
A ROBUST WINDOW-BASED MULTI-NODE MINIMIZATION TECHNIQUE

USING BOOLEAN RELATIONS

A Thesis

by

JEFFREY COBB

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2007

Major Subject: Computer Engineering

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M Repository

https://core.ac.uk/display/4273849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A ROBUST WINDOW-BASED MULTI-NODE MINIMIZATION TECHNIQUE

USING BOOLEAN RELATIONS

A Thesis

by

JEFFREY COBB

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Sunil Khatri
Committee Members, Riccardo Bettati

Weiping Shi
Head of Department, Costas Georghiades

December 2007

Major Subject: Computer Engineering

iii

ABSTRACT

A Robust Window-Based Multi-Node Minimization Technique

Using Boolean Relations. (December 2007)

Jeffrey Cobb, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Sunil Khatri

Multi-node optimization using Boolean relations is a powerful approach for network

minimization. The approach has been studied in theory, and so far its superiority over sin-

gle node optimization techniques has only been conjectured for practical designs. This is

due to the highly memory intensive computations involved in the calculation of Boolean

relations representing the multi-node optimization flexibility. In this thesis, an algorithm

to perform Boolean relation-based multi-node optimization using a robust, fast and mem-

ory efficient algorithm is presented. In particular, two nodes are simultaneously optimized

at a time. Results are reported on large designs, demonstrating the initial power of this

multi-node optimization algorithm. The robustness of the approach arises from the use of

a window-based technique for computing these Boolean relations. Secondly, aggressive

early quantification is performed during the computation, keeping memory utilization low.

Finally, smart heuristics are employed for selecting the node pair to be optimized simul-

taneously. These features allow the approach to scale well and provide good results for

large designs. Experiments are performed on a set of large benchmarks and the algorithm’s

performance is compared to a SAT-based network optimization technique using complete

don’t cares. On average, the approach presented in this thesis achieves a 12% reduction

in literal count across all the large designs compared to the complete don’t cares, while

maintaining small runtimes and low memory usage.

iv

To my parents and my grandparents

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I-A. Problem Definition . 4
I-B. Previous Work . 5
I-C. Organization . 8

II BACKGROUND . 9

II-A. Chapter Overview . 9
II-B. Preliminaries and Definitions 9
II-C. Reduced Ordered Binary Decision Diagrams (ROBDD) . . . 12
II-D. BREL Boolean Relation Minimizer 15
II-E. Chapter Summary . 16

III APPROACH . 17

III-A. Chapter Overview . 17
III-B. Algorithm Overview . 17
III-C. Algorithm Details . 18

III-C.1. Selecting Node Pairs 18
III-C.2. Building the Subnetwork 22
III-C.3. Computing the Boolean Relation R Y 25
III-C.4. Quantification Scheduling 26
III-C.5. Endgame . 28

III-D. Chapter Summary . 28

IV EXPERIMENTAL RESULTS . 30

IV-A. Chapter Overview . 30
IV-B. Preprocessing Steps . 31
IV-C. Parameter Selection . 31

IV-C.1. Selecting α . 32
IV-C.2. Selecting k1 and k2 34
IV-C.3. Selecting thresh . 35

IV-D. Comparison of the Proposed Technique with mfsw 36
IV-E. Additional Experiments . 39

IV-E.1. Running relation After mfsw 39

vi

CHAPTER Page

IV-E.2. Running relation Twice 41
IV-E.3. Minimizing Single Nodes 41
IV-E.4. Effects of Early Quantification 42
IV-E.5. Code Profiling . 43

IV-F. Node Pair Properties . 44
IV-G. Chapter Summary . 47

V CONCLUSIONS . 48

REFERENCES . 50

VITA . 54

vii

LIST OF TABLES

TABLE Page

I.1 Example of a Boolean Relation . 2

IV.1 Initial Values, Final Values, Increments, and Nominal Values of the
Node Selection Parameters . 32

IV.2 Results after sat sweep . 38

IV.3 Results after sat sweep and mfsw . 40

IV.4 Contribution of Algorithm Components to Total Runtime 44

IV.5 Properties of Node Pairs that Can Be Minimized 45

viii

LIST OF FIGURES

FIGURE Page

I.1 Network η before and after optimization 3

II.1 Terminology for Nodes in a Boolean Network 10

II.2 BDD of Logic Function x1 + x2 · x3 . 13

II.3 ROBDD of Logic Function x1 + x2 · x3 13

II.4 ROBDD of Logic Function x1 + x2 · x3 with Non-Optimal Variable Ordering 14

III.1 Selection of Node Pairs . 20

III.2 Extraction of Subnetwork . 24

IV.1 Sweeping α with thresh = 0.5, k1 = 2, k2 = 3 33

IV.2 Sweeping k1 and k2 with thresh = 0.5 and α = 0.25 34

IV.3 Sweeping thresh with k1 = 2,k2 = 2, and α = 0.25 36

IV.4 Effects of Quantification Scheduling on BDD Size 42

IV.5 Sweeping τ to Limit Subnetwork Size 46

1

CHAPTER I

INTRODUCTION

The optimization of industrial multi-level Boolean networks is traditionally performed us-

ing algebraic techniques. The main reason for this is that Boolean techniques such as don’t

care-based optimization, though more powerful, do not scale well with design size. Don’t

cares are calculated for a single node, and they specify the flexibility for implementing the

node function. These don’t cares (for a node) are computed using a combination of Satis-

fiability Don’t Cares (SDCs), Observability Don’t Cares (ODCs) or External Don’t Cares

(XDCs). These are described further in [1].

