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Abstract

The paper proposes a new, robust cluster-based classification technique for Nov-

elty Identification in sensor networks that posses a high degree of correlation

among data streams. During normal operation, a uniform cluster across ob-

jects (sensors) is generated that indicates the absence of novelties. Conversely,

in presence of novelty, the associated sensor is clustered distinctly from the re-

maining sensors, thereby isolating the data stream which exhibits the novelty. It

is shown how small perturbations (stemming from noise, for instance) can affect

the performance of traditional clustering methods, and that the proposed vari-

ant exhibits a robustness to such influences. Moreover, the proposed method is

compared with a recently reported technique, and shown that it performs 365%

faster computationally. To provide an application case study, the technique is

used to identify emerging fault modes in a sensor network on a sub-15MW indus-

trial gas turbine in presence of other abrupt, but normal changes that visually

might otherwise be interpreted as malfunctions.

Keywords: Novelty Detection, One-Class Classifier, Hierarchical Clustering,

Artificial Intelligence, Sensor Networks, Fault Detection and Isolation.

1. Introduction

Novelty detection is regarded as the task of discovering data whose characteris-

tics differ from that available during training or otherwise designated normal in

Preprint submitted to Applied Soft Computing August 23, 2020



some capacity. The practical advantages of novelty detection techniques have

benefited many application areas where typically a large number of normal ob-

servations (termed positive examples) are obtained with the view to identify

statistically significant anomalies in the subsequent data. Common examples

include robotics [5], medical diagnostic [1, 2], failure detection in complex in-

dustrial systems [3], fraud detection [4], and sensor networks [6, 7]. In almost all

cases, the underlying dynamic characteristics of the particular system provides

an important insight for selection and design of the novelty detection mecha-

nism. However, such models that represent the dynamic characteristics, are not

always readily available, especially when considering interactions of networks of

complex subsystems. Moreover, the designer is unlikely to be able to determine

all potential scenarios that could lead to the generation of novelty even when

“good” models are available. Therefore, novelty detection methods often rely

on hidden features that are extracted by statistical analysis of the relevant data

(see [8] for a survey of widely used techniques).

Novelty detection algorithms are generally categorised into either machine-

learning-, or statistical-based techniques. Statistical techniques themselves are

divided into non-parametric and parametric methods. Parametric methods

model the data by assuming some underlying distribution (e.g., Normal), whereas,

non-parametric methods do not make such a-priori assumptions [15]. Machine-

learning techniques, on the other hand, are defined by classification tasks where

the goal is to learn a model that correctly classifies an unseen object into a cor-

rect subclass of data. Machine-learning-based classifiers can be considered as

either supervised or unsupervised depending on whether or not a correctly sub-

classed data is used for training a model. For simplicity, multi-class supervised

classification problems for novelty detection are conventionally decomposed into

several binary classification tasks. For such problems, a set of training samples

X = {(xi, θi)|xi ∈ RD, i = 1, ..., N}, where each sample consists of a D dimen-

sional vector xi and a corresponding class θi ∈ {−1, 1} are given. From this

training dataset, a function H(x) that maps a given input x⋆ to an estimate of
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one of the two targets is constructed.

Typically, despite the increasing availability of data, the lack of appropriate

training examples remains one of the key challenges for novelty detection on

complex industrial systems. Consequently, in applications where novelty is

rare, but can be catastrophic, unsupervised learning schemes are often the most

appropriate choice. Despite the reporting of many diverse novelty detection

techniques, the resulting performance benefits are typically very application-

specific [16]. For instance, robust Principal Component Analysis (PCA) [9] and

its neural network equivalent, robust autoencoders [10] are perhaps the most

widely used unsupervised novelty detection techniques. Whilst these have been

demonstrated to achieve satisfactory novelty detection performance in some

applications where a portion of multi-sensor data exhibits novelty, they often

fail to correctly isolate novelty when widespread abnormality across the collec-

tive dataset is present. Hierarchical clustering is another common unsupervised

technique used for structural analysis of data [11, 12, 13]. Despite outputting

a graphical representation that illustrates the natural clusters within the data,

the representation can be quite complex to interpret, specially when dealing

with large datasets [14]. Moreover, small perturbations (such as noise) can

significantly alter the cluster arrangements.

