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Abstract 

Biomechanical Factors Affecting Individuals’ Performance in               

Sprint Kayaking  

C. Shin, University of Lincoln, 2020 

Sprint kayaking is a complex skill performed in a complex environment. This thesis aimed 

to identify and assess key parameters of performance and to understand the impact of 

the equipment used in order to better inform elite-level coaching. 

Current elite sprint kayak coaching knowledge was documented through interviews and 

compared with biomechanics literature. Six mechanical factors were identified as 

important for performance: water interaction, boat connection, athlete kinematics, 

stroke rate (SR)/ distance per stroke (DPS), force/power and the influence of weather 

conditions. Athlete individuality in particular was considered highly important but was 

under-represented in academic literature. These conclusions informed the subsequent 

experimental studies, ensuring value to coaches and a positive impact on elite athlete 

performance. 

Force-velocity and power-velocity profiles for an iso-inertial ergometer (n = 39), as well 

as performance profiles on-water (n = 25), were subsequently created for a group of elite, 

sub-elite and club sprint kayakers. Power and theoretical maximal force production (F0) 

were found to differentiate between groups, with elite athletes exhibiting the highest 

power (elite: 48.5 ± 8.8; sub-elite: 41.0 ± 7.9; club: 38.9 ± 7.2 W·kg-0.67) and force (elite: 

17.6 ± 2.7; sub-elite: 14.5 ± 1.7; club: 14.2 ± 1.9 N·kg-0.67). Individual analysis of a subgroup 

of 18 athletes correlated F0 and V0 (theoretical maximal velocity) with stroke power 

across multiple trials per athlete. Eight athletes were found to exhibit trends of the group 

with a statistically significant positive correlation between F0 and stroke power, while for 

five athletes higher V0 correlated statistically significantly with higher stroke power.  

On-water at group level, boat velocity was found to exhibit a stronger correlation with 

stroke rate (SR) than with distance per stroke (DPS; r = 0.85 vs 0.67).  At individual level, 

DPS showed a higher correlation with boat velocity for eight of the 15 athletes in the 

subgroup tested, highlighting the importance of athlete individuality, in research and in 

elite training environments. Combining data from the two environments found strong 
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correlations between power, F0 and boat velocity, indicating the value of this ergometer 

profiling to understand force and power in a kayak-like movement.  

The final study used individualised measures of variability to define whether changes in 

paddle length on the ergometer resulted in notable differences in performance measured 

by power, F0 and V0. Changes in paddle length of 1% relative to length normally used by 

the athlete, equivalent to around 2 cm, resulted in ‘notable’ improvements in stroke 

power for three athletes and caused changes in F0 or V0 in six of the ten athletes tested.  

This thesis developed pertinent research questions based on key variables to 

performance, as identified from coaching interviews. Large differences were found in 

these simple mechanical parameters when analysed at individual, relative to group, level. 

Similar individual differences were found in response to paddle length changes on an 

ergometer. Based on the thesis findings, a set of recommendations for coaches have 

been presented, which it is hoped will facilitate the application of the research to 

improving on-water performance.
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Nomenclature and Abbreviations 

Variable Unit Definition 

SR  spm Stroke rate 

DPS m Distance per stroke 

Stroke duration s Time from the start of one stroke to the start of 
the next stroke on the opposite side in seconds. 

Pull duration s Time from the start of one stroke to the end of 
that same stroke. 

Recovery duration s Time from the end of one stroke to the start of 
the opposite side stroke. 

Peak power W·kg-0.67 Highest calculated power within a stroke. 

Pull power W·kg-0.67 Average power across the duration of the pull.  

Stroke power W·kg-0.67 Average power across the duration of the 
stroke.  

Peak force N·kg-0.67 Highest calculated force within a stroke. 

Pull force N·kg-0.67 Average force across the duration of the pull.  

Stroke force N·kg-0.67 Average force across the duration of the stroke.  

Powerstr,max W·kg-0.67 Maximum stroke power across the 12 strokes. 

Powerstr,ave W·kg-0.67 Mean stroke power across the 12 strokes. 

Powerpull,max W·kg-0.67 Maximum pull power across the 12 strokes. 

Powerpull,ave W·kg-0.67 Mean pull power across the 12 strokes. 

F-V  The force-velocity profile, created from averages 
across pull duration. 

P-V  The power-velocity profile, created from 
averages across pull duration. 

F-SR  The force-SR profile, created from averages 
across stroke duration. 

P-SRstroke  The power-SR profile, created from averages 
across stroke duration. 

P-SRpull  The power-SR profile, created from averages 
across pull duration. 

F0 N·kg-0.67 Theoretical maximal force production calculated 
as the extrapolation of F-V 

V0 m·s-1 Theoretical maximal velocity calculated as the 
extrapolation of F-V 

P0 W·kg-0.67 Theoretical maximal power from the P-V curve 
generated.  

SF-V  Gradient of the resultant force-velocity profile 

SRopt,str spm SR at which P0 occurs from the P-SRstr profile. 

SRopt,pull  SR at which P0 occurs from the P-SRpull profile. 

SR0 spm Theoretical maximal SR calculated as the 
extrapolation of F-SR 

Vmax m·s-1 Maximum boat velocity 

VelSS m·s-1 Steady state boat velocity 
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 Introduction 

This doctoral research was conducted in collaboration with the English Institute of Sport 

and British Canoeing. The introduction identifies key areas for potential research from 

the gaps in the literature, before stating the overall aim of the thesis and providing an 

overview of how research questions were developed.  

 Overview of Previous Research  

Research into sprint kayaking is limited, in part due to the difficulties in measuring factors 

relating to performance where it is most relevant (on-water). Some of the key conclusions 

and limitations arising from the available literature in sprint canoeing are discussed 

below.  

Rather than use complex technology or methods, researchers have often used 

ergometers and applied conclusions drawn from these directly to on-water performance 

(Bjerkefors, Tarassova, Rosén, Zakaria, & Arndt, 2018; Limonta et al., 2010; Lok, Smith, & 

Sinclair, 2016; Lopez Lopez & Ribas Serna, 2011; Michael, Smith, & Rooney, 2010; Saga, 

Saito, Chonan, & Murakami, 2007; Sprigings, McNair, Mawston, Sumner, & Boocock, 

2006), despite differences found in kinematics and muscle activity when compared to on-

water paddling (Begon, Lacouture, & Collad, 2008; Fleming, Donne, Fletcher, & Mahony, 

2012). Ergometer studies which draw conclusions based on kinematics or muscle activity 

must therefore be treated with caution. However, ergometers have been found to 

accurately recreate the physiological (van Someren, Phillips, & Palmer, 2000) and 

mechanical demands of on-water performance, such as power and work (van Someren, 

& Palmer, 2003). Although the ability to measure force and power in a similar movement 

is of great value, caution should be used when looking at reported ergometer power, as 

it has been found to be consistently under-reported by commercially available systems 

(Borges, Bullock, Aitken, & Coutts, 2017).  

Group-level research historically dominates biomechanics literature, and has done so in 

sprint kayaking research; Brown, Lauder and Dyson (2011) and Limonta et al. (2010) 

compared athletes of different performance levels and concluded that the factors that 

differentiate are the most important to performance, while others report only group 

averages (Bjerkefors et al., 2018). Inter-athlete variability has been quantified in sport 
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biomechanics and shown to be high among elite athletes (Bartlett, Wheat, & Robins, 

2007), including sprint kayakers (Wainwright, 2013). 

Jackson (1995) divided performance factors into those affecting the athlete, the hull and 

the blade. While hull design developments can draw on research developed for shipping, 

developments in paddle technology in sprint kayaking have typically been athlete driven, 

with athletes’ subjective opinions and anecdotal evidence used to guide decision making 

rather than the latter being informed by empirical research (Robinson, Holt, & Pelham, 

2002). The only published study which has investigated the effect of changes to 

equipment set-up on-water used only three athletes and one trial in each condition (Ong, 

Elliott, Ackland, & Lyttle, 2006). Aside from this, paddle testing has been removed from 

the performance environment and methods or assumptions are limiting: use of an 

inflatable boat in a swimming pool (Lee, 2013a; Lee, 2013b); calculation of a 

recommended blade surface area based on hydrodynamic drag and one dimensional 

force production on an ergometer (Sprigings et al., 2006); correlation assumed to relate 

to causation in paddle length relative to anthropometrics (Diafas, Dimakopoulou, 

Diamanti, Zelioti, & Kaloupsis, 2011) or assumption of steady-state flow around the blade 

(Jackson, Locke, & Brown, 1992; Sumner, Sprigings, Bugg, & Heseltine, 2003). 

The application of any sport science research is constrained by choice of research 

question and coach ‘buy-in’ (Fullagar, McCall, Impellizzeri, Favero, & Coutts, 2019); it is 

vital to address these issues to ensure research has impact in the elite sport environment. 

In a sport such as kayaking where empirical evidence is limited and decisions are made 

on anecdotal information, the potential impact of relevant research becomes even higher 

if these limitations are overcome. 

A schematic overview of holistic factors affecting sprint kayak performance is presented 

in Figure 1.1; it is not intended to replicate the detail of the deterministic models, but to 

provide a signpost and overview of the key performance variables in order that they 

might be understood from an applied perspective and interlinking ideas explored. Not all 

of the factors shown will be explored in detail; those that are investigated or discussed 

are highlighted via coded box outlines which indicate where each is explored.  
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 Statement of aims 

The overall aim of this body of work was to collect and interpret biomechanical data to 

better inform coaching of elite sprint kayakers. As a first step, coaching interviews were 

conducted aiming to firstly document coaching knowledge and secondarily compare it 

to the biomechanics literature. Engaging coaches in this way would ensure further 

research questions were appropriate and that ‘buy-in’ was gained.  

Using the findings from the interviews to guide the direction of the later studies, the aims 

for the subsequent studies were to understand individual performance and how it 

differs from group conclusions. This research was conducted in areas highlighted by both 

coaches and previous literature: force and power generation; and the relationship 

between stroke rate and distance per stroke. Finally, the thesis aimed to investigate the 

influence of changing an element of paddle set-up on performance as this area was 

highlighted by coaches and has received very little attention in published research.  
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Figure 1.1: A schematic of some of the key mechanical and physiological factors contributing to sprint kayak performance. Each box outline is coded to show where an area is covered in 
most depth; the double line indicates Chapter 2, a solid line indicated Chapter 3, a dotted line indicated Chapter 4 and a dashed line Chapter 5.  
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 Development of research questions 

The development of relevant research questions for application in elite sprint kayaking 

was paramount for this thesis, therefore an initial exploration of coaches’ ideas and 

current research was undertaken to ensure relevance of later studies.  The research 

questions can be considered chronologically in three sections (Figure 1.2).  

 

Figure 1.2: Schematic of the three section definitions and the research questions within each which are 
encompassed in this thesis  
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 Section 1: development of aims and selection of key variables 

Models of sprint kayak performance have been generated based on theory (Gomes, 

2015; Wainwright, Cooke, & Low, 2016) or previous literature (McDonnell, Hume, & 

Nolte, 2013a) but it is not clear if these were in any way influenced by, or useful to, 

coaches in the field. In order to understand what is most important to the coaches who, 

it is hoped, will ultimately be using the research, it is important first to identify which 

factors they feel are most important to performance as has been done in other sports 

(Smith et al., 2015). Therefore, the first research question defined was: 

Research Question 3.1: What are the key determinants of performance according to 

expert sprint kayak coaches? 

By combining and contrasting coaching ideas with mechanical theories and published 

literature, variables which are key across all areas are highly likely to be important to 

performance. Additionally, any discrepancies or under-represented areas in any of these 

fields provide justification for areas to focus research. To this end, the second research 

question for the coaching interview was developed: 

Research Question 3.2: How does expert coaching knowledge compare to existing 

biomechanics research in sprint kayaking? 

 Section 2: investigating individual and group level differences in 

key variables  

Force and power development and the relationship between stroke rate (SR) and 

distance per stroke (DPS) were two key factors for performance according to coaches. No 

robust research could be found that investigated the differences and underlying causes 

between individuals. 

Power produced on an ergometer is related to on-water sprint performance (van 

Someren & Palmer, 2003), although the component parts of power - force and velocity - 

have not been investigated in sprint kayakers. Force-velocity and power-velocity profiles 

have been linked to sprint performance in other sports, with higher maximal velocity 

linked to athletics track sprinting (Morin et al., 2012) and higher maximal force linked to 

cycling track sprinting (Dorel et al., 2005). Commercially available kayak ergometers have 

been found to underestimate power by 20% by not accounting for the tension in the 
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bungee cord (Borges et al., 2017). To understand the importance of power, force and 

velocity to sprint kayak performance, an ergometer based on iso-inertial methods 

(Martin, Wagner, & Coyle, 1997) was used and developed to account for force applied to 

the bungee cord. This allowed quantification of power, force and velocity from stationary 

up to maximum velocity in a kayak-specific movement in seconds, allowing the following 

question to be addressed: 

Research Question 4.1: Do power and force-velocity relationships explain differences in 

performance level? 

Force-velocity profiles have been found to exhibit differences between individuals even 

when performances or power output are similar, when measured in vertical jumping 

(Samozino, Rejc, Di Prampero, Belli, & Morin, 2012). Using these differences to tailor 

training has been found to result in significant improvements in performance relative to 

non-specified training (Jiménez-Reyes, Pedro, Samozino, & Morin, 2019). Many of the 

kayak coaches emphasised during their interviews how individual athletes are very 

different to each other, although this did not result in individualised training. To 

understand the extent of individual variation in F-V and P-V profiles within a group of 

experienced sprint kayakers, the following question was developed: 

Research Question 4.2: How well do group level average profiles represent individual 

athlete profiles in the group? 

In sprint kayaking, boat velocity is the primary measure of performance and it is the 

product of SR and DPS. Stroke rate has been shown to differentiate between 

performance levels (Brown et al. 2011) but a range of SR and DPS have been shown to be 

used during international competition (McDonnell, Hume, & Nolte, 2013b). In athletics 

sprinting, step length (Debaere, Jonkers, & Delecluse, 2013) and step frequency 

(Nagahara, Takai, Kanehisa, & Fukunaga, 2018) have been shown to determine 

performance independently, with different studies reaching different conclusions. To try 

and identify if one of these variables is most important the following questions was 

posed: 

Research Question 5.1: Is SR or DPS more important in determining boat velocity in a 

group of elite sprint kayakers? 
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As observed by coaches during interviews and by McDonnell and colleagues (2013b), 

different SR are used by different athletes. Again, drawing from athletics, athletes have 

been found to be individually ‘reliant’ on either step length or step frequency to maximise 

velocity (Salo, Bezodis, Batterham, & Kerwin, 2011). It is not known if this individuality is 

present in sprint kayak athletes. In crew boats, athletes must use the same SR as their 

teammates, which could limit performance if optimum SR are different between athletes. 

In order to understand the difference between athletes, the next research question was 

developed:  

Research Question 5.2: do elite athletes use SR and DPS in different ways to achieve boat 

velocity? 

One of the potential explanations provided by coaches as to why athletes use different 

SRs was that of arm length, with a number of coaches postulating that those with longer 

arms were likely to use longer strokes. This was investigated using the research question 

of:  

Research Question 5.3: is the relationship between SR and DPS with velocity determined 

by anthropometrics? 

The information available from two profiling studies- one on water and one on an 

ergometer- in isolation would answer the aim of this thesis which looked at group level 

and individual differences. However, understanding the relationship between the 

ergometer and the on-water data would allow coaches to better interpret the ergometer 

data which can be readily collected in a reliable way, regardless of environmental 

conditions. Therefore, the following question was asked: 

Research Question 6.1: do force- and power- velocity profiles determine on water 

performance in a group of elite kayakers? 

As both SR and F-V profiles have been found to show differences between athletes 

(McDonnell et al., 2013b; Samozino et al., 2012), it could be postulated that the 

relationship of one underpins the use of the other. Someone who had a higher maximal 

velocity might be expected to reach higher SR, while someone who can achieve higher 

maximum force might use longer DPS. To investigate this, the question below was 

investigated: 
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Research Question 6.2: does the gradient of an athlete’s force-velocity profile relate to 

their use of SR and DPS? 

 Section 3: individual level assessment of an intervention 

The results for section two showed that individuals do vary considerably, and that group 

level data can disguise individual differences in factors relating to sprint kayaking 

performance. It is therefore important to analyse any intervention change at individual 

level. The topic of paddle set-up is distinctly under-researched and was an area in which 

coaches were not confident. As research question 6.2 had shown strong correlations 

between ergometer profiling and on-water performance, and the ergometer allows for 

changes to one aspect to be changed while retaining (relative) control over others, this 

environment was used to examine the question: 

Research question 7.1: does changing effective paddle length result in changes in force-

velocity and power-velocity profiles? 
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 Literature Review 

This literature review first outlines the aims of kayak performance and discusses the 

models that have been created to describe the key elements of performance. While not 

every factor mentioned in the models will be covered in detail, a more in-depth review 

of the underlying factors considered to most affect athlete, paddle and boat movement 

is conducted. Following this, an overview of the differences found between individuals in 

kayaking is given and discussion of the underpinning physiological and mechanical 

characteristics affecting kayak performance undertaken.  

 Olympic kayaking 

Sprint canoeing and kayaking are raced over 200 m, 500 m and 1000 m with one, two or 

four athletes in a boat. Each event is given a code, for example a K4 is a kayak with a crew 

made up of four athletes, and elite races last from around 30 seconds to three and a half 

minutes (Table 2.1). While Olympic events are the focus for most athletes in the UK, as 

these dictate a National Governing Body’s (NGB) funding, there are 22 additional canoe 

and kayak events competed in at a World Championship.  

Table 2.1: Sprint kayak gold medal winning times (m:ss.ms) from the Rio 2016 Olympic Games (Olympic, 2016). 

 Time 

Event Men Women 

K1 200 m 35.197 39.864 

K2 200 m 32.075 NA 

K1 500 m NA 1:52.494 

K2 500 m NA 1:43.687 

K4 500 m NA 1:31.482 

K1 1000 m 3:31.447 NA 

K2 1000 m 3:10.781 NA 

K4 1000 m 3:02.143 NA 

 Performance evaluation 

To understand the key factors affecting performance, researchers have broken sprint 

kayak performance down into shorter phases (McDonnell, Hume, & Nolte, 2012) or 

created deterministic models (Wainwright et al., 2016). These reductionist approaches 

are often used by biomechanists to understand how mechanical principles underpin 

sporting success (Hay, 1993).   
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 Phases of the stroke 

There is little consistency between researchers in how a kayaking stroke is broken down 

into separate phases (McDonnell et al., 2012) and discrepancies in terminology can lead 

to misunderstandings between athletes, coaches and researchers, making improvements 

in performance more difficult to facilitate. McDonnell et al. (2012) discussed three main 

ways in which phases have been determined: water-phase defined, paddle shaft position 

defined, and body position defined. As descriptions for some of these phase definitions 

were not clear in previous research, use of a water-phase defined model with sub-phases 

based on paddle position outlined was recommended based on ease of use and 

understanding to allow consistency between researchers and coaches. McDonnell et al. 

(2012) focused their research on phases that could easily be defined through video, but 

instrumented paddles have also been used to identify contact (Gomes et al., 2015) and it 

is not clear how well video and force definitions of the stroke start or end relate. In future, 

technology such as inertial measurement units (IMU) on the paddle may also be used to 

detect paddle position but no research could currently be found which has used IMU on 

a kayak paddle. For clarity, the terminology that will be used throughout this thesis is 

provided and defined in Table 2.2, based on the conclusions of McDonnell et al. (2012) 

and common coaching language.  

Table 2.2: phase specific terminology and associated definitions that are used throughout this thesis 

Term Also known as Definition  

Catch Entry The beginning of the stroke, the first point 

at which the tip of the blade has entered 

the water. 

Blade exit Exit The end of the stroke, the first point at 

which the whole blade has left the water at 

the back of the stroke. 

Pull time Water phase time Duration from catch to exit. 

Glide time Air phase time Duration from exit to the subsequent catch. 

Stroke time  The time taken from the catch on one side 

to the catch on the other. 

Displacement 

per stroke   

DPS The displacement of the kayak during 

stroke time. 

Pull distance Water phase 

displacement 

The displacement of the kayak during pull 

time.  
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Table 2.2 continued  

Term Also known as Definition  

Glide distance Air phase 

displacement 

The displacement of the kayak during 

stroke time.  

Stroke rate SR The number of strokes taken within a 

certain time; reported in strokes per 

minute.  

 

 Deterministic modelling 

Biomechanical deterministic models describe the mechanical factors that directly 

influence performance, with all factors of a level completely determining the factors of 

the level above (Hay, 1993). Two deterministic models of sprint kayaking have been 

created: (McDonnell et al., 2013a, Figure 2.1; Wainwright et al., 2016, Figure 2.2). These 

models have differing levels of complexity and may be considered to have different 

intended audiences; McDonnell’s model may be intended for coaches as the language is 

focused on time and displacement terms, while the Wainwright model is more complex, 

with use of mechanical terms. Although not described as a deterministic model, Gomes 

(2015) included an overview model of the factors affecting sprint kayaking (Figure 2.3).  

 

Figure 2.1: Deterministic model for sprint kayaking from McDonell et al (2013a). Values are correlational r values 
between the variable in the lower box and average kayak velocity of one stroke from Hay & Yanai, 1986. 
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McDonnell and colleagues’ (2013a) narrative review was based on 35 literature sources, 

but the paucity of quantitative data meant that the values reported in the deterministic 

model (Figure 2.1) are all from Hay and Yanai (1996), with the addition of a single value 

correlating DPS with boat velocity (-0.86) from Mononen and Viitasalo (1995). Hay and 

Yanai (1996) are reported as having conducted correlations on a group of 10 elite athletes 

but the report cited is not publicly available and therefore methods cannot be checked. 

The use of 10 athletes for a correlation, without evidence of assumption checks, reduces 

the power of these conclusions and therefore of the McDonnell et al. model. 

Wainwright’s (2013) deterministic model was first based in theory and then tested during 

a data collection with 12 elite athletes. Paddle force, within-stroke acceleration, paddle 

angle, paddle position, kayak displacement, paddle entry and exit times were measured 

for every stroke during three 250 m efforts with 18-54 strokes input into linear regression 

per athlete. Further break down of the ‘change in velocity during pull phase’ was found 

to be necessary to accurately describe the factors determining performance (levels 5-6, 

Figure 2.2). Correlation coefficients and beta coefficients are given for all athletes for all 

levels, with variation between athletes. The author notes that as a mechanical model, 

statistically significant correlations are not required between all variables to validate the 

model. Gomes’ (2015) model was developed in a similar way to McDonnell’s, as an 

overview following a review of the kayaking biomechanics literature available, although 

correlational values were not reported, and the model provided a broader overview of 

the factors affecting performance results.  

The variation in the literature with regards to definitions and identified performance 

variables make it difficult to draw concise conclusions. Understanding the factors which 

are directly important to elite coaches, and therefore regularly used in the applied 

setting, would allow a better appreciation of where impact may be gained. Contrasting 

these areas to specific research will further identify areas of valuable research.
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Figure 2.2: Deterministic model for sprint kayaking from Wainwright (2013). Level 8 is reduced for diagram clarity. Dashed lines represent untested relationships. 
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Figure 2.3: Gomes' (2015) outline of variables contributing to kayak performance 
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 Athlete Movement 

The deterministic models above focus on the boat and paddle movement, without direct 

reference to athlete kinematics. This does not reflect the overall literature, which has a 

proportionally larger number of papers focused on athlete movement. 

 On water paddling 

Some of the difficulties associated with data collection in the environment of sprint 

kayaking are outlined in Table 2.3, focusing on three motion analysis technologies: 

traditional optical camera based systems; opto-electronic systems (often considered the 

gold standard); and more recently developed IMU based wearable systems.  

Table 2.3: An overview of some of the strengths and weaknesses of kinematic measurement systems as would relate 
to use in sprint kayaking 

Measurement 

System 

Strengths Weaknesses 

Optical 

Camera 

• Inexpensive 

• High ecological 

validity 

• Can be 

waterproof 

• Time consuming processing 

• Complex calibration for 3D 

• Parallax error for 2D 

• Perspective error for 2D 

• Calibration risk 

Opto-

electronic  

• High accuracy 

• Faster post-

processing 

• High frame 

rates 

• Expensive 

• Long set-up time 

• Markers on athlete 

• Range too small for regatta course 

use 

• Electrical power needed 

• Reflections from water cause errors 

• Not waterproof 

IMU-based • Large capture 

volume 

• Fast post-

processing 

• Expensive 

• Lack of validation for rotational 

movement 

• Markers on athlete 

• Not waterproof 

 

Table 2.4 provides an overview of camera based kayak studies, some of which have 

mitigated the weaknesses listed in Table 2.3 via methodological considerations such as 

careful camera placement, floating calibration frames (Ong et al., 2006) and digitiser 
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reliability checks (Brown et al. 2011; Ong et al., 2006). The environment will always be a 

confounding factor in on-water measurement; while some researchers limit collections 

to below certain wind speeds (2 m·s-1 van Someren et al., 2000; Wainwright, 2013; 

3 m·s-1 Fisher, 2015) or use an indoor towing tank (Begon et al., 2008) to reduce the 

influence of these factors, many disregard this factor completely, or cite that data were 

recorded on, for example a “calm bay” (Ong et al., 2006).  

Due to the paucity of data available, conference abstracts have been included in Table 

2.4; these often do not describe the methodologies used in detail but contain potentially 

important conclusions. For example, Mann (1978) reported smooth velocity and 

acceleration curves led to “the most economical utilisation of forces produced by 

performers” (p. 63) although no further documentation was provided. Inter-participant 

variation and a link between increasing velocity and balance problems were also reported 

by Mann (1978) but without detailed methodology, it is not possible to assess the validity 

of the conclusions.
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Table 2.4: Summary of studies investigating on-water kinematics of sprint kayaking using optical cameras 

 

Paper Number; 

gender; level 

of participants 

Movement 

speed 

Camera 

Frequency 

Camera set-

up 

Calibrated 

area 

Number of 

digitised 

points 

Digitised 

locations 

Study conclusions 

Baker et 

al. (1999) 

10; 6 male, 4 

female; 

international 

Race pace 50 Hz 2 cameras; 

40° to left & 

15° to right of 

travel 

6 m x 2 m 

x 2 m 

8 markers Arms and 

paddle 

Significant differences 

between male and females in 

boat velocity, glide distance 

and total stroke length 

Begon et 

al. (2008) 

Abstract 

2; male; 

international 

84 strokes 

per minute 

(speed not 

dictated) 

50 Hz Five cameras 

around an 

indoor towing 

tank 

One full 

stroke 

8 segments Upper 

body, 

paddle and 

kayak 

On-water and ergometer 

kayaking are similar 

Brown et 

al. (2011) 

135; Gender 

unknown; 

national & 

international 

Racing 50 Hz Panning 

camera 100 m 

from finish 

line 

None None None Elite athletes have higher SR, 

shorter glide time, higher 

stroke width, forward reach, 

trunk rotation and leg motion 
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Table 2.4 continued        

Paper Number; 

gender; level 

of participants 

Movement 

speed 

Camera 

Frequency 

Camera set-

up 

Calibrated 

area 

Number of 

digitised 

points 

Digitised 

locations 

Study conclusions 

Fleming et 

al. (2012) 

10; male; 

international 

85% V̇O2 50 Hz Single 

camera, 

sagittal plane 

Unknown Unknown Unknown Ergometer comparable to on-

water, differences in 

shoulder muscle activity 

Kendal & 

Sanders 

(1992) 

5; male; 

international 

Maximum 

velocity 

100 Hz Lateral and 

frontal 

cameras 

One full 

stroke 

15 (frontal 

camera) 

Paddle, 

kayak and 

upper 

body 

Technique description- 

paddle path & kinematics 

differ, better paddlers more 

lateral and forward blade 

Mann & 

Kearney 

(1980) 

11; 9 male; 2 

female; 

international 

Maximum 

velocity 

70 Hz One lateral 

camera 

12 m 13 Upper 

body, hips 

& knees 

Technique description 
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Table 2.4 continued        

Paper Number; 

gender; level 

of participants 

Movement 

speed 

Camera 

Frequency 

Camera set-

up 

Calibrated 

area 

Number of 

digitised 

points 

Digitised 

locations 

Study conclusions 

Mann et al. 

(1978) 

Abstract 

5; unknown; 

international 

80-100% 

race pace 

100 Hz 

(frontal) 64 

Hz (lateral) 

Lateral and 

frontal 

cameras 

Unknown Unknown Unknown Technique description- 

smooth acceleration curves 

in elite. Balance problems at 

higher speeds. Between 

athlete differences.  

Ong et al. 

(2006) 

3; 1 male, 2 

female; 

International 

Maximum 

velocity 

50 Hz Lateral and 

frontal 

cameras 

6 m x 1.2 

m x 2 m  

10 Upper 

body and 

paddle 

Paddle set-up intervention; 

boat set-up changes were 

detrimental to performance 

Sanders & 

Kendal 

(1992) 

Abstract 

5; unknown; 

novice to 

international 

Maximum 

velocity 

100 Hz Lateral and 

frontal 

cameras 

Unknown Unknown Unknown Better performers indicated 

by higher SR. Paddle path 

differences also exist 

between levels.  
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Kendal and Sanders (1992) conducted the most detailed analysis of kayaker kinematics 

to date, using a floating calibration frame and two cameras to recreate 3D joint centre 

positions for a single ‘maximal’ velocity stroke of five international standard paddlers. 

Comparing the two paddlers with best performance time against the other three, the 

movement patterns of the two better paddlers were found to be consistent with each 

other and to involve more lateral movement of the paddle. In a notational analysis, 

Brown et al. (2011) subjectively graded and compared the movements of international 

(n = 78), national (n = 38) and club (n = 19) level paddlers during racing and found rotation, 

leg contribution, lateral paddle movement and forward reach to differentiate between 

performance levels. While this gives direction for the important features of technique to 

performance, these factors were recorded from one fixed, panning video camera and 

each factor was subjectively rated from one to five. Brown et al. originally investigated 

22 variables in this way but five were removed from analysis after test-retest reliability 

of the scores from a Spearman’s correlation was found to be low (r < 0.55). This reliability 

check highlights the difficulty in quantifying differences, while also providing more 

confidence in the values which were reported. 

No research could be found that has used optoelectronic systems in a competition 

environment, likely due to the factors mentioned in Table 2.3. Begon et al. (2008) used a 

‘semi-automatic tracking’ system around an indoor tow tank to compare to ergometer 

paddling, although detailed kinematics were not described in the conference abstract. 

Funato, Shibuya, Hond and Techi (2006) reported physiological data from athletes 

paddling in a circulating water channel but despite the complexity of the set-up, including 

an optoelectronic system and force and boat movement measurement via a tether, no 

further published research could be found which uses this system.  

Wearable systems are a developing technology that use IMUs and data fusion algorithms 

to reproduce 3D kinematics of movements. Despite marketing suggesting data collection 

has occurred on both ergometers and on-water (Xsens, 2016), no published research 

could be found which has used a wearable system to quantify sprint kayaking kinematics. 

Local dynamic stability during ergometer paddling has been measured using IMUs 

(Hamacher, Krebs, Meyer, & Zech, 2018) but no validity checks are reported and 

therefore the accuracy of these systems for such a 3D movement remains a question, as 

published validation work has focused on sagittal plane movement or non-sporting 
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movements (Blair, Duthie, Robertson, Hopkins, & Ball, 2018; Robert-Lachaine, Mecheri, 

Larue, Plamondon, & Plamondon, 2017; Zhang, Novak, Brouwer, & Li, 2013). 

 Ergometer paddling 

Researchers have compared on-water and ergometer paddling for both the physiological 

(van Someren et al., 2000) and mechanical components of performance (Begon et al., 

2008; Fleming et al., 2012). Fleming et al. (2012) compared muscle activation, stroke 

force and 2D kinematics of three-minute efforts at pre-defined stroke and heart rates on 

an ergometer and during on-water paddling in 10 elite level sprint kayakers. The three-

minute duration and relatively low SR (82 strokes per minute; spm) used mean the data 

are not applicable to maximal effort but may correspond with the 1000 m racing distance. 

There were limitations to some of the measurements employed, as listed below.  

- Video in 2D 

o The 2D video was used to measure position relative to the waterline and create 

a virtual water line during ergometer paddling. This assumes there is no roll 

present during on-water kayaking which is unlikely to be accurate.  

o Video was used to define blade entry and exit and would therefore have an 

accuracy limited to 0.02 s; this level of accuracy is acceptable for the SR 

investigated but would be low for the rates found at elite sprint level (McDonnell 

et al., 2013b).   

- Limited calibration of strain gauges  

o Only 10 and 20 kg calibrations were used for force measurement. Two data 

points would not be enough to definitively confirm a linear relationship between 

voltage and force. Peak forces were reported to reach 238 N, roughly equivalent 

to 24.2 kg, beyond the calibrated measurement.  

- Ergometer paddle length matched 

o  Hand position was adjusted on the ergometer, but it is not clear how this was 

maintained or controlled.  

o Paddle length on the ergometer was matched by “adding an extension element 

to the end of the ergometer shaft” (p. 18). Although this means total length 

would be matched, the distance between the hand and the force application 

would be variable and not representative of that on-water. 
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- Paddles were matched for length and angle on-water but Alpha M+ blades (Jantex, 

Sokolovce, Slovakia) were used for all participants, with no mention of what the 

athletes would usually use.  

- EMG compared across days 

o Although normalised to a maximum voluntary contraction each day, the 

placement of an EMG electrode is extremely difficult to replicate exactly and 

changes in position will change readings (Ahamed et al., 2014). 

A shorter time from the start of the stroke until the paddle reaches a vertical position on 

the ergometer was the only reported kinematic difference between ergometer and on-

water paddling, while recoil of the bungee cord was thought to be the cause of measured 

muscle activity differences and of the additional force during the recovery phase found 

during ergometer trials.  

Begon et al. (2008) measured two paddlers during 40 seconds of paddling on a sliding-

complex ergometer and one full stroke on an indoor dock using a motion analysis system 

operating at 50 Hz. Using time-series data and a coefficient of multiple correlation (CMC), 

the two conditions were compared. Unlike Fleming et al. (2012), the authors found the 

stroke timing to be comparable between ergometer and on-water trials, with upper limb 

kinematics similar (CMC > 0.76) except for the shoulder movement in the frontal plane 

(CMC = 0.66), which the authors attributed to balance differences. The sliding-complex 

design of this ergometer compared to the standard one used by Fleming et al. (2012) may 

be the cause of the different results found (Table 2.5).  

Comparing three-dimensional (3D) kinematics of elite, intermediate and novice paddlers 

while using an ergometer, Limonta et al. (2010) found that elite performers were 

characterised by higher ‘paddling amplitude’, larger elbow and knee range of motion, 

lower asymmetry in a number of joint angles (e.g. maximum elbow flexion and extension, 

knee flexion and range of motion) and lower seat and pelvic movements in the frontal 

plane. Unlike standard ergometers, the seat Limonta et al. (2010) used oscillates with the 

ergometer design, although it is not clear what the range or damping of this oscillation 

is. Increasing seat movement in the frontal plane in a kayak would create additional boat 

roll and therefore higher hydrodynamic drag, so the reduction of this parameter in elite 

athletes matches expectation. The metrics reported by Limonta et al. are comparable to 

those found to differentiate performance of elite and novice paddlers on-water (Brown 
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et al., 2010) and are comparable to the differences found during ergometer paddling at 

different intensities (Bjerkefors et al., 2018). Bjerkfors et al. (2018) additionally found 

higher ranges of motion at all lower limb joints at high intensities compared with low 

intensity (e.g. 45.5 vs 31.4° at the knee and 31.4 vs 20.0° at the hip). Studies involving 3D 

analysis have reported only group level results and so individual differences which may 

occur have been disguised. 

It is important to note the differences in ergometer design when considering research 

involving ergometers. While some studies have used commercially available machines, 

replicating what athletes typically use in training, others have designed ergometers to 

make the mechanics better replicate paddling on water (e.g. Begon et al., 2008). Table 

2.5 demonstrates some of the available designs. There are three ergometer designs that 

have predominantly been used in kayaking research: the University of Poitier research 

team design (Begon & Colloud, 2007); the K1 ERGO preferred by van Someren and 

developed by the Australian Institute of Sport (e.g. van Someren et al. 2000) and the 

Dansprint, a commercial design (Dansprint, Hvidovre, Denmark). All the ergometers in 

Table 2.5 are ‘air-braked’ meaning they use a fan on the front to create resistance. The 

main difference between designs is that most use a fixed seat and footrest whereas the 

Poitier ergometer uses a ‘sliding complex’ where the footrest and seat are connected on 

a trolley which moves up and down the main body of the ergometer. This allows the 

athlete to move relative to the paddle which may better replicate the mechanics of 

paddling on water. No comparison between the kinematics on a sliding ergometer and a 

fixed ergometer could be found. 

Measuring athlete movement is difficult on-water and as such, much of the research 

which has attempted to is methodologically limited. There are some simple factors which 

are common across water and ergometer research in differentiating between elite and 

lower lever paddlers such as stroke length (‘forward reach’ or ‘paddling amplitude’), but 

there does not appear to be a clearly defined optimal movement pattern for elite 

kayaking. Along with elite level individual differences (Kendal and Sanders, 1992), this 

suggests that simple metrics may have more value for impactful research in an applied 

setting. Understanding which of these factors is valuable to coaches will further help 

direct research to increase impact. 
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Table 2.5: Some kayak ergometer designs used in research and/or training. *indicates which reference image has been taken from. 

Manufacturer Device Description Image Research Using this design 

KayakPro SpeedStroke 

Gym 

 

Fixed seat and foot rest. Air braked 

flywheel. There is also a high 

resistance version available. 

 

None found 

Reportedly used by elite athletes 

(KayakPro, www.kayakpro.com)* 

WebaSport Kayak 

Ergometer 

Fixed seat and footrest. Air braked 

flywheel.  

 

None found 

Reportedly used by elite athletes 

(WebaSport, weba-sport.com)* 

DanSprint Kayak 

Ergometer 

Air braked flywheel with variable 

resistance. Fixed seat and footrest. 

Commercially available ergometer 

with on-board computer.  

 

Used by elite athletes (Dansprint, 

www.dansprint.com)* 

Fleming et al. (2012) 

Lopez & Serna (2011) 

Saga et al. (2007) 

Bjerkfors et al. (2018) 

Bjerkfors et al. (2019) 

Gomes et al. (2012) 

Tornberg et al. (2019) 
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Table 2.5 continued    

Manufacturer Device Description Image  Research Using this design 

Australian 

Sport 

Commission 

K1 ERGO This ergometer was developed by the 

Australian Institute of Sport (AIS) and 

later sold commercially. 

 

Reportedly used by elite athletes 

(K1 Trainer, www.k1trainer.com)* 

Sprigings et al. (2006) 

Van Someren & Howatson (2008) 

Van Someren & Oliver (2002) 

Van Someren & Palmer (2003) 

Van Someren et al. (2000) 

Concept Adapted 

Rowing 

ergometer 

Adaptation of a Concept II rowing 

ergometer design to replicate the K1 

ERGO outlined above.  

No image available Michael et al. (2010) 

Micheal et al. (2012) 

University of 

Poitiers 

NA Sliding complex ergometer designed 

to more closely mimic the 

movements used on-water sprint 

kayaking. Seat and footrest slide 

forward and back, attached to the 

main frame by a bungee.  

 

Reportedly used by elite athletes 

Begon et al. (2008) 

Begon et al. (2009)* 

Begon et al. (2010) 

Fohanno et al. (2014) 

Therrien et al. (2012) 

Limonta et al. (2010) 
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 Paddle Movement 

The ‘fixed’ blade position recommended by sprint kayak coaches (e.g. Nikonorov, 2017) 

is not replicated by most commercially available ergometers, which generally have a fixed 

seat which the paddle moves past (Table 2.5). This mechanical difference is likely to result 

in different paddle path on an ergometer compared to on-water, reducing the ability to 

learn more about the importance of paddle path in generating boat velocity from 

ergometer research.  

 Hydrodynamics 

Understanding the influence of the paddle path on performance requires an 

understanding of the hydrodynamics of the paddle and kayak. The optimal movement of 

a kayak has been described as resulting from maximising thrust (i.e. positive) while 

minimising drag (i.e. negative) forces acting on the hull (Jackson et al., 1992). Papers 

primarily looking at paddle forces have considered higher drag as positive for 

performance: “the propulsive efficiency of the paddle blade can be optimised by 

maximising the amount of drag force produced by the blade” (Sumner et al. 2003, p. 12). 

The equation for drag is shown below:  

 

 
Drag =  

1

2
𝐶𝐷𝜌𝐴𝑣2 

(Equation 1) 

where 𝐶𝐷 is the coefficient of drag, 𝜌 is the water density, 𝐴 is the frontal surface area of 

the blade and 𝑣 is the speed of the blade relative to the water. The view of Sumner et al. 

(2003) that efficiency is determined by drag force alone is an oversimplification of the 3D 

movement of the paddle, which has been shown to move laterally (Kendal & Sanders, 

1992) and is thought to make use of lift forces in addition to drag (Jackson et al., 1992).  

 Force measurement 

While measurement both force and direction of application is currently extremely 

difficult, a number of studies have measured forces either on-water or on an ergometer.  

2.4.2.1 On-water 

Many authors have outlined their attempts to instrument the kayak-paddle system, with 

varying degrees of success (Aitken & Neal, 1992; Gomes et al., 2011; Helmer, Farouil, 

Baker, & Blanchonette, 2011; Mononen & Viitasalo, 1995; Nilsson & Rosdahl, 2014; 
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Stothart, Reardon, & Thoden, 1987). Research has focused on measuring force via the 

bending moment in the paddle shaft using strain gauges, often making assumptions 

about the centre of pressure or the direction of force application. Using these 

assumptions, higher paddle force has been found to correlate with faster performances 

in sprint kayaking (r = 0.72, Brown, 2009; r = 0.79, Mononen & Vitasalo, 1995).  

In 1986 a new ‘wing’ paddle design was used in an international race, substantially 

beating the previous World Best time and this new design was subsequently taken up by 

all elite kayakers. Jackson et al. (1992) considered the hydrodynamics of paddle 

propulsion from first principles and the wing paddle was found to increase efficiency 

significantly by utilising lift as well as drag forces. Measured experimentally using a 

towing tank, an angle of attack (the angle between the blade chord and the relative 

velocity of the water; α; Figure 2.4) of 20-30° was found to be most efficient for 

generating thrust, corresponding to a stroke angle (angle defining paddle position 

relative to hull movement direction; θ; Figure 2.4) of 65° to the hull. Both angles will 

change through a kayak stroke (Sanders & Baker, 1998) and the values found in Jackson’s 

study are seemingly within the range used by elite athletes (Baker et al., 1999), although 

it is not clear if they would occur simultaneously. The simplifications and assumptions 

made lessen the impact of this study on competition kayaking; Jackson et al. (1992) 

calculated the impulse required from a fluid motion simplified so that paddle movement 

was assumed to create a single vortex ring and measured single positions per trial, 

disassociating the test procedure from the three dimensional, fast-paced movement of a 

kayak paddle in real-time competition sprinting.  

 

Figure 2.4: Schematics of paddle propulsion forces (drag: D; lift: L; DH: drag of the hull) velocities (VH: velocity of the 
kayak hull; VB: velocity of the blade relative to the water) and angles (α: angle of attack; θ: stroke angle) during 
kayak paddling with a wing blade from Jackson (1995). 
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A comparison of the force generated at different stroke rates (SR) was conducted by 

Gomes et al. (2015) using strain gauges bonded to the athlete’s own paddle shaft to 

record bending moment perpendicular to the surface of the blade. The system was 

calibrated with masses hung from the grip position while the paddle was supported at 

the theoretical centre of pressure of the blade nearest the mass and at the contralateral 

grip position, using increments of 5 kg from 5 to 30 kg. Ten international level athletes 

(five male, five female) completed four trials of 200 m one at each of 60, 80, 100 spm and 

self-selected (race pace) SR- with five minutes recovery between trials. Calculations from 

the force measured in the shaft, near to the lower hand grip, were used to infer force at 

the blade and assume a fixed rotational point at the top hand. The validity of this 

assumption is difficult to ascertain but the kayak stroke is more complex than a simple 

pivot, as will be discussed in the paddle path section below (Section 2.4.3). 

Figure 2.5: on-water paddle force traces for men and women at each of four different SRs from Gomes et al. (2015) 

In Gomes et al.’s paper, once the athlete reached the desired SR, all strokes within a SR 

condition were time normalised to the median duration of the water phase and analysed, 

meaning any differences due to acceleration phase, fatigue or timing differences are 

unclear. Mean force curves (Figure 2.5), showed an increase in the initial gradient of the 

force-time curve with increases in SR. Gomes and colleagues attributed the double peak 

seen in the race pace SR to the paddle shaft elasticity, but it could correspond with 

Jackson’s findings on paddle propulsion, with a peak in force generated by lift, followed 

by a peak generated from drag forces when they are thought to be highest, at paddle 

vertical (Plagenhoef, 1979), although without kinematic data this cannot be assessed. 

Peak force (r = 0.66) and mean force (r = 0.80) were found to correlate significantly with 

trial velocity. Although individual analysis was not conducted, the high coefficient of 
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variation in force measurement (% CV = 42.78 and 44.90 at race pace SR for female and 

male respectively) alludes to large inter-athlete variability. 

Wainwright and colleagues (2013) correlated change in velocity during the pull against 

the factors considered to influence it from the mechanical-theory based model 

(propulsive impulse, blade slip, passive drag and active drag) and originally showed few 

significant relationships. Taking into account paddle orientation and in-cycle velocity 

changes by breaking down into sub-phases (Figure 2.6) subsequently resulted in many 

more significant correlations. Differences between individuals were apparent as the 

coefficient of determination differed between athletes for all variables reported. For 

example, the explained variance between propulsive impulse and change in velocity of 

the paddle during the start to paddle vertical phase for a given athlete ranged from an r2 

value of 17% to 89%. 

 

Figure 2.6: Paddle forces and boat movement for a sprint kayak paddle stroke, with phase breakdown marked by 
coloured shading from Wainwright et al. (2013) 

2.4.2.2 Ergometer Forces 

Multiple researchers have measured paddle force on ergometers (Bjerkefors et al., 2018; 

Fleming et al., 2012; Gomes et al., 2015; Michael et al., 2012; Therrien, Collad, & Begon, 

2012). Michael et al. (2012) used strain gauges attached to the paddle and found mean 

peak forces (303.6 N) similar to those reported for on-water in elite athletes (274 N; 

Gomes et al. 2015). In a direct comparison between ergometer and on-water 



  

31 
 

performance, Fleming et al. (2012) used strain gauges on an ergometer and on-water 

paddling of the same athletes and also found slightly higher forces on the ergometer (238 

N on ergometer vs 223 N on-water), although this difference was not statistically 

significant. Higher forces during ergometer paddling might be expected to be due to the 

ability of athletes to apply more force when they are not required to balance the kayak 

and/or the reduced importance of direction of force application allowing higher forces to 

be produced. By combining force data with kinematics, Michael et al. (2012) also 

investigated ‘efficiency’ by quantifying the component of anterior-posterior force 

relative to the total force, although the assumption of drag force being the only positive 

contribution to performance is incorrect, as will be discussed below in the paddle path 

section. 