ODCs [2, 3] of a node are a powerful representation of the node’s flexibility. However,

the minimization of a node with respect to its ODCs can potentially change the ODCs at

other nodes in the circuit, resulting in a need to re-compute ODCs for all circuit nodes.

A subset of ODCs, termed as Compatible Observability Don’t Cares (CODCs) [2] were

formulated to remove this limitation. By definition, if a node n is minimized with respect

to its CODCs, then the CODCs of all other circuit nodes are still valid (and therefore do not

need to be recomputed). However, in the CODC computation, the order of selecting nodes

during the CODC computation becomes important. The maximum flexibility that can be

obtained at the fanin node i of a node n is a function of the CODCs of the fanins computed

prior to i. In both the ODC and CODC approaches, network optimization is performed on

one node at a time.

As significant improvement (in terms of optimization power) over don’t care-based

techniques can be obtained by considering multiple nodes at once. The formulation of such

an optimization results in a Boolean relation [4], which implicitly represents the flexibility

The journal model is IEEE Transactions on Automatic Control.

2

available in optimizing the nodes simultaneously. The flexibility inherent in multi-node

optimization cannot be expressed using functions. Table I.1 represents a Boolean relation,

Table I.1. Example of a Boolean Relation

Inputs Outputs
00 00
01 01
10 {00,11}
11 10

which, for a single input vector {10}, can express more than one allowed output vector,

{00,11}. On the other hand, no Boolean function can represent the fact that both vectors

{00,11} are allowed at the outputs, for the output {10}.

The superiority of a multi-node optimization approach (using Boolean relations) over

don’t cares has been pointed out in [5, 6]. The reason for this superior optimization flexi-

bility is that in the computation of a node’s don’t cares, the functions of all the other nodes

are not allowed to change. This restriction does not apply to the multi-node optimiza-

tion approach (using Boolean relations) since they allow the simultaneous modification of

all nodes being targeted. However, this superior optimization flexibility has a price. The

multi-node optimization approach requires that a Boolean relation be solved, which is typ-

ically a highly time and memory intensive operation. As a result, not much attention has

been devoted to these approaches, although there have been theoretical works which have

suggested the superiority of this technique over don’t care-based approaches [6]. How-

ever there has been no robust, scalable approach which demonstrates the applicability of

multi-node optimization techniques to large designs.

The power of a multi-node optimization approach can be illustrated by way of a small

example [7]. Consider the network η shown in Figure I.1(a), where node V1’s output f

3

implements the Boolean function x · y and node V2’s output g implements x + y. Given a

network η with primary outputs Z, the ODC of a node y is given by

ODC(y) = ∏
zi∈PO(η)

(
∂zi
∂y)

where,

∂zi
∂y = zi|y⊕ zi|y.

Using this equation for the network of Figure I.1, the ODCs are computed to be ODC(V1)

= ODC(V2) = ∅. As a result, no optimization is possible using ODCs. However, one can

observe that z is equivalent to x⊕ y as shown in Figure I.1(b). This optimization can only

be obtained when V1 and V2 are optimized simultaneously. The Boolean relation resulting

from such an optimization can express this flexibility. After minimizing this Boolean rela-

tion, nodes V1 and V2 can be deleted from the network without compromising the network’s

functionality.

The following sections discuss the problem definition, previous work, and the organi-

zation of this thesis.

a) b)

V2

V1

V3 z zV3

y

x
y

x
y

x f

g

Fig. I.1. Network η before and after optimization

4

I-A. Problem Definition

This thesis addresses the problem of creating a scalable dual-node optimization technique

which can handle the large designs typical of industrial circuits. The approach presented in

this thesis uses Reduced Ordered Binary Decision Diagrams (ROBDDs) [8, 9] to represent

the Boolean relations expressing the flexibility. ROBDDs provide an efficient mechanism

to compute and store the Boolean relation. Many of the steps that occur frequently in the

dual-node optimization technique, including quantification and complementation, can be

performed extremely efficiently using this data structure.

Large designs can have tens of thousands of nodes in the network, which would make

the task of computing the Boolean relation that represents the dual-node flexibility im-

practical due to the computational time and/or memory required. To address this problem,

the relation is not built in terms of the primary inputs and outputs of the network, but it

is instead built using a subnetwork η′ rooted around the nodes being targeted. Building

the relations in terms of the primary inputs and outputs would be applicable to small net-

works. However, the ROBDDs representing the relation would be intractable for larger

networks. Working with the subnetwork allows the resulting Boolean relation to be signif-

icantly smaller, which enables the approach to work on large networks.

Another feature of this approach, which allows it to scale elegantly, is that it uses

aggressive early quantification [10] while computing the Boolean relation. During the

computation, the size of the ROBDDs can blow up rapidly if the relevant intermediate

variables are not quantified out. Performing operations on the large ROBDDs can be very

expensive in time as well as memory, especially on large networks. To reduce the size of

the ROBDDs, intermediate variables are quantified out during each step of the computation

when possible.

Additionally, since the work presented in this thesis optimizes two nodes at a time, the

5

node pair must be carefully selected. Optimizing all node pairs in a network would result

in a quadratic cost. By choosing only those node pairs which have a high likelihood of

minimizing the network, the algorithm remains efficient for large designs.

Finally, the dual-node optimization approach in this thesis results in a Boolean relation

that encodes the flexibility in implementing the targeted nodes. To re-implement the tar-

geted functions, this relation needs to be minimized. The technique used to do this comes

from [11].

