, two parameters which will affect

the complexity of the lattice search need to be optimized. One is the initial sphere
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radius and the other is the parameter κ that transforms the maximization into a

minimization problem.

Optimizing κ in (4.12) is a critical step in the efficient algorithm design. We

have many choices, as long as κ is greater than the largest eigenvalue of R, e.g., the

trace of the matrix R, which is easy to compute. However, if we use a large κ, the

upper triangular matrix U in (4.13) is close to a diagonal matrix after the Cholesky

factorization. Consequently, the sphere searching algorithm has to go into more levels

to test the hypothesis whether the current signal value selection is out of the sphere

constraint. This dramatically increases the search steps of the algorithm. The best

choice of κ would be the smallest possible value, i.e. λmax(R) + ε where ε is a small

positive value. Below, simulations of decoding complexity with different κ values are

compared. Following the literature, we define the complexity exponent as:

ec =
log C(M, r)

log M
, (4.18)

where C(M, r) is the number of elementary operations (additions, subtractions and

multiplications) of the search algorithm and M and r are the dimension and radius

of the search space, respectively. If ec is a constant, the expected complexity is

polynomial; otherwise, if ec takes the form of M
log M

, the complexity is exponential.

It will be seen below that for most reasonable SNR values the complexity exponent

is less than 3 for the adapted sphere decoder. Hence for this problem the sphere

decoding algorithm can be implemented efficiently.

2. Simulation Results

We adopt Ganesan’s OSTBC scheme [35] which is full rate and full diversity with

three transmit and four receive antennas. For simplicity, BPSK modulation is used.
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The space-time component matrices are:

X1 =


1 0 0 0

0 1 0 0

0 0 1 0

 X2 =


0 1 0 0

−1 0 0 0

0 0 0 1



X3 =


0 0 1 0

0 0 0 −1

−1 0 0 0

 X4 =


0 0 0 1

0 0 1 0

0 −1 0 0

 . (4.19)

Here we let L = 8 ( i.e., the channel remains constant for 8 coded blocks and then

changes into an independent realization).

Fig. 9 gives the symbol error rate of different detection schemes without channel

knowledge. The SNR denotes the signal-to-noise ratio per receiving antenna, which

is defined as the ratio of the total transmit energy per channel use divided by the

per-component noise variance. The results illustrate that sphere decoding performs

similar to semi-definite relaxation (SDR) [31], outperforms all other schemes and is

within 1.5 dB from the performance of a coherent detector. Compared with blind

cyclic (BC) methods [32], sphere decoding has about a 2dB gain. As we will see below,

sphere decoding has a lower complexity than SDR. In Fig. 1, we also included the

pilot assisted technique, which is widely used in practice. The pilot assisted scheme

achieve coherent demodulation by using one space-time block (4 symbols) as a pilot

to estimate the channel. For fair comparison, we have considered the SNR penalty

for the pilot assisted scheme. We see that sphere decoding method outperforms the

pilot assist scheme as well. It is a well known result that for Rayleigh fading channel

the DPSK performs 3 dB worse than the coherent BPSK detection and the diversity

order is only one. However, from our noncoherent detector of OSTBC, there is only

1.5 dB loss and provide a diversity order the same as coherent detection.
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To further demonstrate the performance of the proposed scheme, the symbol

error rates v.s. the block length for different detectors are illustrated in Fig. 10.

Intuitively, the longer the block, the better the symbol error rate. We observe that

L = 8 is enough to achieve most of the gain from joint detection. Larger data blocks

can not improve the performance, but increase complexity considerably.

We plot the complexity exponent for sphere decoding for different block lengths

in Fig. 11. At low SNR, a longer block length has larger complexity exponent

than a shorter one. However, at high SNR a shorter block length has slightly larger

complexity. This behavior has to do with the quick convergence of the sphere decoding

algorithm at high SNR pretty much irrespective of L. With SNR greater than 2 dB,

Fig. 11 shows that the complexity exponent of sphere decoding is less than O(N2.5),

which is lower than SDR’s O(N3.5) [31].

In Fig. 12 we plot the complexity exponent corresponding to different κ values.

The larger the value of κ, the higher the complexity exponent. Larger κ makes

the matrix U more diagonally distributed. Hence, the search algorithm needs to

go deeper in the tree to test the hypothesis whether the current assumed vector

is within the sphere. If we assume κ equals tr(R) (in most channel realizations

tr(R) >> (λmax(R)+200)), the complexity exponent could be too large for large data

blocks. Hence, the trace of the matrix is an unsuitable candidate for the maximization

to minimization transform for this problem.

F. Conclusion

We investigated noncoherent decoding of OSTBC by adapting the sphere decoding

algorithm previously applied to the coherent MIMO channel. The results show good

performance in both symbol error rate and complexity, compared to other techniques.
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CHAPTER V

SIGNAL DETECTION WITH ASYNCHRONOUS CO-CHANNEL

INTERFERENCE IN MIMO-OFDM SYSTEMS

A. Introduction

Increasingly, co-channel interferences (CCI) is becoming the dominant performance

limiting factor in emerging high-density WLAN (HD-WLAN)[37]. The problem is

exacerbated when more and more access points (AP)s are deployed in areas, such

as office building, airport, university campus, etc., to provide network access for in-

creasing number of mobile users. Only limited orthogonal channels (typically 3 or

8) are available. As a result, multiple cells that are operated on the same channel

cannot be separated far enough and will interfere with each other if active at the same

time, which is depicted in Fig 13. The next generation WLAN technology - 802.11n -

combines orthogonal frequency division multiplex (OFDM) and multiple input mul-

tiple output (MIMO) techniques, providing good opportunities for achieving not only

higher per-link throughput, but also better interference suppression capability.

Researchers have investigated the issue of CCI suppression extensively since Win-

ters’s seminal paper [38]. The use of multiple antennas brings extra degrees of freedom

for CCI suppression. [39, 40] studies the throughput of interference-limited MIMO

cellular system under different antenna configurations and transmission schemes. [41]

investigated the MIMO capacity under interference with single-user detection. [42, 43]

proposed a technique based on multiuser detection to cancel MIMO CCI for flat fading

channels. Considering OFDM modulation and a time-varying channel, [44] designed

an adaptive array processing scheme by using a MMSE diversity combiner. As pointed

out in [45], the previous frequency domain approaches have difficulties in suppressing



50

AP1 AP2STA1 STA2

Fig. 13. Worst interference situation for 3 reusable frequency channels

asynchronous interference, so they proposed a space-time filter to suppress CCI by uti-

lizing the OFDM cyclic-prefix structure. [46] is the most relevant to our work, which

adopted a MMSE method and proposed to estimate the interference covariances for

each subcarrier (or tone) by short training and utilizing the correlation among dif-

ferent tones. Besides the physical layer signal processing approaches, [37] designed a

medium access control (MAC) based solution which adapts carrier sensing threshold

to mitigate CCI from neighboring cells. It was shown by test-bed experiments that

the proposed adaptive CSMA scheme can effectively address so-called “hidden and

exposed terminal” problems and significantly improve network throughput.

Typically, CCI in a WLAN is asynchronous due to the use of a random access pro-

tocol, namely CSMA/CA (Carrier Sensing Medium Access/ Collision Avoidance). It

was shown in [45] that the conventional frequency domain CCI cancelation by estimat-

ing both channels cannot work effectively because the cyclic padding OFDM modula-
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tion structure to maintain inter subcarrier orthogonality has been destroyed. Hence,

we adopted a statistical methodology – modeling the asynchronous (co-channel) inter-

ference as a zero-mean, time uncorrelated and spatially colored stationary Gaussian

random process, and designed an efficient spatial covariance estimation algorithm by

utilizing the OFDM symbol structure and matrix decomposition techniques. Simula-

tion results show that our method can achieve packet error rate (PER) performance

comparable to synchronized cancellation. The work in this chapter is given in a

slightly different from in [47].

The rest of the chapter is organized as follows. Section B describes the system

model, and introduces the effect of asynchronous interference. An efficient spatial

covariance estimation method for MIMO OFDM signals is proposed in Section C. In

Section D, the MMSE receiver enhanced with asynchronous CCI suppression capabil-

ity is presented, as well as a modification for space-time coded systems is discussed.

Then, the optimum MAP detector to minimize bit error probability is developed.

Section E shows the performance of our algorithms by extensive simulations. Finally,

Section F concludes.

B. System Model

Fig. 14 shows a MIMO OFDM system with Mt transmitters and Mr receivers [48].

The encoded packet is interleaved and partitioned into F blocks. Then the binary data

blocks are mapped into {X(f, k)|1 ≤ f ≤ F, 1 ≤ k ≤ K} using the selected modula-

tion, where K is the number of subcarriers (tones). Assume the modulated symbols

X(f, k)s have unit power. We denote [X(f, 1) · · ·X(f,K)] as one OFDM symbol.

The OFDM symbols are space-time processed (through either space-time coded or

spatial multiplexed), and then separated into M groups. Each group is transmitted
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on one antenna. Before transmission, OFDM symbols are IFFT transformed into

time domain and added cyclic prefix to minimize inter-symbol-interference (ISI) due

to multi-path effect. The resulting transmission sequence is {xi(n), i = 1 · · ·M}. We

assume that the channel has L taps and remains unchanged within a packet. The

same channel model is used for both intended and interference signals and a random

delay τ is introduced to model the asynchrony of interference. Finally, we can express

the received signal at the desired user’s jth antenna as:

yj(n) =
Mt∑
i=1

L−1∑
l=0

hi,j,lxi(n − l) +
U∑

u=1

Mt∑
i=1

L−1∑
l=0

gu
i,j,lz

u
i (n − l − τu) + wj(n) . (5.1)

where hi,j,l and gu
i,j,l define the the lth tap channel response for the desired transmit-

ter and the uth interferer between the ith (transmit) antenna and the jth (receive)

antenna, and wj(n) is the additive complex white Gaussian noise with zero mean

and variance N0. The second term in the above equation represents the co-channel

interference.
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Asynchrony destroys cyclic structure so that interference can no longer be mod-

eled as the interferer’s channel on the given subcarrier multiplied by the data symbol.

All the taps of the time-domain channel response will contribute to the interference

for each tone. Now, take one interferer’s signal and denote it as q(n). For simplicity,

we assume one transmit antenna case, but extension to the MIMO channel is straight-

forward. We rewrite the interference as cyclic structure according to the timing of

the desired signal [45].

q(n) =
L−1∑
l=0

glz([n − l]K) +
L−1∑
l=0

gl{z(n − l) − z([n − l]K)}1(n−l)<0 , (5.2)

where K is the FFT size of circular convolution; [n]K means n mod k, and the

indicator function 1(n−l)<0 is one if (n − l) < 0 and zero otherwise. Basically, the

interference signal is described as a circular convolutional term plus a correction term.

Taking FFT of (5.2) gives:

Q(k) = G(k)Z(k) +
K−1∑
n=0

L−1∑
l=0

gl{z(n − l) − z([n − l]K)} · 1(n−l)<0 · e−j2πkn/K , (5.3)

with G(k) and Z(k) being the K-point FFT of gl and z(n) (for 0 ≤ n ≤ K − 1),

respectively.

The second term of (5.3) implies we need L degrees of freedom to suppress the

interference effectively by using the conventional MMSE receiver that estimates both

the desired signal channel hl and the interference channel gl.

C. Spatial Covariance Estimation for Asynchronous Interference

Instead of estimating the interference channel response, we model it as a zero mean,

spatially colored Gaussian stationary random process for each tone. Hence, the sec-

ond moment - covariance completely characterizes the statistics of interference. We
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proposed a statistical methodology to address the challenges of asynchronous CCI

suppression. The Gaussian approximation is simple and easy for receiver design. Fig.

15 shows the accuracy of the Gaussian modeling of the asynchronous interference. We

can observe that Gaussian distribution matches the asynchronous interference statis-

tics well. The more the structure of the interference is exploited, the more effective

the interference suppression algorithm is. We write the baseband received signal in

the kth tone as follows:

Yk(n) = HkXk(n) + Ik(n) , (5.4)

where I(n) ∈ CMr×1 represents interference plus noise, i.e., we lumped (5.3) and

additive Gaussian noise into I(n). The goal is to efficiently estimate the covariance

of I(n) in each tone, and then design the Wiener filter or the optimum MAP detector

to suppress interference.
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The spatial covariance of I(n) in the kth tone can be expressed as:

Rk
II = E{Ik(n)Ik(n)H} =

1

P
lim

P→∞

P−1∑
n=0

{Ik(n)Ik(n)H} ,

where P is the training OFDM symbol number. However, it is not practical to mea-

sure the interference statistics over a long time, and therefore a parsimonious accurate

spatial covariance estimator should be used. The most commonly used choice is the

sample average, which is the maximum likelihood (ML) estimator and it is unbiased.