Also with data getting bigger and bigger storage limitations [17] become another

challenge. This is compounded by a common requirement for novelty detection

algorithms to be able to be applied on streaming data.

This paper extends and builds on the preliminary results originally reported

in [6] by providing an industrial scenario that illustrates where such algorithms

are needed, analysing the sensitivity and robustness of the algorithm, investigat-

ing the buffer length effect on threshold selection, scenarios where the algorithm

needs to reject a false alarm along with an additional real industrial scenario, and

verifying how the algorithm performs compared to other alternatives. There-

fore, a robust hierarchical clustering algorithm for novelty detection in sensor

networks is developed that addresses the aforementioned issues that might come
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up as a consequence of using classical methods. The algorithm can be applied

both offline and online on streaming data and its output is readily interpreted.

The notations used in this paper are given in Table 1.

Notation Definition

N Number of individual data streams

x New data sequence of dimension N

S Vector of N variables used for calculation of

incremental variance

buffer len Fixed size of the buffer

bufferi i-th buffer of length win length , i = 1, 2, ..., N

L Number of data-points in wini

mean buffer Vector of N mean values for data-points within

their respective windows

mean pop Vector of N mean values for the whole dataset

(population) so far

mean pre Vector of N mean values for the whole data-set at

the previous timestamp

std pop Vector of N standard deviation values for the whole

dataset at current time

std score Vector of N values indicating number of standard

deviations which an observation is above or below

the corresponding mean pop

SE Standard error of the data set at current time

data len Length of the dataset at current timestamp

⊘ Element-wise division operator

◦√
Element-wise square root operator

◦ Schur product operator

Table 1: Notations

In the sequel, an overview of classical hierarchical clustering is initially provided

in Section 2 and its shortcomings for novelty detection are discussed by use of an

example. Section 3 provides the primary contribution of the paper, where the

robust hierarchical clustering algorithm for novelty detection is developed. In

so doing, it is seen that the algorithm exploits the correlation among sensors to

reduce the computational complexity. Moreover, to further address the storage

limitation issues, an updating mechanism is used that only stores the current

“state” of the novelty detection procedure whilst forgetting all the previously

stored states. In Section 4, a number of industrial scenarios are used to demon-

strate the efficiency and advantages of the proposed methodology. Section 5,
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compares the algorithm with a number of available alternatives. Finally, Section

6, concludes the paper by summarising the performance of the algorithm.

2. Classical Hierarchical Clustering

Hierarchical cluster analysis is commonly used for structural analysis of data.

From the similarities between the objects of a dataset, typically described by a

pair-wise distance matrix, a graphical representation (conventionally a dendro-

gram) is generated that hierarchically clusters the most similar objects together.

Contrarily, objects that are clustered furthest apart represent those that are

‘most different’.

To determine which clusters should be formed or split, a measure of similarity

between sets of observations is required. This is often obtained via an appro-

priate metric (that describes the distance between pairs of observations), and

a linkage criterion which specifies the similarity of sets as a function of the

pairwise distances of observations.

While hierarchical clustering does not require a pre-specified number of clusters

as input, its output is more informative and structured.

Consider a set of N objects and a corresponding N × N pair-wise distance

matrix, the basic process of Johnson’s hierarchical clustering [18] is summarised

below:

I. Each object initially is assigned an individual cluster resulting in forma-

tion ofN clusters. Distances between the clusters are given by the distance

among the containing objects.

II. Determine the closest cluster pair and merge them to form a single cluster;

the number of clusters is therefore reduced to N − 1.

III. Calculate the distances between the newly formed cluster and the remain-

ing ones. Distance measures can be obtained through various metrics and
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linkage methods, eg., complete-link, single-link, and average-link [19]. In

complete-link clustering (also called the maximum method), the distance

between one cluster and another cluster is considered to be the maximum

distance from any member of one to any member of the other. In the

single-link method (also termed the minimum method), the distance be-

tween two clusters is considered to be the minimum distance from any

member of one to any member of the other. Finally, in the average-link

method, the distance between two clusters is considered to be the average

distance from any member of one to any member of the other.

IV. Repeat steps II and III until all items are included inside a single cluster

of size N .

