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Abstract— Crack detection is of great significance for mon-
itoring the integrity and well-being of the infrastructure such
as bridges and underground pipelines, which are harsh envi-
ronments for people to access. In recent years, computer vision
techniques have been applied in detecting cracks in concrete
structures. However, they suffer from variances in light condi-
tions and shadows, lacking robustness and resulting in many
false positives. To address the uncertainty in vision, human
inspectors actively touch the surface of the structures, guided
by vision, which has not been explored in autonomous crack
detection. In this paper, we propose a novel approach to detect
and reconstruct cracks in concrete structures using vision-
guided active tactile perception. Given an RGB-D image of a
structure, the rough profile of the crack in the structure surface
will first be segmented with a fine-tuned Deep Convolutional
Neural Networks, and a set of contact points are generated to
guide the collection of tactile images by a camera-based optical
tactile sensor. When contacts are made, a pixel-wise mask of
the crack can be obtained from the tactile images and therefore
the profile of the crack can be refined by aligning the RGB-D
image and the tactile images. Extensive experiment results have
shown that the proposed method improves the effectiveness and
robustness of crack detection and reconstruction significantly,
compared to crack detection with vision only, and has the
potential to enable robots to help humans with the inspection
and repair of the concrete infrastructure.

I. INTRODUCTION

Cracks in the infrastructures surface are important indi-
cators for assessing the condition of buildings and need to
be repaired timely for preventing the expansion of potential
risks. However, manual crack detection and maintenance are
not only time-consuming and expensive, but also pose health
risks to human workers in harsh and complex environments
such as dams and underground pipelines. Hence, develop-
ment of an effective and robust crack detection system will
be significant for the substitution of inspection workers and
the development of smart cities [1].

During the past two decades, the problem of crack detec-
tion attracts wide attention from researchers and has been
widely explored and developed [2]. However, most of the
previous works address this task based on only one single
modality such as acoustic data [3] [4], laser-scanned image
[5], optical fiber signal [6], and RGB images [7]. In this
case, those methods using the high-precision modality such
as acoustic data cannot perceive objects quickly due to the
limitation of the small receptive field. Moreover, they could
not correct the detection results with additional information
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if a crack is not detected or a noisy pattern is falsely detected
as a crack.

When humans intend to perceive objects, they gather
information and draw a solid conclusion with their eyes,
ears and hands together. In crack detection tasks, skilled
inspectors usually first look at the surface to find areas with
similar color or shape characteristics to cracks, and then use
their fingers or specific tools such as a hammer or ultrasonic
device to further inspect those areas instead of traversing all
regions. In this way, they can fully utilize the properties of
different modalities including the efficiency of visual sense
with a large receptive field and the accurateness of tactile
sense or acoustic sense.

Inspired by those observations, we propose a novel vision-
guided active tactile perception approach for crack detection
and reconstruction in this paper. This method integrates vi-
sual and tactile senses so that they aid each other and improve
the perception on cracks. On the one hand, visual sense with
a large receptive field can achieve a quick search for finding
the candidate regions containing cracks, which can reduce
the area of tactile perception and improve its effectiveness.
On the other hand, tactile sense can enhance the robustness
of crack detection thanks to the characteristics of being less
susceptible to light and noise, and can reconstruct the crack
shape precisely with high-resolution tactile images obtained
by a camera based optical tactile sensor.

To evaluate our proposed method, we collected a visual
dataset and a tactile dataset with 10 mock-up structures
that were manufactured using 3D printing. Half of those
objects only contain real cracks, and the rest contain both real
cracks and fake cracks that are paintings on the surface. The
extensive experiment results demonstrate that our approach
is capable of distinguishing real cracks from fake cracks,
and reconstructing the crack shape quickly and accurately.
Compared to the visual method, our approach achieves a
significant reduction of mean distance error from 0.82mm to
0.24mm. Furthermore, the proposed method is more than 10
times faster than passive tactile perception in terms of tactile
data collection time.

