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Abstract 
Prolonged survival in the face of host immunity has been a major force shaping 

the biology and evolution of the African trypanosomes, and nowhere are the effects of 

this force more apparent than in the antigenic variation of the trypanosome variant 

surface glycoprotein (VSG) coat. The coat protects the trypanosome within it from 

immune effectors, and spontaneous and stochastic events occurring at the molecular 

level cause individual trypanosomes to change the VSG variant they are expressing. 

The consequence of this switching at the population level is a diverse population that 

can pre-empt the specific immune responses that arise against VSG. The template for 

changes to VSG is an extensive archive of silent VSG genes and pseudogenes. VSG 

from the archive are activated not only as full-length genes but also through the 

combination of segments to form mosaic VSG genes, a process that augments the 

potential for antigenic variation by introducing combinatorial variation and allowing 

VSG pseudogenes to be used. The main part of the archive occupies subtelomeres and 

so is itself prone to mutation and rapid evolution, which are important features when 

superinfection or reinfection of partially-immune hosts is necessary. The antigenic 

variation ‘diversity phenotype’ is thus a multifaceted one, enlisting and coordinating 

fundamental mechanisms of cell biology to bring about a process that unfolds across 

populations, thereby facilitating the success of the African trypanosomes. 

Introduction: Antigenic variation is a diversity phenotype key to the African 

trypanosomes’ success 

The success of African salivarian trypanosomes depends on their survival in 

mammalian blood. It is only blood-borne trypanosomes that can be transmitted by 

biting insects, and so traits prolonging persistence in this habitat are likely to be 



beneficial, because they increase opportunities for transmission. Blood is chemically 

stable and rich in nutrients but is intensely hostile to foreign bodies, thanks to a 

sophisticated immune system that deploys both immediate, non-specific ‘innate’ 

responses, and specific ‘adaptive’ responses to efficiently eradicate pathogens. 

Unusually amongst chronic pathogens, African trypanosomes do not invade host cells 

to escape from immunity. Instead, they are extracellular during the mammalian phase 

of their lifecycle. Protecting each parasite from host immunity is a dense, uniform, 

glycoprotein ‘coat’ that covers its entire surface, made from approximately six million 

dimers (Jackson et al. 1985) of the major African trypanosome variable antigen: 

variant surface glycoprotein (VSG). 

The VSG surface coat is critical for a trypanosome to survive in the blood—in its 

absence or dysfunction, parasites are killed by factors present in naive serum 

(Ferrante and Allison 1983; Mosser and Roberts 1982). An intact VSG coat obstructs 

immune effectors, preventing them from accessing the cell membrane or invariant 

surface antigens (Overath et al. 1994), and in doing so it forms the most immediate 

interface between parasite and host during infection. Although the coat shields the 

parasite surface, VSG itself is highly immunogenic, and adaptive responses against 

the antigen are rapidly mounted by the host (Black et al. 2010). A mechanism to 

withstand the challenges of adaptive immunity operates at the population level: a 

single host can maintain a population of millions, if not billions, of trypanosomes 

(Barry 1986), and as an individual trypanosome multiplies, it can switch to express a 

different VSG. The diversity that unfolds across the burgeoning population pre-empts 

specific immune responses, making the infection resilient to eradication. As different 

VSG variants are targeted and neutralised by immunity, the population is replenished 

by the proliferation of the survivors, which undergo further VSG switches and are 

further shaped and selected by immunity to yield the patterns of antigenic variation of 

which the African trypanosomes are a paradigm. The VSG coat—and its variation—

represents a remarkable example of biological diversity that harnesses genome 

biology, cellular processes and population dynamics to enable African trypanosomes 

to survive despite a precarious lifecycle that is balanced between a broad range of 

host mammals and the insects that feed on them.  



Compared with general mutation of antigens caused by background cellular 

processes, true antigenic variation is a system that has evolved under pressure from 

adaptive immunity to present an ever-changing ‘diversity phenotype’. With the 

African trypanosomes, we can clearly infer that such selection has occurred by 

identifying distinct processes and resources specifically associated with introducing 

dramatic change in the expressed antigen: (i) exclusive, tightly-regulated expression 

of VSG from a dedicated locus; (ii) mechanisms to vary the expressed VSG gene; (iii) 

an archive of silent VSG genes that can be utilised as source material for this 

variation. Importantly, the antigenic variation diversity phenotype is a program 

emerging from a trypanosome genome, one that becomes manifest in the behaviour of 

a population of clonally related parasites. Selection favours those genomes that 

maximise their overall transmission and propagation, and strategies that might appear 

counterintuitive or hugely wasteful in terms of the death of individual parasites can be 

highly effective at maximising the transmission, and hence success, of the genomes 

that give rise to those strategies (Reece et al. 2011). Similar examples abound across 

biology (West et al. 2006), one being the transmission of cellular slime moulds such 

as Dictyostelium discoidium. Upon starvation, unicellular D. discoidium amoebae 

unite to form a fruiting body, a process that is necessary for the effective dispersal of 

spores. However, only some cells are transmitted, the others perish in the construction 

of the fruiting body, losses which are accommodated—indeed, selected for—at the 

population level (Hudson et al. 2002). An understanding of the multiple levels at 

which selection acts means we must consider not only the specific molecular events 

that occur within individual trypanosomes during infection, but also the behaviours of 

the trypanosome population that emerge from a genome’s program (Marcello and 

Barry 2007b), and how the patterns of diversity that appear interact with other key 

pressures on trypanosome biology and natural history.  

In this chapter we will discuss the antigenic variation phenotype: the molecular 

processes that underpin it, and the highly successful survival strategy that emerges. 

First, the processes occurring in individual trypanosomes will be covered. Then we 

will discuss how these features play out over the course of infection. The broader 

evolutionary trajectories of the genes involved will then be discussed, followed by an 

overview of how this phenotype might interact with other key features of the 

trypanosomes’ natural histories. Finally, we will consider the outstanding questions 



posed by antigenic variation, and what approaches might be best suited to addressing 

them. 

Although all species of African salivarian trypanosome possess VSG, undergo 

antigenic variation and are subject to the pressures imposed by mammalian adaptive 

immunity, it is likely that differences exist in the patterns and structures involved. 