While the outlined procedure for hierarchical clustering outputs an informative

hierarchy that gives a general sense of the data structure (in terms of proximity

of measurements) and its underlying patterns, it is not capable of novelty iden-

tification except during some uncommon conditions (e.g., a considerably large

outlier). Moreover, small perturbations and even different clusters aggregation

methods for the same data set can produce different hierarchies and hence dif-

ferent partitions [20].

2.1. An Illustrative Example

Consider a pair-wise distance matrix obtained from a single set of measurements

from 6 burner-tip temperature sensors {S1, S2, ..., S6} on an industrial gas tur-

bine, given as follows. Absolute differences in temperature (◦C) are used as the

distance measure in this case.
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S1 S2 S3 S4 S5 S6





S1 0 116.48 154.73 33.22 50.33 18.65

S2 116.48 0 38.71 18.03 66.42 97.97

S3 154.73 38.71 0 121.93 104.64 136.26

S4 33.22 18.03 121.93 0 18.03 15.02

S5 50.33 66.42 104.64 18.03 0 31.87

S6 18.65 97.97 136.26 15.02 31.87 0

The task is to find the sensors that have the most (or the least) similarities in

their measurements. To achieve this, the four stages of the hierarchical clus-

tering, outlined above, is applied using the complete-link method. As can be

observed from the distance matrix, the minimum pair-wise distance is the cor-

responding distance for (S4 and S6). Therefore, the pair is selected to form a

cluster with a height that indicates the distance of these sensors (see Figure 1).

S 4 S6
0

15.02

Figure 1: First cluster formed via the complete-link method.

The newly formed cluster is subsequently considered as a composite measure-

ment and the new measurement set becomes:

{S1, S2, S3 (S4, S6), S5} .

The pair-wise distance between the composite (S4, S6), and the remaining sen-

sors are considered to form the distance matrix for the second stage of hierar-

chical clustering:
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S1 S2 S3 (S4, S6) S5





S1 0 116.48 154.73 33.22 50.33

S2 116.48 0 38.71 97.97 66.42

S3 154.73 38.71 0 136.26 104.64

(S4, S6) 33.22 97.97 136.26 0 31.87

S5 50.33 66.42 104.64 31.87 0

,

from which, the second cluster is formed analogously between S5 and (S4, S6)

(see Figure 2).

S 4 S6S5
0

15.02

31.87

Figure 2: Second cluster formed via the complete-link method.

The process continues until only a single cluster is formed that contains all the

previously formed clusters (Figure 3):

S 4 S6S5S2 S3 S1
0

15.02

31.87

154.73

50.33

38.71

Figure 3: Final cluster generated using the complete method.
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2.2. Effects of perturbations and sensor inaccuracy

Consider the distance matrix obtained for the second cluster of the previous

example. The smallest pair-wise distance is calculated as 31.87 and between(
S5, (S4, S6)

)
. However, note the next minimum distance which is between(

S1, (S4, S6)
)
and calculated as 33.22. The two inferred distances can be consid-

ered essentially identical in the presence of perturbations and sensor inaccuracy.

For example, considering the burner-tip temperatures of an Industrial Gas Tur-

bine (IGT), typical temperature measurements are around 800◦C. Therefore,

a very small change in the measurements can consequently change the cluster

arrangement significantly resulting in inconsistency of the outcome of classical

hierarchical clustering algorithm for the intended application of novelty detec-

tion.

3. Robust Hierarchical Clustering

As seen in Section 2, despite being a powerful tool for multivariate data analysis,

hierarchical clustering may not be sufficiently robust for novelty detection un-

der realistic scenarios. Moreover, the generated hierarchy is often complex and

difficult to interpret leading to several stages of post-processing being required

to identify the natural clusters. These motivate the need for a new clustering

technique that not only inherits the advantages of hierarchical clustering whilst

addressing traditional limitations. Here then, a one-class classification method

is developed that classifies the data which exhibit a high degree of correlation in

the same cluster while showing robustness against noise compared to the con-

ventional hierarchical clustering method. As a result, the generated hierarchy

is also much simpler to interpret without any post-processing.

In presence of noise, the technique aims to a. Identify novelty in the stream of

data (if it exists) b. Identify the source of novelty. To achieve this, the next

section of the paper is subdivided into two parts. Firstly, the robustness issue is

addressed. Secondly, a robust one-class clustering technique for online novelty

detection is developed.
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3.1. Robustness

To alleviate effects of perturbations, a smoothing stage before applying the

clustering method of choice (e.g., complete-link, average-link, ...) is introduced

on the pair-wise distance matrix which relaxes the imposed clustering sensitivity.