However, the ML estimator is known to have a large tendency to spread the eigenval-

ues. This tendency is highly undesirable and often causes a substantial degradation in

performance. Therefore, we proposed to utilize the correlation information of OFDM

tones to refine the estimation. Such correlation is inherent in the OFDM modulation

structure and the multipath characteristics of fading channels. Moreover, we use the

Cholesky decomposition method to turn a constrained parameter estimation problem

(positive definite matrix) into an unconstrained one.

1. Temporal Low-Pass Smoothing

Let R̃k
II = 1

P

∑P−1
n=1 {Ik(n)HIk(n)}, where R̃k

II ∈ CMr×Mr . The matrix sequence

{R̃1
II · · · R̃K

II} fully characterizes the statistics of the interference. The diagonal en-

tries of the matrix sequence S̃nn = {R̃1
II [n, n] · · · R̃K

II [n, n]} are the estimated power

spectral density (PSD) of signal from nth receive antenna. Similarly, the off-diagonal

sequence S̃mn = {R̃1
II [m,n] · · · R̃K

II [m, n]} represents the estimate of mutual power

spectral density between signals from the mth and nth antennas. We transform

the auto/mutual PSD back to time domain with IFFT to get the cyclic auto/cross-

correlation sequences.

r̃mn = F−1S̃mn, m, n = 1 · · ·Mr , (5.5)



56

where F is a K × K FFT matrix, r̃mn denotes the correlation function.

We notice that the received signal is the sum of the OFDM signals which have

propagated through the multipath channels with an additive Gaussian white noise.

We assume the original signals sent by each transmit antenna are uncorrelated in

the time domain. Let the maximum delay tap of the multipath channel be L. After

the transmitted signal is convolved with the multi-tap channel response, two timing

received samples will be correlated if separated by less than L, and uncorrelated

otherwise,

r̃mn = {r̃mn[0], · · · , r̃mn[L − 1] , 0, · · · , 0, r̃mn[K − L + 2], · · · , r̃mn[K]} (5.6)

Clearly, the correlation function has “low-pass” property, which will be exploited

to smoothing the estimation. We null the terms for L ≤ k ≤ K − L + 1 as shown in

(5.7) before transforming r̃mn back to frequency domain.

r̂mn = Dr̃mn, D = diag(dk),

dk = [1, · · · , 1︸ ︷︷ ︸
L

, 0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
L−1

] . (5.7)

Hence, we get the smoothed spatial covariances estimations as

Ŝmn = Fr̂mn

= FDFHS̃mn

= PS̃mn . (5.8)

For the case when only part of the tones are used to transmit data (for example,

one 802.11 a/g/n OFDM symbol consists of 52 tones from 64 available), we try to

estimated the 2L − 1 correlation parameters from the Kc data subcarriers. Let r̄mn

be a 2L−1 dimension vector, which was formed by removing zeros from r̃mn in (5.6).
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We have following least square estimation:

ˆ̄rmn = min
r̄mn

‖S̃mn − FcBr̄mn‖ (5.9)

where Fc is the truncated FFT matrix with rows correspond to used data subcarriers,

and

B =

 I 0 0

0︸︷︷︸
L

0︸︷︷︸
K−2L+1

I︸︷︷︸
L−1

 . (5.10)

Hence,

Ŝmn = FcB
(
(FcB)H(FcB)

)−1

(FcB)H︸ ︷︷ ︸
P

S̃mn (5.11)

Where the filter matrix P can be pre-computed and stored. Similar to the conven-

tional low-pass filter in signal processing that can smooth temporal correlated signals,

the above process can be regarded as a temporal low-pass filter to smooth spectral

correlated signal. The concept is described originally in [46]. However, if operat-

ing the above low-pass filter on each entry vector independently, we will destroy the

structure of the Mr × Mr matrix Rk
II that is Hermitian and positive definite (PD),

and has Mr(Mr + 1)/2 parameters constrained. Next, we will address this issue by

using Cholesky decomposition.

2. Cholesky Decomposition

In the area of multivariate statistics, it is a common approach to decompose the com-

plicate covariance matrices into simpler components for further processing. There are

three popular methods to use for matrix decomposition: variance-correlation decom-

position, spectral decomposition (singular value decomposition (SVD)) and Cholesky
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decomposition. While the entries of the correlation and orthogonal matrices in the

variance-corrleation and spectral decompositions are still constrained, those in the

lower triangle matrix of the Cholesky decomposition are always unconstrained. As a

result, it becomes a unconstrained refinement if smoothing the Cholesky decomposi-

tion of spatial covariances across different tones instead of the covariance itself as in

previous section, and the Hermitian and positive definite structure can be maintained.

The low-triangle matrix of the Cholesky decomposition provides sufficient statistics

for the covariance estimation, and can be written as:

R̃k
II = (Uk)H · Uk , (5.12)

where Uk is a upper triangle matrix, Uk is also called “square-root” of matrix R̃k
II ;

Instead of filtering the entry vectors of R̃k
II , we now smooth that of upper triangle

matrices Uk. After the smoothing, we reconstruct the spatial covariance for each tone

as R̂k
II = (Ûk)H · Ûk. Since the correlation among different tones still maintain for

square-root matrix U, we can use the filtering matrix P in equation (5.8). Other

choice of smooth function might be possible, e.g., Kaiser-Bessel window. In our case,

we observed that the matrix P provides good performance with wise choice of L. The

algorithm is summarized in Table II.

In order to show the accuracy of different spatial covariance estimation ap-

proaches, we use three metrics to illustrate of the effect smoothing and Cholesky de-

composition. Relative Frobenius norm, relative MSE of the eigenvalues and Stein’s/entropy

loss [49]. The relative accuracy with Frobenius norm is defined as:

ξF (R̂II ,RII) =
‖R̂II − RII‖F

‖RII‖F

=
trace{(R̂II − RII)(R̂II − RII)

H}
trace{RIIRH

II}
(5.13)

where RII is the theoretical spatial covariance, which is HHH for synchronous case.



59

Table II. Spatial Covariance Estimation Algorithm I

1. Samples Average Estimation: for k = 1 · · ·K, R̃k
II = 1

P

∑P−1
n=0 {Ik(n)HIk(n)}

2. Cholesky Decomposition: for k = 1 · · ·K, R̃k
II = (Ũk)H · Ũk

3. Smoothing : For each entry in Ũk, let ũ =
[
Ũ1[m,n] · · · ŨK [m,n]

]T
, v = P · ũ,

then v =
[
Û1[m,n] · · · ÛK [m,n]

]T
, construct Ûk from v.

4. Reconstructing : Reconstruct the estimated covariance: R̂k
II = (Ûk)H · Ûk.

The relative MSE of eigenvalues is:

ξE(R̂II ,RII) =

∑
i(λi,R̂II

− λi,RII
)2∑

i(λi,RII
)2

(5.14)

The Stein’s/Entropy loss characterizes the relative distance of two Gaussian dis-

tributions.

L(R̂II ,RII) = D
(
NC(0,RII) |NC(0, R̂II)

)
= trace(R̂IIR

−1
II ) − log det(R̂IIR

−1
II ) − Mr (5.15)

We plot the numerical results for these three metrics in Fig. 16-18, which are the

averaged values across different tones and channel realizations. From Fig. 16, we

notice that for Frobenius norm, Cholesky decomposition based smoothing outperform

both sample average and pure smoothing. In Fig. 17, we found the smoothing without

Cholesky decomposition deviate the eigenvalue from the theoretical one with a large

value and even worse than sample average. This demonstrates the pure covariance

smoothing will destroy the spatial covariance matrices structure.

In Fig 18. we plot the percentage of reduction in average loss compared with the
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sample mean covariance estimation:

PRAL = 100
Lsa(R̂II ,RII) − Lchol(R̂II ,RII)

Lsa(R̂II ,RII)
(5.16)

It shows more than 50 percent reduction in the stein’s loss for low interference v.s.

noise ratio with the proposed spatial covariance estimation method. However, for

less noisy case, the improvement decreases to around 20 percent. Therefore, our

spatial covariance estimation algorithm provide substantial gain for noisy estimation

environment.

The Cholesky decomposition method has been used in [50] for simultaneous es-

timation of several covariance matrix. It was also shown that the estimation of a

covariance matrix is equivalent to estimating a squence of varying-coefficient and

varying-order regression models with unconstrained coefficients.

D. Interference Aware Receiver Design

The enhanced parsimonious spatial covariance algorithm proposed the above allows

for better estimation of the statistics of asynchronous co-channel interference. In this

section, we will design an interference-aware receiver to suppress CCI by utilizing

the estimated statistics, shown as Fig. 19. First, we use the classical Wiener filter,

i.e., MMSE. The problem is invariant to the choice of OFDM tone k, without loss of

generality, we will suppress the tone index - k.

1. MMSE Receiver for Co-channel Interference Mitigation

Denote the MMSE filter as W,

W = R−1
yy RH

xy , (5.17)
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where Rxy = E{x(n)yH(n)} = H, and Ryy = E{y(n)yH(n)}. In order to obtain the

MMSE filter, we need to estimate the channel of desired signal Ĥ and the covariance of

received signal R̂yy. The simplest way to estimate Ryy is to average the received signal

vectors over a period of time. However, such method does not explore the structure

of received signal efficiently and can not provide accurate covariance estimation even

with long-time average, especially for high-order modulations. Our simulation results

have verified this argument (not shown in this paper due to limited space) and show

poor performance of 16QAM or above. Due to the independence among desired signal,

interference and noise. We can rewrite the covariance of the received signal as:

Ryy = HHH + RII . (5.18)

For the synchronous case, we have RII = GGH + N0IMr , where IMr denotes the

identity matrix and G indicates the channel response of interference. For the asyn-

chronous case, we will use the algorithm proposed in the previous section to estimate

RII . The receiver structure is shown in Fig. 14.

2. Enhancements for Space-time Block Coded (STBC) System

Space-time coding has recently emerged as a powerful approach to exploit the spatial

diversity and combat fading in MIMO wireless communications systems. For sim-
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plicity, we use the Alamouti code as an example, which has been adopted as one

option by the next generation WLAN standard, e.g. 802.11n, and the analysis can

be easily extended to other OSTBC. Modify the signal model in (5.4) to incorporate

the space-time code. We can rewrite the received signal as:
y1(n)

...
yMr (n)

y∗
1(n+1)

...
y∗

Mr
(n+1)


︸ ︷︷ ︸

Y

=


h11 h12

...
...

hMr1 hMr2

h∗
12 −h∗

11

...
...

h∗
Mr2 −h∗

Mr1


︸ ︷︷ ︸

H̃

( x1
x2 ) +


I1
...

IMr
IMr+1

...
I2Mr


︸ ︷︷ ︸

I

(5.19)

Basically, we stacked the received signal vectors from time n and n + 1 as one vector.

I is the asynchronous co-channel interference, which is a space-time coded signal plus

noise. If the intended and interference signals are synchronized (both for OFDM cyclic

structure and orthogonal space-time modulation), we will have 2Mr − 2 extra degree

freedom. However, for random asynchronous interference, the term I is unstructured.

Not only the degree of freedom is insufficient, but also we need double the dimention of

the “spatial-temporal” covariance estimation. And even with the improved covariance

estimation techniques in the previous section will not be able to provide good CCI

suppression performance. Intuitively, it can be explained as the result of asynchrony

making the space-time coded CCI acts as if we have a 2Mr ×2Mr interference MIMO

spatial multiplex transmission. Unfortunately, we only have 2Mr degree of freedom

all together at the receiver, hence it is impossible to suppress the interference signal

effectively.

Here, we propose a heuristic solution that is to block diagonalize the covariance

matrix by zero-forcing the cross correlation information between two successive receive

signal vectors from time n and n+1. The assumption is that these two signal vectors

are separated far enough to be treated independently. More precisely, we write RII
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can be write as:

RII =

 RII(n) 0

0 R∗
II(n + 1)

 (5.20)

Such process not only reduces the amount of estimation parameters by half, but

also saves degree of freedom. The covariance matrix RII(n) and R∗
II(n + 1) can be

estimated as previous by matrix decomposition and smoothing. Finally, for space-

time codes system, we can use the MMSE receiver to suppress the interference by treat

the STBC as an equivalent spatial multiplexing transmission with channel matrix as

H̃.