Power measured on an ergometer has been found to increase with higher intensities 

(Bjerkefors et al., 2018) and to correlate with on-water 200 m time (n = 26; r = -0.69; van 

Someren & Palmer, 2003). Bjerkfors et al. (2018) conducted an ergometer study involving 

both force and 3D kinematics measurement at different intensities. Increasing intensity 

from a controlled ‘low’ to the highest power output that could be stably maintained for 

20 stroke cycles (‘high’) resulted in large difference in power output and range of motion; 

increasing from ‘high’ to ‘maximal’  (20 maximal effort strokes without need for stable 

maintenance) resulted in large increases in power output but small differences in range 

of motion, leading the authors to attribute increased power output to higher SR and 

muscle activations, although the latter was not measured. Large differences were found 

between males and females, increasing at higher intensities (male: high intensity 433 W, 

maximal intensity 610 W; female: high intensity 277 W, maximal intensity 359 W). The 

ten elite kayakers tested by Bjerkefors et al. (2018) were all reported to produce higher 

power on the right, regardless of which hand was dominant, although no explanation was 

suggested.  

By comparing calculated power with the output from a commercially-available 

ergometer (DanSprint, Denmark), Bjerkefors et al. (2018) were able to validate the latter, 

with correlational r values of 0.99, using an equation of measured power = 1.18 x ergo 

power + 27.6. An 18% difference in power output was lower than the 22.5% previously 

found for DanSprint ergometers (Borges et al., 2017). Borges et al. (2017) compared 

KayakPro, Weba and DanSprint ergometers (Table 2.5) to a ‘first principles torque meter’ 
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designed by the South Australian Institute of Sport and described in Gore, Tanner and 

Fuller (2013; Figure 2.7), taking into account both the flywheel and bungee cord 

resistance. By measuring the angular velocity of the ‘arms’ of the calibration rig, and the 

‘reaction torque’ created, mechanical power was calculated and compared to the direct 

ergometer output. The range of 50-350 W and SR of 54 to 118 spm are relatively low for 

elite athletes and the controlled bungee load of 1.5 kg would not allow the bungee to 

retract fully between strokes at high stroke rates. Underestimation of power output was 

found by all commercial systems: 22.5% for DanSprint, 27.6% for Weba and 4.5% for 

KayakPro. DanSprint ergometers have also been found to underestimate power by 21-

23%, much which was removed when bungee cord tension was corrected for (Gore et al., 

2013).  

 

Figure 2.7: The South Australian Institute of Sport designed calibration rig, used here with a DanSprint ergometer 
(from Gore et al., 2013) 

 

 Paddle path  

Adding to the complexity of force measurement on water is the importance of 

understanding the direction of force application relative to forward boat direction. 

Gomes et al. (Figure 2.8; 2011) found that 2D forces provided more information than the 

1D strain gauge systems which have typically been used, which only investigate the force 

perpendicular to the blade surface. However, even with this additional information, 

forces are only known with respect to the blade surface, not with respect to the direction 

of boat movement and it cannot be known for certain that increases in force in a given 

direction are necessarily advantageous to forward boat speed. If the resultant force is 

directed outward from the boat, it is likely to result in a yaw motion of the boat hull, 

increasing frontal surface area and decreasing performance.  
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Figure 2.8: On-water kayak paddle force profile with two dimensions from Gomes et al. (2011). The grey line 
represents the force in the plane of the blade surface and the black line represents the plane at 90° to this. Starting 
stroke (a) and later stroke (b). 

To accurately measure the direction of force application, a blade would need to be 

instrumented in 3D and its orientation in a global reference frame be clarified. Morgoch, 

Galipeau and Tullis (2016) instrumented a canoe blade using strain gauges and an IMU, 

allowing measurement of blade position in 3D. Unfortunately, only two blade angles 

were reported, with a range of blade rotation angle (around the shaft axis) of around 50° 

and range of pitch angle of around 120°. The canoe blade has a different design to a kayak 

blade, meaning the stroke path is not transferable but this research shows that the 

necessary technology has been used to determine blade orientation and calculate force 

direction relative to the boat. 

The frame of reference is important to consider in kayak research. The movement of the 

paddle can be reported in 2D or 3D and either within a global co-ordinate system (GCS), 

an external reference frame (ERF; measured relative to a specific point) or an internal 

reference frame (IFR; relative to the paddler/kayak). Kendal and Sanders (1992) re-

created the paddle path of an elite kayaker in the GCS (Figure 2.9), showing a much 

reduced forward-backward movement when compared to the IRF (x axis, Figure 2.9a), 

which additionally masks the large proportion of movement to occur laterally to the boat.  

Figure 2.9: Kendal & Sanders (1992) measured paddle path of the best (S4) and worst (S3) of the elite paddlers in 
their cohort in the a) internal reference frame and b) global coordinate system. ‘X Position’ on y axis represents 
the direction of kayak movement; ‘Y Position’ on the x axis is lateral movement relative to the kayak. 

a) b) 
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The lateral component of motion supports the idea of those who have attributed the 

value of the wing paddle to utilising lift forces along with drag to optimise force (Jackson 

et al., 1992), although without the orientation of the blade surface or force vectors, the 

contribution of lift cannot be quantified. Kendal and Sanders (1992) used co-ordinates 

from two cameras filming the sagittal and frontal planes but as footage was only of one 

stroke, the generalisability of these results to kayaking performance is limited. Therrien 

et al. (2012) used an ergometer with a sliding complex so that the athlete moved relative 

to the blade in a more similar way to on-water. Paddle path was reported relative to the 

IRF and to a GCS and the authors found similar results to Kendal and Sanders, with a large 

quantity of lateral movement of the blade which is not obvious until viewed in the GCS. 

This design of ergometer is different to most commercially available machines (Table 2.5) 

and lateral movement quantification could not be found within the research using 

standard ergometers. No other papers could be found that have documented the paddle 

blade path during sprint kayaking.  

The direction of the lift force in kayaking is slightly ambiguous within the literature; 

described as perpendicular to the drag forces that act parallel to blade movement (Lopez 

Lopez & Ribas Serna, 2011), it is not clear in which of the other two planes it is considered 

to act. In horizontal aeroplane flight lift forces act vertically, while in rowing, lift forces 

have been described to act laterally (Baudouin & Hawkins, 2002; Pulman, 2004), with 

similar descriptions used in kayaking (Jackson et al., 1992; Figure 2.4). A typical rowing 

blade curves from the connection with the shaft to the tip, but not from top to bottom 

when viewed end on and moves through an arc. Through the angles of the arc taken, 

absolute and relative contribution from lift and drag vary (Caplan & Gardner, 2007; 

Sliasas & Tullis, 2010, Figure 2.10). 
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Figure 2.10: blade forces and efficiency across a rowing stroke, with multiple x axis showing changing angle of attack 
and oar angle through time (Sliasas & Tullis, 2010) 

The concave shape of a kayak blade (e.g. Figure 2.11) could be considered to make use 

of these ‘lift’ forces in multiple directions by having an aerofoil shape in both the vertical 

and horizontal cross sections, but no published research could be found in which three 

dimensional forces on the paddle have been investigated.  

 

Figure 2.11: Jantex Gamma Rio blade is concave in shape (Jantex, www.jantex.sk) 

 

Both the land and water studies above highlight the importance of force and power to 

sprint kayaking with strong correlations across measurement systems used. However, the 

complexity of accurate power calculations on water involving 3D motion capture and 

instrumented paddle shaft makes it unrealistic for practitioners to measure these metrics 

within normal training, while the consistent offset from commercial ergometer systems 

makes the underestimation of power misleading. An easy to use, accurate, sport-specific 

force and power measurement system would add value to an elite programme and 

additional insight for researchers.  
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 Paddle set-up 

There are no set rules for the paddle size or weight, with the International Canoe 

Federation (ICF) rule book (ICF, 2019; page 43) stating: “kayaks shall be propelled solely 

by means of double-bladed paddles… paddles may not be fixed on the boats in any way.” 

Despite this flexibility, there is relatively little variability in paddle set-up at elite level 

(Ong et al., 2005). The ICF level 1 coaching manual states a general recommendation that 

“total paddle length should be determined by the athlete standing and reaching an arm 

up and curling their fingertips over the upper blade” (ICF, 2011; page 14), indicating that 

anthropometrics of standing height and arm reach could describe paddle length in 

totality, but Ong et al. (2005) found anthropometric measures of height, biacromial 

breadth, chest girth, arm length and arm span to account for only 20-25% of the 

variability in paddle length of international level kayakers (31 male, 11 female).  

High importance has been attributed to oar length in rowing (Nolte, 2009) and crank 

length in cycling (Barratt, Korff, Elmer, & Martin, 2011), but no studies could be found 

that have directly investigated the effect of changing paddle length on kayak 

performance. Diafas et al. (2011) used a principal component analysis (PCA) to group 

anthropometrics based on 71 national and international level sprint kayak athletes and 

input the subsequent components into a regression equation. Two factors from the PCA 

were included in the resultant regression equation: one made up of height, arm span, 

arm and leg length and the other of body mass index (BMI), body mass and lean body 

mass. Despite reporting the variance inflation factor showed no multicollinearity, the 

equation for BMI (
𝑚𝑎𝑠𝑠

ℎ𝑒𝑖𝑔ℎ𝑡2
) in one factor is innately reliant on height, which features in the 

other factor, so there is an innate reliance between factors. The authors did not group 

athletes according to performance level to compare regression equations and therefore 

using the resultant equation would produce a paddle set-up in line with that of the whole 

group athletes tested, rather than with better performance. 

Regarding blade size, Sprigings et al. (2006) used ergometry to measure power output of 

elite sprint kayakers and used the force and velocity at which peak power occurred to 

recommend a blade size based on an equation rearranged from the equation for drag 

(Equation 1, page 27). As this paper used an ergometer and considered only drag force 

and movement of the paddle in the sagittal plane, its application is limited. Of the 12 elite 

athletes tested, five were considered to be using the correct size of blade, while seven 
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were advised to increase blade size by 5-10%. No subsequent performance tests were 

conducted so it is not clear if these recommended changes resulted in performance 

improvements.  

Only one research paper could be found that has investigated blade shape: Sumner et al. 

(2003) measured drag and ‘side’ (lift) forces in a wind tunnel of a flat plate, conventional, 

Norwegian and Turbo blades, the latter two described as ‘asymmetrical and spoon-

shaped’ with surface areas of 0.074 and 0.078 m2 respectively. Rotating the paddle 

around the shaft up to 20° in either direction, the Norwegian paddle was found to have 

consistently higher drag coefficient, thought to be due to the ‘greater depth of 

curvature’, although no differences were found in lift force. The curvature was also 

considered to be the cause for considerably higher drag forces when the paddle was 

moved through pitch angles. These interesting conclusions must be taken with some 

caution as the wind tunnel testing used steady flow conditions, which do not well reflect 

the flow around a paddle during a kayak stroke and may be why the study found less 

difference than might be expected between blade designs. Sanders and Baker (1998) 

postulated the theoretical advantages of the wing blade from their applied work with 

elite athletes and National Governing Bodies (NGBs) and discussed a number of 

possibilities, none of which seem to link directly to the increase in drag force found by 

Sumner et al. (2003). Sanders and Baker’s (1998) ideas included increased efficiency 

(through less water movement, better use of the human system and curved motion at 

entry and exit), an increase in time during pull and at paddle vertical, and creation of a 

larger vortex area. While some of these theories were backed up by research, much of 

the references were to their own work in unpublished reports to canoeing NGBs so 

cannot be corroborated. 

The paucity of research in the area of paddle set-up highlights a large potential for 

improvements in both athlete performance and academic understanding. The research 

which has been conducted is limited or makes recommendations based on assumptions 

which are unlikely to hold true. The complexity of on-water data collection, as already 

discussed, makes accurate measurement difficult and therefore an understanding of how 

paddle set-up affects force and power generation off-water would be valuable. In 

addition, as highlighted by Sanders and Baker (1998), there may be insight from NGBs 

which is not present in the literature. 
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 Boat movement 

 Athlete-boat connection 

A sprint kayak athlete is connected to the boat via only the seat and footrest. Through 

these connections, external forces such as those generated at the blade, are transferred 

to boat movement. Pushing and pulling forces occur at the feet during a stroke, via the 

footplate and the pull bar respectively (Figure 2.12a). To improve force transfer, some 

athletes also choose to use heel bars (Figure 2.12 c and d). 

  

 

Figure 2.12: examples of the commercially-available attachments between the athlete and the boat via: a) footplate 
and pull bar (Australian Paddle Sports, www.australianpaddlesports.com.au), b) seat (Nelo Australia, 
www.neloaustralia.com.au) and c & d) heel bar designed by Olympic Champion Liam Heath. 

Tornberg et al. (2019) recently investigated the force output at the seat, footrest and 

paddle across three athletes of different ability levels, concluding that power and force 

at the paddle were similar across athletes, while footrest forces displayed large 

differences (Figure 2.13). Footrest pushing force demonstrated the largest differences 

between junior and international senior, while the largest difference between 

international senior and national level senior was in pulling forces, highlighting the 

importance of both directional forces. 

 

 



  

39 
 

 

Figure 2.13: force and power measurements from kayakers of different levels of performance measured on an 
instrumented ergometer (Tornberg et al., 2019). 

Begon et al. (2009) also measured foot forces on an ergometer and found similar values 

and a considerable amount of inter-individual variability in force production (n = 10; 

footrest forces = 322-815 N). Tornberg et al. (2019) considered the timing of the 

application of force at the footrest to be of importance, an idea supported by Jahn et al. 

(2016) who found footrest force to begin slightly earlier than paddle force when testing 

elite athletes on an ergometer. An on-water force measurement system found that 

restricting leg movements (ascertained with a goniometer across the knee joint) 

dramatically reduced footplate force and resulted in a decrease in both paddle force and 

kayak velocity (Nilsson & Rosdahl, 2016), in agreement with Brown et al. (2010) who 

detailed the importance of the lower limbs to kayak performance.  

Swivel seats have been investigated with the idea that they may enhance the athlete’s 

connection with the boat for better power transfer, reduce the energetic cost of paddling 

or increase hip and trunk rotation. Physiologically, Michael et al. (2010) found use of the 

swivel seat resulted in an increased power output (swivel: 299.1 ± 24.9 W; fixed: 279.8 ± 

19.2 W). Swivel seats were also found to result in higher trunk muscle activation, higher 

paddle displacement and an increase in knee range of motion (López-Plaza Palomo, 

2013). Investigating the paddle and foot forces, Lok et al. (2016) found the swivel seat to 

increase paddle force, foot force and SR in a sub-elite athlete and to increase foot force 

in an elite athlete. Despite these positive research findings, the swivel seat has not been 

adopted by elite paddlers. This may be due to differences in kinematics necessitating 
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re-learning the skill and therefore likely an initial decrement to performance, or through 

an increase in non-advantageous boat movement increasing drag and therefore negate 

the potential benefits. 

 Hydrodynamics of the boat 

Kayak design, including maximum length and minimum mass, is restricted by the ICF 

regulations (ICF, 2019; page 24). Total drag on the kayak hull is made up of drag arising 

from three components (Gomes et al., 2015; Pendergast et al., 2005): friction between 

the hull and the water (friction drag; DragFr), pressure drag as the water separates to 

allow the kayak hull through (pressure drag; DragPr) and the drag created by waves 

resulting from accelerating water away from the hull (wave drag; DragW). 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑎𝑔 = 𝑑𝑟𝑎𝑔𝐹𝑟 +  𝑑𝑟𝑎𝑔𝑃𝑟+ 𝑑𝑟𝑎𝑔𝑊 (Equation 2) 

Gomes et al. (2015) investigated the contribution of each of these forms of drag relative 

to velocity and mass by towing an athlete in a kayak using a specially-designed system. 

Friction drag was found to be the highest contributor, making up 59-67% of the total drag 

dependant on weight and velocity (Figure 2.14). Pressure drag accounted for 21-25% and 

wave drag for 9-19%. Increasing the mass of the system by adding weight increased both 

the wetted surface area and the frontal submerged area, having a larger increase at 

higher speeds.  This mass-related effect of speed was highest for wave drag (Figure 

2.14b). The towing system used constant velocity and therefore the effect of velocity 

fluctuations within strokes is not clear.  

Drag factors can be minimised by reducing additional boat movement in directions other 

than forward motion. Additional movement will increase the wetted surface area and 

therefore increase drag, an effect also found in rowing (Hill & Fahrig, 2009). Ong et al. 

(2006) recorded boat movement and reported ‘minimal’ movement within their three 

participants of 0.5° yaw, 1.7° pitch and 1.3° roll when paddling on-water. Full results on 

boat movement are not presented and additional boat movement was not linked to 

performance, but two athletes were noted as having higher roll movement, once again 

indicating the importance of inter-individual variability. The accuracy of these data, based 

on calibrated, manually-digitised footage at 50 Hz, needs assessing. 
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Figure 2.14: a) total drag force on sprint kayaks of different mass being towed across a range of velocities with b) 
contribution from components of drag (Gomes et al. 2015). 

A Minimax B4 unit containing GPS and IMU (Catapult, Australia) placed on the centre of 

the back deck along with an instrumented paddle were used to find that lower times (and 

therefore better performance) were correlated positively with paddle torque (r2 = 0.76) 

and forward boat acceleration (r2 = 0.64), as well as negatively with boat pitch (r2 = -0.56) 

and boat roll (r2 = -0.51) across the eight national-level and club paddlers tested (Fisher, 

Karpul, Tam, Tucker, & Noakes, 2013). Those who produced high boat acceleration also 

produced more boat roll and pitch, but it would be logical to assume the acceleration to 

be the aim and the roll/pitch as an undesired outcome.  

a) 

b) 
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 Environment 

The environmental conditions during kayak races are not controllable but can have a 

large effect on boat velocity via the determinants of drag (Figure 2.15). From wind tunnel 

and on-water experiments focusing on aero-dynamics, Barber (2018) showed that a 

kayaker’s coefficient of aerodynamic drag is mainly described by relative air velocity, with 

turbulence having little effect.  A theoretical 10% reduction in the coefficient of air drag 

was found to result in a decrease in finish time of a men’s K1 200 m of 0.1 s, while 

headwinds of 2 to 10 m·s-1 increased finish time by 0.8 to 8 s. 

Although there are models which have been created to allow coaches to compare race 

times hypothetically free of environment influence, no published studies or validations 

could be found. Guilbaud and Durand (2006) described a model using wind tunnel data 

in a short abstract, and British Canoeing and the German Canoe Federation are both 

known to monitor environmental conditions at races, including wind speed and water 

temperature, and to have methods of longitudinal comparison. The British Canoeing 

model is based on the mechanical equation for drag (Equation 1) to measure both aero- 

and hydro-dynamics and compare the measured environmental conditions to datum with 

no wind and standardised water conditions (still and warm). These models over-simplify 

conditions, applying average conditions over the time period and not taking into account 

any fetch (the distance wind travels over open water) or lane effect or any fluctuations 

in boat velocity. Despite these limitations, quantifying even some of the effect of 

environmental conditions will allow for an improvement in comparison between trials or 

dates. 
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Figure 2.15: Schematic breakdown of causes of drag force experienced by a sprint kayak, based on Jackson et al. (1992) 
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The ICF canoe sprint level 2 and 3 coaching manual (ICF, 2014; page 32) cites that 

hydrodynamic drag makes up 93% of the total drag experienced by a kayak athlete. 

Although no reference was listed, this figure could be taken from Jackson (1995) who 

reported values from towing tank experiments by Toro (1986), that listed aerodynamic 

drag to account for 5.6 N of 80.6 N of total drag, equivalent to 7%, when there is no wind. 

Measurement of aerodynamic drag uses the same equations as hydrodynamic drag 

(Equation 1), with different values arising from air density, drag coefficient and frontal 

surface area- which would relate to the area of the athlete and the portion of the boat 

above the water line. From Equation 2 and Figure 2.15, the effect of environmental 

conditions such as water and air temperature (through changes in viscosity and density), 

wave size and wind speed will influence drag. While the effect of boat velocity can be 

estimated using models, it is not possible to use the same calculations for the influence 

on SR. Models also do not specify how an individual reacts to these conditions, for 

example a less stable athlete may struggle more in choppy water, which cannot be 

quantified easily.  

As with paddle movement, the causes and consequences of boat movement are more 

complex than might first be thought and an athlete’s technique is not limited to how they 

move the paddle. The effects of the weather have been shown to be large and so it is 

important to account for these in measurements of performance, something which is not 

often done in sprint kayak research.  

 Athlete variability  

Traditionally, variability in movement within (intra-individual) or between (inter-

individual) athletes has been seen as a negative, with the underlying idea that sporting 

performance conforms to a specific ideal movement and anything outside of this is ‘noise’ 

of the system and is to be avoided (Schmidt, 1975). Bernstein (1967) originally outlined 

the “degrees of freedom problem” whereby the human system has multiple options to 

perform a movement.  

Over the last two decades, a significant amount of research has been conducted looking 

at how and why athletes vary in performance. Reviewing the literature available in golf, 

Glazier and Lamb (2018) found that while in the coaching literature a single optimal 

technical model of performance is often recommended, studies have shown high levels 

of inter- and intra-athlete variability at all levels of performance, although there is some 
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disagreement in the literature reviewed. Co-ordination variability in triple jumping has 

been found to be low in intermediate level athletes and higher for most and least skilled, 

thought to indicate high variability during the early stages of learning followed by a 

reduction in variability and finally a flexibility to adapt to perturbation as skill level 

increases (Wilson, Simpson, Van Emmerik, & Hamill, 2008). As there were only five 

participants in this study, all of whom were classed as ‘elite’, the authors postulated that 

the lower skill level athlete could still be considered in the early phase of learning due to 

the complexity of the task. MacPherson, Collins and Morriss (2008) demonstrated that 

when mental effort is focussed on one aspect of skill, biomechanical variability in that 

element is decreased, while variability in other areas is increased, highlighting the role of 

focus of attention in movement variability and a potential mechanism for differences 

seen between performance levels, or individuals. This interaction between focus and 

technical performance has been postulated to be a useful tool for coaches to develop 

skill (Carson, Collins and Richards, 2014). Even in relatively ‘simple’ skills, such as a back 

squat, significant quantities of inter- and intra-athlete variability have been reported 

(Kristiansen, Rasmussen, Sloth & Voigt, 2019). By comparing the whole trace of a lifting 

movement through statistical parameter mapping, rather than key metrics, additional 

differences could be identified. Kristiansen et al. (2019) concluded that successful back-

squat performance can be achieved with variable lifting strategies.  

Bartlett and colleagues (2007) published an overview of variability in sport biomechanics, 

focusing on data from javelin and discus throwing and basketball shooting. From 

computer simulation modelling and experimental research of performers across levels, 

including elite performance, they surmised that “outcome consistency does not require 

movement consistency” (p. 229) and emphasised the value of between-individual studies 

alongside group level research: “it makes no sense to try to copy specific details of a 

successful athlete’s technique” (p. 240).  

Glazier and Mehdizah (2019) wrote that the identification of athlete-specific optimum 

technique is the ‘holy-grail’ of sports biomechanics research but is unlikely to be achieved 

in the near future as attention needs to be paid to the likelihood of the athlete achieving 

this change in technique and measuring the complex combination of intrinsic and 

extrinsic dynamics needed to create a mathematical model is not currently viable.  
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 Single subject research 

The ideas of inter- and intra-individual variability are directly linked with those which 

underpin single-subject design research. Parametric inferential statistical methodologies 

were developed around the finding that data follow a normal distribution around an 

average, with group approaches’ removal of individual variability and noise through 

averaging considered advantageous (Bates, 1996). However, there is now a body of 

evidence indicating that group level conclusions are not representative of any of the 

participants’ data and therefore mask individual differences (Bates, 1996; Chapman, 

Stray-Gundersen, & Levine, 1998; Dufek, Bates, Stergiou, & James, 1995). Inter- and intra- 

athlete variability will also affect reliability and statistical significance of output in group 

level research, as highlighted by Mullineaux, Bartlett and Bennett (2001).  Bates, Dufek 

and Davis (1992) ran simulation studies and found significance was considerably harder 

to attain from single subject research compared to group level. Single subject design has 

been advocated for elite sports research due to the small participant numbers and a level 

of flexibility which allows easier integration into coaching practice (Kinugasa, Cerin, & 

Hooper, 2004; Kinugasa & Taisuke, 2013). 

 Kayak variability   

Therrien et al. (2012) investigated how changes in stroke rate influence paddle tip path 

in ergometer kayaking. Intra-participant paddle tip path was consistent at increasing 

stroke rates as quantified using multiple correlation coefficients, but visual assessment 

of the paddle paths shows considerable differences between participants. The 

differences between athletes were not quantified so cannot be objectively assessed but 

are visually clear. The main limitation with this study is the use of an ergometer for 

detailed kinematic analysis which places more constraints on the paddle stroke path as 

the paddle is connected via rope and bungee to the front of the machine; this limitation 

might be expected to reduce inter-athlete variability and so the individual differences 

found are of greater significance. Ergometer use takes out the above-mentioned changes 

in environmental conditions, which would be likely to affect stroke-to-stroke variability 

as well as larger differences likely in different places or on different days. This is similar 

to other sports, for example in running, where variability on a treadmill is lower than over 

ground running (Wheat, Milner, & Bartlett, 2004). While the environmental constraints 
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reduce the value of a kayak ergometer for analysis of variability in detailed kinematics, it 

does not diminish its value for measurement of power or force variables. 

Wainwright, Cooke and Lowe (2015) applied Wainwright’s (2014) deterministic model to 

a group of international standard kayakers and looked at individual regression analyses 

based on data collected on-water. They found inter-athlete variation to be high, stating 

that “each athlete used an individual style to create velocity” (p. 4), although this was not 

quantified. In agreement with this, Sanders and Baker (1998) discuss data from an 

unpublished report of elite kayak athletes, stating that the paddlers “varied considerably 

in their techniques” (p. 72) including paddle path and blade orientation, although again 

no supporting data was provided.  

Many kayak studies have not directly measured inter-individual variation but have 

reported it within their results for many factors: Mann (1978) found segmental velocities 

and accelerations varied between participants, stating these differences were due to the 

way the paddle is held; Michael et al. (2012) found individualised results within paddle 

force measurement; Begon et al. (2009) reported large differences in foot forces and Ong 

et al. (2006) reported differences in boat movement. 

 Competition variability 

As kayak velocity is the product of distance per stroke (DPS) and stroke rate, individual 

athletes may have different strategies for maximising velocity. In athletics, sprinters have 

been classified as being either stride rate or stride length dominant, with this dominance 

considered to vary between athletes (Salo et al., 2011). The relationship between stride 

length and stride rate throughout a 100 m sprint is well documented in sprinting, with 

the early steps shorter in length and longer in duration to ensure the best orientation of 

highest possible impulse (Debaere et al., 2013). However, in kayaking, little is known 

about phase differences in stroke characteristics and in many analyses the initial 

acceleration is not analysed. McDonnell et al. (2013b) investigated the stroke rate (SR) 

pattern and place time consistency of international 200 m races between 2006 and 2011. 

Using times from 17 international events, they found the time needed to win the 200 m 

at World Championship events was consistent, with a range of only 0.7%. Analysis of SR 

was limited to seven male and five female medallists due to video quality and stroke 

visibility, but the race winners did not always have the highest SR. Stroke rate profiles 

were discussed but not shown, and were described as decreasing throughout the race, 
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although the initial five seconds of acceleration are not included. The authors noted this 

decrease appears to be becoming smaller from 2006 to 2011. Figure 2.16 demonstrates 

the combinations, and large variability of SR and DPS, that can be used to achieve the 

required medal-winning velocities as taken from McDonnell et al. (2013b). The use of 

only an average to calculate recommended SR ranges, despite documented evidence of 

changes in SR pattern, limits the applicability of these figures.



  

 
 

4
9 

Figure 2.16: stroke rate – distance per stroke matrix with resultant velocity in m·s-1 calculated as (SR/60) x DPS. Shaded boxes are velocities of international female (light grey) and 
male (darker grey) medallists, taken from McDonnell et al. (2013). Outlined boxes are the SR range recommended by McDonnell et al. (2013). 
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 Applied measurement 

Understanding when differences between athletes or between groups is of practical 

significance is of huge importance to the application and impact of research in sport 

science. Traditional testing between groups of data has involved hypothesis testing. By 

testing the ‘null hypothesis’ that there are no differences between groups, hypothesis 

testing produces a p-value, which indicates the likelihood that a difference would be 

found if the null hypothesis were true. A significance level, or alpha value, is commonly 

set at 0.05, indicating a 5% chance of falsely rejecting the null hypothesis. These statistics 

have been commonly, and increasingly, used in sports biomechanics research (Vagenas, 

Palaiothodorou, & Knudson, 2018). However, this form of significance testing has 

resulted in over-reliance on ‘significant’ results which may be, in a practical sense, 

meaningless (Knudson, 2009). In order to understand whether difference between 

groups or individuals have useful meaning, effect size calculations have been 

recommended (Fritz, Morris, & Richler, 2012; Knudson, 2009; Mullineaux et al., 2001; 

Vagenas et al., 2018). Cohen’s 𝑑 (Cohen, 1988) is one of the most commonly used 

measures of effect size (Fritz et al., 2012; Vagenas et al., 2018), and provides a measure 

of the difference between means, in units of standard deviations of the population, with 

values of 0.2 considered a small effect, 0.5 a medium effect and above 0.8 a large effect. 

Use of effect size has increased following a quadratic function since the 1990s (Vagenas 

et al., 2018). Use of effect sizes also provides easier understanding of outcomes for those 

who have little or no experience with statistics. 

Despite the importance attributed to single subject research and the frequent reporting 

of variability within or between athletes (e.g. Bates et al., 1996; Kinugasa et al 2004; 

Kinugasa & Taisuke, 2013), few researchers have clearly quantified inter- or intra-athlete 

variability. Standard deviations and ranges have been reported in biomechanics research, 

but this has primarily been for statistical power purposes rather than as a feature of for 

investigation (Glazier & Lamb, 2018).  Quantification of variability has made use of 

standard statistics such as coefficient of variation (Legg et al., 2017), Pearson correlations 

and ANOVAs (Kristiansen et al., 2019). This indicates it may be the reporting and 

emphasis, more than the analysis methods, which need adapting to create impactful 

research for elite populations. 
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It is clear that inter- and intra-individual differences in sport performance exist in many 

sports, including in sprint kayaking. It is therefore highly important when conducting 

research, and particularly in research with an applied aim, that individual responses are 

measured and considered alongside group level conclusions as otherwise highly valuable 

information may be lost. The optimum way for analysing individual data is not 

immediately clear but for practical inferences, effect sizes have clear value.  

 Physiological/Mechanical determinants  

It might be expected that some of the variability between athletes stems from their 

physiological and mechanical capabilities. The following section provides an outline of 

some of the key physiological and mechanical factors relating to sprint kayaking.  

As kayakers compete over different distances and over different time frames (Table 2.1), 

there are different contributions of energy systems to performance (Zouhal et al., 2012). 

Van Someren and Howatson (2008) investigated the influence of various anthropometric 

and physiological aspects on performance in each of the distances raced. By correlating 

performance time for each event (during racing) with these aspects, they highlighted the 

similarities and differences between events (Table 2.6). Measurements of power and 

work were conducted on an ergometer within three weeks of race performance.  

Table 2.6: Statistically significant correlations between race time and ergometer measured physiological measures 
in the three race distances from van Someren & Howatson (2008). 

Distance Significant physiological correlates R values 

200 m - Peak power 

- Work done in 30 s 

- Fatigue index in 30 s 

- Peak isometric function 

- Peak isokinetic function 

-0.68 

-0.74 

-0.54 

-0.47 

-0.57 

500 m - Peak power 

- Work done in 30 s 

- Fatigue index in 30 s 

- Work done in 2 minutes 

- Peak isometric function 

- Peak isokinetic function 

-0.84 

-0.87 

-0.52 

-0.74 

-0.60 

-0.66 

1000 m - Peak power 

- Power output at lactic turn point 

- Work done in 30 s  

- Work done in 2 minutes 

-0.65 

-0.51 

-0.74 

-0.83 
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Fry and Morton (1991) previously undertook a similar study looking at the performance 

of 38 male kayakers over 500, 1000, 10,000 and 42,000 m and created multiple regression 

equations for the variables tested with each race distance. The first five inputs into the 

regression equation for the 500 m event were: maximum ventilation, V̇O2max (l·min-1), 

work done in 60 seconds, force generated during 120s°·s-1 movement on a dynamometer 

(described as simulating a kayak stroke, with no further detail) and forced vital capacity. 

For 1000 m, the first five variables were: time to exhaustion, V̇O2max (l·min-1), V̇O2max 

(ml·kg-1·min-1), force generated during 30s°·s-1 movement on a dynamometer and chest 

girth. These equations were found to result in r2 values of 0.83 and 0.92 respectively. No 

mention of testing of the assumptions of normality, linearity, homoscadacity or 

multi-collinearity means these results must be interpreted with caution.  

Looking at the shorter distance of 200 m, which was only introduced into the Olympic 

programme in 2012, van Someren and Palmer (2003) found anthropometric and 

anaerobic characteristics to differentiate between performance levels, while no aerobic 

measures had significant differences. Multiple regression analysis resulted in only the 

total work during a 30 second all-out Wingate test predicting 200 m performance across 

all athletes. In opposition to this, well-trained junior athletes’ 200 m performance has 

been found to correlate strongly with physiological variables, including V̇O2max (Oliveira 

Borges, Dascombe, Bullock, & Coutts, 2015). These differences may be due to maturity 

status, or training focus; young athletes are unlikely to have specialised while the 

international group in van Someren’s (2003) research had already competed 

internationally in 200 m racing and are therefore likely to have heavily focused on this 

during training.  

 Anthropometrics 

Four papers could be found that have directly investigated the relationship between 

anthropometric factors and performance (Table 2.7). None of the parameters are 

significantly linked to performance by all authors, although the size of the upper arm is 

significant in all papers from different measurements: skeletal (humerus breadth) and 

muscular (bicep/upper arm girth).  Height, sitting height and body mass, along with other 

variables, displayed contradictory findings between research papers. This may be due to 

differences in cohort or statistics employed: van Someren and Howatson (2008) used 

correlations across a group of club and international paddlers; Fry and Morton (1991) 
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created an intercorrelation matrix and t-tests to compare between state and non-state 

team members, and Aitken and Jenkins (1998) directly compared ‘elite’ kayak athletes 

with recreationally active volunteers. Correlations are undoubtedly interesting but a 

large spread of data in one dimension (such as combining participants of different 

abilities or genders) can artificially inflate the strength of a correlation value due to the 

reliance of the commonly calculated ‘r’ statistic on mean and standard deviations 

(Altman, 1991). 
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Table 2.7: Summary of anthropometric parameters considered to relate to sprint kayaking performance from 
previous literature. 

Paper Distances Participants Anthropometric parameters 

   Linked with 

performance 

Not linked with 

performance 

Van 

Someren 

& 

Howatson 

(2008) 

200 m  

500 m 

1000 m 

18 males; 10 

international, 8 

club level 

Chest 

circumference  

Humerus breadth 

(200 m and 500 m 

only) 

Body mass 

Height 

Sitting height 

Arm span 

Body fat 

Lean body mass 

Arm 

circumference 

Femur breadth 

Morphology 

Van 

Someren 

& Palmer 

(2003) 

200 m 26 males; 13 

international, 

13 national 

level 

Upper arm 

circumference 

Lower arm 

circumference 

Chest 

circumference 

Humerus breadth 

Mesomorphy 

Body mass 

Height 

Sitting height 

Arm span 

Sum of skinfolds 

Body fat % 

Lean body mass 

Calf circumference 

Femur breadth 

Fry & 

Morton 

(1991) 

500 m  

1000 m 

38 males; 16 

state team 

member, 22 

non-state team 

members  

Sitting height 

Body mass (1000 m 

only) 

Bicep girth 

Forearm girth 

Chest girth 

Biacromial width 

Sum of skinfolds 

Height 

Aitken & 

Jenkins 

(1998) 

Unknown 25 males, 25 

females; 20 

elite, 30 

recreationally 

active 

Body mass 

Bicep girth 

Upper arm length 

Forearm length 

Thigh length 

Lower leg length 

Biacromial breadth 

Height 

Sitting height 

Sum of skinfolds 

Arm span 

Bi-illiocristal 

breadth 

Thigh girth 
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Figure 2.17 (Ackland, Ong, Kerr, & Ridge, 2003) compares the size of athletes across 

various measurements with a ‘Phantom Z-score’ which provides a measurement of 

relative magnitude of variables compared to the population. Kayak athletes were found 

to differ from the general public via lean composition (i.e. skinfolds; Figure 2.17) and large 

upper body girths (i.e. arm and chest girths; Figure 2.17). Comparing young paddlers to 

Olympic-level kayak athletes found larger upper body girths of the latter (Alacid, 

Martínez, López-Miñarro, & Muyor, 2014), indicating the influence of maturity and 

training focus on the dimensions of high-level kayak athletes.  

 

Figure 2.17: Anthropometric measures of male and female Olympic sprint kayakers relative to an average population 
via a phantom z-score, adapted from Ackland et al. (2003). 

As well as the potential for understanding inter-athlete variability, the link between 

anthropometric factors and performance is important to determine when data need to 

be normalised to compare across a group. A standardisation of normalisation of physical 

performance tests has been proposed (Jaric, Mirkov, & Markovic, 2005) so that 

comparison across groups and sports can more readily be made. The authors proposed 

allometric scaling to body size (variable divided by mass0.67) for measures of force and 

power; although this uses an assumption of geometric similarity, it would be beneficial 

when specific normalisation (i.e. limb length) is too logistical a challenge for data 

collection. Allometric scaling to the factor 0.67 is based on the idea that muscle force has 

been shown be proportional to muscle cross sectional area (CSA; Maughan, Watson, & 

Weir, 1984; Tavares et al., 2017) and CSA is proportional to volume to the power 0.67, 

therefore force can be considered proportional to mass to the power 0.67 (Mullineaux, 
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Milner, Davis, & Hamill, 2006). Mullineaux et al. (2006) compared methods of normalising 

ground reaction force and concluded that ratio normalisation (force divided by 

bodyweight) removed the effect of mass from results more effectively than allometric 

scaling to the power 0.67. For ground reaction forces, where the acceleration of gravity 

will always apply vertically downwards on mass, this might be expected, with Newton’s 

second law underpinning the theory. It is not clear if the same relationship is true when 

the force applied is in a different direction from that in which gravity acts on mass, such 

as in kayaking. 

It is not known if anthropometrics affect technical factors such as SR, forward reach, 

lateral blade movement or any of the other technical factors highlighted in the ‘athlete 

movement’ section although in running, naturally-chosen stride length and stride 

frequency have not been found to relate to anthropometric measures (Cavanagh & Kram, 

1989). 

Anthropometrics could also be of value for equipment setup. Barrett and Manning (2004) 

stated that in rowing, setting up the rigging to match a rower’s ‘strength and size’ is vital 

to maximising performance. In kayaking, anthropometric measurements have been 

found to correlate with paddle set-up (Diafas et al., 2012; Ong et al., 2006). Based on 

regression equations as opposed to mechanical theory, Ong et al. (2006) changed 

paddlers’ set-up and investigated the effect on performance. Changing to the predicted 

set-up led to reductions in kayak velocity. As seat-foot bar distance and grip width were 

changed simultaneously, it is not possible to differentiate between cause. In addition, 

although based on other elite performers, the equation used had no basis in mechanical 

theory and therefore it is unclear what underpinned the negative change to performance 

and no practice time was given for the change in set-up.  

 Force-velocity 

Anaerobic variables such as force and power have been shown to strongly correlate with 

performance of the shorter sprint kayak events (Mononen & Vitasalo, 1995; van Someren 

& Palmer, 2003). As power is the product of force and velocity, the relationship between 

these two factors is potentially highly important to sprint kayak performance.  

The force-velocity relationship of isolated muscle was originally documented by Hill 

(1938) showing a hyperbolic decrease in force production at increasing velocities and is 

thought to be due to reduced time for formation of actin-myosin cross bridges, 
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commonly known as the sliding filament theory (Huxley & Simmons, 1971). Martin (2007) 

reviewed the factors affecting muscular force in humans and summarised the 

relationships between them (Figure 2.18). 

 

Figure 2.18: Schematic representing interplay between the factors affecting muscle force production in humans 
(Martin, 2007). 

Highlighting these inter-relationships, Kawakami and Fukunaga (2006) looked at human 

muscle function and found peak knee extension torque to occur at increasing joint angles 

when operating at increasing joint velocities. This indicates the importance not only of 

the interaction between force-length and force-velocity relationships, but also the use of 

the muscle tendon unit (MTU), as the elastic component (the tendon) elongation also 

influenced torque.  

Multi-joint human movement has consistently been found to exhibit a linear force-

velocity profile (Jaric, 2015). This is thought to be due to segmental dynamics as 

modelling has shown the hyperbolic muscular force-velocity output is maintained but 

‘buffered’ by the joint movement, resulting in a linear external force-velocity relationship 

(Bobbert, 2012), although it has also been attributed to activation dynamics of the muscle 

(Bobbert, Casius & van Soest, 2016), and to neural mechanisms (Yamauchi, Mishima, 

Fujiwara, Nakayama, & Ishii, 2007). In support of the segmental dynamics proposal, 

eccentric and concentric cycling at different cadences using a recumbent bicycle has been 

found to result in linear relationships for both contraction types, leading the authors to 

suggest that the linearity is caused by a technique-dependent factor rather than an 

intrinsic muscle property (Green et al., 2018).  

Zivkovic et al. (2017) investigated the fit of a second-order polynomial in comparison with 

a linear model, across four different movement types (vertical jumps, cycling, press throw 

and bench pull) and found correlation coefficients of all profiles of above 0.98 with linear 

relationships never outside the 95% confidence intervals of the polynomial correlation 

values. Visual assessment of the graphs provided also confirms a linear relationship. In a 
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similar study isolating the knee joint, Iglesias-Soler et al. (2019) found the F-V profiles of 

24 students to be well fitted by linear, quadratic and exponential models (r2 > 0.964). By 

comparing the power calculated from the resulting F-V equation with that measured 

during movement, Iglesias-Soler et al. found linear models to most accurately estimate 

maximum power and therefore recommended this model. In a review of F-V profiling, it 

was suggested that the linear relationships found in multi-joint movement may be as a 

result of a reduced range of measurement, with hyperbolic qualities measurable if very 

low or very high velocities are investigated (Alcazar, Csapo, Ara, & Alegre, 2019).  

As with functional movement, the force-velocity (F-V) relationship in sporting 

movements has been found to be linear, mathematically and empirically resulting in a 

quadratic relationship between velocity and power (P-V; 𝑃 = 𝐹 ∙ V) in sports such as 

cycling (Martin, Wagner, & Coyle, 1997), rowing (Sprague, Martin, Davidson, & Farrar, 

2007), kayaking (Schofield, 2015) and all sports backgrounds tested by Giroux and 

colleagues (2016; cycling, fencing, taekwondo and athletic sprinting, n = 95). The gradient 

of the F-V relationship differs between sports at elite level (Bozic & Bobana, 2018; Giroux, 

Rabita, Chollet, & Guilhem, 2016; Haugen, Breitschädel, & Seiler, 2019), although the 

relationship of a negative slope was consistent. A steeper gradient value indicates a 

sharper drop off, so for a given gain in velocity, the decrease in force production is larger 

and the profile is considered ‘force orientated’; the opposite is also true, a lower gradient 

represents a shallower profile, which can be considered ‘velocity orientated’ (Samozino 

et al., 2012; Figure 2.19). Extrapolating the best-fit line as far as the axes results in a 

theoretical maximum force at zero velocity (F0) and a theoretical maximal velocity at zero 

force (V0).  

Figure 2.19: Examples of two athletes’ F-V profiles from inclined maximal lower limb push-offs (Samozino et al., 
2012). Profiles defined by the authors as force-orientated (unfilled circles) and velocity-orientated (filled circles). 
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Previous activity can influence F-V profile (Jiménez-Reyes et al., 2014; Komi & Bosco, 

1978) and therefore for sports involving cyclical motion, the test used to create F-V 

profiles should also involve cyclical motion. Using three maximal 6 s sprints on a cycle 

ergometer at loads of 7, 9 and 11% of body weight to caputure F-V profiles, Bozic and 

Bacvarvic (2018) found strong linear F-V relationships (r > 0.95) across groups of combat 

sports, athletic sprints, team sports and physically active (n = 111). Combat sport 

participants exhibited a more force-orientated profile, sprinters and team sports 

participants’ profiles were more velocity-oriented, and a more balanced profile was 

reported for the physically active participants. The relevance of the cycle ergometer to 

each sport, and its training methods, would vary, and no individual values were reported. 

In addition, a linear regression was used to model the F-V relationship with only three 

data points (one per trial) which is not enough for statistical use of a linear regression 

(Nunnally, 1967) and is lower than the six measurements suggested as a minimum by 

Morin and Samozino (2016) for practical F-V and P-V profiling of athletes. Haugen et al. 

(2019) also compared F-V profiles of elite athletes from different sporting backgrounds, 

testing 566 athletes from 23 different sports using a 40 m sprint, and concluded that 

profiles are more specific to the individual than they are to a specific sport.   

The importance of using an appropriate movement pattern to assess an athlete’s F-V and 

P-V is highlighted by differences in these relationships within gym exercises which are 

thought to work the same muscle groups. The F-V relationships of 75 resistance trained 

athletes in prone bench pull showed consistent differences relative to the profiles 

generated in bench press, with the bench pull demonstrating a more velocity-orientated 

profile, considered by the authors to be due to differences in moment arm and muscle 

architecture (Sánchez-Medina, González-Badillo, Pérez, & Pallarés, 2014). Supporting 

this, Jimenez-Reyes et al. (2018), compared vertical F-V and P-V profiles created from 

squat jumping with horizontal profiles generated from linear sprinting and found low 

correlations coefficients of -0.12 to 0.58 for theoretical maximal force production (F0), -

0.31 to 0.71 for theoretical maximal velocity (V0) and -0.10 to 0.67 for maximum power, 

highlighting the difference in values typically found between techniques and the 

importance of the measurement type used.  