Consider a pair-wise distance matrix D ∈ R(N×N):

S1 S2 ... SN−1 SN





S1 0 d12 ... d1(N−1) d1N

S2 d21 0 ... d2(N−1) d2N

...
...

...
. . .

...
...

SN−1 d(N−1)1 d(N−1)2 ... 0 d(N−1)N

SN dN1 dN2 ... dN(N−1) 0
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and D⋆ is given by:

m1 m2 ... mk−1 mk





m1 0 d⋆12 ... d⋆1(k−1) d⋆1k

m2 d⋆21 0 ... d⋆2(k−1) d⋆2k

...
...

...
. . .

...
...

mk−1 d⋆(k−1)1 d⋆(k−1)2 ... 0 d⋆(k−1)k

mk d⋆k1 d⋆k2 ... d⋆k(k−1) 0

.

3.1.1. Illustrative Example

Consider the following distance matrix D ∈ R3×3 is given (N = 3):

D =

S1 S2 S3





S1 0 116.48 117.01

S2 116.48 0 38.71

S3 117.01 38.71 0

.

The matrix describes the pair-wise distances between three sensors {S1, S2, S3}.

To construct D∗:

1. Construct the set D whose elements are the upper (or lower) triangu-

lar block of D. That is, D = {116.48, 117.01, 38.71}. Moreover, denote
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members of D by mk, k ∈ {1, 2, ..., 3(3−1)
2 }. That is m1 = 116.48,m2 =

117.01,m3 = 38.71.

2. Compute the elements of D∗ which are define by:

d⋆pq = |mp −mq|, p, q ∈ {1, 2, ..., 3(3− 1)

2
} .

More precisely:

d⋆1,1 = |m1 −m1| = 0 d⋆1,2 = |m1 −m2| = 0.53 d⋆1,3 = |m1 −m3| = 77.77

d⋆2,1 = |m2 −m1| = 0.53 d⋆2,2 = |m2 −m2| = 0 d⋆2,3 = |m2 −m3| = 78.3

d⋆3,1 = |m3 −m1| = 77.77 d⋆3,2 = |m3 −m2| = 78.3 d⋆3,3 = |m3 −m3| = 0

which results in:

D∗ =

m1 m2 m3





m1 0 0.53 77.77

m2 0.53 0 78.3

m3 77.77 78.3 0

.

By introducing a tolerance threshold, η, the elements that satisfy d⋆pq ≤ η in-

dicate that their corresponding pairs (dpq, dqp), in the original distance matrix

D are susceptible to perturbations and therefore are replaced with their mean

value.

Applying this iterative smoothing algorithm on the illustrative example detailed

in 2.1, the two clusters of Figure 2 now merge to form a single cluster (see Figure

4). The process continues until data from all of the sensors form a single cluster.
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Algorithm 1: Iterative Smoothing Algorithm.

while Receiving data do

# D ∈ R(N×N) is the pair-wise distance matrix.

D⋆ = zeros (N,N)

for i = 1 to N do

for i = j to N do

if min (|D - D[i, j]× IN×N |) < η then

# Get the index of the closest pair to D[i, j]

[k, l] = index(min(|D−D[i, j]× IN×N |)]

D⋆[i, j]←−mean(D[i, j],D[k, l])

D⋆[j, i]←− D[i, j]

# Generate clusters from the new distance matrix.

return cluster (D⋆)

S 4 S6S5
0

15.02

31.87

(a)

0

S 4 S6S5

23.44

(b)

Figure 4: (a) The two clusters generated as a result of classical hierarchical clustering. (b) A

single cluster, constructed by applying the iterative smoothing algorithm.

3.2. A Robust One-Class Technique For Online Novelty Detection

Now consider N streams of highly correlated data and define a fixed-size buffer

for each stream, respectively, that stores the incoming data on a First In First

Out (FIFO) basis. The data stored in these buffers are referred to as samples,

whereas the whole data obtained so far is the population. For each data-point
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that enters a buffer, a standard score is calculated (see Algorithm 2) which

indicates how the new information has changed the sample distribution with

respect to its respective population. If a novel data-point enters one of the200

buffers, it is expected to result in the generation of a significantly different

standard score. To exploit the correlation amongst the data, these standard

scores are adopted to calculate a pair-wise distance matrix. Then, classical

clustering with the smoothing stage is applied across the buffers that ultimately

results in the formation of a single cluster if novelties are not present in the data.