3. Bound of the Mean Square Error (MSE)

After the MMSE demodulator, the MSE is computed with the estimated spatial

covariance,

ˆMSE = (1 + HHR̂−1
II H)−1 . (5.21)

And the post-equalizer SNR can be write as:

ˆSNRm =
1

ˆMSEm,m

− 1 . (5.22)

The post-equalizer SNR for each data streams will be used to compute the soft infor-

mations of each bit, which is in turn used by the Viterbi decoder (convolutional code)

or iterative message passing decoder ( LDPC code) to decode the packet. Hence,

the post-equalizer MSE will determine the receiver performance. In this section, we

want to characterize the relationship of the estimated ˆMSE and the true MSE. In

order to demonstrate the impact of spatial covariance estimation on the receiver per-

formance, we focus on the SIMO case, for which the intra-user interferences do not

exist. Generalizing to MIMO case is straightforward.
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Theorem 1. The MSE of the MMSE receiver with the estimated spatial covariance

is upper bounded by:

MSE ≤ ˆMSE +
(

ˆMSE − ˆMSE
2) · ‖∆RII‖F · λmax(R̂

−1
II ). (5.23)

Proof. See Appendix A.

The MSE upper bound has important implication. The smallest eigenvalue of

R̂II has significant effect on MSE given the total estimation error ‖∆RII‖F . Sample

mean ML estimator has the tendency to spreading the eigenvalues, therefore, it will

increase the MSE of the equalizer.

4. Complexity Analysis

The complexity of MMSE receiver is well-known. At the beginning of each packet, we

need a Mr ×Mr matrix inversion, which is in the order of M3
r (can be reduce by some

advance algorithms). In addition, the matrix W is the product of a square matrix of

size Mr×Mr and a Mr×Mt matrix. The complexity of such a product is proportional

to MtM
2
r . For each received signal vector, the MMSE equalizer operation has a

complexity of MtMr. The total complexity is multiply by K, since we have similar

processing in each subcarrier. Next, we will focus on the complexity of the spatial

covariance estimation. For the samples average operation, we have PMr(Mr + 1)/2

multiplications and (P − 1)Mr(Mr + 1)/2 additions given the P training received

vectors are used. The Cholesky decomposition has a complexity of M3
r /3. For the

smoothing operation, we can eigher pre-computed smooth matrix and stored or use

two FFT transform. For pre-computed and stored smoothing matrix, a K2 matrix

product operation is required. However, if we use the 2 FFT operations instead,

the complexity is 2K log K for all Mr(Mr + 1)/2 entries. All together, the spatial
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covariance estimation complexity at the beginning of decode the packet:

KPMr(Mr + 1)

2
+

KM3
r

3
+ KMr(Mr + 1) log K .

5. MAP Receiver for Co-channel Interference Suppression

Since we have model the interference as Gaussian random process with zero mean

and covariance RII , we can derive the optimum MAP bit detector to minimize bit

error probability. Let’s assume a block of Mt log2 C bits b have been transmitted

per channel use for each tone, where C is the modulation constellation size. The

a psoteriori log-likelihood ratio value (L-value) of bits bi, i = 0, · · · ,Mt log2 C − 1,

conditioned on the received vector y is

LD(bi|y) = ln
P [bi = +1|y]

P [bi = −1|y]
. (5.24)

Assuming the {bi} are independent due to the random interleaver, (5.24) can be

further expressed as:

LD(bi|y) = LA(bi) + ln

∑
x∈Xi,+1

P [y|x] · e
P

j∈Ji,x
LA(bj)∑

x∈Xi,−1
P [y|x] · e

P

j∈Ji,x
LA(bj)

. (5.25)

where Xi,+1 is the set of 2Mt log2 C−1 bit vectors x having bi = +1, Xi,−1 is the set

of 2Mt log2 C−1 bit vectors x having bi = −1 and LA(bj) = ln
P [bj=1]

P [bj=−1]
, is the a priori

L-value. Jk,x is the set of indices j with

Ji,x = {j|j = 0, 1, 2,Mt log2 C − 1, j 6= i, bj = 1}. (5.26)

The second term on the RHS of (5.25) is the extrinsic L-value, defined as LE(bi|y)

and used below. The sets Xi,+1 and Xi,−1 can be either generate by exhaustive listing

for small antenna number and lower modulation order, or generate by the list sphere

decoding for large antenna number and higher order modulation [8].
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To compute the L-value (5.25) for the MAP detector, one essential step is to

compute the likelihood function P (y|x), this can be found from the linear model of

(5.4) and the estimated R̂II

P [y|x = map(b)] =
1

πMr det(RII)
exp[(y − Hx)HR̂−1

II (y − Hx)]

=
1

πMr det(RII)
exp[||Û−1(y − Hx)||2] , (5.27)

where Û is the Cholesky decomposition of the R̂II .

Using the max-log approximation, the extrinsic L-value can be approximated as

LE(bi|y) ≈ max
x∈Li,+1

{−||Û−1(y − Hx)||2

N0

+
1

2
bT

[i]LA,[i]}

− max
x∈Li,−1

{−||Û−1(y − Hx)||2

N0

+
1

2
bT

[i]LA,[i]}, (5.28)

where b[i] denotes the sub-vector of b omitting its ith element, and LA,[i] is the vec-

tor of all LA values, also omitting its ith element. The MAP detector can output

soft information and iterative (Turbo) exchange the extrinsic information with outer

channel decoder to improve the performance. The complexity of the MAP detec-

tor is higher than the MMSE receiver. Basically, the square-root matrix U act as

a pre-whitening filter to whiten the interference signal. Hence, an accurate spatial

covariance estimation is also desirable for MAP detector.

E. Simulation Results

In this section, we provide simulation results to show the effectiveness of proposed

spatial covariance estimation algorithms and the CCI suppression receiver. Simula-

tion parameters are shown in Table III. Gray mapping is used for transmitted symbol

modulation. Our performance metric is packet error rate (PER). A standard OFDM

symbol level interleaver is used to combat frequency selectivity for the indoor multi-
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Table III. Simulation Parameters

Number of subcarriers 64

Number of data subcarriers 48

Cyclic prefix length 16

FEC code rate 1
2

LPDC

Codeword length 1944

Channel model TGn model D [51]

Packet size 972 bytes

Asynchrony 1 − 80 timing samples, uniform distribution

Training zero-padding 4 − 6 OFDM symbols

Interferer 1 interferer of NLOS
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path scattering channel. For simplicity, we assume the desired signal and interference

use the same transmission setup.

For the desired signal, we assume there is a line-of-sight (LOS) component in

the first tap. But for interference signal, which usually located faraway (distance

> 10m ‘breakpoint’), it only has NLOS path. The LOS path of the desired signal

has an angle-of-arrival (AOA) of π/4. We assume one dominant co-channel interferer

exists (For most situations, 1 − 2 strong interferers are typical). We estimated the

interference at the beginning of the packet decoding with zero-padding P OFDM

symbols during transmission (i.e., the P OFDM signals consist of only interference and

noise). Spatial covariances are parsimonious estimated by these P OFDM symbols.

We first assume 1 × 2 SIMO case. For which APs have legacy one transmitter

antenna, but the mobile terminals have two receive antennas. Fig. 20 compares

different receiver schemes. The SNR value is fixed for 20 dB. The desired signal’s

channel is estimated under the interference environment using one OFDM training

symbols by the method in [52, 53]. Note that for SIR larger than 5 dB, channel

estimation can achieve the required accuracy for most cases. 4 OFDM symbols zero-

padding duration are used to estimate the spatial covariance. From the plot, we

can observe 8 dB gain in SIR compared to MRC receiver for PER of 10−2. The

tone smoothing provides 1 dB gain and cholesky decomposition provides further 2 dB

gain compared with the MMSE receiver without covariance estimation refinement.

As a benchmark, we also show the results for the MMSE receiver for synchronized

and clairvoyant interferer case (perfect know interfer’s channel (G)) - dot line in the

figure. Interestingly, there is less than 2dB gap between our proposed method and

the synchronized case.

In Fig. 21., high-order modulation 64QAM is used for different receiver schemes.

64QAM is the worst for estimating the spatial covariance. The proposed algorithm
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Fig. 20. Packet error rate of different receivers for 1x2 SIMO, 16 QAM, MMSE receiver



72

9 10 11 12 13 14 15 16 17 18 19
10

−3

10
−2

10
−1

SIR (dB)

1/2 SIMO, 64 QAM, SNR = 30 dB

 

 

Sync,Inter channel known, MMSE
Chol. decom. & smoothing, MMSE
Cov smoothing,W/O matrix decomp., MMSE
W/O smoothing, MMSE
MRC

Fig. 21. Packet error rate of different receivers 1x2 SIMO 64QAM, MMSE receiver

still can provide a 6.5 dB gain compared with MRC receiver for PER of 10−2. For

64QAM modulation, covariance smoothing can provided 3 dB gain compared with

non-smoothing MMSE, and the Cholesky decomposition improves the PER curve by

a further 2 dB gain. Again, the channel is estimated under the co-channel interfer-

ence. Surprisingly, our proposed scheme perform even better than the synchronous

clairvoyant curve - dot line.

Next, we consider the space-time coded transmission system. We use the Alam-

outi code with 2 transmitter antennas and 3 received antennas. We compared the

PER of block diagonalized scheme and without the diagonalization. 6 OFDM symbols

are used to zero pad for diagonalized case and 12 OFMD symbols for undiagonalized

MMSE receiver in the covariance estimation. As we pointed out, MMSE without di-
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Fig. 22. Packet error rate for space-time coded system, 2x3 MIMO 16 QAM, MMSE

receiver

agonization have freedom deficiency problem, which deteriorates the MMSE receiver

performance. With diagonalization of RII . The proposed the algorithm approach

the synchronized, interference channel perfect know curve (doted curve). Noticeably,

MRC has better diversity gain, though the proposed the scheme provided 6 dB gain

in SIR for PER of 10−2. Therefore, the interference suppression will sacrifice the

diversity gain of the space-time code. Also, from the Fig. 22., we notice that the di-

versity gain of synchronized interference case is better than asynchronous interference

mitigation. We further demonstrate CCI suppression for space-time coded system in

Fig. 23. with 64QAM modulation.

We plotted the MAP decoder with/without iteration and compared with the

MMSE receiver in Fig. 24. In order to eliminate the effect of channel estimation
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Fig. 24. Packet error rate for 2x4 MIMO system, 16QAM, MAP receiver

for low SIR. We assume the perfect channel knowledge of the desired signal. And

6 zero-padding OFDM symbols are used for interference statistics estimation. The

MAP demodulator and LDPC decoder iterative exchange the extrinsic information.

The iteration can provide a marginal gain of 1 dB compared with the MAP soft

output demodulator. If the packet is successfully decoded, then the iterative process

will be abort. By doing so, the receiver runs 1 − 2 iterations for most cases. Ap-

parently, the MAP demodulator provides more diversity gain in contrast to MMSE

receiver. Surprisingly, without matrix decomposition, the smoothed MMSE perform

even worse than the conventional MMSE. This can be explained as the result of the

smoothing (low-pass filtering) destroys the covariance matrix structure, especially for

larger matrix size (4 receiver antennas).
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F. Conclusion

We have presented an efficient spatial covariance estimation method for MIMO OFDM

system. The proposed method consists of a Cholesky decomposition step and a

smoothing operation across OFDM tones. The algorithm can significantly improve

the performance of a interference-aware receiver, demonstrated by the SIR gains for

PER curves. We also designed the MMSE and MAP receiver based on the pro-

posed interference statistic estimation method. The MAP receiver achieves better

performance but at cost of higher complexity, compared with the MMSE one. The

proposed algorithm has been tested in Intel’s MIMO RF chain testbed and acquired

the preliminary results.

In the future work, we will apply our schemes to high density WLAN, where we

should consider partial interference and the “capture” effect. In other word, only part

of the packet is interfered by CCI, hence there is a statistics “mismatch” problem. One

potential solution to investigate is zero-padding in multiple positions and partitioning

the packet into smaller blocks, which is a natural result if short length LDPC code is

used.
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CHAPTER VI

ERROR EXPONENT OF THE WIDEBAND RELAY CHANNEL

A. Introduction

Relayed transmission has received increasing attention as it can provide distributed

space diversity to combat the fading impairment in the wireless network. The classical

relay channel was introduced by van der Mulen [4], and then further explored by Cover

and El Gammal [54]. Laneman et al., [55] analyzed the outage behavior and diversity

order for several relay protocols. Their results characterized the diversity multiplexing

trade-off at the high signal-to-noise ratio (SNR). Recently, Liang and Veeravalli [56]

studied the optimal resource allocation problem for the Gaussian orthogonal relay

channel. However, most previous work has primarily focused on narrow-band relay

transmission, where the received SNR per degree of freedom is high. In this chapter,

we study the performance of the relay channel in the wideband extreme, i.e., the

available bandwidth is large and the resulting SNR per degree of freedom is low.

Relevant examples are wireless ad-hoc, sensor networks and 802.16j. In [57], Verdu has

investigated the spectral efficiency in wideband regime for general wireless channel.

We use Gallager’s random code error exponent [58] (also known as the channel

reliability function) as a tool to analyze different relay strategies. Error exponent

provides a measure of how fast the decoding error probability decays exponentially

as the code block length increases for rates below channel capacity. We show that,

for orthogonal relaying, both AF and DF provide higher reliability than the direct

transmission, and the DF scheme has better performance than AF for similar settings.