This chapter will focus on the model organism Trypanosoma brucei, which is by far 

the best characterised. Features of the T. brucei antigenic variation system are likely 

to apply also in the T. brucei derivatives T. evansi and T. equiperdum. Where data are 

sufficient, related species such as T. congolense and T. vivax will be covered, but the 

details of antigenic variation in these parasites are less clear.  

How does the structure of the VSG coat relate to its function? 

At the level of the individual, a key feature of VSG is its ability to form an 

effective barrier. VSG must therefore possess a particular structure, one that confers 

depth and density on an intact coat. Yet at the level of the population, different VSG 

coats must vary sufficiently from one another to enable antigenic variation. These 

demands have been met by a conserved tertiary fold that can be formed by widely 

divergent VSG amino acid sequences (Blum et al. 1993; Carrington et al. 1991). In 

this way, functional barrier-forming variants can be completely antigenically distinct 

from one another, allowing evasion of both non-specific innate immunity and specific 

adaptive immunity.  

The VSG dimer forms an elongated structure that stands perpendicular to the 

membrane, the overall effect being a deep coat within which invariant surface 

molecules are buried (Vickerman 1969), as shown in Figure 1. The VSG N-terminal 

domain (NTD) forms the exposed, membrane-distal part of the antigen (Schwede et 

al. 2011). This domain is essentially a pair of long helical elements that mediate 

dimerisation (Cohen et al. 1984) , from which hang numerous loops and smaller units 

of secondary structure. In the case of the brucei clade, VSG also possesses a C-

terminal domain (CTD) comprising one or two small subdomains, which may act to 

extend the molecule further and increase packing density of the coat (Chattopadhyay 

et al. 2005; Jones et al. 2008), but are apparently absent from T. congolense and T. 

vivax (Jackson et al. 2012). Both the NTD and the CTD are reinforced by a number of 

disulphide bridges between highly conserved cysteine residues (Allen and Gurnett 



1983; Bussler et al. 1998); these probably strengthen the molecule against the 

vigorous physical forces it is likely to encounter (O'Beirne et al. 1998). VSG are 

anchored in the membrane by means of a glycosylphosphatidylinositol (GPI) group, 

which can be distinguished from the mammalian host GPI anchors by its shorter 

dimyristoylglycerol lipid moiety, and (for most VSG) its possession of galactose 

residues (Ferguson 1991); and VSG are often also N-glycosylated elsewhere (Mehlert 

et al. 2002). Glycosylation may enhance the barrier function of an intact surface coat, 

and contribute to the structure and accessibility of epitopes, as it does for many other 

variable antigens such as influenza haemagglutinin (Caton et al. 1982). The lack of a 

transmembrane domain results in a coat that is exceptionally fluid: VSG dimers can 

flex and spin in place, move freely across the surface of the parasite (Engstler et al. 

2007), and constitutively recycle through the endosomal system (Pal et al. 2003; 

Seyfang et al. 1990), creating a bustling, dynamic structure. This fluidity may 

facilitate efficient function of other surface molecules such as transferrin (Pal et al. 

2003), and may assist in the rapid turnover of the coat that occurs during switching. 

There is also evidence that coat fluidity can assist the clearance of surface bound 

antibodies when these are present at low concentration, providing a further, 

complementary means of immune escape (Engstler et al. 2007).  

VSG production is a tightly regulated process 

It is presumably important that parasites maintain coat density whilst undergoing 

growth and replication, and VSG production is a principal aspect of the biology of the 

proliferating bloodstream form trypanosome (Smith et al. 2009). The large surface 

area covered by an intact coat requires the production of huge quantities of the coat 

protein—in fact, approximately 10% of T. brucei total soluble protein is VSG (Cross 

1990). VSG is transcribed from a specialised locus, the active expression site (ES), 

one reason for which may be the requirement for a large volume of VSG mRNA 

required by such high expression. There are two types of expression site, metacyclic 

(MES), of which there are approximately 20 in a T. brucei genome (Horn and Barry 

2005), and bloodstream (BES), which number up to 23 (Young et al. 2008). Each ES 

contains a single intact VSG gene and a number of expression site associated genes 

(ESAGs) (McCulloch and Horn 2009); several ESAGs have functions that have been 

experimentally associated with survival in the mammalian blood, such as iron 

acquisition (Bitter et al. 1998) and immune system modulation (Salmon et al. 2012), 



and ESAG content varies between expression sites (Hertz-Fowler et al. 2008). In fact 

MES possess no ESAGs at all, and thus metacyclic VSG are unique in being the only 

trypanosome genes transcribed from their own promoter (Graham and Barry 1995). 

Critically, the expression sites are under strict control: only one is active at any time. 

The actively transcribed VSG itself is at the promoter-distal end of the expression 

site, proximal to the telomere repeats (Aline and Stuart 1989). Upstream of the VSG, 

and separating it from the rest of the expression site, is a set of 70-bp AT-rich 

imperfect repeats (Campbell et al. 1984). Transcription of the active expression site is 

initiated at a single promoter, and separate mRNA molecules for each of the genes in 

the ES are produced by trans-splicing of this polycistronic transcript with a 5’ ‘spliced 

leader’ sequence that is common to all trypanosome mRNAs (Cully et al. 1985; 

Parsons et al. 1984). Newly translated VSG is folded in the endoplasmic reticulum 

with the aid of numerous chaperones (Field et al. 2010) and undergoes post-

translational modification such as signal peptide cleavage (McConnell et al. 1981) 

and glycosylation (Ferguson et al. 1986; Mehlert et al. 2002). Mature VSG reaches 

the surface at the ‘flagellar pocket’, an invagination of the plasma membrane at the 

base of the flagellum where all endocytosis and exocytosis takes place (Overath et al. 

1997), from where it diffuses to spread across the entire parasite surface.  