Alternatively, the smoothing stage, and specifically the condition imposed by

η can be viewed as a requirement that the objects of the distance matrix, D,

to ultimately fall inside the same cluster unless they are significantly distant

(i.e., novel) from the rest. In this latter case, a new cluster is formed by the

significantly distant object. In case where all objects (sensors) exhibit abnormal

characteristics, the height of the generated dendrogram will be several times

greater than those of normal profiles and therefore can be thresholded to raise

an alarm.

For completeness, the robust hierarchical clustering algorithm is summarised

below:

I. Rolling windows of N streams of data with a predefined buffer size L are

captured to read the incoming signals, i.e., a FIFO buffer.

II. Algorithm 2 is applied to data streams to generate the corresponding

standard scores.

III. From the standard scores, a pair-wise distance matrix is generated.

IV. Hierarchical clustering with the pre-smoothing stage is performed on the

distance matrix generated from the standard scores (Algorithm 1).
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Algorithm 2: Real-time Standard Score Calculation Algorithm.

Initialise: data len = 0

for i = 1 to N do

| buffer i = buffer of fixed size buffer len

end

S = zeros (N)

std scores = zeros (N)

mean win = zeros (N)

mean global = zeros (N)

while Receiving data do

Let: x = new data

increment: data len

L = min(buffer len, data len)

Let: mean pre = mean pop

mean new = mean pre +

(
x−mean pre

)
data len

S = S+
(
x−mean new

)
◦
(
x−mean pre

)
stdpop = ◦

√
S

datalen

SE =
stdpop√

L

Let: mean pop = mean new

for i = 1 to N do

buffer i.append (x[i])

mean buffer = Mean (bufferi)

std scores = |mean buffer −mean pop| ⊘ SE
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3.3. The Tolerance Level η

The tolerance level η plays a pivotal role in the cluster reduction process of

the developed algorithm. Here, a methodology based on quantile analysis of

the data and originally reported in [3], is adopted to determine a suitable η to

minimise false-alarms.

Definition 1. [21] Consider a random variable X with the probability distribu-

tion function F and let 0 < p < 1. A value xp is called a quantile of order p

if

P{X < xp} ≤ p ≤ P{X ≤ xp} ,

or equivalently

F(xp − 0) ≤ p ≤ F(xp) .

Normalising quantiles between 0 and 100 results in a relative measure known as

percentile.

In pursuit of a suitable η, Algorithm 3 is applied to a carefully selected training

dataset that does not contain novelty. Distance matrices are generated and

corresponding minimum pairwise distances are stored. The quantile function

(inverse Cumulative Distribution Function (CDF)) is then applied on the stored

distances to determine the higher observation quantiles. Then, given a desired

reliability n, the n-th percentile is selected as η.
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Algorithm 3: Algorithm For Selecting The Tolerance Level η.

Initialise: T stack = [ ]

while Receiving data do

store(data)

Run: Algorithm 1

get(std score )

generate (D)

# D△ is the lower triangular part of D.

∆←− sort(unstack(D△))

for i = 1 to (N ×N)−N/2 do

L ← ∆[i+ 1]−∆[i]

T stack.append (min (L))

# quantile(q) computes the q-th quantile.

# n is the desired reliability level.

η = T stack.quantile(n)

3.4. Buffer Size

The proposed algorithm utilises rolling windows (buffer) of size L to calculate the

standard scores. As a parameter of the algorithm, the buffer size L used during

the so-called “training” process should remain the same in the “evaluation”.

For completeness, the impact of various buffer sizes on the performance of the

algorithm is analysed.

At each time-step that all windows roll forward to absorb the incoming measure-

ments, a set of standard scores are generated (one score per window). Standard

scores are the signed number of standard deviations by which the value of an

observation or data point is above or under the mean value of what is being ob-

served or measured thus far. The generated scores at each time interval provide
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information on how a single incoming measurement changes the sample, com-

pared to the population. Hence, with a larger buffer size a greater change in the

measurements is required to change the sample with respect to the population.

