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ABSTRACT 

Speed Estimation Using Single Loop Detector Outputs. (December 2007) 

Zhirui Ye, B.S., Southeast University, China; 

M.S., Southeast University, China 

Chair of Advisory Committee:  Dr. Yunlong Zhang 

 

Flow speed describes general traffic operation conditions on a segment of roadway. It is 

also used to diagnose special conditions such as congestion and incidents. Accurate 

speed estimation plays a critical role in traffic management or traveler information 

systems. Data from loop detectors have been primary sources for traffic information, and 

single loop are the predominant loop detector type in many places. However, single loop 

detectors do not produce speed output. Therefore, speed estimation using single loop 

outputs has been an important issue for decades. 

This dissertation research presents two methodologies for speed estimation using 

single loop outputs. Based on findings from past studies and examinations in this 

research, it is verified that speed estimation is a nonlinear system under various traffic 

conditions. Thus, a methodology of using Unscented Kalman Filter (UKF) is first 

proposed for such a system. The UKF is a parametric filtering technique that is suitable 

for nonlinear problems. Through an Unscented Transformation (UT), the UKF is able to 
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capture the posterior mean and covariance of a Gaussian random variable accurately for 

a nonlinear system without linearization.  

This research further shows that speed estimation is a nonlinear non-Gaussian 

system. However, Kalman filters including the UKF are established based on the 

Gaussian assumption. Thus, another nonlinear filtering technique for non-Gaussian 

systems, the Particle Filter (PF), is introduced. By combining the strengths of both the 

PF and the UKF, the second speed estimation methodology—Unscented Particle Filter 

(UPF) is proposed for speed estimation. The use of the UPF avoids the limitations of the 

UKF and the PF. 

Detector data are collected from multiple freeway locations and the microscopic 

traffic simulation program CORSIM. The developed methods are applied to the 

collected data for speed estimation. The results show that both proposed methods have 

high accuracies of speed estimation. Between the UKF and the UPF, the UPF has better 

performance but has higher computation cost. 

The improvement of speed estimation will benefit real-time traffic operations by 

improving the performance of applications such as travel time estimation using a series 

of single loops in the network, incident detection, and large truck volume estimation. 

Therefore, the work enables traffic analysts to use single loop outputs in a more cost-

effective way. 

 



 v

DEDICATION 

 

 

 

 

 

 

 

To my son 

To my family and friends for their love and support… 

 

 

 

 



 vi

ACKNOWLEDGMENTS 

 

I would like to express my sincere gratitude and appreciation to my advisor, Dr. 

Yunlong Zhang, for his guidance and support during my study at Mississippi State 

University and Texas A&M University. Dr. Zhang treats me not only as his student, but 

also as a younger brother. It has been an honor to work with him and benefit from his 

religious and passionate attitude toward research, teaching, and life. 

 I would also like to thank my committee members, Dr. Dominique Lord, Dr. Luca 

Quadrifoglio, and Dr. Faming Liang for their guidance, and for taking time to work with 

me and to provide technical expertise to achieve my objectives. Their valuable 

comments and suggestions to my initial work directly contribute to the completion of my 

dissertation.  

Special thanks to Dr. Danny R. Middleton at Texas Transportation Institute for 

providing traffic data for the dissertation. Thanks also to my fellow students in the 

transportation group with whom I shared a unique research environment and student life. 

Finally, I would like to thank my family for the support they provided throughout my 

studies, regardless of the remote distance. Special thanks to my wife, Ziwei Hu, for her 

endless support, understanding, and love, without which I would not have achieved this 

milestone. 

 



 vii

TABLE OF CONTENTS 

Page 

ABSTRACT ..................................................................................................................... iii 

DEDICATION ...................................................................................................................v 

ACKNOWLEDGMENTS.................................................................................................vi 

TABLE OF CONTENTS .................................................................................................vii 

LIST OF FIGURES...........................................................................................................ix 

LIST OF TABLES ...........................................................................................................xii 

CHAPTER  

I      INTRODUCTION ................................................................................................1 

1.1 Statement of the Problem .....................................................................3 
1.2 Research Objectives .............................................................................4 
1.3 Research Methodologies ......................................................................5 
1.4 Contribution of the Research................................................................7 
1.5 Organization of the Dissertation ..........................................................8 

II     LITERATURE REVIEW ...................................................................................10 

2.1 Introduction ........................................................................................10 
2.2 Vehicle Detectors ...............................................................................10 
2.3 Description of the Speed Estimation Problem ...................................17 
2.4 Existing Speed Estimation Methods ..................................................18 

III   DATA COLLECTION AND PRELIMINARY PROCESSING ........................32 

3.1 Introduction ........................................................................................32 
3.2 Data Sources.......................................................................................32 
3.3 Summary ............................................................................................43 

IV   METHODOLOGY I: UNSCENTED KALMAN FILTER (UKF).....................45 

4.1 Introduction ........................................................................................45 
4.2 Nonlinear System of Speed Estimation..............................................45 
4.3 Kalman Filters ....................................................................................48 

 



 viii

CHAPTER                                                                                                                    Page 

4.4 Implementation of the UKF ...............................................................62 
4.5 Estimation Results and Discussion ....................................................65 
4.6 Sensitivity Analysis............................................................................80 
4.7 Summary ............................................................................................82 

V     METHODOLOGY II: UNSCENTED PARTICLE FILTER (UPF)..................83 

5.1 Introduction ........................................................................................83 
5.2 Limitation of the UKF........................................................................83 
5.3 Methodology ......................................................................................86 
5.4 Implementation of the UPF ................................................................92 
5.5 Estimation Results and Discussion ....................................................96 
5.6 Summary ..........................................................................................107 

VI   EXTENSIONS ..................................................................................................109 

6.1 Introduction ......................................................................................109 
6.2 Travel Time Estimation....................................................................109 
6.3 Incident Detection ............................................................................111 
6.4 Large Truck Volume Estimation......................................................113 
6.5 Summary ..........................................................................................115 

VII   SUMMARY AND CONCLUSIONS ..............................................................116 

7.1 Summary ..........................................................................................116 
7.2 Conclusions ......................................................................................117 
7.3 Future Research................................................................................119 

REFERENCES...............................................................................................................120 

APPENDIX A ................................................................................................................133 

APPENDIX B ................................................................................................................134 

APPENDIX C ................................................................................................................136 

APPENDIX D ................................................................................................................138 

APPENDIX E.................................................................................................................141 

VITA ..............................................................................................................................156 

 

 



 ix

LIST OF FIGURES 

Page 

Fig. 2.1       Schematic diagram of single loop detectors ................................................ 13 

Fig. 2.2       Double loop detector system........................................................................ 15 

Fig. 2.3       Peek ADR-6000 detectors............................................................................ 16 

Fig. 2.4       Layout of a freeway segment with single loop detectors............................. 18 

Fig. 2.5      Transformation of occupancy to v based on empirical results...................... 27 
 
Fig 3.1       Test bed in College Station ........................................................................... 33 

Fig 3.2       PVR data ....................................................................................................... 35 

Fig 3.3       Hourly traffic volumes from the SH6 test bed on Jan. 27, 2004. ................. 37 

Fig 3.4       Hourly traffic volumes from the IH-35 test bed in Austin on Oct. 27, 2004  38 

Fig 3.5       Layout of the simulated freeway section ...................................................... 41 
 
Fig. 4.1     Average vehicle lengths over time................................................................. 46 

Fig. 4.2     Speed and the ratio of speed variance to squared speed over time................ 48 

Fig. 4.3     Dynamic system of KF .................................................................................. 51 

Fig. 4.4     Operation of the KF ....................................................................................... 51 

Fig. 4.5     Operation of the EKF..................................................................................... 55 

Fig. 4.6     Unscented transformation of the UKF........................................................... 58 

Fig. 4.7     Comparison of sigma point approach and linearization ................................ 59 

Fig. 4. 8    Operation of the UKF .................................................................................... 62 

Fig. 4.9     Speed estimation results from the UKF at SH6 on Jan. 27, 2004 (lane 1) .... 67 

Fig. 4.10   Speed estimation results from the UKF at SH6 on Jan. 27, 2004 (lane 2) .... 67 

 



 x

Page 

Fig. 4.11   Speed estimation results from the EKF at SH6 on Jan. 27, 2004                 
(lane 1)........................................................................................................... 69 

Fig. 4.12   Speed estimation results from the g method at SH6 on Jan. 27, 2004          
(lane 2)......................................................................................................…. 69 

Fig. 4.13   Speed estimation results from the UKF at IH-35, Austin, on Oct. 27, 2004 
(lane 1)........................................................................................................... 71 

Fig. 4.14   Speed estimation results from the UKF at IH-35, Austin, on Oct. 27, 2004 
(lane 2)........................................................................................................... 71 

Fig. 4.15   Speed estimation results from the UKF at IH-35, Austin, on Oct. 27, 2004 
(lane 3)........................................................................................................... 72 

Fig. 4.16   Speed estimation results from the UKF at IH-35, Austin, on Oct. 27, 2004 
(lane 4)........................................................................................................... 72 

Fig. 4.17   Speed estimation results from the UKF at IH-35, Austin, on Nov. 9, 2004 
(lane 1)........................................................................................................... 73 

Fig. 4.18   Speed estimation results from the UKF at IH-35, Austin, on Nov. 9, 2004 
(lane 2)........................................................................................................... 73 

Fig. 4.19   Speed estimation results from the UKF at IH-35, Austin, on Nov. 9, 2004 
(lane 3)........................................................................................................... 74 

Fig. 4.20   Speed estimation results from the UKF at IH-35, Austin, on Nov. 9, 2004 
(lane 4)........................................................................................................... 74 

Fig. 4.21   Estimated and observed speeds (lane 4, IH-35, Austin, Oct.27, 2004)              
a) 20s time interval b) 30s time interval c) 60s time interval........................ 76 

Fig. 4.22   Estimated speeds from the UKF on IH-35 in San Antonio                          
(lane 1, Feb.10-16, 2003) .............................................................................. 76 

Fig. 4.23    Sensitivity analysis of speed variance with 30s time interval (lane1,           
IH-35, Austin, Oct.27, 2004)......................................................................... 81 

 
Fig. 5.1      Speed distribution under normal traffic conditions ...................................... 84 

Fig. 5.2      Speed distribution under congested traffic conditions.................................. 85 

 



 xi

Page 

Fig. 5.3      Schematic diagram of the PF ........................................................................ 90 

Fig. 5.4      Estimation results from the UPF at SH6 on Jan. 26, 2004 (lane 1) .............. 97 

Fig. 5.5      Estimation results from the UPF at IH-35, Austin, on Nov. 09th, 2004    
(lane1)............................................................................................................ 97 

Fig. 5.6      Comparison of results under congested conditions.                                          
a) UPF. b) UKF. c) EKF ............................................................................... 99 

Fig. 5.7      Estimation results from the UPF at IH-35, San Antonio, from                 
Feb.10 - 16, 2003 (lane 1) ........................................................................... 100 

Fig. 5.8      Comparison of results.  a) UPF. b) UKF. c) EKF....................................... 102 

Fig. 5.9      Estimation errors of simulated data ............................................................ 104 

Fig. 5.10   Comparison of MAEs .................................................................................. 105 

Fig. 5.11   Comparison of RMSEs ................................................................................ 105 
  
Fig.6.1      Schematic diagram of extrapolating travel time .......................................... 110 

Fig.6.2      Length distribution of vehicles .................................................................... 114 

Fig.6.3      Vehicle lengths distributions with normal distribution curves .................... 114 

 

 



 xii

LIST OF TABLES 

Page 

Table 2.1      Vehicle Detector Classification...................................................................11 
 
Table 3.1      Dual-Loop Detector Data ............................................................................40 

Table 3.2      Configuration of Vehicle Types..................................................................43 
 
Table 4.1      Comparison of Speed Estimation Results ...................................................77 

Table 4.2      Paired Samples t-test for MAEs..................................................................79 
 
Table 5.1      Paired t-tests for MAEs of the UPF and the UKF.....................................106 

 

 

 



 1

CHAPTER I 

INTRODUCTION 
1Z 

Speed is one of the most commonly used measures of performance for traffic facilities 

and networks (McShane et al., 1998). As an indicator of Level of Service (LOS), speed 

has been used in traffic operational analysis, traffic simulation models, incident detection 

and analysis, economic studies, and many other areas of transportation engineering and 

planning. Moreover, some important decision-making variables such as travel time can 

be further calculated based on the speed information. Speed information is also 

important for real-time transportation applications. These applications include Advanced 

Traffic Management Systems (ATMS) and Advanced Traveler Information Systems 

(ATIS), which are part of the Intelligent Transportation Systems (ITS). Therefore, 

providing timely and accurate speed information is very important for improving traffic 

management and control.  

The importance of speed indicates a need to measure speed timely, accurately, and 

cost effectively. Speed data can be collected manually or automatically, while the 

manual method is less practical and efficient than the automatic method when a large 

amount of speed information of a network is needed. Extensive and continuous real-time 

traffic data are required in modern traffic management and control. Manual speed 

measurement apparently cannot meet such requirements. A variety of vehicle detectors 

have been employed on highways to automatically provide real time traffic data. Based 
————— 
This dissertation follows the style and format of the ASCE Journal of Transportation Engineering. 
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on the types of vehicle detectors, speed measurement techniques can be divided into two 

broad categories, direct methods and indirect methods. Many technologies have been 

used to detect vehicle speeds, such as ultrasonic, radar, acoustic, piezoelectric, passive 

and active infrared, magnetic, pair inductance loops, and Video Image Processor (VIP). 

Detectors using such technologies can directly measure and output speed data. In the 

case of indirect methods, speed can be obtained via postprocessing. For example, speed 

can be estimated by using the outputs (occupancy and traffic count) from single loop 

detectors.  

Although many types of vehicle detectors have accurate speed measurements, they 

are much more expensive than single loop detectors. This prevents those detectors from 

widespread implementations. Even though dual-loop detectors have the output of speed, 

the cost of upgrading from a single loop detector to a dual-loop detector is still high, 

around $750 direct cost for loop placement and $2500-$5000 indirect cost by lane 

closure (Wang and Nihan, 2003). 

Single loop detectors, however, are the most widely used detectors on the America’s 

highways because of the maturity of the inductance technique and low cost. For 

example, the California Department of Transportation (DOT) estimated that there are 

approximately 300,000 single loop detectors on California freeways (PATH, 1997). The 

extensive deployment of single loops is able to provide tremendous amount of baseline 

data. The utilization of such baseline data is apparently important for managing and 

controlling traffic in a cost-effective manner. 

 



 3

1.1      STATEMENT OF THE PROBLEM 

Given the widespread implementation of single loop detectors and the importance of 

speed in numerous transportation applications, there is a need to explore and develop 

methodologies to estimate speed accurately using single loop outputs. Even though 

many methods have been presented in the literature for speed estimation, the accuracy of 

the estimation is unsatisfactory. This is caused by several issues regarding this subject. 

Firstly, traffic flow is a mixture of various classes of vehicles. Traffic compositions vary 

spatially (from location to location) and temporally (from time to time). Also, different 

classes of vehicles have different characteristics such as vehicle length, weight, and 

number of axles. Secondly, traffic conditions on freeways are complex. With the 

increase of traffic volume, traffic congestion arises and queue forms on freeways during 

peak hours or even for significant portions of the day, especially within large urban 

areas. Vehicles don’t have the same speed on a freeway section and speeds can be 

influenced by many factors such as roadway characteristics, traffic volume, incidents, 

weather, and driver characteristics. Thirdly, assumptions used for simplifying traffic 

analysis do not meet real traffic conditions and contribute to analytical errors. Finally, 

some existing methods are developed for limited conditions and have their own 

drawbacks in dealing with this problem. 

The important role of speed requires that proposed methods should be able to 

generate accurate estimates of speed. The developed methods should have good 

performance under various traffic conditions. Moreover, they should be easy for 
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implementation and on-line estimation. Finally, they should be transferable from one 

detector station to another without much effort. 

1.2      RESEARCH OBJECTIVES 

To address the above problems, this research will first identify the problem of speed 

estimation using single loop detector data. The nonlinearity of the speed estimation 

problem has been addressed in previous studies (Dailey, 1999; Wang and Nihan, 2000; 

Lin et al., 2004). This research will further identify the nonlinearity of this problem. A 

nonlinear Kalman filter, the Unscented Kalman Filter (UKF), will be proposed for the 

nonlinear speed estimation problem. Based on the analysis of traffic data, this research 

will show that speed estimation is a nonlinear non-Gaussian problem, while the UKF has 

the limitation of applying to non-Gaussian problems. Hence, a non-parametric filtering 

method, the Unscented Particle Filter (UPF), will be presented for solving nonlinear and 

non-Gaussian problems.  

The proposed methodologies will be analyzed and applied to both real world data 

collected from different freeway locations and simulated data from the simulation 

program CORSOM. Speed will be estimated using the proposed methods as well as 

some existing approaches. Estimated results will be compared, analyzed, and evaluated. 

This research will show that both proposed methods have significant improvements on 

speed estimation methods developed in the past.  

Based on the details presented above, the fundamental objectives of this research are 

listed as follows:  
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• Review and assessment of the state-of-the-art related to speed estimation using 

single loop outputs. 

• Identification of the speed estimation problem using single loop outputs. In 

addition to nonlinearity of the speed estimation problem, this research will show 

that the speed estimation problem is non-Gaussian.  

• Development of new methodologies/algorithms to improve the problem of speed 

estimation. 

• Comparison and evaluation of speed estimation results generated from both the 

proposed methods and some existing methods using both field data collected 

from freeways and microscopic traffic simulation program. 

1.3      RESEARCH METHODOLOGIES 

The research methodologies that include literature review, data collection, speed 

estimation, and performance evaluation are briefly described in this section. 

1.3.1 Literature Review 

A comprehensive review of the literature regarding speed estimation from single loop 

outputs was carried out.  Methods, algorithms, and theories adopted in previous works 

were studied and evaluated. Moreover, detectors that use the inductance technology were 

also reviewed. 
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1.3.2 Data Collection 

In this research, data were collected from multiple sources. Double loop detector data 

have been extensively used in the literature because such detectors have the outputs of 

occupancy, count, and speed. The occupancy and count data can be used for speed 

estimation, while speed data are used for result comparison and evaluation. Thus, double 

loop detector data were collected from Interstate Highway 35 in the city of San Antonio 

for the research.  Detector data from the shoulder lane were analyzed for continuous 24-

hour periods for a week.  

Data from the Peak ADR-6000 detector were also collected from Texas 

Transportation Institute’s vehicle detection test beds. ADR-6000 detectors also employ 

the inductance technology. Accurate individual vehicle record can be detected by such 

detectors. Occupancy, count, and (average) speed can be obtained from detector outputs 

via postprocessing. Several days of data were collected from two test beds, which are 

located on State Highway 6 in College Station and Interstate Highway 35 in Austin, 

respectively. 

 In addition to field data, simulated data were generated from the microscopic 

simulation program CORSIM. A two-lane unidirectional freeway was simulated in this 

research with the installation of surveillance detectors. Outputs from CORSIM were 

used for speed estimation as well as performance evaluation for special conditions such 

as incidents. 
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1.3.3 Speed Estimation 

Two speed estimation methods, the Unscented Kalman Filter (UKF) and the Unscented 

Particle Filter (UPF), were proposed in this research. The development of the UKF was 

to overcome the limitations in the existing Extended Kalman Filter (EKF) method 

(Dailey, 1999), which has been developed for the nonlinear speed estimation problem. 

The UKF has been proved to be a better solution for nonlinear systems. However, it still 

has some assumptions (i.e., Gaussian assumption) that do not meet real world 

conditions. The intent to overcome the shortcoming of the UKF leads to the 

development of the UPF method that can be applied to nonlinear non-Gaussian systems. 