If we relax the orthogonal constraint, i.e., the relay node can receive and transmit

message at the same time (full duplex), block Markov coding scheme can be used to
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boost the link reliability even more. The error exponent can serve as a performance

measure to optimize the power allocation and relay node placement. We found that

placing relay node in the middle between source and destination can provide the best

link reliability for DF and BMC schemes. But for the AF scheme, the optimal position

depends on the path-loss exponent of the physical wireless propagation model. Most

results of this chapter are included in [59].

The remainder of this Chapter is organized as follows. Section B introduces the

system model for the problem under consideration. Section C defines the the random

coding error exponent. Section D and Section E give out the error exponent results

for various relay strategies. Some numerical results are provided in Section F. Section

G summarizes the main results of the paper.

B. System Model

In this work, communication occurs over a relay network, with one relay node and

one source-destination pair, as is shown in Fig. 25. The source S broadcasts the

message to both relay R and destination D. The relay processes the message and

then sends it to the destination to assist the destination decoding the data. Based

on the limitation of relay node, we focus on two kinds of relay: 1) orthogonal relay

(half-duplex), i.e., transmitting and receiving in the different time or frequency sub-

channels. The AF and DF schemes fall into this category. 2) Full duplex operation,

including block Markov coding transmission. We model the wideband channel as a set

of N parallel narrowband channels. We assume that the Doppler spread is negligible,

which makes the narrowband channels have independently and identically distributed

statistics (i.i.d.). Moreover, we assume that the coherent bandwidth is much larger

than the bandwidth of the narrowband, such that each channel is flat faded. Using
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Fig. 25. Layout of relay network.

the sampling theorem, the received signal at the relay and the destination for nth

channel and kth symbol time can be written, respectively, as

yr[k, n] =

√
Ps

N
hs,r[k, n]xs[k, n] + zr[k, n] (6.1)

yd[k, n] =

√
Ps

N
hs,d[k, n]xs[k, n]

+

√
Pr

N
hr,d[k, n]xr[k, n] + zd[k, n] , (6.2)

where xi[k, n] is the source/relay transmitted signal with i ∈ {s, r}. We assume

E[|xi[k, n]|2] = 1, and let the transmit power at source and relay be Ps and Pr re-

spectly. In (1)− (2), hi,j[k, n] is the fading coefficient, where i ∈ {s, r} and j ∈ {r, d};

zj[k, n] represents the additive white noise for j ∈ {r, d}. The pair (k, n) can be

considered as index for time-frequency slot, or degree of freedom, to communicate.

Statistically, we model the hi,j[k, n] as zero-mean, circularly-symmetric complex Gaus-

sian random variables, which are independent across different narrowband channels

and links. Additionally, we model zj[k, n] as zero-mean, independent, circularly-

symmetric complex Gaussian random variables with variances N0.

In this work, we simplify the model in Fig. 25. We assume that the distance

between the source and destination is normalized to one, and the relay is located in a

line between the source and destination. The parameter d represents the distance from

source to relay, and 1 − d is the distance from the relay to the destination. Using
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physical path-loss propagation model for wireless communication [60], we assume

E[|hi,j|2] = 1
dα

i,j
, where di,j is the distance from transmitter i to receiver j, α is path-

loss exponent.

Furthermore, we assume there is no decoding delay and coding is across the

different narrowband channels. Our goal is to compute the error exponent of this

wideband relay transmission, and to study the optimal power allocation and relay

placement. Since we assume i.i.d. statistics across the narrowband channels, we can

aim at one narrowband channel with source and relay power constraint (Ps

N
, Pr

N
). As N

tends to ∞, the power allocated to each narrowband channel goes to 0. Equivalently,

we can focus on analyzing a narrowband flat fading channel in the low SNR regime.

For convenience, we omit the narrowband index n. With a little abuse of notation, let

(Ps, Pr) represent the transmit power at source/relay for each narrowband channel,

which can take a very small value.

C. The Random Coding Error Exponent

Gallager [?] established random coding techniques to upper-bound the achievable

average error probability over a random code ensemble with maximum-likelihood

decoding. Specifically, given a code C of length N over an alphabet χ with 2nR

codewords, we have

P̄e ≤ exp (−N(E0(ρ,Q) − ρR)) , (6.3)

with E0(ρ,Q) defined as

E0(ρ, Q) = − ln

( ∫ ∞

−∞

[ ∫ ∞

−∞
Q(X)f(Y/X)1/(1+ρ)dX

]1+ρ

dY

)
, (6.4)

for 0 ≤ ρ ≤ 1. Q(X) is the code symbol (or input) distribution and f(Y/X) is the

channel output distribution conditioned on the input. The random coding exponent



81

is defined to be the one that yields the tightest bound:

Er(R) = max
ρ

max
Q

{E0(ρ,Q) − ρR} , (6.5)

where the maximization is over Q and subject to the input power constraint. For

linear Gaussian Channel model

y = Hx + z , (6.6)

if we assume input symbol x has Gaussian distribution x ∼ CN(0,P)1, and noise z

has circular symmetric gaussian distribution z ∼ CN(0,W). Substituting Q(x) and

f(y/x) into (6.5), we can get the following theorem.

Theorem 2. (Gaussian Error Exponent) of (6.6):

E0(ρ,P) = ρ lnEH

∣∣∣I +
1

1 + ρ
W−1HPH†

∣∣∣ , (6.7)

where E denotes expectation, and | · | represents determinant of matrix.

We omit the proof of this theorem because the result can be found in other

literature [61]. If the channel model (6.6) reduces to the scalar one, Eq. (6.7) can be

written as E0(ρ, P ) = ρ lnE(1 + P |h|2
N0(1+ρ)

), which is the well known error exponent for

the scalar fading channel.

D. Error Exponent for Orthogonal Relay Channel

For orthogonal relay operation, the relay node can not transmit and receive at the

same time. We partition the transmission as two steps. First, source S broadcasts

1To choose Q(x) as Gaussian is not optimal and a distribution concentrated on a
“thin spherical shell” will give better results [?], nonetheless Gaussian error exponent
is a convenient lower bound for the optimal error exponent.
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message and relay R keeps silent, i.e.,let xr[k, n] = 0 in Eq. (1) − (2). In the next

step, relay R transmits the processed message to destination and source S stops

transmission. Mathematically, for the first step, the received signal of each equivalent

narrowband channel can be written as

yr =
√

Pshs,rxs + zr (6.8)

yd[1] =
√

Pshs,dxs + zd[1] , (6.9)

For the next step, we obtain

yd[2] =
√

Prhr,dxr + zd[2] . (6.10)

1. Amplify-and-Forward (AF) Relay

Using the amplify-and-forward relay scheme, the relay node amplifies the message it

received in the first phase and forwards it to the destination in the second phase, i.e.,

√
Prxr = βyr , (6.11)

here we define the amplifier gain as β =
√

Pr

Psh2
sr+N0

. Substitute (6.11) into (6.10) and

write the received signal during the two phases in vector form

 yd[1]

yd[2]


︸ ︷︷ ︸

y

=

 hs,d

hr,dβhs,r


︸ ︷︷ ︸

H

√
Psxs +

 0 1 0

hr,dβ 0 1




zr

zd[1]

zd[2]


︸ ︷︷ ︸

z

Note that

E(zz†) =

N0 0

0 |hr,dβ|2N0 + N0

 .
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We observed that the AF relay is equivalent to a single-input-multiple-output (SIMO)

channel. Using Theorem 2, we have following result.

Theorem 3. (Error Exponent of AF relay) :

EAF
r (R) = max

0≤ρ≤1

{
1

2
ρ lnE

(
1 +

Ps

(1 + ρ)N0

(
h2

s,r + h2
s,d

−
h2

s,r

|hr,dβ|2 + 1

))
− ρR

}
. (6.12)

For fair comparison with direct transmission, we have halved the degree of free-

dom and doubled the rate as 2R to account for the half-duplex transmission.

If we fix the total power budget as P , our goal is to optimize the power allocation

(Ps, Pr) between source and relay transmission to maximize the error exponent of

(6.12). Also, we try to find the optimal position in the line between source and

destination to place the relay node. For wideband AF relay system, we assume the

amplifier coefficient β takes the same value for all the parallel narrowband channel.

Practically, it is a reasonable assumption and need not use passband filters for each

narrow band channel.

Let us define SNR = P dir

N0W
, where P dir is the direct transmission power in each

channel use, and W is bandwidth of each narrowband channel. Then we have Ps =

2 SNRγ, Pr = 2 SNR(1−γ), where 0 ≤ γ ≤ 1, denotes the fraction of power allocated

to the source transmission. Let E[|hi,j|2] = λi,j = 1
dα

i,j
. Hence, we can express β as

β =
√

2 SNR(1−γ)
2 SNR γ λsr+1

.

Substituting all the terms into Eq. (6.12), and computing expectation value with

respect to the channel gain, we have the following lemma.
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Proposition 1. For the AF relay channel, the error exponent is given by

EAF
r (R) = max

0≤ρ,γ,d≤1

{
ρ

1 + ρ
γ SNR

(
1 +

1

dα

+
1

dα
C exp(C)Ei(−C)

)
− ρR

}
, (6.13)

where d is the distance between source and relay; C = (2SNR γ+dα)(1−d)α

2SNR(1−γ)dα ; Ei(·) is the

exponential integral function [62, pp. 925].

Remark 1. The optimal values (d∗, γ∗) to maximize the error exponent (6.13) depend

on the path-loss exponent α. For α ≥ 4, d∗ ≈ 1/2, hence placing the relay node in the

middle point of source S and destination D is optimal for large path-loss exponent.

The optimal value (d∗, γ∗) monotonically decreases from 1 to 0.5 as path-loss exponent

α increases.

Proof.

EAF
r (R) = max

0≤ρ≤1

{
1

2
ρ lnE

(
1 +

Ps

(1 + ρ)N0(
h2

s,r + h2
s,d −

h2
s,r

|hr,dβ|2 + 1

))
− ρR

}
(a)
= max

0≤ρ≤1

{
ρ

1 + ρ
SNR γ

(
λsd+

λsrE
( β2h2

rd

1 + β2h2
rd

))
− ρR

}
= max

0≤ρ,γ,d≤1

{
ρ

1 + ρ
γ SNR

(
1 +

1

dα
+

1

dα
C exp(C)Ei(−C)

)
− ρR

}
,

where (a) using the low SNR approximation ln(1 + x) = x.

Maximizing the AF error exponent (6.13) over d and γ can be easily decou-

pled from maximization with respect to ρ. Hence, we can numerically search the

two-dimensional space of d and γ. Although we were not able to show analytically
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Table IV. Optimal Relay Position d∗ and Power Allocation γ∗

α 2 3 4 5 6

d∗ 0.99 0.79 0.52 0.50 0.50

γ∗ 0.98 0.87 0.59 0.54 0.53

that EAF
r (R) is concave in (d, γ), our simulation results indicate it. Also, note that

the relay placement and power allocation are independent of the SNR values. We

summarize optimal value (d∗, γ∗) for typical α value in Table I.

2. Decode-and-Forward (DF) Relay

For DF relay, the relay node decodes the source message it received from the source

as x̂s for N narrowband carriers, re-encodes the information and sends it to the

destination in the second step. In this work, we assume the simple repetition-coded

scheme. The relay retransmits the signal as

xr[n] = x̂s[n] ,

where n is the narrowband channel index; x̂s is the decoded data at the relay node

that was sent from the source. The error probability of DF relay transmission is:

PDF
e = exp(−NESR

r ) +
(
1 − exp(−NESR

r )
)
· exp(−NEMAC

r )

≈ exp(−NESR
r ) + exp(−NEMAC

r ) , (6.14)

where ESR
r is the error exponent of source-relay transmission; EMAC

r denotes the

destination decoding error exponent given repeated transmission from source and

relay in two steps. Here we have assumed the number of narrowband carriers N or

code block length is large enough that the error probability of source-relay is very
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small. According to Theorem 2, we have

ESR
r = max

0≤ρ≤1

{
1

2
ρ ln

(
1 +

Psλsr

N0(1 + ρ)

)
− ρR

}
(6.15)

EMAC
r = max

0≤ρ≤1

{
1

2
ρ ln

(
1 +

Psλsd + Prλrd

N0(1 + ρ)

)
− ρR

}
. (6.16)

Again, we halved degree of freedom and doubled the rate to 2R for the half-duplex

communication.

Proposition 2. (Error Exponent of fixed DF relay) :

EDF
r = min{ESR

r , EMAC
r }.