I-B. Previous Work

Some of the previous research efforts which are relevant to the technique and objective of

this thesis are discussed next. In [12], the authors describe a method to compute don’t cares

using overlapping subnetworks, computed using a varying window size. Their method does

not optimize wires, but only the gates in a design, in contrast to the approach in this thesis

(which frequently removes wires in a circuit). Further, the technique of [12] uses [13] to

optimize a single subnetwork. In [13], optimization is done by manipulating a cover of

the subnetwork explicitly. The authors indicate that this requires large amounts of runtime

for small networks. As a consequence, the technique of [12], in many examples, requires

run-times which are dramatically larger than MIS [14].

The approach of [15] partitions the circuit into subnetworks, each of which is flattened

and optimized using ESPRESSO [16]. This thesis uses a similar approach of circuit parti-

tioning but with a relation-based optimization method in place of ESPRESSO, and achieves

a significantly lower literal count.

In [17], the CODC computation of [18] was shown to be dependent on the current

implementation of a node, and an implementation-independent computation was proposed.

In [19], the authors perform CODC computation on overlapping subnetworks, and demon-

6

strate a faster technique compared to the full CODC computation. They report achieving

a good literal count reduction (within 10% of the full simplify (FS) command of SIS [20])

with a faster runtime (25x faster than FS). The method presented in this thesis improves on

these results due to the additional flexibility encoded in the dual-node optimization tech-

nique (using Boolean relations).

In [21], the authors present a Boolean Satisfiability (SAT) based methodology for com-

puting the ODC and SDC, termed as complete DC (CDC), for a every node in a network.

They also propose a windowing scheme to maintain robustness. This approach provides

the best results in terms of both optimization ability and runtime among all the previous

single-node approaches mentioned here.

While [21] explores the flexibility of exactly one node at a time, a much greater flex-

ibility can be availed by optimizing multiple nodes of a network simultaneously. This is a

relatively unexplored aspect of multi-level optimization. There are research efforts which

recognize the power of such a technique [5, 22, 6], but none of these work on even medium

sized circuits. The survey described in [5] only points out the advantage of multi-node

minimization over don’t cares. The approach in [22] describes a BDD-based computation

of SPFDs [23], which can encode the flexibility of more than one node, but it is limited to

small circuits and shown not to be scalable to large designs.

In [6], an approach for computing the Boolean relation of a single subnetwork of the

original network is described. However no approach or intuition for selecting the subnet-

work is discussed. The approach in this thesis, in contrast, uses an efficient method to find

pairs of nodes to optimize together. This method effectively filters out pairs of nodes for

which the expected flexibility is low. Also, the results reported in [6] are for very small cir-

cuits, and incur extremely high runtimes. The implementation in this thesis is powerful and

robust, resulting in the ability to optimize large networks extremely fast, with a high quality

of results. Further, [6] does not use a relation minimizer, but instead it calls ESPRESSO

7

in order to minimize the Boolean relation that represents the optimization flexibility. The

authors do acknowledge this as a possible limitation in their paper. The work in this thesis

uses BREL [11] to minimize the Boolean relation which is constructed for each pair of

nodes being optimized simultaneously.

There are some earlier research efforts in the context of multi-node optimization (using

Boolean relations to express the multi-node optimization flexibility), but the approach in

this thesis is very different. A technique which calculates this Boolean relation in terms of

primary inputs is presented in [7]. The work in this thesis computes this Boolean relation in

terms of the ‘primary input’ variables of the extracted subnetwork, allowing the technique

to handle large designs.

A technique to compute the maximal Boolean relation that represents the optimization

flexibility for the nodes in an arbitrary subnetwork is presented in [24], which was improved

by [25] to additionally compute approximate Boolean relations. However, they do not

support their work with experimental results.

The main reasons why the approach in this thesis is significantly more efficient than

these methods are:

• The intelligent selection of node pairs to minimize, in order to maximize the likeli-

hood of gain, without exhaustively trying all possible pairs.

• The use of a window-based computation which allows the approach to scale very

elegantly and provide excellent results even for large designs.

• An aggressive use of quantification scheduling to control the ROBDD size at all

stages of the Boolean relation computation.

Techniques for minimizing a Boolean relation are reported in [11, 26, 27]. In [26]

the authors represent a Boolean function as a multi-valued decision diagram and pro-

8

pose a heuristic to minimize it. The authors of [27] formulate the problem of minimiz-

ing a Boolean relation as a binate-covering problem. The more recent approach used in

BREL [11] follows a recursive branch-and-bound heuristic for minimizing a given Boolean

relation. This approach demonstrates better results and runtimes as compared to those re-

ported in [26, 27]. Therefore the work in this thesis uses BREL [11] for minimizing the

Boolean relation that is computed. The details of the BREL algorithm are described in the

next chapter.

I-C. Organization

This thesis is organized as follows. Chapter II provides the necessary background knowl-

edge and terminology used in this thesis, as well as a description of the data structures used.

In Chapter III, the algorithms used to select node pairs and to compute the Boolean relation

expressing the flexibility of a two-node optimization are given. The windowing method

is also described in this chapter, as well as the early quantification technique is employed

when computing the relation.

Chapter IV presents the experimental results for the algorithms described in Chap-

ter III. Section IV-C shows the approach used to choose the parameters that control the

node selection algorithm. Section IV-D reports the results obtained when the proposed

method is compared with the mfsw approach of [21]. Section IV-E presents results of many

variations on the original approach, as well as a timing and quantification analysis. Sec-

tion IV-F shows relevant statistics about which node pairs yielded gains and which did

not.