Our contributions can be summarised as follows:
• A novel vision-guided active tactile perception frame-

work is proposed, for the first time, for crack detection
and reconstruction;

• A touch point generation method is designed for the
vision-guided active tactile perception;

• A tactile crack perception method is developed that
can suppress the false positives of visual detection and
reconstruct the crack with a millimeter-level resolution.



II. RELATED WORKS

A. Vision-Based Crack Detection

Recently the study of image-based crack detection has
drawn increasing attention from researchers in the fields of
both Computer Vision and Civil Engineering. Early vision-
based cracks detection methods mainly rely on conventional
image processing methods such as edge detection [8] [9]
and thresholding [10] [11]. However, those methods are
susceptible to light changes and scanning noises due to the
subjective parameter selections for pre-processing and edge
detection. Moreover, there are also works using conventional
machine learning approaches such as Support Vector Ma-
chine [12] [13], Ada-Boost [14] and Naïve Bayes classifier
[15]. Nonetheless, the features used in these traditional ma-
chine learning methods such as LBP, wavelet and histogram
can only represent one or two layers of abstraction, which are
unable to capture features of cracks in surfaces with complex
backgrounds.

In the recent years, works using deep neural networks
for crack detection have emerged [16], [17]. Based on
the fineness of detection results, those deep learning-based
methods can be summarised as two types of approaches:
box-level detection and pixel-wise detection. Typical box-
level crack detection approaches firstly generate a set of
rectangular frames to locate the cracks using patch scanning
[16] or region-based CNN networks [7] and then filter
out false positives with a Naïve Bayes classifier [16] or a
Bayesian integration algorithm [7]. However, the rectangle
shape results are not precise and are limited with regard
to complex crack distribution and irregular infrastructure
surface. The more recent development in deep learning-based
defects perception is pixel-wise crack detection. In [18],
a novel encoder-decoder network is proposed, which uses
hierarchical convolutional feature learning to separate the
cracks from background. In [19], a deep generative adversar-
ial network is proposed for pavement crack detection, which
is trained end-to-end with a crack-patch-only supervised
method to overcome the local minimum problem.

B. Active Tactile Perception

Tactile sensing plays an important role in robot perception
and has been applied to a number of different tasks such as
object recognition [20], material property analysis [21], and
shape exploration [22]. Most early studies related to tactile
perception are based on passive data acquisition processes
and are considered simply as a forward process [21], [23].
Nonetheless, humans usually plan their actions with a goal
and actively refine their sensations (especially the tactile
sensation) rather than passively gather information. Inspired
by this, there has been growing interest in active tactile
perception [24], [25]. In [26], an active tactile perception
method using pre-specified control laws was proposed for
clothing material recognition.

However, there has been no works on crack detection
with active tactile perception yet. In [6], tactile sensing
was explored for crack detection and characterization, but

in this work tactile data was collected passively and the
position of the crack cannot be localized accurately. Our
proposed vision-guided active tactile perception is the first
work that incorporates visual information into active tactile
perception for crack detection and reconstruction. It can
actively perceive the crack region with the guidance of
vision, and reconstruct crack shape precisely with a high-
resolution camera-based tactile sensor.

III. METHODOLOGY

In this work, we propose a vision-guided active tactile
perception framework that can detect and reconstruct cracks
efficiently and precisely, with an overview of the framework
illustrated in Fig. 1. Given a single RGB-D image of cracks
in a structure, our method first uses the color image as
input to a deep convolutional network to predict a mask
of the cracks. Then the predicted mask and the depth
image are used to generate a set of contact points, which
directs the collection of the tactile images with a camera-
based tactile sensor. Another deep convolutional network is
applied to predict the masks of cracks in the collected tactile
images that are used to refine the visual detection result and
reconstruct an accurate cracks profile.

A. Visual Guidance for Touch

A deep semantic segmentation network is first utilized
to predict pixel-wise masks of cracks. To guide the touch
sensing, the contact points with cracks skeletons are then
generated. Details of these two steps are given below.