1.3.4 Performance Evaluation 

Two performance measures were used for evaluating estimation results from different 

methods. They are the Mean Absolute Error (MAE) and the Root Mean Square Error 

(RMSE). The measures are able to measure the bias of estimations and the variance of 

errors. In addition to the measures, statistical tests (paired t-tests) were also conducted to 

test whether or not estimation errors from different methods were significantly different. 

1.4      CONTRIBUTION OF THE RESEARCH 

Single loop detectors are the most widely used detectors on the U.S. highways and has 

been the largest source of real-time traffic data. However, vehicle speed information is 

not available from such detectors. As a result, there is a need for accurate speed 
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estimation using single loop outputs. This research is a step in this direction to improve 

speed estimation. The contributions of this dissertation are listed as follows: 

• The problem of speed estimation is analyzed more comprehensively. 

• Two new methods (the UKF and the UPF) are presented to improve the accuracy 

of speed estimation. At the same time, the implementations of both methods are 

less difficult than most existing methods. 

• The improvement of speed estimation accuracy has potential benefits for many 

applications such as travel time estimation, incident detection, and large truck 

volume estimation. It is able to improve the operating performance of those 

applications. Moreover, the improvement enables accurate analysis of related 

traffic problems without expensive vehicle detection systems. 

1.5      ORGANIZATION OF THE DISSERTATION 

The dissertation is organized into seven chapters. Chapter I is an introduction to the 

research and discusses the background of the problem, statement of the problem, 

research objectives, research methodologies, contributions of the research, and the 

organization of the dissertation. Chapter II presents a comprehensive literature review on 

loop detectors and existing speed estimation methods. Chapter III describes the details of 

data collection and preliminary processing of data. Chapter IV presents the first 

methodology for speed estimation. A UKF method is proposed and applied to the 

nonlinear speed estimation problem. The results from the UKF are evaluated and further 

compared with those from the EKF. Chapter V presents the second speed estimation 
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methodology that can be applied to nonlinear non-Gaussian problems. Estimation results 

from this method are compared with those from the UKF and the EKF. Chapter VI 

presents three examples of applications that can be improved with the completion of the 

dissertation work. Chapter VII summarizes the dissertation, provides major conclusions 

of the research, and presents the recommendations for future research. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1      INTRODUCTION 

This chapter will first provide a review of vehicle detectors. Specially, three types of 

detectors adopting the inductance technology will be reviewed. It is then followed by a 

general description of the speed estimation problem using single loop outputs. Finally, 

existing speed estimation methods in the literature will be reviewed and discussed. 

2.2      VEHICLE DETECTORS 

Since the first vehicle detector’s installation at a Baltimore intersection in 1928, which 

was activated when a driver sounded his/her car horn at a specific location (Kell et al., 

1990), various vehicle detectors have been developed and used for collecting traffic data. 

As defined by the National Electrical Manufactures Association (NEMA, 1983), a 

vehicle detector system is defined as “… a system for indicating the presence or passage 

of vehicles.” Vehicle detectors can be used to provide input for freeway surveillance, 

traffic control, and data collection systems. 

Based on types of installation, traffic detectors can be broadly categorized into two 

classes: non-intrusive and intrusive, and the results can be further classified in terms of 

vehicle detection and surveillance technologies as shown in Table 2.1 (Mimbela and  
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Klein, 2000; Michalopoulos and Hourdakis, 2001). Among those types of detectors, 

Inductive Loop Detectors (ILDs) have been the most widely used vehicle detection 

devices for several decades in the United States because of their low costs and 

technology maturity (Raj and Rathi, 1994; Kell et al., 1990). 

 

Table 2.1 Vehicle Detector Classification 

Based on Installation Based on Technology 

Pneumatic Road Tube 

Inductive Loop Detectors (ILDs) 

Piezoelectric Sensors 

Magnetic Sensors 

Intrusive 
(Embedded) 

Weigh-in Motion (WIM) 

Video Image Processor (VIP) 

Microwave Radar 

Infrared Sensors 

Ultrasonic Sensors 

Non-intrusive 

Passive Acoustic Array Sensors 

 

In the following sections, three types of detectors adopting the inductive loop 

technology are reviewed. In previous speed estimation studies, data from both single 

loop and dual-loop detectors were commonly used. Thus, this part of review will include 

both single and dual-loop detectors. In addition, another type of vehicle detector, the 
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Peek ADR-6000 detectors, will also be discussed because data from them were collected 

and used in this research. 

2.2.1 Single Loop Detectors 

The evolution of the inductive loop technology can be summarized into 4 stages (Potter, 

2005). From 1960’s to middle 1970’s, loop detector designs were based on the solid-

state analog technology using discrete components (transistors, diodes, etc.). Between 

middle and late 1970’s digital design technique was employed, which made single loop 

detectors capable of detecting small motorcycles and improved the overall detection 

reliability. From early 1980’s to middle 1990’s, the Metal Oxide Semiconductor—Large 

Scale Integration (MOS-LSI) technology significantly reduced manufacturing costs and 

improved reliability. Designs in this period are also called “hardware-based” designs. In 

the middle 1990’s, the “programmable software based” digital loop detector technology 

was introduced. Such design significantly reduced the number of switches required in 

the detector by using Liquid Crystal Display (LCD). 

A typical single loop system is shown in Figure 2.1 (Kell et al., 1990). The system 

consists of three components: a detector oscillator, a lead-in cable and a loop embedded 

in the pavement. The size and shape of loops largely depend on the specific application 

(Gordon et al., 1996). The most common loop size is 6 feet by 6 feet. When a vehicle 

stops on or passes over the loop, the inductance of the loop is decreased. The decreased 

inductance then increases the oscillation frequency and causes the electronics unit to 

send a pulse to the controller, indicating the presence or passage of a vehicle (Mimbela 
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and Klein, 2000). Single loop detectors output occupancy and traffic count data every 

time interval (20 sec, 30 sec, etc.). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Schematic diagram of single loop detectors 

 

2.2.2 Dual-loop Detectors 

Dual-loop detectors are also called speed traps, T loops, or double loop detectors. In a 

dual-loop system, two consecutive single inductance loops, called “M loop” and “S 

loop”, are embedded a few feet apart. With such a design, when one of them detects a 

vehicle, a timer is started in the dual-loop system and runs until the same vehicle is 

detected by the other loop. Thus, in addition to outputs of vehicle count and occupancy 
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data, individual vehicle speeds can be trapped through the dividend of the distance 

between those two single loops by the elapsed time (Nihan et al., 2002). Dual-loop 

detectors can also be used to measure vehicle lengths with extra data extracted from 

controllers’ records (Coifman and Cassidy, 2002). 

 Speed trap is defined as the measurement of the time that a vehicle requires to travel 

between two detection points (Woods et al., 1994). Speed is measured by 

12
onon tt

Ds
−

=                       (2.1) 

where  

s  = is the vehicle speed; 

D  = is the spacing between loops; 

1
ont  = is the time when the first detector turns on; 

2
ont  = is the time when the second detector turns on. 

 

In addition to the above speed measurement method, the other method recommends 

the use of both turn-on and turn-off times for speed measurement (Wilshire et al., 1985). 

In this method, speed can be calculated by 

)(
2
1

1212
offoffonon tt

D
tt

Ds
−

+
−

=                   (2.2) 

where 

1
offt  = is the time when the first detector turns off; 
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2
offt  = is the time when the second detector turns off. 

 

Figure 2.2 shows an example of the placement of double loops on a freeway section. 

In this diagram, two loops were installed in the middle of each lane with a few feet apart. 

The wire-loops ran from the surface to a pull box on the roadside. 

 

 

Fig. 2.2 Double loop detector system (Klein, 2003) 

 

2.2.3 Peek ADR-6000 Detectors 

A Peek ADR-6000 detector is also known as an Idris or Smart Loop system. The ADR-

6000 detector uses state-of-the-art inductive loop technology and the patented Idris 

technology (Peek Traffic, 2004). Idris is an automatic vehicle detection and 
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classification technology. ADR-6000 detectors are installed under pavement, as shown 

in Figure 2.3. In each lane, there are two single loops (6.5’×6.5’) placed apart with a 

vehicle axle detector in the middle. Axle detectors consist of two smaller loops 

(5’×18”). 

Different from the single and dual-loop detectors, the ADR-6000 detectors detect 

and output individual vehicle record including vehicle speed, vehicle length, 

classification, number of axles, and presence time. Individual vehicle speeds are trapped 

by vehicle signatures generated in the system. Each vehicle passing over the inductive 

loop will generate a specific shape of signature containing a leading and trailing edge. 

Thus, each vehicle will have two signatures after passing the detector. The vehicle speed 

can be trapped by matching two points from these two signatures. 

Based on individual vehicle presence time, occupancy can be easily calculated with a 

specific polling interval. Thus, such detectors are able to provide traffic count and 

occupancy data, which are typical outputs of single loop detectors. 

 

 

 

 

 

 

 

Fig. 2.3 Peek ADR-6000 detectors 
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2.3      DESCRIPTION OF THE SPEED ESTIMATION PROBLEM 

Figure 2.4 shows a two-lane unidirectional freeway segment with single loop detectors 

installed. Assume that the detection zone length is  and is equal to the detector length, 

the length of the yellow car is , the speed of the vehicle is s , then the presence time 

(the time period that the red car is over the detector) can be calculated by . 

Let , and 

dl

vl

sllt vd /)( +=

vd llL += L  is called the effective vehicle length. 

During the time step k  within a time period of T , if  (count) vehicles passed 

over the single loop detector, then the total presence time is 

kN

∑
=

=
kN

i ki

ki
k s

L
t

1
. The duration of 

time interval varies depending on the loop detection systems. The most frequently used 

durations in practice are 20 seconds, and 30 seconds.  

Occupancy is defined as the proportion of time that vehicles occupy the detector in a 

time period. Based on the definition, the occupancy ( ) is derived by: kO

∑
=

==
kN

i ki

kik
k s

L
TT

tO
1

1
                   (2.3) 

Note that the percent occupancy is usually used in loop detector outputs, that is, 

 kk OO ×= 100% .
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Fig. 2.4 Layout of a freeway segment with single loop detectors 

 

2.4      EXISTING SPEED ESTIMATION METHODS 

Since either individual vehicle length or speed cannot be detected by single loops, 

equation 2.3 is usually aggregated to the average level, which means that the average 

vehicle length and speed ( ∑
=

=
kN

i
kik ss

1
) are used rather than individual values. Therefore, 

the average speed of vehicles ks  during each time period is the value to be estimated in 

the speed estimation problem. 

Many speed estimation methods have been developed in the literature. Different 

methods may use different aggregation methods and assumptions. These methods are 

reviewed and presented as follows. 
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2.4.1 Conventional g-Estimator Method 

The first method of speed estimation, the conventional g-estimator method, was 

proposed by Athol (Athol, 1965). Base on the definition of occupancy, the author 

presented the interrelationship between operational traffic flow characteristics, which is 

shown in equation 2.4. 

k

k
k OT

N
g

s
×

×=
1                      (2.4) 

where 

k  = time interval index; 

ks  = average speed (space mean speed) during kth time interval (miles per hour); 

T  = duration of time intervals (second); 

kN  = vehicle count during kth time interval (vehicles per time interval per lane); 

g  = an estimator incorporating site characteristics of average vehicle length and 

single loop length.  

 
In the calculation of this method, g is an estimate of the reciprocal of Mean Effective 

Vehicle Length (MEVL), which is denoted by L  and is equal to the sum of the average 

vehicle length ( ∑
=

=
kN

i
kill

1
) and the single loop length ( ). In practice, dl g  is set to a 

constant value. For instance, the Chicago Traffic System Center (TSC) used 1.9 as the 

constant g value (McDermott, 1980), and the Washington State Department of 
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Transportation (WSDOT) used 4.2=g  with 300=T  seconds (Ishimaru and 

Hallenbeck, 1999).  

The study by the WSDOT showed that this constant g-estimator method did not 

provide satisfactory estimation accuracy. Actually, the interrelationship shown by 

equation 2.4 is based on two assumptions: 1) vehicle lengths are constant during each 

time interval; and 2) traffic is uniform (e.g., vehicles have the same speed and the 

spacing between vehicles is constant).  However, as pointed out by Hall and Persuad 

(1989), those assumptions may not be valid under certain traffic conditions. In reality, 

the average vehicle length ( l ) may have large variations with the presence of long 

vehicles, such as commercial trucks. Moreover, vehicles on freeways are not steered at a 

same speed; speed variance sometimes becomes a significant factor due to congestion or 

other conditions and thus should not be ignored. 

2.4.2 Log-linear Regression Method 

To account for the variation of vehicle lengths, a dynamic g-estimator method was 

developed. Wang and Nihan (2000) calculated the g value for each time interval as a 

function of the MEVL ( L ). The relationship of occupancy, count, average vehicle 

length, and speed is developed by Dailey (1999) and denoted in equation 2.5. 

][
)(

3

22

k

kkk

k

kk

s
s

T
L

N
OE +

=
σ

                   (2.5) 

where 
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)( kk OE  = expectation of occupancy measurement at kth time interval, equaling 

to  for perfect measurement; kO

kN  = count measurement at kth time interval; 

2
ks  = average speed at kth time interval; 

kL  = mean effective vehicle length at kth time interval; 

2
kσ  = speed variance at kth time interval; 

T  = duration of the time interval. 

 

Wang and Nihan (2000) also conducted a study on the ratio of 22 / kk sσ and found that 

values were very low. Consequently they assumed that speed variance can be ignored, 

and the following equation was then derived after statistical transformations: 

)(
)( 22

2

k

lkk
k OV

OE
L

σ×
=                     (2.6) 

where  is the variance of vehicle lengths at kth time interval, and  is the 

occupancy variance. After introducing some additional variables, such as a high-flow 

dummy, to account for , a regression model of the MEVL at kth time interval was 

established and is shown in equation 2.7. 

2
lkσ )( kOV

2
lkσ

kkkkk LFDHFDNOVOEL εβββββ +×+×+×+−+= 43210 )ln())](ln())(ln(2[)ln(    (2.7) 
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where HFD is a high-flow dummy, LFD  is a low-flow dummy, β s are coefficients, 

and kε  is a white noise. 

However, the correlation coefficient of the regression model might be very low due 

to the variations of speed and effective vehicle length. Moreover, ignoring speed 

variance may lead to certain level of inaccuracy. Finally, this method is site-specific and 

cannot be applied to other locations without recalibration. 

2.4.3 Modified g-Estimator Methods 

In order to reduce the influences of long vehicles and congested traffic conditions, two 

studies (Coifman et al., 2003; Lin et al., 2004) modified the g-estimator method. They 

used median values of speed and vehicle passage time respectively, instead of mean 

values adopted in the g-estimator method. The modified median g-estimator methods 

can reduce the skewnesses of the distributions of speed and pace (the reciprocal of 

speed). However, additional problems arise with the modified g-estimator methods. In 

the study by Coifman et al. (2003), to estimate the median speed in a single lane, the 

time unit (length of time intervals) of speed estimation should be long enough (e.g., 5 

minutes) to ensure that sufficient sample size (number of vehicles) is achieved according 

to the sampling criteria. Thus, to obtain good estimates of speed for short time units such 

as 30 seconds, it is required to combine vehicle data across several lanes. But in doing 

this, it is impossible to identify speed difference across single lanes. This is because 

different lanes at a location tend to show different temporal patterns of speed in reality, 

especially when there exist large differences of traffic flow between lanes.  
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In the other study (Lin et al., 2004), the median vehicle passage time (  

at each time interval is used to replace the mean vehicle passage time ( ), and 

the median vehicle passage time is approximated by . To implement this 

method, the information of passage times (  when the vehicle reaches the front part 

of the loop and  when the rear end of the vehicle leaves the single loop) is required 

from each vehicle so that the value of 

medianmedian sl / )

meanmean sl /

mediansl )/(

1Time

2Time

2 1( / ) ( )median medianl s Time Time= −  can be obtained. 

However, the common outputs (vehicle count and occupancy) of single loops do not 

include such information. 

2.4.4 Extended Kalman Filter (EKF) 

Dailey (1999) presented a statistical method, the Extended Kalman Filter (EKF) method, 

to linearize the measurement equation for speed estimation. A general Kalman Filter 

(KF) model includes two equations, a state-transition equation and a measurement 

equation (Bozic, 1994). These two equations are 

111 −−− ++= kkkk vBuxAx                    (2.8) 

kkk nHxy +=                       (2.9) 

where  

kx  = predicted value at kth time interval from previous time interval; 

ky  = measurement at kth time interval; 

1ku −  = control input; 
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kv  = process noise; 

kn  = measurement noise. 

 

The KF method operates with two phases per time interval: the time update phase to 

“predict” new state, and the measurement update phase to “correct” new state. In a speed 

estimation application, average speed at kth time interval is the state, and occupancy 

over count ratio, which can be gathered from single loop detectors, is the measurement. 

The EKF linearizes the measurement equation, which is established based on equation 

2.5 and assumes perfect measurement of occupancy data. 

However, there are several issues in the EKF and its speed estimation 

implementation. As pointed out by Julier and Uhlmann (1997), linearization in the EKF 

will produce highly unstable filters if assumptions are not met, and the derivation of the 

Jacobian matrices often lead to significant implementation difficulties. Note that in the 

EKF, Jacobian matrices are partial derivatives of a nonlinear function with respect to its 

variables. To better describe the drawbacks of the EKF, assume that x  is a random 

variable and , then the mean value of )(xfy = y can be achieved by expecting , 

this can be shown as 

)(xf

)]([][ xfEyEy ==                   (2.10) 

Only for linear Gaussian system, we can get )(xfy = ; for nonlinear systems, this is not 

the case. While in the EKF, the mean value is calculated as )(xfy = , not )]([ xfEy = . 
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The EKF only considers the first order of Taylor series (equation 2.11) to perform 

linearization. 

))(()()( 111
'

11
a
kk

a
k

a
kk xxxfxfxf −−−−− −+=              (2.11) 

In the implementation of the EKF, the state variable (average speed at time interval k) is 

calculated based on the two previous states using a state transition matrix 

1 0
a b

G
⎛

= ⎜
⎝ ⎠

⎞
⎟ .                    (2.12) 

Coefficients  and b  represent weights for the two previous states. In the EKF method, 

these two coefficients are derived using Auto Regression (AR) method with 2 orders 

based on measured speed data. Theoretically, the accuracy of filtering results largely 

depends on the number of orders, and the coefficients of AR have a great effect on the 

results. Since experimentally measured speed data can only represent the variation of 

some speed change patterns in certain time duration, such AR coefficients may not 

always lead to good estimation accuracy. 

a

2.4.5 Exponential Smoothing Method 

Hellinga (2002) used a volume weighted exponential smoothing method to improve the 

traditional g-estimator method. This method is applicable to freeway Traffic 

Management System (TMS) that contains both single and double loop detector stations. 

Thus, MEVL measured from dual-loop detectors can be applied to nearby single loop 

detectors. However, it is found that the correlation between the MEVLs measured from 

 



 26

two detectors in a detector station set is very low, which is caused by sampling error. To 

decrease sampling error, it is needed to choose a longer time period, however this is 

difficult to do in practice. Therefore, the exponential smoothing method is proposed to 

avoid the problem of having to select a fixed sampling period duration. 

Estimated results using this method are approximately 20% more accurate than the 

traditional g-estimator method, while estimation errors are still relative high as shown in 

the study. In addition, the applicability of this method is limited since this method is not 

applicable when there is not a double loop detector presented in the vicinity of each 

single loop detector station. 