Chapter V summarizes the thesis and discusses the implications of the experimental

results. Ideas for future improvements are also presented in this chapter.

9

CHAPTER II

BACKGROUND

II-A. Chapter Overview

This chapter introduces the terminology and data structures used throughout this thesis.

Section II-B provides some preliminaries and definitions. Section II-C explains the Re-

duced Ordered Binary Decision Diagram (ROBDD) data structure and some of the ROBDD

functions used in the algorithms in this thesis. Section II-D describes the algorithm of

BREL used to minimize Boolean relations. The chapter is summarized in Section II-E.

II-B. Preliminaries and Definitions

The goal of this thesis is to reduce the size and complexity of a Boolean network at the

technology independent level. A Boolean network is defined as the following:

Definition 1 A Boolean network η is a directed acyclic graph (DAG) G = (V,E) in which

every node has a Boolean function fi associated with it. Also, fi has a corresponding

Boolean variable yi associated with it, such that yi ≡ fi.

There is a directed edge ei j ∈ E from yi to y j if f j explicitly depends on yi.

A node yi is a fanin of a node y j iff there exists a directed edge ei j ∈ E. Node yi is a

fanout of y j iff there exists a directed edge e ji ∈ E. FI(y) and FO(y) represent the set of

fanins and the set of fanouts of y respectively. FI(y) and FO(y) are equivalently referred

to as immediate fanins and immediate fanouts respectively.

A node yi is in the transitive fanin of a node y j if there is a directed path from yi to y j.

Node yi is in the transitive fanout of node y j if there is a directed path from y j to yi. The

transitive fanin of a node yi up to a k levels, T FI(yi,k), is the set of nodes {y j} such that

10

there is a directed path of length less than or equal to k, between y j and yi. Similarly, the

transitive fanout of a node T FO(yi,k) is the set of nodes {y j} such that there is a directed

path of length less than or equal to k, between yi and y j.

The transitive fanin frontier of a node yi at k levels, T FI f rontier(yi,k), is the set of

nodes {y j} such that there is a directed path of length exactly equal to k, between y j and yi.

The transitive fanout frontier of a node T FO f rontier is the set of nodes {y j} such that there

is a directed path of length exactly equal to k, between yi and y j.

T FI(y)

y

T FI f rontier(y,2) T FO f rontier(y,2)

T FO(y,2)

f anout(y)f anin(y)

T FI(y,2)

T FO(y)

Fig. II.1. Terminology for Nodes in a Boolean Network

These definitions are illustrated in Figure II.1. The gray nodes are the immediate

fanins and fanouts of the node y. The white nodes represent nodes in the T FI f rontier and

T FO f rontier of node y. The nodes of T FI(y,2) and T FO(y,2) are also shown, as well as

the nodes in T FI(y) and T FO(y). These classifications are used extensively in Chapter III

of this thesis.

11

Definition 2 The consensus operator or universal quantification of a function f with

respect to a variable xi is

∀xi f = fxi · fxi

Definition 3 The smoothing operator or existential quantification of a function f with

respect to a variable xi is

∃xi f = fxi + fxi

A Boolean relation is used to represent the flexibility available in optimizing multiple

nodes simultaneously. Related definitions are given next.

Definition 4 A Boolean relation R is a one-to-many multi-output Boolean mapping, R :

Bn→ Bm.

An output vector yl ∈ Bm is allowed for an input vector xk ∈ Bn iff (xk,yl) ∈ R .

Definition 5 A multi-output Boolean function f is a mapping compatible with R if

f (x) ∈ R , ∀x ∈ Bn. This is denoted by f ≺ R .

A Boolean relation R can be represented by its characteristic function Φ : Bn×Bm→

B such that Φ(xk,yl) = 1 iff (xk,yl) ∈ R .

For a network η which implements the multi-output Boolean function zzz = f (xxx), the

characteristic function is denoted by Φη, where

Φη =
m
∏
k=1

(zi⊕ fzi(xxx))

where m is the number of outputs of η and fzi(xxx) is the function of zi in terms of xxx.

Note that in the sequel a set of variables {a} is represented as aaa.

12

II-C. Reduced Ordered Binary Decision Diagrams (ROBDD)

A binary decision graph (BDD) is a rooted, directed, acyclic graph containing decision

nodes and two terminal nodes, 0 and 1. Each node has two children called the low child

and high child. The low child corresponds to the negative Shannon cofactor of the node,

and the high child corresponds to the positive Shannon cofactor of the node (both with

respect to the variable associated with the node). The value of the function for a particular

assignment of variables is found by tracing a path from the root of the tree to a terminal

node, following the appropriate child from each node, as dictated by the assignment of

variables. There is no particular ordering for the variables, so different path may contain

variables in a different order. This means that BDDs are not canonical, in that there are

multiple ways to represent the same Boolean function. Figure II.2 shows the BDD of the

logic function x1 + x2 · x3. The dashed line goes to the low child, and the solid line goes to

the high child. Notice that the variable ordering for the high child of x1 is different from

that of the low child. In addition, all nodes from the high child of x1 reach the 1 terminal

node, revealing redundancies in this representation.

A reduced ordered binary decision diagram (ROBDD) is a type of BDD with special

properties. First, the ROBDD is obtained by removing redundancies in the BDD structure.