We want to maximize the error exponent by power allocation and relay place-

ment. We are using physical path-loss model of wireless propagation, and let Ps =

2SNR γ, Pr = 2SNR(1 − γ). Mathematically, we have following the optimizing

problem,

max
0≤d,γ≤1

min
{

2SNR γ
1

dα
, (2SNR γ + 2SNR(1 − γ)

1

(1 − d)α
)
}

. (6.17)

Since the first term monotonically increases as γ and d increase from 0 to 1, but the

second term is a monotonically decreasing function of γ and d, the minimum in (6.17)

can be achieved when the first term equals to the second one. Hence, we can reduce

the problem to

max
0≤d,γ≤1

γ
1

dα
subject to γ

1

dα
= γ + (1 − γ)

1

(1 − d)α
. (6.18)

It is a one dimensional maximization, we can readily get the solution. We summarize

the above analysis of the optimal (d∗, γ∗) in the following remark.

Remark 2. The optimal value to maximize DF error exponent is (d∗, γ∗) = (1
2
, 1

2−2−α ).

Hence placing the relay node in middle point of source-relay line is optimal to boost
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the link reliability, and the power allocation γ is close to one half as path-loss exponent

α increase.

It is well known that adaptive type DF, i.e., switch back to direction transmission

in the event of relay decoding error, can achieve full diversity in the high SNR regime.

However, in our wideband relay case, adaptive DF amounts to choose the better

error exponent between direct transmission and DF transmission. Since DF relay has

much higher error exponent value than direct transmission, adaptive type DF can not

improve the performance anymore in our case.

E. Error Exponent for Block Markov Coding (BMC)

In this section, we focus on the full-duplex relay operation, i.e., when relay node

can receive and transmit at the same time. Block Markov Coding (BMC) was first

proposed by Cover and El Gammal [54] to derive the lower bound for the relay channel

capacity. For convenience, we briefly restate the BMC process in the wideband multi-

carrier background. The information bearing bits stream (message) at the source is

parsed into blocks, each with N symbols; each block of N symbols can be transmitted

in N narrowband carrier for one channel use. Let wi ∈ [1, 2NR] be the message sent

by the source during ith block. The set of message W = {1, 2, · · · , 2NR} is randomly

partitioned into bins S = {S1, S2, · · · , S2NR0} with R0 < R. A random codebook

X = {x1(w|s),x2(s)} is generated based on the joint probability distribution p(x1, x2),

where w ∈ [1, 2NR] and s ∈ [1, 2NR0 ]. After the relay successfully decodes the message

from the source during the (i−1)st block, it transmits a codeword x2(si) in the ith block

to help destination decode the previously received message. For detailed description,

please refer to [54]. If we assume the entries of codewords x1(w|s) and x2(s) are

independent, identical Gaussian distribution with zero mean and unit variance. The
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simultaneously transmitted signal vectors by source and relay in ith block are given,

respectively, by

xs =
√

P1x1(wi|si) + θ
√

(1 − γ2)P2x2(si)

xr =
√

γ2P2x2(si) , (6.19)

where P1 and P2 are transmitted power of x1(w|s) and x2(s); γ2 ∈ (0, 1) denotes

the fraction of power P2 allocated to relay. θ is the phase tuning factor to assist

source-relay combining, which satisfies |θ|2 = 1. The received vector at the relay and

destination can be expressed, respectively, as

yr = hsr · xs + zr

yd = hsd · xs + hrd · xr + zd, (6.20)

where hij represents channel coefficient vector for i.i.d. narrowband carriers, for

i ∈ {s, r} and j ∈ {r, d}; (·) denotes componentwise multiplication. For BMC relay

strategies, there are two transmissions for each message, one for source-relay link; the

other are the source and relay multiple-access to the destination. By the Theorem 1,

we have the following result for BMC relay.

Proposition 3. (Error Exponent of BMC relay) : EBMC
r = min{EB−SR

r , EB−MAC
r },

where

EB−SR
r = max

0≤ρ≤1

{
ρ ln

(
1 +

P1λsr

N0(1 + ρ)

)
− ρR

}
(6.21)

EB−MAC
r = max

0≤ρ,γ2≤1,γ2

{
ρ ln

(
1

+
P1λsd + (1 − γ2)P2λsd + γ2P2λrd

(1 + ρ)N0

− ρR

}
. (6.22)

In our system model, λrd ≥ λsd, so the EB−MAC
r is maximized when γ2 = 1.
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Hence the transmitted signal in (6.19) reduces to

xs =
√

P1x1(wi|si), xr =
√

P2x2(si) . (6.23)

Let us assume P1

N0
= γ1 SNR and P2

N0
= (1 − γ1) SNR. The error exponent of BMC

relay degenerates to a form similar to DF relay, but with half rate and double degree

of freedom. The difference here comes from the full-duplex relay, rather than the

orthogonal operation in the DF scheme. The results of optimal power allocation and

relay placement for DF relay can also be applied here directly.

F. Numerical Results

In this section, we present numerical results to illustrate the advantage of the relayed

transmission. We assume the relay node is placed in the line connecting the source and

destination; the distance between source-destination is normalized to one. For each

link, we consider the physical path-loss channel model with α = 4. We normalized the

SNR value and degree of freedom for a fair comparison among direct transmission,

orthogonal relay and BMC relay, i.e. for the orthogonal relay, the degree of freedom

is halved, rate and SNR value for each message transmission is doubled.

Fig. 26 compares the error exponent of different transmission strategies with

optimal power allocation and relay placement. The SNR value is −3 dB, which

accounts for our wideband low SNR assumption. We observed that the BMC relay

has the highest reliability because we allow the full-duplex operation. Note that the

DF scheme has an advantage over AF schemes in the error exponent sense. This

observation is in contrast to the existing results in the literature that both AF and

adaptive DF achieve full diversity in the high SNR regime. All of the above relay

transmissions provide a significant reliability gain over the direct transmission.
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To further illustrate the advantage of using relay in the wideband wireless trans-

mission, Fig. 27 plots the minimum number of narrowband carriers to achieve a

prescribed decoding error probability. The SNR value is defined as total power per

channel use divided by N0. The rate represents the sum rate of all the narrowband car-

riers. It is required to solve for N in the following equation Pe = exp(−NEr(
SNR

N
, R

N
))

Fig. 2 shows that the relay strategies require far fewer carriers to achieve the pre-

scribed decoding error probability for the same SNR value and transmission rate,

compared with the direct transmission. Hence, it requires less bandwidth or provides

higher spectral efficiency.

G. Conclusion

Random coding error exponents provide more information than the capacity. For any

rate below the capacity, they quantify (lower bound) the exponential decay rate of

the maximum-likelihood decoding error probability averaged over randomly selected

codes. In this paper, we derived the random error exponent of the relay channel

wideband relay strategies, analytical and numerical results show that using relay

can indeed improve the system reliability significantly for rate below the capacity,

which can save power or reduce bandwidth required in the practical wireless system.

Furthermore, using physical path-loss wireless propagation model, we investigated the

optimal relay placement and power allocation to further boost the system reliability.
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CHAPTER VII

QUALITY-OF-SERVICE FOR A BUFFERED TRANSMISSION OVER FADING

CHANNEL

A. Introduction

Quality-of-Service (QoS) is a critical design objective for next-generation wireless

communication systems. In general, data, voice and multimedia transmission over

packet cellular networks, wireless LAN or sensor networks involves analogue obser-

vations transmitted to the end user over a wireless link. End-to-End distortion and

transmission delay are two fundamental QoS metrics. Such QoS requirements pose

a challenge for system design due to the unreliability and time varying nature of the

wireless link.

Quantizer
 Buffer

Adaptive


Transmitter

Receiver


Fading


Channel


CSI


Fig. 28. System model

In this chapter, we consider transmission of an analogue source over a wireless

time-varying fading channel as shown in Fig. 28. Our goal is to optimize the end-

to-end distortion given a delay constraint. We first focus on the single antenna case

(SISO) and derive the distortion and delay tradeoff for the wireless fading channel.

We then extended our model to multiple input and multiple output (MIMO) block

Rayleigh fading channel. We compute the SNR exponent [63] for the buffered trans-

mission. To this end, we adopt a cross-layer approach shown in Figure 1. At this

point, for simplicity we assume an independent and identically distributed (i.i.d.)
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block fading channel model. Such a model is suitable for several practical commu-

nication scenarios, e.g., time hopping in TDMA, frequency hopping in FDMA and

multicarrier systems. Extension to more practical time-correlated cases will be dis-

cussed later. Throughout this paper, we always assumed channel state information

(CSI) was perfectly known at the receiver and that the transmitter only knew the

instantaneous channel capacity via a feedback link (transmitter didn’t need to know

the exact channel realization).

We consider an i.i.d. complex memoryless Gaussian source ∼ CN (0, 1), which

is quantized it and then fed into a buffer. Since the channel is time-varying, the

transmitter adjust the transmission rate to the current channel status. The relevant

performance criteria are the end-to-end quadratic distortion and the buffer delay.

We aim to find the relationship between the distortion and delay for some average

transmission power. The Gaussian source is a good approximation of more general

source distribution in high resolution regime [64, 65]. We assume that each group of

K source samples was transmitted over N channel uses on average. We define the

corresponding bandwidth ratio as

η =
N

K
, (7.1)

where K was large enough to consider the source as ergodic and N was large enough

to design codes that could achieve instantaneous channel capacity. Our tools here

were large deviation theory and information theory.

Recently, some researchers have considered such end-to-end quadratic distortion

as their performance criteria. In [66], Holliday and Goldsmith rst investigated the

end-to-end distortion for the MIMO block fading channel based on the source-channel

separation theorem and Zheng & Tse’s diversity-multiplexing trade-off. They also

incorporated delay consideration into their model using the ARQ argument which
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is different from our approach. In [64], Laneman et al., considered the problem of

minimum average distortion transmission over parallelled channels. They introduced

the distortion SNR exponent as a figure of merit for high SNR value and compared

multiple description source coding diversity and channel coding diversity. Caire and

Narayanan [63] pointed out that the the separation theorem does not hold for a delay

constrained and the unknown channel at the transmitter end. They investigated the

SNR exponent of the distortion function in high SNR regime. For this problem,

an upper bound and lower-bound for the distortion SNR exponent were derived.

[65] Gunduz and Erkip extended their results using a layered broadcast transmission

scheme. For some bandwidth ratios, the optimum SNR exponent was achieved.

For the combination of queuing and information theories, in [67], Wu and Negi,

first proposed the concept of effective capacity, an extension of Shannon’s capacity, by

incorporating the buffer delay into it. The effective capacity is the dual of Chang’s

effective bandwidth [68] in the network literature. Negi and Goel [69] united the

effective capacity with the error exponent for more practical considerations. A QOS-

aware rate and power control algorithm for wireless fading channel was proposed by

Tang and Zhang [70].

For buffered transmission, Berry and Gallager investigated the power and delay

tradeoff for communication over fading channel [71]. In [72], Tse analyzed the distor-

tion for a xed line networks, but with an adaptive quantizer. Part of results in this

chapter have been presented in [73].

The rest of this Chapter is organized as follows: in Section B, we have stated

the problem and showed inserting a buffer can save significant power. We have intro-

duced the system model and some preliminaries of the effective capacity in Section C.

Section D develops our main results - distortion-delay function and an upper bound

for SISO channel, some asymptotic analysis is also provided. In Section E, we have
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extended the distortion analysis to the MIMO channel, and derived the SNR exponent

for buffered transmission. Distortion-delay for a large antenna MIMO channel was

also derived by utilizing the mutual information Gaussian approximation. Section F

discusses some extension to a more general case. Finally, Section G concludes the

paper.

B. Problem Statement

For buffered transmission over the fading channel, there are two extreme cases: 1)

There is no buffer — no delay, 2) we have an infinite buffer size, i.e., we allow an

infinite transmission delay. For the first case, we adaptively quantize the Gaussian

source according to the CSI. Assuming perfect transmission, we can approximate the

average achievable quadratic distortion by:

D0(ρ) = E[exp(−η ln(1 + |h|2 P

N0W
)] , (7.2)

where P denotes the transmission power, W and N0 resent the bandwidth and

noise variance; h is the channel gain, a random variable with unit variance follow

a certain statistical distribution. Here, we have used the information theoretical re-

sults: Gaussian distortion-rate function can be express as D(Rs) = exp(−ηRc) and

C(ρ) = log(1 + |h|2ρ) is the instantaneous channel capacity-cost function [74]. For

an infinite delay case, the average transmission rate can achieve the ergodic capacity

of a fading channel and the quantizer can simply adopt a constant output rate. The

average distortion is given by:

D∞(ρ) = exp(−η E[ln(1 + |h|2 P

N0W
)]) . (7.3)
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Fig. 29. Distortion of Gaussian source transmitted over i.i.d. Rayleigh fading channel.