2.4.6 Catastrophe Theory Method 

The Catastrophe Theory was originated by French mathematician Rene Thom in the 

1960’s and developed by Zeeman (1977). Catastrophe means the loss of stability in a 

dynamic system. As a special branch of dynamical system theory, the Catastrophe theory 

studies and classifies phenomena characterized by sudden shifts in behavior arising from 

small changes in circumstances. This theory was used by Hall (1987) and Pushkar 

(1994) to estimate speed using single loop outputs. The authors established a relationship 

between traffic variables (occupancy, speed, etc.) and a 3-dimentional folded surface in 

the Catastrophe Theory. The Catastrophe Theory model is presented in equation 2.13. 

024 3 =++ vuxx                    (2.13) 

where x  is the state variable associated with speed, and u  and v  are control variables 

related to flow and occupancy respectively. To model traffic flow behavior and estimate 
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speed, the author used two simple linear transformations, as shown in the following, to 

establish the relationship between x  and speed as well as u  and flow. 

1000/)(
__

capacityflowu
capacityatspeedspeedx

−=
−=

              (2.14) 

The transformation between  and occupancy is accomplished in ad hoc manner and 

is shown in Figure 2.5 (Hall, 1987). When occupancy and flow data are available, speed 

can be estimated using the Catastrophe Theory model and those three transformations. 

Although those transformations simplify the speed estimation, the involvements of 

empirical data and results (i.e., capacity, speed at capacity, and arbitrary relationship 

between  and occupancy) may introduce significant errors. 

v

v

 

 

 

 

 

 

 

 

Fig. 2.5 Transformation of occupancy to v based on empirical results (Hall, 1987) 
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2.4.7 Hybrid Model 

Yao et al. (2004) presented a hybrid model, which consists of two sub-models for speed 

estimation under both free flow and traffic congested conditions. The hybrid model is  

thresholdkkmk

thresholdk
O

fk

OOOss

OOess k

≥=

≤= −

    )/1ln(

            
               (2.15) 

 where  and  represent speed under free flow and congested flow conditions 

respectively.  can be estimated by using single loop data and dropping out congested 

data. A constant MEVL is also needed to calculate . With  obtained,  is 

empirically calculated by . A threshold occupancy value   is used to 

identify whether traffic flow is free or congested. 

fs ms

fs

fs fs ms

ess fm /= thresholdO

 This method is simple once the initial parameters (i.e., , , , andfs ms thresholdO L ) are 

calibrated. However, the constant  may contribute to large errors because traffic flow 

and speed is rather unstable under congested conditions. The authors do not provide a 

sensitive analysis of . Moreover, the threshold value  varies, especially under 

different weather conditions. 

ms

ms thresholdO

2.4.8 Vehicle Signature 

As part of traffic monitoring and surveillance systems, sensor technology has been 

receiving a lot of attention and many detectors have been developed to obtain more 

comprehensive and accurate traffic data. In the middle of 1990’s, the “programmable 
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software based” digital loop detector technology was used to upgrade existing 

“hardware-based” designs, by replacing a very few switches with an active LCD (Potter, 

2005). With such a design, more information can be obtained from ILDs besides 

occupancy and vehicle count data.  An ILD system with high speed scanning detector 

cards is able to capture the “inductive signatures” of different types of vehicles. Each 

vehicle passing over the inductive loop will generate a different shape of signature 

containing a leading and trailing edge. The signature information has been used in speed 

estimation. Sun and Ritchie (1999) proposed a new speed estimation technique using 

single ILD signatures, with signal processing and linear regression techniques. A simple 

linear regression model is presented to model the relationship between speed and slew 

rate. Slew rate is the edges (either leading or trailing) that represent the rate of metallic 

mass of vehicle passing over the loop magnetic field. Oh et al. (2002) estimated speeds 

using vehicle signatures through extracting signature feature vectors. 

The vehicle signature method is different from the previous methods in that different 

information (vehicle signature) is used for speed estimation. It should be noted that, 

except for this method, other speed estimation methods all use count and occupancy data 

from loop detectors.  

2.4.9 Other Methods 

Several other methods were also proposed in previous works. They are included in this 

part of review as those methods are difficult to be classified and given appropriate 

names. Coifman (2001) stated that under free flow conditions, occupancies from loop 
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detectors are low. Thus, a threshold value of occupancy was set to identify free flow 

traffic with a specific free flow speed. This method improves the vehicle length 

estimates under free flow conditions assuming a linear relationship of MEVL, speed, 

occupancy and count. 

Some other studies have tried to estimate speed by exploring the relationship 

between speed and occupancy. For instance, An Istanbul study (Ogut, 2004) used data 

from four locations to analyze and establish a regression model between speed and 

occupancy, in which occupancy was a function of speed. This method does not take 

vehicle length and other factors into account. 

2.4.10 Summary 

This chapter reviewed three types of loop detectors including single loop detectors, dual-

loop detectors, and Peek ADR-6000 detectors, all of which adopt the inductance loop 

technology. Moreover, existing methods for speed estimation using single loop outputs 

were reviewed. 

From the above discussion, there are several issues existing in the problem of speed 

estimation. First of all, it is difficult to accurately estimate the MEVL for each time 

interval. Thus, a common MEVL is generally used in practice. Moreover, a simplified 

linear relationship between speed and other parameters are usually used in past studies. 

As mentioned before, the linear relationship is based on two assumptions: constant 

vehicle lengths and uniform traffic. The assumption of constant vehicle lengths is 

obviously not realistic. Uniform traffic means that all vehicles during a polling interval 
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have the same speed and spacing. This assumption itself ignores speed variation of those 

vehicles. Such simplifications will produce estimation errors. Finally, previous methods 

have their own drawbacks in underlying theories. As a result, the accuracy of estimation 

results is generally unsatisfactory. 
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CHAPTER III 

DATA COLLECTION AND PRELIMINARY PROCESSING 

 

3.1      INTRODUCTION 

As mentioned in Chapter I, the main objective of this dissertation is to develop 

methodologies to improve speed estimation using single loop outputs. Therefore, the 

main data of interest in this dissertation are loop detector data collected from the field. 

This chapter will discuss the details of field data collection and the preprocessing of the 

data. 

In addition to field data, simulated data generated by the microscopic traffic 

simulation program CORSIM were also used. The advantage of using simulated data is 

that such data can be easily generated for various conditions including non-recurring 

congestion that can not be easily obtained in the field. The details of the simulation 

program, parameter settings, and the details of the simulated data are provided in this 

chapter. 

3.2      DATA SOURCES 

3.2.1 Peek ADR-6000 Detector 

Peek ARD-6000 detectors are relatively new devices for vehicle detection. Such 

detectors have not been widely used on the U.S. highways. TTI (Texas Transportation 

Institute) and Texas DOT are the first agencies that use the Peek ADR-6000 for 
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evaluating of vehicle detectors (Middleton and Parker, 2000 & 2002). Peek ADR-6000 

detectors were installed at two of the TTI’s vehicle detection test beds for providing 

baseline data. One is located on State Highway 6 (SH6) in College Station, Texas; the 

other is on the south bound of Interstate Highway 35 (IH-35) near the 47th street in 

Austin, Texas. 

 A snapshot of the SH6 test bed in College Station is shown in Figure 3.1 (Middleton 

and Parker, 2000). The freeway section has two lanes in each direction. Several types of 

intrusive detectors, such as microloops, piezoelectric sensors, and ADR-6000 detectors, 

were embedded under the pavement. Also, this site has a forty-foot pole with two mast 

arms, on which non-intrusive detectors are supported. Those non-intrusive detectors 

include two traffic-monitoring cameras, two vehicle detector cameras, two acoustic 

detectors, and a microwave radar detector.  

 

 

 

 

 

 

 

 

 

Fig 3.1 Test bed in College Station (Middleton and Parker, 2000) 
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 The freeway section at the IH-35 test bed has four through lanes in each direction 

and an exit lane on the southbound side to Airport Boulevard. This site is located north 

of the elevated section of IH-35 that contributes to the dispersion of traffic. As a result, 

an unusually high percentage of trucks use the left two lower lanes of the freeway and 

avoid the other two elevated lanes (Middleton and Parker, 2002). Usually, the right lanes 

on multilane highways have a higher truck percentage. This test bed has high traffic 

volumes during peak hours. Some vehicles even underwent stop-and-go conditions. 

 Many types of vehicle detectors were installed at this site. Remote Traffic 

Microwave Sensor (RTMS), SAS-1 acoustic detector, Autoscope Video Image Detector 

(VID), and other non-intrusive detectors were mounted on light poles. Two types of 

intrusive detectors were also installed under the pavement surface. They are double loop 

detectors and Peek ADR-6000 detectors. The ADR-6000 detectors were only installed in 

the five southbound lanes. Note that data from the four through lanes were collected for 

this study. 

 The ADR-6000 detectors are able to store three types of data: raw loop signatures, 

binned data, and Per Vehicle Records (PVR). TTI has no access to analyze the raw loop 

signatures and such data take up large amount of disk storage, the feature is hence turned 

off. In this study, PVR data are used for the purpose of this study. PVR data are saved in 

PVR files. Each PVR file can store data for around 158 kilobytes. Individual vehicle 

information in the PVR file include date, time, lane number, vehicle length, vehicle 

speed, presence time, vehicle classification, and number of axles. Figure 3.2 shows a 
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sample of PVR data that were imported into Microsoft Excel beforehand for a better 

view. The first row of the Excel sheet in the figure provides the description for each 

column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 PVR data 

  

 TTI carried out a field test on Peek ADR-6000 detectors at the IH-35 test bed 

(Middleton and Parker, 2002). Tested traffic parameters include count, speed, and 

vehicle classification. It was found that the Peek ADR-6000 had almost perfect count 

accuracy. Among the total 1923 vehicles, only one vehicle was missed by the Peek 
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ADR-6000. The speed accuracy was tested by using a laser device. The Peek ADR-6000 

was also found to have high accuracy of speed measurement and had even better 

performance than RTMS and Autoscope. Moreover, the classification accuracy of the 

Peek ADR-6000 was close to 99% based on the sample of the 1923 vehicles. The field 

test demonstrated the good performance of the Peek ADR-6000 in vehicle detection. 

From Figure 3.2, it can be seen that the ADR-6000 detectors do not generate 

occupancy data directly. However, occupancy information can be calculated through 

postprocessing. An occupancy program was hence developed to generate occupancy data 

using Matlab (Matrix Laboratory), which is a programming language and a numerical 

computing environment with powerful capabilities for matrix manipulation, plotting of 

data, implementation of algorithms, creation of user interfaces, and interfacing with 

other program languages (Mathworks, 2002). By running the occupancy program, PVR 

data can be compiled to generate occupancy, traffic count, and speed data for each lane 

with a specified polling time. This program is shown in Appendix E. 

Traffic flows at the SH6 test bed are low to medium. Figure 3.3 shows an example of 

hourly traffic volumes at this site during a weekday. It can be observed that both 

morning and afternoon peak hour traffic volumes are between 1000 veh./hr./lane and 

1200 veh./hr./lane. The shoulder lane (numbered as lane 1) has a daily traffic volume of 

12975 vehicles and 7% trucks with 3-axle or more during the entire day; the median lane 

(numbered as lane 2) has around 1000 vehicles per hour and 4.5% trucks. Under such 

traffic volume conditions, vehicles usually drove at free flow speed. 
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Fig 3.3 Hourly traffic volumes from the SH6 test bed on Jan. 27, 2004. 

 

 The IH-35 test bed has heavy traffic loads during the daytime. A plot of hourly 

traffic volumes on October 27, 2004 is shown in Figure 3.4. Daily traffic volumes from 

lane 1 (shoulder lane) through lane 4 are 27670, 24936, 20226, and 13850 vehicles, 

respectively. Correspondingly, the truck percentages are 12.3%, 5.3%, 1.9%, and 2.8%. 

As mentioned earlier, most trucks are distributed in lanes 1 and 2. 
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Fig 3.4 Hourly traffic volumes from the IH-35 test bed in Austin on Oct. 27, 2004 

 

3.2.2 Dual-loop Detectors 

The city of San Antonio in Texas has an extensive freeway system, with three interstate 

highways (IH-35, IH-37, and IH-10) passing through the city. Many dual loops were 

installed on these highways within the city limits and provide data for efficient 

transportation management. Dual loop data were downloaded from the San Antonio 

Texas Transportation Institute server for this study. The location of dual loops is on IH-

35 at Seguin Road, with 3 lanes in the northbound direction. The duration of time 

intervals is 20 seconds. Speed, occupancy, and count data were collected at this location. 
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A sample of dual-loop data is shown in Table 3.1. This sample data include two 

subsamples separated by dotted lines: one represents data collected under normal traffic 

conditions, and the other under congested traffic conditions. It can be seen that 

occupancy data were high during the afternoon peak; speeds sometimes were even lower 

than 10 mph. 

3.2.3 Microscopic Traffic Simulation Using CORSIM 

For the test and validation of the methodologies developed in this study as well as 

existing methods, simulation models can be used to reproduce actual field conditions 

with reasonable accuracy. Thus, simulated data were generated from the traffic 

simulation package CORSIM (CORridor SIMulation). CORSIM is one of the most 

widely used microscopic traffic simulation programs in the United States. CORSIM is 

able to model complex geometry conditions, simulate different traffic conditions, model 

time-varying traffic and control conditions, and account for the interactions between 

different components of networks; its validation, verification, and calibration effort 

ensures that results from CORSIM reflect real world traffic flow (CORSIM User’s 

Guide, 2001). Under the sponsorship of FHWA (Federal Highway Administration), the 

CORSIM logic was initially developed in early 1970s. Since then, CORSIM has 

undergone several technological improvements. TSIS (Traffic Software Integrated 

System) is a recent development that provides a user-friendly interface environment for 

running the CORSIM model (Owen et al., 2000). 
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Table 3.1 Dual-Loop Detector Data 

Station ID Date Time Speed 
(mph) 

Volume 
(veh/period) 

Occupancy 
(%) 

L1-0035N-161.405 2/14/2003 12:36:23 66 7 8

L1-0035N-161.405 2/14/2003 12:36:43 68 6 7

L1-0035N-161.405 2/14/2003 12:37:03 68 6 7

L1-0035N-161.405 2/14/2003 12:37:23 68 10 11

L1-0035N-161.405 2/14/2003 12:37:43 62 8 11

L1-0035N-161.405 2/14/2003 12:38:03 63 11 13

L1-0035N-161.405 2/14/2003 12:38:23 62 8 10

L1-0035N-161.405 2/14/2003 12:38:43 63 11 13

L1-0035N-161.405 2/14/2003 12:39:03 62 13 20

L1-0035N-161.405 2/14/2003 12:39:23 62 11 15

L1-0035N-161.405 2/14/2003 12:39:43 65 9 10
    
L1-0035N-161.405 2/14/2003 16:27:28 19 2 22

L1-0035N-161.405 2/14/2003 16:27:48 9 7 98

L1-0035N-161.405 2/14/2003 16:28:08 17 10 41

L1-0035N-161.405 2/14/2003 16:28:28 23 12 37

L1-0035N-161.405 2/14/2003 16:28:48 27 11 30

L1-0035N-161.405 2/14/2003 16:29:08 33 11 25

L1-0035N-161.405 2/14/2003 16:29:28 38 10 19

L1-0035N-161.405 2/14/2003 16:29:48 39 12 23

L1-0035N-161.405 2/14/2003 16:30:08 40 11 21

L1-0035N-161.405 2/14/2003 16:30:28 39 13 26

L1-0035N-161.405 2/14/2003 16:30:48 38 9 23

L1-0035N-161.405 2/14/2003 16:31:08 31 10 43

L1-0035N-161.405 2/14/2003 16:31:28 4 4 69
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CORSIM includes two separate simulation modules: NETSIM (NETwork 

SIMulation) and FRESIM (FREeway SIMulation). NETSIM is a simulator that describes 

the performance of vehicles traveling in an urban street network, and FRESIM is a 

simulator for freeways. TSIS has two processors, the input processor (TRAFED, 

TRAFfic network EDitor: a graphic input editor) and the output processor (TRAFVU, 

TRAFfic Visualization Utility: an animation and graphics module). TRAFED includes a 

translator that can convert a graphically edited network into an input TRF file for 

CORSIM. TRAFVU is a visualization processor for the CORSIM traffic simulation, so 

that users can visualize the simulated network and analyze the simulation results. 

 In this study, a two-lane unidirectional freeway section was created in CORSIM, 

which is shown in Figure 3.5. The freeway section can be also described by a TRF file 

shown in Appendix C. A loop detector was placed in the shoulder lane (lane 1) for 

vehicle detection. CORSIM users can specify presence or passage for detectors. Since 

occupancy data are necessary for this study, a presence detector was selected. 

 

 

 

 

Fig 3.5 Layout of the simulated freeway section 

 

As mentioned in Chapter I, traffic congestion is a common phenomenon and 

contributes to the difficulty of speed estimation using single loop detectors. High traffic 
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volumes during peak hours, incidents, construction zones, severe weather conditions, 

and other situations can cause traffic congestion. Thus, the scenario of congested traffic 

flow was simulated. An incident was simulated in lane 2 during the simulation and 

caused lane blockage of this lane for a certain time. With such a configuration, traffic 

speeds in lane 1 were reduced due to the incident and recovered after the incident and 

the queue have been cleared. The configurations of some important parameters are as 

follows: 

• Simulation duration: 2 hours. 

• Flow rate: 2000 vphpl. 

• Free flow speed: 60 mph. 

• Start time of the incident: 15 minutes after the beginning of the simulation. 

• Duration of the incident: 5 minutes. 

• Truck percentage: 10%.  

The percentages of different vehicle types were given by the defaults values in 

CORSIM and are shown in Table 3.2. Two types of passenger cars and 5 types 

of trucks were used for the simulation. 

• Time period of the detector outputs: 20 seconds. 

Other parameters were set as default values in CORSIM since they can give 

reasonable results. Once the simulation is run, detector data can be read from the 

CORSIM output file (OUT file). Data include speed, occupancy, vehicle count, and on 

(presence) time. Therefore, the outputs can be directly used for speed estimation. A 

sample of detector outputs is shown in Appendix D. 
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Table 3.2 Configuration of Vehicle Types 

Vehicle 

Classifications 

Percentage by 

Classifications 

(%) 

Vehicle 

Types 

Vehicle 

Length 

(ft) 

Percentage by 

Types 

(%) 

1 14 25 Passenger 
Cars 90 

2 16 75 

3 35 20 

4 53 36 

5 53 24 

6 64 9 

Trucks 10 

7 40 11 

 

3.3      SUMMARY 

This chapter described the details of data sources and the pre-processing of data. This 

study used three different data sources for speed estimation: Peek ADR-6000 detector 

data, dual-loop data, and simulated data. ADR-6000 detector data were collected from 

two of TTI’s vehicle detection test beds, located in the cities of College Station and 

Austin; dual-loop data were collected from IH-35 in San Antonio. In addition to field 

data, simulated data from the microscopic traffic simulation package CORSIM were 

generated. An incident was presented in the simulation to simulate traffic congestion. 
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The data collected from different sources will make it more comprehensive to evaluate 

the proposed methods and existing methods under various traffic conditions. 
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CHAPTER IV 

METHODOLOGY I: UNSCENTED KALMAN FILTER (UKF) 

 

4.1      INTRODUCTION 

This chapter will first identify the nonlinear problem of speed estimation. To overcome 

the shortcomings of the EKF that was developed for the nonlinear problem, the UKF 

method will be proposed. Both the EKF and the UKF are members of the KF family. 

They are developed for nonlinear systems. The operations of the KF, the EKF and the 

UKF will be described in details. In the following, data described in the previous chapter 

will be applied to the proposed method as well as the EKF. Finally, estimation results 

from both methods will be compared and evaluated.  