Measuring the force and velocity of the activity as directly as possible would appear to 

be the best way to get sport-specific F-V profiles. However, by doing so researcher control 
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is reduced and the recommendations by Alcazar and colleagues (2019) for F-V profiling 

(controlling movement parameters, activation and joint angles) cannot be met. While this 

means the underlying muscle mechanics cannot be clarified from applied F-V profiles, it 

does not diminish their value in the sport environment.  

Morin and Samozino (2016) have developed easy-to-use systems and tools to identify 

differences between individuals and to tailor training. They reported that this can 

optimise training, by working on a relative weakness from an ‘imbalance’ in F-V, and 

reduce injury risk by reducing high velocity stimulus to velocity dominant athletes. The 

idea of an imbalance is based on an individually generated ‘optimal’ relationship using a 

participant’s push off distance, body mass and maximum power. The complexity of the 

mechanical underpinnings of the F-V supports the likelihood of individual differences but 

the proposition of a single ‘optimal’ profile for each person may limit experimentation 

and improvements.  

The F-V profile can be used by practitioners to improve sporting performance. 

Gym-based training interventions have been found to be effective at targeting either F0 

or V0 (García-Ramos, Torrejón, Pérez-Castilla, Morales-Artacho, & Jaric, 2018), an effect 

which improves jumping performance when targeting is based on the ‘imbalance’ 

mentioned above (Jimenez-Reyes et al., 2017). Longer term, changes in F-V have been 

recorded in bob-skeleton athletes over an 18-month period (Colyer, Stokes, Bilzon, 

Cardinale and Salo, 2017). Heavy strength blocks were found to result in increases in F0, 

while competition season, where focus is on speed, showed increases in V0 and 

decreases in F0. These effects were stronger with less highly trained individuals. In 

addition to this direct research, Bezodis, Kerwin, Cooper and Salo (2018) postulated that 

changes in stride length and stride frequency seen over a five month period, covering 

heavy strength training and speed focussed block, could be attributed to changes in F-V 

although this was not measured directly.  

Sprint kayakers tend to have different anthropometrics to the average population 

(Ackland et al., 2003), although these have not been strongly linked to performance and 

it is not clear if or how anthropometrics affect technique. Anthropometric factors such 

as muscle mass, however, are known to influence force and power generation as well as 

relating directly to kayak performance. It is therefore important that F-V and P-V profiles 

are normalised if they are to be compared across a group. Understanding F-V profiles has 
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had a positive impact in a number of sports and investigating these profiles in a sport-

specific manner in sprint kayaking would valuable to practitioners and researchers.  

 Summary 

Biomechanics research in sprint kayaking has mostly involved limited on-water capture 

or more detailed ergometer capture. Ergometer kayaking does not perfectly replicate the 

kinematics of on-water paddling and therefore should not be used to assess the 

technique of paddlers. However, accurate data are considerably easier to obtain with 

ergometers compared to when on-water paddling and data measured using ergometers 

(e.g. work, force, power) have shown strong relationships with on-water performance. 

Ergometers require multi-joint movements and similar timing strategies and have 

comparable force outputs, indicating there is considerable value to ergometer research 

and use in applied practice, providing the context is thoroughly considered.  

The difficulties involved in on-water measurement mean there is limited information 

available related to paddle path and hydrodynamics of the blade. Researchers have not 

yet accurately quantified paddle path and forces in 3D, which limits current 

understanding. There have been measurements of force limited to one or 2D, or 

ergometer studies, which have indicated the importance of force and power to 

performance. Combining force measurement with anthropometrics could lead to 

additional insight into the cause of variability and understanding athlete individuality.  

The development and use of F-V profiles in sport settings has led to first sport-specific 

then athlete-specific differences emerging. Gaining an insight into how athletes generate 

power through individual F-V profiles, and tailoring training based on these has been used 

effectively in athletics, although it is not clear how these physiological capacity measures 

link to performance. These profiles have also been used to suggest equipment 

modifications in sports such as kayaking (Sprigings et al., 2006) and cycling (Barratt et al., 

2011).  

Despite its importance in transmitting force, there has been little research into the paddle 

set-up in kayaking. Many paddles have the functionality to change length and angle, as 

well as grip position, but no clear evidence has been found to clarify how best to choose 

paddle set-up for a given athlete, potentially due to the open nature of the skill.  
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Chapter 3: Sprint kayak coaches’ knowledge   

 Introduction  

Coaches’ careers can be dependant on their understanding of the sport they work in, but 

this experiential knowledge is often overlooked by researchers as it is difficult to 

document and validate and is traditionally not as highly valued by quantitative 

researchers. As highlighted in the literature review, there are a number of areas of sprint 

kayaking in which researchers could be guided by coaches to run more impactful studies. 

Researchers frequently identify ways in which specific biomechanical variables (Michael, 

Smith, & Rooney, 2009), or biomechanics as a discipline (Luhtanen, 1997) may aid 

coaches’ practice, however it is not clear how often these research findings transfer to 

practice. Elliott and Bartlett (2006) tried to establish if and how biomechanics research 

has informed coaching practice through identifying technical changes in throwing sports 

and associating them with their research outputs and experiences with coaches. While 

this does highlight the role biomechanics can play in technical development, the paper 

focuses on a few specific aspects rather than a comprehensive knowledge of the sport.  

Comparing coaching knowledge, empirical evidence and mechanical theory is a form of 

triangulation (Figure 3.1) defined by Denzin (1978, p. 291) as “the combination of 

methodologies in the study of the same phenomenon” and highlights specific areas of 

interest for coaches and researchers. In the overlapping areas this can help validate each 

to the other, while coaches’ areas of interest not reflected in literature are areas for 

additional exploration, allowing the common barrier for research impact of inappropriate 

research questions (Fullagar et al., 2019) to be overcome. In a sport such as kayaking 

Figure 3.1: Schematic highlighting the combination of the three main sources of knowledge used in this 
study, to enhance understanding of performance in sprint kayaking. 
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where it is currently difficult to measure many factors accurately (for example, the boat-

water interaction), documenting the knowledge of expert coaches becomes of even 

higher importance. The collation and analysis of this experiential knowledge will help in 

understanding the nuances of sprint kayaking, optimising equipment and bringing 

coaches into the research process, which may help to encourage their support in future 

research. 

Much of coaching knowledge is formed from experience or passed down from other 

coaches and is therefore subjective and will be highly dependent on the specific athletes 

or mentors with whom a coach has worked or, often, their experience from being an 

athlete themselves. While this does not undermine the value of the data gained, it does 

highlight the importance of the context in which it is gained. Previous research has 

investigated coaches’ experiential technical knowledge of sports such as golf (Smith, et 

al., 2015), gymnastics (Cote & Salmela, 1995), wheelchair racing (Bundon, Mason, & 

Goosey-Tolfrey, 2017; Stone, Mason, Bundon, & Goosey-Tolfrey, 2019) and sprinting 

(Jones, Bezodis, & Thompson, 2009; Thompson, Bezodis, & Jones, 2009). While these 

papers sought to document knowledge, some also had additional aims such as 

ascertaining the origin of knowledge (e.g. Thompson et al., 2009) or to guide future 

research and develop useful technologies (Bundon et al., 2017; Smith et al., 2015). 

In qualitative research, interviews are often defined as structured, semi-structured or 

non-structured (for details see Smith & Sparkes, 2016). Semi-structured interviews are 

considered to allow participants to express opinions, ideas, feelings and attitudes more 

than in structured interviews. This type of research is inductive, meaning themes emerge 

from the data, rather than being pre-defined and tested, as with typical deductive 

hypothesis testing in quantitative research. For qualitative researchers, their 

epistemology (relationship between the researcher and what is being researched) and 

ontology (the nature of reality) are important considerations (Sparkes & Smith, 2016). 

Qualitative researchers often use a process described as grounded theory, coding one 

line at a time to be immersed in the data while maintaining analytical thinking (Corbin & 

Strauss, 2015). Portions of data or ‘meaning units’ can be identified at this point with a 

single idea isolated; the meaning units are then subsequently assessed for common 

themes and categorised (Tesch, 1990).  
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Jones et al. (2009) conducted semi-structured interviews with seven expert coaches to 

gain insight into their knowledge of the phasing and technical constructs of athletics 

100 m sprinting. While three topic areas were defined, and an interview guide created, 

this format allowed them to explore subjects raised by coaches through probing 

questions. The authors found that, while division of the race into phases is broadly 

utilised in the same way in research and training, the importance of posture to the 

coaches was not reflected in the scientific literature, indicating a clear divide between 

researchers and coaches and highlighting an area for research which may not have 

become apparent using a different methodology.  

There is a paucity of data in sprint kayaking and although there are technical models of 

performance (Wainwright et al., 2013; McDonnell et al., 2012; Gomes et al., 2015), it is 

not clear how well these reflect the factors that are important to coaches, limiting their 

value in directing impactful research. Interviewing coaches directly would like result in 

suggestions for future empirical research, as has been found previously (Bundon et al., 

2017).  

Four areas were chosen deductively from areas of literature which warrant future 

investigation: technique, feedback, paddles and crew boats. The first area of technical 

sprint kayak performance will direct further research through highlighting important 

applied variables. In addition, questions on feedback will be useful for sport scientists to 

understand how coaches interact with data and with athletes in order to improve 

communication and provide relevant data. The distinct lack of empirical evidence to 

support choices regarding paddle setup parameters make this a highly valuable area to 

understand applied practice and direct impactful research. There is also a paucity of 

published research on crew boats, likely due to the difficulties in measurement being 

emphasised when multiple athletes are included, but as crew boats represent 50% of the 

medal events in the Olympic games, documentation of factors of value would be useful.  

 Aim & Research Questions 

The aim of the current study was to explore expert coaches’ knowledge of sprint kayaking 

across four topic areas. This will build a picture of the important constructs underpinning 

sprint kayaking and develop the relationship between coach and researcher, allowing 

each to better support the other. The secondary aim was to compare the experiential 

knowledge to existing empirical evidence and inform future research for this dissertation. 
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Research Question 3.1: What are the key determinants of performance according to 

expert sprint kayak coaches? 

Research Question 3.2: How does expert coaching knowledge compare to existing 

biomechanical research in sprint kayaking? 

 Methods 

Twelve coaches took part in this study. Purposive sampling was used to recruit 

participants who were expert coaches, as defined by their meeting at least two of the 

following criteria: 

• 10 years coaching experience 

• Having coached two international level athletes 

• Current or previous national coach 

• Level three qualified coach (highest available in the country at the time of the 

interviews) 

These criteria are similar to those used in previous research in other sports (e.g. Cote & 

Salmela, 1995; Thompson et al., 2009). All participants were currently coaching and living 

in the country of research but four were originally from different countries, where part 

of their coaching experience was gained. Participants ranged from 32-64 years old and 

11 were male and one female. All participants volunteered and provided informed 

consent. Ethical approval was gained from University of Lincoln School of Sport and 

Exercise Science Ethics Committee. 

Participants took part in semi-structured interviews, standardised to ensure cover of the 

four topic areas - technique, feedback, paddles and crew boats - using a question guide 

(Appendix 1). The topic areas were selected by the principle researcher as being of most 

value to the performance environment based on the review of literature and the 

interviewer’s own experience of working in the sport. All interviews were conducted at a 

location of the coach’s choosing, ensuring the coach was comfortable talking at length 

and in detail. The interviewer was previously known to all interviewees, having worked 

alongside them as a sport science practitioner for the previous 12 months. Prior to this, 

the principle researcher did not have a background in sprint kayaking. Interviews lasted 

on average 63 minutes with a range from 29 to 100 minutes. All interviews were audio 

recorded and transcribed verbatim by the principle researcher. A member checking 

process was used, where all interviewees were given full transcripts of the interviews to 
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check them for error or understanding (Friesen & Orlick, 2010). No changes were 

requested following member checking.  

A thematic analysis was conducted using a combined deductive and inductive approach 

based on grounded theory, as used in previous research documenting coaching 

knowledge (Jones et al., 2009; Smith et al., 2015), with data first broken down into 

‘meaning units’. These were subsequently combined to create sub-themes which were 

then further combined to create main themes. Data were coded into these ‘meaning 

units’ and themed using N-Vivo 10 (QSR International, Australia). 

 Results/Discussion 

From the four pre-defined topics, seven main themes emerged from the analysis of the 

transcripts (Table 3.1): mechanics, distance, race phases, other disciplines, paddles, crew 

boats and feedback. Direct quotes from coaches that are used in this discussion are 

highlighted by italicising. 

Table 3.1: Themes, sub-themes and meaning units emerging from interviews relating to sprint kayak 

coaches' perceptions on performance. Bold indicates meaning units that were emphasised by 6 or more 

coaches.  

Main themes Sub themes Meaning units 

Mechanics Water Interaction • Athlete feel 

• Forward blade entry 

• Minimise slip 

• Pressure on the blade 

• Dynamic catch 

• Recover between strokes 

• Sharp blade exit 

• Mechanical efficiency  

• Rhythm 

 Boat connection • Boat passed blade 

• Power transfer 

• Boat movement 

• Strong core 

 Force/Power • Strength 

• Ballistic force 

• Momentum  

• Downward force 

• Pulling 
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Table 3.1 continued 

Main themes Sub themes Meaning units 

 Specific 

kinematics 

• Low top hand 

• Leg drive 

• Rotation 

• Little elbow bend 

• Still head 

SR/DPS • Highly individual 

• Anthropometrics 

• Strength/power 

• Aerobic capacity 

• Paddle size 

Weather • SR 

• Transition position 

• Time context 

Distance 200 m • Max speed 

• All-out profile 

• High SR 

 500 m • Speed 

• Transition 

1000 m • Glide 

• Pacing 

• SR pick-ups 

• Endurance 

Race phases Start • Pulling 

• Strength 

• Lock/grip/hold 

• Athlete feel 

• Deep blade 

• Short stroke 

Acceleration • Continuous change 

• Lengthen stroke 

• Increase SR 

Transition • Continuous cycle 

• Race pace SR 

• Increase glide 

 Maintenance • Race plan 

• Pacing 

• Pick-ups 

• Fatigue 
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Table 3.1 continued 

Main themes Sub themes Meaning units 

Other disciplines Physiology • Anthropometrics  

• Muscle fibre type 

• Strength 

• Power 

• Fatigue 

• Technical breakdown 

Psychology • Motivation  

• Ownership 

Paddles Paddle length • Anthropometrics 

• Seat height 

• Strength 

• Paddle distance 

• Comfort 

• Naturally optimised 

• Folk lore 

• SR 

Blade size • Athlete feel 

• Availability 

• Strength 

• Power 

• Gender 

• Anthropometrics 

• SR 

Feather angle • Blade square to boat 

• Comfort 

• Elite example 

Blade shape • Manufacturers guide 

• Focus phase of stroke (e.g. 

catch) 

Crewboats Technique • Faster 

• Higher SR 

• Turbulent water 

• Stable platform 

• Compatibility 

First seat • Confidence 

• Consistency 

• Athlete feel 

• Rhythm 

• SR setter 
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Table 3.1 continued 

Main themes Sub themes Meaning units 

• Tactical 

Second seat • Technical  

• Strength 

• Tactical 

Third seat • Strong 

• Larger 

• Power 

Fourth seat • Athlete feel 

• Turbulent water 

• Fast 

Synchronicity • Visible reverse offset (4-3-2-1) 

• Power application matched 

• Leg drive 

• Comfort 

Crew boat 

paddles 

• Longer paddle in 3 & 4 

• Bigger blade 

Feedback Individual • Athlete level 

• Rapport 

• Goal setting 

• Over-thinking 

Verbal • Immediate 

• Limit 

• Key messages 

• Trigger words 

Video • Evidence 

• Technical sessions 

Proprioception • Talented athletes 

• Intangible  

Data • Evidence 

• GPS 

• SR/DPS 

• Paddles 

 

 Limitations & Delimitations 

Although 12 participants do not constitute a large-scale study, this cohort represented 

the entirety of the senior international and high-level development coaches in the 

country at the time. Alongside the in-depth level of analysis, this number of participants 
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was considered sufficient to meet the study aims. Some qualitative researchers cite that 

enough participants should be used to achieve ‘theoretical saturation’ where data from 

additional interviews do not add new information (Glaser & Strauss, 1999) but this was 

not considered necessary due to the level of coaches and the highly specific environment 

they work in.  

The interviewer was known to all interviewees beforehand, which might be considered 

to have affected the answers provided by coaches: ‘insider’ researchers have a better 

understanding of the culture, do not interrupt the flow of social interaction and have a 

recognised level of familiarity (Bonner & Tolhurst, 2002). On the other hand, this may 

mean assumptions are made, or fewer probing questions asked (DeLyser, 2001). 

Qualitative researchers have found that researchers being embedded in the environment 

they are researching increases rapport between interviewer and interviewee (Spradley, 

1979) and the ‘worker-researcher’ has been found to produce rich data (Campbell & 

Clarke, 2019). It is not possible to ascertain exactly the influence of a known interviewer 

conducting the research but, based on the literature, it would appear that there are more 

advantages than disadvantages.  

Some of the ideas presented in this study may not be limited to one theme and therefore 

grouping of the themes could be open to further interpretation. This is inherent in 

qualitative research and it has been recommended that researchers view themes while 

considering theory and previous research (Lincoln & Denzin, 2018), which has been done 

in the current study. It is accepted within qualitative research that the researcher’s 

observations and conclusions will be shaped by factors such as their age, gender, 

ethnicity, experiences and many other factors but this is not considered as a negative or 

a bias, and is “just how it is” (Smith & Caddick, 2012, p. 62). 

In gymnastics, researchers separated coaches according to whether they coach male or 

female athletes (Cote & Salmela, 1995) due to the differences perceived in task 

characteristics and physiology of athletes and previous reporting of different behaviours 

exhibited by those coaching male and females (Salmela, Petiot, Halle, & Regnier, 1980). 

As this study was an investigation of knowledge, rather than behaviour, and there are not 

differences between the task characteristics for males and female in sprint kayak (Baker 

et al., 1999), no such separation was done.  



  

71 
 

 Mechanics 

The key mechanical components will be discussed first as these ideas underpin the later 

categories and formed the majority of the interviews. Six sub-themes were defined from 

the meaning units coded directly from interviews (Table 3.1). Five of the six themes can 

be seen to reflect factors in the models of both Wainwright et al. (2013) and Gomes et 

al. (2015), although McDonnell’s (2013b) model can be seen to only relate directly to two 

of the factors (SR/DPS and water interaction). The interpretation of coaches’ words into 

mechanical theory is difficult but is cited by Lees (1999) as the ‘duty’ of the biomechanist. 

Table 3.2 shows how the comparisons have been made relative to the overall models 

available for kayaking in the published literature. 

Table 3.2: Mechanical sub-themes from coaching interviews compared with the hierarchical model by Wainwright 
et al. (2013) and Gomes et al. (2015). 

Sub-theme Wainwright’s model- 
Related factors 

Gomes’ model - 
Related factors 

Water interaction - Forward reach 
- Blade slip 
- Propulsive 

impulse 

- Paddle force 
- Orthogonal and 

transverse blade 
force 

- Slip 

Boat connection  - Seat force 
- Footrest force 

Force/power - Propulsive force 
- Max velocity 

- Paddle force 
- Instantaneous 

velocity 

Kinematics - Forward reach 
- Backward reach 

 

SR/DPS - Stroke distance 
- Stroke time 

- Stroke rate 
- Stroke length 

Weather - Passive drag 
- Water 

temperature 

- Aerodynamic drag 
- Hydrodynamic 

drag 

3.3.2.1 Water interaction 

An athlete’s interaction with the water, as might be expected, was an important concept 

from all interviews. Since the terminology used by coaches can be understood by those 

who are involved in kayaking but may not have a clear meaning to those outside the 

sport, each of the meaning units highlighted above (Table 3.1) will be clarified and 

discussed with reference to the literature below. 

Many coaches emphasised the importance of athlete ‘feel’, an abstract concept linked to 

further descriptions such as ‘grip’ and ‘lock’ regarding the connection between the 
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paddle blade and the water. Many of the coaches discussed this concept as naturally 

occurring: 

It’s that natural instinctive feeling, or intuition, or an awareness of the feel of 

the blade in the water, and transferring that power, in much the same way 

swimmers do, they have that feel and they can grip the water 

This idea is echoed by online coaching guidelines such as “Training in Paradise” (Župančič, 

2018), which describes the paddle grip on the water as “both inborn and developed with 

training.” This ‘grip’ or ‘feel’ is very hard to define, measure or quantify and therefore 

cannot be compared accurately to any empirical literature, although ‘grip’ could be 

considered to involve minimal blade movement and/or maximal force between the blade 

surface and the water. As apparent from the quote above, similar comparisons have been 

made in swimming, with these same terms commonly used by coaches and researchers 

finding force output linked to propulsion (van Houwelingen, Schreven, Smeets, Clercx, & 

Beek, 2017; Morouço, Barbosa, Arellano, & Vilas-Boas, 2018).  

Coaches mainly view kayakers from the bank in the sagittal plane and therefore the 

concept of a ‘fixed’ blade is likely to refer to a lack of apparent motion in the anterior-

posterior direction only. As highlighted in the literature review of this thesis (Chapter 2), 

there is considerable movement in the lateral direction during a stroke, the magnitude 

of which positively correlates with performance (Kendal & Sanders, 1992), but this is only 

highlighted when displayed in an external reference frame or global co-ordinate system 

(Figure 2.9). Digitised data from an overhead television camera moving with the athlete 

used during the 2012 Olympics (Figure 3.2) also highlight the importance of the reference 

frame used: the paddle moves considerably further backwards relative to the boat 

(internal reference frame), which visually reduces the importance of lateral movement. 

This video is low quality and would not be recommended for biomechanics research but 

highlights important differences in visual data which would be available to coaches, 

compared to research.  
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Higher paddle forces have also been found to correlate with better performances 

(Mononen & Vitasalo, 1995; Brown et al., 2011), which may be expected due to Newton’s 

second and third laws with the unchanging mass of the kayak-athlete-paddle system. The 

direction of this force is important and remains an under researched area due to the 

complexities of in-situ force measurement and unsteady flow dynamics (see the 

literature review in Chapter 2 for additional information on hydrodynamics).  

Linked with the idea of athlete feel is that of minimising slip. Slip is the opposite of grip: 

movement of the paddle that does not result in boat movement. 

If someone is putting the blade in, it’s not locking, there’s a lot of splashing, 

they’re grabbing back, they’re bending the arm too soon, is an indication that 

they’re just kind of pulling and slipping the blade through the water, rather 

than locking the blade on and coming past the blade with the shoulder and 

the hip. 

Kendal and Sanders (1992) measured blade slip of 7-22 cm in elite kayakers but did not 

find it to be linked to performance. Wainwright (2014), however, found increased blade 

slip to be linked with lower performing athletes. How the researchers define the blade 

slip is important to its measurement: for Kendal and Sanders it was defined as the 

backward movement of the blade tip in the global reference frame and was measured 

Figure 3.2:  digitised overhead footage showing the paddle path of an elite sprint kayaker from London 2012 
(Olympic, 2012). 
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via video, whereas Wainwright et al. (2013) defined it as the horizontal distance moved 

by the paddle, minus the horizontal distance moved by the boat, both during the pull 

phase. Wainwright’s measurement encompasses two different reference frames, with 

paddle movement measurement relative to the internal reference frame of the kayak, 

and the kayak movement measured from the double integration of the acceleration data. 

Error in either of these would result in errors in slip. The low frequency of the cameras 

used (50 Hz) and the uniaxial nature of the accelerometer - whereby any pitch of the boat 

would influence the acceleration by incorporating gravity - means error is likely to have 

been introduced in both. While these issues do not mean slip is not important to 

performance, they do highlight the difficulty of measuring it. The theory underpinning 

the value in reducing slip is the same as that used to show the value of increasing ‘grip’ 

as above. 

The meaning unit ‘pressure down the blade’ was mentioned numerous times and appears 

to refer to the athletes directing the force down the paddle shaft which was thought to 

improve the ‘lock’ or connection with the water. Phrases used included:  

claw, don’t slap 

push down the blade 

Nothing could be found in the literature relating to this idea. It may be that the idea of 

pushing ‘down’ the blade combined with a forward entry and rotation, is a coaching 

reference that results in athletes moving the blade more laterally to make use of the lift 

forces (Kendal & Sanders, 1992) or that the ‘spoon’ of the blade surface directly creates 

a drag force acting parallel to the paddle shaft, or that it encourages an increase in 

velocity of the blade, which would in turn increase drag on the blade. A better 

understanding of three-dimensional paddle kinematics and hydrodynamics would 

improve understanding of this coaching point. The equation for drag force (equation 2.2, 

Chapter 2) also highlights the importance of additional factors- namely surface area and 

velocity- that link this idea of ‘feel’ to other concepts including ‘dynamic catch’ and 

paddle blade size. 

Catch typically refers to blade entry, but there were nuances between the coaches 

interviewed, with some considering the ‘catch’ to be a single instant, while others 

considered it a phase, from water entry until (again, ambiguously) ‘locked-on.’ The 

discrepancies among coaches are reflected by the literature: McDonnell et al. (2012) 
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highlighted the differences in position and phase definitions within kayak literature 

(Figure 3.3) and subsequently defined a four-phase observational model where ‘catch’ 

was defined as the instant of the blade entering the water and marked the beginning of 

the ‘entry’ sub-phase which makes up one of three sub-phases of the ‘water’ phase. The 

newly created model was based on ease of measurement rather than existing protocol; 

in Figure 3.3, ‘C’ represents McDonnell’s definition of ‘catch’ where the blade tip is 

touching the water, while ‘D’ represents blade immersion which might be considered to 

reflect ‘lock’ and as can be seen, none of the papers collated in Figure 3.3 use solely C-D 

as their description of the catch phase (phase 1). While the above paper gives clear 

guidelines for researchers, the ambition of the study was to ‘improve communication and 

application of research to practice.’ While this may have occurred in the authors’ native 

countries, the definitions in the paper do not match those highlighted by the coaches 

interviewed in this study.   

 

Figure 3.3: Overview of how previous literature has broken down sprint kayak strokes into specific phases 
(McDonnell et al., 2011). Phase-defining positions: A = left (paddle) horizontal; B = right most forward (quarter shaft); 
C = right (blade) catch; D = right (blade) immersion; E = right (paddle) vertical; F = right (blade) extraction; G = right 
(blade) release; H = right (paddle) horizontal and right most backward (quarter shaft); I = left most forward (quarter 
shaft); J = left (hand) greatest forward reach; K = left (blade) catch. 

The idea of a ‘dynamic catch’ was raised by coaches, particularly in reference to 200 m 

sprinting, indicating a fast movement to get the paddle into the water.  

whole blade in as quickly as possible 

As described above, the equation for hydrodynamic drag supports the idea of a fast blade 

entry, where it can be seen that velocity has a large influence (due to being squared in 

the equation) so increasing contact velocity will increase the drag force, which is likely in 
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turn to increase boat acceleration. This meaning unit may also simply refer to the idea of 

submerging the whole blade quickly in order to start the pull phase earlier and to ensure 

energy is not wasted due to only part of the blade being in the water. McDonnell et al. 

(2011) showed the phase from catch to immersion as taking 15% of the stroke (Figure 

3.3), but no studies could be found that quantified the time of this phase or linked it to 

performance. Wainwright et al. (2013) divided the stroke but the early phase was from 

‘catch’ to ‘paddle vertical’ and therefore the ‘catch’ alone cannot be assessed.  

One of the more easily understood meaning units which resulted from this analysis is that 

of ‘forward blade entry’ referring to the position of the blade relative to the boat. 

the blade needs to go in the water a long way forward, but it’s got to be 

locked on there. 

The key for them is get the blade in by your feet. By the time you’re 

connecting it might be further back than that, but it is a long way far 

forward rather than by your knees. 

This concept is supported by some academic literature which has shown a significantly 

longer forward reach in international level paddlers compared to national level paddlers 

(Brown et al., 2011). However, this conclusion is not unanimous as Kendal and Sanders 

(1992) found no differences in forward or backward reach between participants of 

different performance levels. It seems likely that reach would be highly linked with both 

anthropometrics and technique and is also likely to be affected by paddle set-up and 

weather conditions. Those with longer arms or a technique with a large amount of 

rotation may be expected to exhibit a further reach, while rough water conditions or 

strong winds may reduce stability and therefore reduce reach in an effort to reduce the 

distance of the stroke from the base of support. Similarly, a longer paddle may increase 

reach with no technical change. No research could be found that has investigated the 

stability of sprint kayaks or explored how weather conditions or paddle set-up affect 

technical performance.  

The recovery phase, defined by coaches as the time in which no force is being applied by 

the paddle to the water, is also known as the ‘aerial phase’ (McDonnell et al., 2011). This 

phrase was mentioned as important for all race distances to maximise DPS and allow 

muscles to ‘recover’. 
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then the ability to recover when both blades are in the air so let the boat 

glide and feel be able to recognise where, when is the time to put the next 

stroke in, you know, in order to get another power transfer. 

Even with the 200 m guys, the sprinters, it’s a massive job to teach them to be 

able to recover, within a very short time because otherwise within one minute 

all the athletes die. 

Increasing stroke rate leads to a decrease in absolute duration of both water (pulling) and 

aerial (recovery) phases but the percentage of recovery decreases: from 41.7% at a stroke 

rate of 60 spm to 29.5% at 100spm and 27.5% at race pace (Gomes et al., 2015). Similarly, 

Brown et al. (2011) found higher SR and lower recovery percentages when comparing 

elite with club paddlers, although the values used for 200 m SR seem unusually low (60.5 

vs 50.2 spm) and it is not clear how the authors defined strokes or glide time. During the 

aerial phase the major force acting on the kayak is that of hydrodynamic drag force on 

the hull, slowing the boat down and it is therefore crucial to boat speed to maximise the 

percentage of effective force application. For longer distances where physiological 

efficiency is paramount, lower rates with higher non-active percentages may be 

preferred, Sundberg & Bundle (2015) found that higher percentage duty cycles, as found 

during high SRs, result in much faster degradation of force and power production. 

A fast or ‘sharp’ blade exit was another parameter coaches deemed important, outlined 

with statements like:  

get the blade out as quick as you can 

you just have to pull harder and release back end, it’s very important to 

release boat easier, quicker back end 

In agreement with this, Wainwright (2013) constructed a deterministic model of 

performance (see Figure 2.2 in literature review Chapter 2) and he concluded that the 

highest priority coaching recommendation was to remove the blade from the water as 

soon as possible after paddle vertical.  Wainwright broke the water-phase down into 

three further phases, one of which ran from maximum velocity until paddle exit. During 

this phase, smaller vertical and horizontal impulses were associated with higher boat 

velocity and efficiency, thought to be through an decrease in active drag due to decreased 

pitching of the boat. To remove the blade from the water, it must be raised. The position 
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of the blade as it is raised out of the water is important for the vertical impulse described 

by Wainwright: if the blade is lifted facing upward, the acting resultant force on the 

paddle, and therefore athlete and boat, will be downward, thereby lowering the boat in 

the water and increasing the resistive drag force acting on the kayak.   

3.3.2.2 Boat connection 

The idea of ‘moving the boat past the blade’, rather than the blade past the boat 

encompasses both the ‘locking’ of the blade, which has already been discussed, and the 

connection between the athlete and the boat. While the phrase “moving the boat past 

the blade” is so commonly used by coaches (particularly when discussing ergometers) 

that it warranted its own meaning unit, the ideas will be discussed relative to power 

transfer and boat movement. The combination of these two ideas is summarised in the 

quotes below:  

how the boat is running as well really, so whether it’s jumping up and down 

or it is running smooth, that’ll give an idea of how the power’s connected to 

the boat. 

everything that they do, from a physical perspective, has to be transferred 

down the chain, through the core and into the boat, and to the point where, 

if somebody is really paddling well, they look like they’re actually wearing 

their boat, like a mermaid, there’s just that strong a connection and you can 

see the reaction of the boat to the actions of the arms and hands 

The transfer of power into the kayak occurs via the athlete’s connection to the boat at 

the seat and footplate, but there is a paucity of research in this area. Nilsson and Rosdahl 

(2014) created a system to measure the force at the seat and footrest points during on-

water kayaking but, despite limiting the system to measuring horizontal force at the seat 

and force perpendicular to the footplate, the system weighed 4.65 kg (almost 40% of the 

kayak mass), highlighting the difficulties involved in on-water measurement. Using this 

system to investigate contribution of leg musculature, they found restricting the legs via 

fixed knee angle resulted in a large decrease in footplate force, contributing to a 16 and 

21% reduction in paddle force and kayak speed respectively. Ergometer studies have 

shown differences between athletes at the seat and footrest (Begon et al., 2009; 

Tornberg et al., 2019). Although Tornberg et al. linked higher footplate forces with higher 

performance, the use of only three athletes limits this interpretation.  
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As described in the literature review chapter, kayakers must overcome hydrodynamic 

pressure drag, a portion of which is due to the wetted surface area of the kayak (see 

equation 2.1). Roll, pitch and yaw refer to movements around the sagittal, transverse and 

vertical axes respectively and movements in any of these planes are likely to increase the 

wetted surface area of the boat, thereby increasing resistance and decreasing the 

efficiency of the stroke. Coaches are aware of this as terminology such as ‘running 

smooth’ and ‘staying upright’ was used frequently around boat movement. Kayak 

research has typically looked at drag during passive movement of the kayak as this is 

much easier to measure (e.g. Jackson, 1995), but research in slalom indicates much 

higher active drag is created by novice paddlers, who are likely to have much more boat 

movement, when compared with elite paddlers (Pendergast, Bushnell, Wilson, & 

Cerretelli, 1989). Additionally, a four-year training period with collegiate paddlers was 

found to decrease the kayak’s active drag by as much as 50% (Pendergast et al., 2005). A 

longitudinal study of this duration is logistically complex to carry out and it is not clear 

what level the kayakers were at or how much they changed over the period investigated. 

Research investigating boat movement using IMU technology has been conducted in 

rowing, with yaw and roll found to have a large, negative influence on boat velocity, 

thought to be due to a larger increase in wetted surface area (Loschner, Smith, & 

Galloway, 2000; Wagner, Bartmus, & De Marees, 1993). The minimum length of a rowing 

boat is 7.2 m (World Rowing, 2017), while the maximum length for a kayak is 5.2 m; the 

increased length, and therefore larger moment of inertia around the transverse axis, of 

a rowing boat makes it less susceptible to pitch movements which may be important to 

kayak performance.  

In between the paddle and the kayak, the athlete forms the middle of the closed kinetic 

chain created. The importance of the athlete’s core strength was mentioned by all 

coaches interviewed.  

it’s that terrific core strength that holds his boat upright 

if they’ve got a strong core, they can transmit the power 

Brown et al. (2010) looked at the contribution of the trunk and legs to kayak performance 

and found significant correlations between muscle activation of the contralateral rectus 

abdominis and external oblique abdominal with paddle force, which was in turn linked to 

boat velocity, leading them to conclude that these muscles are important in the 
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application of power, in support of coaches’ ideas. Similarly, Steeves et al. (2019) 

measured seven trunk-strength scores and found the sum of these to correlate with 

200 m performance. Additional training of the core based on a dynamic neuromuscular 

stabilisation approach was reported to increase club level kayakers’ force production 

measured on a kayak ergometer compared to a control group (Davidek, Andel, & 

Kobesova, 2018) but on further examination, it appears the control group decreased 

force more than the intervention group increased (5% increase for intervention group, 

7% decrease for control group). 

Further highlighting the importance of the multitude of connections and the generation 

and transfer of power, all twelve coaches referred to ‘connections’ in some form.  

It’s a locked in circle of all. When you lock in the blade, you’re already pushing 

on the footrest on the same side as the stroke and once you’re locking the 

shoulder down, that’s where your lats and abs start locking in as well and 

pushing the boat forward. So basically, you’re locking it in through the arm, 

through the leg, through the core. It’s a circle. 

Statements such as the one above emphasise the coaching belief of importance of using 

the whole body in the movement and not isolating any one limb or muscle group, and 

reinforce the difficulty faced by biomechanists in trying to quantify optimal performance 

of this three-dimensional, multi-segment closed-chain movement.  

3.3.2.3 Kinematics 

There was some disparity between coaches in terms of the importance of some of the 

specific body movement factors. Most coaches observed that there is not one set 

kinematic movement pattern that needs to be followed precisely.  

You’re still trying to achieve the same thing in the water, and you can throw 

all the shapes you want around it, as long as you’re achieving that grip and 

that movement, being efficient and that power. 

However, having emphasised the importance of the interaction with the water, there 

were numerous mentions of specific movements (Table 3.3). 

 

 



  

81 
 

Table 3.3: specific desirable or undesirable kinematics in sprint kayaking which emerged from elite coach interviews.  

Body Part Advised movement Undesirable movement 

Arms • Small amount of elbow 

bend 

• Move down through 

the body to the 

opposite hip 

• Locking shoulder down 

• Top hand shooting up 

• Punching 

• Too low 

• Travelling too quickly 

• Elbow bending 

Trunk • Rotating far forward 

• Locking in the lats and 

abs 

• Sitting upright 

• Collapsing shoulder to hips 

Legs • Legs drive pelvis 

rotation 

• Pushing on same side 

footrest prior to blade 

lock 

• Pull opposite hip 

forwards 

 

 

Three-dimensional kinematics of sprint kayaking have been studied both on an 

ergometer (Fleming et al., 2012; Michael et al., 2012) and on-water (Baker et al., 1999; 

Begon et al., 2008). Baker et al. (1999) compared the upper body technique of elite males 

and females and found no significant differences, despite higher boat velocities for males. 

Greater stroke width, forward reach, trunk rotation and leg motion were found to 

differentiate elite kayakers from club paddlers when assessed via notational analysis with 

kinematic factors subjectively graded (Brown et al., 2011). Trunk rotation in particular 

was mentioned by all of the coaches as being important for performance; this movement 

may help athletes to ‘move the boat past the blade’ without creating additional 

unwanted boat movement, or support the lateral movement of the blade relative to the 

boat through the fixed arm. The trunk and legs also play an important role in transferring 

paddle force through to the boat (Brown et al., 2010). During ergometer paddling, 

researchers have found peak footrest forces to occur fractionally before peak paddle 

forces (Jahn et al., 2016), in agreement with the coaching points above (Table 3.3).  In 

addition to ergometer work, Begon et al. (2010) modelled lower limb contributions and 

found it to both enhance propulsive impulse and reduce mechanical work. 
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Nine coaches mentioned the importance of looking at the paddler overall. Elite 

performers were described with words such as: effortless, efficient, rhythmic, fluid, 

relaxed and seamless. Despite the importance of this impression on coaches, this concept 

is difficult to quantify. It could potentially be compared to efficiency of movement, which 

was also proposed by a number of coaches as important to performance.  

…that efficient transition from one stroke to the next, carrying the power 

without over rating, so that there’s an efficient powerful movement that’s 

maximising travel per stroke, distance per stroke. 

Those things just relate more to efficiency, and the simply physics of it, in 

terms of the blade being in the best position to deliver power or to deliver the 

ability to pull the boat, or push the boat passed the paddle. 

Mechanical efficiency is an indication of the resultant output compared to effort going 

in. It could in theory be measured by looking at the force being output by the athlete on 

the paddle, footrest and seat, and comparing it to the resultant boat movement, but the 

technology does not yet exist to do this accurately, reliably and affordably. Sprigings et 

al. (2006) compared the forward forces with the total force in ergometer trials to attempt 

to give a measure of ‘efficiency’ and found values of around 80-83%, however the 

fundamental assumption that forward forces are the only desirable ones is inaccurate, 

therefore the findings have little bearing on performance. Despite reported similarities 

in technique on an ergometer when compared with on-water kinematics (Begon et al., 

2008; Fleming et al., 2012), efficiency measured on an ergometer gives little insight into 

the on-water equivalent due to the mitigating differences in technique, balance and 

equipment.  

3.3.2.4 SR & DPS 

Stroke rate and distance per stroke were mentioned by the coaches in a number of 

contexts, including when discussing differences between race distances, paddle set-up 

and crew boats. For most of the coaches, SR was considered to be highly individual. 

Follow up questions revealed that many attributed those individual differences to 

anthropometrics, strength, aerobic capacity or paddle set-up.  

you have to control the stroke rate and adjusting the paddle for the optimum 

stroke rate, optimum stroke rate is quite individual but still, there are 

established norm. You have to play with the length of the paddle and size. 
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It’s again very individual and it depends on the physiology of the athletes as 

well as how big they are. It’s very individual. 

[Athlete A] could hold a slightly higher SR than [Athlete B] on a 1000 but he 

wasn’t quite as strong and as powerful so all those different parameters, feed 

in to a person’s natural rhythm, natural cadence. 

As seen above, force and power characteristics were raised by coaches when referring to 

SR and DPS for each athlete, with those seen as stronger or more powerful generally 

considered to have a longer stroke and higher DPS, while those who are smaller, lighter 

or with more endurance capacity generally considered to have a higher SR. While 

research has shown higher SR by elite when compared to club paddlers (Brown et al., 

2011), differences have also been found between athletes’ SR within the elite level 

(McDonnell et al., 2013b) supporting the belief of coaches that it is individual. No 

research could be found that has investigated the cause of the differences between 

individuals.  

3.3.2.5 Weather 

Weather and environmental conditions were raised with reference to SR, the context for 

data feedback, race phases and paddle set-up. As has been discussed in the introduction, 

the water temperature, wind speed and direction, air temperature and pressure and 

humidity have an impact on performance through their influence on the hydro- and aero-

dynamic drag experienced by the athlete. Coaches expected headwinds to reduce boat 

speed via a lower SR while a tailwind might lead to a shorter acceleration phase or may 

allow an athlete to reach race pace and SR earlier, although no research could be found 

that has investigated this effect. 
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 Race phases 

Unlike Jones et al. (2009), who found coaches to largely agree on the phases in a track 

sprint race, there was some discrepancy between coaches as to the phasing of a canoe 

race. Figure 3.4 demonstrates the differences found between coaches, in both 

terminology and philosophy of race phasing.  

While most agree on the existence of a ‘Start’ phase, this was considered as anywhere 

between 2 strokes and 100 m. Some incorporated an ‘Acceleration’ phase into the start, 

while others considered the first few strokes alone to be the start due to the large 

technical differences found in moving the boat from stationary. Even within these 

differences, the first ‘few’ strokes were reported as 2, 4-5, 6, 6-7, 12 or 15-20 strokes 

depending on which coach was asked. No literature could be found which has looked at 

 Mechanics summary  

For some coaching points, there are clear links with mechanical laws. However, 

the terminology used does not always make this easy to identify. Often research 

looking at mechanical specifics relating to kayaking is not ecologically valid as it is 

not yet possible to measure the factors directly and therefore findings are limited. 

The key areas raised by coaches were: water interaction, boat connection, 

kinematics, force/power, SR/DPS and influence of weather. 

Of these key areas, there are a number of areas lacking research, for example: 

• Basis of individual SR choice 

• Variation in kinematics 

• Effect of weather on technical performance 

• Effect of stability on performance  

• The orientation of the blade through the water 

• Three-dimensional force on the blade 

• Three-dimensional kinematics.  

Research in these areas, while challenging, could improve technical 

understanding, give insight for improving equipment set-up, better tracking of 

changes to performance and allow for individualised and more efficient training. 
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different phases of a sprint kayak race, although the ‘start’ first five seconds have been 

disregarded in race average calculations of SR and velocity by McDonnell et al. (2013b), 

indicating perceived differences.  

Start Acceleration Transition Boat-run Finish 

Start Transition Drive Finish 

Start Acceleration Cruise 

Acceleration Transition Race Pace (Pick-up) 

Acceleration Maximum velocity Cruise 

Start Cruise Finish 

Start Transition Race pace 

Start Race Pace 

Start Acceleration Transition Maintenance 

Start Acceleration Transition Maintenance (pick-up) 

Start Transition Cruise Maintenance 

Start 
Maximum 
velocity 

Cruise Maintenance 

 

 

Figure 3.4: illustration of sprint kayak race phase breakdown provided by each of the coaches interviewed 

The early strokes of a sprint kayak race were considered to involve more of a ‘pulling’ 

action, with the paddle blade deep in the water. The importance of the ‘lock’ or ‘grip’ or 

‘hold’ on the water was also emphasised as important to start performance. Strength was 

mentioned numerous times, with indications that stronger athletes and those with better 

‘feel’ who could get a better ‘grip’ of the water were those who would start best. The first 

stroke was considered to be generally shorter and slower than the later ones, in similarity 

with athletics sprinting (von Lieres Und Wilkau, Irwin, Bezodis, Simpson, & Bezodis, 2018), 

and with kayak research (lowest SR in first 10 strokes; McDonnell et al., 2013b).  

The definition of ‘Acceleration’ and ‘Transition’ phases were somewhat blurred but, 

regardless of terminology used, a period of acceleration followed by a change into a more 

‘steady state’ period was often described. The early acceleration was mostly categorised 

by lengthening the stroke simultaneously with increasing SR as boat velocity increased. 

The transition phase was then generally considered a technique change from accelerating 

to maintaining steady speed via a reduction in stroke rate and an increase in the ‘glide’ 

or run of the boat along with a more continuous stroke cycle. A transition phase was 

considered to occur for 500 m and 1000 m races but not for 200 m racing. No research 

could be found that has looked at the kinetics or kinematics of kayak performance across 

Bucket start Maximum Velocity Finish Line 



  

86 
 

a competition distance or compared different race phases. A consensus around a defined 

model – likely to include start, acceleration, transition and maintenance phases – would 

improve athlete understanding and enable focussed research.  

In the longer races, following a transition or acceleration phase, most coaches referred 

to a steady-state phase in some way, often referred to as ‘race pace.’ Some coaches 

included the idea of ‘pick-ups’ where an increase in SR was considered to counteract the 

effect of decreasing DPS: 

…doing your pick-ups, you’ve got to increase that rate, you’ve got to have a 

higher stroke rate to compensate for the lack of power. 

These pick-ups were considered to form part of an athlete’s race plan, a set of pre-

decided strategy of how the race would be performed and paced. The pick-ups often 

seemed to be linked with ideas of increased effort or exertion to try and mentally 

overcome the inevitable fatigue but were not generally considered to increase the speed 

of the boat. An ergometer research study indicated that an all-out pacing strategy results 

in better performance for kayakers when compared with an even paced strategy (Bishop, 

Bonetti, & Dawson, 2002). Although no literature could be found that has investigated 

the phase breakdown of a sprint kayaking race, the pacing strategies at World 

Championships were investigated by Borges, Bullock and Coutts (2013) from published 

250 m splits and a ‘reverse J’ shape profile was found across levels and crew size (1, 2 and 

4). This ‘reverse J’ is described by the first 250 m split being the fastest, with speed 

decreasing from then on in the 500 m and a decrease in the middle followed by an 

increase in speed in the last 250 m in the 1000 m event. This fast start strategy has also 

been found in rowing (Garland, 2005) and was speculated by the authors to avoid the 

detrimental effects of wash (the additional wave drag caused by other boats’ movement 

through the water nearby). McDonnell et al. (2013b) reported a decrease in SR through 

World Championship level races, matching what would be expected by this cohort of 

coaches from the transition. 