Only one VSG is transcribed at a time 

Because each ES contains just one intact VSG, and because just one ES is active at 

any time, each individual trypanosome transcribes only one VSG. Exclusive 

expression is thought to be a strongly selected trait: simultaneous expression of 

multiple VSG would result in a heterogeneous coat, exposing all of the expressed 

VSG to the immune system, and resulting in a shorter infection than could have been 

achieved, had the different variants been expressed exclusively and consecutively 

(Morrison et al. 2005). An example of the importance of exclusive expression in 

prolonging infection can be found in another antigenically variant pathogen, Giardia 

lamblia, where disruption of monoallelic expression resulted in immune responses 

developing against all exposed antigens (Rivero et al. 2010). It has proved possible to 

generate parasites that simultaneously express two different VSG from one expression 

site (Muñoz-Jordán et al. 1996), a result indicating that the presence of just one VSG 

in an expression site is most likely a consequence of the switching mechanism rather 

than a demand enforced by it. On the other hand, the exclusive activation of a single 



ES—monoallelic expression—is much more strictly maintained, and attempts to 

generate lines expressing multiple ES result only in unstable clones switching rapidly 

between ES (Ulbert et al. 2002). How is it that one, and only one, ES is active at a 

time? One hypothesis has been built on the identification of a single multi-component 

complex that drives transcriptional elongation from the active ES, termed the 

expression site body (ESB) (Navarro and Gull 2001). The ESB associates closely with 

the mitotic machinery, which could explain the heritability of the exclusive ESB-ES 

association (Landeira et al. 2009). However, the presence of a single ESB could be 

taken as a consequence of monoallelic expression as much as its cause and there are 

many questions about the mechanism that remain unclear, not least how a single ESB 

is maintained (Horn and McCulloch 2010). At the same time, complementary 

processes silence the inactive ESs, and a number of epigenetic control pathways have 

been implicated (Alsford et al. 2012). There are numerous factors for which depletion 

has been shown to allow some transcription from inactive ES, including chromatin 

remodelling factors (Hughes et al. 2007; Wang et al. 2010), histones (Povelones et al. 

2012) and histone chaperones (Alsford et al. 2012), and DNA replication factors 

(Benmerzouga et al. 2013; Tiengwe et al. 2012), to list only a few. However, in no 

case has derepression led to a level of transcription comparable to that from the active 

ES. The physical location of inactive ES at the nuclear periphery has also been 

proposed to contribute to their repression (DuBois et al. 2012; Navarro et al. 2007). 

The number of candidate factors associated with monoallelic expression, alongside 

the close physical proximity of these systems in a living cell, raises the possibility that 

monoallelic expression and its maintenance is a non-linear network, with many 

feedback loops and redundancies that may require rethinking of whether there can be 

a single necessary and sufficient causative agent. Resolving this problem is an 

important current question in trypanosome biology. 

However monoallelic expression is ultimately achieved, it is flexible. The 

property of exclusive expression is frequently transferred to another VSG by 

switching, and it is to this that we now turn.  

The VSG coat is switched frequently, spontaneously, and stochastically 

An individual parasite will occasionally change its expressed VSG gene, causing 

the replacement of its VSG surface coat with one composed of the new variant. This 



process is frequent, occurring within a lineage as often as once per 100 divisions 

(Turner and Barry 1989). It is spontaneous, occurring in culture (Horn and Cross 

1997) and in immunodeficient animals (Magez et al. 2008). It is also stochastic: 

switching does not appear to be a deterministic process, and is best understood 

probabilistically (Lythgoe et al. 2007). Emerging from these discrete switching events 

is abundant antigen ‘richness’ across the resident trypanosome population. 

The primary source of this diversity is within the genome of the infecting 

trypanosomes, in the form of an extensive archive of ‘silent’ VSG genes. Genes in the 

silent archive are found in one of two locus types in addition to silent ES: 

minichromosomes and VSG arrays. Minichromosomal VSG are located close to the 

telomeres of the short (30 to 150 kb), linear minichromosomes, which otherwise 

consist primarily of repeats of a 177-bp motif (Weiden et al. 1991; Wickstead et al. 

2004). It is thought that most minichromosomes contain a VSG proximal to each 

telomere, giving a total of approximately 200 minichromosomal VSG (Barry et al. 

2005; Van der Ploeg et al. 1984). Most silent VSG, however, are found in tandem 

arrays in the subtelomeres of the parasite’s standard diploid (‘megabase’) 

chromosomes. The first trypanosome strain to be comprehensively sequenced has a 

comparatively small VSG archive, yet its VSG arrays are still thought to contain 

between 1000 and 2000 VSG altogether (Berriman et al. 2005). A large part of the 

archive is annotated in this strain, in the current TREU 927 genome assembly 

available from TriTrypDB (Aslett et al. 2010), but it is likely that a significant 

fraction remains missing from the current archive annotation, due to poor coverage of 

minichromosomes, and to the fact that in most cases only one of each pair of 

homologous chromosomes is represented. Figure 3a illustrates the subtelomeric arrays 

annotated in in the current version of the TREU 927 genome. 

VSG in both locus types usually exist as cassettes with sequences at either end of 

the cassette that are homologous to those found in expression sites—AT-rich 70-bp 

repeats at the 5’ end, and a conserved VSG-specific sequence at the 3’ end (Figure 3b, 

Marcello and Barry 2007a; Pays et al. 1981; Van der Ploeg et al. 1984). A striking 

feature of silent VSG that was revealed by the genome project is that only a small 

proportion of the array VSG (4.5%) encode full-length, intact genes (Berriman et al. 

2005). This small proportion is in contrast with the minichromosomal VSG, which are 



thought to be mainly intact (Taylor and Rudenko 2006). The remainder of the array 

VSG are considered atypical due to predictions of inconsistent folding or post-

translational modifications (9.5%); or are pseudogenes, either containing frameshifts 

or stop codons (65%), or encoding only one of the two necessary VSG domains 

(21%) (Berriman et al. 2005; Marcello and Barry 2007a). These non-intact genes are 

nonetheless utilised during infection as substrates for ‘mosaic’ VSG gene assembly, as 

discussed below.  

There are broadly two mechanisms by which this silent archive can be accessed, 

and hence switching can be achieved: transcriptional switching, and recombinatorial 

switching. Transcriptional switching does not require any genetic rearrangement. As 

T. brucei has multiple expression sites, a different VSG will become expressed when 

the property of exclusive expression is transferred from one expression site to another. 