4.2      NONLINEAR SYSTEM OF SPEED ESTIMATION 

As shown in the study by Dailey (1999), the problem of speed estimation is a nonlinear 

system. In this system, the MEVL ( kL ) and the speed variance ( ) are major variables 

contributing to the nonlinearity. At a given location, 

2
kσ

kL  varies over time and the 

variation is mainly determined by the involvement of trucks and other long vehicles. 

This variable, however, is hard to estimate with single loop outputs. Thus, a common 

value L  is usually used during estimation. Figure 4.1 shows an example of average 

vehicle lengths varying over time from 5 a.m. to midnight, using real world data 

 



 46

collected from the vehicle detection test bed in Austin, Texas. In this figure, the time 

interval is 30 seconds.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Average vehicle lengths over time 

 

It can be observed that average vehicle lengths during nighttime are generally larger 

than those during daytime, while the figure does not show any clear pattern of the 

average vehicle length with time. The average vehicle length sometimes is up to 70 feet 

during night time. It can also be very large during daytime in that some of the average 

vehicle lengths are larger than 50 feet between 16:00 and 18:00. Moreover, vehicle 

lengths during morning peak hours (6:00-9:00 hours) are lower than those during 

afternoon peak hours (16:00-19:00 hours). Finally, it is found that the lowest vehicle 
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lengths are close to a threshold value, such as 13.5 feet in this case. This is because 

passenger cars are generally longer than this value. In CORSIM, the shortest vehicle 

length is 14 feet, which shows consistency with ground observed values.    

 The effect of speed variance ( ) on the nonlinearity of the speed estimation system 

was not explored well in past studies. This is because outputs from either single loop or 

dual-loop detectors do not provide individual vehicle speed information. Peek ADR-

6000 detectors make it possible to analyze the influence of speed variance. Real-world 

data from ADR-6000 detectors can be compiled to calculate the ratio of speed variance 

over squared speed (

2
kσ

22 / kk sσ ). An example of the ratio over time is shown in Figure 4.2, 

which also displays speed ks  over time (5 a.m. to midnight) in the upper plot.  

From this figure, it can be observed that the ratio 22 / kk sσ  is almost negligible under 

free-flow traffic conditions. However, under congested traffic conditions with low 

speeds ( ks ), the ratio 22 / kk sσ  becomes large. High 22 / kk sσ  values occur under congested 

traffic conditions. The maximum value of 22 / kk sσ  is as high as 0.25. The example shows 

that speed variance sometimes are significant, and should have certain effects on speed 

estimation if ignored.  
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Fig. 4.2 Speed and the ratio of speed variance to squared speed over time 

  

4.3      KALMAN FILTERS 

To solve the nonlinear problem of speed estimation, Dailey (1999) presented an EKF 

method. As discussed in Chapter II, although the EKF is able to deal with nonlinear 

problems, there are several issues regarding this method. A better approach to handle 
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nonlinear systems is thus desirable for speed estimation. In this study, a new method, the 

UKF, is proposed for this problem. 

Realizing the flaws existing in the EKF, Julier et al. (1996; 1997; 2000) presented a 

new estimator—the UKF. The UKF can be applied to nonlinear systems without the 

linearization steps required by the EKF. The UKF can achieve the second order or higher 

accuracy for nonlinear applications. Several studies have shown the superiority of the 

UKF for nonlinear systems (Merwe et al., 2004; Shin and Naser, 2004; Wan and Merwe, 

2000). The UKF has been applied to many problems such as state estimation, parameter 

estimation and machine learning, yet it was rarely used in the field of transportation. In 

this section, the KF, the EKF, and the UKF are described as follows. 

4.3.1 Kalman Filter (KF) 

The KF, proposed by Kalman (1960), is one of the most advanced methods in modern 

control theory. The KF can be defined as an optimal recursive data processing algorithm. 

For a better understanding of the definition, the meanings for optimal, recursive, and 

data processing algorithm are described as follows (Maybeck, 1979): 

• Optimal means that the KF incorporates all information that can be provided to 

it. The KF uses (a) knowledge of the system and measurement device dynamics, 

(b) the statistical description of the system noises, measurement errors, and 

uncertainty in the dynamics models, and (c) any available information about 

initial conditions of the variables of interest. Along with above information, it 
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processes all measurements to estimate the current value of the variables of 

interest. 

• Recursive means that the KF does not require all previous data to be kept in 

storage and reprocessed every time a new measurement is taken. Only the 

estimated state from the previous time step and current measurement are needed 

to obtain the estimate of the current state. This is a very important feature for the 

practicality of filter implementation. 

• In most practical applications, the filter is actually a data processing algorithm 

and is just a computer program in a central processor. 

The KF is a dynamic system (a system varying with time) consisting of two parts, as 

is shown in Figure 4.3. In the first part, the new state is predicted through a process 

equation (equation 2.8). The equation uses the information of the previous state. After 

the new state is predicted, the measurement can be predicted via a measurement equation 

(equation 2.9). It can be seen that the dynamic system uses prior knowledge for 

prediction. As is mentioned in Chapter II, the operation of the KF includes two steps, 

and the prediction belongs to the first step. The second step is the correction, in which 

the predicted state is updated based on the difference (innovation) of the true and 

predicted measurements.  
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Fig. 4.3 Dynamic system of KF 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Operation of the KF (Welch and Bishop, 2001) 
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The operation of the KF is shown in Figure 4.4. Q  and R  represent the process 

noise covariance and the measurement noise covariance, respectively. The process noise 

(  in equation 2.8) and the measurement noise (  in equation 2.9) are assumed to be 

white (zero-mean) and Gaussian: , . With initial values of 

the previous state  and the covariance , the KF projects the state and error 

covariance ahead in the time update step. The first task in the second step is the 

computation of the Kalman gain, which is the one that yields Minimum Mean Square 

Error (MMSE) estimates. The second task is to update the state by incorporating the 

measurement ( ). The updated state ( ) is called a posteriori state. Correspondingly, 

the predicted state ( ) is a priori state. The final task in the measurement update is to 

compute a posteriori error covariance.  

kv kn

),0(~)( QNvp ),0(~ N)( Rnp

1ˆ −kx 1−kP

ky kx̂

−
kx̂

Note that the KF is a Minimum Mean Square Error (MMSE) estimator. If the error in 

the posterior stat estimation is kk xx ˆ− , then the KF seeks to minimize . 

This is equivalent to minimize the trace of the posterior error covariance. By minimizing 

the trace, we can determine the optimal Kalman gain. 

])ˆ[( 2
kk xxE −

In the formulation of the KF, three basic assumptions are used (Maybeck, 1979). 

First, the system is assumed to be linear, which means that the KF can only be applied to 

linear problems. Measurement is a linear function of state and the next state is a linear 

function of previous state. Second, both the process noise and the measurement are 

white. Whiteness implies that the noise value is not correlated in time. Thus, the 

knowledge of the current noise does no good for predicting the noise value at other time 
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intervals. Whiteness also means that the noise has equal power at all frequencies (a term 

used in power spectral density of signal). Third, the KF assumes that random variables 

(RV) such as state and noises have Gaussian distributions. The probability of a Gaussian 

RV has the shape of a normal curve. 

The KF has been applied to many fields such as robotics (Wen and Durrant-Whyte, 

1992), image processing (Durrant-Whyte et al., 1990), economics (LeRoy and Roger, 

1977) and so on. The KF also has had many applications in transportation. For example, 

Okutani and Stephanedes (1984) used the KF for forecasting short-term freeway traffic 

flow. Kessaci et al. (1989) presented the KF to estimate traffic-turning movement ratios 

based on loop detector data. The KF was used to construct an autonomous driving 

system employed on public roads (Behringer et al., 1992) and improve the accuracy and 

reliability of an Omege-GPS (Global Positioning System) aircraft navigation system 

(Schlachta and Studenny, 1990). 

4.3.2 Extended Kalman Filter (EKF) 

As mentioned above, the KF can be only applied to linear systems to estimate the state 

of a discrete-time controlled process. However, in many cases, the system dynamics 

(state and measurement) are nonlinear. The KF is not applicable under such situations. 

Thus, the development of the EKF is to make the KF applicable to nonlinear systems 

through linearizing the current mean and covariance. Instead of linear equations 2.8 and 

2.9, the process and measurement is now governed by nonlinear equations: 

1( , ,k k k k 1)x f x u v−= −                     (4.1) 
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( , )k k ky h x n=                       (4.2) 

where  and  are nonlinear functions. The EKF linearizes the equations using the 

partial derivatives. For details about partial derivatives, refer to Welch and Bishop 

(2001).  

f h

 In the problem of speed estimation, the function  is linear while h  is nonlinear.   

denotes the relationship between current state and previous state. The following equation 

defines the state, measurement, and   (Dailey, 1999): 

f f

h

2 2

3

2 2
1 1 1 1

3
1

/
,  ,  ( )

/

s k

kk k k k
k k k

k k k s k

k

s
ss O N Lx y h x

s O N T s
s

σ

σ− − − −

−

⎡ ⎤+
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

           (4.3) 

It can be seen that the h  represents a nonlinear relationship between state and 

measurement with the consideration of speed variance. The function h  is derived from 

equation 2.5. 

 Similar to Taylor series in equation 2.11, the EKF linearizes the measurement 

equation 4.2 about a point p
kx : 

( ) ( ) ( )( )p p
k k k kh x h x dh x x x= + − p

k                  (4.4) 

In the implementation of the EKF, the point p
kx  can be represented by the previous state 

1kx − . A new linearized measurement equation can be created: 

k ky Hx n= +&& k                       (4.5) 
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where 

( ) ( )p p p
k k k k ky y h x dh x x= − +& ( )p

k,  H dh x=& ,  

and 

2 2
1 1

4
1

2 2
1 2

4
2

3[ ] 0
( )

30 [

k s k

k
k

k s k

k

L s
T s

dh x
L s
T s

σ

σ

− −

−

− −

−

⎛ ⎞+
−⎜ ⎟
⎜= ⎜ +

−⎜ ⎟⎜ ⎟
⎝ ⎠

]

⎟
⎟ . After linearization, the measurement 

equation is linear and can be used in the KF framework. 

 The basic operation of the EKF is the same as the general linear discrete KF and has 

two steps: time update and measurement update. The operation of the EKF is shown in 

Figure 4.5. Also, the program of the EKF coded by Matlab is presented in Appendix E. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Operation of the EKF (Welch and Bishop, 2001) 
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4.3.3 Unscented Kalman Filter (UKF) 

As mentioned in section 2.4.4, the EKF has its shortcomings in dealing with nonlinear 

systems. To overcome its weaknesses, a new approach of the UKF is presented for speed 

estimation. The UKF still assumes that the state distribution is Gaussian; however, 

instead of linearizing the nonlinear system, it uses a minimal set of deterministically 

chosen sigma points that can completely capture the true mean and covariance of the 

state. When propagated through the true nonlinear system, the sigma points can capture 

the posterior mean and covariance accurately (Julier and Uhlmann, 1997). 

 The unscented transformation (UT) is the fundamental part of the UKF. It is a 

method for calculating the statistics of a random variable which undergoes a nonlinear 

transformation. The UT builds on the principle that it is easier to approximate a Gaussian 

distribution than it is to approximate an arbitrary nonlinear function or transformation 

(Julier and Uhlmann, 1997). Let x  be a d-dimensional random variable with mean x  

and covariance xP . x  is propagated through a nonlinear function 

( )y g x= .                          (4. 6) 

To calculate the statistics of y , a set of 2 1d +  weighted points (or sigma points) are 

deterministically selected so that their sample mean and sample covariance are x  and 

xP . The sigma points are chosen by the following equation. 

 



 57

0 0
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                                            0         

1  ( ( ) )              1,...,   
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1  ( ( ) )              1,..., 2
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d

x d P w i d
d
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κ

χ κ
κ

χ κ
κ

= = =
+

= + + = =
+

= + + = = +
+

d

         (4.7) 

where  

κ  = provides an extra degree of freedom to fine-tune the higher order moments 

of the approximation;  

(d κ+ )  = a scaling factor that determines the spread of sigma points around x ; 

( ( ) )x id Pκ+  = the ith column of the matrix square root of ( ) xd κ+ P

d

; and 

iw  = the weight which is associated with the ith point.  

The Cholesky factorization method (Press et al., 1992) can be used to calculate the 

matrix square root. Once the sigma points are selected, they are propagated through the 

nonlinear function to yield the set of transformed sigma points 

( )   0,1,..., 2i ig iχ= =y .                  (4.8) 

Then, the approximated mean, covariance and cross-variance of  can be calculated. 

The transformation procedure is as follows (Julier and Uhlmann, 1997): 

y

1) The mean is calculated by the weighted average of the transformed sigma points, 

2
( )

0
      

d
m

i
i

y w
=

≈ ∑ yi                      (4.9) 
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2) The covariance and cross-covariance are given by the weighted outer product of 

the sigma points and/or transformed sigma points, 

2 2
( )

0 0

    ( )( )
d d

c T
y ij i i

i j

P w y
= =

≈ −∑∑ y y y−               (4.10) 

2 2
( )

0 0
   ( )(

d d
c

xy ij i i
i j

P w xχ
= =

≈ −∑∑ y )Ty−               (4.11) 

where  and  are scalar weights of mean and covariance respectively. All 

weights should be equal or greater than zero. Figure 4.6 provides a schematic diagram of 

the unscented transformation, where 

)(m
iw )(c

ijw

( )dγ κ= + . 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 Unscented transformation of the UKF 
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 To demonstrate the difference between the sigma point approach and linearization, 

Merwe et al. (2004) drew 5000 samples from a known Gaussian prior and propagated 

the samples through a nonlinear function. The result of the posterior sample mean and 

covariance are shown in Figure 4.7. In this example, the dimension of the random 

variable x  is 2. Thus, only 5 sigma points were used for capturing sample mean and 

covariance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Comparison of sigma point approach and linearization (Merwe et al, 2004) 
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 The left plot shows the true statistics as calculated by a Monte Carlo method. The 

statistics of the posterior random variable by a linearization approach as used in the EKF 

is shown in the middle plot. The errors of the mean and covariance by this approach are 

visible. The right plot shows the results from the sigma-point approach. It can be seen 

that there is almost no bias error in both the sample mean and the covariance. The 

superiority of the sigma-point approach is clearly demonstrated. 

 One property of the selection of sigma points in the UT is that with the increase of 

the dimension of the state space, the radius of the sphere that bounds all the sigma points 

increases. Under such situations, the sigma points are possible to sample non-local 

effects, although they still capture the sample mean and covariance correctly (Merwe et 

al, 2004). In order to address the problem, the sigma points can be scaled away or from 

the mean of the prior distribution by a proper choice of κ : 

   : The distance of the ith sigma point from 0κ = x  and i xχ −  is proportional to 

d ; 

  : The sigma points are scaled away 0κ > x ; 

  : The sigma points are scaled towards 0κ < x . 

A Scaled Unscented Transformation (SUT) was developed to solve this problem 

(Julier, 2002). The SUT replaces the original set of sigma points with a transformed set 

by 

'
0 0( )     0,..., 2i i iχ χ α χ χ= + − = d ,              (4.12) 
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where a  is a positive scaling parameter to minimize possible higher order effects. The 

weights of sigma points can be correspondingly transformed by 

2 2
' 0

2{
0        / (1 1/ )  
1,..., 2/                      i

i

iw
w

i dw
α α
α

=+ −
=

=
              (4.13) 

 By setting  

2 ( )dλ α κ= + − d ,                  (4.14) 

the sigma point selection and scaling can be combined into one step:  

( )
0 0

( ) 2
x 0

x

                                                                              0         

  ( ( ) )   1,...,            +(1- + )      0  

  ( ( ) )   1,..

m

c
i i

i i

x w
d

x d P i d w i
d

x d P i d

λχ
κ

λχ κ α β
κ

χ κ

= =
+

= + + = = =
+

= + + = +

i =

( ) ( ) 1., 2             1,..., 2
2( )i i

m cd w w i d
d κ

= = =
+

 (4. 15) 

where β  is a parameter to incorporate prior knowledge of the distribution of x ,  

represents the weight of mean, and  denotes the weight of covariance of the ith 

sigma point. 

( )
i

mw

( )
i

cw

 The operation of the UKF is shown in Figure 4.8. In addition to the selection of 

sigma points, the UKF is similar to the KF and has the time update and measurement 

update steps. Again, the time update projects the state and the error covariance ahead; 

the operations in the measurement update state include computing the Kalman gain, 

updating the estimate of state with the consideration of current measurement, and 

updating the error covariance to obtain the posterior estimate. 
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Fig. 4. 8 Operation of the UKF 

 

4.4      IMPLEMENTATION OF THE UKF 

From Figure 4.8, it can be seen that the UKF directly applies the UT (or SUT) to the 

recursive KF framework. In the implementation of the UKF, the state random variance is 

redefined as 

x
k k
v

k k k
n
k k

x x
x x v

x n

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,                   (4.16) 

where kx  is the original state,  is the process noise,  is the measurement noise. The 

sigma-point selection scheme in equation 4.15 is applied to 

kv kn

kxα  to calculate the 

corresponding sigma points , where ,{ ;  0,..., 2 }k i iαχ = d ,
x v nd d d

k i
αχ + +∈ℜ , xd  is the original 

state dimension,  is the process noise dimension, and  is the measurement noise 

dimension. Similarly, the state covariance is established by the individual covariance of 

vd nd

x , , and : v n
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⎝ ⎠

⎟
⎟ ,                  (4.17) 

where  is the process noise covariance and vQ nR is the measurement noise covariance. 

Thus, by incorporating the state space with the noise random variables, the effects of the 

noises on the system dynamics and observations can be captured with the same level of 

accuracy as the state. 

The complete algorithm of the UKF is shown as follows (Julier and Uhlmann, 1997): 

 Initialization. 

0

0

0 0

0 0 0 0 0 0

T
0 0 0

0 0 0

[ ],   [( )( ) ]

[ ] [   0  0]
0 0

[( )( ) ] 0 0
0 0
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x

T
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x E x P E x x x x

x E x E x
P

P E x x x x Q
R

α α

α α α α α

= = − −

= =

⎛ ⎞
⎜ ⎟

= − − = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where 0 0 0 0[   v   ]Tx x nα = ,  denotes the process noise variable, and u  is the 

measurement noise variable. 

v

 For time intervals  1,...,k = ∞

1) Calculation of sigma points. 

1 1 1 1 1[     k k k k k kx x P x Pα α α α α αχ γ− − − − − −= + − 1 ]γ
            (4.18) 

2) Time update. 

x v
-1 -11   =   f( , )x

k kk kχ χ− χ                  (4.19) 
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2d
(m)

,
i=0

     =   x
k i i k kx w χ−

−∑ 1                (4.20) 

2d
(c)

, 1 , 1
i=0

    =    ( )( )
k

x x
x i ki k k i k kP w xχ χ− −

− −− −∑ T
kx −           (4.21) 

where [( )   ( )   ( ) ]x T v T n T T
k
αχ χ χ χ= (m)

iw,  is again the weight of mean and  denotes 

the weight of covariance for the ith sigma point. 

(c)
iw

3) Measurement update. 

-11 1 =   h( , )x n
kk k k kχ χ− −y                  (4. 22) 

2d
(m)

,
i=0

     =   k i i k ky w−
−∑ y 1                (4. 23) 

2d
(c)

, 1 , 1
i=0

     =    ( )( )
k

T
y i ki k k i k kP w y −

− −− −∑ y y ky −           (4. 24) 

2d
(c)

, 1 , 1
i=0

   =    ( )( )
k k

x T
x y i k ki k k i k kP w xχ −

− −− −∑ y y −           (4. 25) 

1     =    
k k kk x yK P −

yP                  (4. 26) 

      =    ( )k k k k kx x K y y− + − −               (4. 27) 

    =   
k k k

T
x x k yP P K P− − kK               (4. 28) 

where ky is the measurement, h  is the function described in Equation 2.2 denoting the 

relationship between observations and states, and  is the Kalman gain. kK

 The algorithm of the UKF is coded in Matlab. The realization of this algorithm can 

be seen in Appendix E. 