Figure 5 shows how the window length (buffer size) affects the sensitivity of the

algorithm.

0 20 40 60 80 100 120
Window Length (m inutes)
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Figure 5: Effect of using various window lengths.

In spite of sensitivity, since the threshold is determined with the same buffer

size as used later for the novelty detection procedure, ultimately, performance

of the algorithm is more or less independent of the choice of the buffer size if

the same parameters are used and the same sensitivity is desired.

4. Industrial Case Studies

To demonstrate the value of the proposed methodology and provide an appli-

cation focus, fault detection and isolation problem for an industrial system is

considered. Specifically, a set of thermocouple sensors measuring burner-tip

temperatures of a Siemens IGT are chosen. All measurements are obtained

from the actual operation of the engine in the field. As shown in figures 6a

and 6b, burners are accommodated in 6 circumferential equidistant combustion

chambers. Considering the relative proximity of the burners, it is expected to

observe a high degree of correlation among the data during normal operation

of the engines. Importantly, due to operational reasons (e.g., change of load),

measurements can contain abrupt change-points that are not a indicative of an

18



(a)

(b)

Figure 6: (a) Structure of a gas turbine. (b) Annular array of burners in an IGT

impending malfunction and should be considered normal. Failure to detect an

impending malfunction, can result in serious structural damages (e.g., deforma-

tion and cracking) and consequently longer maintenance down-time. Therefore,

this provides a practical demonstration for how the developed classifier discrim-

inates between the normal and abnormal operating conditions without unduly

triggering false-alarms

4.1. Case 1: Emerging Burner Failure

Initially, Algorithm 3 is applied and from the resulting CDF plot (see Figure 7),

a threshold value of 21 corresponding to the 95% detection confidence level is

chosen.
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Figure 7: CDF plot for threshold determination.

Choosing a lower confidence level (e.g., 90%) results in a higher false-alarm rate.

However, a higher confidence level may miss some of the statistical indications

of an impending failure and detect the emerging fault comparatively later [3].

The first practical scenario considers operation of an IGT where one of the sen-

sors monitoring burner-tip temperatures exhibits abnormalities (see Figure 8).

Despite the malfunction, the engine was kept operational afterwards, incurring

further sub-sequential damage.

Figure 8: Thermocouple measurements for the 6 sensors (degrees ◦C). Sensor 6 exhibits

abnormalities.
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To demonstrate the advantages of the robust hierarchical clustering, 30 days of

data from the 6 thermocouples are collected prior the to the malfunction day. By

applying the algorithm, subsequent clusters are generated for each time window

of 1 hour. Figure 9 provides an example of such generated clusters that indicate

a normal operation (i.e., absence of any novelties).

S1 S2 S3 S4 S5 S6
0

7

Figure 9: Dendrograms generated before the malfunction.

However, on the day the malfunction occurs (see Figure 10), as the signs of

the malfunction emerge, cluster formation also changes to indicate presence of

novelty. Specifically, the sensor that exhibits the novelty (i.e., S6) is clustered

separately with respect to rest of the sensors, as can be seen from Figure 11.

Timestamp

Figure 10: Thermocouple measurements for the 6 sensors (degrees ◦C) on the day of malfunc-

tion.

21



0

10

30

0

10

70

S
1

S
2

S
3

S
4

S
5

S
6

S
1

S
2

S
3

S
4

S
5

S
6

10:00:00 to 10:59:00 11:00:00 to 11:59:00

Figure 11: Generated clusters as the result of the emerging malfunction.

Moreover, on the day of malfunction (Figure 10), the data trend changes mul-

tiple times for each sensor. Specifically, a sudden change measured by S3 and

S4 is seen at about 15:00 while S6 indicates the emergence of a malfunction.

This change is not flagged by the robust hierarchical clustering algorithm as a

result of a correctly chosen tolerance level, η, thereby successfully identifying

the emerging malfunction without raising any false-alarms.