Transcriptional switching occurs rapidly in the bloodstream form. A simple model 

would involve the ESB moving to a different ES (Navarro and Gull 2001), but the 

triggers and mechanism of this process are vague. Furthermore, it appears that other 

factors are at work: the activation of a new ES and the silencing of the old one are 

separable processes, with chromatin remodelling required to silence the old ES 

(Figueiredo et al. 2008). The role of transcriptional switching in natural infections is 

unclear—only a small subset of VSG are present in ES and hence accessible in situ, 

and analyses of field-relevant trypanosome lines shows that over the course of a 

single infection transcriptional switching is a minor process compared with 

recombinatorial mechanisms (Robinson et al. 1999). Instead, it has been proposed that 

transcriptional switching is primarily a means of accessing different ESAG 

collections: the ESAGs present in different ES could evolve to the peculiarities of 

different host species (Bitter et al. 1998; Salmon et al. 2012; Young et al. 2008) . 

Recombinatorial switching involves activation of a silent VSG by its copying—or 

complete migration—into an active expression site. This process occurs by multiple 

mechanisms, the most important being gene conversion. In its best-understood form, 

VSG gene conversion co-opts the ancient DNA repair mechanism of homologous 

recombination to delete the existing ES-occupying VSG and replace it with a different 

VSG from elsewhere in the genome (Morrison et al. 2009). The trigger for 

recombination is thought to be damage to the active ES, for example a double-



stranded break in the DNA (Boothroyd et al. 2009): a likely occurrence, given the 

extremely exposed nature of the DNA in the active ES and the physical instability of 

the AT-rich 70-bp repeats just upstream (Lin et al. 2009; Stanne and Rudenko 2010). 

Homologous recombination relies on similarities between DNA sequences, and rates 

of recombination are reduced as the length and degree of homology between substrate 

and template decrease (Barnes and McCulloch 2007). Sequence examination of ES 

which had undergone gene conversion revealed that the 5’ boundary of recombination 

was usually located in the 70-bp repeat regions located upstream of the ES VSG (Liu 

et al. 1983), and the 3’ boundary of recombination was usually in a region spanning 

the 3’ end of the VSG (Bernards et al. 1981; Liu et al. 1985; Michels et al. 1983; 

Timmers et al. 1987). Fittingly, these regions correspond with the conserved 

boundaries of the ‘VSG cassette’ (Figure 3c). A straightforward model of 

recombinatorial switching therefore sees an archival VSG cassette replacing the 

telomere-proximal VSG-containing section of the ES, from the 70-bp repeat region to 

the 3’ UTR of the VSG or beyond (Morrison et al. 2009). An additional pathway of 

recombinatorial switching is available to VSG present at telomeres, such as those of 

the minichromosomes. Here, classical recombination acts to reciprocally exchange 

chromosome ends (Pays et al. 1985), swapping the active ES VSG with another 

telomere-proximal VSG. Trypanosomes deficient in the key homologous 

recombination enzyme RAD51 show a greatly reduced rate of switching (McCulloch 

and Barry 1999). Yet residual recombination events can still occur, by a process that 

requires only very short regions of homology, and can tolerate mismatches (Conway 

et al. 2002). There are clearly further mechanisms at work, occurring at lower 

frequency and with greater flexibility. 

Recombinatorial switching does not always include the entire VSG, and can 

combine part of the archive gene with part of another. Such ‘segmental gene 

conversion’ can occur anywhere in the VSG, including in the antigenically important 

NTD, and generates a mosaic VSG (Kamper and Barbet 1992; Roth et al. 1989; Thon 

et al. 1990). Mosaic VSG have multiple donors, each of which can contribute multiple 

segments to form an expressed VSG: genes comprising 15 segments from four 

different donors have been observed (Kamper and Barbet 1992). Donors to the same 

mosaic VSG show sequence similarity to one another, but the size of contributed 

segments can be very small, and the long regions of near-perfect identity that are 



required for classical homologous recombination in T. brucei do not seem to be 

necessary (Barnes and McCulloch 2007, J.P.J.H, Huanhuan Wang and J. David Barry, 

submitted). The presence of mosaic genes is not merely an inconsequential by-

product of high recombination in a region with multiple homologous genes, but has 

two important features that could contribute to antigenic variation. Firstly, assembly 

of mosaic genes from fragments of pseudogenes allows accommodation of damaged 

VSGs, and access to epitopes encoded in the archive that would otherwise be unable 

to contribute to antigenic variation, a feature that may be crucial in the context of an 

archive under a hypermutation protocol (see below). Secondly, use of mosaics 

introduces an extra level into antigenic variation, that of recombinational variability. 

The construction of mosaics in each new infection allows donors to combine in 

multiple different ways, potentially increasing many-fold the antigenic profiles 

obtainable from the archive. Related T. brucei mosaic VSG have been shown 

experimentally to be antigenically distinct (J.P.J.H, Huanhuan Wang and J. David 

Barry, submitted), and other antigenically variant pathogens Anaplasma spp. and 

Borrelia burgdorferi, leverage segmental gene conversion to generate huge numbers 

of antigen variants (Coutte et al. 2009; Zhuang et al. 2007). 

Yet mosaic VSG formation is also likely to be a risky process. Premature stop 

codons could easily be introduced into the mosaic by out-of-frame recombination 

events or involvement of damaged donor regions. The translated mosaic may not fold 

correctly, may lack key structural features such as conserved cysteines or 

glycosylation signals, or may be incapable of forming an effective coat. Although it is 

possible that as-yet-undefined cellular mechanisms exist to recognise and resolve 

such errors, the likelihood is that the generation of VSG by assembly of mosaics is 

hugely inefficient at the level of an individual trypanosome. However, at the level of 

the population, which can number in the hundreds of billions within a host (Barry et 

al. 2012), these risks can be accommodated, allowing mosaic formation to greatly 

enhance the potential for antigenic variation. Indeed, it appears that mosaic VSG are 

abundant once beyond the early stages of infection (Marcello and Barry 2007a) 

Each switching process requires the convergence of different factors, and as such 

each has a different chance of occurring to a given silent VSG. The resultant variation 

in activation probability between silent VSG is the basis of an overall hierarchy of 



expression across infection. Those VSG that are readily activated tend to be important 

earlier on in infection; later on, they are still likely to be frequently re-activated, but 

parasites that express them would be rapidly eliminated if the immune responses 

previously raised against their coats were still effective (Morrison et al. 2005). Other 

VSG, which perhaps require complex segmental gene conversion events to be utilized, 

are less likely to be activated, and so they become important later on in infection, 

once immune responses have appeared against the easily-activated VSG. ES VSG, 

resident in telomeric sites, appear to be preferentially activated early in infection. 