 The implementation of the UKF requires similar initial information as the EKF. 

Firstly, a fixed MEVL needs to be preset. This value is also required for most speed 

estimation methods. In a practical application, the MEVL can be obtained from 
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historical vehicle classification. For example, vehicle length data from TMS was used 

for estimating the MEVL (Dailey, 1999). Secondly, both the UKF and the EKF require 

the input of process noise and measurement noise. In the EKF, both values are 

experimentally determined and fixed throughout the whole estimation process (Dailey, 

1999). In the UKF, speed variance is used for modeling process noise. Since speed 

variance data are not available from single loop outputs, a constant value of speed 

variance is experimentally determined and used. The measurement noise in the UKF is 

represented by the variance of observations ( ). It can be recursively determined by 

the variance of measurements based on last noise value ( ) and the current 

measurement ( ). Thus, it is an easy and efficient way to account for the 

measurement noise. Finally, as mentioned in Section 2.4.4, a state-transition model is 

needed for predicting the new state based on the previous state. In the EKF, the current 

speed (

2
/ NOσ

2
/ 11 −− kk NOσ

kk NO /

ks ) is predicted by the two previous weighted speeds ( 1ks −  and 2ks − ) (equation 

2.12). The weights of these two previous states are derived by using the AR method. 

However, it is very simple to model the state-transition in the UKF because equal 

weights of 1ks −  and 2ks −  are used. Therefore, the implementation of the UKF is actually 

easier than the EKF. 

4.5      ESTIMATION RESULTS AND DISCUSSION 

In this section, ADR-6000 detector data and dual-loop data described in Chapter III were 

used for speed estimation. Both the EKF and the UKF were implemented to the datasets 
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using the developed Matlab programs. To evaluate the accuracy of estimates, Measures 

of Effectiveness (MOEs) are selected. The MOEs include Mean Absolute Error (MAE) 

and Root Mean Square Error (RMSE). The MAE and RMSE are calculated by 

1

1 M

k k
k

MAE s s
M =

= ∑ −                   (4.29) 

2

1

1 [
M

k k
k

]RMSE s s
M =

= −∑                (4.30) 

where M  is the total number of time intervals, ks  is the estimated speed of the kth time 

interval, and  is the observed speed of the kth time interval. ks

From the equations, it can be seen that the MAE is used to measure the average 

magnitude of absolute errors. The MAE is a linear score that puts equal weights to all the 

individual differences ( k ks s− ).The RMSE is the square root of Mean Square Error 

(MSE), which can capture both the variance of errors and the bias of estimates. It gives 

relatively large weights to large errors because the errors are squared before averaged. 

Both MOEs are negatively-oriented scores, that is, lower values are better. 

Peek ADR-6000 data from the SH6 vehicle detection test bed were first used for 

speed estimation. As mentioned in Chapter III, traffic flow at this location is low to 

medium. Traffic congestion usually did not exist except for special situations. One-day 

of data (January 27th, 2004) were collected and complied into time intervals of 30 

seconds. The results of speed estimation from the UKF are shown in Figures 4.9 and 

4.10 for lanes 1 and 2, respectively. 
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Fig. 4.9 Speed estimation results from the UKF at SH6 on Jan. 27, 2004 (lane 1) 

 

 

 

  

 

 

 

 

 

 

Fig. 4.10 Speed estimation results from the UKF at SH6 on Jan. 27, 2004 (lane 2) 
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 From the comparison of the estimated and observed speeds, it can be seen that the 

UKF had good performance for speed estimation under low-medium traffic flow 

conditions. In speed estimation, those time intervals that did not have any vehicle 

passing by were discarded. Thus, the number of time intervals in an hour varies with 

time. By comparing lane 1 and lane 2, we can see that the number of polling intervals of 

lane 1 is larger than that of lane 2. This is because lane 1 (shoulder lane) has higher 

traffic volumes and for some intervals traffic existed only in lane 1. Along with higher 

truck percentages distributed in lane 1, estimation results of this lane are less accurate 

than those of lane 2. The MAE and RMSE values of lane 2 are 3.40 mph and 4.31 mph 

while the values for lane 1 are 3.62 and 4.53, respectively. 

 The EKF and the g-estimator method were also implemented to the lane 1 dataset 

and estimation results are shown in Figures 4.11 and 4.12. From the figures, it is evident 

that the UKF had better performance than the EKF and the g-estimator method; the g-

estimator had the worst performance. The EKF had better estimates during daytime than 

those during night time. The g-estimator, however, generated large variation of speeds as 

shown by a wide band of speed estimates in Figure 4.11. As expected, this method did 

not have good performance for speed estimation even under normal traffic conditions. 

For this reason, the g-estimator will not be used for further comparison.  
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Fig. 4.11 Speed estimation results from the EKF at SH6 on Jan. 27, 2004 (lane 1) 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 Speed estimation results from the g method at SH6 on Jan. 27, 2004 (lane 2) 
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 In the following, ADR-6000 data collected from the IH-35 test bed were used for 

speed estimation. Two weekday datasets were collected on October 27 and November 9, 

2004 from the 4 southbound through lanes. Estimation results are shown in Figures 4.13-

20. It can be seen that the UKF generated accurate and stable estimates for all datasets. 

From the MOEs, it is found that the estimates became more accurate from lane 1 to lane 

4. For example, the MAE and RMSE are 3.74 mph and 5.13 mph of lane 1 on Oct. 27 

and they decrease to only 2.70 mph and 3.62 mph of lane 4. This again can be explained 

by truck percentages and traffic volumes. Lanes 1 and 2 had serious traffic congestion 

during AM/PM peak hours so that vehicle speeds dropped down and sometimes were 

lower than 10 mph. Even under low speed conditions, the estimated speeds still captured 

real world speed variations very well. During the first few hours, estimated speeds had 

relatively large variations even though traffic flow was low. This was caused by high 

percentage of trucks. The MEVL had large variations during this time period, which can 

be as short as a passenger car’s length and as long as a multi-trailer truck’s length. The 

influence of MEVL during night time can be also identified from the literature. In some 

studies, speed estimation during night time was not even considered, which is reasonable 

since traffic flow analysis during daytime is more important for traffic control and 

management. 
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Fig. 4.13 Speed estimation results from the UKF at IH-35, Austin, on Oct. 27, 2004 
(lane 1) 

 

 

 

 

 

 

 

 

 

 
Fig. 4.14 Speed estimation results from the UKF at IH-35, Austin, on Oct. 27, 2004 

(lane 2) 
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Fig. 4.15 Speed estimation results from the UKF at IH-35, Austin, on Oct. 27, 2004 
(lane 3) 

 

 

 

 

 

 

 

 

 

 

Fig. 4.16 Speed estimation results from the UKF at IH-35, Austin, on Oct. 27, 2004 
(lane 4) 
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Fig. 4.17 Speed estimation results from the UKF at IH-35, Austin, on Nov. 9, 2004 (lane 
1) 

 

 

 

 

 

 

 

 

 

 

Fig. 4.18 Speed estimation results from the UKF at IH-35, Austin, on Nov. 9, 2004 (lane 
2) 
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Fig. 4.19 Speed estimation results from the UKF at IH-35, Austin, on Nov. 9, 2004 (lane 
3) 

 

 

 

 

 

 

 

 

 

 

Fig. 4.20 Speed estimation results from the UKF at IH-35, Austin, on Nov. 9, 2004 (lane 
4) 
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 Peek ADR-6000 data enable the research to test speed estimation algorithms under 

different polling times. The lane 4 dataset collected on Oct.27 was also compiled into 

20s and 1min time intervals. The UKF method was implemented and the results are 

shown in Figure 4.21. It is found that with larger duration of time intervals, the MAE 

and RMSE were lower, but the UKF could still maintain good estimations when the time 

interval is as small as 20 seconds. Obviously, the UKF method can be applied to single 

loop detectors that output data with different polling intervals. 

Finally, one week of dual-loop detector data collected from IH-35 in San Antonio 

were used for speed estimation. The estimation results from the UKF are shown in 

Figure 4.22. This dataset enables us to observe the performance of the UKF throughout 

multiple days. The results show that the UKF generated accurate estimates of speed. The 

estimated speeds followed the measured speeds very well. A closer look into the dual-

loop dataset found that measured speeds sometimes were very high during nighttime. 

The highest measured average speed during a time interval is 150 mph with two vehicles 

detected. Such high speed data might not have been accurately measured. However, such 

erroneous data did not evidently affect UKF speed estimation results. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
c) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.21 Estimated and observed speeds (lane 4, IH-35, Austin, Oct.27, 2004)                 
a) 20s time interval b) 30s time interval c) 60s time interval 
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Fig. 4.22 Estimated speeds from the UKF on IH-35 in San Antonio (lane 1, Feb.10-16, 2003)
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The EKF was also implemented to the above datasets. The comparison of results 

from the UKF and the EKF are shown in Table 4.1. Results show that the UKF had 

better estimates than the EKF for all datasets with lower MAEs and RMSEs. The 

superiority of the UKF is thus demonstrated. From the Austin dataset, it can be seen that 

the performance of both the EKF and the UKF became better from lane 1 to lane 4. 

 

Table 4.1 Comparison of Speed Estimation Results 

EKF UKF 
Location Date Lane 

No. MAE 
(mph) 

RMSE 
(mph) 

MAE 
(mph) 

RMSE 
(mph) 

S.H.6 in College Station 

Lane 1 5.02 6.50 3.62 4.53 
 Jan.27, 2004 

Lane 2 4.72 6.02 3.40 4.31 

IH-35 in Austin 

Lane 1 7.36 10.17 3.74 5.13 

Lane 2 7.03 10.05 3.30 4.63 

Lane 3 5.18 7.00 3.02 4.07 
Oct.27, 2004 

Lane 4 4.18 5.6 2.70 3.62 

Lane 1 5.65 7.24 3.61 4.72 

Lane 2 5.27 7.16 3.12 4.08 

Lane 3 4.59 5.91 3.13 4.1 

 

Nov.09, 2004 

Lane 4 4.91 6.74 3.05 4.06 

IH-35 in San Antonio 

 Feb.10-16, 
2003 Lane 1 7.78 10.08 4.31 6.20 

 

 



 

 

where d  is the mean of 

 The results of paired t-tests for MAEs are shown in Table 4.2. It can be seen that the 

2-tailed p-values for all datasets are 0.000, which means that the difference between the 

estimation errors from the UKF and the EKF are significant at 95% confidence level. 

The powers of the tests are almost 100% (=1- p-value). Therefore, the superiority of the 

UKF over the EKF can be identified. For example, the difference of mean for lane 1 

dataset in College Station is 1.40 mph with a sample size of 2471, and the calculated t 

value is 16.89, then the two-sided p-value can be obtained by using the t value and the 

number of degree of freedom (2470). Moreover, the 95% confidence interval is [1.23  

78
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 In order to examine whether or not the MAEs from the EKF and UKF significantly 

differ from each other, paired t-tests were conducted. For each lane, assume that the 

absolute errors of the EKF and the UKF are e  and e , where k  is the index of time 

interval. Then, the difference between e  and  is −= . The test statistic 

can be calculated by 

Ms

dt
/2

= ,                     (4.31) 

Mkdk ...,1, = ,  is the sample variance, 2s M  is the sample size 

(number of pairs), and 1−M  equals to the number of degrees of freedom. It should be 

noted that before the paired t-tests, a normal test for a dataset of the differences was 

examined. It was found that the differences were normally distributed. Thus, it is 

assumed that the differences of other datasets are normally distributed so that the paired 

t-tests can be used.  
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Paired Differences 

95% Confidence 
Interval of the 

Difference 
Location Date Lane 

Mean Std. 
Dev. 

Std. Err. 
Mean 

Lower Upper 

t df Sig.  
(2-tailed) 

1 1.40 4.11 0.08 1.23 1.56 16.89 2470 0.000 SH6 
(College 
Station) 

Jan.27, 
2004 2 1.32 4.71 0.11 1.02 1.44 11.52 1949 0.000 

1 3.62 6.45 0.12 3.40 3.88 30.09 2819 0.000 

2 3.73 6.27 0.12 3.45 3.92 31.14 2816 0.000 

3 2.16 4.46 0.09 1.99 2.33 25.37 2733 0.000 
Oct.27, 
2004 

4 1.48 3.17 0.06 1.35 1.60 23.48 2541 0.000 

1 2.04 4.75 0.09 1.86 2.22 23.13 2796 0.000 

2 2.15 4.76 0.09 1.91 2.27 23.50 2783 0.000 

3 1.46 3.24 0.06 1.34 1.58 23.56 2741 0.000 

IH-35 
(Austin) 

Nov.29, 
2004 

4 1.86 3.80 0.07 1.71 2.01 24.08 2536 0.000 
IH-35  
(San Antonio) 

Feb.10-
16, 2003 1 3.47 6.20 0.04 3.39 3.55 83.49 22225 0.000 

Table 4.2 Paired Samples t-test for MAEs 
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mph, 1.56 mph], which means that we are 95% confident that the true mean (difference) 

lies between 1.23 mph and 1.56 mph. The 95 confidence interval is an important 

measure of the reliability of the test. In all tests, the values of lower bounds are greater 

than zero. 

4.6      SENSITIVITY ANALYSIS 

As mentioned above, speed variance information cannot be obtained from single loop 

outputs. For this reason, it was set as a fixed value in the implementation of the UKF 

algorithm. Therefore, it is necessary to examine the influence of the speed variance on 

speed estimation. The lane 1 dataset collected from Austin on Oct.27 was used for this 

purpose. Different values of square root of speed variance (σ ), ranging from 0.05 mph 

to 10 mph, were assigned for experiments. Estimation results are shown in Figure 4.23. 

It is found that speed variance did not affect estimation results significantly. The 

lowest MOEs were obtained when the square root of speed variance ( sσ ) was between 2 

mph and 3 mph. With the decrease or increase of sσ  outside the range, estimation errors 

became larger. However, the errors increased relatively slowly. This is very important 

for speed estimation because it will be “safe” to set the value for sσ  within a range. 

Further examination found that smaller values of sσ  were more favorable for 

uncongested flow conditions than larger values, and vise versa. This is reasonable 

because speed variance becomes larger under traffic congestion conditions. Therefore, it 

is recommended that sσ  be larger than 2 and less than 8 in practice. 
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 From the figure, it can be also found that the RMSE curve is similar to the MAE 

curve in shape. As was mentioned, the RMSE is able to measure the variance of errors 

and the bias of estimations, and the MAE measures estimation errors. It can be inferred 

that the increase of sσ  did not increase the variance of errors evidently. 
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Fig. 4.23 Sensitivity analysis of speed variance with 30s time interval 

(lane 1, IH-35, Austin, Oct.27, 2004) 
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4.7      SUMMARY 

In this chapter, the problem of speed estimation was first examined. It was showed that 

the problem is nonlinear, especially under congested traffic conditions. Thus, a UKF that 

performs well for nonlinear systems was proposed for speed estimation. 

 Peek-ADR 6000 detector data and dual-loop data collected from different locations 

were applied to the proposed method as well the EKF. Estimation results from both 

methods were compared and evaluated. It was found that the UKF generated more 

accurate estimates than the EKF. Finally, the effect of speed variance on speed 

estimation was analyzed. It was found that speed variance did not have great effects on 

speed estimation. 
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CHAPTER V 

METHODOLOGY II: UNSCENTED PARTICLE FILTER (UPF) 

 

5.1      INTRODUCTION 

In the previous chapter, an UKF method was developed for the nonlinear speed 

estimation problem. Despite that the UKF was demonstrated to have better performance 

than the EKF, this method uses the Gaussian assumption that may affect the accuracy of 

speed estimation. Therefore, this chapter will discuss the assumption behind the use of 

the UKF. A new method will then be proposed to avoid the limitation of the UKF while 

taking advantage of its strength. 

5.2      LIMITATION OF THE UKF 

The UKF, like the EKF, assumes a Gaussian parametric form of the posterior (Merwe, 

2000). The assumption means that the distribution of the state ( ks ), the process noise 

( ), and the observation noise ( ) are Gaussian distributed. Thus, the Gaussian 

posterior can fail in non-Gaussian problems with multi-modal and/or heavy tailed 

posterior distributions. 

kv kn

 In the speed estimation problem, although the distributions of noises are difficult to 

analyze, the distribution of the state can be examined. We can check the distribution of 

speed ( ks ). Vehicle speeds are usually assumed to be normally distributed under free (or 
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nearly free) flow conditions. Thus, the distribution of speed under such conditions is first 

examined. An example of speed distribution is shown in Figure 5.1 using speed data 

gathered from S.H.6 with time interval of 30 seconds. It can be seen that most speed 

values are between 55 mph and 70 mph. Also, part “b)” shows that the values are nearly 

symmetric around 65 mph, with slightly left skewness. From the Q-Q plot, it seems that 

the speed data fit a normal distribution, except some values in the tails. However, 

hypotheses test for goodness-of-fit to a normal distribution at the 95% significance level 

showed that this dataset did not fit a normal distribution with a p-value less than 0.001. 

This could have been caused by the values distributed in the tails. 

�  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Speed distribution under normal traffic conditions 
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 Next, the normality of speed under traffic congestion situations is examined.  Figure 

5.2 shows the distribution of speed under such conditions using data from IH-35 with 

30-sec time intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Speed distribution under congested traffic conditions 

 

Part “a)” of this figure shows measured speed data over time with time interval of 30 

seconds. Traffic congestion existed during the peak periods. From the histogram (part 

“b)”), it can be seen that the distribution of speed has a heavy tail in the left side, which 
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is caused by low speed values. Part “c)” is the corresponding normal Q-Q plot of speed 

data. The Q-Q plot displays a highly left (negative) skewed distribution of speed data. 

Hypotheses test of a normal distribution results in the p-value of 0. It is obviously that 

the speed distribution is not normally distributed. 

Some other distributions have been proposed in the past to model speed data. For 

example, log-normal distribution was found to be appropriate when the speed 

distribution is unimodal and right skewed (a tail is on the right side) (Haight and 

Mosher, 1962; Gerlough and Huber, 1975). The composite distribution was used when 

the traffic stream includes two classes of vehicles and has a bimodal distribution (May, 

1990; Dey et al., 2006). The data from our study and many previous studies have 

showed that speed did not typically follow a normal distribution. Therefore, the 

Gaussian assumption tends to be invalid in practice. The invalid assumption in the UKF 

can have effects on speed estimation. A remedy needs to be developed to solve the 

weakness of the UKF. 

5.3      METHODOLOGY 

To overcome the unrealistic Gaussian assumption, one can use nonparametric 

techniques, such as the Particle Filter (PF), which do not depend on the Gaussian 

assumption. Nonparametric techniques are developed based on the PF, which is also 

called the sequential Monte Carlo method. The PF uses a set of random particles to 

approximate the posteriors instead of using a functional form. The PF was first 

introduced into the statistics and physics in the fifties (Hammersley and Morton, 1954; 
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Rosenbluth and Rosenbluth, 1955). Many PF algorithms have been proposed in the 

following decades (Akashi and Kumamoto, 1977; Handschin, 1970; Gordon et al., 

1993). However, most of them use the state transition prior 1( k k )p x x −  as the proposal 

distribution to draw particles. As a result, the particles may have low likelihood as the 

state transition does not take into account the most recent observation ky .  