Specifically, nodes whose children are identical are removed, and children that have iden-

tical subtrees are merged. An example of this is shown in Figure II.3. The ROBDD for

the same function x1 + x2 · x3 is shown in this figure, which shows that a fewer nodes are

required compared to Figure II.2. Second, an ROBDD is ordered. In other words, a fixed

variable ordering is used along any path from root to leaves. These properties ensure that

an ROBDD is canonical, in that there is only one way to represent a Boolean function for

a particular variable ordering. This allows the checking of equivalence between two ROB-

DDs to be performed in constant time. In addition, complementation, which is non-trivial

13

11 1

x1

x2

x3x3

x3

x2x2

0 1 0 0 1

Fig. II.2. BDD of Logic Function x1 + x2 · x3

for sum-of-product representations, take constant time as well, since only the values of the

terminal nodes must be complemented. These properties allow many computations to be

performed much faster using ROBDDs compared to other representation schemes. How-

ever, some functions such a multiplier require an exponential number of ROBDD nodes

regardless of the variable ordering used.

x2

0

0

x1

1

x3

1

Fig. II.3. ROBDD of Logic Function x1 + x2 · x3

14

The size of an ROBDD in terms of the number of nodes is heavily dependent on the

variable ordering chosen. Figure II.4 shows an alternate variable ordering for an ROBDD

of the function x1 +x2 ·x3. Compared with the ROBDD in Figure II.3, there is an extra node

required. As the logic functions get more complex, the effect of a poor variable ordering

becomes even more pronounced. Therefore, a variable ordering must be chosen that min-

imizes the number of nodes in the ROBDD. While the exact algorithm for computing the

ordering of variables is NP-Complete, many heuristics have been developed which work

well in practice. For the remainder of this thesis, the terms ROBDD and BDD are used

interchangeably.

0 1

x1

x3

x2

x1

10

Fig. II.4. ROBDD of Logic Function x1 + x2 · x3 with Non-Optimal Variable Ordering

The following BDD operations are used in the work presented in the thesis:

• bdd smooth(f, smoothing vars): This function returns the BDD formula of f exis-

tentially quantified with respect to the variables in the array smoothing vars. For

example, if f = ab+ac, and smoothing vars = [a], then the function returns b+ c.

• bdd consensus(f, quantifying vars): This function returns the BDD formula of f uni-

versally quantified with respect to the variables in the array quanti f ying vars. For

15

example, if f = ab+ac, and quanti f ying vars = [a], then the function returns bc.

• bdd node to bdd(node,leaves): This function builds the BDD for node in terms of

the variables given in the table leaves. The BDD is built recursively from the BDD’s

of its immediate fanins. If a visited node already has a BDD, then this BDD will be

reused; if it does not, then a new BDD will be constructed for the node.

II-D. BREL Boolean Relation Minimizer

Finding a set of multi-output functions that are compatible with a Boolean relation is a

trivial task. For the relation in Table I.1, arbitrarily choosing either {00} or {11} as outputs

for the input vector {10}would yield a compatible solution. However, this solution may not

be minimal in terms of the literal count of the resulting functions. BREL uses a recursive

algorithm to explore a wide range of solutions, and chooses the best result based on a given

cost function.

First, a quick initial solution is found. This is done by projecting the relation onto

each output, and then minimizing the resulting incompletely specified function using the

maximum flexibility provided by the relation. The constraints of the solution are passed

on to the rest of the outputs to ensure that the final solution is compatible with the relation.

Once this is done for all outputs, an initial cost for the solution is determined. However,

this initial solution depends on the order that the outputs are minimized. In addition, it

favors outputs minimized first, since they have the most flexibility, while the last outputs

inherit little flexibility.

Next, a recursive algorithm is used to find an optimal solution. Each output is first

minimized independently. If the resulting solution is compatible with the relation and has

the lowest cost explored so far, then the solution is returned to the calling function. If

the resulting solution is incompatible with the relation, then the relation R is split into two

16

relations R1 and R2, which are compatible with R. This is done by selecting an incompatible

input vertex x and an output yi and defining R1 and R2 as:

R1 = R · (x+ yi)

R2 = R · (x+ yi)

The algorithm is recursively called on R1 and R2, until either the cost is greater than

the best cost previously explored, or if the terminal case is reached where R is a function.

In the end, the output of BREL is the minimum-cost set of functions that are compatible

with R.

II-E. Chapter Summary

This chapter presented the definitions and terminology that will be used for the remainder

of this thesis. The structure and properties of BDDs, which are used extensively in this

thesis, were also described. In addition, the Boolean relation minimizer BREL used in this

thesis was explained.

17

CHAPTER III

APPROACH

III-A. Chapter Overview

This chapter is divided into the following sections. Section III-B describes the overall

structure of the algorithm presented in this thesis. Section III-C explains each step of the

algorithm in detail. Section III-D concludes the chapter.

III-B. Algorithm Overview

In general, the exact computation of the Boolean relation expressing the optimization flex-

ibility of multiple nodes is extremely memory intensive, even for small networks. This is

one of the reasons why past research efforts in this area have been mostly theoretical in

nature. The approach for simultaneous multi-node minimization of a multi-level network

presented in this thesis has several salient features.

• The flexibility is computed for simultaneously optimizing a pair of nodes of the net-

work at a time, using an ROBDD-based approach.

• Memory explosion is avoided by a windowing technique which first creates a subnet-

work around the two nodes being optimized. This subnetwork has a user-controllable

topological depth. The Boolean relation representing the flexibility for simultane-

ously optimizing the two nodes is built in terms of the primary inputs of the subnet-

work. This keeps the sizes of the ROBDDs under control, and effectively allows the

approach to scale robustly for large networks, with very good result quality.

• During the computation of the ROBDD of the characteristic function of the Boolean

relation, memory utilization is aggressively controlled by performing careful early

18

quantification.