Visual Crack Segmentation. The visual crack segmen-
tation is treated as a semantic segmentation problem that
predicts each pixel of the input image into one of two
semantic classes: (a) background (b) cracks. To this end,
we use the Deeplabv3+ model [27] to segment the cracks
in visual images that is a state-of-art deep learning model
for semantic image segmentation. A ResNet-101 backbone
[28] is used. Since the number of pixels of the background
is much larger than that of the cracks, the network may
easily converge to the status that treats all the pixels as
background. To address this issue, we use the original images
as input instead of resizing it to a smaller size as done in
the previous works [17] and use a weighted cross-entropy
loss with crack pixels weighted 10x more than background
pixels. Moreover, we set the output stride value as 8 as
smaller values give finer details in the output mask. In
the training process, we start with a model pre-trained for
semantic segmentation on the COCO dataset [29] and use
the following hyperparameters: SGD Optimizer with constant
learning late of 1e-6, momentum 0.9 and weight decay 5e-4.

Contact Points Generation. Given the predicted pixel-
wise crack mask in the color image, we can extract the
skeleton of each crack mask with pattern thinning method
[30]. We define two types of keypoints (i.e., end points and
branch points) and minimal edges that represent the topology
of the crack pattern:
• End points: if they have less than two neighbors.
• Branch points: if they have more than two neighbors.



Fig. 1: An overview of our vision-guided active tactile crack detection and reconstruction method. Top row (from left to
right): The Deeplabv3+ model is used to segment the cracks in the visual image. Given the visual crack mask and the depth
image, a set of contact points are generated to guide the collection of tactile images. Bottom row (from right to left):
Another deep convolutional network is used to segment the crack in the collected tactile images. Given the detected tactile
crack mask, the crack shape are reconstructed based on the geometrical model of the GelSight sensor and the coordinate
transforming relation between the tactile sensor coordinate and the world coordinate.

• Minimal edge Eij : if there is a continuous path between
two keypoints pi and pj and all points on the path are
neither end points nor branch points.

For every minimal edge Eij which consists of a number
of ordered points, the keypoint pi is initially selected as the
current contact point pcurrent. Then we iteratively choose
the next contact point pk using the following formula:

max
k

D[pcurrent, pk]

s.t. D[pcurrent, pk] < d
(1)

where D(pcurrent, pk) is the distance between two points in
world frame. The hyper-parameter d is the threshold of the
distance between two points that is related to the coverage
and speed of tactile perception. A smaller d will increase the
coverage while reducing the perception speed. In our case,
d is empirically set to four fifths of the tactile sensor’s view
length. As shown in Fig. 1, the end-point pixels and the
generated contact points are tagged with red dots and green
dots, respectively. For each contact points pi, the yaw angle
of the end-effector is parallel to the vector < pi, pn >, where
pn is the nearest contact point to pi, so that the end-effector
can contact the surface perpendicularly.

B. Active Tactile Crack Perception

Tactile Crack Detection. To address the problem of false
positives in the visual crack detection due to light changes
and shadows, we apply tactile information to refine the
vision-based detection results and reconstruct cracks shape
in 3D space. Firstly, we control the robotic arm equipped
with a camera based Gelsight tactile sensor [26] to collect

tactile images autonomously at the generated contact points
in Section III-A.

The GelSight sensor is a camera-based optical tactile
sensor that can capture fine details of the object surface. As
shown in Fig. 2, a webcam1 is placed under an elastomer and
captures the deformations of the elastomer when it interacts
with the object. The sensor has a flat surface and a view
range of 14mm × 10.5mm and can capture tactile images
at a frequency of 30 Hz [31].
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Fig. 2: The geometrical model of the GelSight sensor. The
webcam at the bottom captures the deformations of the
elastomer and the LEDs project light to illuminate the space.

The collected tactile images are fed to another deep
convolutional network (Deeplabv3+ [27] with ResNet-101
[28]). Since the number of background pixels is similar
to that of the background pixels in tactile images, we use
the vanilla cross-entropy loss instead of the weighted cross-
entropy loss in Section III-A. Using the predicted masks in

1We use “webcam” to refer to the camera used in the optical tactile sensor
to differ it from the visual camera used for the vision modality.



tactile images, we can double check the visual segmentation
results. Any minimal edge will be set as false positives and
deleted from visual segmentation results, if there are more
than two tactile images whose predicted crack area is smaller
than a predefined threshold. The threshold is empirically set
as one fiftieth of the total number of pixels in the tactile
image.