Differences in coaches’ definitions of race phasing may be due to the different focus of 

their typical athlete group. The 200 m event is typically seen as having an ‘all-out’ pacing 

strategy, with maximum speed of high importance to performance, while the 500 and 

1000 m are considered to have transition phases, to include more ‘glide’ within the 

strokes and to require more pacing and endurance capacity.  
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 Paddle set-up 

Many coaches acknowledged paddle set-up is not necessarily optimised, primarily due to 

practical considerations of what an athlete can afford/has available to them and what 

they are used to/comfortable with. However, the predominant view was that athletes 

are able to ‘feel’ what is right for them with a reasonable accuracy:  

So much of it is kind of feel, and what they’re used to… It’s what they’re 

comfortable with and how they do it so changing is quite difficult 

Every athlete adapts to what they’re using, and they make it work for what 

they’ve got 

Coaches’ consideration of the paddle length and grip positions was based on athletes’ 

physical characteristics, observation or conventional wisdoms. When asked how they 

would advise their athletes on paddle set-up, statements such as the two below 

exemplify the information around length and hand position.  

Race phases summary  

The language used by coaches around race phases was not consistent. Despite 

the use of start, acceleration and race pace phases mentioned by almost all 

coaches, the distances each phrase referred to was different. Athletes would 

likely benefit from a consistent model, particularly as they move up the 

development pathway towards being an elite athlete. The start and transition 

were areas that many coaches highlighted but there was not universal clarity on 

what success looks like for these phases.    

Coaches discussed nuances in kinematics of the different race phases, empirical 

evidence of which would allow better targeted training. In particular, a better 

understanding of start technique and changes due to fatigue for specific athletes 

would improve performances. 

To account for differences, research should focus on a specific area rather than 

take average for whole efforts- start, acceleration, transition and steady state (or 

‘race pace’) phases with clear definitions are recommended.  
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From the very old times the length of the paddle is, if the athlete stretches out 

their arms above their head, and from there puts their paddle down to the 

floor, somewhere in the middle of the palm or the beginning of the fingers, is 

the basic length. 

if you’ve got 90 degrees at the elbows and your head’s in the middle, you’re 

about right. And as long as you’re not overhanging the length of the blades 

and you’ve probably got an inch or two at the bottom, on the outside of the 

hands, some are a bit closer, maybe an inch, then you’re about the right sort 

of set-up 

These typical set-up parameters are used for novices when selecting a paddle for the first 

time but are often not challenged or changed as the athlete grows or develops in skill. 

While the basic idea is clearly based on anthropometry, no rationale could be found for 

these measurement choices in the literature. Ong et al. (2005) investigated 

anthropometrics and equipment set-up and found significant relationships between 

body size and both paddle length and blade length in 31 male and 11 female elite sprint 

kayakers, although the details were not provided. The authors described “sizeable 

differences” in foot-seat distance, paddle length and blade length but blade width and 

seat height were found to have little variation. Overall, variation in standing height was 

found to predict 59% of the variance in foot-seat distance, and 54% of grip width distance.  

Paddles are designed for the entirety of the blade to be submerged, while none of the 

shaft is, and therefore an estimation could be made from anthropometrics (e.g. arm 

span) and the athlete’s height above the water level (incorporating sitting height, height 

of the seat and depth of the kayak in the water), but technique will cause a large 

discrepancy with this, in particular the lateral distance between the paddle and the kayak. 

As described earlier, no research has been found to describe the paddle path on-water; 

it seems likely this varies between individuals as it does on ergometers, which are 

considerably more constrained (Therrien et al., 2012). Considered purely from the 

sagittal plane, changing the paddle length while maintaining grip width changes the lever 

arm over which the force must act. This means that to produce the same rotational force 

around a pivot, a longer paddle would need a lower force. However, this would be a gross 

simplification of the paddle movement as much of the movement is translational while 

the paddle is vertical. Linked to the ideas discussed above, there may be differences in 
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paddle optimisation for the race distance being paddled, with maximising force and 

power more important for the shorter races and energy efficiency of higher importance 

to the longer distance races.  

Blade size was predominantly linked by coaches to an athlete’s strength and their chosen 

stroke rate (SR). While it seems clear from a theoretical perspective that, based on the 

muscle force-velocity relationship, a larger blade will increase the resistance and thereby 

reduce the speed at which the blade can be moved and decrease the SR, it is not clear if 

this is necessarily advantageous to athletes. Sprigings et al. (2006) looked at athletes’ 

power profiles while paddling on an ergometer and calculated an optimised blade size 

for each athlete by rearranging the drag equation for surface area (𝐶𝐷, Equation 1) and 

inputting the force and velocity at which peak power was achieved.  An increase in blade 

size for optimal power production for five of the 12 participants was subsequently 

proposed. However, the measurement time of 10 seconds on an ergometer at “estimated 

500 m race pace and SR” is not representative and indeed, the authors noted it is unlikely 

that the selected pace could be sustained for the entire race. Additionally, the 

calculations make a number of assumptions (e.g. replicable paddle path, lack of 

importance of blade shape, density of the water) which would likely greatly reduce the 

ecological validity and no subsequent performance testing was conducted.  

Coaches were not asked explicitly about blade shape and the six who mentioned it 

primarily attributed choices to athletes’ feel and preference. The shape of the blade was 

referred to by coaches as being either suited to optimising catch (the initial increase in 

force on the blade) due to a teardrop shape blade or to optimising force through the 

whole stroke due to a more rectangular blade, matching the manufacturer’s descriptions 

(Brača, 2017; Jantex, 2019) and likely acquired directly from one of the two 

manufacturers, who are present at most international level competitions. No studies 

could be found that have investigated the differences in modern blade shapes, but 

Sumner et al. (2003) tested conventional, Norwegian and turbo blades and a flat plate in 

a wind tunnel in steady state conditions to investigate the drag associated with each 

shape (Figure 3.5). They found no differences in drag coefficient for any of the blades at 

0º or while varying yaw by ±20º and a large difference between the three blades when 

compared against the flat plate when varying pitch. As kayaking is a highly dynamic, 3D 
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movement, steady state flow is an oversimplification and therefore these results should 

be applied with caution. 

Four of the coaches mentioned that the feather angle (between the left and right blade) 

should be between 60 and 75º. Only one study could be found that has experimentally 

investigated the effect of feather angle: Lee (2013a) compared a 90º angle with a 0º angle 

and found SR to be significantly higher in the 90º condition but distance per stroke (DPS) 

to be significantly lower. No other angles were used, and it appears that an inflatable 

kayak was used, undermining the value to sprint kayaking.  

 

Paddle set-up summary  

Coaches generally believe that variation in paddle set-up is largely explained by 

height, strength and SR choice and that athletes naturally choose a paddle that 

allows them to perform well, although most acknowledge that this is an under-

researched, under-considered area which could lead to improvements in 

performance. The vast majority of coaching knowledge is based on observation, 

experience and athlete’s subjective opinions.  

Published literature available in the area is currently limited in quantity and 

methodology and objective evidence to help advise both coaches and athletes 

towards optimising their set-up, has large potential gains in performance as a 

result. Paddle length, blade size, blade shape and feather angle all contribute to 

paddle set-up and would all benefit from additional research. Paddle length is the 

logistically easiest factor to investigate as most commercially available paddles 

have a 10 cm range when purchased and so any conclusion can be affected 

immediately.  

Figure 3.5: Diagrammatic representation of blade shapes investigated in wind tunnel testing from Sumner et 
al. (2003). 
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 Crew boats  

Coaches cited technical differences when paddling in crew boats compared with 

individual boats. These differences stemmed from the increase in speed of the boat 

movement and the importance of a ‘quick catch’ due to the shorter water phase as a 

result of an increase in SR.  

K4, technique is different again…because the speed is much higher, the boat 

glides much more. K1 technique is not good enough for K4, so you have to 

teach the athletes to run the boat for longer, because speed comes from 

different level, what is called power stroke, for K4 it’s just a normal stroke 

Publicly-available data from the Rio Olympic games (Table 3.4) show that on average SR 

and velocity increase from individual to crew boats, corroborating coaches’ views. Gomes 

(2015) compared paddle force and boat acceleration in K1 and K2 boats and concluded 

that paddle entry should be “faster and more powerful to compensate for the faster 

moving water” (p. xxii), in direct agreement with coaches.  

Table 3.4: average and peak SR and velocity data for the women's sprint kayak A final races during the Rio Olympic 
Games in 2016. Velocity data for women’s K4 not available (ICF, 2016).  

Event Average SR 
in SPM (± SD) 

Average Velocity 

in m·s-1 (± SD) 

Peak SR 
in SPM (± SD) 

Peak Velocity 

in m·s-1 (± SD) 

WK1 500 m 119.6 (± 4.1) 4.4 (± 0.1) 133.3 (± 8.0) 4.8 (± 0.1) 

WK2 500 m 125.6 (± 4.9) 4.8 (± 0.1) 139.9 (± 8.0) 5.3 (± 0.1) 

WK4 500 m 127.6 (± 3.8)  132.3 (± 4.6)  

 

Athlete ‘compatibility’ was also discussed by some coaches as being highly important, 

although it is not always clear what is meant by the term.  

In top boats, everything should be compatible, psychology, physiology and 

technique also 

there are people who are compatible and there are people who are absolutely 

not. Not always the first four people that finish the race will be the fastest K4. 

Half of the coaches emphasised that athletes ought to have similar technique to each 

other, underpinned by the idea that moving differently throws the boat out. On the other 

hand, two coaches observed that you can get away with more in a crew boat as the 

increased weight and other athletes lend stability to the platform. Seven coaches stated 

that the most important factor was to have the power application to the water 
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synchronised; some expected this to require synchronised movement timing, others felt 

this requires a back-forwards timing (for example in a K4, seat four would be fractionally 

before seat three and so on) and the remainder felt the movement was unimportant so 

long as the power application was timed. The back-forwards pattern is supported by the 

only research which could be found comparing force profiles in a crew boat: Gomes 

(2015) found paddlers at the stern to start the water phase an average of 0.034 s (SD = 

0.016 s) earlier than the bow paddler. They studied 11 elite male (n = 6) and female (n = 

5) athletes who each paddled 150 m at 110 spm in a K1 as well as in both the bow and 

stern positions in a K2. The primary aim of the research was to investigate how an 

athlete’s stroke force profile changes from K1 to K2 and the crews had not necessarily 

paddled together before. The controlled SR and lack of reporting of boat speed means 

the synchronicity cannot be compared to performance, but the consistent earlier timing 

of the stern paddler is interesting. Tay and Kong (2018) investigated kinematic 

synchronicity using video and found differences between boats were not explained by 

performance, indicating a universal optimum does not exist. Insight can be drawn from 

rowing due to the similar environment: increased synchronicity was found to improve 

rowing performance (Baudouin & Hawkins, 2002; Wing & Woodburn, 1995) but also to 

increase pitch, surge and heave (Cuijpers et al., 2017) indicating increased synchronicity 

reduces mechanical efficiency but improves overall power production. There were also 

differences in opinion on the role of the athlete in each seat in a crew boat and Table 3.5 

displays some examples of attributes considered important for each seat. 
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Table 3.5: key performance variables for sprint kayak athletes in each seat of a crew boat, according to elite coaches 
interviewed. Count indicates number of mentions by all coaches. Tactical aspects are reported in bold, technical 
aspects are underlined in dotted style and physiological aspects are underlined in solid style. 

Seat 1 (driver):  Count Seat 2: Count 

Strong mentally / Cope 

under-pressure / Focused 

4 Ability to follow 3 

Get the most out of the crew 1 Boat aware 3 

Tactically aware 4 Tactically aware 1 

Control rate/pace 5 Feel 1 

Best in K1 3 Rhythm 2 

Consistent 4 Technically good 1 

Good feel 4 Quicker on the catch 1 

Good rhythm  5 Fit 2 

Fast 1 Fastest 1 

Fit 2 Strong / Powerful / Engine 7 

Strong / Powerful 2   

Seat 3:  Seat 4 (back):  

Ability to follow 3 Ability to follow 2 

Bigger 3 Able to maintain higher SR 1 

Fit  2 Bigger 2 

Strong / Engine 13 Fast 1 

  Fastest 2 

  Strong / Engine 7 

 

These factors could be considered to fall into tactical, technical or physiological aspects 

and have been formatted to show this.  It appears that coaches believe the tactical and 

technical aspects of performance are more important for the front two paddlers, while 

physiological aspects are the most important for the third and fourth seat positions. In 

terms of speed, there were some discrepancies, with one coach stating that the fastest 

paddler should be in the second seat and two more saying the fourth seat should be 

fastest. While most coaches felt the driver was the most important for setting the rhythm 

and race plan of the athletes, one felt this was the role of the second seat position, this 

could potentially be due to exposure to different specific crews and what has worked well 

in the past. There is currently no literature that has investigated the relative importance 

of different factors to seat positions in crew boats.  

The majority of coaches referred to the paddlers in seats three and four requiring bigger 

paddles, either via length or blade size. However, almost all the coaches mentioned a lack 

of clarity, knowledge or evidence for changes. Three coaches cited how traditionally, 
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three and four had longer paddles due to the boat becoming wider further back, which 

is no longer the case. Two more coaches mentioned changes in boat set up from K1 to K4 

as a reason for changing paddle set-up, but were unclear on why differences in boat set-

up should occur either, and three coaches cited increased boat speed as a reason for 

increasing size due to an easier grip on the water. One clear rationale for difference in 

paddle set-up was given: the distance moved by the boat between strokes is often not 

long enough for the athlete in the fourth seat to put their paddle in past where the first 

athlete’s paddle left the water. This would result in an increase in water turbulence for 

the fourth seat paddler which in turn, would decrease the drag force on the blade, making 

it harder to ‘grip’ the water. Increasing the blade size conversely increases the drag force 

and therefore may mitigate this factor. Alternatively, increasing shaft length may allow 

the blade to go deeper or further out into the water, meaning it is more likely to find still 

water. At lower rates, where there is more time between strokes and the boat often 

moves further between strokes, this may not be an issue. 

  

Figure 3.6: a K4 stroke shown from a) blade exit to b) subsequent blade entry of the same side. The cross allows 
comparison of the first paddler’s blade exit with the fourth paddler’s blade entry. Lines are for calibration using the 
buoys positioned 10 m apart. 
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This idea of increased water turbulence for paddlers in the back of the K4 may also 

provide rationale for choosing certain athletes for certain positions: at high speeds and 

stroke rates, all of the athletes have to produce and apply force to the water in a very 

short time period (this could be as low as 0.1s) but, with the added difficulty of turbulent 

water, the athlete in seat four in particular needs to be able to optimise drag force (grip) 

as efficiently as possible. 

 

 Other disciplines 

Athlete’s physiological characteristics were linked to technique and performance by 

coaches: height, sitting height, strength, power production, fitness, muscle mass, 

flexibility, arm length, power to weight ratio, local muscle endurance, co-ordination, 

stability and speed endurance were all mentioned as influencing sprint kayaking. A 

review of how physiological and anthropometrical factors have been found to influence 

sprint kayak performance has been conducted in the literature review in Chapter 2 (for 

summary see Table 2.7).  

Crew boat summary  

There were a number of discrepancies between coaches in terms of which 

characteristics were most important between seats. The first seat athlete was 

often considered to be technically the best to set the rhythm, while seats three 

and four were typically seen as strong and powerful “engines”. Coaches 

considered synchronicity of power application to be important, to a larger extent 

than synchronous kinematics. Some felt this should be in a stern-bow order, 

supported by the only crew boat force analysis available (Gomes, 2015), while 

some felt peak force should occur at the same moment. More research is needed 

to understand how force profiles in crew boats relate to performance.  

There is very little research focused on crew boats and understanding the 

synchronicity of footplate and/or paddle force would add value to current 

coaching. The logistical challenges in measuring performance of multiple athletes 

in this environment likely explain the paucity of research in the area.  
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Using phantom z-scores as a measure of the comparative size of a physical characteristic, 

Ackland et al. (2003) found Olympic sprint canoe and kayak paddlers to have larger 

shoulder and chest breadth, arm and chest girth and low skinfold scores relative to 

average. It is not entirely clear which ‘average’ the study is comparing to in order to 

create their z-scores, the methods cite the physical characteristics are compared to 

stature but it is not clear how z-scores would be created if only compared to their own 

(single measurement of) height as standard deviations are needed; reference data from 

the Australian Anthropometric Database are cited as a later comparison and could be 

used to calculate z-scores. In agreement with Ackland et al.’s conclusions, van Someren 

and Howatson (2008) found upper body dimensions to correlate to 500 m and 200 m 

performance although not 1000 m performance. None of mass, height, sitting height, 

arm length or arm span were found to be any higher than the average population 

(Ackland et al., 2003) or to differentiate between performance levels (van Someran & 

Palmer, 2003). These breadth and girth scores are influenced by muscle mass and this 

could therefore be indicative of training influencing anthropometrics, rather than any in-

built anthropometric advantage.  

When researchers have compared gym-based measures, bench pull maximum power 

was found to correlate with on-water performance but no significant correlations were 

found between on-water performance and flexibility or other strength measures 

(McKean & Burkett, 2010). Van Someran and Palmer (2003) described a kayak-specific 

strength test involving an isokinetic dynamometer positioned to ‘simulate a kayak stroke’ 

which was found to differentiate between national and international standard paddlers- 

with considerably higher torque and power in the latter group- although the design of 

this test and contribution of muscle groups is not clear.  

Physiologically, 1000 m performance has been significantly correlated with work done in 

2 minutes, work done in 30 seconds, power output at lactic turn-point and peak power 

(Van Someran & Howatson, 2008). For 200 and 500 m, these same variables were 

correlated with performance and additionally, 30 second fatigue index and strength 

measures from a dynamometer.  

While the focus of these interviews was clearly heavily on the technical side, some 

psychological constructs were mentioned as important, in particular motivation, 

ownership and teamwork. While a review of all sport science topics is outside of the 
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scope of this thesis, these areas brought up directly by coaches working at the highest 

levels of sprint kayak performance could be used by psychologists to focus research 

efforts on areas of direct impact.   

 Feedback    

Although a full review of the coaches’ views on feedback and how they agree with 

pedagogical literature is outside of the scope of this thesis, a brief summary of the key 

points follows. All coaches agreed feedback is important and for seven of the 12 coaches, 

the predominant idea was that of the importance of getting the right feedback for the 

athletes as individuals, which was often linked in with the idea of the coach-athlete 

relationship. 

[feedback is] critically important, as long as the coach and athlete are on the 

same wavelength. Because it’s all got to be driven by the athlete, the needs 

of the athlete, some athletes are very direct, and some are just “…let me just 

work it out for myself” 

there are people who like data more than anything and there are people who 

actually want to see a video, and see the race so it’s again very individual but 

in order to improve, feedback, I feel, is important 

Other disciplines summary  

Many of the physiological and anthropometric characteristics mentioned by 

coaches as relating to performance have been supported by the academic 

literature, in particular strength, power and muscle mass related factors. Skeletal 

measures of anthropometrics have not been found to differ significantly from the 

general population, or between performance levels, but these factors are likely 

to influence technique and equipment selection. Strength and power 

characteristics correspond strongly to performance when measured in kayak-like 

movements and less strongly when measured in isolated movements (e.g. in a 

gym), highlighting the importance of specified measurement. 

A greater understanding of power and force generation and how they related to 

performance could lead to more focused and individual specific training while 

the development of technologies to measure these factors on water could also 

be used for biofeedback and improve training efficiency. 
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In general, researchers have found performance in movements with multiple degrees of 

freedom to improve with feedback, particularly when knowledge of results along with 

error-correcting ‘transitional’ information, or attention-focusing cues are provided 

(Kernodle & Carlton, 1992). As well as directly impacting performance, feedback has been 

found to positively impact competence satisfaction and autonomous motivation in a non-

skilled sport task (Mouratidis, Vansteenkiste, Lens, & Sideridis, 2008).  

The coach-athlete relationship has been the subject of a large amount of psycho-social 

research and is considered by researchers in the field to form a significant part of coach 

effectiveness (Jowett & Poczwardowski, 2007; Jowett, 2017). The idea of the athlete 

determining how feedback occurs is also supported by research, with Janelle, Kim and 

Singer (1995) finding that athletes controlling feedback is a better learning tool than 

being passively provided with feedback.  

Relating to individualisation, there is a paucity of research looking at the development of 

motor skills through matching feedback with learning preference; the only paper which 

could be found on the subject is that of a undergraduate thesis focused on darts with 

visual or auditory feedback which concluded that learning preference did not influence 

skill development (Alvine, 2015). Pashler, McDaniel, Rohrer and Bjork (2008) reviewed 

the literature from the academic sphere and stated that evidence shows individuals 

demonstrate both a preference for feedback type, and an aptitude for processing 

information in a certain way. However, they concluded there is not sufficient evidence to 

support the idea that a specific instructional method is more effective for a given learning 

style. 

For some of the coaches interviewed, the most important factor was stage of learning, 

with juniors considered to need more external and elite athletes considered to have 

developed adequate internal feedback.  

fundamental difference between the top athletes and club athletes is in 

feeling, the main difference. So feedback is very important ‘til they form 

something. 

everybody likes feedback, especially when you’re a junior. Some of them do 

need technical feedback and some of the guys need more data feedback 
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I think the really good athletes are able to find their own methods of internal 

feedback, they have a good sense, they feel through their muscles 

Much of the research investigating the effect of feedback does so on those who have no 

previous experience of the task and no studies could be found that have investigated the 

influence of feedback or feedback type on elite level athletes in kayaking.  

 

 Overall Summary  

The key components of performance outlined by coaches are summarised in Table 3.1. 

The key technical determinants identified were water interaction, boat connection, 

kinematics, force/power, SR/DPS and influence of weather. Models of sprint kayak 

performance in the literature on the whole match well with these overarching categories, 

but investigating each factor directly reveals there are very few pieces of empirical 

evidence that are not an oversimplification of kayaking to suit mechanical principles. 

Little is known about paddle movement and the hydrodynamics of paddling due to the 

difficulties in on-water measurement and therefore direct measurement and modelling 

approaches to date have been extremely limited.  

Other areas revealed discrepancies in coaching beliefs and language and reaching a 

consensus combining coaching knowledge with existing models could be a direction for 

future research. In phase identification, a start, acceleration, transitions and race pace 

were commonly detected, but the same definition or order was not always present. A 

distinct and clear identification of which phase is being researched would allow ease of 

transfer of research conclusions. Crew boat selection also displayed discrepancies among 

Feedback summary  

Coaches interviewed were highly aware of the overall value of feedback, with 

emphasis placed on individuality and experience of the athletes to dictate the 

coaches’ use of different types and frequencies. 

The ideas presented about internal feedback and the level of athlete determining 

the amount of feedback needed, as well as individual variation, could be topics 

for future research, which could help in skill-development and coaching practice 

across levels of performance.  
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coaches, with different elements seen as of primary importance to each seat and 

differences in beliefs regarding synchronicity. The paucity of research in crew boats is 

understandable due to difficulties in data collection but could have large impact on 

performance. Paddle set-up is also an area with a lack of reliable empirical evidence and 

one which coaches acknowledged as important but with very few ideas on how to 

optimise, making it another possible area for impactful research.  

Among many potential research areas highlighted by coaches and not reflected in the 

literature, some that stand out as both measurable and valuable are: stroke rate, 

distance per stroke, force production and power production. In particular, individual 

differences in these simple metrics and paddle set-up are under-investigated and would 

add value. Force and power- velocity profiling have long been used in cycling to 

investigate bike set-up and to calculate optimal cadence (e.g. Dorel et al., 2005), 

understanding these metrics in sprint kayakers in a sport-specific manner could greatly 

enhance our understanding of the demands of the sport in a controlled manner. 

Understanding how and why athletes differ in simple performance measurements and 

how these individual differences can be used to support paddle choice, could result in 

individualised training and improve paddle set-up leading to improvements in 

performance. 
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 Power and force-velocity profiling of sprint 

kayak athletes 

 Introduction  

As described in the previous chapter, force and power are directly important to coaches, 

in previous deterministic models (Gomes, 2015; Wainwright, 2013) and as being concepts 

that underpin many of the mechanical aspects to sprint kayak performance, such as 

water interaction and boat connection. Understanding how force, velocity and power 

interact in elite kayakers will therefore support and expand coaches’ understanding of 

important aspects to technique, as has been done in other sports (Dorel et al., 2005; 

Colyer et al., 2017).  

In cyclical movement sports, resultant movement velocity (e.g. of the bike, boat or 

human) is the product of cycle frequency and cycle distance. Logically, assuming all else 

were maintained, increasing force will increase cycle distance and increasing cycle 

velocity (via a decrease in cycle time) will increase frequency. Clearly then, there are large 

advantages to increasing both aspects of the force-velocity profile. 

The literature review section of this thesis has provided a background and critique of 

force-velocity (F-V) relationship and has highlighted some research demonstrating the 

consistency of the linearity of the relationship across sports (e.g. Giroux et al., 2016) and 

the subsequent individuality of athletes (e.g. Samozino et al, 2012). This chapter 

introduction will review how F-V profiles have been useful in elite sports and the 

methodologies that have been used. 

 F-V, P-V and performance 

Across 12 elite sprint cycling athletes, maximum power has shown a strong correlation 

with 200 m sprint performance when normalised for frontal surface area (Dorel et al., 

2005). When comparing torque and angular velocity (the angular components that make 

up power), maximal torque and torque at maximal power were found to significantly 

correlate with maximal power (r = 0.92 and r = 0.91 respectively), but neither maximal 

cycle frequency, nor cycle frequency at maximal power showed significant relationships 

with maximal power. This would indicate that at group level in cycling, differences in 
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power are coming predominantly from changes in force generation rather than 

cadence.  

In opposition to this, time needed to generate force rather than capacity to generate high 

magnitude of force has  been found to be the limiter to human track sprinting; Weyand 

Sternlight, Bellizzi, and Wright (2000) investigated maximal running and hopping to see 

whether human locomotion is limited by maximal vertical force production or the time 

taken to generate this force. The study found hopping forces to be over 50% of a 

bodyweight higher than in maximal running with considerably longer contact times, 

indicating maximal force does not limit sprinting. In agreement, Morin et al. (2012) found 

power and theoretical maximal velocity (V0) to be related to 100 m sprint performance, 

while theoretical maximal force (F0) was not (see Figure 2.19 for graphical example). 

However, Marcote-Pequeño et al. (2019) looked at the key parameters in F-V profiling 

that were most strongly linked to 20 m sprinting and vertical jumping performance. Their 

research found high correlations with maximum power but not with V0, F0 or the F-V 

slope, with the authors concluding that the individual nature of the profile removed 

significance from group level conclusions. The importance of F-V and power-velocity (P-

V) profiles in athletes is therefore not clear cut, with these studies indicating high 

individual variation, and the potential of different, preferable profiles for short 

accelerations of 20 m when compared to 100 m maximal sprinting.  

In rowing, Giroux and colleagues (2017) compared F-V profiles created using bench pull 

and squat jump exercises to a 1500 m effort on an ergometer and found bench pull peak 

power, F0 and V0 as well as squat jump max power and F0 to all significantly relate to 

rowing ergometer performance, providing useful information for practitioners working 

in rowing. Additionally, in a review of the biomechanical factors affecting rowing 

performance, Baudouin and Hawkins (2002) highlighted the importance of a rower’s 

torque-velocity characteristics in application of power to the water and in boat set-up, 

stating that a mechanically optimised SR should be possible from F-V relationships. 

 F-V Methodologies 

Sprint cycling has often been at the forefront of F-V research in sports biomechanics 

research due to the measurable, controllable nature of much of the environment. Data 

for F-V profiles were originally collected using repeated exercise bouts (Vandewalle, 

Pérès, Heller, & Monod, 1985) but more recently, equipment has been designed to 
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capture the whole F-V profile, in an appropriate sporting movement, in a single bout to 

avoid fatigue (Martin et al. 1997). Martin and colleagues developed the iso-inertial 

method, whereby the fan flywheel of an ergometer was replaced with a disc weight of 

known moment of inertia, the movement of which was accurately measured, through 

use of a photodiode, allowing torque applied to the disc to be calculated through the 

angular equivalent of Newton’s second law (𝑇 = 𝐼 ∙ α). This method was designed to 

allow instantaneous measures without requiring multiple bouts and allows the whole 

profile to be created in a matter of seconds as a stationary start is followed by cycles of 

increasing speed, in a sport specific movement which makes it appealing to applied 

practitioners, bridging the gap between non-sport specific work in the gym and the 

competition environment.  

Having applied their iso-inertial method in cycling ergometry, described above, Martin 

and colleagues went on to develop this technique for increased understanding of the 

water-based sport of rowing (Sprague, Martin, Davidson, & Farrar, 2007). This meant 

rowing F-V profiles could be measured without the influence of fatigue which would 

undoubtedly influence other measurement techniques. While not directly representing 

on-water performance, this measure of fatigue-free power and F-V relationship allows 

insight into transferability of land (strength and conditioning) training as well as technical 

insight as highlighted above by Baudouin and Hawkins (2002). In rowing, the stroke cycle 

can be broken down and power, force and velocity values can be taken as: instantaneous 

output, averaged over the pull phase of a stroke or averaged over the entire stroke. 

Sprague et al. (2007) found linear F-V and quadratic P-V profiles were well defined for 

each of these breakdowns in male college level rowers (n = 11), with optimum velocity 

for maximising power occurring at different points (instantaneous power 3489 W 

occurring at 3.43 m·s-1, pull power 1995 W at 3.25 m·s-1 and stroke power 812 W at 2.04 

m·s-1). The ratio of pull to recovery time is not consistent in rowing, known as an 

‘unconstrained duty cycle’ this means velocities are not synonymous with a stroke rate, 

and additional research would be needed to understand the relationship between SR and 

power.  

Force-velocity profiles have frequently been found to be linear across sporting 

movements (Bozic & Bobana, 2018; Giroux et al., 2016; Haugen et al., 2019), thought to 

be due to segmental dynamics (Bobbert, 2012; see Section 2.8.2 for further discussion), 
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although it is not always clear if other relationships have been investigated. Researchers 

who have directly investigated other fits have found polynomial, exponential and linear 

fits to all result in high correlation values, with linear recommended due to improved 

accuracy in power calculation (Iglesias-Soler, Fariñas, Mayo, Santos, & Jaric, 2019; 

Zivkovic, Djuric, Cuk, Suzovic, & Jaric, 2017).  

Differences have been found in profiles created between maximum and average values 

and the point of maximal force occurs at a different moment in the stroke to that of 

maximal velocity (Zivkovic et al. 2017).  In a review of F-V profiling within strength and 

conditioning (S&C) research, Picerno (2017) cited that all papers found used the average 

for force and velocity for correlation, citing the reason for this to be to remove the effect 

of the non-linear velocity during a lift that occurs due to advantageous muscle moment 

arms during specific parts of the movement. These maximum and average values 

represent different capacities and therefore may both be of value in an applied setting, 

provided context is available. While a maximum may better represent a true capacity 

measure, it is not directly relevant to power if maximal force and velocity are taken at 

separate instances. In addition, an instantaneous maximum is also more susceptible to 

noise or error in the measurement and therefore less reliable.  

 F-V in Sprint Kayaking 

Peak power as measured on a kayak ergometer has been found to be highly related to 

on-water 200 m performance (van Someren & Palmer, 2003). The authors compared 13 

international level with 13 national level 200 m kayakers and found international athletes 

to have: significantly higher peak power (615 ± 81.5 W vs 476 ± 72.3 W), higher total work 

in a 30 second all-out test and higher isometric force and isokinetic power from an 

isokinetic dynamometer. The accuracy of the measurement cannot be determined as the 

sample rate and peak detection methods are not clearly described. While the use of a 30 

second test reflects the duration of a race, it would be too long to document a ‘true’ 

maximal effort and does not give insight into how the power is created; the additional 

calculation of F0 and V0 in F-V profiles created from maximal efforts allows coaches and 

S&C coaches insight into how they can influence and increase power.  

Similar values of maximal power have been attained for elite athletes (males, n = 6; 

females, n = 4) from air braked kayak ergometers (610 ± 65 W males, 359 ± 33 W females, 

Bjerkefos et al., 2018). A maximal intensity effort of 20 strokes was completed as the final 
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stage of an incremental step test, and maximal power was taken as the average from 10 

strokes. As a stroke average, these values are considerably lower than those achieved by 

rowers, but this may be explained by the use of a 10-stroke average alluding to a 

sustainable, rather than peak, stroke power. 

Schofield (2015) directly investigated the F-V and power velocity relationships of 12 elite 

kayakers using an iso-inertial ergometer based on the design of Martin’s (1997) cycle 

ergometer and compared 200 m and 1000 m paddlers. Peak stroke power was found to 

correlate with a more force-orientated profile (ratio of F0 to V0) across the cohort, while 

the 200 m group had higher values for stroke power (from catch of one hand to catch of 

the other; 687 W vs 613 W), stroke force and velocity. As this group included three 

Olympic medallists, compared to non-medallists in the 1000 m group, it is not clear 

whether these differences are the result of the distance focus training, or the higher 

relative level of the athletes, therefore highlighting an area for valuable research.  

The differences in ergometer design, variable measurement, stroke breakdown and lack 

of normalisation within the above studies make them difficult to compare directly to each 

other. Furthermore, no studies could be found that have investigated the F-V profile of 

athletes of different levels in sprint kayaking, resulting in an opportunity for impactful 

research.  

 Trainability of F-V 

Short term resistance training interventions have been found to produce changes in the 

F-V profile in physically active participants, with high resistance and therefore low 

velocity training causing increases in F0, and low resistance, high velocity training 

inducing higher V0 post training intervention (García-Ramos, Torrejón, Pérez-Castilla, 

Morales-Artacho, & Jaric, 2018). As the participants in this study were not highly trained, 

it would be expected that larger changes could be achieved in a relatively short space of 

time, but it is not clear if the same changes would occur in elite or highly trained athletes.  

Colyer et al. (2017) profiled 12 bob-skeleton athletes over the course of almost 18 months 

to investigate how a training cycle, as defined by the S&C coach, might influence the F-V 

profile of athletes. Profiles were created from a pneumatic resistance horizontal leg-

press, measuring force and velocity at a sampling rate of 400 Hz. While this methodology 

is subject to some of the limitations mentioned previously (e.g. different movement 

pattern, influence of fatigue, approximation of linear trend), the measurements were 
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consistently done at least seven times across the time period, so could be directly 

compared. As might be expected, the authors found increases in maximal force 

generation were high in strength-heavy training blocks, while decreases in this same 

parameter and increases in maximum velocity were found during the winter 

(competition) period. Although individual adaptations are not reported, there was a 

differentiation made between elite athletes, and those relatively new to the sport, with 

new athletes demonstrating the same trends but with larger increases in maximal force 

generation.  

 Individuality in F-V profiles 

Most of the research above has focused on group means, but some researchers have 

investigated the differences that exist between individuals. Samozino et al. (2012) 

described large differences in F-V profile within one cohort and outlined an ‘optimal 

profile’ (i.e. an optimal gradient of the profile) for vertical jump performance (Figure 4.1). 

Working from a theoretical approach outlined in a previous paper (Samozino, Pierre, 

Morin, Hintzy, & Belli, 2010), which in turn worked from defined mechanical laws such as 

equations for constant acceleration, mechanical work and energy, to create an equation 

determining the relationship between force, velocity and jump height, the authors 

investigated the influence of power and F-V profile shape on jump height and derived the 

following equation for maximal take off velocity, 𝑣𝑇𝑂𝑚𝑎𝑥:  

Where ℎ𝑃𝑂 is the distance moved by the centre of mass during push off, 𝑆𝐹𝑣 is the slope 

of the force velocity curve (𝑆𝐹𝑣 =  −
𝐹0

𝑣0
), 𝛼 is the angle of inclination and 𝑃̅𝑚𝑎𝑥  is the 

maximum power produced. From this they surmised that an individual optimal profile for 

𝑣𝑇𝑂𝑚𝑎𝑥 = ℎ𝑃𝑂 (√
𝑠𝐹𝑉

2

4
+

2

ℎ𝑃𝑂
(2√−𝑃̅𝑚𝑎𝑥𝑆𝐹𝑣 − 𝑔𝑠𝑖𝑛𝛼)  +  

𝑆𝐹𝑣

2
) Equation 2 

Figure 4.1: a) relationship between the F-V gradient (SFV) and power output during jumping and  b) power output 
relationship with jump height. Dotted lines indicate ‘optimum’ profile (Samozino et al., 2012). 
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ballistic performance is dependent on maximum power production, limb extension range 

and on the inertia and inclination of the movement. Figure 4.1 demonstrates how 

changing the 𝑆𝐹𝑣 for an individual creates a decrease in power output (a) that directly 

results in lower performance (b; jump height). The resultant power output decrease is 

much starker as profiles become more velocity-orientated compared to a move towards 

a more force-orientated profile (see Figure 2.19 in the literature review for example of 

different profile orientations).  

In a training study, Jimenez-Reyes et al. (2017) profiled 84 athletes and for the 

intervention group, prescribed training according to how their profile compared to their 

theoretical optimal for maximising vertical jump (outlined above). Those who exhibited 

a force or velocity ‘deficit’ (i.e. their profile showed a different gradient to their 

theoretical optimal) were classified accordingly and underwent a nine-week training 

programme aimed at decreasing this deficit. The training reduced the so-called 

‘imbalance’ and resulted in greater increases in jump height when compared to a those 

who had undergone a traditional training programme.  

 Literature Summary  

Power has been strongly linked to successful sprint performance in a variety of sports 

and as power is the product of force and velocity, researchers have tried to identify if 

maximum power production is based more on one of these variables than the other. 

Understanding how maximum power is generated in kayaking with different levels of 

performance through a fatigue-free measurement will allow coaches to focus training for 

efficient development.  

 Aim & Research Questions 

The aim of the current study was to investigate and compare the F-V and P-V profiles of 

elite, sub-elite and club level sprint kayakers in order to increase understanding of 

performance in kayaking and the extent of the individuality of F-V and P-V profiles. 

Research Question 4.1: do power and force-velocity relationships explain differences in 

performance level in sprint kayakers? 

Research Question 4.2: do group level average profiles represent the individuals in the 

group? 
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 Methods 

 Participants 

Thirty-nine athletes (Table 4.1) volunteered for the study. These athletes were 

categorised as ‘club’, ‘sub-elite’ or ‘elite’ according to their competition level (Table 4.2). 

Table 4.1: Group level participants' characteristics for each gender (group mean ± SD) 

 

Table 4.2: Performance level classification description 

Classification Description Competition Level 

Club Member of a British 
Canoeing registered club 

National regatta 

Sub-elite Part of the national 
governing body podium 
potential squad 

International event 

Elite Part of the national 
governing body podium 
squad 

Regularly compete on 
international circuit including 
World/European 
Championships 

 

All participants provided informed consent and took part in a minimum of two 

familiarisation sessions and one testing session. A sub-group of 18 elite and sub-elite 

athletes took part in additional testing between the March and August of one competitive 

season with a minimum of three testing sessions. All participants were injury and illness 

free and had been cleared to participate by medical practitioners (elite and sub-elite 

athletes), or through assessment of a pre-test questionnaire (club athletes). Participants 

aged between 16 and 18 years provided informed assent, with informed consent from a 

parent or legal guardian. Ethical approval was gained from the University of Lincoln 

School of Sport and Exercise Science ethics committee.  

Gender N Level Age (years) Mass (kg) 

Female 2 Club 29.9 ± 18.3 63.2 ± 12.9 
 8 Sub-elite 22.6 ± 3.4 71.9 ± 7.1 
 4 Elite 25.2 ± 4.4 70.7 ± 6.1 
  Mean 25.9 68.6 

Male 9 Club 20.2 ± 10.6 76.7 ± 4.7 
 7 Sub-elite 21.1 ± 2.1 80.5 ± 4.3 
 6 Elite 23.4 ± 5.0 81.8 ± 3.3 
  Mean 21.6 79.6 
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 Isoinertial ergometer  

The ergometer used was an adapted Dansprint model (Dansprint, Hvidovrere, Denmark), 

as used and described in previous sprint kayaking research (Schofield, 2015), with 

additional modifications described below. The ergometer was fixed to the gym floor 

foundations via screws with a floor covering of 10 mm layer of dense rubberised matting. 

A standard Nelo (Nelo, Vila Do Conde, Portugal) seat and footrest were attached with 

fully adjustable settings. The ergometer paddle shaft length was set to match that used 

by the athlete on-water, with the ropes connecting to the end of the ergometer shaft 

representing the assumed centre of pressure of 20 cm from the end of the blade of the 

athlete’s normal paddle length (Figure 4.2a).  

The original flywheel was replaced with disc weights to create an isoinertial load, where 

the only resistance of the flywheel is provided by its inertia. The position of the flywheel 

was measured via a slotted reflective surface with 15 segments. The surface (Figure 4.2c) 

reflected the light from a photodiode, which was received by an optical sensor. The time 

between each slot was recorded by an Arduino microprocessor (Arduino micro, Atmel 

Corp. San Jose) with the timestamp output each time a non-reflective section moved 

passed the photodiode. The 15 non-reflective segments were machine cut with π/8 

radians between them, with the exception of an index slot to identify a full rotation of 

the flywheel, which was cut with a gap of π/4 radians. As the radius of the sprocket was 

0.03285 m, this resulted in a measurement every 0.0129 m of rope (and therefore 

paddle) movement. This method of force calculation has been used previously in both 

cycling (Martin et al., 1997) and rowing (Sprague et al., 2007) and the kayak ergometer 

in this form has been used in previous F-V research (Schofield, 2015). Pilot testing 

established good levels of within-athlete reliability (2.6-6.2%).  
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Figure 4.2: a) photo of paddler on the isoinertial ergometer and comparison to on-water paddle set-up diagram b) 
labelled ergometer disc flywheel with reflective surface. 

Following pilot research which demonstrated that changing bungee tension influenced 

the power output (Shin, Willmott, Mullineaux, & and Worsfold, 2017), a steel bracket and 

load cells were added, through which the bungees are attached, allowing the force 

applied to the bungee to be included in calculations. The load cells were linked to the 

Arduino microprocessor to output force data alongside timestamp data outlined above.  

The moment of inertia of the flywheel was set individually per athlete, by adding or 

removing discs with a resultant disc mass range for the group of 3-7 kg and an inertial 

load range of 0.036 to 0.077 kg·m2. Selection was made from pilot data based on the 

highest peak power, strongest coefficient of variation and reaching peak power midway 

through the effort (~stroke 6). Due to the parabolic nature of the P-V relationship, it is 

important for peak power to occur near the midpoint of the test in order that it can be 

clearly identified.  
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 Test protocol 

As many of the athletes were full time athletes, it was not possible to control training 

prior to testing, or between sessions for the sub-group. For these athletes, to reduce the 

effect of fatigue or previous training load, data collections were included in training plans 

in the morning and, where possible, this was done following a rest day with no training. 

The timing of these testing sessions for the sub-group was not consistent as athletes were 

part of different training groups. Sub-group data for whole group analysis were taken 

from the date nearest the highest-level competition the athletes entered that year (e.g. 

world championships, junior world championships, international regatta etc.). 

The two familiarisation sessions were completed separately within the four weeks 

preceding the first testing session and consisted of five trials of 14 maximal effort strokes 

with three minutes passive recovery between trials (Hoianaski, Franchini, Matsushigue & 

Schneck, 2007; Toubekis, Douda & Tokmakdis, 2005). Athlete were asked to paddle in as 

close an approximation of on-water paddling as they were able to. In order for the rope 

to retract at a high enough rate to handle the high-velocity end of the data collection, 

bungee tension was generally set higher than the athletes would typically use on an 

ergometer, which may have slightly affected kinematics and highlighted the need for two 

familiarisation sessions.  

Athletes completed the same standardised gym warm up (Appendix 2) with an additional 

minimum of 5 minutes of ergometer paddling, inclusive of one sprint effort of 

approximately five second duration. The gym warm-up was approximately ten minutes 

in duration and was devised by the S&C coach and physiotherapist to increase heart rate 

and activate appropriate muscles. Paddlers were given approximately one minute of re-

familiarisation time on the inertial load ergometer prior to testing commencing, or more 

if they wished. Participants completed a total of five trials with three minutes of recovery 

between trials, in line with previous research (Schofield, 2015). The first trial for all 

athletes was regarded as a re-familiarisation trial and was not included in subsequent 

analysis. Each trial consisted of 14 maximal effort strokes, of which the first 12 were 

included in the analysis, in order for maximal effort to be ensured across all strokes. Trials 

were started with the paddle forward on the side the athlete would usually use for 

starting on water, in a position reflective of that used in a standing start during a race 

(Figure 4.2a). The flywheel was then rotated so that the index ‘slot’ was positioned level 
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with the photodiode and held there, being released after a three second verbal 

countdown ending in a ‘go’ command, upon which point the trial started. Verbal 

encouragement was given throughout to encourage maximal effort. The design of this 

ergometer with high inertia creates a slow, high force first stroke, with each consecutive 

stroke increasing in speed. The researcher counted the strokes and gave a clear shout of 

‘stop’ after 14 strokes had been completed. 

 Calculations 

All calculations were conducted in Microsoft Excel (2010). The flywheel moment of inertia 

was the sum of the components, which included the spacers, freewheels, bolts, weighted 

discs, and the axle. Moment of inertia (𝐼) of the discs was calculated from the mass (𝑚), 

inner radius (𝑟𝑖) and outer radius (𝑟𝑜) as outlined in the equation below: 

𝐼 =
𝑚(𝑟𝑖

2 + 𝑟𝑜
2)

2
 Equation 3 

The bolts were treated as a point mass, where 𝐼 =  𝑚𝑟2, where 𝑟 is the distance from 

the centre of the bolt to the axis of rotation. The inertia of the flywheel (𝐼𝐹) was modified 

for individual athletes based on pilot work as mentioned above.  