• Further, instead of running this algorithm on all pairs of nodes, it is run on only

those node pairs that are likely to yield good optimization opportunities. This is done

without enumerating all node pairs.

Algorithm 1 describes the flow of the multi-level optimization methodology. The

input is is a Boolean network η, and the output is an optimized Boolean network η′ , which

is functionally equivalent to η.

The algorithm begins by efficiently selecting pairs of nodes to optimize from the orig-

inal multilevel network η. Given a pair of nodes (ni,n j) to optimize simultaneously, the

algorithm then finds a subnetwork ηi, j which is rooted around these nodes. The Boolean

relation R representing the simultaneous flexibility of these 2 nodes is computed in terms

of the primary inputs of the subnetwork ηi, j. Finally, the Boolean relation R is minimized

using a relation minimizer (BREL [11] in this thesis). The relation minimizer returns a

multi-output function (in particular a 2 output function) f , such that f is compatible with

R (f ≺ R). The optimized pair of nodes are then grafted back into η. At the end of the

f or loop, a minimized multi-level network η′ is obtained.

The details of the steps of the algorithm are described in the next subsection.

III-C. Algorithm Details

III-C.1. Selecting Node Pairs

When selecting node pairs, it is important to find nodes that share common fanins and

fanouts when the subnetwork is created. Not only will this make the subnetwork smaller,

but it will also increase the likelihood that more flexibility will be found from the resulting

relation.

19

Algorithm 1 Boolean Relation-based Multi-Node Optimization
L = select nodes(thresh,k1,k2,α)

for all (ni,n j) ∈ L do

ηi, j = extract subnetwork(ni,n j,k1)

R Y (sss,yyy) = build relation bdd(ηi, j,X ,Z,S,Y)

(n′i,n
′

j) = BREL(R Y (sss,yyy))

Graft (n′i,n
′

j) in η

Delete ni and n j from η

end for

Return η′ = network sweep(η)

To generate a list of all node pairs to minimize, select nodes(thresh,k1,k2,α) is called.

This algorithm is shown in pseudocode in Algorithm 2 and graphically in Figure III.1.

This function starts by selecting a node ni in the network. To find a potential partner n j

for this node, T FI f rontier(ni,k1) is called, which returns only the nodes mmm in the transitive

fanin frontier of ni which have a backward depth of exactly k1 levels from ni. This step

is shown in Figure III.1(a). For each of these nodes ml ∈mmm, T FO(ml,k2) is called, which

returns nodes nnn in the transitive fanout of ml that have a forward depth of up to k2 levels

from ml . This gives all potential partners nnn and ensures that they will later share at least

one common primary input in the subnetwork with ni.

Note that nodes in the transitive fanin or fanout of ni are not included in nnn. The reason

for this is explained in Section III-C.3. Figure III.1(b) shows the nodes (circles) that are

included in nnn, and the darkened edges show paths in the TFI of ni where nodes will not be

included in nnn.

Next, each node n j ∈ nnn is tested against ni to measure their compatibility. The TFI

and TFO (up to k1 levels) of both nodes are considered when determining compatibility;

20

�����
�����
���
��� ���

���
���
���

������
���
������
���

���������������
������
���

	�	�		�	�		�	�	

�

�

�

�����
�����
�
�

�������
�������
�����
�����

�������
�������
�����
�����

������
���
������
���

���������������
������
���

���
���
���
���
������
���
������
���

������
���
������
���
������
���
������
���

������
���
������
���

 � � � � � �
!�!�!!�!�!!�!�!
"�""�"
"�"
#�##�#
#�#

$�$�$$�$�$$�$�$
%�%�%%�%�%%�%�%&�&&�&

&�&
'�''�'
'�'

(�(�(�(
(�(�(�(
)�)�)
)�)�)

*�**�*
*�**�*
+�++�+
+�++�+

,�,�,�,
,�,�,�,
-�-�-
-�-�-

.�..�.
.�..�.
/�//�/
/�//�/

0�00�0
0�00�0
1�11�1
1�11�1

mmm = {ml}

a)

ni

ni

c)

n j

k1 k1

ni

n j

k2

b)

ml

k1

oipi

q j

nnn = {n j}

primary inputs (PI)
primary outputs (PO)

pipipi = TFI f rontier(ni,k1)

p jp jp j = T FI f rontier(n j,k1)

oioioi = TFO f rontier(ni,k1)

o jo jo j = TFO f rontier(n j,k1)

q jq jq j = TFI f rontier(o jo jo j,k1)

o j

p j

Fig. III.1. Selection of Node Pairs

21

Algorithm 2 Pseudocode of Node Selection Algorithm
for all (ni) ∈ η do

mmm← T FI f rontier(ni,k1)

for all ml ∈mmm do

nnn← T FO(ml,k2)

for all n j ∈ nnn do

if n j /∈ fanin or fanout of ni then

δ← common pi(ni,n j,k1)

ε← common po(ni,n j,k1)

if α ·δ+(1−α) · ε≥ thresh then

L← (ni,n j)

end if

end if

end for

end for

end for

Return L

however, only nodes at the frontier of these sets are used, shown in Figure III.1(c). Node

sets pipipi and p jp jp j are the T FI f rontier sets for ni and n j respectively. Node sets oioioi and o jo jo j are the

T FO f rontier sets for ni and n j respectively. In addition, as will be explained in Section III-

C.2, the sets qiqiqi and q jq jq j are the T FI f rontier sets for oioioi and o jo jo j respectively. In Figure III.1(c),

the set of nodes qiqiqi is empty because all nodes in oioioi can be expressed completely in terms

of nodes already in pipipi.