Tactile Crack Reconstruction. In the task of crack
perception, it is crucial to obtain the shape and size of
the crack when assessing its potential risk to the building
and infrastructure. However, limited by the accuracy of the
depth camera, current vision-based reconstruction methods
are not able to reconstruct small cracks precisely. To this end,
we use tactile images obtained from the GelSight sensor to
reconstruct the cracks, whose spatial resolution is about 20
to 30 microns.

First, we predict the location of cracks on the surface
of the GelSight sensor, given the detected boundaries of
pixel-wise masks in the tactile images. To simplify the
problem, we model the webcam using a pinhole camera
model, and treat the surface of GelSight sensor as a flat plane
that is perpendicular to the webcam’s z axis. Hence, the
transformation between a contact point P = [Xc, Yc, Zc]

T

in the tactile sensor coordinates (the tactile sensor take the
centre of the webcam as the origin) to the pixel P ′ = [u, v]T

in the tactile image coordinates can be calculated:

Zc

 u
v
1

 = K


Xc

Yc

Zc

1

 (2)

where Zc is the distance from the optical center to the
elastomer surface of the tactile sensor. K is the matrix of the
intrinsic parameters of the webcam and can be represented
as:

K =


f
dx

0 u0 0

0 f
dy

v0 0

0 0 1 0

 (3)

where f is the focal length of the webcam, dx and dy denote
the pixel size, and (u0, v0) is the center point of the tactile
image.

After obtaining the position P in the tactile sensor coordi-
nates, we can calculate its position PW in the world frame:

PW = TW
E TE

C P (4)

where TE
C and TW

E are the transformation matrix from
the tactile sensor coordinates to the end-effector coordinate
system, and from the end-effector coordinate system to the
world coordinate system, respectively.

IV. EXPERIMENT SETUP

In this section, we introduce the robot setup used for data
collection and experiments. An overview of our robot setup
is shown in Fig. 3.

Fig. 3: a) The UR5 robot setup with GelSight sensor and
Realsense D435i; b) GelSight sensor; c) Realsense D435i.

A. 3D Printed Structures with Cracks

In this work, we follow part of the data acquisition
protocol in [6]. A set of 10 structures with cracks of different
widths (holes in the structures) were manufactured with PLA
plastic using an i3 Mega 3D printer from ANYCUBIC. To
test the robustness of the proposed method, we also paint
several fake cracks on the surfaces of the structures. The
samples are shown in Fig. 4.

Fig. 4: Sample structures used for collecting the visual and
tactile dataset. Top row: printed structures with real cracks
(holes). Bottom row: printed pad with fake cracks (painted
black blocks).

B. Visual Data Collection

We put those 3D-printed structures on a table and took 10
images of each structure with real cracks that are used for
training the visual model. Then we take 3 images for each
object separately for the test. All images were taken with a
RealSense D435i camera.

C. Tactile Data Collection

The setup of tactile data collection is composed of two
parts: a 6-DOF UR5 collaborative robot arm from Universal
Robots and a GelSight sensor mounted on a 3D-printed
end-effector. To collect the tactile data autonomously and
repeatedly, we build a data collection software using Robot



Operating System (ROS). The software can control the robot
arm to move across the surface of a structure following the
pre-defined initial position, steps, and step length in x-axis
and y-axis. As for each position, we rotate the sensor about
the axis perpendicular to the surface with different angles so
that the dataset can be more generalized. As for each contact,
the robot arm will stop moving and the GelSight records one
tactile image when the pressure reaches a threshold. In this
way, we can capture tactile data of good quality and also
avoid the unnecessary protective stops of the robot arm. In
total, 544 valid tactile images were collected and split into
training and test sets (370 and 174 for each, respectively),
with some samples and their annotations shown in Fig. 5.

Fig. 5: Visualization of the tactile images and their annota-
tions for different cracks.