4.2. Case 2: Rejecting False Alarms

As previously described, an important feature of novelty detection schemes is

minimising the number of false-alarms whilst also being significantly sensitive

enough to detect emerging failures in a timely manner. A practical example

is now given using another set of burner-tip temperature measurements taken

over a period of 1 day (see Figure 12). During the period depicted in Figure

12 it is known that no failure was present on the unit although the measure-

ment data visually contains abnormal characteristics that would typically be

perceived/detected as indicative of a failure or an emerging fault. Specifically,

it can be seen that multiple periods of transient behaviour of the unit, and hence

the temperature characteristics. However, these expected changes are due to an

intentional change of load. While, individually, any of these periods could be

considered as indicating a fuel system fault to the respective burner, the ro-

bust hierarchical clustering algorithm does not identify a fault in this instance

since there is a collective behavioural change exhibited by all sensors. An alarm

is therefore not raised and the engine continues to operate and a dendrogram
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Figure 12: Burner temperatures (degrees ◦C) over a period of 1 day.

similar to that of Figure 9 is generated by the robust hierarchical clustering

algorithm during the period of 1 day indicating no malfunctioning has occurred

during the test period.

5. Comparison With Alternative Methods

In this section, the proposed method is compared with two other techniques

that are commonly employed to detect novel characteristics in sensor networks.

5.1. Hierarchical Cluster Analysis

Classical Hierarchical cluster analysis is one of the common techniques used for

classification in sensor networks (see e.g., [23] for a comprehensive review).

Performing either single-link, average-link, or complete-link hierarchical cluster-

ing analysis for the case study represented in Section 4.1, results in inconsistent

clusters, some of which are shown in Figure 13 :
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Figure 13: Dendrograms generated via hierarchical cluster analysis.
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As can be observed from Figure 13 the dendrograms indicate a large deviation

of sensors S5 (a) and S3 (b) while in fact S6 is the sensor whose measurements

indicate a malfunctioning. A comparison of Figure 13 (c) and the corresponding

time slot shown in Figure 11 reveals that using the robust hierarchical clustering

algorithm, the malfunctioning could have been detected and isolated successfully

while the classical hierarchical cluster analysis methods fail to detect at all.

5.2. Changepoint Detection

Recently an online 2-D changepoint detection algorithm for sensor-based fault

detection, has been proposed [3]. The methodology consists of i) a differential

detector which analyses characteristics across datasets at a particular instant,

and ii) a standard detector which when combined can detect anomalies through

identification of meaningful changepoints. While the changepoint detection al-

gorithm successfully detects and isolates failures, the computational effort is

much greater (hence takes longer to execute) than that of the robust hierarchi-

cal clustering algorithm. To verify this, both algorithms are applied under the

same conditions on a number of industrial scenarios and the runtime for each

algorithm is measured (see Table 2 for the average runtime comparison).

Changepoint Detection Robust Hierarchical Clustering

Average Runtime 5.1 (s) 1.4 (s)

Table 2: Robust hierarchical clustering vs. Changepoint Detection runtime

In addition to a longer runtime, the changepoint detection algorithm requires

two thresholds to correctly determine the time and location of the failure. There-

fore, two stages of data processing are required to determine the thresholds,

namely, one stage to determine the threshold for the standard detector and

the other to determine that for the differential detector. However, the robust

hierarchical clustering algorithm requires only one stage of data processing to
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determine the noise tolerance level. To a first approximation, the set-up time is

therefore essentially halved.

6. Conclusions

A one-class clustering algorithm, termed robust hierarchical clustering, for nov-

elty identification in highly correlated datasets (e.g., those obtained from a sen-

sor network) is developed. As a result, a uniform cluster of all objects (sensors)

is generated where novelties do not exist. However, in presence of a novelty,

the formation of clusters change such that the object (sensor) that contains the

novelty is clustered separately. Efficacy of the classifier is examined in a number

of actual industrial case studies where it is shown how the classifier discrimi-

nates between those trend changes that are due to operational reasons and those

that are indicative of an emerging malfunction. Such algorithms play an impor-

tant role in industries where the limited workforce cannot meet the demands

of daily monitoring of a large number of systems. Compared to other proposed

techniques (e.g., [3]), the algorithm executes 364% faster and requires only a

single threshold to be determined a-priori. Whereas for the technique proposed

in [3], two thresholds are required. Despite the outlined advantages, the algo-

rithm needs to be trained on “clean” data where no malfunctions are present.

Although the training is a one-time process, for some industries it might not be

immediately feasible. This is left for future work, where unsupervised training

of the algorithm will be investigated.
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