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Abstract: This study considers the problem of using
approximate way for realizing the neural supervisor for
nonlinear multivariable systems. The Nonlinear
Autoregressive-Moving Average (NARMA) model is an
exact transformation of the input-output behavior of
finite-dimensional nonlinear discrete time dynamical
organization in a hoodlum of the equilibrium state.
However, it is not convenient for intention of adaptive
control using neural networks due to its nonlinear
dependence on the control input. Hence, quite often,
approximate technique are used for realizing the neural
supervisor to overcome computational complexity. In this
study, we introduce two classes of ideal which are
approximations to the NARMA model and which are
linear in the control input, namely NARMA-L1 and
NARMA-L2. The latter fact substantially simplifies both
the theoretical breakdown as well as the practical request
of the controller. Extensive imitation studies have shown
that the neural controller designed using the proposed
approximate models perform very well and in dozens
situation even better than an approximate controller
designed using the exact NARMA Model. In view of their
mathematical tractability as well as their fate in
simulation studies, a matter is made in this study that such
approximate input-output paragon warrants a detailed
study in their own right.

INTRODUCTION

The neural network shape tins be used in control
strategies that require a global configuration of the
schemes forward or inverse dynamics and these ideal are
available in the paradigm of neural networks which have
been trained using neural based system identification
techniques. Papers by Ramezani and Motlagh™ and
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Nguyen et al. are some of those that can be referred to
as the submissiveness of neural networks for system
identification. The generalized education method attempts
to produce the inverse of a fortification over the entire
state space using off-line workout while in the specialized
layout the workout is on-line and uses erroneousness back
dissemination through the workshop to learn the plant
inverse dynamics over a small operating region. By
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Suman and Bhatt®® their paper is concerned with the
design of a loanblend supervisor structure consisting of
the adaptive mastery regulation and neural network based
education scheme for versions of time changing controller
parameters. The global firmness of the closed-loop
critique design is guaranteed provided the arrangement of
the robot-manipulator movement model is exact.
Generalization of the controller over the desired path
hiatus has been established using an on-line compression
learning scheme. The probability of a neuron-adaptive
loanblend control scheme is the high precision and better
precision and computationally less intensive control
scheme. Also for Self-Tuning Control (STC)¥!, used
back-propagation trained neural network within a
self-tuning sovereignty intrigue to sovereignty
Single-Input Single-Output (SI1SO) response
linearizable system. Another approach is given by
Sharmal® where a neural network is used to wind the
parameters of a conventional supervisor in an on-line
way.

The remarkable learning resources of neural networks
is leading to their application in spotting and adaptive
control of dynamical systems. A neural network is
basically composed of many neurons and interconnections
with a particular architecture. Neural networks with
relatively complex architectures tend to be more powerful
in learning functional mapping but are more difficult to
train. The reality that a Multilayer Forward Network
(MFN) is widely used is due to the chasing two reasons:
it can easily be trained by the generalized delta rule; it
able to learn any role with arbitrary desired
precision’®®,

Even though the NARMA patterns consequences in
better discovery of the unknown plant, the NARMA-L1
and NARMA-L2 replica may actually backwash in better
control. In this paper the identification and control of
unknown non-linear dynamic system using NARMA-L2
model is investigated™®,

MATERIALS AND METHODS

Adaptive control using NARAM-L2 model: Here, the
aim is controlling an unknown nonlinear system which is
based on its input and output data, so that, the system
follows desired signal (k). Now, given the object of
matching (k) with (k), if we substitute the (k) with (k) in
the above approximation equations and solve the resulting
equation in terms of u(k), the actual capability of the
actuality system can be matched to its optimal value, so
the control objective is obtained:

y(k+d) =T, [y(k).y(k-1), .. y(k=n+1) ]+

LR e
If:
y(k+d)=y, (k+d) 2)

|

e |
—JE = 4 4 y*(K)
i ¢
System A

i Controller u(k)
Fig. 1: Block diagram of adaptive control system for
NARMA-L2 model

Controller

Fig. 2: Algebraic controller

Then:

_ [y(k) ..... y(k-n+1), H

Yk =Tl k). u(kon+1)

u(k)= [y(k) ..... y(k-n+1),u(k-D)..., ]

3

u(k—n+1)

As you can see from Fig. 1 and 2, the supervisor is
classic and only performs simple algebra actions based on
the neural network signals and does not require a separate
neural network for mastery action.