Such early activation is probably because telomeres tend to interact with one another, 

which promotes recombination (Barry et al. 2003), and because, compared with the 

archive VSG cassettes, the inactive ES provides more sequence that is homologous to 

the active ES (Hertz-Fowler et al. 2008). Intact array and minichromosomal VSG are 

usually activated somewhat later, because they have shorter stretches of more variable 

homology to the active ES (Liu et al. 1985; Robinson et al. 1999). However, only a 

single step is needed to activate an intact VSG, so such genes are usually expressed 

earlier in infection than are mosaics composed of pseudogenic VSG segments, which 

require assembly by an inefficient process of segmental conversion and hence appear 

later (Roth et al. 1989). The hierarchy is flexible, with previously ‘late’ VSG able to 

occupy more easily-activated genomic locations and thus taking an earlier position in 

the hierarchy (Laurent et al. 1984). The significance of and selection pressures acting 

on hierarchy in expression are unclear; hypotheses explaining its importance include a 

need to co-ordinate expression somewhat across an infection population, so as to 

exhaust neither archive (Morrison et al. 2005) nor host (Turner 1999). Nevertheless, 

hierarchies have been identified in a number of antigenic variation systems, with 

Borrelia hermsii (Barbour et al. 2006) and Plasmodium falciparum (Recker et al. 

2011) both exhibiting clear trends in the patterns of variants that appear. 

The molecular processes described in this section, summarised in Figure 2, 

underlie the observed patterns of frequent, spontaneous, stochastic switching, the 

consequence of which is vast sustained diversity amongst the trypanosome 

population. Calculations based on total population size in a cow and the estimated 

VSG switch rate suggest that by the first peak of parasitaemia, more than 108 switches 

will have occurred (Barry et al. 2012). Experimental studies of chronic infections of 



mice have identified at least 15 distinct variants within individual samples, with many 

more likely to be present (J.P.J.H, Huanhuan Wang and J. David Barry, submitted).  

Host immune responses shape expressed diversity 

Host responses shape expressed VSG diversity, resulting in the patterns of 

antigenic variation. Antibodies against VSG clearly play a central role in the host 

adaptive response to trypanosome infection (Guirnalda et al. 2007; Magez et al. 

2008), killing parasites by fixing complement, which can lyse parasites directly (at 

least in vitro, Van Meirvenne et al. 1995) or activate parasite-killing macrophages 

(Guirnalda et al. 2007; Pan et al. 2006). Immune responses to VSG are expected to 

constantly select for novelty in VSG expression, giving a directionality to the 

progression of antigenic variation as variants are successively neutralised (Barry and 

McCulloch 2001). However, trypanosome infection can have a substantial 

suppressive effect on host immunity (Askonas et al. 1979). T. brucei infections of 

mice can induce apoptosis in marginal zone B-cells, rendering hosts susceptible to re-

challenge with previously encountered antigens, including VSG coats (Radwanska et 

al. 2008). It is possible that this phenomenon is unusually exaggerated in hosts such 

as mice that sustain exceptionally high parasitaemia for their body mass (La Greca 

and Magez 2011). In other hosts B-cell dysfunction and its consequences may be less 

extreme, manifesting perhaps in the occasional reappearance of ‘early’ variants in the 

chronic stage of infection, as such variants might not be effectively eliminated if they 

are re-activated. If, on the other hand, absolute B-cell dysregulation is widespread 

amongst natural hosts, the selection pressures favouring the evolution of the elaborate 

system of trypanosome antigenic variation would be mysterious, since parasites 

would only need to possess a handful of distinct antigens if they were able to abrogate 

immunological memory altogether. Investigations on a broader range of hosts are 

required to resolve the relative contributions of antigenic variation and 

immunosuppression to trypanosome persistence. 

Antigenic variation interacts closely with trypanosome transmission 

Alongside the extrinsic force of the immune system, trypanosomes have an 

intrinsic mechanism of population control (Magez et al. 2008; Seed and Sechelski 

1988), linked to transmission. Trypanosomes have a complex life cycle, 

encompassing numerous host species, and their success relies on efficient infection of 



feeding tsetse flies and efficient establishment of infection in new hosts. In fact, 

prolonged bloodstream presence is necessary only in so far as it enables transmission, 

and mechanisms that promote transmission are therefore likely to be under strong 

selection. Infection of a tsetse fly requires viable transmission form (‘short stumpy’) 

parasites to be taken up in the blood meal of a feeding fly (Gibson and Bailey 2003). 

Stumpy forms are generated by irreversible differentiation of resident proliferative 

form (‘long slender’) parasites, from which they differ in a number of ways 

(MacGregor et al. 2012), most notably in that the stumpy form does not replicate and 

has a half-life of only 48–72 hours (Turner et al. 1995). As a consequence, stumpy 

forms do not switch VSG, in fact, VSG transcription in stumpy forms is suppressed 

within the limit of detectability (Amiguet-Vercher et al. 2004). Stumpy form 

differentiation is triggered by an as-yet-unidentified, soluble, parasite-produced 

signal, ‘stumpy induction factor’ (SIF) (Vassella et al. 1997) which has a density-

dependent effect on the population, with two consequences: providing a plentiful 

source of stumpy forms that maximize tsetse infectivity (MacGregor et al. 2011); and 

creating a negative feedback loop that stabilizes total parasitaemia, preventing early 

death of the host (Seed et al. 2003). Every host has a carrying capacity and the 

limitations imposed are predicted to have a crucial role in the dynamics of antigenic 

variation. For example, carrying capacity varies between hosts, with some species—

those with larger blood volumes, for example—able to harbour much larger 

populations of parasites than others. The larger the parasite population size, the 

greater the chance of a particular switch event occurring, and therefore for large 

populations an acceleration of the kinetics of antigenic variation occurs (Barry 1986), 

as variants become activated sooner (Gjini et al. 2010).  