Angular velocity of the flywheel (𝜔) was calculated as change in angle (𝜃) divided by the 

change in time (𝑡). Angular velocity data were second-order low pass Butterworth filtered 

at a visually selected frequency of 6 Hz and the following calculations conducted: 

Angular acceleration (𝛼): 𝛼  =  
∆𝜔

∆𝑡
 Equation 4 

Torque (𝑇): 𝑇 =  𝐼𝐹 ∙ 𝛼 Equation 5 

Force (F): 𝐹 =  
𝑇

𝑟𝑠
 Equation 6 

Power (𝑃): 𝑃 = 𝑇 ∙ 𝜔 Equation 7 

Paddle tip velocity (𝑉𝑃): 𝑉𝑃 =  𝜔 ∙ 𝑟𝑠 Equation 8 

 

All calculations were conducted for the entire duration of the trial and the pull portion of 

strokes was subsequently detected using a threshold power of 10%. Each stroke was used 

to calculate SR throughout the trial: 

 

 

𝑆𝑅 = (
1

𝑠𝑡𝑟𝑜𝑘𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
) ∗ 60 Equation 9 
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In line with previous ergometry studies with water sports (Schofield, 2015; Sprague et al., 

2007) averages were then calculated per stroke across the pull phase and across the 

stroke cycle (including recovery time) in addition to the instantaneous values (Figure 4.3 

& Figure 4.4). This resulted in a 12 x 15 matrix of stroke number by variable. 

 

Figure 4.3: Example power-time curve from the ergometer for two strokes denoting pull and recovery phases and 
stroke definition. Calculated pull and stroke averages and peaks are marked.
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Figure 4.4: Example data from one ergometer trial. Calculated force-time and power-time curves for all 12 strokes. Calculated pull and stroke averages and peaks are marked. 
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Test maximums and averages (across all strokes) were then identified and calculated for 

each trial. Force and power were then normalised using allometric scaling, dividing by 

body mass0.67 (Jaric et al., 2005; Jaafar, 2017; see Sections 2.8.1 and 4.4.1 for discussion). 

Three F-V profiles were created from 12 strokes per trial using each of: values for 

instantaneous maximum or ‘peak’ force per stroke and the velocity at which it was 

created; average values across the pull phase and average values across each stroke. 

Figure 4.5 shows examples of each of these profiles for one trial, along with their linear 

fit and regression equations.  

 

Figure 4.5: an example of the peak instantaneous, pull average and stroke average F-V profiles created from the 
ergometer for one trial with the linear trend line, its equation and r2 value shown for each. 

Distinct differences were apparent, in line with previous research (Schofield, 2015). Using 

one finite moment in time in the instantaneous data is more susceptible to variability 

within a given stroke or noise within the measurement and, although the linear fit was 

strong, high variability was also present across the group (r2 = 0.88 ± 0.13). The stroke 

average values show a weaker linear trend (r2 = 0.77 ± 0.18), again with high variability 

across the group. Stroke averages include the ‘recovery’ phase of a stroke where no 

active force is being applied to the ergometer and so may have reduced relevance for 

maximal capacity, although this could be countered by considering the increased 

ecological validity. The F-V created from pull averaged values demonstrated high linearity 

and high consistency (r2 = 0.92 ± 0.05). Therefore, all subsequent analysis of F-V profiles 

used force and velocity were averaged across the pull phase. Using averages across the 

active phase also allows for valid comparison to F-V profiles created from gym exercises 
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(Picerno, 2017), which provides context for this new testing methodology within the 

multidisciplinary team.  

The slope of the F-V profile (SF-V) was calculated as the slope of the linear regression, as 

in previous research (Samozino et al, 2012; Schofield, 2015). From this profile, 

extrapolation across the axes allowed calculation of F0 (force generated at hypothetical 

zero velocity) and V0 (velocity at hypothetical zero force). While categorisation into force-

orientated or velocity-orientated did not occur, these terms were used as relative 

descriptors, with more force-orientated indicating a steeper F-V and therefore a higher 

SF-V, in line with Samozino et al. (2012).  

Power-velocity (P-V) profiles for each aggregation level were created using a second 

order polynomial regression of power with velocity, with maximal power (P0) calculated 

as the apex of the curve (e.g. Dorel et al., 2005; Sprague et al., 2007). In total, nine 

possible measures of power were created with which to summarise a trial (Table 4.3). As 

force is a component of power, the values calculated for peak and stroke are subject to 

the same limitations as cited above and the values relating to pull power only were used 

for this study. All three power variables for pull power (trial mean, trial maximum and 

theoretical maximum) were all calculated and taken forwards for analysis.  

Table 4.3: Power variables calculated within and across strokes 

  Within stroke:   

  Peak Pull Stroke 

Within Test: Mean PeakPowermean Powerpull,ave Powerstr,ave 

 Maximum PeakPowermax Powerpull,max Powerstr,max 

 Theoretical P0peak P0pull P0stroke 

 

Force-SR (F-SR) and power-SR (P-SR) profiles were created using SR along with both pull 

and stroke averages per stroke for force and power. From these, stroke rate at maximum 

power (SRopt,pull, SRopt,str) were calculated. The latter was conducted as stroke rate 

incorporates the recovery time and therefore is of more direct contrast to the stroke 

averages than with the pull averages.  
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 Statistical analysis  

Data were analysed using SPSS (IBM SPSS Statistics for Windows, Version 22.0., IBM 

Corp., Armonk, NY) and Microsoft Excel (2010, etc). For each athlete, the average values 

for F0, V0, Powerpull,ave, Powerpull,max, P0pull, SF-V SRopt,str and SRopt,pull were calculated from 

the final four trials to input into statistical calculations. Significance was set at p < 0.05.  

4.2.5.1 Group analysis 

Normality of the data distribution was checked using the Shapiro-Wilk test. At group level 

(club, n = 11; sub-elite, n = 15; elite, n = 10), all data were normally distributed (p ≥ 0.299) 

except for V0 (p = 0.024). Between groups one-way ANOVAs were used for all variables. 

While ANOVAs have been found to be robust to violations in the assumption of normality 

(Schmider, Ziegler, Danay, Beyer, & Bühner, 2010), a comparison of ANOVA results with 

the results of a non-parametric Kruskal-Wallis ranks test was conducted for variables that 

violated the normality assumption (at group level, only V0).  

Cohen’s d was calculated as a measure of effect size for group level analyses for all 

variables (F0, V0, Powerpull,ave, Powerpull,max, P0pull, SF-V, SRopt,str and SRopt,pull). The equation 

for Cohen’s d is below: 

𝑑 =
|𝑀𝑒𝑥𝑝 −  𝑀𝐶𝑜𝑛𝑡|

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
 Equation 10 

Where 𝑀𝑒𝑥𝑝 is the mean of the experimental group, 𝑀𝐶𝑜𝑛𝑡 is the mean of the control 

group and 𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 is the average standard deviation of the two data sets. As the 

absolute value of the numerator is taken, it is not important which group is considered 

the ‘control’ or ‘experimental’ group in this study. 

To investigate gender-specific group level differences, data were first split according to 

gender and same the analyses run. The female club group only included two athletes and 

therefore non-parametric Kruskal-Wallis testing only was conducted for female group 

comparisons. All data were normally distributed for both genders (p ≥ 0.185) with the 

exception of V0 for males (p = 0.003). One-way ANOVAs were therefore run on all 

variables for male athlete data, with an additional Kruskal-Wallis test on the male V0 

data.  
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4.2.5.2 Individual analysis 

For individual level analysis, F0 and V0 were correlated against Powerpull,ave for each 

athlete’s set of data, using one value for F0, V0 and stroke power per trial resulting in 

between 12 and 26 data points per athlete. Tests for assumptions of normality, linearity 

and homoscedacity revealed violations and therefore correlations were conducted using 

Spearman’s rank order test. Visual assessment of linearity was conducted and 

subjectively categorised into: clear strong linear pattern (‘Strong’), apparent linear trend 

(‘Medium’), potential linear trend (‘Low’) and no linear trend (‘None’), examples of each 

of these can be seen in Appendix 3. As r2 values are considered a measure of size of effect 

(Knudson, 2009) no additional calculations were conducted.  

 Results  

For data that violated the normality assumption, neither the ANOVA nor the Kruskal-

Wallis showed significant differences in V0 between groups, although the Kruskal-Wallis 

test neared significance (ANOVA p = 0.257; Kruskal-Wallis p = 0.051). For male athletes, 

significance of V0 was not affected by test used, with non-significant differences between 

groups with both tests (ANOVA p = 0.630; Kruskal-Wallis p = 0.350). 

The three measures of power resulted in the same overall trends, with highest values for 

the elite athletes, followed by sub-elite and then club (Table 4.4). However, statistical 

significance was not the same for the three different measures of power. For male 

athletes Powerpull,ave and Powerpull,max were significantly higher for both the sub-elite (p < 

0.001) and elite (p < 0.001) groups relative to club but the difference between sub-elite 

and elite athletes did not reach statistical significance. For P0pull, the difference between 

club and sub-elite did not reach significance either. For female athletes, the same 

increasing trend with level was seen with statistical significance between club and elite 

in Powerpull,ave and between club and both elite and sub-elite for P0pull.  

For F0, significant differences between male and female club athletes and those at elite 

level was found, but no significant differences between club and sub-elite or between 

sub-elite and elite. There were no significant differences in V0 between any group, but it 

was highest for sub-elite in both male and female athletes. Despite graphically visible 

differences between groups (Figure 4.6a), the only statistically significant differences in 

the gradient of the SF-V was between elite and club males.  
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Using Cohen’s (1988) definitions, effect sizes were ‘large’ (> 0.8) for all measures of power 

and for F0 when elite and sub-elite were compared to club athletes after separating for 

gender (Table 4.5). Large effect sizes were also apparent comparing female elite and sub-

elite athletes with club athletes for V0 and SRopt,pull. When comparing male elite to sub-

elite athletes, large effects were apparent in maximum and average pull power, F0, V0, 

SF-V, SRopt,pull and SR0. Large differences are apparent when effect sizes were calculated 

on grouped relative to gender-split data. 

Table 4.4: Normalised power, normalised force, velocity, slope of the F-V profile and maximum SR for club, sub-elite 
and elite athletes. * indicates significant difference from elite at p < 0.05 level.  Δ indicates significant difference 
from sub-elite at p < 0.05. 

Variable Group Mean SD Male 
Mean 

SD Female 
Mean 

SD 

Powerpull,mean 
(W·kg0.67) 

Club 38.88* 1.93 41.37*∆ 3.83 27.65 9.29 

Sub-elite 40.98 1.74 49.98 2.26 37.12 5.89 

Elite 48.49 2.70 54.76 4.39 39.55 4.49 

Powerpull,max 
(W·kg0.67) 

Club 46.06* 8.58 49.24*∆ 3.99 31.77* 10.42 

Sub-elite 49.02 8.99 59.58 1.48 44.50 6.40 
 Elite 56.89 10.58 64.16 5.97 46.51 5.61 

P0pull 

(W·kg0.67) 
Club 42.39* 13.34 46.97* 9.60 21.78*∆ 1.87 

Sub-elite 46.73 10.41 59.35 5.91 41.31 6.09 

Elite 53.81 10.70 61.00 6.60 43.53 5.52 

F0 (N·kg0.67) Club 14.21* 1.93 14.80*∆ 1.47 11.58* 1.66 
 Sub-elite 14.45* 1.74 15.95 0.61 13.80 1.67 
 Elite 17.62 2.70 19.52 1.47 14.90 1.24 

V0 (m·s-1) Club 12.04 0.38 12.42 1.29 10.34 2.17 
 Sub-elite 12.64 0.04 14.35 1.27 11.90 0.99 
 Elite 12.10 0.37 12.43 1.54 11.63 0.90 

SF-V Club -21.45* 3.89 -1.20* 0.20 -1.13 0.08 
 Sub-elite -20.88* 3.18 -1.35* 0.25 -1.16 0.15 
 Elite -27.04 6.07 -1.65 0.33 -1.38 0.09 

SRopt,str (spm) Club 150.74 15.88 150.89* 16.61 150.07 17.69 

Sub-elite 150.59 50.08 170.47 4.49 140.65 8.25 

Elite 167.07 17.84 173.86 15.88 157.38 16.84 

SRopt,pull (spm) Club 187.02 98.81 208.86 54.75 110.58 86.01 

Sub-elite 213.43 41.14 251.63 27.42 197.06 35.30 

Elite 204.08 32.86 210.61 34.35 194.75 30.61 

SR0 Club 346.45 42.97 346.56 47.24 345.97 24.78 
 Sub-elite 360.29 51.10 403.47 27.93 341.79 48.22 
 Elite 366.41 29.63 372.76 36.11 357.34 14.87 
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Table 4.5: Effect sizes across the whole group and gender specific groups. Grey shading indicates ‘large’ effect size according to Cohen’s (1988) effect sizes.  

 

 

Group 𝑴𝒆𝒙𝒑 𝑴𝒄𝒐𝒏𝒕 Powerpull,ave 
(W·kg0.67) 

Powerpull,max 
(W·kg0.67) 

P0pull 

(W·kg0.67) 
F0 

(N·kg0.67) 
V0 

(m·s-1) 
SF-V SRopt,str 

(spm) 
SRopt,pull 
(spm) 

SR0 

 Elite Sub-elite 0.90 0.80 0.67 1.43 0.37 1.33 0.49 0.25 0.15 
All Elite Club 1.20 1.13 0.95 1.47 0.04 1.12 0.97 0.26 0.55 
 Sub-elite Club 0.28 0.34 0.37 0.13 0.38 0.16 0.00 0.38 0.29 
 Elite Sub-elite 1.44 1.23 0.26 3.44 1.37 1.98 0.33 1.33 0.96 
Male Elite Club 3.26 3.00 1.73 3.21 0.01 1.79 1.41 0.03 0.63 
 Sub-elite Club 2.83 3.78 1.60 1.11 1.52 0.21 1.86 0.65 1.51 
 Elite Sub-elite 0.47 0.34 0.38 0.75 0.28 0.54 0.47 0.07 0.49 
Female Elite Club 1.73 1.84 5.88 2.30 0.85 1.30 0.42 1.44 0.57 
 Sub-elite Club 1.25 1.51 4.91 1.34 0.99 0.69 0.26 1.43 0.11 
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Figure 4.6: a) Force-velocity profiles and b) Force-SR profiles for group means of elite, sub-elite and club, male and 
female athletes. 

 

 

 

 

a) 

b) 
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Individuals were found to exhibit differences in both the strength and direction of their 

correlations (Table 4.6). For eight athletes, F0 was found to correlate positively and 

significantly with stroke power, indicating F0 is the stronger determinant of power for 

those athletes. Five of these eight displayed ‘medium’ or ‘strong’ linear relationships, 

increasing the applied value of the statistical relationship. On the other hand, six athlete 

exhibited negative relationships between F0 and stroke power, although only one 

reached significance. Five athletes were found to have a significant, positive and ‘strong’ 

linear correlation between V0 and stroke power, with three further exhibiting negative 

correlations.  

Table 4.6: Individual athlete correlations of F0 and V0 against stroke power. *denotes correlations with p-values 
lower than 0.05. 
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2 F Elite -0.07 0.84 Low 0.35 0.26 Low 

31 F Elite 0.12 0.66 Medium -0.01 0.97 Medium 

33 F Elite 0.68* 0.02 Strong -0.41 0.18 None 

3 F Sub-elite 0.01 0.96 None 0.74* <0.01 Strong 

7 F Sub-elite 0.59* 0.02 Medium 0.19 0.47 Low 

15 F Sub-elite -0.07 0.77 None 0.81* <0.01 Strong 

24 F Sub-elite -0.09 0.73 Medium 0.37 0.16 Medium 

28 F Sub-elite 0.88* <0.01 Medium 0.31 0.18 Medium 

36 F Sub-elite 0.59* 0.01 Low 0.81* <0.01 Strong 

1 M Elite -0.11 0.69 Medium 0.22 0.42 Strong 

5 M Elite 0.38 0.23 None 0.51 0.09 Low 

11 M Elite 0.46 0.14 None 0.54 0.07 Strong 

12 M Elite 0.62* 0.01 Low 0.30 0.25 Low 

20 M Elite 0.73* <0.01 Strong -0.41 0.12 Low 

30 M Elite -0.56* 0.02 Low 0.83* <0.01 Strong 

4 M Sub-elite 0.47* 0.04 Low 0.53* 0.02 Strong 

9 M Sub-elite -0.21 0.61 Low 0.41 0.32 Low 

16 M Sub-elite 0.49* 0.03 Medium -0.05 0.84 Medium 
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Figure 4.7: a) example force-velocity profiles for two athletes- one displaying a more force-orientated profile (light 
grey) and the other a more velocity-orientated (darker grey) and b) the respective power-velocity profiles created 
by the same athletes. The filled circles represent each of the strokes. 

 

a) 

b) 
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 Discussion 

Normalised power increased from club, through sub-elite to elite paddlers (Table 4.4, 

Figure 4.6), regardless of which measure of power was considered. The demonstration 

that higher levels of performance are linked with higher power is not surprising for a 

sprint-based sport, with other sports such as cycling, jumping and sprinting showing a link 

between maximum power and sprint performance (Dorel et al., 2005; Marcote-Pequeño 

et al., 2019). The lack of statistical significance between consecutive groups in some 

measures may be due to the range of performance levels within those groups or the 

difference in level between groups; high standard deviations can be seen, in particular 

for the club group (Table 4.4), and the difference in performance from elite to sub-elite 

may be smaller than from sub-elite to club.  

Differences in statistical significance were found when using different measures of 

power. For male athletes, Powerpull,ave and Powerpull,max had greater significance than 

P0pull, but the opposite was true for female athletes. The different measures of power 

quantify different things: Powerpull,max is a maximal single output; Powerpull,ave is a capacity 

across 12 strokes and P0pull is a modelled estimate of the single maximal from the 12 

strokes. These slight differences effect the variances between performance levels, and 

although they do not indicate which may be more useful, highlight the importance of 

understanding the mechanical relationship being investigated prior to comparing to 

literature or making applied conclusions. While ‘power’ has consistently been related to 

performance, studies typically only report one calculation of power. In F-V research, this 

is commonly reflective of the P0pull used in this study (Dorel et al., 2005; Marcote-

Pequeño et al., 2019; Samozino et al., 2012), while in other kayak research, power 

calculation has included the averages across multiple strokes (Bjerkefors et al., 2018) or 

time periods (van Someren & Palmer, 2003) or multiple measures have been reported 

(Schofield, 2015). The effect sizes also show differences in power measures between 

gender, with males again showing the largest effects between performance levels in 

Powerpull,ave and Powerpull,max and females in P0pull. These values give more insight into the 

size of differences rather than categorising according to a single value as in standard 

statistical tests.  

The extrapolated maximum pull force (F0) produced by athletes follows the same trend 

as the power, with highest forces produced by elite, followed by sub-elite and club, with 
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significant differences and large effect sizes in F0 between groups on both the male and 

female sides (Table 4.4), as it has found to be in sprint cycling (Dorel et al., 2005) and 

rowing ergometry (Giroux et al., 2017). These data seem to contradict previous research 

that has indicated strength is not a significant determinant of performance in sprint 

kayaking (McKean and Burkett, 2010). However, the strength measures in McKean and 

Burkett’s study were bench press and pull-up, with the differences highlighting the 

importance of sport-specific strength assessment. This is corroborated by recent 

research that found very weak correlations between vertical and horizonal F-V profiles of 

the same athletes (Jimenez-Reyes et al., 2018). The multi-joint co-ordination necessary 

for force-production on the ergometer in the current study more closely replicates the 

movement of kayaking, indicating that it is kayak-specific force generation, rather than 

raw strength, which is linked to better performing groups. Strength and conditioning 

coaches should consider the information from these profiles alongside standard strength 

measures for the applicability and transfer of their training plans for kayakers.  

Maximal velocity (V0) does not follow the same relationship as maximal force and power. 

For both males and females, the sub-elite group achieved the highest maximal velocities, 

followed by the elites and then the club paddlers. Although this finding was not 

statistically significant, large effect sizes were apparent between the sub-elite and other 

two groups of male paddlers and between the sub-elite and club female paddlers. This 

indicates maximal velocity of paddle movement is not an underpinning characteristic of 

elite-level sprint kayak performance, the opposite to the findings of Morin et al. (2012) 

in sprinting. The highly technical nature of kayaking may explain this difference; as 

outlined in Chapter 2, the paddle path (and therefore direction of force application) and 

hydrodynamics around the paddle blade are complex and little-understood which mean 

paddle velocity may not directly correlate with boat velocity. In addition, Chapter 3 

demonstrated that elite coaches emphasise the value of ‘not travelling too quickly’ or 

‘rushing the arms’ and take time to build up the power in a stroke, before increasing the 

rate at which that stroke is applied. This idea is supported by comparing the F-V profile 

with the F-SR profile (Figure 4.6). This shows that although sub-elite athletes are creating 

the highest paddle velocities, they are not creating the highest SR and therefore are 

utilising longer recovery times between strokes.  
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The findings of this study indicate that, at group level, elite athletes have a more force-

oriented profile than sub-elite and club paddlers, with these differences both statistically 

significant and with large effect sizes among male paddlers. Female paddlers appear to 

follow the same trend although only the effect size between elite and club is ‘large’ and 

no statistical significance was reached. Previous research found the ratio between F0 and 

V0 (equivalent to SF-V) was not significantly correlated with pull power (Schofield, 2015). 

The differences between elite and sub-elite SF-V points towards the complexity of 

excelling in sprint kayak performance; it is not merely a case of becoming stronger or 

faster, but rather applying the force generation capacity effectively at high velocities with 

appropriate angles through complex movements. 

When comparing the F-SR profile of athletes at different levels (Figure 4.6b), the maximal 

SR attained is much more similar between groups than the maximal velocity, with four of 

the groups’ SR0 falling within 16 strokes per minute and only the male sub-elite and elite 

athletes exceeding this. These SRs are more than twice what would be seen on water 

(McDonnell et al., 2013b) but represent an extrapolated, theoretical physiological 

maximal at zero force. In kayaking and rowing, a cycle is made up of a water and recovery 

phase and the relationship between these two (known as the duty cycle) is 

unconstrained: the percentage of pulling (water phase) has been found to decrease with 

increasing SR (e.g. Sprague et al., 2007; Schofield, 2015), which can be inferred to be 

happening to a higher extent in the sub-elite than elite group, as mentioned above.  

Despite a lower strength of relationship when power is compared again SR rather than 

velocity (P-SR r2 = 0.38, P-V r2 = 0.98), Sprague et al. (2007) found maximum stroke power 

to occur at around 40 strokes per minute, similar to the 35-50 spm found to be used by 

Olympic rowers (World Rowing, 2019). The elite athlete data in this study returned a 

higher SRopt,str than that found in Schofield’s research (158 spm), which exactly matched 

the average value of K1 200 m World Championship medallists (McDonnell et al., 2013b). 

This would appear to indicate that as a group, the athletes in this study should use an 

average higher SR than those in Schofield’s study in order to be utilising their maximum 

power capacity. Comparing SRopt,str with SRopt,pull, the latter returned values which are 

considerably higher than those seen on water and the difference in duty cycle is again 

apparent as the differences between groups are not the same between these two 

measures of optimum SR.  
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Looking at the data on an individual basis gives another layer of insight. While at group 

level it did not appear that SF-V described performance level, the proportionately large SD 

indicated there were differences between individuals. Figure 4.7 and Table 4.6 show the 

large range between individuals, with 12 athletes showing a positive trend between F0 

and power (eight statistically significantly) and six showing a negative trend (one 

statistically significantly). For V0, 14 athletes exhibited a positive correlation with power 

(five statistically significantly), and four a negative correlation (none statistically 

significantly). While some individual athlete data showed strong linear relationships, this 

was not constant, indicating that for most athletes, maximum force or velocity alone 

were not dictating stroke power. Using group-level data, it might be assumed that 

increasing force generating capacity should be the focus for strength coaches and 

athletes, but by adding the individual level data, it can be seen that for a number of 

athletes, V0 has a stronger correlation with power and therefore increases in maximal 

velocity are more likely to lead to improvement in power for these athletes. The results 

show large differences between individuals, indicating one piece of advice (i.e. ‘focus on 

increasing F0’) would not improve power for all athletes. 

 Limitations and Delimitations 

As mentioned in the methods, due to the level of participant and the nature of the 

competitive season, it was not possible to control data collection timings and activity 

prior to testing. Efforts were made to minimise the effect of fatigue through scheduling 

with the coaches and to schedule testing at similar times of season, but these factors may 

mean some trials are not representative of maximum capacity, rather maximum effort at 

the time.   

A further limitation is that the distinctions in group level may not have been linear. The 

definition of ‘elite’ and ‘sub-elite’ may have resulted in groups more comparable in 

performance level relative to ‘club’ paddlers, which may have exacerbated differences in 

post-hoc testing. Classifying athletes according to level is always difficult as performance 

is not limited to isolated groupings. Having perfectly distributed groups may have 

resulted in differences between all three groups, or in no differences between groups, 

but was not realistically achievable in voluntary research. This difficulty further 

emphasises the value of understanding athletes as individuals.  
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The paddle length on the ergometer was matched to what athletes would normally use 

on water based on an assumption of a centre of pressure located 20 cm from the distal 

end of the blade. On water, the centre of pressure of the blade moves throughout the 

stroke as the depth and lateral movement of the blade changes (Morgoch et al., 2016). 

Force measurement systems often assume force is being applied at the centre of the 

blade (Aitken & Neal, 1992; Gomes et al., 2015). Data of elite kayakers’ paddle set-up 

show an average blade length of 50.4 cm (Ong et al., 2005), and as typical ‘wing’ shape 

blades get wider towards the tip (e.g. Sumner et al., 2003) the assumption of a centre of 

pressure 20 cm from blade tip was considered acceptable. 

The calculation of F-V and P-V profiles from this ergometer assumes that each stroke was 

completed in the same way, with velocity being the only factor to change. Without 

detailed kinematics of the movement, this cannot be confirmed but the experience level 

of the kayakers and the use of multiple familiarisation trials increase the likelihood of 

repeated movements. To record F-V in a sporting-specific movement, the movement 

needs to be recreated with as few additional constraints as possible which inevitably 

means a large number of degrees of kinematic freedom and therefore less researcher 

control. 

Calculation of F0 and V0 rely on extrapolation from 12 data points from each stroke. 

While the relationship between force and velocity was well explained by a linear fit, in 

agreement with previous research (Bozic & Bobana, 2018; Giroux et al., 2016; Haugen et 

al., 2019), the small number of data points mean small changes could cause large 

differences in extrapolated values. The use of extrapolated values enables improved 

comparison between sports and movements where the same velocities or forces may not 

occur, but extrapolated values can still be compared, which would be of practical value, 

in particular for strength and conditioning coaches.  

With regards to the power profile, the maximum velocities measured were not always 

far beyond the velocity at maximum power. This could have resulted in an increase in 

calculated P0 or SRopt if data on the descending limb were limited. Through pilot work, 

the resistance on the ergometer was changed according to athlete to try and ensure data 

occur on the ascending and descending limb of the power-velocity curve, but for some 

athletes it seems maximum power is achieved at velocities very close to maximum 
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achievable, attempting to increase velocities beyond this level would likely lead to a 

technical breakdown and violate the assumption of repeated movements.  

Normalisation was conducted by dividing power and force values by mass to the power 

0.67. Although this has been recommended by Jaric et al. (2005) for measures of force 

and power, many sports biomechanics studies use ratio normalisation to body mass. 

There is not unanimous agreement in the value of ratio normalisation, with some finding 

this method removed almost all explained variance of mass during running (Mullineaux 

et al., 2006) and others finding a correlation between mass and force to still be visible 

after normalisation in walking and running (Wannop, Worobets, & Stefanyshyn, 2012). In 

kayak research, ergometer and on-water measured paddle force and power have often 

not been normalised (Begon et al., 2009; Fleming et al., 2012; Nilsson & Rosdahl, 2016) 

although results have been reported separately for gender (Bjerkefors et al., 2018; 

Gomes et al., 2015), or data have been reported individually (Gomes et al., 2011; 

Mononen & Vitasalo, 1995; Wainwright et al., 2013). Clearly then, there is no precedent 

in sprint kayaking for a particular normalisation, but this also means there has not 

previously been any account taken of size differences between athletes. Allometric 

scaling to the power 0.67, which is based on the relationship between volume and cross-

sectional area, is intended to remove the variability in results that is due to size and 

therefore allow comparison between athletes regardless of anthropometrics. This is 

important in group analysis where means and standard deviations of groups are 

compared and if size were not accounted for, may skew the results.  

 Application 

By comparing data across groups, it was clear that power is an important attribute for 

sprint kayakers. However, as different measures of power result in different conclusions, 

the comparisons and conclusions drawn must be within the context of the measurement 

used. The increase in F0 and in SF-V of elite athletes relative to sub-elite and club paddlers 

indicates an area for improvement for club or development coaches to work on. It is 

important to note this study uses a movement-specific force generation so while general 

strength may improve F0, it is the application of that force through the kayak-like 

movement pattern that will be of most benefit, so co-ordination and body position 

should be considered when developing training plans for developing force.  
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The literature discussed in this chapter highlights the importance of F-V testing in a 

movement pattern which is similar to that used in the competition environment. Despite 

this, many S&C tests are conducted with non-specified movements such a bench 

pull/press or squats. For kayaking, the applicability of these tests to the water-based 

competition environment is not clear. Ergometer testing as has been conducted in the 

current study would allow S&C coaches to better assess the transferability of training.  

For elite athletes, ergometer testing of the type developed here can provide the coach 

and support staff with an additional data set to support and optimise an athlete’s 

training; the individual nature of the profiles (e.g. Figure 4.7) demonstrates the variety 

that exists in athletes’ capabilities, regardless of similar levels of attainment. The 

repeatability and short duration of this test makes it easy to integrate into the training 

schedule. This would give the S&C and technical coaches a chance to investigate the 

influence of training blocks on certain performance attributes, as has been done in other 

sports (Colyer et al., 2017). 

The individual nature of F-V profiles may also be important when it comes to crew boat 

selections: athletes who are selected based purely on the basis of time are likely to have 

a similar power output, but the data above highlight that this does not mean that they 

are likely to have a similar F-V profile (Figure 4.7). Matching athletes who have different 

profiles is likely to mean their peak power does not occur at the same speed. As the 

athletes would be required to paddle at the same stroke rate, it is therefore likely that 

the performance of both athletes would be compromised. While coaches often do not 

have the luxury of many athletes to choose from of a similar standard, these assessments 

undertaken early on could develop successful crews going forwards. Further research in 

this area would be beneficial to crew-boat selection for crews of all levels.  

Another use for this form of testing would be equipment testing. In the current study, 

shaft length was matched to the athlete’s own paddle. However, adjusting this on the 

ergometer could allow for assessment of change in a relatively controlled environment 

that is more sport-specific than would otherwise be available. In a similar manner, 

Sprigings et al. (2006) used the P-V profile of athletes to predict blade size based on the 

equation for drag, which shows that drag force is directly proportional to the blade 

surface area and velocity through the water. Using the force and velocity attained at the 

instant of peak power, an estimation of blade size for peak power was calculated. 
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Although their approach did not intervene to look at impact on performance, using P-V 

and F-V profiles as the basis for intervention could create an efficient and logical testing 

procedure. This environment would also reduce some of the issues with on-water testing; 

Ong et al. (2006) changed paddle set-up to reflect the results of a regression analysis of 

a group of Olympic paddlers but only one trial in each condition, unknown variability and 

unknown influence of environment make conclusions difficult to support. 

Understanding how this information relates to on-water performance is important for 

the applied impact of this research. It might be logically expected that those who 

demonstrate stronger correlations between V0 and power would be more likely to make 

use of high stroke rates on water, which further research will help to elucidate.  

 Conclusion 

This study demonstrates the importance of maximal power in sprint kayak performance, 

with elite athletes exhibiting significantly higher power than sub-elite or club paddlers. It 

highlights that there are bigger differences between force generating capacity than 

maximal velocity capacity in developing athletes but that there is no universal elite F-V 

profile for younger or developing athletes to work towards. The data therefore indicate 

that at group level, the power-velocity relationship can explain differences in 

performance levels, and that the maximal force aspect of the force-velocity relationship 

also informs the differences in level.  

The study also highlights the importance of individual athlete analysis. Seven athletes 

exhibited a positive correlation between maximal velocity and power. Although only one 

of these reached statistical significance, the data show maximal velocity is an important 

element in producing maximal power for some athletes. This indicates that group level 

conclusions can disguise individual athlete differences and could limit performance gains 

if training plans are based solely on group data. 
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 Individuality of SR and DPS in determining 

boat velocity  

 Introduction 

In all cyclical sports, velocity is the product of the distance covered in one cycle and the 

number of cycles completed in a set time; in kayaking commonly-used coaching variables 

are the distance per stroke (DPS) measured in metres, and stroke rate (SR), measured in 

strokes per minute (spm), while velocity is commonly reported in metres per second 

(m·s-1). Distance per stroke has also been referred to in literature as stroke distance 

(Wainwright et al., 2015), stroke displacement (McDonnell et al., 2013a) or stroke length 

(Ong et al., 2006). Research into these factors in kayaking, and their relevance to 

performance, can be informed by their investigation in other cyclical sports, which use 

similar break downs (although sometimes with different terminology, Table 5.1).  

Table 5.1: Commonly used terms for distance per cycle and cycle frequency in sprint sports. 

 

The maximum number of strokes completed in a minute, irrespective of how far the boat 

moves with each stroke, will be determined by the maximum speed of movement of the 

athlete, while the maximum DPS will be contingent on the appropriate application of the 

maximum force possible within one stroke. Muscular force is controlled by a number of 

factors: the muscle architecture, comprising muscle fibre length, type, pennation angle, 

cross sectional area, tendon length and tendon elasticity (for review, see Cormie, 

McCuigan, & Newton, 2011), and the mechanical properties for stimulation-activation, 

force- length, force-time and force-velocity relationships.  

Sport Distance per cycle Cycle frequency Example Literature 

Kayak Distance per stroke 
(DPS) 

Stroke rate (SR) McDonnell (2013) 

Athletics Step / Stride length 
(SL) 

Step / Stride frequency 
(SF) 

Salo et al. (2011) 

Cycling NA- force output 
measured 

Cadence /pedalling rate Dorel et al. (2005) 

Swimming Stroke length (SL) Stroke rate (SR) Sidney et al. (2011) 

Rowing Distance per stroke 
(DPS) 

Stroke rate (SR) Hofmijster et al. 
(2007) 
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The force-time and force-velocity relationships may underpin the relationship between 

cycle rate and cycle distance: at high cycle rates, durations may be too short for maximal 

force to be produced (Neptune & Kautz, 2001). Cyclical movements are thought to 

increase power output by making use of the stretch-shortening cycle (SSC; Jimenez-Reyes 

et al., 2014), where pre-stretch occurs in whole muscle tendon unit (MTU), allowing the 

muscle to activate at a more advantageous length and velocity and giving time to 

generate full activation, all before shortening commences (Fukashiro, Hay, & Nagano, 

2006). While no research could be found that looks at the SSC in kayaking, the cyclical 

motion of the legs and trunk produce conditions suitable for its use by muscles such as 

the quadriceps, hamstrings and rectus abdominis. In a modelling study, Nagano, 

Fukashiro and Komura (2003) found the contribution of the series elastic component 

increased with increasing motion frequency in cyclic heel raises, further highlighting the 

importance of stretch-shortening for cyclical sporting movements.  

 Cyclical Sport Examples 

It is important to bear in mind that the application of force in most sports is different to 

that in kayaking. In athletics sprinting for example, the vertical and horizontal directions 

of force applied to the ground can be easily measured (Morin et al., 2011), and the 

resultant direction of force application assessed. In kayaking, force application 

throughout a stroke is applied to a moving fluid, which has much more complicated 

properties than solid ground. Even in other water-based sports such as rowing, the use 

of a pivot in the form of the oarlock, creates an external mechanical structure, which is 

then both more predictable and easier to measure (Hofmijster, Landman, Smith, and Van 

Soest, 2007).  

For all sprint-based sports, athletes need to create enough force to first overcome drag 

resistance before they can increase velocity, and resistance increases with the square of 

speed, as shown by the equation for drag (Equation 1; Section 2.4.1). The influence of 

drag is especially important for water-based sports such as rowing and kayaking, as the 

density of water is almost 800 times higher than that of air. For some sports, such as 

athletics, the overcoming of drag is a small fraction of the overall effort and is therefore 

largely ignored in research, while for others, such as water-based sports, overcoming 

drag is a large component of performance (Pendergast, 2005). The influence of the 
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environmental conditions on on-water performance is high as water temperature has a 

significant effect on water density and, thus, drag (Yi, Han & Zheng, 1998). 

 Kayak coaching viewpoint 

As highlighted in Chapter 2 of this thesis, some coaches set a target SR which they think 

athletes will need to achieve to win or medal during an international event, while others 

believe SR to be more of an individual choice, with seven of the 12 coaches interviewed 

highlighting individual differences. In 200 m racing, a range of SRs have been used 

successfully, with researchers concluding “individual optimum must exist” (McDonnell et 

al., 2013b, p. 47). Although not every coach was clear on whether there was an individual 

optimum SR, or if so, what the determining factors might be, others were clearer in their 

beliefs. Physiology and anthropometrics were the most commonly considered attributes, 

but paddle set-up was also considered to influence SR as demonstrated by the quotes in 

Chapter 3. These views from elite coaching knowledge highlight the differences between 

athletes and provide examples for their cause. They are largely based on experience 

rather than empirical data and do not clarify whether individual optimums exist or 

whether there is a universal optimal SR. While useful for direction, this experiential 

knowledge cannot be treated as evidence for performance determinants.   

Sample race data (Figure 5.1) from a World Cup A-Final highlight the different SRs used 

to win international medals. The three medallists whose data are documented, finished 

within half a second despite large differences in peak SR (~166, 173 and 182 spm for the 

gold, silver and bronze medallists respectively). Despite the clear differences in 

magnitude, the pattern of SR changes across distance was similar across the medallists. 

These data were measured by the ICF with radio-controlled GPS units with 

accelerometers placed on all boats in Olympic class events. From this, 10 m velocity and 

stroke rate values were available for all competitors, although the calculation algorithms 

for SR were not made public. Taken in isolation, these data might lead to the idea that a 

lower stroke rate is an advantage in this event, in opposition to research (Brown et al., 

2011) but all other boats in this field (n = 6) were within the range of these profiles (mean 

± SD = 174 ± 7.9 spm), indicating the likelihood of individual optimums varying within the 

group.  
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Figure 5.1: International medallists’ SR-distance data from World Cup 2016 (ICF, 2016). Shapes representative of 
position: squares first place, triangles second place and circles third place. 

 Individuality in cycle rate and distance per cycle 

Individual differences are due to the negative interaction between SR and DPS, whereby 

an increase in one factor results in a decrease in the other, making it possible for different 

strategies to result in similar velocities. This negative interaction has been found during 

sprinting in kayaking (McDonnell et al., 2013a), athletics (Hunter, Marshall, & McNair, 

2004), cycling (Martin et al., 1997) and swimming (Sidney, Alberty, Leblanc, & Chollet, 

2011).  

In sprint kayaking, SR has been found to differ between ability levels, with international 

standard athletes demonstrating significantly higher SR than national and club paddlers 

(Sanders & Kendal, 1992; Brown et al., 2011). Both studies had limitations, however: 

Brown et al. used panning footage filmed at 50 Hz, 100 m from the finish line at a height 

of one meter to record athletes in lanes 4 and 6, which would inevitably have been 

restricted by other athletes blocking the image, extreme angles creating parallax error, 

and low accuracy of calibration. Sanders and Kendal (1992) meanwhile used a single 

stroke and assumed it to be representative of all maximal velocity strokes, reporting SR 

to vary between 118 and 136 spm for five international standard athletes paddling at 

maximal velocity. Although taking the minimum and maximum SR corresponds with the 

lowest (4.63 m·s-1) and highest (5.38 m·s-1) velocities, a linear trend is not well defined. 

As only one stroke was filmed at a time and athletes were not blinded to the capture 

area, it is not clear if the stroke recorded was representative of all strokes but this 

relatively large difference between elite athletes is nonetheless clear. Additionally, only 
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the average of four individually measured strokes was given, so variability for those 

athletes is also not clear.  

McDonnell et al. (2013b) analysed the K1 200 m event for men and women during the 

World Championships from televised video data and found an average SR for the race, 

excluding the first five seconds to remove the effect of initial acceleration, of 158 spm for 

men (N = 7) and 139 spm for women (N = 5). The video data available for this study were 

only recorded at 24 Hz and therefore only an average SR per 8-10 strokes was taken, but 

the high coefficient of variation within races of 2.2-8.9% demonstrates clear intra-

individual variability, while an average ranging from 145 to 172 shows high inter-

individual variability. The authors highlighted the likelihood of an individual optimum SR 

existing and speculated it would be based on “strength, anthropometry, physiology, and 

equipment.” This research also highlighted the range of SR and DPS that can be used to 

achieve the velocities needed to medal at international events, as show in Figure 2.16 in 

Chapter 2.  

To draw from better-researched sports, Craig and Pendergast (1980) analysed the US 

swimming championships and cited that across almost all events and stroke styles, 

distance per stroke was the differentiating factors between finalists and those who did 

not make the final. In summarising information available for coaches, Sidney et al. (2011) 

highlighted the inter-individual differences found at Olympic level swimming, with 

different combinations of SR and SL used by individual athletes to achieve similar speeds. 

In athletics sprinting, there is no universally accepted optimum ratio between SL and SF, 

with some research demonstrating the higher importance of SF (Mero, Luhtanen, 

Viitasalo, & Komi, 1981; Morin et al., 2012; Nagahara et al., 2018), and others highlighting 

the importance of SL (Debaere et al., 2013b; Krzysztof & Mero, 2013; Weyand et al., 

2000). Hunter et al. (2004) investigated the interaction effect between SL and SF within 

36 athletes and found a wide range of combinations of SL and SF, even for groups with 

similar maximal velocity. They attributed the differences to leg length, height of take-off 

(TO) and vertical velocity of TO. Miller, Umberger and Caldwell (2012) examined the 

influence of physiological factors on the SL and SF during sprinting through modelling and 

found both were affected by F-V, force-length, excitation-activation and series elastic 

force-extension relationship, with the force-length relationship found to have a larger 

effect on stride length. While the movement pattern of track sprinting is very different to 
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kayaking, these physiological factors Miller et al. (2012) found to underpin the 

relationship would likely be the same for other cyclical movements, such as sprint 

kayaking. Computer modelling of a sprint kayak performance, however, would involve 

either a huge number of assumptions, or measurements of factors that are exceedingly 

difficult to measure accurately on water with the technologies currently available. The 

above research in swimming and athletics, combined with those discussed in kayaking, 

show that differences between individuals are clearly present in many cyclical sports.  

The differences between individuals have been speculated to be due to anthropometric 

factors in sprinting (Hunter et al. 2004) and kayaking (McDonnell et al. 2013a). At group 

level, Hunter et al. (2004) found sprint velocity to be largely explained by step length (r = 

0.73), which was in turn explained by flight distance (r = 0.89), but neither of these 

significantly correlated with leg length, despite their conclusion that leg length likely 

influenced individual use of step length/step frequency. Long limbs can be an advantage 

due to larger moments arms but they would also increase moment of inertia so there are 

theoretical advantages and disadvantages. Sprint kayak athletes have been found to have 

no significantly different skeletal anthropometrics relative to the general public (Ackland 

et al., 2003), but no research could be found investigating whether anthropometrics of 

sprint kayakers are related to their SR choice.  

All of the above research looking at SR and DPS, or their equivalents in other sports, have 

focused on inter-individual (between athlete) variation, very few studies have been found 

investigating intra-individual (within athlete) variation in cycle rate or cycle distance. The 

few that have been published are discussed below.  

 Methodologies to understand individual performance  

Other methods used in athletics could more easily be used to understand the 

relationships in sprint kayaking. Salo et al. (2011) analysed television footage of 

international 100 m sprinting races to determine whether athletes could be considered 

as “reliant” on either SL of SF. The authors investigated 11 athletes with data for at least 

10 races each and calculated average SL, SF and velocity over the 100 m, discounting the 

first step and accounting for final step discrepancies, for each race. SL and SF were then 

each correlated against velocity and the resulting correlation coefficient for SL-velocity 

was subtracted from the value for SF-velocity, giving a dimensionless ‘r’ value (diamond 

shape, Figure 5.2) as an indication of which was more strongly correlated to velocity. 
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Bootstrapping the data allowed the authors to create 90% confidence intervals (CI) 

around the values for each athlete (black lines, Figure 5.2). Athletes were classed as 

“reliant” on SL if the lower bound of the 90% CI was above -0.1 (A9, A 10 and A5) or on 

SF if the upper limit of the 90% CI was below 0.1 (A11).  

 

Figure 5.2: Diagram of ‘reliance’ from Salo et al. (2011). Individual athlete r values (difference between correlation 
of step length with velocity and step frequency with velocity) with 90% confidence intervals. Those whose 
confidence interval does not cross the distal threshold line are considered ‘reliant’. 

The authors’ interpretation of this was that if the variable in which the athlete is reliant 

is reduced, they are not able to achieve as high a maximal velocity, regardless of increases 

in the less-preferred variable. The reliance differed between athletes in both inclination 

and size, with some athletes not being classified as reliant on either. International races 

were analysed so all athletes would have been exerting maximal effort, but this also 

meant only around ten efforts per athlete were analysed, which is a small number from 

which to bootstrap and generate confidence intervals. These confidence intervals were 

used to classify so while highlighting individual differences well, these categorisations 

should be interpreted with caution. Although this method could, in some respects, be 

replicated in kayaking, televised data are neither so readily available nor of the same 

quality. As kayak races are longer, the perspective of the camera is often changing for 

viewers’ entertainment which would prevent SR measurement. Additionally, the 

dimension ‘r’ value carries no weight in statistics and does not ease interpretation so 

would not be recommended. 

r value 
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An alternative method for understanding individual performances would be to use case 

studies. In a case study of an elite breaststroke swimmer, Fritzdorf, Hibbs and Kleshnev 

(2009) found higher stroke rate to correlate with lower performances for the race 

performances of the athlete investigated. While case studies allow for an in-depth 

examination of the individual’s characteristics, they do not allow for any patterns to be 

discerned among different levels of athlete so are not of much value to coaches besides 

those for the athlete examined.  

Clearly there are merits to understanding an individual’s data but there is not yet an 

accepted methodological approach that allows unambiguous interpretation of how 

individuals utilise the two components of cyclical movement (e.g. SR and DPS) to 

maximise speed, or how this reflects group analyses.  