Based on the advantages and limitations of both parametric and nonparametric 

techniques, a hybrid filter of the Unscented Particle Filter (UPF) that combines the 

nonparametric PF and the parametric UKF is suggested (Merwe et al. 2000). In the UPF, 

the PF provides the general probabilistic framework for nonlinear non-Gaussian systems, 

while the UKF generates proposal distributions for the PF, taking the most recent 

observation into account. 

5.3.1 Particle Filter (PF) 

Using the nonparametric method, a set of particles can be drawn to approximate the 

posterior distribution )( :1:0 kk yxp : 

∑
=

=
N

i
kxkk dx

N
yxp i

k
1

:0:1:0 )(1)(ˆ )(
:0

δ                  (5.1) 

where )(dδ  is the Dirac Delta Function and the samples  are drawn 

from the posterior distribution. The approximation converges if N is large enough 

(Doucet, 1998). However, this approximation is only of theoretical significance as it is 

often impossible to sample directly from the posterior distribution. To solve this 

},...,1;{ )(
:0 Nix i
k =
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difficulty, we can sample from a known proposal distribution )( :1:0 kk yxq . Thus, the 

posterior distribution can be approximated by properly weighted particles drawn from 

the proposal distribution (Liu and Chen, 1998): 

)()()(ˆ :0
1

)(
:0:1:0 )(

:0
kx

N

i

i
kkkk dxxwyxp i

k
δ∑

=

=                 (5.2) 

The unnormalized importance weights are given by: 
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The importance weights are further normalized through: 
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)()()( /~                     (5.4) 

To achieve a sequential estimate of the posterior distribution, it is important to 

develop a recursive calculation of weights. Assumptions are made that the current state 

is independent on future observations, the states follow a Markov process, and 

observations are conditionally independent given the states (Isard and Blake, 1996; 

Merwe et al., 2000). With those assumptions, a recursive estimate for the importance 

weights is given by: 
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where )( )(i
kk xyp  is the likelihood, )( )(

1
)( i

k
i

k xxp −  is again the transition prior, 

),( :1
)(

1:0
)(

k
i
k

i
k yxxq −  is the proposal distribution and 

)(
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:1:0

:1:0

kk

kk

yxq
yxp

 is called the importance 

ratio. 

So far, the first step in the PF is called the Sequential Importance Sampling (SIS). In 

this step, the proposal distribution is used twice. First, particles are drawn from the 

proposal distribution; and second, each particle’s importance weight is calculated based 

on the proposal distribution. To choose an appropriate proposal distribution, the proposal 

distribution that minimizes the variance of the importance weights is advocated (Doucet 

et al., 1999). 

It is found that the variance of the importance ratio (
)(
)(

:1:0

:1:0

kk

kk

yxq
yxp

) increases over time 

(Kong et al., 1994; Doucet et al., 1999), which means that one of the importance weights 

tends to one while others become zero after a few iterations. To avoid the degeneration 

of the SIS, a residual re-sampling step is used to eliminate samples with low importance 

weights and multiply samples with high importance weights. The re-sampling procedure 

first calculates  (  rounds a number towards zero), and then computes the 

remaining 

]~[~ )(i
ki wNN = ]  [

∑
=
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i
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1

)(~  with new weights ki
i

k
i

k NNNww /)~~( )()( −=′ . Finally, the 

results ( kN  and ) are used to update . See (Liu and Chen, 1998) for more details 

on the re-sampling procedure. 
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The last step of the PF is the output step. The output is a set of samples that can be 

used to approximate the mean and covariance of the posterior . The approximated 

mean is the estimated state at the kth time interval. In summary, the algorithm of the PF 

can be illustrated by Figure 5.3. In this figure, assuming 

tx

10=N  particles are drawn at 

the kth time step. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Schematic diagram of the PF (Merwe et al., 2000) 

 

5.3.2 Unscented Particle Filter 

As has been mentioned, the parametric (UKF) and nonparametric (PF) techniques have 

their strengths and weaknesses. To utilize their good features and avoid their limitations, 

the hybrid UPF combining the PF and the UKF is proposed for the nonlinear non-

Gaussian speed estimation problem. Estimated speeds from the UKF are used as the 
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proposal distribution for the PF to draw particles. The operation of the UPF is described 

in the following steps. 

Step 1. Sequential Importance Sampling 

a. Draw the particles  with the UKF to obtain the proposal 

distribution 

Nix i
t ,...,1 ,)( =

),( :1
)(

1:0
)(

t
i
t

i
t yxxq − . 

i. Calculation of sigma points (UKF) 

ii. Time update (UKF) 

iii. Measurement update (UKF) 

b. Sample particles  from the proposal distribution. Nix i
t ,...,1 ,)( =

c. Evaluate the importance weights (equation 5.3). 

d. Normalize the importance weights (equation 5.4). 

Step 2. Re-sampling 

Multiply particles with high importance weights and suppress particles with 

low importance weights. 

Step 3. Output 

Approximate the posterior distribution )( :1:0 tt yxp  using a set of samples 

(equation 5.1). 
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5.4      IMPLEMENTATION OF THE UPF 

5.4.1 Model Establishment 

Before applying the UPF to speed estimation, three models need to be established: the 

process model (in the UKF), the measurement model (in the UKF), and the likelihood 

model (in the PF). These three models are developed and described as follows. 

5.4.1.1 Process Model 

The general state-transition model representing the relationship of the predicted state and 

the previous state(s) is shown in equation 4.1. In the EKF (Dailey, 1999), the predicted 

state is estimated by previous two states with assigned weights. Those two weights are 

determined using least squares estimates of the AR with 2 orders based on 

experimentally measured speed data. While in the UKF, we simply assign those two 

weights equally (=0.5). Thus, at the kth time step, the process model is given by 

njnxxx j
k

j
k

j
k

j
k 2,...,0  ,2/)ˆˆ( )()(

1
)(
1

)( =++= −−
−               (5.6) 

where j is an index and equals to the number of sigma points, n is the dimension of the 

state space, and  is the process noise. In the speed estimation problem, the process 

noise can be determined by speed variance. In reality, either measurement or calculation 

of speed variance ( ) is impossible and thus it is commonly set as a constant value 

experientially. 

)( j
kn
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5.4.1.2 Measurement Model 

Equation 4.2 represents the general measurement model. The function h  denotes the 

relationship between state and measurement. In speed estimation, h  is the nonlinear 

model presented in equation 2.5. Like in the EKF, the measurement error is determined 

experientially in the UKF. A simple and efficient way to determine the measurement 

error  is using the variance of measurements . Thus, at the kth time interval 

can be recursively calculated by the last error ( ) and current measurement   

kv 2
/ NOσ kv

1−kv kk NO / .

5.4.1.3 Likelihood Model 

There is no simple expression for the likelihood model. However, the likelihood model 

can be established using the measurement innovation ( ), which is the 

difference between the observation and the predicted observation. It is suggested that 

higher weights will be assigned to those particles with lower residuals. In this way, the 

relationship of the likelihood, the measurement noise , and the measurement 

innovation is established by 

Nii
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exp()()(

2)(
1)(

i
k

k
i

kk nxyp
Δ

−∝ −                 (5.7) 

5.4.2 Implementation 

The complete algorithm of the UPF is shown as follows (Merwe et al., 2000). 

 Initialization: k = 0.  
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For , draw the particles 0,...,i = N 0
ix  from the prior and initialize the following 

variables: 

( ) ( )
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α α α α α

=
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⎜ ⎟
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In this study, N equals to 100. 

 For time intervals  1,...,k = ∞

1) Sequential Importance sampling  

 For : 0,...,i N=

 Calculate Sigma Points 

( ) ( ) ( ) ( ) ( )
1 1 1 1 1[     i i i i i

k k k k k kx x P x P 1 ]α α α α α αχ γ− − − − − −= + −γ  

where dγ κ= + . 

 Propagate the particle into future (time update): 

( ) ( ) ( )
-1 -11   =   f( , )i x i x i v
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     =   
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j
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( ) ( ) ( )
-11 1 =   h( , )i i x

kk k k kχ χ− −y i n  

2d
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1 ,
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jk k i k k

j
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 Incorporate new observation (measurement update): 
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 For , evaluate the importance weights up to a normalizing 

constant. 
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 For , normalize the importance weights. 0,...,i = N

)2) Suppress particles ( ) ( )
0: 0:

ˆˆ( ,i i
k kx P  with high or low importance weights ( ) to 

obtain N random particles 

( )i
kw%

( ) ( )
0: 0:( ,i i

k k )x P%% . 

3) The output is a set of samples that can be used to approximate the posterior 

distribution: 
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≈ = ∑ )  

 The algorithm of the UKF is coded in Matlab. The realization of this algorithm can 

be seen in Appendix E. The implementation of the UPF requires similar initial 

information as both the EKF and the UKF, as is described in Section 4.4. 

5.5      ESTIMATION RESULTS AND DISCUSSION 

The UPF algorithm was first implemented to some datasets used in the previous chapter. 

Parameter settings (i.e., MEVL and noises) in the UPF are same as those of the UKF so 

that they can be compared and evaluated. The MOEs for result evaluation, again, include 

the MAE and the RMSE shown by equations 4.28 and 4.29. 

 The estimated results from the UPF for two datasets (lane 1, S.H.6, Jan.26, 2004; 

lane1, IH-35, Nov.09, 2004) are shown in Figures 5.4 and 5.5, demonstrating speed 

estimation under both normal and congested traffic conditions. These two figures are 

corresponding to Figures 4.9 and 4.17, in which the results from the UKF are shown. It 

can be seen that the UPF had very accurate speed estimations for both cases. For 

example, the MAE and RMSE for the IH-35 dataset are only 3.20 mph and 4.23 mph. 

Moreover, the UPF had better estimates than the UKF with lower MOE values. 
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Fig. 5. 4 Estimation results from the UPF at SH6 on Jan. 26, 2004 (lane 1) 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Estimation results from the UPF at IH-35, Austin, on Nov. 09th, 2004 (lane 1) 
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 To examine the performance of different methods under congestion conditions, a 2-

hour period (17:00 – 19:00) from Figure 5.5 was extracted and is shown in Figure 5.6. It 

also includes estimation results from the UKF and the EKF. The MAE values for the 

UPF, UKF, and EKF are 3.26 mph, 4.59 mph, and 5.97 mph, respectively; 

correspondingly, the RMSE values are 4.24 mph, 5.74 mph, and 7.43 mph. From the 

figure, it can be observed that the UPF captured the variation of speed very well. The 

UKF, although not better than the UPF, still had good performance. The EKF, however, 

seems to have latency in speed estimation, which means that this method had a time 

delay in response to speed variations. Thus, it usually detected the variation of speed 

after around 2 time intervals. To test the latency, the study used the estimations that were 

2 time intervals ahead as the current estimations and calculated the errors between 

estimated and observed values. It was found that the MAE and RMSE were 4.19 mph 

and 5.28 mph, which are even better than those results of the UKF. Of course, this is 

infeasible to do in practice since we have no knowledge of future estimates. 

 Figure 5.7 shows estimation results from the UPF for the double loop detector 

dataset, which has been applied to the UKF and the EKF in Section 4.5. The MAE and 

RMSE are 3.95 mph and 5.28 mph, respectively. The UPF had more accurate estimates 

than both the UKF and the EKF, which had the MAEs of 4.31 mph and 7.78 mph, and 

RMSEs of 6.20 mph and 10.08 mph. 
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Fig. 5. 6 Comparison of results under congested conditions. a) UPF. b) UKF. c) EKF. 
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Fig. 5. 7 Estimation results from the UPF at IH-35, San Antonio, from Feb.10 – 16, 2003 (lane 1) 
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For a better comparison, a 2.5-hour period (from 16:00 to 18:30) of speed estimation 

during afternoon peak hours on Friday (Feb. 14, 2003) was selected, and results from 

those three methods are displayed in Figure 5.8. Urban freeways usually have the 

heaviest traffic loads during this period. As shown in the figure, traffic speeds first went 

down quickly as caused by congestion, then varied between 5 mph to 40 mph for 2 hours, 

and finally recovered gradually to 50 mph between 18:00-18:30. 

The UPF, the UKF, and the EKF have MAEs of 3.55 mph, 4.67 mph, and 7.71 mph, 

and RMSEs of 4.78 mph, 5.86 mph, and 10.44 mph, respectively. It is obvious that the 

UPF had the best estimation accuracy among them. From part “a)” of this figure, it can be 

seen that the estimation curve of the UPF followed the observation curve very well. The 

UKF had good estimations but was still worse than the UPF. The EKF again had the 

worst performance as caused by its weaknesses (linearization, latency, etc). 

 In addition to Peek ADR-6000 and double loop detector data, simulated data were 

also used for speed estimation. Occupancy and count data from surveillance detectors 

were used to estimate speeds, and observed speed data were for performance evaluation. 

The three filtering methods were applied to the 2-hour simulated dataset as described in 

Chapter III. The MAEs of the UPF, the UKF, and the EKF are 2.08 mph, 2.66 mph, and 

3.47 mph, and correspondingly, the RMSEs are 2.73 mph, 3.44 mph, and 5.23 mph. It is 

obvious that the UPF had the most accurate estimations. 
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Fig. 5. 8 Comparison of results.  a) UPF. b) UKF. c) EKF. 
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 Figure 5.9 shows observed speed and estimation errors from those three methods. 

The vertical dotted lines in part “a)” represent the onset and end of the incident.  It can 

be seen that the traffic flow underwent drastic speed reductions with the presence of the 

incident, then remained low between 10 mph and 20 mph during the one and a half hours 

of traffic congestion, and recovered quickly to the normal speed. From part “b)” of this 

figure, it is found that the UPF and the UKF had comparable estimation results under 

normal traffic conditions. While under congested situations, the UPF performed better, 

especially during the presence of the incident. The UKF had several relatively large 

errors after the onset of the incident, while the UPF had accurate estimations. The EKF 

did not have good estimates during the incident, as can be seen from those three peaks of 

overestimation errors. Moreover, the EKF had large errors during the recovery of the 

congested traffic flow; the UPF only had one relatively large error during this time 

period. 
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Fig. 5.9 Estimation errors of simulated data 

 

 The estimation results for five different datasets are summarized in Figures 5.10 and 

5.11, which show MAEs and RMSEs respectively. The five columns represent the 

following five datasets from different locations and/or dates. 

• S.H.6: Lane 1 on Jan. 26, 2004 

• IH-35 in Austin (1): Lane 1 on Oct. 27, 2004 

• IH-35 in Austin (2): Lane 1 on Nov. 09 , 2004 

• IH-35 in San Antonio: Lane 1 from Feb 10 to 16t, 204 

• CORSIM: 2-hour simulation with the involvement of incident 
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From both figures, it can be easily observed that the UPF outperforms the UKF, 

although its improvement is not as much as that of the UKF over the EKF. 
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Fig. 5.10 Comparison of MAEs 
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Fig. 5.11 Comparison of RMSEs 
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In order to show whether or not the UPF significantly improves the accuracy of 

speed estimation over the UKF, paired t-tests were carried out for the MAEs at a 5% 

significance level. It is again assumed that the differences are normally distributed. 

Testing results are presented in Table 5.1. It can be seen that the 2-tailed p-values for all 

datasets are 0.000, which means that the difference between the estimation errors from 

the UPF and the UKF are significant at the 95% confidence level. Moreover, the lower 

bounds of the 95% confidence intervals are positive. Therefore, testing results confirm 

that the UPF is superior to the UKF. 

 

Table 5.1 Paired t-tests for MAEs of the UPF and the UKF 

Paired Differences 
95% 

Confidence 
Interval of the 

Difference 

Location Date Lane 
Mean Std. 

Dev. 

Std. 
Err. 

Mean
Lower Upper

t df 

Sig. 
(2-

tailed)
  

SH6 Jan.27 
2004 1 0.37 2.15 0.04 0.29 0.46 8.56 2470 0.000

Oct.27 
2004 1 0.51 3.72 0.09 0.33 0.68 5.58 1679 0.000

IH-35 
(Austin) Nov.29 

2004 1 0.36 1.79 0.03 0.30 0.43 10.69 2796 0.000

IH-35 
(San 
Antonio) 

Feb.10 -
-16  

2003 
1 0.36 3.66 0.02 0.30 0.41 13.95 22225 0.000

CORSIM N/A 1 0.58 2.12 0.11 0.36 0.80 5.17 359 0.000
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5.6      SUMMARY 

In this chapter, the speed estimation problem was modeled as a nonlinear non-Gaussian 

system. Real world data were used to show that the distribution of speed was not 

normally distributed, and this contradicted the Gaussian assumption used behind the KF 

family. Thus, the non-parametric PF technique was introduced for solving the nonlinear 

non-Gaussian problem. The PF, however, had its weakness in sampling from the 

posterior distribution. As a result, the UPF method was proposed for speed estimation. 

This method combines the UKF and the PF to avoid their limitations as well as absorb 

their strengths.  

 The EKF, the UKF, and the UPF were implemented to data collected both from 

fields and simulations. Estimation results as well as hypothesis tests confirmed that the 

UPF had more accurate estimates than the UKF, although the improvement was not as 

much as that of the UKF over the EKF. 

 The number of particles (N) used for sampling from the proposal distribution was set 

as 100. The selection of N was based on preliminary experiments using different number 

of particles that took the values of 50, 100, and 200. It was found that the results using 

100 and 200 particles had nearly no difference, while the results using 100 particles had 

some improvement over those using 50 particles. Hence, N=100 was used for the 

implementation of the UPF algorithm. The results were not shown in the dissertation 

since they are not the focus of the research and N=100 is a reasonable value. However, it 

should be noted that the value of N is related to the computational cost of the UPF. The 

larger the N value, the higher computational cost the UPF requires. Thus, although the 
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UPF had better performance than the UKF, it has taken longer times to execute the UPF 

algorithm because the UKF algorithm is embedded in it. If the UPF is used to process a 

large amount of data, the computation time will be significant, but it becomes negligible 

for on-line speed estimation as only one measurement is taken every time interval. 

 



 109

CHAPTER VI 

EXTENSIONS 

 

6.1      INTRODUCTION 

In the previous two chapters, the UKF and the UPF methods were proposed for speed 

estimation, and the accuracy of speed estimation was significantly improved through the 

implementations of the developed algorithms. With the achievement, the dissertation 

work will be beneficial to traffic operations by providing operating improvements on 

freeway networks. The benefits can be foreseen by investigating several applications 

described as follows. 

6.2      TRAVEL TIME ESTIMATION  

The estimation of travel time is very important for the purpose of both traffic 

management and traveler information provision. Because of the wide implementation of 

loop detectors, travel time estimation using ILD data has been the focus of numerous 

studies. Many speed-based travel time estimation methods have been developed in the 

past. Among those methods, the extrapolation methods are the simplest and most widely 

accepted techniques for travel time estimation using loop detector outputs. 

This extrapolation method was first presented in the Travel Time Data Collection 

Handbook (1998). The development of this method is based on the assumption that 

speed does not vary between two detection points. Thus, the travel time between the two 

 



 110

points can be calculated as the distance divided by the speed (Ferrier, 1999; Lindveld 

and Thijs 1999; Quiroga, 2000; Lindveld et al., 2000; Cortes et al. 2002; Van Lint and 

van der Zijpp, 2003; Li et al., 2006). The schematic diagram of this method is shown in 

Figure 6.1. 

 

  

 

 

 

 

Fig.6.1 Schematic diagram of extrapolating travel time 

 

 To calculate the travel time between loops 1 and 2, there are three different ways of 

extrapolation. The first approach uses the average speed of  and  for the 

calculation. Thus, the travel time between loop 1 and loop 2 is 

1S 2S
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1
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*2
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Dtt
+

=− ,                      (6.1) 

where  and  are the average speeds at stations 1 and 2,  is the distance between 

stations 1 and 2, and  is the estimated travel time. 