Stumpy form parasites are abundant during infection (MacGregor et al. 2011). A 

high rate of differentiation reduces the population of parasites undergoing VSG 

switching to a smaller set of ‘stem cell’-like slender forms, with important 

consequences for the dynamics of antigenic variation. If the effects of SIF are variant-

independent, differentiation could maintain rarer variants at low abundance in the 

slender form. Given that there is likely to be a lower threshold to the size of inoculum 

necessary for induction of specific immunity (Morrison et al. 1982), these 

subpopulations could be suppressed ‘below the radar’ of immune sensitivity by 

differentiation (Gjini et al. 2010) until a dominant VSG-expressor is eliminated by an 



immune response. This event opens a space in the host’s carrying capacity, allowing 

one or more of these cryptic slender form subpopulations to expand to form part of 

the next wave of parasitaemia. As the expressed VSG diversity increases, relative to 

the sensitivity of the immune response, the greater the role of differentiation in 

controlling parasitaemia, since the number of different variants at low concentration 

cannot all induce sufficiently powerful specific immune responses for their rapid 

elimination. Similarly, the larger the size of the trypanosome population, the greater 

the likelihood that harder-to-activate variants will appear in an infection, since 

switching is parasite-intrinsic. Increasing the number of variants that become 

activated tilts the balance of infection towards differentiation-based control (Gjini et 

al. 2010), increasing opportunities for tsetse transmission, but also risking premature 

host death as a consequence of persistent high parasitaemia (Seed et al. 2003). 

Negotiating this trade-off may have been important in shaping the expression 

hierarchy (Gjini et al. 2010). In this vein it is interesting to note that both rates of 

VSG switching and production of transmission forms are greatly reduced in 

extensively syringe-passaged trypanosomes, a phenotype that can be reversed by 

passing through a tsetse fly (Turner 1997). Undergoing switching may impose a cost 

arising from risky recombination events; by artificially changing the lifecycle to one 

where the ability to sustain prolonged infection confers no benefit, frequent syringe-

passaging or in vitro culture likely select for parasites that have turned down the 

switch rate. Whether and how the changes in lifecycle undertaken by non-tsetse 

transmitted trypanosomes impact on their patterns of antigenic variation would be an 

interesting subject for further investigation on this topic.  

Antigenic variation can promote superinfection and reinfection 

A trypanosome genome does not exist in isolation. Although tsetse flies have a 

broad host range, the high levels of infection found in wild populations (e.g. Njiokou 

et al. 2006) suggests that they are likely to feed on hosts which have previously been 

infected or are already harbouring a trypanosome infection, and thus which already 

are likely to have pre-circulating responses or immunological memory to many 

different VSG. Indeed, many tsetse flies are infected with more than one trypanosome 

genotype (Balmer and Caccone 2008; Macleod et al. 2001). Trypanosomes are 

therefore likely to encounter other trypanosome clones, both directly within an 

individual host, and—where destruction of immunological memory is not absolute 



(Radwanska et al. 2008)—indirectly through the immunological memories of hosts. 

These interactions between strains are likely to be a major pressure on trypanosomes, 

shaping lifecycle features including antigenic variation and the VSG archive.  

The effect of this pressure is apparent amongst VSG-expressing metacyclic 

trypanosomes entering a host in the bite of a tsetse fly. Establishing a successful 

infection in a previously infected, partially immune host requires the population of 

infecting parasites to evade circulating immunity, which may explain why metacyclic 

trypanosomes express VSG from specialized metacyclic ES (Barry et al. 1998). Each 

developing metacyclic trypanosome activates one of dozens of metacyclic ES, 

apparently at random, and so the metacyclic population shows diversity in VSG 

expression: as many as 27 different antibodies were required to neutralise all the 

metacyclic trypanosomes from a single tsetse fly (Turner et al. 1988) . Moreover, the 

VSG present in the metacyclic expression sites undergo gradual turnover (Barry et al. 

1983), facilitating superinfection and reinfection of previously infected hosts. 

The diversifying selection imposed by host immunity is expected to favour such 

strain-specificity, and indeed, this pressure extends beyond the metacyclic VSG. The 

stochastic formation of mosaic VSG over the course of infection could be viewed as a 

mechanism of generating infection-unique variants. On a broader timescale, the 

complement of archive VSG is itself likely to develop strain-specificity as the 

component genes evolve and diversify, as described further below. 

Inter-clone competition may have acted in other ways to shape antigenic variation. 

Within a host, it is likely that there is competition for resources or carrying capacity, 

particularly if different clones use the same SIF signalling pathways (MacGregor and 

Matthews 2012). Under these conditions clones that frequently undertake inefficient 

switching events such as mosaic construction will suffer a disadvantage when 

competing against clones that switch only to intact genes or switch only rarely. A 

successful antigenic variation protocol, when in competition with others, will need to 

balance efficiency of switching with scope of variability as an infection progresses. 

The battery of easily accessible minichromosomal VSG deployed early in infection 

may represent a compromise, allowing risky mosaic VSG construction to be relegated 

to the chronic stage of infection. Antigenic variation is not just a battle between a 



parasite and its host, and the effects of inter-strain competition on the diversity 

phenotype represents an interesting subject for further study.  

The VSG archive is adapted to promote rapid change of the repertoire 

Given that uniqueness and diversity in the VSG archive are likely to be favoured, 

the trypanosome genome itself is in a constant state of flux. While the ‘trypanosome 

genome’ is an extremely useful resource (Berriman et al. 2005), it represents only a 

snapshot of the genome at a single point in time. The genomes of kinetoplastids are 

extremely plastic: for example Leishmania species display considerable variation in 

chromosome and gene copy number (Rogers et al. 2011); and the sizes of 

homologous chromosomes can vary considerably between T. brucei strains (Melville 

et al. 2000). In trypanosomes, this variability has been co-opted in the evolution of the 

VSG archive. Diversity within the archive is ancient, as evidenced by the fact that 

multiple contemporary VSG lineages are shared between African trypanosome species 

(Jackson et al. 2012). However, the archive continues to evolve rapidly, such that 

differences in VSG archives may account for most of the difference in chromosome 

size between strains. For example, in one examined strain, one copy of chromosome 1 

has over half of its length devoted to VSG— around 3 Mb, potentially 600 VSG —but 

in the genome strain there are fewer than 10 VSG currently annotated in the haploid 

chromosome 1 assembly (Berriman et al. 2005; Callejas et al. 2006; Marcello and 

Barry 2007a). 