These frontier nodes will later be the PIs and POs of the k1× k1 window around the

nodes. The more of these nodes that ni and n j share in common, the fewer the number of

22

nodes required in the subnetwork.

The PI and PO compatibility of both nodes are calculated. The more these sets overlap,

the more likely they are to be selected as a pair. The PI factor δ is defined as

δ =
|pipipi∩ p jp jp j ∩qiqiqi∩q jq jq j|

|pipipi∪ p jp jp j ∪qiqiqi∪q jq jq j|

and the PO factor ε is defined as

ε =
|oioioi∩o jo jo j|

|oioioi∪o jo jo j|

To determine whether or not ni and n j will be selected as a pair to be optimized, δ and

ε are scaled by α and 1-α, respectively, and tested if their sum is higher than a user-defined

threshold thresh:

α ·δ+(1−α) · ε≥ thresh

All nodes n j for which the above test evaluates to be true are placed in the node pair

list L, along with ni.

These steps are performed for all ni ∈ η, visited in topological order from the POs to

the PIs, until every node has been tested for potential partners. A list L of all node pairs to

optimize is returned. Additionally, care is taken to ensure that no pairs appear twice in L,

Next, a subnetwork ηi, j of η, rooted at nodes (ni,n j), is extracted. The technique for

this extraction is explained in the following subsection.

III-C.2. Building the Subnetwork

For each pair of nodes (ni,n j) found, subnetworks of η rooted at the nodes ni and n j

are extracted by calling extract subnetwork(ni,n j,k1). This function constructs a subnet-

23

work ηi, j such that if node m ∈{T FO(ni,k1)∪T FO(n j,k1)}, then m ∈ ηi, j and if node p

∈{T FI(ni,k1)∪T FI(n j,k1)}, then p ∈ ηi, j. Here k1 is the same value used when calling

select nodes. The result of this step is illustrated in Figure III.2(a) as the shaded subnet-

work.

Node m ∈ ηi, j is designated as a primary input of ηi, j if ∃n∈FI(m), n /∈ ηi, j. Similarly,

a node m is designated as a primary output of ηi, j if ∃n∈FO(m), n /∈ ηi, j. The set of primary

inputs (outputs) of ηi, j is referred to as X (Z).

Next the set of all nodes m ∈ T FI(v,k1) is collected, where v is a primary output of

the subnetwork ηi, j. This step is illustrated in Figure III.2(b). Let this set be called D. The

nodes in the dotted and shaded region of Figure III.2(b) constitute the set D. These nodes

are included in the subnetwork as well, by setting ηi, j ← ηi, j ∪D. Figure III.2(c) zooms

into the region of interest for the subsequent discussion.

Next, for each d ∈ D a check is done to see if FI(d) can be expressed completely in

terms of the current nodes in ηi, j. This check is performed by recursively traversing the

network topologically from d towards the primary inputs X global of η. If this traversal visits

a node in ηi, j, the traversal terminates and all nodes visited in this traversal are added to

ηi, j. If the traversal visits a node in X global instead, then the set of primary inputs of ηi, j is

augmented with d, i.e. X is updated as X← X ∪d. This step is illustrated in Figure III.2(d).

Nodes w and r ∈D could be considered as primary inputs to the subnetwork; however,

all of their fanins can be expressed completely in terms of X . Thus, the fanin of the node

w∈D and the fanin u of r ∈D are added to ηi, j. However, the fanin of node t ∈D cannot be

expressed in terms of nodes in ηi, j, and so t is added to X . This check avoids the addition

of unnecessary primary inputs for representing the subnetwork ηi, j. A larger number of

primary input variables typically results in larger intermediate ROBDDs in the computation

of the Boolean relation R , and consequently more time needed for the computations.

Note that the size of each subcircuit ηi, j is determined by the depth parameter k1.

24

primary outputs

a) b)

d) c)

primary inputs

rru u

t

k1

k1 k1

ni

ni ni

n j

ni

n jn j

n j

t

w

yyy

xxx
zzz

ηi, j

η η

ηi, j

w

sss

Fig. III.2. Extraction of Subnetwork

25

Hence, by suitably choosing k1, it can be guaranteed that the subcircuits are never too

large, and the Boolean relation can be computed with low memory utilization, even for an

extremely large network η. The final subnetwork ηi, j is shown in Figure III.2(d). This

subnetwork is then used to create a Boolean relation which inherently represents the simul-

taneous flexibility of both ni and n j, as discussed in the following subsection.

III-C.3. Computing the Boolean Relation R Y

As mentioned previously, the exact computation of a Boolean relation expressing the flex-

ibility in a medium to large design could be extremely memory intensive. Additionally,

ROBDD-based computations are used for this relation. ROBDDs can, by nature, exhibit

very irregular memory requirements, especially for medium to large designs. A goal of

this thesis is to develop a robust methodology for computing the Boolean relation. This

is achieved by keeping a tight control on the sizes of the BDDs of the Boolean relation.

Not only is this relation computed for a node pair (ni,n j) using a windowed subnetwork

ηi, j (thus ensuring that the ROBDDs are small) but also careful early quantification is per-

formed to ensure that the ROBDD sizes stay tractable during the relation computation.

Consider a subnetwork ηi, j, its set of primary inputs X and its set of primary outputs Z.

Let the set of nodes being simultaneously optimized be referred to as Y and their combined

support be S. Note that S, Y , X and Z correspond to a set of nodes of ηi, j. Let the variables

for these be sss, yyy, xxx and zzz respectively as shown in Figure III.2(d). The characteristic function

of the Boolean relation R is a mapping B|S|×B|Y |→ B s.t.