 Equipment interaction with cycle rate 

Cycling, rowing and kayaking all use equipment to apply force to their surrounding 

environment to create movement. A bike is an efficient mechanical system, and force 

and torque measurement have been available to cycling practitioners and researchers 

for many years and therefore torque-cadence and power-cadence relationships have 

been measured frequently in cycling, with increasing cadences consistently found to 

reduce force per pedal stroke (Löllgen, Graham, & Sjogaard, 1980; Martin et al., 1997; 

Palmer, Borghouts, Noakes, & Hawley, 1999). This has allowed coaches and athletes the 

ability to calculate optimal cadence for sprinting specifically for each athlete from the 

apex of the power-cadence curve (Dorel et al., 2005; Martin et al., 1997; Williams, Doust, 

& Hammond, 2006). Pedal rate choice has been linked to crank length, fibre type, body 

position, joint kinematics and joint kinetics (Faria, Parker, & Faria, 2005; Hansen, 

Andersen, Nielsen, & Sjøgaard, 2002; Martin, 2007). Crank length has been found to 

strongly affect the optimum pedalling rate (rate at which peak power is achieved) in both 

cycling (Martin & Spirduso, 2001) and hand cycling (Krämer, Hilker, & Böhm, 2009). 

Martin and Spirduso (2001) found optimal pedal rate to decrease with increasing crank 

length, while optimal pedal speed increased significantly with increasing crank length. In 

cycling, this relationship has a clear evidence base and calculations are relatively simple. 

Increasing paddle length is likely to result in much more complicated changes to the 

paddle path and kinematics of the paddle and paddler. No studies could be found that 
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have investigated this, the valuable insight gained in cycling highlights the value this 

research can have.  

In rowing, Nolte (2009) demonstrated through theoretical modelling that shorter oars 

would increase efficiency and that by increasing resistance on the blade (by increasing its 

size or improving its shape), angular velocity of the oar and therefore SR could be 

maintained. As with any kind of modelling, there were simplifications involved and it is 

not clear how much of an impact neglected factors such as angular acceleration and 

moment of inertia of the oar, would have. Barrett and Manning (2004) investigated the 

relationship between anthropometry, boat set-up and performance in 15 National level 

rowers and found that bigger (larger height, arm span and mass), stronger athletes 

tended to be more successful paddlers, with the authors concluding that the seemingly 

strong correlation between oar length and race time (r = -0.86) was not a representation 

of the oar set-up being a primary determinant, but as a covariate to athletes’ 

anthropometry, although normalisation was not conducted so the inter-relationships are 

not clear. While rowing is more like kayaking than cycling, the fixed pivot point and the 

movement of the centre of mass of the athlete relative to the movement of the centre 

of mass of the system of rower, boat and oars, create two large differences so that 

measurement systems used in rowing cannot be transferred. From these examples, we 

can see that equipment choice is likely to influence stroke characteristics, but the 

complicated nature of a kayak stroke means results cannot be inferred accurately from 

other sports.  

 Technique interaction with cycle rate 

The shape of the stroke force-time curve during the kayak paddling stroke has been 

shown to vary with changing SR (Gomes et al., 2015; Figure 2.5), with increases in SR 

being associated with an increase in the peak force and a temporal shift of this peak to 

earlier in the stroke cycle. Despite similarities in impulse between different SRs, the shape 

of the curve was described as becoming ‘more rectangular’ with higher SR and was 

associated with improvements in boat velocity. Although there were some limitations in 

the measurement system used, for example the assumption of a stable pivot point 

around the bottom hand, a centre of pressure assumed to act at the centre of the blade 

and the low accuracy of commercially available GPS for distance definition, the insight 

into on-water stroke force profiles and acute changes between stroke rates with the 
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same system was novel and interesting. Although no stroke rates above race pace were 

used, Gomes et al.’s (2015) results would also appear to indicate that athletes’ ability to 

generate force quickly does not limit SR within freely chosen range.  

The kinematics of the stroke have also been found to vary with increasing SR, with an 

increase in SR resulting in a decrease in anterior-posterior displacement (Therrien et al., 

2012). As these data were collected on an ergometer with a sliding complex, the 

comparison to on-water paddling may be limited but the differences in the shape of the 

stroke between individuals are of interest (see Figure 5.3 showing the repeatable, 

individual nature of the shape of the stroke despite the constraints of ergometer 

paddling). The DPS describes the distance moved by the boat within each stroke, as 

opposed to the distance moved by the paddle so the relationship described by Therrien 

et al. does not necessarily infer a shorter DPS, although clearly DPS could not be 

measured on an ergometer.  

Figure 5.3: Stroke path pattern on a kayak ergometer viewed from above at increasing stroke rates adapted from 
Therrien et al. (2012). The y axis is anterior-posterior and the x axis is medio-later movement. Red text shows paddle 
used by each athlete.  

Differences in DPS between individuals could be due to technical performance on water; 

‘slip’ is a technical concept of inefficiency whereby the paddle moves in a posterior 

direction and does not contribute to the forward movement of the boat and therefore 

reduces DPS. Researchers have quantified slip as the backward movement of the blade 

relative to an external reference frame (e.g. Sanders & Kendal, 1992; Wainwright, 2013) 

and it has subsequently been used in the generation of Wainwright’s deterministic model 
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(as seen in Chapter 2) and noted as the second strongest determinant of change in boat 

velocity during a pull, highlighting it as a factor to be minimised for optimal performance 

(Wainwright et al., 2016). As discussed in Chapter 2, the hydrodynamics of the paddle are 

not well defined; Kendal and Sanders (1992) related successful paddling to reduced slip 

alongside greater lateral paddle movement. The authors postulated that this lateral 

movement was used to obtain lift citing that this would ‘minimise the need for backward 

movement.’ Recreating paddle path from above, as Kendal and Sanders have (Figure 2.9), 

shows that the paddle moves in an arc in the global reference frame, and therefore the 

view of slip as a failure to ‘lock the blade’ and a technical inefficiency may be an over-

simplified, inaccurate, sagittal plane view. 

While rowing is seemingly the most similar Olympic sport to kayaking, the momentum 

provided by athletes moving within the overall system of rower, oars and boat, creates a 

significant difference in boat movement pattern, and the fixed rotation position of the 

oars creates a much more predictable movement. By testing  nine experienced rowers 

across SR of 20-36 spm, Hofmijster et al. (2007) found that higher stroke rates result in 

higher mechanical power, boat velocity, efficiency of the blades and net efficiency, 

despite a decrease in velocity efficiency (defined as the ratio between power produced 

and power not lost to velocity fluctuations). The higher boat velocity fluctuations increase 

the time taken to row a competition distance and, therefore, decreasing stroke rate may 

have an advantage (Hill & Fahrig, 2009) which is not present in kayaking. There are 

technical changes which occur in synchrony with changing SR, indicating there may be 

technical causes for differences within and between athletes, giving further justification 

for research examining these differences.  

 Trainability of cycle rate/distance per cycle 

Adaptations to cycle rate and/or distance per cycle in sprint sports through training have 

also been found to be individual specific. For example, Bezodis, Kerwin, Cooper and Salo 

(2018) found four elite sprint athletes responded differently across a five-month period. 

Generally, increases in velocity during the maximal velocity phase were more strongly 

linked to changes in SF than SL. Over the five months, step velocity and SF decreased 

during strength-focused training phases and increased during high intensity sprint-based 

blocks, supporting the changes in F-V found through training in bob-skeleton athletes 

(Colyer et al., 2018). Bezodis et al. hypothesised that the force-producing capability and 
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the ability to produce that force quickly - essentially the F-V relationship - was likely to 

be the underpinning mechanism to the changes found and considered the importance of 

fixed anthropometric factors in stride length.  

In 37 ‘competition level’ swimmers, Girold et al. (2006) found three weeks of overspeed 

training increased SR but decreased DPS in a 100 m race effort, resulting in no overall 

change in velocity while over strength training was found to increase SR with no changes 

in DPS, resulting in an increase in velocity in the cohort of regional and national athletes 

studied. The group was split and so individual differences at the start, or following 

intervention were not noted and could have influenced the conclusions. Additionally, the 

methods employed for ‘overspeed’ training involved an elastic tube that was manually 

kept taut and athletes being encouraged to increase SR, but SR was not measured during 

the training efforts. Overall, it appears focussed training may be able influence SR/DPS 

but more research would be needed to understand how and why these changes occur.   

 Summary of literature 

The above research highlights the negative interaction of cycle rate and cycle distance, 

and the importance of individual athlete differences across a range of cyclical based 

sports, including kayaking. By looking at sports that have been subject to considerably 

more research than kayaking, methods that have led to insights around these differences 

can be investigated (e.g. Salo et al., 2011), and the interventions put in place from the 

understanding gained (e.g. Martin & Spirduso, 2001; Bezodis et al., 2018). 

 Aim & Research Questions 

The aim of this study was to investigate the inter- and intra-athlete variability in SR, DPS 

and velocity in order to gain insight into whether individual sprint kayakers are using SR 

and DPS in different ways to maximise velocity.  

Research Question 5.1: Is SR or DPS more important in determining boat velocity in a 

group of elite sprint kayakers? 

Research Question 5.2: Do elite athletes use SR and DPS in different ways to achieve boat 

velocity? 

Research Question 5.3: Are the relationships between SR and velocity, or DPS and 

velocity, determined by anthropometrics? 
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 Methods 

 Participants 

The participants were 25 kayak athletes (Table 5.2) who were all part of the National 

Governing Body (NGB) Podium or Podium Potential funded squads, corresponding with 

the level of ‘elite’ and ‘sub-elite’ from the previous chapter. A sub-group of 15 athletes 

(Table 5.3) took part in the intra-individual variation element. Ethical approval was gained 

from the University of Lincoln School of Sport and Exercise Science ethics committee. 

 Table 5.2: Group level participants’ characteristics for each gender (mean ± SD) 

 

Table 5.3: Individual athlete participant characteristics  

 

 Data collection 

Athletes taking part in only the inter-individual aspect of the study completed one testing 

session, while those who were also involved in the intra-individual variation aspect 

completed a minimum of three data collections throughout the season. For inter-

individual comparison, data were collected as close to the major, targeted competition 

as was logistically possible- this date varied between athletes as some were focusing on 

World Junior Championships, some on senior European or World Championships, others 

Gender N Mass (kg) Height (cm) Arm Span (cm) Paddle Length (cm) 

Male 12 81.3 ± 4.6 182.7 ± 3.8 188.3 ± 4.3 218.0 ± 2.2 

Female 13 71.3 ± 6.1 172.9 ± 3.9 176.3 ± 6.0 215.6 ± 0.7 

Athlete 
No. 

Gender Mass  
(kg) 

Height  
(cm) 

Arm Span  
(cm) 

Paddle Length 
(cm) 

2 F 61.6 168.8 171.0 215 

3 F 84.0 174.5 180.0 216 

15 F 62.0 175.0 177.0 215.5 

28 F 72.4 174.0 176.8 215 

31 F 73.4 172.7 180.5 217 

33 F 73.0 172.5 171.7 215 

36 F 79.4 175.0 182.2 215.5 

1 M 85.8 191.6 198.8 223 

4 M 86.6 183.5 188.7 217 

5 M 80.1 179.0 184.0 217.5 

9 M 79.2 183.3 189.6 216 

11 M 78.3 183.0 186.4 218 

16 M 76.6 185.4 192.1 217 

20 M 84.5 185.2 187.6 218.5 

30 M 75.8 177.0 183.3 217 
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on World Cup racing and some on National Regattas. For those who took part in the intra-

individual data collections, each was spaced a minimum of four weeks apart between 

March and September, representing the entirety of the racing season for sprint kayak. 

This ensured all athletes had finished their winter, strength focused training blocks and 

were actively competing during this period.  

Each session consisted of an athlete-controlled race-style warm up, as they would usually 

undertake prior to regatta racing. The warm-up may have differed between athletes as 

they have devised what they feel works best for them, but would have been consistent 

for each athlete. This was followed by six efforts of 100 m from stationary on the regatta 

course, with 12 minutes of recovery between efforts. This distance is commonly used in 

training, is long enough to attain top speed (occurs around 50m; unpublished data from 

the NGB) and to maintain it without much influence of fatigue or pacing. Recovery was 

controlled by asking athletes to come off the water and sit in a heated minibus between 

efforts so that the athletes could keep warm without inducing fatigue. The first three 

efforts were always completed with a tailwind and the latter three with a headwind, to 

reduce the effect of fatigue as much as possible. Trials in which wind speed exceeded 4 

m·s-1 (corresponding to a gentle breeze on the Beaufort scale) were discarded, resulting 

in an average wind speed of 1.8 m·s-1, with a standard deviation of 0.9 m·s-1.  

Following on-water data collection for inter-athlete analysis, the mass, height and arm 

span of each athlete were taken to investigate the influence of these potentially 

confounding variables. For those taking part in the intra-participant investigations, mass 

was taken after each session. 

 Equipment 

An RTK GPS unit (Igtimi, Dunedin, New Zealand) was attached to each boat immediately 

behind the cockpit, aligned with the midline of the boat (Figure 5.4). These units contain 

differential GPS and triaxial IMU (accelerometer, gyroscope and magnetometer) 

components. Accuracy and reliability testing undertaken by the NGB (unpublished) found 

units to be comparable to light gates (approximately 800 tests; r2 = 99.99%) and to have 

high reliability (59-130 test per unit, average SD = 0.016 s).  Linear accelerations were 

recorded at 100 Hz while differential GPS was recorded at 10 Hz.  
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Figure 5.4: Igtimi unit attached behind cockpit of participant 

For each data collection, a weather buoy (RPR Met, England) was used to record water 

temperature, wind speed, wind direction, humidity, air pressure, and air temperature. 

Wave size and start direction were recorded manually. The weather buoy was positioned 

approximately halfway through the 100 m effort. Weather data were reported for an 

average of 10 s periods and therefore the number of data points covering the efforts 

ranged between two and four. Data were synchronised with the on-board GPS unit using 

GPS timestamping present in both devices’ output data.  

 Data processing 

Data were taken directly from the unit after each collection and were processed using 

MATLAB R2017a (the Mathworks Inc, Natick, MA, USA). Stroke start and end were 

detected from sign change (negative-to-positive and positive-to-negative respectively) of 

the boat’s forward linear acceleration (Figure 5.5). From this, stroke rate (strokes per 

minute) was calculated per stroke as 60 divided by the duration of the stroke in seconds, 

and distance per stroke was calculated from the positional data at the stroke start, to the 

position at the beginning of the next stroke. Velocity was calculated as the differential of 

the positional GPS data.  
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Figure 5.5: Example stroke detection (red circles) from forward linear acceleration trace of the steady state portion 
of a trial. 

For each effort, velocity was first smoothed using a 5-point moving average and then the 

start of steady state was identified using an automated detection of the breakpoint 

(Mullineaux, 2017), whereby a curve is fitted to the velocity data, rotated so that the first 

and last points are equal to zero, and the trough represents the breakpoint. A threshold 

drop of 10% from the breakpoint was then used to define the end of the steady state 

period. This means “steady state” is from breakpoint to whichever is earlier: the end of 

the effort or when velocity has dropped by 10%. It does not therefore refer to a set 

distance or time (Figure 5.6).   
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Figure 5.6: Velocity trace for an example trial, with steady state (area between breakpoint and the earlier of end of 
effort or 10% reduction in velocity) shaded. 

The distance and duration of this steady state period was input, along with the athlete’s 

mass for the corresponding date, and the environmental weather conditions, into a 

weather normalisation model. The weather model (unpublished validation; British 

Canoeing, 2015) uses the aforementioned environmental factors to calculate air and 

water density and therefore aero- and hydro-dynamic drag based on Equations 1 and 2, 

as discussed in Section 2.6.3. The model includes standardised frontal surface area of a 

sprint kayak for different genders and age groups and, using this and the measured 

velocity of the boat, data were adjusted to compare to datum conditions and provide a 

‘normalised time’.   

 Statistical analysis 

Data were analysed using SPSS (IBM SPSS Statistics for Windows, Version 22.0., IBM 

Corp., Armonk, NY) and Microsoft Excel (2010). Significance was set at p = 0.05.  

5.2.5.1 Group analysis 

To compare across the group, averages of velocity, SR and DPS were taken from the six 

efforts completed by each athlete. As all data were normally distributed (Shapiro-Wilk 

test p value > 0.09) and linearity and homoscedacity were visually confirmed, Pearson’s 

correlations were computed across: normalised velocity, SR, DPS, mass and arm span. A 

Bonferroni adjustment to the alpha value was not made; the correction is often used to 
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reduce the chance of type 1 error, but inevitably increases the risk of type 2 error that 

real relationships may be missed (Armstrong, 2014; Perneger, 1998).  

The group were then separated based on gender and, although these sub-sets all 

demonstrated normal distribution (Shapiro-Wilk test p value > 0.12), the sample sizes 

were small and the assumption of linearity was not met through visual inspection. 

Therefore the non-parametric equivalent correlational tests of Spearman’s rho were run 

(Table 5.6 for female data and Table 5.7 for male data). 

5.2.5.2 Individual analysis  

To understand how SR, DPS and velocity varied for each individual, SR-velocity and DPS-

velocity correlations were taken across all 18 trials completed (three testing sessions of 

six trials). Due to small sample sizes, some non-parametric distributions, and variable 

linearity Spearman’s correlations were run. Visual assessment of linearity was conducted 

and subjectively categorised into: clear strong linear pattern (‘Strong’), apparent linear 

trend (‘Medium’), potential linear trend (‘Low’) and no linear trend (‘None’), examples of 

each of these can be seen in Appendix 3.  

 Results 

At group level, SR was found to have a stronger correlation with boat velocity (r = 0.87; p 

< 0.01) than DPS with boat velocity (r = 0.67; p < 0.01; Table 5.4, Figure 5.7). Athlete mass 

and arm span correlated positively and significantly with normalised velocity. Statistically 

significant correlations were found between DPS and arm span (r = 0.58; p < 0.01; Table 

5.4), and between arm span and mass (r = 0.67; p < 0.01; Table 5.4). The range of SR (119 

– 158 spm) was proportionally higher than that of DPS (2.02 - 2.45 m), with both SDs 

higher in female athletes compared to male (Table 5.5). 
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Table 5.4: Group normalised boat velocity, SR, DPS, arm span and mass correlations (Pearson’s) and p-values, 
* indicates significance at the level α < 0.05. 

  Normalised 
Velocity SR DPS Arm Span 

SR (spm) 
r 

p-value 
0.87* 

<0.001 
-   

DPS (m) 
r 

p-value 
0.67* 

<0.001 
0.25 

0.228 
-  

Arm Span (m) 
r 

p-value 
0.59* 
0.002 

0.36 
0.074 

0.58* 
0.002 

- 

Mass (kg) 
r 

p-value 
0.62* 
0.001 

0.53 
0.006 

0.48 
0.014 

0.67* 
<0.001 

 

Table 5.5: Normalised boat velocity, SR and DPS for male and female athletes (mean ± SD). 

 

Once analysed according to gender, the only significant correlation for females was 

between SR and velocity (Table 5.6), while for males the only significant relationship was 

a negative correlation between SR and DPS (Table 5.7). For gender-specific groups, arm 

span and mass were not specifically related to boat velocity, SR or DPS.  

Table 5.6: Female normalised boat velocity, SR, DPS, arm span and mass correlations (Spearman's non-parametric) 
and p-values. * indicates significance at the level α < 0.05. 

    
Normalised 

Velocity 
SR DPS Arm Span 

SR (spm) 
r 0.89* 

-     
p-value <0.001 

DPS (m) 
r 0.11 -0.26 

-  
p-value 0.721 0.384 

Arm Span (m) 
r -0.51 -0.50 -0.01 

- 
p-value 0.088 0.082 0.972 

Mass (kg) 
r 0.02 0.05 -0.08 0.17 

p-value 0.957 0.873 0.789 0.578 
 

 

 

 

Gender N 

Normalised 
velocity 
(m·s-1) 

SR 
(spm) 

DPS 
(m) 

Male 12 5.62 ± 0.14 147.25 ± 5.13 2.27 ± 0.08 

Female 13 4.74 ± 0.29 131.56 ± 9.58 2.12 ± 0.29 
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Table 5.7: Male normalised boat velocity, SR, DPS, arm span and mass correlations (Spearman's non-parametric) and 
p-values for male athletes, * indicates significance at the level α < 0.05. 

    
Normalise
d Velocity 

SR DPS Arm Span 

SR (spm) 
r 0.29 

-     
p-value 0.354 

DPS (m) 
r 0.37 -0.71 

-  
p-value 0.236 0.010* 

Arm Span (m) 
r 0.03 -0.22 0.29 

- 
p-value 0.923 0.484 0.359 

Mass (kg) 
r 0.06 -0.18 0.16 0.35 

p-value 0.846 0.587 0.618 0.259 

 

 

 

Figure 5.7: a) SR-velocity (circles) and b) DPS-velocity (square) average from each participant with the linear group 
trend marked. Lighter shaded shapes are female data, darker shaded shapes are male data.  

a) 

b) 
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Of the 15 athletes who took part in intra-athlete part of this study, 11 (six females and 

five males) were found to have a significant correlation between SR and boat velocity 

(Table 5.8). Six of these (two females and four males) also had a statistically significant 

correlation between DPS and boat velocity and a further three (zero female) were found 

to have a correlation between boat velocity and DPS but not SR.  

 Table 5.8: Individual athlete correlation r and p-values (Spearman's non-parametric). * indicates significance at the 
level α < 0.05.  
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2 F 0.29 0.27 Low 0.35 0.18 Low 

3 F 0.91 0.00* Medium 0.23 0.33 None 

15 F 0.79 0.00* Strong  0.81 0.00* Medium 

28 F 0.89 0.00* Strong 0.02 0.94 None 

31 F 0.84 0.00* Strong -0.16 0.53 None 

33 F 0.73 0.00* Strong -0.02 0.92 None 

36 F 0.82 0.00* Strong 0.48 0.00* Medium 

4 M 0.38 0.08 Low 0.44 0.04* Low 

20 M 0.29 0.16 Low 0.67 0.00* Medium 

9 M 0.77 0.01* Medium 0.34 0.17 Low 

11 M 0.55 0.02* Medium 0.77 0.00* Strong 

1 M 0.03 0.68 None 0.57 0.00* Medium 

30 M 0.42 0.04* None 0.52 0.01* Medium 

5 M 0.95 0.00* Strong 0.55 0.02* Medium 

16 M 0.53 0.02* Strong 0.67 0.00* Low 
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Figure 5.8: a) SR-velocity and b) DPS-velocity scatter plots for two example athletes, with each trial marked as a data 
point. Light grey shows an athlete with a 'strong' correlation in SR-Vel and no correlation for DPS-Vel; dark grey 
shows an athlete with 'Medium' correlation with SR-Vel and 'Strong' correlation in DPS-Vel. 

 Discussion 

As the product of SR and DPS is boat velocity, the significant relationships found between 

both of these variables and boat velocity at group level were expected, but the apparent 

difference in conclusions when compared to analysis divided by gender and in the intra-

athlete data sets were larger than expected, highlighting the issues associated with 

apportioning statistical significance at different levels.  

At group level, the positive correlation between stroke rate and boat speed agreed with 

previous kayaking research, which has shown an increase in SR with higher ability levels 

a) 

b) 
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(Sanders & Kendal, 1992; Brown et al., 2011). In the current study group-level variability 

in stroke rate determined 75% of the variation in boat speed, while DPS explained 44% 

(r2 values, Table 5.4). SR and DPS are not independent relative to velocity and an increase 

in one would be expected to incur a decrease in the other, a relationship shown by the 

negative correlation between SR and DPS in male athletes. An overview of the data split 

according to gender would indicate that SR is more important for female athletes and 

neither SR nor DPS appear to significantly correlate with boat velocity for the male 

athletes studied. The mechanical laws underpinning the SR, DPS and velocity relationship 

are not different between males and females, although males are both heavier and faster 

(Tables 5.2 and 5.5), both of which would increase drag. The relationship between 

velocity and drag is non-linear and therefore may mitigate the correlation across genders; 

the same increase in velocity for a faster athlete would lead to a larger increase in drag, 

which may reduce the likelihood of increased SR. Alternatively, the differences exhibited 

in the strength of the correlation could be due to artefact of the spread of the data, 

highlighting the difficulty of correlational statistical analysis- mathematically, a larger 

range of values will lead to an increase in the reported strength of a relationship (Altman, 

1991). The SR range for women was much larger than for men (Table 5.5), resulting in a 

stronger correlation coefficient.  

The range of SR measured in this study (119-158 spm) broadly agreed with that reported 

in previous literature (118-136 spm; Kendal & Sanders, 1992; 158 spm for men and 139 

spm for women, McDonnell et al., 2013b). As the current study used a single value of SR 

as the average for the sustained maximal velocity phase, it might be expected that it 

would be lower than the single maximal stroke used in Kendal and Sanders but is more 

likely to be representative of capacity given the small, clearly defined capture area of the 

other authors. Values in the current study are considerably higher than those found in 

Brown et al. (68.92 ± 3.37 spm; 2011) for international level paddlers. Brown et al. did 

not describe their definition of a stroke and as the value is approximately half of those 

above, it may be that a single stroke was from paddle entry to paddle entry of the same 

side, rather than to paddle entry on the opposite side, which is commonly used. There 

are other possibilities for the discrepancy, including the limited view from the single 

camera causing errors, or the calculation of SR incorporating the whole effort, including 

the start which is known to have a different stroke pattern, and indeed is often 
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discounted, for example McDonnell et al. (2013b) only measured SR after the first five 

seconds of initial acceleration.  

There were significant group level relationships for mass and arm span with boat velocity, 

showing heavier athletes and those with longer arms go faster, in partial agreement with 

Fry and Morton (1993), who found differences in selected and non-selected international 

level athletes in body mass, skinfolds, height and sitting height. Those with longer arms 

might logically be expected to have longer strokes due to a longer forward and backward 

reach but it does not necessarily follow that these longer paddle strokes would lead to 

increased distance per stroke of the boat and hence the lack of a significant relationship 

between the latter and arm span. Assuming that the elite and sub-elite athletes involved 

in the current study are relatively lean, the link between mass and performance would 

be expected as an increase in mass is likely to be due to an increase in muscle mass (and 

therefore strength) or an increase in height (and therefore reach), supported by the 

correlation between arm span and mass (Table 5.4). The athletes used in the current 

study had similar arm span and mass (mean ± SD; male: mass 81.3 ± 4.6 kg, arm span 

188.3 ± 4.3 cm; female: mass 71.3 ± 6.1 kg, arm span 176.3 ± 6.0 cm) to those who 

competed in the 2000 Olympic Games (male: mass 85.2 ± 6.2 kg, arm span 190.6 ± 7.3 

cm; female: mass 67.7 ± 5.1 kg, arm span 172.8 ± 7.5 cm; Ackland et al., 2003). For the 

current study, once split based on gender, the relationships between anthropometric 

variables of mass and arm span with boat velocity were no longer significant, once again 

highlighting the potential issues with group level correlations. Fry and Morton (1993) did 

not report the gender of athletes used so it is not clear if there were differences between 

genders for selected and non-selected athletes.  

 Individual differences 

When looking at intra-individual relationships, the amount of variability in an individual’s 

normalised boat velocity across trials that could be explained by variation in SR differs 

(mean ± SD; 0.61 ± 0.28). The proportion explained by changes in DPS also varied 

considerably (0.41 ± 0.29; Table 5.8). These differences demonstrate the individuality in 

strategies that athletes have adopted – either consciously or subconsciously – to 

maximise velocity. Individuality in these factors in elite sprint kayakers has previously 

been reported in small sample sizes, only one athlete in a group of ten was reported to 

have a strong correlation between stroke displacement and velocity (Hay & Yanai, 1996 
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in McDonnell et al. 2013a). Similar findings have been reported in athletics with Salo and 

colleagues (2011) reporting individual ‘reliance values’ of the correlations of SL-velocity 

and SF-velocity, with values from -0.6 to 1.05, with more athletes showing a reliance on 

step length than on step frequency. The equivalent values for the current study would 

vary between -0.54 for Athlete 1, to 0.92 for Athlete 33, with more athletes indicating a 

stronger correlation with SR than DPS- the opposite of that found in sprinting. ‘Reliance’ 

is not a term used in the current study, but the similarity in between-athlete range is 

clear. The individual differences have large implications for research: if only group level 

research had been conducted, it might be concluded that an intervention that increased 

SR would likely lead to an improvement in performance but using the current data it 

can be seen that this would not be the case for some athletes. 

There are a number of reasons for differences between athletes, from muscle physiology, 

through technical performance, to equipment, as outlined in Figure 1.1. While many of 

these factors are individual, some are outside of the athlete’s control (e.g. 

anthropometrics such as segment lengths), some are trainable (e.g. maximal force 

production and muscle cross sectional area) and others are arguably trainable (e.g. 

muscle fibre type, MTU stiffness). Two of the factors linked to SR and DPS respectively 

(maximal speed and maximal force production) are discussed in detail in Chapter 3. 

Measurement of all of the factors is clearly outside the scope of this thesis but the 

schematic provides an indication of where future research could be focused to 

understand the causes of the individual differences highlighted in this study.  

Differences in training focus, or the difference in underlying muscle fibre of these 

different training groups, could provide some insight into some of the causes of the 

individual differences. While the muscle biopsies needed to be able to ascertain fibre 

type distribution were not taken in the current study, muscle fibre type is thought to be 

related to a muscle’s maximum contraction speed, and muscle biopsies have shown 

sprinters to have considerably higher type II fibres than long distance runners (Gregor, 

Edgerton, Perrine, Campion, & DeBus, 1979). The athletes within this cohort are all very 

high-level kayak performers, however, they do not all compete across the same distance. 

As mentioned in the literature review (Chapter 2), at Olympic level males compete in the 

200 m and 1000 m distances, while females compete in the 200 m and 500 m distances. 

As athlete funding in the UK is achieved based on Olympic events, all the athletes in the 
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study focus on one of these distances. The training regime for an athlete who is focused 

on 200 m is different from that of an athlete focused on 1000 m. For an athlete who is 

used to training for the 200 m, asking them to do a 100 m maximal effort sprint is not 

outside what they will be used to doing in training, while for a 1000 m paddler, such short, 

maximal work will be less common. Additionally, there may be technical differences due 

to training background; in track and field athletics, sprinters and middle-distance runners 

have been compared with both mechanical and technical differences (Bushnell & Hunter, 

2007). Race-specific distances would have been highly fatiguing, drastically reducing the 

total number of data points which could be collected as well as introducing the 

confounding variable of fatigue during the effort which may directly mitigate the 

relationship between SR or DPS and velocity. The distance of 100 m was therefore 

considered best to limit in-effort fatigue and to allow collection of multiple data points 

within one data collection in order to conduct the correlation.  

All of the athletes who took part in this research study have competed at international 

and/or national level sprint kayak events. While this means they are very skilled sprint 

kayakers, there are areas for improvement to be identified. Coaches’ philosophies vary 

even within an elite cohort, as shown in Chapter 2; for some, it is more important to 

develop the application of power within a stroke before increasing the rate, while for 

others, there is a small range of SR within which athletes are expected to optimally 

perform. This means the training history of athletes, even at top level, varies. Individual 

differences in movement patterns, as highlighted by Therrien et al. (2012; Figure 5.3), 

and their relationship with lift and drag forces generated, may help to explain the 

individual differences found in the current study.  

Athletes’ use of equipment may also change how they maximise velocity. Currently 

within the NGB system, equipment set-up is not measured or monitored and is just 

chosen according to the athlete’s perception of how any changes to equipment feel in 

the water. Frequently, paddles remain unchanged for years and often they are a result of 

‘what was available at the time’. There are two dominant paddle manufacturers who 

equip the majority of international paddlers: Braca (braca-sport.com) and Jantex 

(www.jantex.sk). Indeed, of the cohort in this study, 12 used Braca and 13 Jantex. Each 

of these companies has at least 10 different designs which can be bought in up to 10 

sizes, with adjustable shaft length and a range of blade sizes and paddle lengths (Table 
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5.3) were apparent in the current group. From a simplistic mechanical viewpoint, 

increasing blade size while maintaining all other factors would allow for an increase in 

drag force used to propel the boat forwards, proportional to the equation for drag 

(Equation 1, Section 2.4.1). However, it is unrealistic to expect all aspects of a stroke to 

stay the same, and increasing force relies on the athlete’s ability to redirect that higher 

drag force through the upper limbs, torso, through the legs to the boat, which demands 

a system stiffness and therefore muscle strength which is hard to achieve. 

In other sports, changing equipment has been shown to affect cycle rate. For example, 

changing crank lengths affects cycle frequency and movement velocity, with optimum 

cadence for power production found to decrease with increasing crank lengths (Martin 

& Spirduso, 2001). Using the current study, the influence of changing paddle set-up could 

be better understood as changes in SR or DPS would provide context for the given 

individuals.  

 Limitations & Delimitations 

A session consisting of six 100 m maximal efforts with 12 minutes recovery is well within 

the bounds of a normal training session but may limit performance in that any single 

effort is unlikely to be a true maximal; in sprint-based sport competitions, athletes are 

rarely asked to compete more than twice in a single day. The 12 minutes used in the 

current study was longer than the nine minutes found to be sufficient in maintaining 

power output (Ainsworth, Serfass, & Leon, 1993). Re-synthesis of adenosine triphosphate 

(ATP) and phosphocreatine (PCr), the primary substrates in anaerobic exercise, to 76 % 

and 96% of resting values occurs over 4 minutes of recovery in males (McCartney et al., 

1986), indicating ample recovery time was given for physiological recovery. The above 

recovery research has focused on cycling, but the duration and maximal nature of the 

efforts make it probable the same would apply for recovery during kayak sprints.  In order 

to control and standardise the recovery, it was necessary to take the athletes off the 

water and impose a passive recovery in a heated minibus. Passive recovery has been 

shown to increase, or have no impact on power output in subsequent short sprints in 

cycling and swimming (Bishop, Ruch & Paun, 2007; Hoianaski et al. 2007; Toubekis et al., 

2005), although there is some evidence active recovery may be beneficial in longer 

recovery durations (Brown & Glaister, 2014). As data collections took place outside 

between March and September in the UK, the risk of fatigue from trying to keep warm 
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during an active on-water recovery, or the risk of injury from failing to keep warm (Scott, 

Hamilton, Wallace, Simpson & Muir, 2016), was considered greater than any potential 

risk to performance from passive recovery. 

Wherever possible, all testing was done following a rest day. Where this were not 

possible, testing was conducted following the lightest day of training to try and minimise 

the effect of delayed onset muscle soreness (DOMS) or residual fatigue from previous 

training. Research has shown that DOMS can reduce strength, power and range of motion 

and force generation (Cheung, Hume, & Maxwell, 2003) as well as being found to reduce 

stride length in running (Harris, Wilcox, & Smith, 1990). However, most studies into the 

effect of DOMS deliberately induce very high levels of DOMS through high eccentric 

loading and repetitions. During the competitive season, these kind of taxing or novel 

movements would not be part of the training programme and therefore DOMS are 

unlikely to have influenced result unduly.  

The selection of a ‘steady state’ portion of the sprint was based on coaches’ division of 

race phases (Section 3.3.3) in order to use data that were representative of the effort. 

Although coaches’ definitions differed (Figure 3.4), almost all included a ‘race pace’, 

‘maintenance’ or ‘cruise’ phase which could be considered as a ‘steady state’. By 

disregarding data prior to this, in the start or acceleration phases – as has been done in 

previous research (McDonnell et al., 2013b) – results are delimited to maximal ‘steady 

state’ paddling. The mean is likely more representative of this phase as SR changes less 

rapidly (Figure 5.1). 

Multiple collection dates were used for the intra-athlete analysis. While the maximal 

nature of the efforts meant this is the only way to collect data on large numbers of trials 

without fatigue dramatically influencing performance, the training in between collections 

was not able to be controlled due to the elite training schedule athletes adhered to. In 

conjunction with this, data collections were a minimum of four weeks apart and therefore 

the environmental conditions, in particular water temperature, differed between 

collections. While we can account for the effect of this on boat velocity with modelling, 

we cannot account for the impact on SR. The normalisation for environment approach 

used attempts to account for the differences in conditions between dates and has been 

used in the applied setting of canoeing for the past few years, with similar models used 

by other nations, including a matrix of adjustments based on wind speed and water 
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temperature used in Germany. As with all models, it is not without its limitations. The 

model assumes the main effect of wind occurs directly in line with the motion of the boat, 

with relatively little consideration for the challenging technical influence of a side wind. 

It does not account for the additional energy expenditure that would occur through the 

duration of a race, although in a 100 m effort this is unlikely to have a large effect. By 

reporting ten second averaged data, gusts of wind are not accounted for, nor are 

fluctuations in the velocity of a stroke. However, the purpose of the model is not to 

perfectly remove the effect of all conditions which would be hugely computation-heavy, 

rather to give a better representation of comparing across different time points.  

 Application 

As mentioned by some coaches in the interviews, SR has previously been used to 

determine training zones: 

Anything up to 65 is CAP, 75 is threshold, around 75, couple of strokes either 

side but around 75 is threshold. Getting towards 85-90 is sub race pace, this 

is for 1000s, sub race pace and 100 plus, 110, is race pace for 1000  

Training zones based on SR have generally fallen out of favour due to physiological 

evidence of different work rates at the same cycle rate for different athletes (Abbiss, 

Peiffer, & Laursen, 2009), a point that is highlighted by the data above. While SR-based 

training thresholds still occur in rowing, the lower SRs make individual differences smaller 

and therefore differences in work rate would be less dramatic. The current research 

indicates the importance of individual differences in SR and would therefore undermine 

the use of a SR to determine a threshold for a group of athletes.  

The results of this study indicate that individuals use different combinations of SR and 

DPS to increase their boat speed. In theory, this would indicate that an athlete who relies 

on increasing SR to improve boat speed, might work against an athlete who would 

maintain SR and increase DPS in order to increase boat speed. Identifying these 

differences could allow coaches to pair or team up athletes based on the stronger 

correlation, although more evidence would be needed to see if this resulted in a faster 

crew boat.  

In Chapter 2, a number of the coaches commented on not knowing much regarding 

paddle set-up for their athletes. The increase in understanding about how athletes 



  

161 
 

optimise performance individually, both from this chapter and the previous one, could 

be used to understand the mechanisms and potentials benefits arising from interventions 

with paddle set-up. 

 Conclusion 

At group level, it appears that SR is more important than DPS in enhancing boat velocity, 

and that anthropometric factors of arm span and mass both correlate positively with 

performance. The conclusion that would be based on these results – that heavier athletes 

and those with longer arms are faster – is undermined once data were separated by 

gender. The spread of data at group level creates artificially strong relationships.  

There are further clear individual differences in how athletes utilise SR and DPS to 

optimise on-water performance, with five athletes showing strong correlations between 

SR-velocity only, three showing strong correlations with DPS-velocity only and six having 

positive correlation with both parameters. Group analyses would disguise these 

individually different relationships, potentially leading to sub-optimal training. Scientists 

should be aware of individual nature of performance when running interventions: a 

seemingly positive outcome in increasing SR may not be a positive result for some 

athletes. 
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 Can ergometer profiling explain technical 

performance? 

 Introduction 

As described in Chapter 2, kayak ergometers are frequently used to assess or monitor 

athletes for both research and training purposes. While there is evidence demonstrating 

the similarities in kinematics between ergometer and on-water paddling (Begon et al., 

2008), research has shown some differences in muscle activity, with higher anterior 

deltoid activity on the ergometer and higher triceps and latissimus dorsi activity on the 

water (Fleming et al., 2012). The data from Chapter 4 demonstrated that ergometer-

measured power is a determinant of sprint performance in kayaking, differentiating 

between performance levels, in agreement with previous research (van Someren & 

Palmer, 2003). Mechanically, power is the product of force and velocity, and in sporting 

movements including kayaking (Chapter 4; Schofield, 2015), force has been found to 

decrease with increasing velocity in a linear relationship (e.g. Martin et al., 1997; Sprague 

et al., 2007).  

In kayaking, as in other cyclical sports, velocity is the product of cycle frequency (stroke 

rate; SR) and cycle distance (distance per stroke; DPS). The unconstrained duty cycle in 

kayaking means athletes dictate their own SR and a range of SR have been found to be 

used in achieving the highest velocities at national and international level in this thesis 

(Chapter 5) and in previously published research (McDonnell et al., 2013b). Chapter 5 

also found that SR was a stronger determinant of boat velocity than DPS at group level, 

in opposition to some research in athletics sprinting (Hunter et al., 2004; Ito, Ishikawa, 

Isolehto, & Komi, 2006). The strength of the correlation between SR-velocity and DPS-

velocity differs between individuals (Chapter 5), in agreement with data from Salo et al. 

(2011) in sprinting.  

Previous research in other sports has alluded to a link between physical capacity and 

technical performance. For example, Hunter et al. (2004) postulated that increasing step 

length in sprinting would require development of strength and power, while the 

importance of creating high forces quickly could be linked to higher step frequencies. 

Recently, researchers have attempted to link power and F-V profiles to 100 m sprint 

performance (Slawinski et al., 2017). Using televised data, they found performance to be 
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linked to both ‘power’ and velocity, but not maximal force capacity. Calculations of force 

and power from video data would necessarily make a number of assumptions in 

calculating kinetics from kinematics, reducing the value of this data. No studies could be 

found that have compared directly measured power and FV to any sporting performance.   

 Aim & Research Questions 

The aim of this study was to investigate the relationship between power and FV 

ergometry profiling and sprint performance in kayaking. It was hypothesised that power 

would be positively correlated with sprint performance, and that FV gradient would be 

negatively correlated with SR, indicating that those who are more force-dominant on the 

ergometer utilise a higher DPS technique on water, while velocity-dominant athletes 

would use a higher SR.  

Research Question 6.1: do force- and power- velocity profiles determine on water 

performance in a group of elite and sub-elite kayakers? 

Research Question 6.2: does the gradient of these athletes’ force-velocity profile relate 

to their use of SR and DPS? 

 Methods 

Twenty-six kayakers (14 male, 12 female) took part in the study, all of whom competed 

nationally or internationally. Data from ergometer profiling (Chapter 4) and on-water 

profiling (Chapter 5) were combined in this study and no additional data were collected. 

Testing therefore consisted of two sessions, one on water and one on the ergometer, 

both completed on the same day. Recovery between the sessions was not controlled 

other than being longer than 90 minutes and without additional training in between. As 

these athletes are all part of the NGB programme, they will previously have been advised 

about optimising recovery strategies including hydration and nutrition.  Details on the 

data collections can be found in Sections 4.2.3 and 5.2.2. 

In brief, the on-water session consisted of a full race-day warm up, followed by six 

maximal effort 100 m sprints from standing with 12 minutes of off-water recovery in 

between. An on-boat differential GPS (10 Hz) and inertial measurement unit (IMU; 

100 Hz; YachtBot, Igtimi, New Zealand) was attached, and data relating to the 

environmental conditions were collected throughout. Following a minimum of 90 

minutes recovery, the ergometer testing was completed. This consisted of a warm-up 
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and then five trials of 14 maximal strokes on a custom built iso-inertial kayak ergometer 

(Schofield, 2015), with three minutes recovery between trials.  

From the on-boat data, average boat velocity (Vss), maximum velocity (Vmax), 10 m time, 

SR and DPS were calculated for the steady state period across six trials using MATLAB 

R2017a (the Mathworks Inc, Natick, MA, USA). Maximum velocity and 10 m time were 

calculated in addition to the steady state velocity as described in Chapter 5 in order to 

compare how ergometer testing relates to the start and maximum velocity elements of 

sprint kayaking. From the iso-inertial ergometer, in addition to the three pull-averaged 

measure of power used to document capacity in Chapter 4 (Powerpull,ave, Powerpull,max, 

P0pull), stroke-averaged trial average (Powerstr,ave), trial maximum (Powerstr,max), and 

hypothetical maximum (P0stroke) were calculated. Stroke average powers were 

considered pertinent to compare to on-water performance as the inclusion of a recovery 

phase may more accurately represent the on-water conditions. F0, V0 and SF-V were 

calculated from the F-V profiles which were in turn constructed from the 12 pull-phase 

means as in Chapter 4. Optimum stroke rate (SRopt) was calculated from the stroke 

power-SR profile only. Force and power values were normalised by dividing by body 

mass0.67 (Jaric et al., 2005), as in Chapter 4 and discussed in Section 2.8.1.  

Statistical analysis was run in SPSS (IBM SPSS Statistics for Windows, Version 22.0., IBM 

Corp., Armonk, NY). Shapiro-Wilk tests for normality and visual assessment for linearity 

and homoscedacity were conducted for each variable to assess whether parametric or 

non-parametric correlations should be conducted. As a number of variables violated one 

of more of the assumptions, non-parametric Spearman’s correlations were calculated at 

group level between each of 14 variables: Vss, Vmax, 10 m time, SR, DPS, Powerpull,ave, 

Powerpull,max, P0pull, Powerstr,ave, Powerstr,max, P0stroke, SFV, F0, V0 and SRopt,str.  

 Results  

Correlations showed that all six measures of power as recorded during a maximal test 

were all strongly correlated to each other and to Vss, Vmax and 10 m time during maximal 

on-water sprinting, with stroke averages resulting in slightly higher correlations with on-

water velocities than pull-phase averages (Table 6.1). All of these measures of boat 

velocity were also strongly correlated with each other and with both SR and DPS on-

water. 
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Table 6.1: Spearman's correlation matrix results for comparison of all on-water and on-ergometer data. * indicates statistical significance (p < 0.05). 