Genome variability is apparent not only in the size of the archive but also in the 

sequence of VSG genes comprising it. Strains that have minor differences in 

housekeeping genes can have large differences in their VSG repertoires, and 

repertoires appear to have diverged to become strain-specific (Bernards et al. 1986; 

Hutchinson et al. 2007). However, it is not immediately obvious how selection could 

promote these changes in the genome. An individual VSG gene will be invisible to 

selection unless it is expressed, which most are not; and the size of the archive means 

there is a degree of redundancy: any individual gene can be lost with probably little 

effect. It therefore seems unlikely that the rapid rate of change is generally the result 

of strong selection on individual VSG genes. More likely is the hypothesis that 

‘second-order selection’ (Caporale 2003) for diversity in expressed VSG has 



promoted the evolution of mechanisms that generate mutations of various sorts in 

VSG genes, resulting in the observed hyperevolution (Barry et al. 2012). 

An important adaptation promoting the evolution of diversity in VSG genes is 

their location in subtelomeres. Subtelomeres are the transitionary regions between the 

low-complexity telomere repeats at the tips of linear chromosomes, and core regions, 

in which gene content, order and intergenic sequence are shared between homologous 

chromosome partners. A key feature of subtelomeres is their rapid rate of change 

compared with chromosome cores (Riethman et al. 2005). Elevated rates of ectopic 

and homologous recombination in the subtelomeres promote diversity by allowing 

subtelomeric genes to exchange sequence in a process of segmental conversion; and 

by duplicating genes (Linardopoulou et al. 2005; Mefford and Trask 2002). Gene 

duplication may lead to relaxation of selection on one of the copies and open the 

possibility of neofunctionalisation, as has been studied in subtelomeric families of 

disaccharide utilisation genes in yeast (Brown et al. 2010). 

Most subtelomere sequence is non-coding, but these regions are frequently home 

to members of large, highly diverse families. T. brucei is only one example of a 

pathogen that has located in subtelomeres gene families that are important to a 

diversity phenotype: other subtelomeric gene families include the var, rif and stevor 

antigenic variation gene families of P. falciparum (Duffy and Tham 2007; Gardner et 

al. 2002; Hernandez-Rivas et al. 1997; Kyes et al. 1999; Scherf et al. 2008); the vir 

superfamily of Plasmodium vivax (Fernandez-Becerra et al. 2009); the major surface 

glycoproteins used in antigenic variation Pneumocystis carinii (Stringer and Keely 

2001); and various surface protein genes in T. cruzi (Moraes Barros et al. 2012). 

Partitioning of VSG genes in a different environment from chromosome cores 

provides a means for VSG to be subject to different mutational activities from core 

genes, for which a high mutation rate could be catastrophic. Specifically, the location 

of VSG in the subtelomeres means that these genes are exposed to the 

hypermutational environment of these regions, which influences the evolution of VSG 

in several ways (Barry et al. 2003). Firstly, the high subtelomeric recombination rate 

will likely promote duplication of VSG. The duplication of intact genes might be a 

mechanism for replenishing the archive, compensating for the degeneration of 

pseudogenes and their eventual loss of from the usable archive (Nei and Rooney 



2005). Other mutagenic processes acting on the two gene copies could then eventually 

produce two antigenically distinct VSG. The frequent occurrence of duplications also 

has an effect beyond creating more VSG genes, because it results in the presence of 

subfamilies in the archive: VSG genes have very low identity to most others in the 

archive, but around 40% of genes in the TREU 927 archive have a high-identity 

partner, presumably due to a recent duplication (Marcello and Barry 2007a). This 

subfamily structure is thought to be key to providing multiple donors of sufficient 

identity to each other to assemble mosaic VSG genes, allowing evolving diversity in 

pseudogenes to be accessed. The existence of closely-related genes within the archive, 

combined with the high level of ectopic recombination in the subtelomere, can also 

generate new combinations of VSG sequence through a process of segmental 

conversion (Gjini et al. 2012b). There is some debate as to whether recombination is 

capable of increasing diversity (Martinsohn et al. 1999), but it is possible that an 

effect of ectopic recombination in VSG arrays may be to assemble antigenically novel 

genes in a process analogous to the generation of mosaic VSG during infection. 

Interestingly, it appears that recombination between VSG has been less important in 

shaping the T. congolense and T. vivax archives, suggesting that antigenic diversity is 

generated by distinct mechanisms in each species (Jackson et al. 2012). 

Secondly, comparison of genes within the TREU 927 VSG archive has been used 

to infer the events of VSG evolution, and these analyses have suggested that smaller-

scale mutational processes are also important, namely point mutation and short 

insertion-deletions (Gjini et al. 2012b; Marcello and Barry 2007a). Analysis in our 

laboratory of the VSG archives of sequential isolates of one trypanosome strain has 

indicated that substitution mutation processes are both qualitatively and quantitatively 

different in VSG from cores, with substitution mutations accumulating at silent sites at 

a rate several times higher in VSG than in core genes (L.P., T. Otto, M. Berriman, and 

J.D. Barry, with permission). The role that such small mutations might play in 

antigenic variation is unclear. The scale and rate of point mutations indicate that point 

mutation is unlikely to produce antigenically novel sequence rapidly enough to make 

a substantial contribution to antigenic variation in a single infection of a single host 

(Graham and Barry 1996). However, the accumulation of small mutations over a 

longer timescale could introduce new diversity to the archive, and might give an 



advantage at the scale of the parasite population if it allowed infection of a previously 

infected host. 

As noted above, VSG archives vary considerably between strains. The occurrence 

of changes at the sequence level are a key feature of VSG evolution, but other factors 

are also thought to be involved in building archive strain-specificity. One hypothesis 

is that trypanosomes have ceased to exchange sequence between telomeres and 

subtelomeres during meiosis. Meiotic recombination tends to homogenise gene 

sequences between homologous chromosomes, and the removal of this homogenising 

effect would promote the divergence of archives between strains as they accumulated 

different changes (Hutchinson et al. 2007). A second possible factor is the operation 

of population bottlenecks: migration to the tsetse salivary glands appears to be a 

severe bottleneck in the parasite life cycle (Oberle et al. 2010; Van Den Abbeele et al. 

1999), and as such could rapidly fix different variants in different populations. 