The function exp(−(·)) is a covex function. Due to Jensen’s inequality, the distortion

D0 is low bounded by D∞, i.e., D0 ≥ D∞. The two distortion functions are plotted in

Fig. 29 for a Rayleigh fading channel. Notice that there is a gap between no-delay and

infinite delay curves. We can call this transmission power gap “Jensen’s gain.” Note,

we assume η = 2 and a complex Gaussian source, this is equivalent to a real source

with bandwidth ratio of one. So introducing a buffer at the transmitter to match

the source rate with the instantaneous quality of the channel can save a considerable

amount of transmission power to meet some distortion requirement. Also, we have

simplified the quantization step (constant rate). A natural question is therefore: if

we allow only a finite delay or buffer, how much gain can we achieve? How fast does
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the distortion curve converge to the infinite-delay lower bound as the delay increases?

One of the the main result of this paper is to develop a clear characterization of the

tradeoff between end-to-end quadratic distortion and delay to provide insight into

the impact of the buffer delay on the achieved distortion function of the memoryless

analogue source transmitted over a wireless fading channel.

To answer the question raised earlier, we combined ideas from the fields of queu-

ing theory and communication/information theory to analyze the above problem.

The tool we used is the concept of effective capacity [67], which is the dual of effective

bandwidth in networking literature. The effective capacity synthesizes the channel

statistics and QoS metric (delay and buffer overflow) into a single function using

large deviation theory. It is a powerful and united approach for studying the sta-

tistical QoS performance of wireless transmission where the service process is time-

varying. For i.i.d. SISO block fading channels we derived a closed-form expression

for the distortion-delay curve which is hard to analyze due to some mathematically

intractable special functions. We then gave out a tight upper bound for this distortion-

delay function to theoretically and asymptotically analyze convergence behavior.

In Fig. 29, we find the power gain is marginal for low SNR. As the SNR value

increases, the gain becomes significant because the exp(·) and log(·) functions are

approximately linear in the low SNR regime. Hence, “Jensen’s gain” is negligible at

low SNR. We can view the slope of the distortionSNR curve as a similarity of the

diversity order for the bit error rate in the wireless communication. Therefore, we will

investigate the distortion SNR exponent for a buffered transmission. Introducing a

buffer can provide some kind of time diversity. For the MIMO channel, besides time

diversity, there is also space diversity. We will examine the interplay between these

two diversities and the impact of buffer on the SNR exponent.
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C. System Model

The system model is illustrated in Figure 1. There is an i.i.d. complex Gaussian

source ∼ CN (0, 1) with total bandwidth Bw. We quantize the source samples using

vector quantizer or trellis coded quantizer (TCQ). The quantization operated every

K samples a time and fed into a buffer with size B bits. Let the K samples have

time duration Tf , so each frame has Tf × Bw × Rs = K · Rs bits, where Rs bits is

number of bits into which each Gaussian sample is quantized. K is large enough to

ensure ergodic of the source.

We assume a MIMO i.i.d. block fading channel with Mt transmit and Mr receive

antennas. The SISO, MISO and SIMO are special cases of this general model. The

channel model can be expressed as:

yi =

√
ρ

Mt

Hxi + wi, i = 1, · · · , N (7.4)

Where H is the channel matrix containing i.i.d. elements hi,j ∼ CN (0, 1) (Rayleigh

independent fading). xi is the transmitted signal at time i, the codeword X =

[x1, · · · ,xN ] ∈ CMt×N is normalized so that is satisfies tr(E[XHX]) ≤ MtN . ρ denotes

the signal-to-noise ratio (SNR), defined as the ratio of the average received signal

energy per receiving antenn to the noise per-component variance. Z = [z1, · · · , zN ] ∈

CMr×N is the complex additive Gaussian noise with i.i.d. entries CN (0, 1). We define

M∗ = min(Mt,Mr) and M∗ = max(Mt,Mr).

1. Effective Capacity

The key idea of effective capacity is that, for a dynamic queuing system with station-

ary ergodic arrival and service process, the queue length Q(t) converges in distribu-

tion to a random variable Q(∞). The probability of queue length exceeding a certain
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threshold B decays exponentially as threshold B increases [67, 75]. Mathematically,

lim
B→∞

−1

B
ln Pr{Q(∞) > B} = θ , (7.5)

where θ is the QoS parameter decided by the delay requirement of the queue system. A

large value of θ leads to a stringent delay requirement, i.e., small delay. In particular,

as θ goes to ∞, the system can not tolerate any delay. On the other end, when θ goes

to 0, the system can tolerate an arbitrarily delay.

Let the sequence {R[i], i = 1, 2, . . .} denote the discrete-time instantaneous chan-

nel capacity, which is a stationary and ergodic stochastic process. Define

S[t] ,
t∑

i=1

R[i] (7.6)

as the accumulate service provided by the channel. Assume the Gärtner-Ellis limit

of S[t]:

ΛC(θ) , lim
t→∞

1

t
ln E

{
eθS[t]

}
, ∀ θ > 0 (7.7)

exits and is a convex function differentiable for all real θ. Then, the effective capacity

with delay constraint decided by θ is defined as

EC(θ) , −ΛC(−θ)

θ
= − lim

t→∞

1

θt
ln E

{
e−θS[t]

}
. (7.8)

In particular, for i.i.d. cases, the effective capacity simply reduces to the ratio of log-

moment generating function of the instantaneous channel capacity to the exponent

θ

EC(θ) = −1

θ
ln E

{
e−θR[t]

}
. (7.9)

The effective capacity falls into the large deviation framework, which is asymptotically

valid for a large queue size.
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D. Distortion-Delay Function

We derived the closed-form expression for the end-to-end quadratic distortion given

the delay constraint in this section. The starting point was vector quantization and

delay bound violation probability using effective capacity. For a Gaussian source

vector u with K samples that had support on CK , a KRs-nats quantizer was applied

to u via a mapping u → ũ. The cardinality of discrete set ũ is eKRs . The average

quadratic distortion was defined by

DQ(Rs) , 1

K
E[|u − ũ|2] , (7.10)

where the expectation is with respect to u. According to the distortion-rate theory,

the distortion function DQ(Rs) = exp(−Rs) is achievable for a complex Guassian

source. When the quantized bits are transmitted over a statistical channel, let Pe

denote the error probability of this channel. It has been shown in [76] that the

achievable end-to-end distortion for such tandem scheme is upper bounded by

De−e(Rs) ≤ DQ(Rs) + O(1)Pe . (7.11)

For our problem, if we assume using Gaussian code to achieve the instantaneous

capacity, the delay bound violation (buffer overflow) probability will dominate the

decoding error probability. From the effective capacity theory, we have the following

approximation for Pe:

Pe , Pr{Q(∞) ≥ B} ≈ κe−θB , (7.12)

where θ is the QoS parameter, B is the buffer size; κ is a constant that denotes

the probability that the buffer is non-empty. κ is large compared with Pe. Given

the delay constraint at τ seconds, using Little’s theorem, we have following result:

B = Rs × Bw × τ . Bw is the source bandwidth. Substitute (7.12), B and DQ(Rs)
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into (7.11), we may write the bound on the end-to-end distortion as

De−e(Rs) ≤ exp(−Rs) + O(1)κ exp(−θBwRsτ) . (7.13)

In order to get analytical results, we consider the asymptotically large delay and high

SNR regime, i.e., small distortion. We can optimize the end-to-end distortion by

choosing the two exponents equal to each other (exponential order tight) resulting in

θ = 1
Bwτ

.

If we assume the transmitter doesn’t know the channel realization, but does know

the value of instantaneous capacity via the feedback link, the instantaneous capacity

can be achieved by the Gaussian codebook. We have the following theorem.

Theorem 4. Given a delay τ = 1
Bwθ

and bandwidth raio η, the distortion upper bound

function of the i.i.d MIMO block fading channel can be expressed as:

D(θ) ≤
[
B−1 det[G(θ)]

] 1
Kθ

. (7.14)

where B =
∏M∗

i=1 Γ(d + i), and d = M∗ − M∗. And G is M∗ × M∗ Hankel matrix

whose (i, j)th entry is defined to be

gi,j =

∫ ∞

0

(
1 +

ρ

Mt

λ
)−θKη

λi+j+de−λdλ, i, j = 0, · · · ,M∗ − 1 . (7.15)

Γ is the complete Gamma function.

Proof. The Mutual information for the each MIMO block transmission can be ex-

pressed as:

Rs(H) = Kη · ln det
(
I +

ρ

Mt

HHH
)

(7.16)
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plug into equation (7.9) and (7.13), we have

D(θ) ≤
{

E

[
det

(
I +

ρ

Mt

HHH
)]−θKη} 1

θK

=

{∫ ∞

0

∏(
1 +

ρ

Mt

λi

)−θKη

f(λ)dλ

} 1
θK

. (7.17)

Where 0 ≤ λ1 ≤ · · · ≤ λM∗ denote the ordered eigenvalues of HHH . The joint

distribution of the λi’s follows the Wishart pdf given by

f(λ) = K−1
Mt,Mr

M∗∏
i=1

λM∗−M∗
i

∏
i<j

(λi − λj)
2 exp

(
−

∑
i

λi

)
, (7.18)

where KMt,Mr is a normalization constant. Follow the results of [77], we can get the

distortion function as (7.14).

Remarks

• If we assume the quantization process is independent of the channel status, we

can show the the constant quantization rate is the optimum one. First, for a

buffered system with independent arrival and departure processes, the constant

arrival process is optimal with respect to the buffer overflow probability for

all the arrival processes that have the same average rate [68]. Second, given

a buffer overflow probability, the constant rate quantization will minimize the

distortion according to Jensen’s inequality. Therefore, the constant rate quan-

tization is optimal if the quantization process is independent of channel mutual

information. Another advantage of constant rate quantization is that it reduces

the quantizer design complexity.

• When the quantizer rate selection is according to the buffer state status, we

cannot prove that the constant rate quantization is optimal. Hence, the dis-

tortion of(7.14) is an upper bound. One extreme case is that the quantizer is
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chosen to make sure no buffer overflows, i. e. , the quantization rate selection is

to match the channel mutual information profile. This scheme will degenerate

to no buffer (delay) case. Therefore, it is seriously suboptimal. The optimal

quantizer rate should balance the “Jensen’s gain” and the reduced distortion

by decreasing the buffer overflow probability via the quantization rate matching

the buffer status.

The introduced buffer delay in (7.17) at first shrinks the integrand near to 1

as θ → 0, and then restores it after taking the expectation. From Fig. 30, we can

observe that after the contraction function of (·))θ as θ goes to zero, the integrand

function becomes more linear. This observation can explain why we have a large gain

after introducing a buffer delay mathematically, and provides some intuition of the

distortiondelay function. Moreover, Fig. 30 shows that the larger bandwidth ratio

η is, the more effective the shrink operation (larger gain). Therefore, introducing

a buffer delay provides a larger gain for the high bandwidth ratio scenario, or high

resolution quantization. We theoretically confirmed the result later by deriving the

SNR exponent.

The result of Theorem 1. is very complicated; very little insight can be gained

from the expression itself. In the ensuing part of this paper, we first investigate the

distortion-delay of SISO, MISO / SIMO case, in which a simpler form can be arrived.

Then, for a more general MIMO channel, we considered the high SNR regime and

computed the distortion SNR exponent. Guassian approximation of MIMO mutual

information was also used to derive an approximation for large antenna system.
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1. Single Antenna System (SISO)

For simplicity, we introduced the normalized delay as τn = τ/Tf = 1
θBwTf

= 1
Kθ

.

For the SISO Rayleigh fading channel, the channel matrix degenerated to a scalar

channel. We have following Corollary.

Corollary 1. For SISO system, the distortion-delay upper bound is

D(λη) ≤
[
ρ−λη exp

(1

ρ

)
γ
(
1 − λη,

1

ρ

)] 1
λ

, (7.19)

where λ = 1
τn

and γ(·, ·) is the incomplete Gamma function.

Proof. For SISO channel, the (7.14) is reduced to the scaler case,

D(λ) ≤
[ ∫ ∞

0

(
1 + ρx

)−λη

e−xdx

] l
λ

, (7.20)

by the formula of [62], we can complete the proof.

The closed-form expressions of (7.19) is very difficult to analyze due to the spe-

cial functions. In order to analyze distortion as the delay constraint increases, it

is desirable to reduce the function into some simple form that is easy to handle.