 

 
VelSS Velmax 

10 m 
Time SR DPS 

Power 

pull,ave 
Power 

pull,max P0pull 
Power 

str,ave 
Power 

str,max P0stroke F0 V0 SFV 

Velmax r 0.95*              
(m·s-1) P <0.001              

10 m Time r -0.92* -0.84*             
(s) P <0.001 <0.001             

SR r 0.86* 0.86* -0.78*            
(spm) P <0.001 <0.001 <0.001            

DPS r 0.63* 0.62* -0.61* 0.29           
(m) P 0.001 0.001 0.001 0.166           

Powerpull,ave r 0.90* 0.90* -0.78* 0.83* 0.56*          
(W·kg-0.67) P <0.001 <0.001 <0.001 <0.001 0.004          

Powerpull,max r 0.90* 0.92* -0.77* 0.84* 0.55* 0.98*         
(W·kg-0.67) P <0.001 <0.001 <0.001 <0.001 0.004 <0.001         

P0pull r 0.88* 0.88* -0.76* 0.83* 0.54* 0.97* 0.97*        
(W·kg-0.67) P <0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001        

Powerstr,ave r 0.95* 0.96* -0.85* 0.86* 0.61* 0.94* 0.94* 0.92*       
(W·kg-0.67) P <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001       

Powerstr,max r 0.95* 0.96* -0.84* 0.85* 0.61* 0.91* 0.94* 0.89* 0.98*      
(W·kg-0.67) P <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001      

P0stroke r 0.94* 0.94* -0.86* 0.84* 0.63* 0.92* 0.91* 0.88* 0.97* 0.94*     
(W·kg-0.67) P <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001     

F0 r 0.90* 0.89* -0.81* 0.85* 0.52* 0.88* 0.87* 0.83* 0.90* 0.89* 0.89*    
(N·kg-0.67) P <0.001 <0.001 <0.001 <0.001 0.007 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001    

V0 r 0.43* 0.41* -0.32 0.37 0.34 0.63* 0.62* 0.68* 0.48* 0.44* 0.45* 0.25   
(m·s-1) P 0.032 0.041 0.11 0.071 0.098 0.001 0.001 <0.001 0.015 0.024 0.022 0.225   

SFV r -0.63* -0.63* 0.57* -0.59* -0.32 -0.49* -0.50* -0.40* -0.60* -0.65* -0.60* -0.78* 0.22  

 P 0.001 0.001 0.003 0.002 0.12 0.014 0.012 0.049 0.002 <0.001 0.002 <0.001 0.303  

SRopt,str r 0.77* 0.75* -0.72* 0.79* 0.34 0.67* 0.72* 0.71* 0.81* 0.80* 0.75* 0.62* 0.39 -0.39 
(spm) P <0.001 <0.001 <0.001 <0.001 0.103 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.057 0.057 
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 Discussion 

All power parameters correlated very strongly with all of the on-water performance 

variable (Table 6.1). meaning athletes who demonstrated higher power values also 

achieved a higher boat velocity and indicating power as measured on the ergometer can 

clearly be described as a determinant of sprint kayak performance. Of the six power 

variables, Powerstr,ave correlated most strongly with all of the on-water performance 

measures (Vss, r = 0.95; Vmax, r = 0.96; 10 m time, r = -0.85), although Powerstr,max and 

P0stroke exhibited almost identical r values. 

On-water performance variables displayed extremely high correlations between Vss and 

Vmax, and therefore each of these parameters has very similar correlations with all other 

measured variables, but time to 10 m demonstrates slight differences. This emphasises 

the different requirements needed in start performance relative to movement at speed, 

in agreement with many of the coaches interviewed in Chapter 3. The strong relationship 

between 10 m time and F0 also supports coaches belief that the start of an on-water 

effort is more of a ‘raw pull’, and is supported by research which has found kayak sprint 

start performance to correlate with maximal strength in gym-based strength exercises 

(Uali et al., 2012).  

Ergometer measured V0 has a significant correlation with boat velocity (Velmax and VelSS) 

but this relationship would be classed as ‘medium’ according to Cohen’s measures of 

effect size (Cohen, 1988) and is not as strong as that between F0 and boat velocity which 

shows a ‘strong’ effect size. This suggests that maximal force capacity is more important 

than maximal velocity to kayaking performance, directly opposing findings from athletics 

sprinting (Slawinski et al., 2017). Slawinski and colleagues were looking at the whole 

effort including acceleration, rather than just the steady state portion, which would affect 

the outcome. Maximal velocity was not statistically significantly linked to any of the other 

key variables, unlike in athletics where Morin et al. (2012) looked at the mechanical 

determinants of sprint running performance and concluded, in opposition to the current 

study, that a more velocity-oriented FV profile produced best performance. Maximising 

speed of movement may be less important in the on-water environment relative to 

sprinting as increasing paddle speed through the water may result in more ‘slip’ rather 

than a proportional increase in boat speed, which has been shown to correlate negatively 

with performance (Wainwright et al., 2015). 
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The findings of this study partially support the hypothesis that those athletes who are 

highly force-dominant would use longer, more powerful strokes (higher DPS) and that 

those who are velocity-dominant would use a higher stroke rate. F0 correlates 

significantly with DPS with a medium effect size, but V0 does not correlate with SR. In 

kayaking, increasing movement speed will not necessarily result in increasing boat speed 

if technical efficiency does not support the increase and DPS is reduced to a greater 

extent than SR is increased. The correlation between SR and F0 appears to indicate that 

those who are able to produce more force also use higher SR. There is no apparent 

theoretical reasoning for this, and the positive correlation may be the result of 

multicollinearity or an extended range of SR as seen in Chapter 4. The strong correlation 

between SRopt,str as measured on the ergometer and SR on-water provides further 

support that the ergometer well replicates on-water sprinting demands. 

Three differences between the ergometer and on-water task are that of balance, 

connection to the water and equipment. The current study appears to indicate that some 

athletes are not utilising their physiological capacity on-water, particularly their maximal 

velocity capacity, potentially due to an offset in one of the three above factors. For 

example, a forceful athlete may not have the balance to be able to use a high percentage 

of their force; they may have technical inefficiencies with the blade moving though the 

water without increasing boat speed; or they may have a sub-optimal paddle set-up 

which causes them to artificially raise or decrease their SR through changes in blade 

surface area or moment arm. Future research focusing on force and power measurement 

on-water will allow better understanding of these relationships. 

This study used multiple correlations and did not use the Bonferroni adjustment to the 

alpha value. While this might increase the risk of type I errors (false positives), the 

interpretation of one test is not dependant on the number of tests run (Perneger, 1998) 

and the Bonferroni adjustment is considered a very conservative measure, 

recommended to be used when it is highly important to reduce type I error, or when 

many correlations without theoretical basis are conducted (Armstrong, 2014), neither of 

which is the case in this study.  

The strength of the correlation between the ergometer and on-water performance allow 

coaches to understand where performance gains could be made. For athletes who are 

strong in the gym but cannot transfer that strength to water, the ergometer could help 
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direct training aims. If they are able to produce high power on the ergometer, they could 

focus on technical application of force in the boat, while if they are not able to produce 

high power, force generation at speed through multi-joint coordinated movements may 

improve performance.  

Previous research has concluded that an optimal SR must exist for each individual athlete 

(Plagenhoef, 1979; McDonnell et al., 2013b) as – contrary to the current study, and other 

group level analyses, showing strong correlations between SR and velocity –  world 

medallists do not always have the highest SR. McDonnell and colleagues attributed 

differences in optimal SR to strength, anthropometry, physiology and equipment, the 

significance of the correlation of F0 and power measures with SR goes some way to 

supporting some of these ideas. More research is needed to investigate the within athlete 

relationships of these factors.  

 Conclusion 

The high correlation found here between the normalised power measured on an 

ergometer and on-water performance demonstrates the value of the ergometer as an 

applied tool to optimise and individualise training. At group level, it seems that many 

factors relating to power, as well as maximal force generation, underpin multiple aspects 

of on-water performance. As well as being a valuable training tool, this also means any 

interventions on this ergometer can be directly linked to on-water performance, 

including paddle set-up parameters.  

The gradient of an athlete’s F-V profile has a ‘medium’ sized effect on on-water technical 

performance, with a significant correlation between F0 and DPS but none between V0 

and SR.  The correlations that cannot be supported by theory must be interpreted with 

caution and future on-water research at individual level would be of considerable value 

in understanding the interaction between capacity and technique. 
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 The Effect of Paddle Length on Power and 

Force Velocity Profiles 

 Introduction 

There is a paucity of research into the effect of paddle set-up on performance in sprint 

kayaking, despite coaches’ beliefs that research could have large benefits (Chapter 3, 

Section 3.3.4). Robinson et al. (2002) conducted a review of technology in sprint kayak, 

first highlighting the importance of force production to kayak performance and 

subsequently stating “technology absolutely dictates this relationship” (p. 68). Their 

review proceeded to discuss boat and paddle technology developments including the 

possible merits of the wing blade relative to a flat blade but did not discuss paddle set-

up parameters other than blade shape design, potentially due to the sparsity of research 

in the area to review at that time.  

There are currently no International Canoe Federation (ICF) regulations on paddle design 

or set-up. Many elite level paddlers use paddles made by manufacturers Jantex or Braca; 

of the 25 athletes in the elite and sub-elite categories in Chapter 5, 12 used Braca and 13 

Jantex. Each of these companies has different designs (primarily focusing on different 

shape of the blade), which then come in different blade sizes (changing the surface area 

of the blade while maintaining relative shape), and with different shaft lengths (Brača, 

2019; Jantex, 2019). Athletes then freely choose where their hands are placed on the 

paddle shaft and the angle of the blades relative to one another (feather angle). This 

results in five main factors of paddle design and set-up to be chosen by the athlete and 

coach prior to or after buying a new set of paddles (Figure 7.1). 
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The large number of variables associated with paddle setup is evident with some 

commercial companies (Epic Kayaks, 2019) using 15 independent variables within their 

algorithms for consumer paddle selection (Table 7.1). No justification or evidence is 

provided to support the outcome and no additional details could be found on the 

algorithm used by the website.  

Table 7.1: Information required by Epic Kayak's (2019) 'Paddle Wizard' to recommend a paddle set-up. 

Blade Shape Paddle Length 

- paddler type 

- boat style 

- stroke width 

- stroke length 

- average 500 m time 

- distance focus 

- weight 

- strength 

- height 

- paddler type 

- boat style 

- stroke width 

- stroke length 

- seat height 

- height 

 

 

Measurement Definition 

(a) Blade 
size 

Surface area of the blade. 
Available as small, medium and 
large etc.  

(b) Blade 
shape 

3D shape of the blade. 
International paddlers use ‘wing’ 
paddles which are concave in two 
planes. Multiple variants available  

(c) Paddle 
length 

Length of the paddle from the tip 
of one blade to the tip of the 
other. 

(d) Feather 
angle 

The angle between the face of 
one blade and the face of the 
other. 

(e) Grip 
width 

Distance between the hands on 
the paddle. Measured from the 
middle finger on the left to 
middle finger on the right.  

Figure 7.1: Diagrammatic representation of paddle set-up with labels and design measurement 
definitions. 
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Very few studies could be found that have quantified the influence of changing any of 

these paddle set-up parameters on performance (Table 7.2) and in those that have, 

methods used vary considerably. Each of the published research papers will be discussed 

below.  

The effect of changing blade shape has been investigated in a wind tunnel (Sumner et al., 

2003) and a towing tank (Jackson et al., 1992). Both methods are a simplification of the 

complex dynamic flow around the blade during a paddle stroke, and of the paddle path, 

but give insight into the forces acting on a wing blade (e.g. Figure 2.11) compared to a 

traditional ‘drag’ or flat blade of similar surface area. Sumner et al. (2003, p. 12) state 

that “the relative lateral motion between the water and the blade is kept to a minimum” 

during paddling. This contradicts the suggestion by Kendal and Sanders (1992) and 

Jackson et al. (1992) that lateral movement of the wing blade is important for generating 

lift forces and contributes to forward propulsion. Sumner et al. (2003) concluded that 

through yaw angles of ±20° and pitch angles of 0-30°, drag forces are slightly higher using 

a wing blade but found lift forces measured from a wing blade across all ranges to be 

indistinguishable from those of a flat plate. However, the 20 second measurement using 

steady-state flow conditions in a wind tunnel is not applicable to the short duration, 

dynamic movement of a sprint kayak stroke. In direct contrast, Jackson et al. (1992) used 

movement through water from stationary and found the wing paddle to have large 

increases in lift forces relative to the flat (or drag) blade, and to be considerably more 

efficient. Jackson measured ‘angles of attack’ from 0-90°, equivalent to the positive ‘yaw’ 

angles in Sumner et al. (2003), with a much broader range. Sanders and Baker (1998) 

outline six theoretical advantages of the wing blade: less energy is lost to moving the 

water; larger vortices increase paddle efficiency; the curved motion of stroke increases 

physiological economy; an increase in effective pull time; a longer duration at (sagittal 

plane) paddle vertical and a more effective use of athlete’s mechanical system. Although 

not all these theories have an empirical evidence base, Sanders and Baker (1998) cited 

their own applied (unpublished) research in support and discuss the high level of 

individuality in paddle path and in particular, the range of lateral movement, potentially 

indicating that athletes could benefit from different designs dependant on technique. No 

research could be found that has investigated differences between commercially-

available blade designs, meaning manufacturer’s claim that design changes that make 
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the blade ‘shorter, wider and more twisted’ create one that is “extremely aggressive 

[and] more stable with excellent exit” (Jantex, 2019) cannot be substantiated.  

Sprigings et al. (2006) used instantaneous force and velocity measurements from an 

ergometer to recommend an ‘optimal’ blade size for elite kayakers based on maximising 

power, having first outlined their expectation that “excessive energy will be lost during 

the main body of the race if the drag force created on the paddle blade is not matched 

with the individual muscle force-velocity characteristics of the individual.” Sprigings et al. 

looked at the cable velocity and force at which maximum power occurred and input these 

values, along with values for water density and blade drag force coefficient from previous 

literature, into the equation for drag to calculate recommended frontal surface area. 

Despite the authors’ comparison to F-V and P-V profiles, the graphs and descriptions used 

in the study indicate a power-time curve was used to understand where ‘peak’ power 

occurs, and it is not clear which stroke was used. Two of the limitations to this study were 

acknowledged by the authors: the use of an ergometer and the attempt of the athletes 

to recreate ‘500 m race pace.’ However, one of the largest limitations is the assumption 

that drag force is the only contributor to forward boat movement, with lateral movement 

of the paddle attributed to a constraint placed on the athlete by the width of the boat, 

rather than for any potential positive purpose such as utilising lift forces. Although the 

result revealed that the calculated blade sizes matched those already used by the elite 

athletes for five of the 12 elite athletes tested, and the remaining seven were 

recommended a 5-10% increase, this finding should be viewed with caution given the 

methodological limitations. Further, frontal area of the blade was determined using 2D 

digital images, therefore discounting any curvature and likely underestimating measured 

blade size. As no performance testing of different blade sizes was conducted, this study’s 

conclusions are based on the above assumptions and cannot directly inform the influence 

of changing blade size on any performance metric.  

Lee (2013a) compared two paddle set-ups on water but not with sprint kayaks or typical 

sprint kayak paddles so the author’s conclusions that a feathered blade (90° difference 

in blade face position) reduced stroke rate (SR) and increased distance per stroke (DPS) 

compared to a flat blade (same blade face angle) cannot be assumed to also apply in 

sprint kayaking. An abstract by the same author concluded that greater grip width 

resulted in higher trunk rotation and a decrease in boat stability, as measured by greater 

roll of the boat (Lee, 2013b). This finding is interesting but again, without additional 
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information on the boat, paddles and methodology used, it cannot be assumed to be true 

for sprint kayakers also.  

Regression modelling was used by Diafas et al. (2012) to compare the anthropometric 

and paddle data from 55 male and 26 female kayakers. Measurements included: height, 

mass, torso length, arm span, arm and leg lengths, paddle length, blade length and blade 

width. The conclusions of the authors that “paddle length is selected based on body 

length and morphology” (p.24) is not surprising, especially when taken in conjunction 

with the coaching ideas presented in Chapter 3 of this thesis of how to best set up the 

paddle. However, the lack of performance data means this method does not increase our 

understanding of how to optimise paddle set-up for individuals but does give an overview 

of the sizes typically used by sub-elite level athletes. Conversely, Ong et al. (2005) found 

anthropometrics only explained 20% of paddle length differences between athletes. Seat 

height relative to the cockpit top was found to be significantly different when the 

anthropometrics and equipment set-up of sprint athlete in the top 10 at the Olympic 

Games were compared to those who finished lower down and a trend for increased grip 

width in the top 10 athletes was reported but no other differences. These factors were 

not normalised to sitting height or arm span and differences are slight (best = 1.2 cm 

lower seat and 2.3 cm wider grip). This paper combined those in crew boats and across 

different race distances, so discrepancies due to these factors are disguised.  There is 

therefore very little research from which to advise paddlers as to how to choose their 

paddle length and research in this area will directly benefit athletes and coaches.  

Further investigating the relationship between grip width and anthropometrics, Ong et 

al. (2006) used group data to create a regression equations and subsequently used the 

equation to change grip width (grip width = 3.557 + [0.376 x height]) and seat-foot rest 

distance (-15.975 + [0.603 x height]) in three elite athletes. Athletes were tested once 

over a 100 m sprint in each of three conditions of grip width: preferred, regression 

predicted, and regression predicted plus one standard deviation (of group grip width).  

Predicted grip width was smaller than preferred for all athletes and predicted plus one 

SD was larger, although the magnitude of this difference varied (2.9, 4.2 and 5.6% for 

each athlete).  Changing away from what the athlete usually used to the predicted set-

up was found to result in decreases in boat speed (average 3.9%) for the two athletes 

with the largest magnitude of change in grip width, but an increase in boat speed for the 
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other athlete (2.6%). Decreasing grip width relative to preferred distance increased 

stroke length and reduced SR for all three athletes, while increasing grip width decreased 

SR with a variable effect on stroke length (two increased, one decreased). It is not clear 

how grip width was controlled while the athletes paddled and the use of only one trial 

and no additional measure of variability make these conclusions limited. Increasing grip 

width would decrease the distance between the lower hand and the centre of pressure 

but increase the distance from the top hand to the centre of pressure. Too little is known 

about the path and orientation of the blade in the water to understand what impact this 

would have and assumptions that could be made of a sagittal plane ‘pivot’ movement are 

likely an oversimplification. This highlights the difficulty in drawing conclusions from on-

water testing where there are many confounding variables and only a few repetitions are 

possible, allowing the value of ergometer testing to be emphasised.  

It is not clear if athletes were told how much or in which direction set-up was changed in 

Ong et al.’s (2006) study. An athlete’s belief that they are able to achieve a certain goal 

has been described as their self-efficacy (Bandura, 1977) and this has been found to 

influence performance, with a meta-analysis concluding that self-efficacy beliefs 

positively influence performance (Moritz, Feltz, Fahrback, & Mack, 2000). Therefore, an 

athlete’s perception of whether a certain change in equipment is likely to lead to 

improvements or detriments to performance may become self-fulfilling and blinding 

participants to change is worthwhile. No studies could be found that have blinded 

participants to interventions in equipment set-up to investigate performance changes, 

perhaps due to a perceived increase in injury risk or other ethical considerations. 

Physiologically, athletes have been found to be able to improve time trial performance 

when deceived about power output. By using a pacer set at 2% and 5% higher output 

than a baseline test but having been told the pace matched that at baseline, athletes 

were able to reduce completion time, reaching statistical significance in the 2% condition 

(Stone et al., 2017). While not influencing a mechanical aspect, this percentage change 

may therefore provide some guidance as to an intervention change which may not be 

detected but still creates meaningful change.  

Caplan (2009) found an offset between blade and shaft (Figure 7.2) to increase boat 

velocity in outrigger canoeing. Using modelling of paddle movement and forces, focusing 

on the sagittal plane, an offset angle of -20º between the blade face and the shaft 
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increased mean boat velocity by synchronising the moment the blade face was vertical 

with the maximal paddle velocity. These findings are only directly relevant for the specific 

athlete investigated as technique varies between athletes (Sanders & Baker, 1998). This 

example is also highly oversimplified as it was 2D and uses steady flow, and there are 

large differences between the strokes of single-blade outrigger canoeing and sprint 

kayaking. Despite this, the methodology of simulation modelling could provide a way of 

assessing paddle set-up changes without the confounding variables of the environment- 

provided the 3D kinematics and kinetics of the paddler and assumptions of the 

interaction with the water could be measured and validated. 

 

Figure 7.2: Diagram of blade offset angle (𝜷) described in Caplan (2009) 

No studies to date have manipulated sprint kayak paddle set-up parameters and 

measured the effect in on water performance in 3D. This is unsurprising as motion 

capture or force measurement systems that could be used for on-water measurement 

are still uncommon and the environment causes issues for technology, as highlighted in 

chapter 2. While force has been measured in 2D in canoe paddling (Tullis et al. 2018), 

sprint kayaking on-water force measurement is limited to 1D and/or makes limiting 

assumptions such as a fixed centre of pressure on the blade (Gomes et al., 2015; Nilsson 

& Rosdahl, 2016). Despite the importance of force and power to sprint kayak 

performance (van Someren & Palmer, 2003), the effect of changing paddle set-up on 

these metrics has not been assessed. The level of accuracy needed to measure 

differences between subtle set-up changes is very high and even if currently possible, the 

confounding factor of weather conditions would further reduce any practical 

implications. As such, ergometer studies investigating changing paddle set-up would be 

of particular value.  
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The importance of individual level analysis, particularly at elite level, has recently been 

emphasised (Bartlett et al., 2007; Glazier & Lamb, 2018; Glazier & Mehdizadeh, 2019). 

Variation between athletes has also been considered from a statistical standpoint, with 

Mullineaux et al. (2001) advocating the use of simple analyses to avoid problems 

combining individual and group level data. Despite these recommendations, there is no 

precedent within sport science research for individual-based analysis.  
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Table 7.2: Summary of research papers investigating paddle set-up parameters in kayaking. 

Authors Paddle set-up factor Study Design Brief Conclusions & Observations 

Jackson (1992) Blade shape Description from first principles & tow tank 

testing of blades 

Wing paddle is more efficient compared to 

flat blade design. Authors speculate that 

increasing size of vortex rings and SR will 

lead to improvements in performance. 

Sumner et al. (2003) Blade shape Wind tunnel testing of different blades A Norwegian-style wing blade resulted in 

higher force generation than a conventional 

or flat blade face. 

Sprigings (2006) Blade size Ergometer force application Individual blade size recommendations can 

be made using the force and power profiles 

of individuals. Most elite athletes were using 

blade size within 5% of predicted optimal. 

Calculations based solely on drag forces.  

Ong et al. (2006) Grip position On-water intervention Based on anthropometric correlations of 

Olympic kayakers, grip width was matched 

to a regression equation. Changing from 

what the athletes were used to resulted in 

decreased boat velocity.  
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Table 7.2 continued    

Authors Paddle set-up factor Study Design Brief Conclusions & Observations 

Caplan (2009) Blade offset angle Simulation modelling Mathematical modelling of paddle path 

demonstrated an offset angle of the blade 

face relative to the shaft results in better 

performance in outrigger canoe.  

Diafas et al. (2012) Paddle length Modelled anthropometrics against paddle 

set-up of elite 

Correlational analysis showed relationships 

between some anthropometric factors and 

paddle set-up. As no performance measure 

were used, the assumption is high level 

paddlers are using optimal set-up.  

Lee (2013a) Feather angle On-water intervention Sea kayak blades found to increase DPS and 

decrease SR with 90° offset between blade 

face compared with no offset.  
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Based on the limitations of on-water collection, it was decided that investigation into 

changes in paddle set-up should be conducted in such a way that the effect of the 

intervention could be clearly measured. Combining the data from Chapters 4 and 5, has 

shown the relevance of force-velocity and power-velocity profiling on the ergometer to 

on-water spring kayak performance, thereby providing a measurement system both 

relevant to performance and in a controlled environment. The same studies have also 

highlighted the need for individual analysis as differences between individuals can be 

hidden if only group analysis is conducted.  

 Aim & Research Question 

The aim of this study was to explore the differences in force-velocity and power-velocity 

profile resulting from changes in paddle length in experienced kayak athletes, with 

analysis at both group and individual level.  

Research question 7.1: does changing paddle length result in changes in force-velocity 

and power-velocity profiles? 

 Methods 

 Participants 

Ten elite (n = 3) and sub-elite (n = 7) kayak athletes took part in this intervention study 

(Table 7.3), categorised in the same way as in Chapter 4 (Table 4.2). Most participants 

had previously taken part in the ergometer study outlined in Chapter 4 and all athletes 

involved took part in this form of F-V testing approximately every 4-6 weeks. All 

participants had completed ergometer testing at least four times in the year prior to 

testing so no additional familiarisation was conducted. The methods used in this study 

are the same as those used in Chapter 4 so only the key details of the procedures will be 

repeated here. Ethical approval was gained from the University of Lincoln School of Sport 

and Exercise Science ethics committee. 

Table 7.3: Group level participants' characteristics for each gender (group mean ± SD) 

Gender N Age 
(years) 

Mass 
(kg) 

Height 
(cm) 

Arm Span 
(cm) 

Paddle 
Length (cm) 

Male 7 21.3 
± 2.7 

82.5 
± 4.5 

180.7 
± 4.5 

187.2 
± 4.2 

217.1 
± 1.2 

Female 3 25.3 
± 6.6 

72.1 
± 3.0 

171.4 
± 1.6 

177.4 
± 6.8 

215.0 
± 1.0 
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 Data collection 

Following a standardised warm up designed by the athletes’ physiotherapists and 

strength and conditioning (S&C) coaches (Appendix 2), each participant completed six 

trials on the ergometer: a total of two trials at each of three different paddle lengths. 

Trials were completed in randomised order without grouping for condition. The paddle 

lengths chosen were: matching that used when paddling their K1 (PLNORM); 1% of the total 

length longer (around 2 cm; PLLONG); and 1% shorter (PLSHORT) than PLNORM. The paddle 

length on the ergometer assumes a force application at a fixed centre of pressure of the 

blades 20 cm from the blade tip and the PLNORM is therefore 40 cm shorter than the paddle 

length would be on-water (see Chapter 4, section 4.2.2 and Figure 4.2a for detail). The 

1% change in length represented a typical change that might be made by a coach or 

athlete in the high-performance system. Single changes larger than this are highly 

unlikely to be made at one time and therefore results would be less likely to have impact. 

Grip position relative to the midpoint of the shaft and grip width were matched to on 

water set-up through use of 3D-printed grip markers (Figure 7.3).  

 

Figure 7.3: 3D printed grip markers to control hand position on the ergometer shown a) separately and b) on the 
paddle shaft. Collar shown on the paddle shaft used to disguise condition of trial.  

Athletes were not informed about the direction of the change and the central connection 

between the paddle was covered to reduce visible effect of changing length, as can be 

seen in Figure 7.3b. There were three minutes of passive recovery between trials 

(Hoianaski et al. 2007; Toubekis et al., 2005).  

Each trial was conducted in the same manner as in Chapter 4 (Section 4.2.3), with 14 

maximal standing strokes from a stationary start position. Additionally, calculations and 

processing were also replicated from Chapter 4 and a full description can be found in 

Section 4.2.4. Chapter 6 demonstrated that the strongest relationships between power 

and on-water performance were the stroke average values (Table 6.1). However, pull 

a) b) 
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power averages are reflective of a maximal capacity without reference to duty cycle so 

are also of interest for strength and conditioning coaches. Power measures for analysis 

were therefore: Powerstr,ave, Powerstr,max and Powerpull,ave.  

 Statistical analysis 

Data were analysed using SPSS (IBM SPSS Statistics for Windows, Version 22.0., IBM 

Corp., Armonk, NY) and Microsoft Excel (2016). Statistical significance for group analysis 

was set at p < 0.05. 

7.2.3.1 Group analysis 

Power (Powerstr,ave, Powerstr,max and Powerpull,ave) and theoretical maximal force (F0) were 

normalised to bodyweight0.67 (Jaric et al., 2005) as in Chapter 4 and discussed in Section 

2.8.1. Theoretical maximal velocity (V0) was not normalised. Group level one-way 

ANOVAs were conducted to compare the three measures of power, F0, V0 and SRopt,str 

when using the three different paddle lengths. The assumption of homogeneity of 

variance was met in all cases (p > 0.90), but F0 was non-normally distributed for all groups 

and although ANOVAs are reportedly robust to violations in the assumption of normality 

(Schmider et al., 2010), non-parametric Kruskal-Wallis tests were run additionally.  

To investigate if anthropometrics influenced an athlete’s responses, as might be expected 

based on coaches’ opinions (Section 3.3.4) and previous literature (Diafas et al., 2012; 

Ong et al., 2006), normalised stroke power was correlated against paddle length as a 

proportion of arm span (PLAS). As PLAS was found to be non-normally distributed, with a 

visually assessed ‘medium’ linearity (see Appendix 3 for examples), a Spearman’s rank 

order correlation was run. 

7.2.3.2 Individual analysis 

Typical intra-day variability for each individual was quantified using mean, standard 

deviation (SD) and coefficient of variation (CV; 𝐶𝑉 =  
𝑆𝐷

𝑀𝑒𝑎𝑛
∗ 100) of the Powerstr,max, 

Powerstr,ave, Powerpull,ave, F0, V0 and SRopt,str across five trials with normal paddle length in 

the testing session prior to the intervention. The SD was then used to calculate and upper 

and lower bound around the mean for PLNORM in the subsequent intervention testing. If 

the resulting values for PLLONG or PLSHORT were outside of the upper or lower bounds for 

the athlete, a change was considered to have taken place. Change was noted if values 

were outside 68% or 95% confidence intervals (mean + 1 SD and +2 SD respectively). As 
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each athlete’s values were only being compared to themselves, no normalisation was 

conducted. In addition, Cohen’s d for effect size was calculated for each athlete to 

compare PLSHORT and PLLONG against PLNORM.  

 Results 

For F0, the Kruskal-Wallis test revealed no significant difference (p = 0.98), in agreement 

with the ANOVA (p = 0.97). At group level, none of the performance variables were found 

to differ significantly between paddle lengths (Table 7.4) from the ANOVA (p > 0.05) and 

were in fact notably similar. 

Table 7.4: Group level stroke power, F0 and V0 for the three paddle length conditions (mean ± SD). P values are from 
ANOVA for stroke power and V0, and from Kruskal-Wallis test for F0. 

  

Paddle length as a proportion of arm length was found to correlate significantly and 

inversely with normalised stroke power (r = -0.397; p = 0.03; Figure 7.3). 

 PLSHORT PLNORM PLLONG p-value 

Powerstr,ave 
(W·kg0.67) 30.57 ± 5.67 30.58 ± 4.98 30.88 ± 5.42 0.98 

Powerstr,max   

(W·kg-0.67) 36.71 ± 5.27 36.75 ± 5.38 37.09 ± 5.34 0.97 

Powerpull,ave  
(W·kg0.67) 46.41 ± 8.81 46.09 ± 7.26 46.49 ± 8.81 0.99 

F0 
(N·kg-0.67) 16.18 ± 1.72 15.97 ± 1.61 15.86 ± 1.63 0.83 

V0 
(m·s-1) 11.39 ± 1.95 11.73 ± 1.71 11.75 ± 1.93 0.79 

SRopt 
(spm) 173.42 ± 25.98 170.16 ± 17.93 167.28 ± 13.63 0.62 
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Figure 7.4: Data showing the relationship between normalised stroke power and paddle length as a proportion of 
arm span. Shapes represent individual athletes; the trend line is calculated from grouped data. 

The intra-day coefficient of variation for athletes was 2.2 ± 1.5% (mean ± SD) for stroke 

power, 3.7 ± 2.4% for F0 and 4.3 ± 2.9% for V0.  

At an individual level, there was meaningful change in stroke power output for three 

athletes, with Athlete 39 achieving significantly higher power with a longer paddle and 

Athletes 10 and 7 significantly lower power when using a shorter paddle (Table 7.5). Four 

athletes (10, 11, 39, 49) opposed the group trend for F-V, with higher F0 with a longer 

paddle. Six athletes exhibited meaningful difference in F0, V0 or both (Table 7.5). 
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Table 7.5: Mean of stroke power, F0 and V0 for each athlete in each paddle set-up position. Light grey shading indicates value more than 1 SD away from normal paddle length values. Darker grey shading 
represents values over 2 SD of normal paddle length value. 
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10 75.3 F 511 515 501 646 629 618 726 728 729 267 265 265 11.9 12.1 12.1 176 177 179 

59 71.5 F 390 393 376 515 504 506 571 613 571 248 249 258 10.1 10.7 9.8 160 158 155 

7 78.5 F 435 435 421 519 515 512 676 682 660 243 244 246 12.3 12.3 11.8 149 150 152 

11 80.0 M 531 522 520 692 694 689 753 746 748 342 338 345 9.8 9.8 9.6 154 157 155 

66 82.4 M 713 706 705 812 812 818 1066 1062 1050 335 345 339 14.2 13.6 13.9 186 186 237 

9 84.9 M 611 615 620 709 709 711 910 924 937 261 267 265 17.2 16.9 17.5 169 173 172 

39 69.4 M 797 759 795 950 945 912 1160 1088 1154 362 354 371 14.1 13.6 13.6 192 199 189 

16 84.1 M 674 675 689 770 767 789 1033 1016 1055 296 308 310 16.0 14.8 15.4 164 170 170 

53 87.5 M 646 626 621 749 722 737 1076 1009 1060 317 327 337 15.5 13.7 14.1 166 160 169 

49 80.4 M 514 520 519 624 625 625 792 820 786 308 307 305 11.3 11.8 11.3 156 159 156 
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Table 7.6: Effect size of performance parameters in PLLONG and PLSHORT compared to PLNORM. Light grey shading indicates an effect size larger than 0.8.  

  Powerstr,ave Powerstr,max Powerpull,ave F0 V0 SRopt 

Athlete Gender PLLONG PLSHORT PLLONG PLSHORT PLLONG PLSHORT PLLONG PLSHORT PLLONG PLSHORT PLLONG PLSHORT 

10 F 0.38 1.23 1.38 0.87 0.15 0.11 0.53 0.08 0.46 0.00 0.48 1.05 

59 F 0.22 1.33 0.65 0.10 2.16 2.18 0.14 1.40 2.34 3.55 0.66 1.06 

7 F 0.02 1.16 0.25 0.22 0.42 1.40 0.26 0.40 0.51 3.97 0.24 0.25 

11 M 0.30 0.10 0.10 0.23 0.15 0.04 0.76 1.40 0.04 0.37 2.59 1.54 

66 M 0.58 0.10 0.09 0.86 0.08 0.27 1.40 0.95 1.41 0.60 0.05 2.76 

9 M 0.47 0.58 0.01 0.09 1.28 1.10 1.24 0.35 0.87 1.73 0.72 0.25 

39 M 5.96 5.66 0.71 4.44 4.51 4.09 0.72 1.53 0.70 0.01 0.85 1.20 

16 M 0.16 2.99 0.24 2.20 1.42 3.21 2.57 0.35 2.17 1.15 1.06 0.07 

53 M 2.23 0.52 3.30 1.83 6.57 5.02 0.76 0.74 1.92 0.45 1.30 2.00 

49 M 0.54 0.06 0.08 0.01 1.30 1.55 0.15 0.20 0.63 0.70 0.61 0.77 

Group - 0.06 0.00 0.06 0.01 0.05 0.04 0.07 0.12 0.01 0.12 0.18 0.17 
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 Discussion 

This study has measured the acute effects of changing paddle length on power and force 

production in elite and sub-elite kayakers for the first time. There was not a consistent 

response across the group, with athlete responses found to be highly individual. Pull and 

stroke powers resulted in different outcomes, with six athletes showing meaningful 

differences in Powerpull,ave but only three athletes exhibited a notable change in 

Powerstr,ave due to paddle length. In addition, notable changes in F-V profile (F0, V0 or 

both) were seen for six of the participants and two athletes exhibited a change in optimal 

SR due to paddle length change.  

At the group level, a 2 cm change in paddle length did not change power production, the 

maximum velocity with which the paddle can be moved (V0) or the maximal force that 

can be produced (F0) on an ergometer. This is supported by previous group level 

research: Martin and Spirduso (2001) used the iso-inertial load method in cycling and 

investigated the effect of five different crank lengths on power output and found only a 

4% variation across lengths that varied by 83%, which was only statistically significant at 

the extreme lengths.  

Individual effect sizes were calculated using the mean and standard deviation (SD) of the 

two trials per condition. The effect sizes reported in Table 7.6 result in a number of ‘large’ 

effects which are not apparent based on the ‘typical variability’ measure. It would be 

expected that the SD of five trials would be higher than that of two and therefore the 

measure of typical variability for ‘notable change’ is more conservative.  

For six of the ten athletes, F0 was higher with a shorter paddle compared to the matched 

paddle length, with notable increases for four athletes. If the paddle is considered in the 

sagittal plane as a simple 2D lever with a single pivot point (e.g. at the lower hand), a 

reduction in length outside the fulcrum (e.g. from the lower hand to the blade tip) would 

enhance the force output at the ergometer paddle tip for the same force applied to the 

paddle at the hands, as has been discussed to affect rowing oar set-up (Nolte, 2009). 

While this would be a clear benefit, the movement involved in paddling is not as simple 

as a 2D lever with a fixed pivot, and technical differences in paddling, such as lateral 

paddle movement, amount of trunk/hip rotation and arm kinematics may explain why 

enhancements in force with shorter paddles are not found universally, further supporting 

individual analysis.   
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Optimal SR changes were not consistent, with seven of the athletes reducing SRopt with a 

longer paddle (one notably), but five lowering SRopt with a shorter paddle.  In cycling, 

increasing crank length was found to result in a decrease in optimal pedal rate (rate at 

which peak power is achieved) and an increase in optimal pedal speed, with the trade-

off of these two parameters resulting in the small change in overall power (Martin & 

Spirduso, 2001). Maximum force and velocity are not reported by Martin and Spirduso 

(2001), the decrease in optimal speed with shorter pedals is likely to reflect a more force-

orientated profile, in similarity with many of the athletes tested here. As individual results 

were not reported in the cycling paper, it is not known if all athletes exhibited the same 

response.  

Longer paddles were found to result in a higher V0 for half of the athletes tested (notable 

for three; Table 7.5). A longer paddle may be expected to travel further for the same 

range of motion of the athlete so for the same stroke duration, an increase in velocity 

would be achieved. However, increasing length of paddle would also increase the 

rotational inertia which would then decrease velocity for a given force applied to the 

paddle. A trade off in the individual’s management of these factors may explain the 

differences found.  

The values for power found in this study are considerably higher than those found in 

other kayak ergometer research studies. Bjerkefors et al. (2018) reported values of 610 

W for male and 359 W for female using strain gauges attached to the paddle, while van 

Someren and Palmer (2003) reported ‘peak power’ of international 200 m athletes from 

the direct output of a commercial ergometer of 615 W. Many commercial ergometers 

use a stroke average, with ‘peak’ being the highest average stroke rather than the highest 

measured within one stroke. This may explain differences between the current study and 

the commercial ergometer data from van Someren and Palmer (2003), but Bjerkefors et 

al. (2018) did not use this commercial output. Differences between the published 

research and the current study may be due to athlete level, distance focus of athletes or 

the time relative to the season testing was conducted.  

Schofield (2015) reported stroke power, F0 and V0 for male 200 m and 1000 m focused 

paddlers measured on an isoinertial ergometer (Table 7.7). While some of the athletes 

reported in the current study are within the range of Schofield (2015) and overall stroke 

power is similar, the average F0 was lower and the average V0 was higher within the 
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current study. Schofield only reported means and standard deviations but the relatively 

high SD in that study indicates large inter-individual variation, with comparable SD in the 

current study for F0, although it is higher in stroke power and V0 (Table 7.5). The 200 m 

athlete group in Schofield’s study included three Olympic medallists so it might be 

expected that higher power outputs would be attained than both the 1000 m group in 

the same study, and the athletes in the current study. Schofield’s isoinertial ergometer 

did not account for bungee tension and only calculated power based on derivatives of 

flywheel velocity and therefore is likely to underestimate power output. Gore et al. 

(2013) attributed 20% of the underestimation (of 13-21% total) in a Dansprint ergometer 

to the lack of account of bungee tension. Increasing the mean measured in Schofield 

(2015) by 20% would result in an average of 824 W for 200 m paddlers, higher than the 

male average found in the current study, as would be expected for athletes of that level.  

Table 7.7: Selected power, force and velocity values from Schofield (2015) isoiertial ergometer testing of elite kayak 
paddlers. 

Variable 200 m (mean ± SD) 1000 m (mean ± SD) 

Stroke Power (W) 687 ± 62.6 613 ± 72.2 

Stroke Power (W/kg) 8.29 ± 0.65 7.32 ± 0.4 

F0 (N) 617 ± 91.9 592 ± 145.3 

V0 (m·s-1) 11.68 ± 1.42 10.64 ± 1.96 

 

 Individual differences  

The relationship between force and velocity was found here to be individually responsive 

to change as well as individually different, as shown in chapter 4. The underlying 

mechanics of F-V profiles have been covered in detail in Sections 2.8.2 and 4.1.1. 

Individual differences have been noted in F-V profiles by other researchers in jumping, 

sprinting, rowing and kayaking (e.g. Samozino et al., 2012; Samozino et al., 2016; 

Schofield, 2015; Sprague et al., 2007). An ‘optimal’ profile was described by Samozino et 

al. (2012) for vertical jumping and is detailed in Chapter 4 (Section 4.1.5), based on power, 

limb extension range and inclination of the jump; no research could be found that 

describes an ‘optimal F-V profile’ for cyclical movement and F-V profiles from sprinting 

do not correlate with F-V profiles from jumping (Jimenez-Reyes et al. 2018). In complex 

cyclical movements, ‘optimal’ for an athlete may be underpinned by intrinsic muscle and 

tendon mechanics and their interaction with the technique employed. This incorporates 



  

189 
 

factors such as: the individual muscle F-V and force-length relationships, muscle cross 

sectional area, muscle and tendon length, elastic properties of the muscle and tendon, 

antagonistic activation, primary muscles and joints used in the movement, cycle distance, 

cycle speed and range of motion. Clearly modelling an ‘optimal profile’ based on so many 

factors would be difficult but would be a valuable area for future research. 

It might be considered that anthropometrics could be causing differences between 

athletes as paddle lengths were relative to lengths already being used rather than a 

length proportional to an anthropometric length. Ong et al. (2006) found only 25% of 

variability (n = 42) in paddle length to be described by anthropometric measures of 

height, bi-acromial breadth, chest girth, arm length and arm span, indicating these 

measures are only a small factor in paddle length choice, despite height and arm reach 

(maximum height arm can reach vertically) being the only variables mentioned to guide 

choices for coaches (ICF, 2019). If there were a universal optimal PLAS, a clear relationship 

between PLAS and stroke power would be expected, which data at individual level would 

replicate. A larger range would be needed to understand how paddle length as a 

proportion of arm span affects power but individual and group level trends can be seen 

to diverge ( 

Figure 7.4). Taking key examples, Athlete 10 had the highest paddle length percentage 

and yet increased power with an increase in paddle length while Athlete 16 had the 

second shortest paddle and exhibited a (small) increase in power relative to matched 

length when using the shorter paddle. The results of this study combined with previous 

research (Ong et al., 2006; Diafas et al., 2012) indicate that anthropometrics do not 

provide a complete picture for optimising paddle set-up for individual athletes, although 

future research in the area, such as a paddle set-up intervention based on 

anthropometrics, would be valuable.  

Paddles are designed so that all of the blade and none of the shaft enters the water to 

allow for most efficient paddling. While viewed from the sagittal plane, it could be 

postulated that there is therefore an optimum length based on sitting height and arm 

length but this would be disregarding the reported lateral movement of the paddle 

(Sanders & Kendal, 1992), which has been found to vary between athletes (Therrien et 

al., 2012), as well as the complex 3D movement involved in kayak paddling. It is not 

known if any differences in paddle path between individuals are linked to 
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anthropometrics; future research in this area would greatly improve understanding of 

how paddles can be individualised. 

No previous research could be found that has used an athlete’s own variability to signify 

intervention change within sport science research. This method allows individualised 

measures of notable change to be calculated, which is extremely important in applied 

sport science as winning margins can be as small as hundredths of a second and the 

existence of individual differences in technical performance between athletes are known 

by coaches (e.g. Chapter 3).  

The individual coefficients of variation (% CV) found in this study are similar to those 

found in cycling: 3.3 ± 0.6% for power, 2.7 ± 0.9% for maximum velocity and 4.4 ± 1.0% 

for maximum torque (mean ± SD; Martin et al., 1997). Although used for validation and 

reliability check of equipment rather than to monitor change, Martin et al. (1997) used 

the same iso-inertial method in cycling and quantified % CV for participants over four 

trials, the same number used in the current study. The participants in Martin et al. were 

‘active males’ rather than high level performers and therefore % CV might be expected 

to be higher, but cycling is a more constrained movement than kayaking, which would 

likely reduce the variability, these two differences resulting in a similar level between 

high level kayakers and active males cycling.  

 Limitations & Delimitations 

The main limitation of this study was the use of an ergometer; to apply these findings to 

on-water performance would involve assumptions and disregard for the technique of 

sprint kayaking on-water. As highlighted in the literature review of this thesis (Chapter 

2), the forces applied by the paddle to the water are complex, three dimensional and 

require direct, accurate measurement of the paddle path and, as a result, are little 

understood. Combined with the relatively unknown effect of environmental conditions 

on performance, this makes biomechanical measurement of the effect small changes in 

paddle length on-water extremely difficult as it is not known whether any changes  are 

due to the paddle length intervention or to these other confounding variables. By using 

a towing tank, or other controlled indoor body of water, developing technologies may 

allow measurement of paddle path and forces in a controlled manner in the near future.  

In addition to paddle path differences, the paddle length on the ergometer is related to 

the paddle length used on water via an assumption of the centre of pressure acting a 
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fixed distance (20 cm) from the blade tip. As discussed in Section 4.4.1, a fixed centre of 

pressure may not be realistic as data on a canoe blade shows changes throughout a 

stroke (Morgoch et al., 2016). As a canoe blade is flat, more movement of the centre of 

pressure may be expected than in the spoon shape of a kayak wing blade. A fixed centre 

of pressure has regularly been assumed for force measurement on-water as well as on 

ergometers (Aitken & Neal, 1992; Gomes et al., 2015). The effect of paddle length 

changes on the centre of pressure path are not known and warrant further research when 

the technology is available.  

The percentage changed used in this study was very small (1%) but reflected what would 

be used by coaches in the elite environment. By using a larger magnitude of change, it 

might be expected that bigger effects would have been found- both positive and 

negative. However, measurement making large changes could also risk missing a ‘peak’ 

as groups of elite athletes are unlikely to be using paddle set-ups with large detrimental 

effects. As the overall aim of this thesis was to better inform coaching of elite sprint kayak 

performance, conclusions based on a realistic change were deemed pertinent. Larger 

changes with development level athletes would be valuable future research.  

Sprint kayaking features 200, 500 and 1000 m events and the focus distance of athletes 

used in this study was not controlled. Athletes focused on different events train 

differently; for the 1000 m event, efficiency is of high importance, while 200 m athletes 

focus more on explosive power (van Someren et al., 2000; van Someren et al., 2008). As 

well as measured differences in P-V and F-V reported for different distance focus 

(Schofield, 2015), these differences may lead to changes in paddle path, stroke length 

and stroke rate which would mitigate how changing paddle length would influence on-

water performance.  

 Application  

A 2 cm change in total paddle length is likely to be used by coaches in a trial-and-error 

attempt to better match an athlete to their paddle. This is most likely to happen at 

development level as elite athletes are generally considered to have ‘reached their own 

natural optimal set-up’ (Chapter 3, Section 3.3.9). Decision making for this kind of change 

would typically involve feedback from the athlete, and the coach’s perception of whether 

technique looked to improve relative to normal set up. This study shows that in 

experienced kayakers there is unlikely to be a meaningful physiological power 
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enhancement from this magnitude of change of paddle length. However, this finding was 

not unanimous and there was a notable improvement in power for one athlete (Table 

7.5) and there may be larger improvements found for athletes with less experience. This 

testing could be used as a first step in paddle length change with an improvement in 

power indicating a strong rationale for trying a particular length change on-water. As a 

cultural change to evidence-based decision making, this testing could be particularly 

valuable at development level, but that does not negate the opportunity for potential 

performance improvements in already successful performers, as with some of the 

athletes in this study.  