1S 2S 1D

21−tt

The second way of travel time estimation uses the minimum speed of  and  for 

calculation. Thus, the travel time is calculated by 
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The third way can be calculated by 
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From the above equations, it can be shown that the second approach will result in the 

largest travel time, and the first approach has the smallest value. 

 No matter which method is used for the estimation of travel time, speed is the only 

independent variable, since the distance between two measurement points is known. 

Thus, the accuracy of travel time is directly governed by the accuracy of speeds  and 

. The improvement of speed estimation using single loop detector outputs will 

directly improve the estimation of travel time and provide more accurate traveler 

information. Moreover, the travel time estimation using a series of single loops is cost-

effective. Finally, other applications (i.e., delay analysis) that might use travel time 

information as an input will also benefit from the improvement of speed estimation. 

1S

2S

6.3      INCIDENT DETECTION 

As reported in a TTI’s Urban Mobility Report (Schrank and Lomax, 2002), incidents are 

responsible for around 53-58 percent of the total delay experienced by motorists in urban 

areas. Thus, improving the performance of incident detection to reduce response time is 

very important. Over the past three decades, numerous studies have been conducted to 

develop incident detection algorithms including comparative algorithms (Payne et al., 

 



 112

1976; Tignor and Payne, 1977; Collins et al., 1979; Masters et al., 1991; Persaud and 

Hall, 1989; Antoniades and Stephanedes, 1996), statistical algorithms (Dudek et al., 

1974; Levin and Krause, 1978), modeling algorithms (Persuad et al., 1990; Willsky et 

al., 1980), and time-series algorithms (Cook et al., 1974; Ahmed and Cook, 1982; 

Stephanedes and Chassiakos, 1993). The most commonly used measures of performance 

for the evaluation of incident detection algorithms are 1) detection rate, 2) detection 

time, and 3) false alarm rate (Carvell, 1997). 

 The comparative algorithms are simple methods by “comparing speed, volume, 

and/or occupancy from a single loop station or between two detectors stations against 

thresholds that define when incident conditions are likely” (Bridya et al., 2005). For 

example, the PATREG algorithm detected incident by checking current speed against 

preset thresholds (Collines et al., 1979); the Catastrophe theory used speed, count, and 

occupancy as variables for incident detection, and the alarm sounded when speed 

dropped dramatically without a corresponding increase in occupancy and count (Persaud 

and Hall, 1989); the McMaster algorithm used the speed-occupancy and flow-occupancy 

charts for incident detection based on data from a single loop station (Antoniades and 

Stephanedes, 1996). 

 With more accurate speed information provided, it is possible to decrease the 

detection time without sacrificing reliability. As mentioned in Chapter V, the EKF 

method has the weakness of latency in speed estimation. This will result in longer 

detection times, while it can be avoided by using the proposed methods. Thus, the 
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dissertation work will help improve the performance of the comparative algorithms for 

automated incident detection. 

6.4       LARGE TRUCK VOLUME ESTIMATION 

In addition to speed, volume, and occupancy, real-time vehicle classification information 

is also an important input for traffic control and management. In the study by Wang and 

Nihan (2003), a question was posed: “Can single loop detectors do the work of dual-loop 

detectors?” With accurate estimation of speed from single loop outputs, we are able to 

say ‘yes’ to the question. As pointed out by Wang and Nihan (2003), accurate speed 

estimation is the key to produce reasonable vehicle classification information in that 

vehicle length can be straightforwardly calculated once speed is known. Therefore, the 

issue of the estimation of large truck volume was initiated and addressed. 

 To estimate large truck volume, vehicles are classified into two categories: Small 

Vehicles (SVs) and Large Trucks (LTs). A LT or a long vehicle is defined as a truck 

with a length greater than or equal to 12.19 m (40 feet) as in the studies of Wang and 

Nihan (2004) and Kown et al. (2002). The classification was based on the analysis of 

vehicle length distribution on freeways. Figure 6.2 shows and example of the 

distribution. From this figure, a bi-modal distribution is identified. The distributions of 

the SV class and the LT class were further explored and shown in Figure 6.2. It was 

found that both distributions of SVs and LTs were approximately normally distributed.  

 With the simple classification, the normal assumption of vehicle length, and accurate 

speed estimated from single loop data provided, it is capable of estimating the number of  
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Fig.6.2 Length distribution of vehicles (Wang and Nihan, 2004) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6.3 Vehicle lengths distributions with normal distribution curves (Wang and Nihan, 
2004) 
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LTs with a reasonable accuracy. This will certainly provide valuable information for 

transportation planning, design, control, and operation. 

6.5      SUMMARY 

With the completion of this dissertation, the research can be applied to many aspects of 

traffic operations to improve operating performance. In this chapter, three examples of 

applications, speed-based travel time estimation using a series of single loops in the 

network, incident detection using comparative algorithms, and large truck volume 

estimation were used to illustrate the potential benefits of the dissertation work. The 

contributions, however, are not limited to the examples and can be extended to 

applications that require speed information from single loop outputs. In addition, the 

research enables cost-effective analyses of the applications without expensive detection 

systems. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 
The problem statement of the dissertation identified the need to estimate speed 

accurately using single loop outputs. A summary of how the problem was addressed in 

this dissertation, the conclusions reached, and recommendations for future work are 

provided below. 

7.1      SUMMARY 

Count and occupancy collected from single loop detectors can be used to estimate speed, 

which can provide important information for traffic operations. Moreover, single loop 

detectors have been the most widely employed detectors on the U.S. highways with low 

costs. For these reasons, many studies have been conducted in the past to develop 

methodologies for speed estimation. Among them, the EKF has achieved some success 

and is able to generate relatively good estimates. The EKF was developed to apply to the 

nonlinear system of speed estimation (Dailey, 1999). However, as discussed in Chapter 

II, the EKF still has several issues in speed estimation.  

 To overcome the weaknesses of the EKF in dealing with nonlinear systems, the 

dissertation proposed the UKF method that has better performance for nonlinear 

systems. The dissertation further pointed out the common problem (Gaussian 

assumption) existing in the KF family that could affect the performance of the UKF, and 

showed that the assumption might not meet real-world conditions. To solve this 
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problem, the UPF method that is applicable to nonlinear non-Gaussian systems was 

developed to avoid the weaknesses of the UKF and PF, and assimilate their strengths as 

well. The algorithms of above methods were programmed in MATLAB and can be used 

for real-time speed estimation. 

Field data collected from different locations and different days were used for the 

study. The datasets were collected from two types of detectors, Peek-ADR 6000 

detectors and double loop detectors. Also, simulated data from the microscopic 

simulation program CORSIM were generated under freeway incident conditions. The 

EKF, the UKF, and the UPF were implemented to the datasets. Finally, the estimation 

results from the three methods were compared and evaluated. It was showed that the 

proposed methods had better performance under various traffic flow conditions. 

7.2      CONCLUSIONS 

The dissertation resulted in a number of conclusions and they are listed as follows: 

• The problem of speed estimation was established as a nonlinear system in the 

past (Dailey, 1999). The dissertation further identified the problem as a non-

Gaussian system. Overall, speed estimation can be treated as a nonlinear non-

Gaussian problem. 

• The UKF method was introduced to improve speed estimation. This method is 

able to overcome some limitations in the EKF method and has better 

performance in dealing with nonlinear systems. 
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• To find a solution for the nonlinear non-Gaussian problem of speed estimation, 

the hybrid method UPF was proposed. The method was established by 

combining the UKF and the PF. As a result, it is able to incorporate the strengths 

and avoid the limitations of the UKF and the PF.  

• The implementations of the three methods (EKF, UKF, and UPF) are not 

difficult. They require similar external information such as the MEVL and initial 

inputs in their implementations. 

• It was found that the proposed methods had good performance in speed 

estimation under various traffic flow conditions. The comparison and evaluation 

of the estimation results showed that both proposed methods had better 

estimation results than the EKF. Thus, the proposed methods are found to be 

promising methods for speed estimation using singe loop detector outputs. 

• The results proved that the UPF had better performance than the UKF. However, 

the computational cost of the UPF is higher since it incorporates the UKF into 

the operation. It should be noted that the computation time will not be an issue 

for on-line applications. 

• The dissertation work can be beneficial to real-time traffic operations. The 

improvement of speed estimation will improve the performance of applications 

such as travel time estimation using a series of single loops in the network, 

incident detection, and large truck volume estimation. Therefore, the work 

enables traffic analysts to use single loop outputs in a more cost-effective way. 
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7.3      FUTURE RESEARCH 

•  Single loop detectors may output erroneous data or even have system failures in 

practice. Thus, it is needed to carry out error checking and/or quality control on 

single loop outputs. Future research should be conducted to estimate speed under 

such situations to improve robustness. Since several algorithms regarding error 

checking and quality control of single loop data have been developed in the past, 

they can be combined into the research. 

• The dissertation work has focused on speed estimation on freeway sections. 

Future research can be carried out to expand speed estimation to other facilities 

such as on-ramps that have single loop installed. 
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APPENDIX A 

NOTATIONS 

k  - Time step index 

N  - Traffic count  

dl  - Detection zone length 

vl  - Vehicle length 

L  - Effective vehicle length 

L  - Mean effective vehicle length 

g  - Estimator that equals to 1 over mean effective vehicle length 

O  - Occupancy 

s  - Average speed 

s  - Vehicle speed 

t  - Presence time 

ont  - Instant of time the detector detects a vehicle 

offt  - Instant of time the vehicle exits the detector  

T  - Duration of time intervals 

2
sσ  - Speed variance 

tt  - Travel time 

D  - Distance 
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APPENDIX B 

ACRONYMS 

Table B.1 List of Acronyms 

Acronym Title 

AR Auto Regression 

ATIS Advance Traveler Information Systems 

ATMS Advanced Traffic Management Systems 

CORSIM Corridor Simulation 

DOT Department of Transportation 

EKF Extended Kalman Filter 

FHWA Federal Highway Administration 

FRESIM Freeway Simulation 

GPS Global Positioning System 

ILDs Inductive Loop Detectors 

ITS Intelligent Transportation Systems 

KF Kalman Filter 

LCD Liquid Crystal Display 

LOS Level of Service 

NEMA National Electrical Manufactures Association 

MAE Mean Absolute Error 

MEVL Mean Effective Vehicle Length 

MMSE Minimum Mean Square Error 
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Acronym Title 

MOE Measurement Of Effectiveness 

MOS-LSI Metal Oxide Semiconductor—Large Scale Integration 

MSE Mean Square Error 

NETSIM Network Simulation 

PF Particle Filter 

RMSE Root Mean Square Error 

RTMS Remote Traffic Microwave Sensor 

SIS Sequential Importance Sampling 

TMS Traffic Management System 

TRAFED Traffic Network Editor 

TRAFVU Traffic Visualization Utility 

TSC Traffic System Center 

TSIS Traffic Software Integrated System 

UKF Unscented Kalman Filter 

UPF Unscented Particle Filter 

UT Unscented Transformation 

SUT Scaled Unscented Transformation 

VID Video Image Detector 

VIP Video Image Processor 

WIM Weigh-in Motion 

 



 

APPENDIX C 

MICROSCOPIC TRAFFIC SIMULATION 

 

CORSIM INPUT FILE (.TRF FILE) 

 
12345678 1 2345678 2 2345678 3 2345678 4 2345678 5 2345678 6 2345678 7 234567    
                                       1  302007                           0   1 
       1   0   0   3     7981 0000  0              3   0        7781    7581   2 
36003600                                                                       3 
                  30                                                           4 
   0       0   0   0   0   0   0   0   0   0   0                               5 
   1   2 603         2     01           8002              20  18  60  0       11 
8001   1             2     01              2              20  18      0       11 
   1   2     100                                                              21 
8001   1     100                                                              21 
   1    8001                                                                  35 
   2       1                                                                  35 
   1 1                                                                        36 
   2 1                                                                        36 
   1   2   1    5000  1111   100  0                                           42 
8001   14000  10   0  100                                                     50 
8001   14000   04000  104000  204000  30                                   1  53 
   1   2 600   1   2                                                          55 
   1   2 900 300   2                                                          55 
   2  35         120                       0  20   0   0                 120  58 
   6  53         120                       0  36   0   0                 120  58 
   7  53         120                       0  24   0   0                 120  58 
   8  64         120                       0   9   0   0                 120  58 
   4  40         120                       0  11 100   0                2500  58 
          20                                                                  64 136   0                                                                         170 
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8002    1065     101                                                         195 
8001       0     101                                                         195 
   1     352      99                                                         195 
   2     955     101                                                         195 
   0   3                                                                     210 
8001   14000  10   0  100                                                     50 
   0                                                                         170 
   1   0   0                                                                 210 
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APPENDIX D 

CORSIM SIMULATION OUTPUTS 

Table D.1 CORSIM Outputs (Half-Hour) 

Time Speed  
(mph) 

Vehicle 
Count 

(veh/20s) 

on-time  
(s) 

Occupancy 
(%) 

0:00:20 56.8 11 4.9 24.5 
0:00:40 53.1 10 4.5 22.5 
0:01:00 57.6 11 4.3 21.5 
0:01:20 55.1 11 3.9 19.5 
0:01:40 58 12 3.6 18 
0:02:00 51.1 11 5.1 25.5 
0:02:20 59.7 12 3.6 18 
0:02:40 52.7 11 3.8 19 
0:03:00 51.1 10 4 20 
0:03:20 56 10 3.2 16 
0:03:40 54.4 11 5 25 
0:04:00 56.3 11 3.5 17.5 
0:04:20 49.5 11 4.9 24.5 
0:04:40 55.7 11 3.9 19.5 
0:05:00 56.8 11 4.3 21.5 
0:05:20 52.1 11 4.3 21.5 
0:05:40 54.1 12 3.9 19.5 
0:06:00 55 11 3.5 17.5 
0:06:20 52 12 4.1 20.5 
0:06:40 52 11 4.1 20.5 
0:07:00 52 11 3.8 19 
0:07:20 55.6 10 4.6 23 
0:07:40 53.6 11 4.2 21 
0:08:00 54.2 11 3.5 17.5 
0:08:20 58.6 12 4.2 21 
0:08:40 57.1 11 4.2 21 
0:09:00 56 11 3.6 18 
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Time Speed  
(mph) 

Vehicle 
Count 

(veh/20s) 

on-time  
(s) 

Occupancy 
(%) 

0:09:20 60.8 11 3.7 18.5 
0:09:40 50.5 12 4.5 22.5 
0:10:00 50 11 4.3 21.5 
0:10:20 57.5 11 3.9 19.5 
0:10:40 57.8 12 4 20 
0:11:00 54.9 11 3.5 17.5 
0:11:20 55.5 12 4.6 23 
0:11:40 54.4 11 3.7 18.5 
0:12:00 56.6 11 3.7 18.5 
0:12:20 56.9 12 4.5 22.5 
0:12:40 56.8 11 4 20 
0:13:00 58.6 11 3.8 19 
0:13:20 52.8 10 3.8 19 
0:13:40 53.2 12 4.2 21 
0:14:00 52.9 11 4.2 21 
0:14:20 55.3 11 3.5 17.5 
0:14:40 55.4 12 5.1 25.5 
0:15:00 55.4 11 3.6 18 
0:15:20 31.3 13 9.5 47.5 
0:15:40 19.1 15 15.6 78 
0:16:00 10.8 9 14.5 72.5 
0:16:20 14.9 11 14.3 71.5 
0:16:40 11.6 10 16.9 84.5 
0:17:00 12.5 7 14.3 71.5 
0:17:20 14.1 9 15.4 77 
0:17:40 9.1 7 15.5 77.5 
0:18:00 9 7 18.8 94 
0:18:20 8.8 8 18.3 91.5 
0:18:40 8.5 8 18.9 94.5 
0:19:00 13.4 10 14.7 73.5 
0:19:20 15.3 9 14.2 71 
0:19:40 13.8 11 13.3 66.5 
0:20:00 15.4 9 14.3 71.5 
0:20:20 15.8 9 12.4 62 
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Time Speed  
(mph) 

Vehicle 
Count 

(veh/20s) 

on-time  
(s) 

Occupancy 
(%) 

0:20:40 14.9 8 13.5 67.5 
0:21:00 13.1 11 15.3 76.5 
0:21:20 18.9 14 13.3 66.5 
0:21:40 21.6 16 14.2 71 
0:22:00 18.8 15 15.2 76 
0:22:20 18.2 12 13.1 65.5 
0:22:40 19.1 13 14.1 70.5 
0:23:00 16.4 8 10.9 54.5 
0:23:20 17.8 13 16.7 83.5 
0:23:40 14.4 7 12.3 61.5 
0:24:00 14.3 8 13.2 66 
0:24:20 14.3 7 13 65 
0:24:40 18.6 13 14.6 73 
0:25:00 18.5 15 14.6 73 
0:25:20 21 14 13 65 
0:25:40 17 13 14.3 71.5 
0:26:00 16.5 12 14.2 71 
0:26:20 20.6 14 14.2 71 
0:26:40 19.3 13 13.8 69 
0:27:00 15.5 8 13.4 67 
0:27:20 18 14 15.6 78 
0:27:40 18.2 12 13.9 69.5 
0:28:00 12.7 6 12.3 61.5 
0:28:20 13.8 11 14.2 71 
0:28:40 15.9 10 13.9 69.5 
0:29:00 16.7 13 15 75 
0:29:20 14.7 12 13.8 69 
0:29:40 17.2 13 14.3 71.5 
0:30:00 17 12 14.4 72 
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APPENDIX E 

MATLAB PROGRAMS 

OCCUPANCY PROGRAM 

20 Second of Polling Interval 

%This program compiles PVR data collected from Peek ADR-6000 detectors into a 
%polling interval of 20 seconds. The raw data were imported into Excel beforehand. 
%Outputs include occupancy, volume, speed, and vehicle length. 
 
clc; 
clear all; 
 
raw_data = xlsread('austin10274.xls');  
[n m] = size(raw_data); 
j=1; 
TI(j) = 1; 
total = 0; 
 
date = datevec(a(1,1)); 
hour(1) = date(1,4); 
minute(1) = date(1,5); 
second(1) = date(1,6); 
   
if second(1) < 21 
  key_ = 1; 
elseif second(1) < 41 
  key_ = 2; 
else 
  key_ = 3; 
end 
 
for k =2:n 
  date = datevec(raw_data(k,1)); 
  hour(k) = date(1,4); 
  minute(k) = date(1,5); 
  second(k) = date(1,6); 
 
  if second(k) < 21 
    key = 1; 
  elseif second(k) < 41 
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    key = 2; 
  else 
    key = 3; 
  end  
 
  if (hour(k)==hour(k-1)) & (minute(k) == minute(k-1))  
    if (key_ == key) 
      else 
        key_ = key; 
        j = j+1; 
        TI(j) = k;  
    end 
  else 
    key_ = key; 
    j = j+1; 
    TI(j) = k;  
  end 
 
end 
 
j = j+1; 
k = k+1; 
TI(j) = k;  
  
for kk = 2:j 
  nd(kk-1) = TI(kk) - TI(kk-1); 
  total = total + nd(kk-1);   
 %calculate the average vehicle length during time interval kk-1; convert unit from m to   
%feet) 
  length(kk-1) = 3.28084*sum(a(TI(kk-1):(TI(kk)-1),2))/nd(kk-1);   
 %calculate the average vehicle speed during time interval kk-1; convert unit from 
%m/sec to mph 
  speed(kk-1) = 2.237*sum(a(TI(kk-1):(TI(kk)-1),3))/nd(kk-1); 
%occupancy during time interval kk-1 
  occu(kk-1) =  sum(a(TI(kk-1):(TI(kk)-1),4))/(0.2); 
end 
  
output = [nd' occu' speed' length']; 
 