V. EXPERIMENT RESULTS

A. Experiments on Network Architectures

To evaluate the accuracy of the tactile crack segmentation,
we use both Intersection over Union (IoU) and True Positive
rate (TP). The results of different models and input image
sizes are listed in Table I. Two different backbones was used
for Deeplabv3+: ResNet-101 and DRN-54 (Dilated Residual
Network). Example segmentation results of ResNet-101 and
DRN-54 with an input size of 256×256 are shown in Fig.
6. The results indicate that compared to Resnet-101, DRN
introduces more noise over training and perform worse for
the tactile crack segmentation due to the fact that it has a
larger receptive field.

We also experimented with different input image sizes.
The results show that a smaller input image size leads to
better performance, which is surprising as images of a higher
resolution may contain more details. One possible reason is
that a certain amount of noise is generated when resizing the
width of the tactile image from 480 to 512.

TABLE I: Network Architecture For Tactile Crack Segmen-
tation.

Backbone Input Size IoU TP
DRN 512 0.93 95.48
DRN 256 0.93 97.32

ResNet-101 512 0.94 96.65
ResNet-101[ours] 256 0.97 98.87

Fig. 6: Visual comparison of different backbones.

B. Crack Detection Results

Similar to the evaluation method used in network architec-
tures experiments, we evaluate our proposed methods based
on standard evaluation metrics of pixel accuracy (pixAcc)
and IoU. The segmentation results of using only visual
information and using both visual and tactile information are
summarized in Table II. The results show that both the pixel
accuracy and IoU of visual semantic segmentation have a
significant drop due to the existence of fake painting cracks
from 0.899 to 0.866 and from 0.504 to 0.376, respectively.
It is also shown that after using tactile information to find
the fake paintings and refine the visual detection results,
the performance of cracks detection has been improved
effectively. Due to the fact that cracks on the RGB images
only take up fewer pixels compared to background, the pixel
accuracy does not change dramatically as IoU.

TABLE II: Crack Detection Accuracy.

Modalities Fake Painting pixAcc IoU
vision × 0.899 0.504
vision X 0.866 0.376

vision-tactile X 0.909 0.636

C. Reconstruction Results

As for the crack reconstruction task, we use the mean, max
and standard deviation (SD) of the shortest distance between
the actual crack shape and the reconstructed crack location
to evaluate the accuracy of our proposed method. There are
four methods used for comparison. The vision method uses
point clouds recovered through visual detection and depth
information to represent cracks. In order to reduce the impact
of depth information accuracy on reconstruction, the aligned
vision method projects the point cloud to the table surface.
The passive tactile method collects the tactile images through
traversing the whole 3D printed structure surface.



As can be seen in Table III, our approach shows a
significant improvement of mean distance error from 0.55mm
to 0.24mm compared to the aligned vision method. Two ex-
ample reconstructed crack profiles are shown in Fig. 7, which
shows that reconstructed crack profiles with tactile data is
much closer to the ground truth compared to the vision-
based method. On the other side, compared to passive tactile
perception, our proposed vision-guided tactile perception is
more than 10 times faster than passive tactile perception in
terms of the tactile data collection time without affecting the
accuracy much.

Fig. 7: Visual comparison of different reconstruction meth-
ods. blue, red, yellow, green curves represent the ground truth
of the crack profile, aligned-vision, passive-tactile and our
method for crack reconstruction, respectively.

TABLE III: Reconstruction Accuracy

Method MeanD(mm) SD(mm) MaxD(mm) time(s)
vision 0.82 0.92 4.87 1

aligned-vision 0.55 0.53 3.78 1
passive-tactile 0.20 0.17 0.99 400

active-tactile[ours] 0.24 0.16 0.82 35

VI. CONCLUSION AND FUTURE WORK

In this paper we introduce a novel vision-guided active
tactile perception for crack detection and reconstruction. The
cooperation between those two modality addresses the false
positives in visual detection results. The experiments show
that our proposed method can improve the effectiveness and
robustness of crack detection and reconstruction significantly,
compared to when only vision is used. It has the potential
to enable robots to inspect and repair of the concrete infras-
tructure. Future works to improve our method can also be
considered, such as cracks detection in curved surfaces, the
use of weakly supervised learning methods to segment cracks
and addressing the localization uncertainty of the robot arm
in active tactile exploration.
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