This objective motivates us to derive an asymptotically tight upper bound for the

distortion-delay function in next section.

a. Asymptotic Analysis

We started by characterizing the behavior of the tail of the distortion-delay curve

D(τn), hence we are interested in the asymptotically large delay regime. We only

considered the Rayleigh fading SISO case. In this part, we assumed η = 1 for sim-

plicity, generalizing to other bandwidth ratio is straightforward. We tried to show

that D(τn) → D(∞) as τn → ∞. In addition, we proveed that the limit is approached
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as e
C
τn by finding the upper bound on the distortion-delay function and then show the

bound is asymptotically tight. The ergodic capacity of mth-order diversity Raleigh

fading channel with a constant transmission power can be expressed as [78]:

Cerg =
γ(m,−m/ρ)

Γ(m)
E1(m/ρ) +

m−1∑
k=1

1

k

γ(k,m/ρ)γ(m − k,−m/ρ)

Γ(k)Γ(m − k)
, (7.21)

where γ(·, ·) and Γ(·) denote incomplete and complete Gamma functions; E1(·) presents

the exponential integration function. Hence for m = 1, the lower bound of distor-

tion/delay function can be written as:

D(∞) = exp
(
− e

1
ρ E1(1/ρ)

)
. (7.22)

Next, We tried to derive the asymptotic upper bound on D(τn) of (7.19) to achieve

the limit D(∞). We mean asymptotically in the sense of τn → ∞ or λ → 0.

Theorem 5. An asymptotic upper bound for D(Dn) can be expressed as:

Dupper(λ) =

[
1

λ − 1

(
e

1
ρ − 1

)
+

1

1 − ξλ + φλ2
ρ−λe

1
ρ

] 1
λ

, (7.23)

where ξ = 0.577215 and φ = 1
12

(6ξ2−π2). As λ → 0 this upper bound is asymptotically

tight and approaches D(∞) as D(∞) · eCλ, where C is some constant.

Proof. See Appendix B.

b. Example

We present some numerical results to verify our findings. Suppose we have a real

Gaussian source N(0, 1) with bandwidth 100kHz, bandwidth ratio η = 11. We

assume an i.i.d. block Rayleigh fading channel model. Let the duration of each time

1A real Gaussian source is equivalent to a complex one with doubled bandwidth
ratio
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Fig. 31. Distortion of real Gaussian source transmitted over i.i.d.Rayleigh fading chan-

nel.

frame be 2ms such that each data frame consists of 200 source samples. Fig. 31

shows that a normalized delay of 5Tf can achieve most of the gains, especially for

high transmission power. The gap between this curve and the infinite delay case

is less than 1dB for a typical SNR value. In Fig. 32, we plotted the end-to-end

quadratic distortion vs. SNR and delay. It clearly characterized the distortion and

delay tradeoff for the Gaussian source transmitted over the wireless fading channel.

Note that the higher the SNR value, the faster the distortion converges to the infinite

delay lower bound. For an SNR value of 25 dB, less than 2Tf delay can achieve most

of the Jensen’s gain.

Fig. 33 shows the upper bound for the distortion/delay D(Dn) curve at SNR

= 15dB. The ergodic Shannon capacity in this case is 3.0015 nats/symbol and the



109

0    
5

10 
15

20
25

0
5

10
15

20
25

−40

−30

−20

−10

0

Normalized Delay (T
f
s)

SNR (dB)

Fig. 32. Distortion vs. delay and SNR



110

10
0

10
1

10
2

10
3

10
4

−26

−25

−24

Normalized Delay

 

 

Upper Bound

Distortion−Delay

Infinite Delay Lower Bound

Fig. 33. Upper bound of distortion/delay function (SNR=15dB)

distortion D(∞) is 0.0025. The rate of distortion/delay curve and the upper bound

converge to the infinite delay lower bound is clearly illustrated in Figure 5. It shows

the upper bound is asymptotically tight and converges. From this upper bound and

the distortion/delay function, we observed that introducing some finite delay can

help achieve the D(∞) lower bound very quickly. In some practical applications,

e.g., video transmission over a wireless fading channel, which can tolerate a certain

amount of delay, our results suggested that inserting a buffer between quantizer and

transmitter will significantly enhance the image quality. Intuitively, a transmission

delay can be thought of as some delay diversity corresponding to space diversity in

the MIMO channel. Hence there is also some diversity-rate tradeoff for our problem

which can lead to results similar to those in [63].
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2. SIMO/MISO Antennas System

For a SIMO channel of m receiver antenna. We can consider such channel as a mth-

order combining diversity Rayleigh fading channel. Again, for simplicity, we here

assume η = 1. The channel gain after combining is Chi-square distributed with 2m

degrees of freedom, and the probability density function (pdf) is given by:

f(x) =
1

(m − 1)!
xm−1e−x, x > 0 . (7.24)

Corollary 2. For the SIMO Rayleigh fading channel with m receive antennas. The

distortion-delay upper bound has a closed-form expression:

Dm(τn) ≤
[
Γ(λ − m)

Γ(λ)
ρ−m

1F1

(
m; m − λ + 1;

1

ρ

)
+

Γ(m − λ)

Γ(m)
ρ−λ

1F1

(
λ; λ − m + 1;

1

ρ

)]τn

,

(7.25)

where λ = 1/τn.

Proof. We start from Eqn. (7.14), with SIMO case

D(θ) =
( ∫ ∞

0

(1 + ρx)−λf(x)dρ
)τn

=

(
1

(m − 1)!
·
∫ ∞

0

(1 + ρx)−λxm−1e−xdx

)τn

, (7.26)

where we have used the expression of f(x) in (7.24). We know that [62, Ch. 3.383.5]:∫ ∞

0

e−pxxq−1(1 + ax)−vdx = a−qΓ(q)Ψ
(
q, q + 1 − v;

p

a

)
, (7.27)

where Ψ(·, ·; ·) denotes the degenerate Hypergeometric function. Reducing to the

more commonly used confluent hypergeometric function, we have following relation:

Ψ(x, y; z) =
Γ(1 − y)

Γ(x − y + z)1

F1(x; y; z) +
Γ(y − 1)

Γ(x)
z1−y
1 F1(x − y + 1; 2 − y; z) . (7.28)

Let p = 1, q = m, v = λ and a = ρ. Plugging (7.28) into (7.27), we can prove Lemma
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1.

For MISO case2, it is similar to the SIMO case but the power is divided by

m. Even for the SIMO/MISO case, the distortion-delay upper bound function is

very complicated. We can get only some numerical results. Therefore, for a more

general MIMO channel, we resorted to the SNR exponent in the high SNR regime to

demonstrate the buffer gain.

E. Distortion Exponent of MIMO Block Fading Channel

For MIMO block fading channel with a buffered transmission, Eqn. (7.14) is very

hard to analyze and provides less insight. We can only use the numerical method to

compute the function since “Jensen’s gai” is negligible in the low SNR regime and

becomes significant at the high SNR. Therefore, we are more interested in the high

SNR behavior of the expected distortion. We defined the figure of merit of distortion

exponent [63] with bandwidth ratio η:

α(η) = − lim
ρ→inf

logD(ρ, η)

log ρ
. (7.29)

A distortion exponent of α means that the expected distortion decays as ρ−α with

increasing SNR value ρ when the SNR is high. We want to characterize the buffer

delay and bandwidth ratio’s impact on the SNR exponent.

Theorem 6. [63] (No Buffer) For transmission of memoryless, complex Gaussian

source over a MIMO block fading channel, the distortion exponent with perfect known

channel is given by

α(η) =
M∗∑
i=1

min
(
η, 2i − 1 + |Mt − Mr|

)
. (7.30)

2We assume transmitter has CSI for MISO case for beamforming transmission
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The proof of Theorem 6, using the technique of [2]. Intuitively, when the band-

width ratio is low, the distortion is limited by the η and the degree of freedom of the

MIMO channel – the total degree of freedom utilized to transmit the information.

On the other hand, when the bandwidth ratio is high, we needed more diversity to

provide transmission reliability. Hence, for the high bandwidth ratio, the system is

diversity limited and the SNR exponent is determined by the second term.

Theorem 7. (with buffer delay) For transmission of memoryless, complex Gaussian

source over a MIMO block fading channel, If the quantized bits are stored in a buffer

before transmitting over the fading channel. Assume the transmitter know exactly the

instantaneous channel capacity, the distortion SNR exponent is given by

α(η) = τn min
{ η

τn

, 2i − 1 + |Mr − Mt|
}

. (7.31)

Proof. Proof can be found in Appendix II.

Remarks

• We found the SNR exponent of Theorem 4 is similar as the one of joint encoding

and decoding of L MIMO fading blocks. However, the joint encoding increased

transmitter and receiver complexity. Introducing a simple buffer delay can

produce the same SNR exponent by utilizing the time diversity.

• For the SIMO/MIMO case, the SNR exponent reduces to min{η, τnM}, where

M is the receiver / transmitter antenna number. We can consider η = τnM

as a corner point. Below this point, the system’s degree of freedom is limited,

hence introducing more antenna will not improve the SNR exponent. Beyond

this point, the system is diversity limited. By increasing the antenna number

to provide more combining branches to increase diversity, the SNR exponent is

also increased.
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Fig. 34. Distortion exponent v.s. bandwidth ratio for block fading 2x2 MIMO channel.

In Fig. 34, we fixed the MIMO channel as 2× 2, and plotted the SNR exponent

v.s. the bandwidth ratio curves for different delays. As the delay increases, we

have more time diversity to combat fading, hence the corner point of the exponent-

bandwidth ratio curve also increases. For τn = 1, the maximum SNR exponent can

be achieved for η = 3. It is useless to increase channel bandwidth ratio beyond 3

in the high SNR. In Fig. 35, We fixed the normalized delay as τn = 5 and showed

different SNR exponent-bandwidth ratio curves for different antenna settings. For

the SISO channel, the SNR exponent will not increase any more as the bandwidth

ratio increase beyond 5.
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1. MIMO Mutual Information Gaussian Approximation

Due to the difficulty in handling of Eqn. (7.14), we used some approximations for the

MIMO mutual information. The mathematical operation of log det(cdot) involved an

extensive amount of average. Therefore the Lyapunov’s central limit theorem can be

applied. The mutual information can be approximatd as a Gaussian distribution for

large antenna systems. In [79], the mean and variance of different antenna settings

was derived. We used the results of [79] to derive the distortion-delay approximations

for different antenna settings.

a. Large Mr, fixed Mt

For this case the mutual information obeys

I ∼ N
(

Mt ln
(
1 +

Mrρ

Mt

)
,
Mt

Mr

)
. (7.32)

The well-known moment generate function of the Gaussian distribution is E(esx) =

exp(smx+ 1
2
s2σ2

x), where mx and σ2
x is the mean and variance of the Gaussian variable

x. By plugging (7.32) into (7.9) and after some straightforward math manipulations,

we can get the effective capacity and distortion delay function as

Ec(θ) = Mtη ln
(
1 +

Mr

Mt

ρ
)
− 1

2
θK

Mt

Mr

η2 (7.33)

D(τn) ≤
[
1 +

Mrρ

Mt

− exp
( Mt

2Mr

(
η2

τn

)
)]−Mtη

(7.34)

From Eqn. (7.33, 7.34), the effective capacity approaches to the ergodic capacity

as θ → 0 or Mr → ∞ (channel hardening). The SNR exponent is Mtη, which

is the same as Theorem 4, as Mt fixed and Mr goes to infinity. Hence, the SNR

exponent is determined by the first term in Eqn. (7.31). We found that the Guassian
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approximation did reveal the distortion-delay tradeoff asymptotically.

b. Large Mt, fixed Mr

the mutual information obeys

I ∼ N
(

Mr ln
(
1 + ρ

)
,

Mrρ
2

Mt(1 + ρ)2

)
. (7.35)

The effective capacity and distortion delay curve is

Ec(θ) = Mrη ln(1 + ρ) − 1

2
θKη2 Mt

Mr

ρ2

1 + ρ2
(7.36)

D(τn) ≤
[
1 + ρ − exp

( Mr

2Mt

(
η2

τn

)
ρ2

1 + ρ2

)]−Mrη

(7.37)

Again, the effective capacity approaches to the ergodic capacity as θ → 0 or Mt → ∞

The SNR exponent is Mrη, which confirmed the results of Theorem 4.

c. Large Mt and Mr, Fixed β = Mr/Mt, High SNR

The mutual information obeys

I ∼ N
(

Mtµ(β, ρ), σ2(β)

)
, β ≥ 1 (7.38)

∼ N
(

Mrµ
( 1

β
, βρ

)
, σ2

( 1

β

))
, β ≤ 1 . (7.39)
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Where µ(β, ρ) = ln ρ + F (β), F (β), σ2(β) are functions only depends on β. The

effective capacity capacity and distortion-delay function is:

Ec(θ) = Mrη ln(ρ) − θC1 (7.40)

D(τn) ≤
[
ρ − C2

]−Mrη

, β ≥ 1 (7.41)

Ec(θ) = Mtη ln(ρ) − θC3 (7.42)

D(τn) ≤
[
ρ − C4

]−Mtη

, β ≥ 1 , (7.43)

Where C1, C2, C3, C4 are some constants. As both Mr,Mt grow larger with fixed β,

hence the |Mt − Mr| also goes large, the SNR exponent is still M∗η.