In addition, changes in the F-V profile due to paddle length change can also be used to 

inform training. By understanding how an athlete responds to changes in length, the 

paddle itself could be used as a training constraint to enhance specific targets, in a similar 

way to swimmers using fins or paddles (Cardoso, Carvalho & de Souza 2013). For 

example, if decreasing kayak paddle length decreases an athlete’s maximal velocity 

output and that is an area the coach is trying to improve, the paddle could be shortened 

for certain sessions, although an awareness of the possible impact on technique would 

be needed.  

The differences between individuals and their different responses to paddle length 

changes may also present an opportunity for crew boat selection; by matching paddlers 

according to their F-V profile, or by using a change in paddle length to create more 

similarities in the athletes’ profiles, improvement in crew boat performance may be 

found, although more research will be needed in this area.  

 Future research 

This study has highlighted a number of areas for future research. The current study 

investigated the acute effects of changing paddle length by 1%. Larger magnitude of 

change or an acclimatisation period prior to testing using the new paddle length may 

result in different results.  Similarly, using the same testing protocol in the current study 

but with developing athletes, potentially in collaboration with larger magnitudes or 

acclimatisation, would also be valuable future research.  

The potential causes for individual variation in performance are numerous and to truly 

understand the causes of individual differences, invasive, time consuming and expensive 

experimentation would be needed. Understanding variables individually would add to 
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knowledge about factors affecting performance but an understanding of all of these 

factors within one cohort is currently prohibitively difficult.  

As well as understanding the causes of individual differences, future research could focus 

on the on-water effect of changes in paddle set-up. While the technology and/or research 

environment is not readily available, using motion capture with indoor towing tanks or 

IMU-based systems on regatta courses during calm environmental conditions could allow 

first, a better understanding of paddling mechanics and second, an understanding of the 

influence of paddle set-up on these mechanics. Investigating these at an individual level 

would be most valuable for elite athletes, but group level conclusions may have value for 

younger or developing athletes.  

As mentioned in the application section above, this research could have large 

implications for selecting athletes for crew boats. Current crew boat selection is 

described by coaches as ‘an art’ with little science to guide decision making (Chapter 3 

section 3.3.10). There is very little published research on crew boats and none which 

could be found that has looked at biomechanical measures underpinning conversion of 

individual to crew boat performance.  

 Conclusions 

Changing paddle length can affect power production and created changes in the F-V 

profile of individuals within a group of experienced sprint kayak athletes. Notable 

changes in Powerstr,ave were present for three athletes. Small changes can be meaningful 

at elite level and with a larger or less well-trained group, additional and bigger changes 

might be expected and future research in this area would be beneficial. The changes in 

F-V could be used by coaches to create training constraints based on individual aims. A 

new analytical approach defining notable change based on individual variation has been 

presented and has considerable value for the applied practitioner as it provides a way of 

marking individual specific meaningful change for any intervention or training block. The 

highly individual nature of changes in the F-V and P-V profiles caused by changes in 

paddle length in this group demonstrates that there is not one optimal paddle length, 

even when normalised to arm span, and emphasises the importance of this form of 

individual analysis for both research and applied practice.  
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 General Discussion 

 Thesis structure 

The research in this thesis was conducted in collaboration with a kayak National 

Governing Body and it was therefore vital that research was of value to the staff and 

athletes who it was being conducted to support. By putting those who would most use 

the research (coaches) at the centre of it, through interviews to establish variables of 

highest importance, the subsequent aims were based on performance questions valid to 

the elite environment. 

To develop and achieve these aims, the research can be considered in three parts, as 

shown in Figure 1.2: the first identified key factors to performance through literature and 

expert coaching knowledge; the second measured key ergometer (force and power) and 

on-water (velocity, SR and DPS) variables at a group and individual level and the third 

investigated how force and power variables change due to an intervention on paddle 

length on an individual basis. 

Section one contained both a review of literature and a qualitative interview-based study 

with elite sprint kayak coaches. While the key determinants of performance for kayaking 

had previously been summarised from research (McDonnell et al., 2013a; Figure 2.1) and 

calculated from a small group of athletes (Wainwright et al., 2016; Figure 2.2), it was not 

clear if these research conclusions reflected the beliefs of coaches. Directly comparing 

coaches’ opinions to research conclusions inevitably involves some interpretation as the 

language used is not the same, but drawing from these fields allowed identification of 

areas that lack empirical evidence and where quantitative data would add value to 

coaching practice.  

An area lacking in empirical evidence, but of high importance to coaches, was that of 

individualisation in performance, which led to the shaping of Section 2 of this thesis. 

Sports biomechanics research has traditionally reported only means and standard 

deviations of groups of athletes, apparently stemming from the outdated biomechanics 

view that there is a single optimal performance strategy and that the nearer an athlete is 

to that movement strategy, the better they will perform. In elite sports this is not the 

perception; research conducted with elite kayakers shows high inter-individual variability 

in technical performance (e.g. Sanders & Baker, 1998), matching conclusions from the 
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coaching interviews (Chapter 3). Chapters 4 and 5 therefore assessed the individual 

differences in factors considered to be fundamental to sprint kayak performance at elite 

level: the relationship between force and power generating capacity in Chapter 4 and 

that between stroke rate (SR), distance per stroke (DPS) and boat velocity in Chapter 5.  

Following on from having established the importance of individual analysis using the 

information gained in Chapters 4 and 5, the relevance of force-velocity (F-V) and power-

velocity (P-V) profiling in Chapter 6, and the limited knowledge expressed by coaches in 

the field, section three (Chapter 7) investigated how these individual measures can be 

used to assess the highly under-researched area of paddle set-up, specifically paddle 

length. 

The aims, research questions and context for each study will be outlined below and 

subsequently the methodologies employed will be critically reviewed. Following this, a 

review of the contribution of new knowledge of this thesis will be conducted and 

recommendations for coaches provided. Finally, suggestions for future research will be 

proposed.  

 Addressing the research questions  

 Chapter 3: Coach interviews 

Aim: to explore expert coaches’ technical knowledge of sprint kayaking across four topic 

areas (technique, paddle set-up, crew boats and feedback) and subsequently compare 

their experiential knowledge to existing empirical evidence and inform research. 

Research Question 3.1: what are the key determinants of performance according to 

expert sprint kayak coaches? 

To document coaches’ beliefs and ground the research with applied purpose, 12 

experienced sprint kayak coaches were interviewed. By posing open questions, the 

variables the coaches raised could be considered the factors they believed to be most 

important. Although the language used varied between coaches, making comparisons 

more difficult to draw, six primary mechanics-related areas were identified: water 

interaction, boat connection, kinematics, force/power, SR/DPS and influence of weather.  

The key parameters described by coaches reflected the models in biomechanics literature 

to different extents. McDonnell et al. (2013a) used previous research to create a 

descriptive model and included SR/DPS and ‘water phase displacement’ which might be 
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considered to reflect coaches’ mention of water interaction but they did not mention any 

of the other areas highlighted by coaches as important. Gomes’ (2015) theoretical model 

includes factors that could be considered to reflect all coach highlighted areas 

Wainwright et al.’s (2014) theoretical model was tested statistically and the resultant 

model includes the same factors as Gomes’, with the exception of boat connection. 

The lack of both coach ‘buy-in’ and relevance of research questions have been found as 

barriers to the application of sport science research (Fullagar et al., 2019; Tate, Elmarie, 

Zarko, & Vermeulen, 2017). By putting coaches’ beliefs at the foundation of the research 

questions and having considered the emergent themes against the deterministic models 

for mechanical validity, these barriers were removed, resulting in more impactful 

research.  

Research Question 3.2: how does expert coaching knowledge compare to existing 

biomechanical research in sprint kayaking? 

Each of the mechanical constructs identified by coaches was discussed relative to theory, 

in line with Lees (1999) statement that “[when measurement variables are chosen by a 

coach] …the biomechanist has a duty to try and relate specified variable to an appropriate 

theoretical basis” (page 301). Identified mechanical areas were then compared with the 

literature available in the area; all six had been the subject of research at some level.  

Research varied from investigating factors while removed from human performance, for 

example Jackson et al. (1992) using a towing tank to investigate the interaction between 

an isolated paddle blade and water, to highly applied methods such as McDonnell et al. 

(2013b) using televised footage of international racing to investigate typically used SR. 

These methodologies clearly had different aims: while McDonnell’s research confirmed 

coaching opinion that SR varies between individuals, Jackson’s research was likely not 

intended for coaches. The discussion of drag and lift forces, however, can still be related 

to coaches’ descriptions of pulling and downward forces, pressure on the blade and 

mechanical efficiency. Areas such as boat connection and water interaction require 

complex technology to address in detail; ideally measurement would involve 3D 

kinematics and force on-water without changing the constraints of paddling (i.e. the mass 

of the paddle or the boat). Although features of this have been measured in isolation (e.g. 

foot and seat forces, Nilsson & Rosdahl, 2014), coaches frequently referred to the system 
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(athlete-kayak-paddle) as a whole, indicating isolated research would be less likely to add 

immediate value to their work.  

The kinematics of sprint kayaking have been investigated both on an ergometer (Limonta 

et al., 2010) and on-water (Begon et al., 2008), but this factor showed some disagreement 

between coaches. While some believed specific movements are needed to perform 

optimally, others did not place importance on specific kinematics to overall boat speed. 

Interestingly, this reflects research that has traditionally felt the need to find an optimal 

movement pattern but has more recently highlighted the value of variability in 

movement (Glazier & Mehdizadeh, 2019).  

Force, power, SR and DPS were mentioned numerous times by coaches, have been 

subject to research within the literature and have clear theoretical links to performance. 

However, research has frequently been limited by methodologies employed such as 

poor-quality footage for SR detection in McDonnell et al. (2013b) or isometric only force 

measurement and commercial power output in van Someren and Palmer (2003). In 

addition, these authors both strove to detect differences between groups, with little 

regard for individual differences, which many coaches emphasised as important, 

highlighting these areas as valuable prospects for individualised, applied research. 

 Chapter 4: Ergometer profiling 

Aim: to investigate and compare the F-V and P-V profiles of elite, sub-elite and club level 

sprint kayakers to increase understanding of performance in kayaking and the extent of 

the individuality of profiles. 

Research Question 4.1: do power and force-velocity relationships explain differences in 

performance level? 

Pull power was measured in three ways (Powerpull,ave, Powerpull,max and P0pull) and all 

three, along with F0, were found to differentiate between performance levels, with elite 

athletes exhibiting the highest power with a significant difference relative to sub-elite 

and club paddlers (Table 4.4). This implied that force was a strong determinant of power 

between groups. Along with the differences in SF-V, this would indicate athletes at sub-

elite and club level should focus on force development to improve power. The standard 

deviation was high for F0, theoretical maximal velocity (V0) and SF-V (gradient of the 

resultant force-velocity profile), alluding to the high individual variation even within the 

group level conclusions. Splitting the data according to gender resulted in similar trends 
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but different statistical significance. Effect sizes were large, highlighting more differences 

between groups and indicating meaningful differences exist which did not reach 

statistical significance.  

In agreement with the current study, power has been found to distinguish between 

international and national level athletes when quantified using a modified Wingate test 

of 30 second duration, although the force and velocity components were not reported 

(van Someren & Palmer, 2008). Measurement of force during on-water paddling has been 

found to be higher in higher level athletes (Fisher et al., 2013) but no measurements of 

power could be found on-water, likely due to the difficulty of measuring the paddle 

velocity required to calculate power from force data. Power and force differentiating 

between performance levels agrees with the conclusions of Dorel et al. (2005) in sprint 

cycling but contradicts conclusions in athletics sprinting where power and V0 correlate 

to performance but F0 does not (Morin et al., 2012). 

The isoinertial ergometer developed for this research, based on designs used in cycling 

(Martin et al., 1997) and rowing (Sprague et al., 2007), also accounted for bungee tension, 

avoiding the underestimation of power found in previous research (Gore et al., 2013). 

Individual F-V and P-V profiles were created within 12 strokes in a kayak relevant 

movement, meaning that testing was efficient, and results are relevant to kayak 

performance; the importance of sport-specific measurement has been established as 

differences in profiles between counter movement jumping (vertical) and sprinting 

(horizontal; Jimenez-Reyes et al., 2018). 

Research Question 4.2: how well do group level average profiles represent the individuals 

in the group? 

Looking at individual athlete’s data, Chapter 4 showed different force-velocity profiles for 

individuals, even with similar values for power output (Figure 4.7), in agreement with 

Samozino et al. (2012). By correlating F0 and V0 of at least 12 trials against stroke power 

per individual, differences in how athletes generate power could be seen. For eight 

athletes, F0 was found to positively and significantly correlate with stroke power, in 

agreement with the group conclusions. However, this relationship was not significant for 

the remaining 10, six of whom exhibited negative (non-significant) correlations between 

stroke power and F0. A positive correlation between V0 and stroke power was found for 

14 athletes and was statistically significant for five.  
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These results highlight how group level conclusions can disguise individual differences. 

Identification of the contrasting conclusions that can be drawn from group and individual 

analysis is not new; Yeadon and Challis (1994) found that a group of high jumpers 

demonstrated a linear relationship with approach velocity and maximum jump height, 

while plotting an individual’s velocity against jump height results in an inverted U 

relationship between the two variables.  

Despite recommendations advocating research based on individual athletes (e.g. Bartlett 

et al., 2007; Glazier & Mehdizadeh, 2019), little research could be found that has 

investigated differences between individuals in any performance variable. Force and 

power velocity profiles, however, have been investigated at group and individual level. 

Differences were detected in different sports (Giroux et al., 2016), with further research 

indicating trends for different sports but large individual differences (Haugen et al., 

2019). In agreement with this, Morin and colleagues found large differences between 

athletes when profiled through jumping or sprinting (e.g. Morin & Samozino, 2016; Morin 

et al., 2012; Samonzino et al., 2012).  

 Chapter 5: On-water profiling 

Aim: to investigate the inter- and intra-athlete variability in SR and DPS, in order to gain 

insight into whether individuals are using these two parameters in different ways to 

maximise velocity.  

Research Question 5.1: is SR or DPS more important in determining boat velocity in a 

group of elite sprint kayakers? 

Across the 25 athletes who took part in the study, SR and DPS both significantly correlated 

with boat velocity, although SR exhibited the stronger relationship (r = 0.87 vs r = 0.67). 

This would imply that SR was the more important factor to enhance to improve 

performance in sprint kayaking, assuming changes are equally attainable. However, 

dividing data according to gender showed the relationship to subsequently only be 

significant for female athletes. 

Stroke rate and distance per stroke have previously been found to dictate boat velocity 

in sprint kayaking (e.g. McDonnell et al., 2013b) and SR has been found to differentiate 

between performance levels (Brown et al., 2011), in agreement with the current study. 

Drawing on a sport that has been subject to considerably more research in this area, 

athletics sprinting has the same cyclical relationship between step length and step 
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frequency and many research studies have aimed to discover which of these parameters 

is more important, although with inconsistent results (e.g. Morin et al., 2012; Nagahara 

et al., 2018; Debaere et al., 2013; Weyand et al., 2000), potentially indicating there could 

also be more complicated answers in sprint kayaking. With this inconsistency in mind, it 

would be reasonable to suggest that the interplay between stroke length and rate in 

kayaking may be more complex compared to equivalent land-based events, and 

therefore requires much more kayak-specific research attention to understand how 

these factors influence performance. 

Research Question 5.2: do individual elite athletes use SR and DPS in different ways to 

achieve boat velocity? 

Taking a minimum of 18 efforts each from a sub-group of 15 athletes, boat velocity was 

correlated against SR and DPS for each individual athlete. Eleven athletes exhibited 

significant correlations between SR and boat velocity, six of whom had significant 

correlations with both SR and DPS. An additional three showed significant correlations 

between boat velocity and DPS only. Investigating the data at this level showed that an 

increase in SR, as would be recommended based on group level conclusions, would not 

necessarily be beneficial for three athletes.  

In a similar study in athletics, sprinters have been individually classified as step length or 

step frequency ‘reliant’ based on the strength of correlations of those parameters with 

velocity of 10 races per athlete (Salo et al., 2011). Their finding of large differences 

between individuals agrees with the conclusions of the current study, and goes some way 

to explaining the discrepancy in research conclusions on the importance of step length 

and frequency in sprinting. 

By understanding how individual athletes develop boat velocity, coaches can modify 

training to be more efficient. In addition, this information could be used when grouping 

athletes for crew boats; it is likely if an athlete who has a significant correlation with SR 

is paired with an athlete who has a significant correlation with DPS, they are likely to be 

compromised when paddling together, although further research in this area would be 

needed to clarify this.  

Research Question 5.3: is the relationship between SR and DPS with velocity determined 

by anthropometrics? 



  

201 
 

Initial correlations between boat velocity, SR, DPS, arm span and body mass revealed 

significant relationships of arm span with boat velocity, body mass and DPS. However, 

once data were divided into male and female, these correlations did not reach 

significance, indicating the apparent relationship may be an artefact of the combination 

of two sub-populations spanning a greater range of values. 

Various anthropometric factors have previously been linked to kayak performance by 

comparing elite with less experienced athletes or the average population (Table 2.7), but 

these comparisons have not looked at the intervening factor of SR. It might seem logical 

that someone with longer arms might use longer strokes, but lack of significant 

correlation once divided by gender indicates this is not the case. In a similar way, in 

distance running, leg length has not been found to correlate with step length (Cavanagh 

& Kram, 1989), although the focus during distance running is on efficiency, rather than 

speed.  

 Chapter 6: Ergometer vs. on-water performance 

Aim: to investigate the relationship between power and FV ergometry profiling and sprint 

performance in kayaking.  

Research Question 6.1: do force- and power- velocity profiles determine on water 

performance in a group of elite kayakers? 

Six measures of power during ergometer paddling were all found to be strong 

determinants of on-water performance, with strong positive correlations between all 

power measures and all on-water measures (steady state boat velocity, time to 10 m and 

maximum boat velocity), although stroke-averaged power consistently had the strongest 

relationships (Table 6.1). In addition, strong correlations between F0 and on-water 

performance were also present, indicating force generating capacity is also a determinant 

of performance. This agrees with Chapter 4, where power and F0 were shown to 

differentiate between performance levels.  

The strong relationship between power and sprint kayak performance is supported by 

previous research (van Someren & Palmer, 2008). Although the correlation between F0 

and on-water performance has not previously been investigated, it is not supported by 

previous research in kayaking which has found no correlation between bench press or 

pull up strength and on-water performance, lending value to the importance of force 

application in movement pattern relevant to performance. These strong relationships 
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provide value in particular to strength and conditioning coaches who can investigate the 

transfer of force and power development in the gym to the likelihood of on-water 

performance gains.  

Research Question 6.2: does the gradient of an athlete’s force-velocity profile relate to 

their use of SR and DPS? 

Group level correlations indicated that the gradient of the force-velocity relationship was 

linked to boat velocity, with a more force-orientated profile (steeper F-V gradient) 

positively linked to 10 m time, Velss and Velmax as well as to SR and DPS. V0 measured on 

the ergometer did correlate significantly with Velss and Velmax, but with a smaller effect. 

F0 had significant relationships with all on-water variables, as well as with stroke power 

on the ergometer. This agrees with the group level conclusions from Chapter 4 and 5 as 

SR was found to correlate with boat velocity and F0 correlated with stroke power, so the 

similar correlations might be expected. The individual differences exhibited in Chapters 

4 and 5 warrant the use of caution in interpreting this group-level only analysis. 

The SF-V comparisons partially supported the logical hypothesis that those who are more 

force-orientated would be likely to utilise longer strokes and higher DPS and vice versa, 

with SF-V (higher value is more force-orientated) negatively correlated with SR, and a 

correlation between F0 and DPS, although not between SR and V0. The only previous 

research found that directly investigated the relationship between F-V profiles and 

technical performance in any sport was in athletics 100 m sprinting (Morin et al., 2012). 

The researchers concluded that a velocity-orientated profile was a determinant of 

performance as was step frequency, but step length was not, showing a link between F-V 

profile and technical performance. Although further research would be needed, this may 

indicate additional avenues for technical change within kayaking are available as 

increasing strength may lead to increased distance per stroke. 

 Chapter 7: Paddle length intervention 

Aim: to explore the differences in force-velocity and power-velocity profile created due 

to changes in paddle length in experienced kayak athletes, at both group and individual 

level.  

Research question 7.1: does changing paddle length result in changes in force-velocity 

and power-velocity profiles? 
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A change in paddle length as small as 1% was found to elicit changes in power and force-

velocity profiles when using individualised measures of change. As with previous studies 

on Chapter 4 and Chapter 5, group level power, force or velocity data were not significant 

but individual athletes showed different responses. Three athletes showed notable 

differences in Powerstr,ave while six had changes in maximal force or velocity.  

All previous investigations of paddle set-up have been severely limited in methodology 

(e.g. Lok et al., 2013) or assumptions made (e.g. Sprigings et al., 2006) and none had 

previously investigated the effect of changes in paddle length on performance in any way 

(Table 7.2). Ong et al. (2006) found changes in paddle and boat set-up to measures 

determined from regression equations of anthropometric and equipment set-up of 

Olympic kayakers to result in different changes in the three athletes investigated, in 

agreement with the current study. Values from the regression resulted in increases in 

grip width for all, effectively reducing the distance between the hand and the point of 

force application, as would be done by reducing the paddle length in the current study. 

Ong’s findings of an increase in boat speed for one athlete and decreases for the other 

two reflects the differences in power change in the current study but without the ability 

to define whether these changes were notable as Ong investigated only one trial in each 

condition. Similarly, changes in the relationship between SR and DPS were different 

between athletes, as F0 and V0 were in the current study. The importance of 

understanding equipment set-up on an individual, rather than group, basis for elite 

athletes is clear.  

 Critical appraisal of research design  

The research studies described above were designed to capture all relevant information 

in an ecologically-valid way, while not negatively impacting on elite athletes’ training 

schedules. The differences in methodological approach between the studies mean the 

limitations and delimitations are discussed below as individual studies.  

 Chapter 3: Coach interviews 

8.3.1.1 Subjective analysis 

To document coaches’ knowledge, interviews were conducted. This qualitative 

methodology is innately influenced in both the collection and analysis stages by the 

principle researcher. Production of a question guide (Appendix 1), member checking 

process and a relatively large participant group, using the entire senior and development 
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coaching teams, reduced the impact of these factors as much as was possible (Creswell 

& Miller, 2000; Smith & Sparkes, 2016).  

Semi-structured interviews follow a guide but also allow probing questions and 

development of ideas, allowing coaches interviewed to expand on points they think 

relevant. However, interviews are inevitably influenced by the researcher who has their 

own epistemologies and ontologies with regards to the research, and the relationship 

between the interviewer and interviewee, which may also affect the quality of the data 

collected. These are not necessarily considered flaws in qualitative research (Smith & 

Sparkes, 2013) but should be acknowledged.  

Qualitative researchers have recommended the number of participants should be large 

enough to reach ‘theoretical saturation’ (O Reilly & Parker, 2013) where any additional 

interviewees are highly unlikely to add additional themes to the analysis. Theoretical 

saturation was not reached in this study, despite interviewing twelve coaches, all working 

for the same organisation and all coaching high-level athletes, representing the entire 

population meeting the criteria. The range of opinions, emphasis and vocabulary were 

important factors of note in reviewing interviews. Although this means factors 

considered ‘key’ to performance were not unanimous, a range of important constructs 

were identified. Future studies could focus on reaching a consensus between coaches in 

order that a new model based on coaching beliefs could be created.  

 Chapter 4: Ergometer profiling 

8.3.2.1 Cross sectional design 

The primary research question in Chapter 4 was how the power and force-velocity 

profiles of athletes of different experience levels varies. This form of cross-sectional 

design is commonly used in biomechanics research to determine the factors that 

differentiate between levels. This form of analysis is relatively simple to process but is 

affected by the variation in each population, which is often overlooked or considered 

noise (Schmidt & Lee, 2005).  

At group level, few significant differences were found. The graphical representation of 

the group F-V profiles could lead to inference of differences between groups despite non-

significant difference and no consistent pattern. The lack of significance was due to high 

levels of individual variation, which is important information that can be used to 

individualise training. This level of information would be entirely missed if cross sectional 
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design alone was used and F-V might be considered unimportant to performance, 

highlighting the value which should be placed on including individual analysis alongside 

group conclusions in future research.  

8.3.2.2 Ergometer replicating on-water kinematics 

The ergometer base was a standard Dansprint ergometer, whose use has been found to 

result in some kinematic and muscle-activity differences from on-water paddling 

(Fleming et al. 2012). Although an ergometer does not replicate on-water conditions, as 

the aim of the study was not to replicate or measure kinematics or muscle activity 

patterns, this is not considered a prohibitive limitation. The widespread use of this base 

ergometer in elite sport and the subsequent correlation with on-water performance 

justify use of this ergometer. In addition, the inclusion of force measurement of the 

bungee improved the accuracy of measurement, without which errors of around 20% 

have been found (Gore et al., 2013). How an ergometer relates to on-water must always 

be considered to provide context for conclusions in any future ergometer research. 

 Chapter 5: On-water profiling 

8.3.3.1 Environmental effects 

Environmental effects are known to influence performance during on-water kayaking, 

with water temperature and wind speed having clear mechanical relationships with drag 

force, as described in Chapter 5. To reduce the effects of weather conditions on results, 

a combination of a wind threshold and a weather model were used. As this form of 

theoretical model is very difficult to validate, the combination of two methods was 

considered best. A cut-off level of 4 m·s-1 is higher than what has been used previously 

(3 m·s-1, Gomes et al., 2015; 2 m·s-1, Wainwright et al., 2013) and reflects the description 

of ‘light winds’ in the Beaufort scale.  

The steady state period of all trials was then run through the normalisation model 

(Appendix 4). This model used weather data collected for each trial, is based on 

hydrodynamic principles and incorporates the frontal area of a K1 sprint kayak, mass of 

the system, boat velocity, air and water temperature, wind speed and wind direction to 

create a ‘normalised’ boat velocity based on datum conditions. As the training 

environment was the only one available to collect this data, the limitation of using an 

imperfect but theoretically sound model was considered acceptable. Further applied 
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testing of this model or other measurement of the impact of environmental conditions 

on kayak performance would enhance any future on-water research. 

8.3.3.2 Six trials maximum per session 

No more than six trials could be completed within a single session due to fatigue, meaning 

to collect enough trials to use correlations for individual athletes, multiple data collection 

days were needed. Training between these days could have created changes in 

performance and technical aspects of performance. As all data collection days were 

within the competitive season (March-September) this effect was minimised. Using a 

multi-disciplinary approach in future to include any potential physiological markers of 

fatigue would be valuable. 

 Chapter 7: Paddle length intervention 

As this study used the same ergometer as chapter three, these issues still stand, along 

with the additional factors below.  

8.3.4.1 Paddle length change relative to ‘normal’ 

The paddle length was matched to what is used on water, with intervention differences 

of 1% relative to this. This means there was no direct relationship between the changes 

made and athlete height or arm span. Research has shown a significant correlation 

between anthropometrics and paddle length (Diafas et al., 2012) and the description of 

paddle length selection given by coaches during interviews is also related to height and 

arm length (Chapter 3). Using a controlled proportion of height or arm span would have 

been possible and could be investigated in future research, but would have removed the 

direct application as seen by athletes and coaches. A larger-scale study investigating F-V 

profiles of athletes across performance levels with changes to paddle length would 

improve understanding of how these factors interact.  

8.3.4.2 Small change 

The use of 1% is a very small intervention, the choice of this difference was to enhance 

the use directly to coaches. A 1% change was roughly 2 cm, which is the magnitude of 

change a coach is likely to suggest on-water. However, this does mean that significant 

differences, which may be present at group level if larger changes were used, were not 

found. As the focus was on individual’s reactions and a number of differences were 

found, it is clear this small difference is enough to evoke change in some athletes.  
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8.3.4.3 Only six trials 

Six trials were considered the maximum achievable without a large influence of fatigue 

or an excessive duration of testing, which elite coaches would not have agreed to. 

However, it means only two trials per condition were recorded. Mullineaux et al. (2001) 

recommend a minimum of three as a compromise to create ‘representative and valid’ 

data, but this is based on the idea of unquantified variability when fewer trial numbers 

are used. In this study five previous repetitions are used to quantify typical individual 

variability and this variability subsequently used to mark notable change between 

conditions per athlete, making the comparison acceptable despite few trials. Future 

studies could investigate multiple trials across additional testing dates over a short period 

of time to reduce training affect.  

 Contribution of new knowledge 

 Methodology/approach 

8.4.1.1 Documentation of elite coaching knowledge and comparison to literature 

The first study in this thesis (Chapter 3) documented elite coaching knowledge in sprint 

kayaking. This level of coaching knowledge in sprint kayaking has never been 

documented in this way or compared to biomechanical literature. Differences in coaching 

philosophies and terminology were apparent and areas of kayaking that coaches feel 

biomechanics could support were identified.  

8.4.1.2 Development of isoinertial ergo with account of bungee tension 

The isoinertial ergometer was developed to account for bungee tension as this has 

previously been reported to create as much as 20% error in power readings (Gore et al., 

2013). This design allows power and force-velocity profiles to be created from a single 

effort without influence from fatigue. Although these profiles have been measured 

before (Schofield, 2015), bungee tension was not accounted for and only elite level 

athletes were tested.  

8.4.1.3 Validation of ergo for sprint performance 

By correlating data from athletes who took part in both studies three and four, a strong 

linear correlation was found between stroke power and on-water sprint performance. 

This relationship was strongest with the ‘steady state’ period of a 100 m sprint, but strong 

correlations were also found with maximum velocity and with time to 10 m.  
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8.4.1.4 Profiling of elite and developing sprint kayak athletes 

Elite athletes are often inaccessible to researchers and this cohort of elite, development 

and club athletes represents a rare insight into performance (on and off-water) across all 

levels. 

8.4.1.5 Implementation of regular F-V profiling 

The regular testing established during the profiling studies in Chapters 4 and 5 has 

continued in the elite environment, allowing further insight to be gained across training 

and Olympic cycles.  

8.4.1.6 Paddle length intervention on ergometer 

Ergometers have been used to understand the demands of sprint kayaking, but changes 

to equipment have never been tested in this way. While caution must be used for 

application of findings to water, insight into the mechanical effect of any paddle change 

is novel and valuable. 

8.4.1.7 Use of statistics for individual analysis 

To understand individual performance, group level statistics were not appropriate. While 

new statistical tests were not devised, data were used in novel ways to understand 

differences at the highest levels. To the researcher’s knowledge, using an athlete’s own 

variability to understand when change in meaningful has not previously been done.  

 Results and Conclusions 

8.4.2.1 Six mechanical sub-themes important to coaches 

There were six key areas of importance to elite-level sprint kayak coaches within the 

mechanics theme: water interaction, boat connection, kinematics, force/power, SR/DPS 

and influence of weather. As emerging mechanical themes, biomechanical research in 

these areas can have a greater impact on applied practice.  

8.4.2.2 No clear consensus in race phases or terminology from elite coaches 

At the highest levels of performance, there is not a clear coach-driven consensus for how 

to break down a race into phases or in the terminology used.  

8.4.2.3 Elite athletes are more powerful and have more force-orientated profiles 

Differences in power output were found between club, sub-elite and elite athletes, with 

power increasing through those levels as might be expected. Elite athletes were found to 
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exhibit higher maximum force and steeper gradient of the F-V relationship, indicating 

lower level paddlers should aim to improve this aspect of performance. 

8.4.2.4 Individuality of F-V profiles 

Large inter-individual differences were apparent, with 11 athletes showing stronger 

correlations between V0 and power and seven showing stronger correlations between 

F0 and power, regardless of performance level. Individual differences have also been 

reported in other sports (e.g. Haugen et al., 2019) but it has been considered that there 

is an individual optimal for jumping (Samozino et al., 2012). The individual differences 

found in this thesis have subsequently allowed the multi-disciplinary support team to 

tailor training to optimally support individual elite athletes and to track changes to assess 

the impact of training blocks.  

8.4.2.5 Higher SR does not mean higher velocity for all athletes 

Despite correlations showing higher SR with higher levels of performance (e.g. Brown et 

al, 2010), individual preference for stroke rate had been mentioned by coaches 

interviewed during the first study and was supported by the findings of study three 

(Chapter 4). This study found that athletes are individually more reliant on either stroke 

rate or distance per stroke to maximise velocity, in a similar way to that documented in 

athletics (Salo et al., 2011).  

8.4.2.6 Power correlates with boat velocity and F0 correlates with DPS.  

The correlations found with power and performance measures were partially supported 

by correlations between F-V gradient and SR. It was expected that those who had more 

force-orientated F-V profiles would rely more on DPS to improve boat speed and F0 was 

correlated significantly with F0 but SR was not correlated with V0. This indicates the high 

importance of force generation in a kayak specific movement.  

8.4.2.7 Individuals respond differently to paddle length change 

No previous research has looked at the influence of paddle length on anaerobic capacity. 

Changes of approximately 2 cm in paddle length did not create consistent changes across 

the group in maximal power, force or velocity. Relative to their own individually 

calculated level of intra-trial variability, three athletes had a significant change in power 

(one increase, two decreases), while six had significant changes in maximal force or 

velocity.  
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 Recommendations for coaching 

For coaches and the multi-disciplinary support team (MDT) to use this research, the 

following recommendations are made:  

 Clarification of coaching terminology 

In some cases, many different words are used for a certain phenomenon, and in others a 

single word can have different meanings. The word ‘catch’ can be used in both of these 

examples: at times being synonymous with ‘grip’, ‘grab’ or ‘blade entry’, at others being 

found to refer to both a specific time point and a whole phase of movement. Reaching a 

consensus across performance levels will improve communication between coaches for 

coach education and between coaches and athletes for more efficient technique 

improvements.  

 Clarification of phase classification 

While many of the same words were used for phases (start, acceleration, race pace, 

maintenance), the coaches’ definition of these phases differed. For some, the start was 

only considered as the first few strokes, while for others it could incorporate up to 100 m 

of paddling. A coaches’ consensus of the distances and definitions of each phase will 

improve training focus and athlete understanding, in particular for athletes on the 

pathway who are likely to be coached by multiple practitioners.  

 Athletes are all different 

Even for athletes of similar performance levels, large individual differences were found 

in both on-water and ergometer profiling. The results indicate that athletes produce 

power (through force and velocity use) and boat speed (through SR and DPS use) in 

different ways, and it is important to understand these differences to get the most out of 

training and racing.  

 FV as a steppingstone between water and gym 

The ergometer testing allows a force-velocity profile to be created for an individual 

athlete in a matter of seconds. While there are without doubt differences in the 

movement patterns on an ergometer compared to water, ergometer data do still provide 

insight. These profiles represent factors that are currently very difficult to measure on-

water and are essentially an anaerobic capacity test in a ‘kayaking-like’ movement. The 

testing structure designed as part of this thesis has been adopted and continued by elite 
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and developing athletes and the staff supporting them. As has been done within the NGB, 

data from profiles can be used by different members of the MDT in different ways:  

Technical coach: understanding deficits: if an athlete is strong in the gym but unable to 

use that strength on-water, high scores on the ergometer indicate technical application 

of force during paddling is limiting performance. If an athlete is strong in the gym but 

with low scores on the ergometer, co-ordination pattern and developing strength during 

multi-limb complex movements may have a higher benefit. In general, lower level 

athletes’ sprint performance is likely to benefit from working on their kayak-specific 

maximum force output rather than maximum speed of movement, but there are large 

differences between individuals.  

S&C Coach: using the F-V profile: maximum force output (in a kayak specific movement) 

both correlated with better sprint performance and differentiated between performance 

levels, indicating as a general rule that this may be a priority area for development 

relative to maximal velocity work, although there were large individual differences. Gym-

based training according to an individual’s profile has been found to lead to greater 

improvements in power (Jimenez-Reyes et al., 2019). An ‘optimal profile’ for kayaking 

does not exist in the way it has been calculated in Samozino et al. (2012) for vertical 

jumping but assessment of the individual athlete’s kayak-specific F-V profile between 

training blocks will allow assessment of whether the main focus of the block has been 

achieved (i.e. maximal strength or strength at high velocities) and to understand how 

individual athletes adapt to certain training block stimuli. The use of a kayak-specific 

ergometer also allows for better understanding of force and power generating capacity 

from core gym movements and acts as an appropriate training stimulus. F-V profiles need 

to be appropriate to the sporting movement as they are not otherwise applicable, as 

highlighted in difference between horizontal and vertical profiling (Jimenez-Reyes et al., 

2018). 

Physiotherapist: rehabilitation or injury risk: if an athlete sustains an injury on one side 

of the body, rehabilitation to regain strength on the affected side is common but is 

typically limited to maximal strength, not considering velocity of movement. Once an 

athlete is considered to be fit to return to training, the ergometer can be used to 

investigate differences in force generation at different velocities, which may still be 

restricted at higher speeds. Similarly, if an athlete is particularly force or velocity 
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orientated, it may be easy to overload the other variable and put the athlete at a higher 

injury risk. By measuring and understanding these risks, they can be mitigated.  

 Influence of paddle length is individual specific 

Applying the same magnitude of change across a group of athletes would result in 

different responses across the group. Although taller athletes do tend to have longer 

paddles, height does not fully determine the relationship.  

At group level, a change in paddle length did not affect power output for most athletes. 

However, for three of the ten athletes tested, a significant change in power was seen. 

Even when no change in power output is seen on the ergometer, changing paddle length 

still affects performance as there are differences in the way the power was created for 

six athletes (different combinations of force and velocity). There are also likely to be small 

differences in technique on-water which may change the application of power and 

therefore may change efficiency, although this was not tested here. Changing an athlete’s 

F-V characteristics may also have benefits for athletes working together in a crew boat.  

 Future research 

The current studies have added important understanding regarding the individual nature 

of sprint kayak performance and how that information can be used to benefit elite 

athletes. However, there are many additional areas of research that would benefit 

performance understanding.  

 Monitoring and paddle set-up in developing athletes 

Use of F-V profiling to understand how individuals react to training would potentially 

allow younger athletes to accelerate adaptation to training and achieve better 

performances. In addition, changes in paddle set-up were found to have a positive impact 

on performance in elite athletes, who have already reached very high levels of 

performance. The scope for improvement is larger with developing athletes and 

therefore there may be more significant gains to be made.  

 3D kinematics on water 

Understanding of kinematics on-water has not moved forward from video data collected 

in 1992 (e.g. Kendal & Saunders, 1992), almost 30 years ago. Technology is constantly 

developing, and measurements of 3D kinematics on-water would now be possible with 

wearable IMU-based systems, although there is still some question over the accuracy, as 
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validations have primarily been conducted in movements that are mostly in the sagittal 

plane, with weaker correlations found for other plane movements (Blair et al., 2018). 

Measurement of 3D kinematics would allow both validation of coaches’ technical models 

and quantification of individual variation. These would allow more focused training to 

work on areas of technique where gains are more likely to occur, for example identifying 

technical breakdown due to fatigue for a specific athlete.   

 Paddle path & 3D force measurement through water 

In-line with technology developing for human movement, the same technology could be 

used for monitoring paddle movement. Despite researcher efforts with video (Kendal & 

Sanders, 1992) or IMU based systems (Morgoch & Tullis, 2011) in the past, paddle 

movement in 3D has yet to be successfully reported. This means calculations of ‘lift’ and 

‘drag’ are actually often measures of parallel and perpendicular force to the blade 

(Gomes et al., 2011).  Combining 3D force via strain gauges and 3D movement via IMUs, 

researchers would be able to quantify the contribution of lift and drag and would be able 

to better understand the hydrodynamics of kayaking and how it relates to paddle design. 

This could lead to developments in paddle design that have not previously been 

considered.  

 Interventions of paddle set-up on-water 

If measurements of kinematics and kinetics on-water were readily available, 

interventions on-water would also be more feasible. While the outdoor environment will 

always be a factor in any measurement taken on a regatta course, collecting data within 

constrained conditions (e.g. maximum and minimum values for wind speed, and water 

temperature during testing) through having the flexibility to change data collection 

window, or using indoor water such as a towing tank, would allow acute changes to be 

quantified. Researchers are seemingly trying to catch up with paddle manufacturers with 

the latter bringing out new blade designs with little to no scientific research support but 

only endorsements from high level athletes. Even with factors such as paddle length, 

blade size and blade angle, which can all be chosen directly by the athlete, there is little 

science behind what might be advantageous for a given athlete. Interventions using 

larger differences than used in study 5, in particular using extremes such as 6-10 cm, 

would also be beneficial.  
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 Crew boats 

Much of the kayak research has focused on individual boats. This is understandable as 

the complexity inevitably increases with increasing boat members. However, five of the 

nine medals available in sprint kayaking at the Rio Olympics were for crew boats and 

different boat speed, SR and the timing and synchronicity of athletes are all likely to cause 

changes in performance relative to a K1. Although some research has been conducted 

using crew boats with different crews, criteria for successful crews has not been 

methodically tested, potentially due to the complex nature of factors that may affect 

crew performance and therefore difficulty in isolating causation. 

 Conclusions 

Water interaction, boat connection, kinematics, force/power, SR/DPS and influence of 

weather were identified as key mechanical performance factors in sprint kayaking 

through interviewing elite coaches and comparing their beliefs to available literature. 

Two of these factors were subsequently analysed at both group and individual level: 

SR/DPS and force/power. At group level, SR and F0 appeared to be of highest importance, 

but individual analysis showed variable results between athletes, regardless of 

experience level. Such findings emphasise the importance of assessing individual athlete 

performance. Ergometer power strongly correlated with on-water performance and the 

ergometer was therefore used to investigate paddle length changes.  

Due to the large differences between individuals, athlete-specific measures of notable 

change were calculated from variability during previous testing sessions. For changes in 

paddle length of 1% (approximately 2 cm), power was only notably increased by one 

athlete, while six showed differences in maximal force or velocity. As in the profiling 

section, responses to change were highly individual.  

This thesis has provided research that can be, and has been, of direct use to the whole 

multi-disciplinary team in sprint kayaking by focusing on areas that coaches value and in 

which research has been lacking. Additional research would benefit sprint kayaking 

performance, particularly in understanding paddle path and direction of force 

application, and in equipment set-up. Taking an individual approach to analysis and 

training is clearly important, both in the development of meaningful research and to 

maximise performance gains. 
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 Appendices 

 Appendix 1: Question guide for coach interviews 

Interview Questions for Coaches 

My research is looking at optimising performance in sprint canoeing. I am interested 

in the technical aspects you, as a coach, look for when trying to help improve 

technique. 

Squad:  

Race distance: 

Section 1: Introduction 

1. How did you get into coaching? 

a. Probe: did you coach other sports beforehand? 

b. Probe: were you a performer? 

c. Probe: how long have you been coaching? 

 

2. Where have you gained your sprint canoeing knowledge? (e.g. courses, peers, 

trial and error) 

a. Probe: What sources might you use to increase your knowledge now? 

Are these different to those you might have used earlier in your career? 

Section 2: Technical factors  

3. Imagining a paddler during a race, what technical aspects would you be looking 

for to determine “good” technique?   

a. Probe: Can you give me an example? 

b. Probe: why do you think these characteristics are important? 

c. Probe: Do you think they impact directly on performance? 

 

4. How would you rank these factors in order of importance? 

a. Probe: why? 

 

5. Do you consider the race to be made up of separate phases? If so, what are they 

(specifics needed e.g. first to 10th stroke)? 

a. Probe: why? 

 

6. Should effort be distributed differently across phases? 

a. Probe: is one phase of higher importance? 
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7. Do you think there are key characteristics “good” technique is made up of in 

each phase? 

 

8. Does this differ between phases? 

a. Probe: why? 

 

9. Do you think there are certain strength/physiological characteristics which are 

particularly important? 

a. Probe: power profile of importance? What is your understanding of the 

P-V relationship? 

 

10. Does this differ between phases? 

a. Probe: why? 

 

11. Do you consider there to be an optimal stroke rate (for each phase)?  

 

Section 2b: Feedback 

12. How important do you think it is that athletes receive feedback on these 

technical factors? 

 

13. What form should this feedback take? 

a. Probe: Does this differ dependant on which technical factor? 

 

14. When do you think this feedback should be given, relative to the effort? 

 

15. Does this differ to how you, as a coach, would like feedback? 

 

Section 2c: Paddle set-up 

16. How should an athlete choose their paddle set-up? Which factors are important 

in this choice? 

a. Probe: based on anthropometry? Power? Trial and error? “feel”?  

 

17. Should an athlete check if their paddle set-up is correct? If so, how? 

Section 2d: Crew boats 

18. What do you think are the most important factors in technique when in a crew 

boat? 

a. Probe: are these different to in a K1? 
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b. Probe: are these different between seats? 

 

19. How important is synchronicity to crew boat performance? 

a. Probe: why? 

Finally… 

20. Are there any particular areas you think would benefit from research?  

 

21. Is there anything else you would like to add? 
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 Appendix 2: Ergometer warm-up 

The ergometer warm-up was designed by the strength and conditioning coach and the 

physiotherapist who were working with the elite athlete group at the commencement of 

the ergometer testing. The bulk of the warm was designed for all gym sessions and was 

instructed via an educational video, with a few additions for ergometer testing.  

Exercise Quantity Example 

Back extensions 10 

 

Calf pumps 10 

 

Modified straight 

leg raise 

10 

 

Active straight leg 

raise 

10 

 

Leg crossover 10 

 

Tuck and reach 10 
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Dead bug 10 

 

Sitting rotation 10 

 

Rotation with reach 5 

 

Cat/Camel 10 

 

Thread the needle 10 

 

Bird-Dog 5 

 

Spiderman 10 
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Overhead paddle 

- Forward 

lunge 

- Side lunge 

- Squat  

 

3 

3 

3 

 

Single leg swings 10 

 

Rotator cuff band 

- Band held at 

waist  

- Band held 

behind 

10 

 

Iso-hold 

- In front 

- Overhead 

 

2-3 seconds 

x 3 
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 Appendix 3: Visual assessment of linearity 

Examples of visually assessed linearity in data, taken from the scatterplots of individual 

athletes of normalised velocity relative to SR. Graph a) shows a ‘strong’ linear 

relationship, graph b) shows a ‘medium’ strength linear relationship and graph c) shows 

a ‘low’ linear relationship.  

 