RESULTS AND DISCUSSION

Inthis section, algorithm design for identification and
adaptive control based on NARMA-L2 shape testament
be described. MATLAB imitation along with different
model of nonlinear method are also provided™!.

Algorithm design for identification: The following steps
are considered for identification process:

e Choose the initial stipulation for wi,j and bi, the
number of capacity and output sampling, tally of
network neurons, activation functions, network
learning rates, the quantity of epochs or cycles

e For each input, the exponent of the network is
obtained by the sum of cycles
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Fig. 4: (a) Plant input (b), Plant output, (c) Network output and (d) Error

In each cycle, the discovery inaccuracies (y-y*) is
obtained which is equal to the output of the system
minus the ability of the network)

Setting network parameters with respect to the
spotting error

The neural network used for spotting incentive is
shown in Fig. 3. This neural network uses the tanh
activation capacity for the first and second layers and the
linear activation function for the third layer.

MATLAB simulation: In this sub-section, MATLAB
simulation for the identification process is described. The
mathematics of neurons in the first rank of the neural
network, the second layer, the tally of sampling from the
system strength and the tally of sampling from the outline
output are assigned as follows:

S1 = 20; % number of neuron 1%

S2 =10; % number of neuron 2%

dy = 2; % number of delay plant output%
du = 3; % number of delay plant input%
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Identification examples: Two examples have been
considered here to show the identification process using
NARMA-L2 model.

Example 1: Identification of a first-degree plant that is
characterized by the following equation:

y(K+1)=sin[y(K)]+u(K)#(75+cos[ (y(K) =u(K))]) (4)

The experimental results are obtained for different
inputs, different training rates and different epochs.
Figure 4a shows the first input using the following

formula:
u=0.75% sin[%) +sin (%J
60 120

The output of system based on Eq. 4 and 5 is shown
in Fig. 4b with the network output and error output shown
in Fig. 4c and d, respectively™*,

®)
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Fig. 6: (a) Plant input, (b) Plant output, (c) Network output and (d) Error

Figure 5a shows the second input for first example
using step function. The output of system based on step
function as input and Eg. 4 is shown in Fig. 5b. In
addition, the identification network output results along
with identification errors are shown in Fig. 5¢c and d. As
it can be seen, the identification operation is carried out
with high precision.

Example 2: Identification of a second-order plant that is
characterized by the following equation:

u(k)+x,(k

X, (k+1)=0.25*x, (k) +2.5
1 (k+?) () 0.5+ (u(k)+x,

k)’

X, (k+1)=0.25*x, (k) +u(k)

u* (k) O
[2'5+ 0.5+x2 (K)+x3 (k)J
y(K)=x, (k) +x, (k) 8

The plant input is shown in Fig. 6a and the plant
output of system based on Eqg. 6 and 8 is shown in Fig. 6b.
The network output identification results for different
epochs and learning rates along with identification errors
are shown in Fig. 6¢ and d. As you can see from the
results, for higher learning rates and similar epoch, the
network at a higher rate performs better identification.
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Fig. 7: (a) Plant input, (b) Plant output, (c) Network output and (d) Error

The plant input is shown in Fig. 7a and the plant
output of system based on step function as input and
Eg. 8 is shown in Fig. 7b. In addition, the network output
identification results along with identification errors are
shown in Fig. 7c and d. As it can be seen, the
identification operation is carried out with high
precision.