%export data into a .DAT file 
diary on 
diary autin10274.dat 
output 
diary off 
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30 Second of Polling Interval 

%This program compiles PVR data collected from Peek ADR-6000 detectors into a 
%polling interval of 30 seconds. The raw data were imported into Excel beforehand. 
 
clc; 
clear all; 
 
raw_data = xlsread('austin10274.xls');  
[n m] = size(raw_data); 
 
j=1; 
TI(j) = 1; 
total = 0; 
 
date = datevec(a(1,1)); 
hour(1) = date(1,4); 
minute(1) = date(1,5); 
second(1) = date(1,6); 
   
if second(1) < 31 
  key_ = 1; 
else 
  key_ = 2; 
end 
 
for k =2:n 
  date = datevec(raw_data(k,1)); 
  hour(k) = date(1,4); 
  minute(k) = date(1,5); 
  second(k) = date(1,6); 
 
  if second(k) < 31 
    key = 1; 
  else 
    key = 2; 
  end   
 
  if (hour(k)==hour(k-1)) & (minute(k) == minute(k-1))  
    if (key_ == key) 
      else 
        key_ = key; 
        j = j+1; 
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        TI(j) = k;  
    end 
  else 
    key_ = key; 
    j = j+1; 
    TI(j) = k;  
  end 
 
end 
 
j = j+1; 
k = k+1; 
TI(j) = k;  
  
for kk = 2:j 
  nd(kk-1) = TI(kk) - TI(kk-1); 
  total = total + nd(kk-1); 
%calculate the average vehicle length during time interval kk-1; convert unit from m to   
%feet) 
  length(kk-1) = 3.28084*sum(a(TI(kk-1):(TI(kk)-1),2))/nd(kk-1);   
 %calculate the average vehicle speed during time interval kk-1; convert unit from 
%m/sec to mph 
  speed(kk-1) = 2.237*sum(a(TI(kk-1):(TI(kk)-1),3))/nd(kk-1); 
%occupancy during time interval kk-1 
  occu(kk-1) =  sum(a(TI(kk-1):(TI(kk)-1),4))/(0.2); 
end 
  
output = [nd' occu' speed' length']; 
 
%export data into a .DAT file 
diary on 
diary autin102742.dat 
output 
diary off 
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EXTENDED KALMAN FILTER 

%This program is used for speed estimation using the EKF algorithm. 
 
clc; 
clear all; 
  
load data.dat; %load the .DAT file 
Data_loop = data; 
  
Si=size(Data_loop);   
Ddim1=Si(1,1);    
Ddim2=Si(1,2);   
  
Ndim=2;  % the dimension of state  
Length_bar(1) = 30/5280;  % average vehicle length  
  
T = 30/3600; % duration of polling interval 
  
x(1)=65;; % initial speed  
x_hat(1)= x(1); 
x(2)=65; 
G=[1.91,-.91;1,0]; 
K=[0,0;0,0]; 
  
Varq(1)=5; 
Q=[Varq(1),0;0,Varq(1)];  % process noise  
  
Varr(1)=0.05; 
R=[Varr(1),0;0,Varr(1)];  % observation noise 
  
P_pri=[0,0;0,0]; 
P_post=P_pri(1); 
  
z(1)=0; 
z_a(1)=0; 
      
count=Data_loop(1,1); 
occu=Data_loop(1,2)/100; 
 z(2)=occu/count; 
Length_bar(2)=Length_bar(1); 
  
Varq(2)=Varq(1); 
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Varr(2)=Varr(1); 
Q=[Varq(2),0;0,Varq(2)]; 
R=[Varr(2),0;0,Varr(2)]; 
  
H_m=[-(Length_bar(2)/T)*(x_hat(1).^2+3*Varq(2).^2)/x_hat(1).^4,0;0,0]; 
  
P_pri=G*P_post*G'+Q; 
K= P_pri*H_m'*inv(H_m*P_pri*H_m'+R); 
P_post=P_pri-K*H_m*P_pri; 
  
z_a(2)=z(2)-(Length_bar(1)/T)*(x_hat(1).^2+Varq(1).^2)/x_hat(1).^3-
((Length_bar(1)/T)*(x_hat(1).^2+3*Varq(1).^2)/x_hat(1).^4)*x_hat(1); 
 
x(2)= x_hat(1)+K(1,1)*(z_a(2)-H_m(1,1)*G(1,1)*x_hat(1)); 
Z_m=[z_a(2),z_a(1)]'; 
  
x_hat(2)= x(2); 
 
l(1)=1; 
l(2)=2; 
i=2; 
for j=2:Ddim1   
    count=Data_loop(j-1,1); 
    occu=Data_loop(j-1,2)/100; 
    Length_bar(j) = 30/5280; 
    if count == 0  
    else 

      i= i +1; 
      l(i)=i; 
     z(i)=occu/count; 
     
     X_ss=[x_hat(i-1),x_hat(i-2)]'; 
     x_hat(i)=0; 
     

z_a(i)=z(i)-(Length_bar(i-1)/T)*(x_hat(i-1).^2+Varq(i-1).^2)/x_hat(i-1).^3-
((Length_bar(i-1)/T)*(x_hat(i-1).^2+3*Varq(i-1).^2)/x_hat(i-1).^4)*x_hat(i-1); 

 
     X_s=[x_hat(i),x_hat(i-1)]'; 
     Z_m=[z_a(i),z_a(i-1)]'; 
     Z_mm=[z(i),z(i-1)]'; 
     
     Varq(i)=Varq(i-1); 
     Varr(i)=Varr(i-1); 
     Q=[Varq(i),0;0,Varq(i)]; 
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     R=[Varr(i),0;0,Varr(i)]; 
     

 H_p=[(Length_bar(i-1)/T)*(x_hat(i-1).^2+Varq(i-1).^2)/x_hat(i-1).^3,(Length_bar(i-
2)/T)*(x_hat(i-2).^2+Varq(i-2).^2)/x_hat(i-2).^3]'; 

 
     H_m=[-(Length_bar(i-1)/T)*(x_hat(i-1).^2+3*Varq(i-1).^2)/x_hat(i-1).^4,0;0,-
(Length_bar(i-2)/T)*(x_hat(i-2).^2+3*Varq(i-2).^2)/x_hat(i-2).^4]; 
  
     %time update 
     X_s=G*X_ss; 
     P_pri=G*P_post*G'+Q; 
     
     %Measurement update 
     K= P_pri*H_m'*inv(H_m*P_pri*H_m'+R); 
     P_post=P_pri-K*H_m*P_pri; 
  
     z_m=Z_mm - H_p + H_m*X_ss; 
     
     X_a=K*(Z_m - H_m*G*X_s); 
     X_aa=[X_a(1,1),0]'; 
     X_s=X_s+X_aa; 
     
     x_hat(i)=X_s(1,1); 
     z_a(i)=Z_m(1,1); 

 end 
end  
  
xh_fil = (x_hat(1,2:(j+1)))'; 
xh_actu = Data_loop(:,3); 
plot(1:j,xh_fil,1:j,xh_actu) 
axis([1 j 0 90 ]) ; 
xlabel('Time Interval') 
ylabel('Speed (mph)') 
 
for i=1:j 
  error(i) = xh_fil(i)-xh_actu(i);     
end 
MAE = mean(abs(error)) 
 
RMSE(1) = sqrt(mean((xh_fil(1:j,1)-xh_actu(1:j,1)).^2)); 
fprintf('%d:%d  Root-mean-square-error (RMSE) of estimate : %4.3f\n', 1, 1, rmse(1)); 
     
var_RMSE = var((xh_fil(1:j,1)-xh_actu(1:j,1))); 
fprintf('%d:%d  Variance of estimate errors: %4.3f\n', 1, 1, var_RMSE); 
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UNSCENTED KALMAN FILTER 

%This program is used for speed estimation using the UKF algorithm. 
 
clc; 
clear all; 
  
load data.dat; %load the .DAT file 
Data_loop = data; 
  
Si=size(Data_loop);       
Ddim1=Si(1,1);                                 
Ddim2=Si(1,2);                                  
  
T = 30/3600; 
var_sp = 5; 
  
j=0;          
                               
for i=1:Ddim1 
    count_r = Data_loop(i,1); 
    occu_r = Data_loop(i,2); 
    if (count_r~=0) & (occu_r~=0) 
        j = j + 1; 
        count(j) = count_r; 
        occu(j) = occu_r/100; 
        veh_l(j) = 30/5280;  
        Y(j) = occu(j)/count(j);                        
    end 
end 
 
Xdim = 1;    %state dimension 
Odim = 1;    %observation dimension 
U1dim = 0;   %state input dimension 
U2dim = 0;   %observation input dimension 
Vdim = 1;    %state noise dimension 
Ndim = 1;    %observation noise dimension 
  
mean_RMSE = zeros(1,1);  % buffer for MC results for each algorithm 
var_RMSE  = zeros(1,1);   
 
N = j;       % number of observed data 
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alpha = 1;   % scale factor (UKF parameter) 
beta  = 2;   % optimal setting for Gaussian priors (UKF parameter) 
kappa = 0;   % optimal for state dimension=2 (UKF parameter) 
  
  
xh = zeros(1,N);    % state estimation buffer 
xh(1,1) = 60;       % initial estimate of state E[X(0)] 
Px = 0.5;           % initial state covariance 
  
xh_  = zeros(1,N);                      
yh_  = zeros(1,N); 
inov = zeros(1,N); 
  
L = Xdim + Vdim + Ndim;        % augmented state dimension 
nsp = 2*L+1;                   % number of sigma-points 
kappa = alpha^2*(L+kappa)-L;   % compound scaling parameter 
  
W = [kappa 0.5 0]/(L+kappa);   % sigma-point weights 
W(3) = W(1) + (1-alpha^2) + beta; 
  
Sqrt_L_plus_kappa = sqrt(L+kappa); 
  
Zeros_Xdim_X_Vdim     = zeros(1,1); 
Zeros_Vdim_X_Xdim     = zeros(1,1); 
Zeros_XdimVdim_X_Ndim = zeros(2,1); 
Zeros_Ndim_X_XdimVdim = zeros(1,2); 
  
for i=2:(N+1) 
    if (U1dim==0), UU1=zeros(0,nsp); end 
    if (U2dim==0), UU2=zeros(0,nsp); end 
     
    % TIME UPDATE 
    if i==2  
      Z    = cvecrep([xh(1,i-1); 0; 0], nsp);   
    else 
      Z    = cvecrep([(xh(1,i-1)+xh(1,i-2))/2; 0; 0], nsp); 
    end 
     
    if Px==0 
        Sx = 0; 
    else 
      Sx = chol(Px);  %sqrt of state error covariance    
    end 
     

 



 150

    if var_sp==0 
        Sv = 0; 
    else 
      Sv = chol(var_sp);   %sqrt of state noise covariance  
    end 
     
    if var_Y(i-1)==0 
        Sn = 0; 
    else 
      Sn = chol(var_Y(i-1));  %sqrt of observation noise covariance     
    end 
     
    SzT  = [Sx Zeros_Xdim_X_Vdim; Zeros_Vdim_X_Xdim Sv]; 
    Sz   = [SzT Zeros_XdimVdim_X_Ndim; Zeros_Ndim_X_XdimVdim Sn]; 
    sSz  = Sqrt_L_plus_kappa * Sz; 
    sSzM = [sSz -sSz]; 
    Z(:,2:nsp) = Z(:,2:nsp) + sSzM;  % build the sigma-point set 
     
    %-- Calculate predicted state mean 
    X_ = Z(1,:) +Z(2,:);  %get predicted state 
    X_bps = X_; 
    xh_(:,i) = W(1)*X_(:,1) + W(2)*sum(X_(:,2:nsp),2); 
      
    noise(i-1) = var_sp; 
    temp1 = X_ - cvecrep(xh_(:,i),nsp); 
      
     Px_ = W(3)*temp1(:,1)*temp1(:,1)' + W(2)*temp1(:,2:nsp)*temp1(:,2:nsp)'; %priori 
state error covariance 
      
     for k=1:nsp 
       Y_(1,k) = (var_sp.^2+X_bps(1,k)^2).*veh_l(i-1)/(T*X_bps(1,k)^3)+Z(3,k);    % 
propagate through observation model 
     End 
 
     %-- Calculate predicted observation mean 
     yh_(:,i) = W(1)*Y_(:,1) + W(2)*sum(Y_(:,2:nsp),2); 
     temp2 = Y_ - cvecrep(yh_(:,i),nsp); 
      
     Py  = W(3)*temp2(:,1)*temp2(:,1)' + W(2)*temp2(:,2:nsp)*temp2(:,2:nsp)'; 
      
     % MEASUREMENT UPDATE 
     Pxy = W(3)*temp1(:,1)*temp2(:,1)' + W(2)*temp1(:,2:nsp)*temp2(:,2:nsp)'; 
     KG(i) = Pxy / (Py); 
     inov(:,i) = Y(:,i-1) - yh_(:,i);  
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     xh(:,i) = xh_(:,i) + KG(i)*inov(:,i); 
     Px = Px_ - KG(i)*Py*KG(i)'; 
end 
  
xh_fil = xh(1,2:(j+1))'; 
xh_actu = Data_loop(:,3); 
plot(1:j,xh_actu,1:j,xh_fil) 
axis([1 j 0 90 ]) ; 
xlabel('Time Interval') 
ylabel('Speed (mph)') 
  
for i=1:j 
    error(i) = xh_fil(i)-xh_actu(i);     
end 
MAE = mean(abs(error)) 
  
RMSE(1) = sqrt(mean((xh_fil(1:j,1)-xh_actu(1:j,1)).^2)); 
fprintf('%d:%d  Root-mean-square-error (RMSE) of estimate : %4.3f\n', 1, 1, rmse(1)); 
  
var_RMSE = var((xh_fil(1:j,1)-xh_actu(1:j,1))); 
fprintf('%d:%d  Variance of estimate errors: %4.3f\n', 1, 1, var_RMSE); 
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UNSCENTED PARTICLE FILTER 

%This program is used for speed estimation using the UPF algorithm. 
 
clc; 
clear all; 
  
load data.dat;% 
Data_loop = data; 
  
Si=size(Data_loop);   
Ddim1=Si(1,1);  
Ddim2=Si(1,2);    
  
T = 30/3600;   
var_sp = 5; 
j=0;                
                            
for i=1:Ddim1 
    count_r = Data_loop(i,1); 
    occu_r = Data_loop(i,2); 
    if (count_r~=0) & (occu_r~=0) 
        j = j + 1; 
        count(j) = count_r; 
        occu(j) = occu_r/100; 
        veh_l(j) = 30/5280;  
        Y(j) = occu(j)/count(j);    
    end 
end 
  
Xdim = 1;               
Odim = 1;                                  
U1dim = 0;                                 
U2dim = 0;                             
Vdim = 1;                             
Ndim = 1;          
  
mean_RMSE = zeros(1,1);                     
var_RMSE  = zeros(1,1);                  
 
NOV = j;                                   
 
N=100;                                     %number of particles 
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alpha = 1;          % scale factor (UKF parameter) 
beta  = 2;            % optimal setting for Gaussian priors (UKF parameter) 
kappa = 0;           % optimal for state dimension=2 (UKF parameter) 
  
  
xh(1,1) =60 ;         
x_temp2 = ones(1,N)*60;      %"x  = ParticleFilterDS.particles; " 
Px = .5;                                   %initial state noise covariance 
Sx = ones(1,N)*Px;                %"Sx = ParticleFilterDS.particlesCov; " 
  
weights = cvecrep(1/N,N);      % Initial particle weights = 1/N        
normWeights = cvecrep(1/N,N); 
estimate   = zeros(Xdim,NOV); 
SxPred  = zeros(Xdim,Xdim,N);      
xNew    = zeros(Xdim,N); 
xPred   = zeros(Xdim,N); 
  
ones_numP = ones(N,1); 
ones_Xdim = ones(1,Xdim); 
  
proposal = zeros(1,N); 
  
normfact = (2*pi)^(Xdim/2);               %sqrt of 2*pi     
  
for i=2:NOV+1, 
    OBStemp = Y(i-1);                % inline cvecrep, the first obs value 
    OBS = OBStemp(:,ones_numP); 
     
    randBuf = randn(Xdim,N)/5; 
     

for k=1:N, 
%Start of UKF 
%Obtain the proposal distribution (xh(:,k)) from the UKF. 

      %End of UKF 
         xNew(:,k) = xh(:,k); 
       SxPred(:,:,k) = Px; 
       xPred(:,k) = xNew(:,k) + SxPred(:,:,k)*randBuf(:,k); 
    end 
         
 

%Start of prior 
 if i==2  

         x_temp    = xh(1,i-1);     
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     else 
         x_temp    = (xh(1,i-1)+xh(1,i-2))/2; 
     end    
     x_temp2 = ones(1,N)*x_temp; 
      
     x_noise = xPred - x_temp2; 
      
     prior = x_noise.^(alpha-1).*exp(x_noise*(-1/beta)) + 1e-99; 
    %End of prior 
     
    %Start of likelihood 
    for ii=1:N, 
      Y_temp(1,ii) = (var_sp.^2+xPred(1,ii).^2).*veh_l(i-1)/(T*xPred(1,ii).^3); 

End 
 

    Y_noise = OBS - Y_temp; 
    likelihood = zeros(1, N);      % preallocate likelihood matrix 
     foo = Sn.^2 ./ Y_noise; 
     likelihood = exp(-0.5./sum(foo.*foo, 1))./(normfact*abs(prod(diag(Sn.^2)))); 
    %End of likelihood 
     
    difX = xPred - xNew; 
    for k=1:N, 
        cholFact = SxPred(:,:,k); 
        foo2 = cholFact \ difX(:,k); 
        proposal(k) = exp(-0.5*foo2'*foo2) / abs(normfact*prod(diag(cholFact))) + 1e-99; 
        weights(k) = weights(k) * likelihood(k) * prior(k) / proposal(k); 
    end 
     
    if sum(weights)<1e-10 
        weights = cvecrep(1/N,N);  
    else 
        weights = weights / sum(weights); 
    end 
     
    %calculate estimate 
    muFoo = sum(weights(ones_Xdim,:).*xPred,2); 
    estimate(:,i) = muFoo;          % expected mean 
     
    %Resample 
     S = 1/sum(weights.^2);     % calculate effective particle set size 
     if (S < N)                   % resample if S is below threshold 
        outIndex  = residualresample(1:N,weights); 
        x_temp2 = xPred(:,outIndex); 
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        for k=1:N, 
            Sx(:,:,k) = SxPred(:,:,outIndex(k)); 
        end 
        weights = normWeights; 
    else 
        x_temp2  = xPred; 
        Sx = SxPred; 
    end     
  
    xh(:,i) = estimate(:,i); 
    Px = Sx(1); 
     
end 
  
xh_fil = estimate(1,2:(j+1))'; 
xh_actu = Data_loop(:,3); 
plot(1:j,xh_actu,1:j,xh_fil) 
axis([1 j 0 90 ]) ; 
xlabel('Time Interval') 
ylabel('Speed (mph)') 
     
for i=1:j 
    error(i) = xh_fil(i)-xh_actu(i);     
end 
MAE = mean(abs(error)) 
 
RMSE(1) = sqrt(mean((xh_fil(1:j,1)-xh_actu(1:j,1)).^2)); 
fprintf('%d:%d  Root-mean-square-error (RMSE) of estimate : %4.3f\n', 1, 1, rmse(1)); 
  
var_RMSE = var((xh_fil(1:j,1)-xh_actu(1:j,1))); 
fprintf('%d:%d  Variance of estimate errors: %4.3f\n', 1, 1, var_RMSE); 
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