The subtelomeric VSG arrays, therefore, represent a large repository of 

information available for the trypanosome to use in antigenic variation, but their role 

goes considerably beyond that of an inanimate archive. Rather, the arrays are potent 

generators of diversity, driven by an active hypermutation protocol. The mutations 

that occur under this protocol are likely to introduce pseudogenicity, which imposes a 

requirement for the formation of mosaic VSG during infection, if the full range of 

antigens is to be exploited. Additionally, the accumulation of mutations contributes to 

strain specificity. Thus, the structure and evolution of the VSG archive plays a key 

role in antigenic variation at several levels (Gjini et al. 2012a). 

Going forward 

In summary, African trypanosome antigenic variation is a genome strategy for 

prolonged infection and transmission, a diversity phenotype that emerges at the 

population level amongst clonally related parasites. The antigenic variation system 

operates through an immunogenic surface coat of VSG, which shields invariant 

surface molecules and protects the cell from the innate immune system. Expression 

can readily switch to a different VSG resulting in a diverse population that pre-empts 

adaptive immunity. The diversity phenotype emerges at the population level from the 

operation of a complex network of molecular actors that maintain strict monoallelic 



expression and effect switching between VSG in a frequent, spontaneous and 

stochastic manner. The VSG repertoire, although containing a huge number of silent 

VSG, contains many pseudogenes. The construction of mosaic VSG allows use of 

these pseudogenes and may also be important for introducing combinatorial diversity 

into the system and allowing the generation of infection-specific variants. In the 

longer term, the evolution of diversity is promoted by adaptations that shape the VSG 

archive, notably the location of the main part of the archive in hypermutational 

subtelomeres. Antigenic variation is likely to have a profound influence in the 

dynamics of infection and superinfection, which are determined by the interaction of 

many factors including the probabilistic order of VSG expression, differentiation, the 

action of immune effectors, and inter-strain competition. 

African trypanosome antigenic variation represents a highly successful survival 

strategy, and as such is an inherently interesting biological phenomenon. Currently, a 

considerable amount of detail is being elucidated in terms of understanding the 

molecular mechanisms of antigenic variation, with demonstration of involvement for 

numerous proteins (e.g. reviewed in Alsford et al. 2012 and Morrison et al. 2009). In 

the future, perhaps we can look forward to the integration of these data into a more 

complete model of the mechanisms of antigenic variation from the molecular level 

upwards. Important to the development of any model would be a consideration of low 

frequency events which are likely to occur in the large populations in which antigenic 

variation is made manifest. For example, elucidating the molecular details and 

temporal dynamics of mosaic VSG assembly would provide a key to the processes 

facilitating chronic infection. Further illumination would be given by a better 

understanding of the infection biology and antigenic variation systems of non-brucei 

African trypanosomes, which are beginning to be less neglected (e.g. Chamond et al. 

2010; Coustou et al. 2010; Greif et al. 2013). Such comparative studies, along with 

the wider availability of genome data, are also yielding insights into the evolution of 

the VSG archive (Jackson et al. 2012); further research on these patterns will be useful 

in inferring the selective pressures that have shaped this system in related species. 

Increasing availability and sensitivity of deep sequencing techniques will be 

invaluable in dissecting the composition of the trypanosome population over the 

course of infection, which could become a powerful tool in the study of infection 

dynamics. Finally, it will be important to resolve the within-host interaction, and the 



broader evolutionary interplay, between antigenic variation and immune suppression, 

as the details and significance of the latter become better understood. Because it is so 

closely allied to various fundamental aspects of parasite biology and dynamics of 

population diversity, future studies of trypanosome antigenic variation are likely to 

provide insights not only in understanding this specific system, but also into broader 

questions associated with fields as broad-ranging as gene expression, DNA 

recombination, host-parasite co-evolution and biological diversity. 
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Fig. 1 a Each VSG dimer is an extended structure consisting of an N-terminal 

domain (NTD) and a C-terminal domain consisting of one or two subdomains. The 

membrane-distal end of the NTD is the region of the glycoprotein exposed to immune 

effectors on an assembled surface coat. b The assembled surface coat sterically 

hinders access of host immune effectors to the cell membrane or invariant surface 

proteins. Images were assembled using Protein Data Bank structures 1vsg, 1xu6, 1rcj 

and 1igt, were visualized using Pymol (Schrödinger, LLC), and were inspired by 

Engstler et al. (2007). 

  



 

Fig. 2 a Several different locus types contain the silent VSG archive. Circles indicate 

archive VSG present at silent ES, minichromosomes and in subtelomeric arrays. The 

areas of the circles are approximately proportional to the relative number of VSG at 

each location type. The approximate number of VSG present at each location is given 

below each circle; the exact number varies between strains. In the case of the 

subtelomeric arrays, the circle is divided proportionally according to the intactness of 

silent VSG (after Marcello et al., 2007). Silent ES and minichromosomal VSG are 

thought to be largely intact. b VSG are expressed according to a hierarchy. For each 

process, intensity of shading indicates the relative importance in activating novel VSG 

over the course of infection. Recombinatorial switching assumes prominence over 

transcriptional switching beyond the early stages of infection. Telomere-resident VSG 



in silent ES and minichromosomes are activated more readily than those in the VSG 

arrays. Pseudogenic VSG require low-probability segmental gene conversion events to 

be accessed, and tend not to appear until the chronic stage of infection in the form of 

mosaic VSG. This diagram was inspired by Morrison et al., (2009). c Expressed VSG 

are diverse, and mosaic VSG become increasingly predominant as infections progress 

and immunity neutralises readily-activated single-donor VSG. Coloured rectangles 

are a stylised representation of expressed VSG that might be sampled at different 

points of infection. Different colours represent different donors. Note that it is likely 

that the total population of expressed VSG is much richer at any given point than 

indicated here. 

  



 

Fig. 3 a Subtelomeric VSG arrays are found across the T. brucei genome. 

Chromosome numbers are shown in boxes, numbers in italics above subtelomeric 

arrays indicate the number of genes in each in the current version of the TREU 927 

genome assembly. Lines projecting above the line of the chromosome represent VSG 

genes, pseudogenes or gene fragments on the forward strand; those projecting below 

represent the same on the reverse strand. For chromosome 11, the assembly consists 

of a main contiguation and two much smaller fragments: only the main contiguation is 

shown, although the fragments not shown also contain VSG. b Stylised structure of 

part of a VSG array, showing VSG cassettes with features with homology with 

expression sites. The red box indicates the approximate scale in a of the part of the 



array shown.  c Stylised representation of the principal features of a telomeric VSG 

expression site. 

 