F. Discussion and Remarks

In previous sections, we clearly characterized the distortion/delay curve. However, we

depended on some ideal assumptions, e.g., that the instantaneous channel capacity is

achievable and the CSI is perfectly known at the transmitter.

Remark 3. (Decoding Error Probability) In previous discussions we have assumed

using the the Gaussian code to achieve instantaneous capacity. In reality, we had to

take the decoding error probability into account for short codewords. [69] has integrated

the physical layer decoding error into the effective capacity function through a random

coding error exponent. This showed that a joint queuing/coding exponent exists. Such

an exponent can fit well into our distortion and delay analytical frame work.

Remark 4. (Power Control) Since we have perfect CSI at the transmitter, given an

average transmission power budget, we can control the transmission power to maxi-

mize the effective capacity or minimize the end-to-end distortion for some delay con-

straint. In other words, the transmission power is not necessarily constant. Recent
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work [70] shows that the optimum power adaptation policy is related to the delay con-

straint. As the delay goes to infinity, the power control policy approaches a water-filing

solution. On the contrary, for stringent delay constraints, the optimum power con-

trol policy becomes more like a “truncated channel inversion.” Our future work will

investigate how optimum power control affects the distortion/delay curves. Optimal

power control policy for SISO/MIMO block fading has been investigated in [78, 80].

Remark 5. (Channel Correlation) Although an i.i.d. block fading channel is easy

to analyze and has several practical applications, this model is not always valid. It is

more general and practical to consider channel correlation. We can use Jake’s model

to characterize the correlated channel fading process. The autocorrelation of channel

gain R(τ) can be expressed as

R(τ) = J0(2πfdτ) , (7.44)

where J0(·) denotes the zero-th order Bessel function of first kind and fd repre-

sents the maximum Doppler frequency. Channel correlation will reduce the effective

capacity[67]. Intuitively, correlation may cause the fading channel to stay in the bad

status for a longer time compared with i.i.d. block fading. [70] shows that given a

correlated fading channel with the same marginal statistics as i.i.d. case, the effec-

tive capacity of such a correlated channel is a linear shift in delay axis in logarithmic

scale, the shift value is proportional to the Doppler frequency fd. Hence the i.i.d.

block fading distortion/delay tradeoff can be easily extended to the correlated case.

G. Conclusion

We investigate the fundamental problem of distortion/delay tradeoff for the analogue

source transmitted over wireless fading channels. We derive a close-form analytical
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formula to characterize this relationship using recently proposed effective capacity.

Based on this closed-form expression, we derived an upper bound that is asymptot-

ically tight to study the convergence behavior of the distortion/delay function for

an SISO channel. We also characterized the SNR exponent of a MIMO block fading

channel in the high SNR regime. Simulation results show that a small delay can result

in a significant transmission power saving. The framework of this paper is applicable

to a broad class application, e.g., video transmission.
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CHAPTER VIII

CONCLUSION

This dissertation has studied the various topics of signal detection, interference sup-

pression, error exponent and QoS under the framework of the multiple-antennas sys-

tem. The main contributions of this dissertation are summarized as follows:

• Some near optimal low complexity coherent MIMO detectors are proposed. The

detectors are suitable for both coded/uncoded MIMO communication.

• We proposed a noncoherent ML detector for OSTBC transmission. The detector

efficiently utilizes the sphere search to reduce computation complexity. The

performance of this receiver is within 1.5 dB of the channel perfectly known

coherent receiver, yet maintains the full diversity order of the space-time code.

• We designed an efficient spacial covariance estimator to suppress the asyn-

chronous co-channel interference in the MIMO-OFDM settings. The designed

MMSE interference suppression receiver performed within 1− 2 dB of the syn-

chronous and the channel perfectly known receiver. Moreover, the optimal MAP

receiver that was incorporated with the covariance estimator is designed to show

superior performance. With the designed open-loop interference suppression ca-

pability, the overall throughput of the high-density multicell wireless network

can be increased significantly.

• We have derived the error exponent of a wideband relay channel with differ-

ent relay schemes. Based on the computed error exponent, we optimized the

power allocation and relay node placement. The performances of different relay

schemes are compared based on the error exponent which provides a different
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angle to denote how fast the error decay with the subcarrier channel number,

which is a good complementary of the fundamental capacity analysis.

• We also analyzed the QoS – delay and distortion of a buffered transmission

under the framework of the MIMO channel. From the cross-layer approach,

the effective capacity concept has been used to investigate the distortion-delay

tradeoff To characterize the asymptotical behavior, a tight upper bound was

derived for special SISO case. For a more general MIMO channel, the SNR

exponent was computed for different buffer delay values which represented the

decay rate of the distortion with the increased high SNR value. The result pro-

vided guidelines for the system design that must satisfy some QoS requirements.

Multiple-antenna communication have attracted considerable research interest in the

past few years. Moving from SISO communication to the MIMO channel is a rev-

olutionary step in wireless communication. This dissertation is our effort in that

direction.
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APPENDIX A

PROOF OF THEOREM 1 OF CHAPTER IV

Proof. For SIMO case, H is a column vector.

x̂ = WMMSE · Y

= HH(HHH + R̂II)
−1H · x + HH(HHH + R̂II)

−1 · Iinter

(a)
= HH

(
R̂−1

II − R̂−1
II HHHR̂−1

II

1 + HHR̂−1
II H

)
H · x + HH

(
R̂−1

II − R̂−1
II HHHR̂−1

II

1 + HHR̂−1
II H

)
· Iinter

=
HHR̂−1

II H

1 + HHR̂−1
II H

· x +
HHR̂−1

II · Iinter

1 + HHR̂−1
II H

, (A.1)

where (a) has used the matrix inverse lemma. Hence,

x̂ − x =
−1

1 + HHR̂−1
II H

· x +
HHR̂−1

II · Iinter

1 + HHR̂−1
II H

(A.2)

MSE = E(x̂ − x)2 =
1

(1 + HHR̂−1H)2
+

HHR̂−1RR̂−1H

(1 + HHR̂−1H)2

=
1

(1 + HHR̂−1H)
+

HHR̂−1∆RR̂−1H

(1 + HHR̂−1H)2

= ˆMSE + ˆMSE
2 · HHR̂−1∆RR̂−1H

= ˆMSE + ˆMSE
2 · trace

(
HHR̂−1∆RR̂−1H

)
(A.3)

where ∆R = R − R̂. Let R̂−1 = UHU, ∆R = THT.

From (A.3), we have following inequality:

MSE ≤ ˆMSE + ˆMSE
2 · ‖UTHTUH‖F‖UHHHUH‖F . (A.4)



134

wherein,

‖UHHHUH‖F =

√
trace(HHHUHUHHHUHU)

=
√

HHR̂−1HHHR̂−1H

=
1

ˆMSE
− 1 .

‖UTHTUH‖F =

√
trace(UTHTUHUTHTUH)

=

√
trace(∆RR̂−1∆RR̂−1)

= ‖R̂−1∆R‖F

≤ ‖∆R‖F · λmax(R̂
−1) . (A.5)

where we have used the Cauchy-Schwarz inequality trace(AB) ≤ ‖A‖F · ‖B‖F , and

‖AB‖F ≤ ‖B‖F λmax(A). Therefore,

MSE ≤ ˆMSE +
(

ˆMSE − ˆMSE
2) · ‖∆RII‖F · λmax(R̂

−1
II ). (A.6)
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APPENDIX B

PROOF OF THEOREM 2 OF CHAPTER VI

Proof. From Eqn. (7.19) of Corollary, we have

D(λ) ≤
[
ρ−λ exp

(1

ρ

)
γ
(
1 − λ,

1

ρ

)] 1
λ

=

[
1

λ − 1

1

ρ
1F1

(
1; 2 − λ;

1

ρ

)
+ Γ(1 − λ)

(1

ρ

)λ

exp
(1

ρ

)] 1
λ

(B.1)

Since 1
λ−1

< 0 as λ → 0, we first lower-bound the confluent hypergeometric function.

1F1(1; 2 − λ; x) =
∞∑

k=0

(1)k

(2 − λ)k

xk

k!

≥
∞∑

k=0

(1)k

(2)k

xk

k!
=

1

x
(ex − 1) , (B.2)

where (a)k , a · (a + 1) · · · (a + k − 1). For λ → 0 this lower bound is asymptotically

tight. Next we upper-bound the Γ(1 − λ).

Γ(1 − λ) = −λ · Γ(−λ) =
−λ

1
Γ(−λ)

=
−λ

−λ + ξ(−λ)2 + φ(−λ)3 + δ(−λ)4 + O((−λ)5)

≤ 1

1 − ξλ + φλ2 − δλ3
, (B.3)

where ξ = 0.577215 , φ = 1
12

(6ξ2 − π2) and δ is some constant. Hence replacing (B.2)

and (B.3) in (6.21) we have the following upper bound

D(λ)≤̇
[

1

λ − 1

(
e

1
ρ − 1

)
+

1

1 − ξλ + φλ2
ρ−λe

1
ρ

] 1
λ

, (B.4)

where we have omitted O(λ3) term, which will not affect the result as λ → 0. Using

Taylor expansion for the first term and second term, and dropping the O(λ3), we
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obtain the following asymptotic approximation,

Dupper(λ)≈̇[1 + aλ + bλ2]
1
λ

= exp(a) exp
(
(b − a2

2
)λ

)
, (B.5)

where we have used the identity limx→0(1 + x)
1
x = e, and

a , 1 − e
1
ρ + ξe

1
ρ − ln ρe

1
ρ

b , 1 − e
1
ρ + (ξ2 − φ)e

1
ρ − ξ ln ρe

1
ρ + ln2 ρ .

In order to show Dupper(λ) → D(∞) in (6.17), in other word (B.5) → (6.17), we want

to show that

F , 1 − e−
1
ρ − ξ + ln ρ → E1(1/ρ) . (B.6)

E1(·) is a special function, and don’t have simple expression. Instead we use numerical

method to illustrate the convergence. We have plotted these two values in Figure 6.

We can observe for most SNR these two values match perfectly. Hence we conclude

that the upper bound converges and the convergent rate is exponential.
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APPENDIX C

PROOF OF THEOREM 4

Proof. We will follow the technique used in [2]. Assume without loss of generality

that Mt = M∗ ≤ Mr (the case Mt > M − r is a simple extension). We start from the

distortion delay function (7.17)

D(ρ) =

{ ∫ ∞

0

∏(
1 +

ρ

Mt

λi

)−θKη

f(λ)dλ

} 1
θK

, (C.1)

where λ1 ≤ λ2 ≤ · · · ≤ λMt are the ordered eigenvalues of HHH . We make the

change of variable: αi = − log(λi)/ log(ρ), for all i = 1, · · · ,Mt, The joint pdf α =

[α1, · · · , αMt ], where α1 ≥ · · · ≥ αMt , is given by

f(α) = K−1
Mt,Mr

(
log ρ

)Mt

Mt∏
i=1

ρ−(Mr−Mt+1)αi

∏
i<j

(
ρ−αi − ρ−αj

)2
exp

( ∑
i

ρ−αi

)
.

(C.2)

Replace λ with α, (C.1) yields

D(ρ) =

{ ∫
A

Mt∏
i=1

(1 +
1

Mt

ρ1−αi)−θKηf(α)dα

} 1
θK

, (C.3)

where

A =
{
α ∈ RMt : α1 ≥ · · · ≥ αMt

}
.
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Neglecting all terms that irrelevant to the SNR exponent, we obtain (C.1) yields

D(ρ)≥̇

{∫
A

T

RMt+

( Mt∏
i=1

(1 +
1

Mt

ρ1−αi)−θKη

) Mt∏
i=1

ρ−(2i−1+Mr−Mt)αidα

} 1
θK

=̇

{ ∫
A

T

RMt+

Mt∏
i=1

ρ−θKη(1−αi)
+

Mt∏
i=1

ρ−(2i−1+Mr−Mt)αidα

} 1
θK

=̇

{ ∫
A

T

RMt+

Mt∏
i=1

ρ−(θKη(1−αi)
++(2i−1+Mr−Mt)αi)

} 1
θK

=̇ρα(η) 1
θK (C.4)

where we have used

(1 +
1

Mt

ρ1−αi)−θKη=̇ρ−θKη[1−αi]
+

.

And

α(η) = inf
α∈A

T

RMt+

Mr∑
i=1

(2i − 1 + Mr − M − t)αi + θKη(1 − αi)
+ .

We can minimizing individual term of the summation separately by set αi = 0 or 1.

We also notice that θK = τn, the buffer delay, hence we can obtain the SNR exponent

of the buffered transmission is

α(η) = τn min
{ η

τn

, 2i − 1 + Mr − Mt

}
. (C.5)
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