Algorithm design for adaptive control: The
following steps are considered for adaptive control
process:

Choose the initial conditions for wi,j and bi, the
number of input and output sampling, number of network
neurons, activation functions, network learning rates,
the number of epochs or cycles. For each reference
input, the system input is obtained by the number of

cycles:
—(y(K),y(k=n+1),
{y, (k+d)_f°[u(k—1) ..... u(k-n +1)H

go[y(k),...,y(k—n +1),

u(k-1) u(k—n+l)]

In each cycle, the identification error (y-y*) is
obtained which is equal to the output of the system minus
the output of the network). Setting network parameters
with respect to the identification error.

u(k) = )

MATLAB simulation: In this sub-section, MATLAB
simulation for the adaptive control process is described.
First, the input of the reference is selected and the initial
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values of the input, the output of the system, are selected
as zero. The number of neurons in the first layer of
the neural network, the second layer, the number of
sampling from the system input and the number of
sampling from the system output are assigned as
follows:

e S1=20; % number of neuron 1%

S2 =10; % number of neuron 2%

dy = 2; % number of delay plant output%
du = 3; % number of delay plant input%

Adaptive control examples: Two examples have been
considered here to show the adaptive control process
using NARMA-L2 model.

Example 1: Adaptive control of a first-degree
plant that is characterized by the following
equation:
y(k+1)=sin|y(k)|+u(k)*
[y(k)] (10)

(2.5+cos[ y(k)*u(k)])

The experimental results are obtained for plant
reference, plant input, plant output and error is shown in
Fig. 8a-d, respectively.

Figure 9a-c shows the second reference, the plant
input and the plant output for first example using
sinusoids functions respectively. In addition, the adaptive
control system’s errors are shown in Fig. 9d. As it can be
seen, the adaptive control operation is carried out with
high precision.
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Fig. 8: (a) Reference, (b) Plant input, (c) Plant output and (d) Error
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Fig. 9: (a) Reference, (b) Plant input, (c) Plant output and (d) Error

Example 2: Adaptive control of a second-order

plant that is characterized by the following
equation:
X, (k+1)=0.1%x, (k +2M
B T N
X, (K+1)=0.1%x, (k) +u(k)
[2+“2(k)] (12)
1+x2 (k) +x3 (k)
y(K)=x, (k) +x, (k) (13)

135

The experimental results are obtained for plant
reference, plant input, plant output and error is shown in
Fig. 10a-d, respectively. As it can be seen from the
results, the system with higher epoch’s results in better
tracking of desired output and adaptive control of
non-linear system.

Figure 11a-c shows the second reference, the plant
input and the plant output for first example using
sinusoids functions, respectively. In addition, the
adaptive control system’s errors are shown in
Fig. 10d. As it can be seen, the adaptive
control  operation is carried out with high
precision.
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CONCLUSION

From the above discussion, we conclude that by
approximating the exact configuration of NARMA for
each nonlinear system, we tin sweeps to the approximate
pattern of NARMA-L1, NARMA-L2. This approximate
exemplar with respect to the actual configuration is not
only highly accurate for identification purpose but also
make the supervisor a commoner classical controller and
no longer obligation a separate neural network for
supervisor with its own problems (weight adjustment
problems)™!,

Therefore, the adaptive control arrangement has been
simplified while the precision is stayed very high and
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therefore these approximate ideal is usually used in the
adaptive dominion of nonlinear systems. Perhaps of
greatest extent for the utility of neural networks in the
mastery of nonlinear dynamical systems is the reality that
the NARMA-L1 and NARMA-L2 replica are more
tractable analytically than the NARMA model. If the
stability, controllability and observability as well as the
null activity of dynamical procedure tins be studied for
the castes of organization represented by these
approximate models, the consequence can be extended to
NARMA ideal using robustness arguments. It is believed
that this approach may provide a crankshaft for grappling
the stable adaptive dominion problem of nonlinear
plants.
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