R Y (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒∀zzz[(zzz = ZM
i (xxx,yyy))⇒Φ(xxx,zzz)]]

In this expression, Φ(xxx,zzz) is the characteristic function of the circuit outputs zzz = f (xxx).

The subexpression ZM(xxx,yyy) represents the characteristic function of the circuit outputs ex-

pressed in terms of xxx and yyy. Also, gS(xxx) is the characteristic function of the sss variables in

26

terms of xxx. The computation of R Y is explained intuitively as follows. For all primary

input minterms xxx, let sss take on values dictated by xxx (i.e. sss = gS(xxx)). If this is the case, then

if zzz takes on the values dictated by xxx and the node values of yyy, the values of xxx and zzz should

be related by the original network functionality (i.e. Φ(xxx,zzz)).

One caveat of this computation is that the two nodes (n1,n2) for which the relation

is calculated cannot be in each others’ T FI or T FO. The reason for this is explained as

follows. Suppose node n1 is a fanin of node n2. If that is true, then n1 ∈ sss and n1 ∈ yyy

simultaneously. If the relation is then minimized, BREL produces functions yyy = f (sss) that

are cyclic, with variables being on both sides of the equation. This could lead to feedback

in the optimized circuit. For this reason, a node in the other node’s T FI or T FO is not

chosen in the node selection algorithm.

III-C.4. Quantification Scheduling

In the approach presented in this thesis, the Boolean relation R Y (sss,yyy) is computed using

ROBDDs. In order to avoid a possible memory explosion problem, early quantification is

performed as explained next.

The computation for R Y (sss,yyy) is rewritten as

R Y (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒∀zzz[∏
i

(zi⊕ZM
i (xxx,yyy))⇒∏

i
(zi⊕Zi(xxx))]]

This expression can be re-written as:

R Y (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒∀zzz[∏
i

[(zi⊕ZM
i (xxx,yyy))⇒ (zi⊕Zi(xxx))]]]

The first observation is that the quantification over zzz (∀zzz) and the product term over i

(∏i) can be swapped to obtain a new expression for R Y (sss,yyy):

R Y (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒∏
i

[∀zzz[(zi⊕ZM
i (xxx,yyy))⇒ (zi⊕Zi(xxx))]]]

27

This is correct because in general,

∀ω(f ·g) = ∀ω(f) · ∀ω(g)

Quantifying out the zzz variables earlier results in smaller intermediate ROBDDs for the

expression to the right of the first implication. The computation can therefore be expressed

as:

R Y (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒ P(xxx)] = ∀xxx[(sss = gS(xxx))+P(xxx)]

where P(xxx) is is the ROBDD obtained after applying the first observation.

P(xxx) = ∏
i

[∀zzz[(zi⊕ZM
i (xxx,yyy))⇒ (zi⊕Zi(xxx))]]

In general, however,

∀ω(f +g) 6= ∀ω(f)+∀ω(g)

Let the common variables between f and g be ω∗. Let ω′ = ω∩ω∗. Then,

∀ω(f +g) = ∀ω′ (∀ω\ω′ (f)+∀ω\ω′ (g))

The second observation is that gS(xxx) depends on a smaller subset (x′x′x′) of the primary

inputs (xxx) of the network. Hence, R Y (sss,yyy) can be computed as

R Y (sss,yyy) = ∀x′x′x′ [∀xxx\x′x′x′ (sss = gS(xxx))+∀xxx\x′x′x′ (P(xxx))]

which reduces to:

R Y (sss,yyy) = ∀x′x′x′ [(sss = gS(xxx))+∀xxx\x′x′x′ (P(xxx))]

In practice, both observations are applied in tandem. First gS(xxx) is found, as well as

28

the set x′x′x′ . Then, while computing P(xxx), xxx\x′x′x′ is quantified out. The final computing step is

R Y (sss,yyy) = ∀x′x′x′ [(sss = gS(xxx))+P′(x′x
′

x′)]

where P′(x′x′x′) = ∀xxx\x′x′x′ (P(xxx)). By implementing both these techniques, intermediate ROBDD

never blows up in size. Without using the early quantification ideas, the ROBDD size is

dramatically larger, hence the early quantification is key to the robustness and scalability

of the approach of this thesis. The final ROBDD representing R Y (sss,yyy) is returned to the

calling function.

III-C.5. Endgame

Next, BREL is called to minimize R Y (sss,yyy). The output of BREL is a pair of completely

specified functions for the nodes n′i and n′j such that these functions are compatible with

R Y (sss,yyy) and the total cost of n′i and n′j is minimal. The new nodes n′i and n′j are grafted

back into η and the original nodes ni and n j are deleted from η.

At the end of the for loop in Algorithm 1, when all node pairs have been processed

by the relation-based minimization procedure, the network sweep command of SIS [20] is

run. This command quickly eliminates any constant-valued nodes in the network that may

have been created during the minimization process. Finally, the network verify command

of SIS is run to check if the resulting network η′ is functionally equivalent to the original

network η.

III-D. Chapter Summary

This chapter described the algorithm used for selecting the node pairs to be minimized, as

well as the methods for generating the subnetwork and computing the Boolean relation.

Details of the early quantification scheduling were given, along with the intuition behind

29

all of the steps involved. The experimental results for this approach and the conclusions

drawn from them are discussed in the following chapters.

30

CHAPTER IV

EXPERIMENTAL RESULTS

IV-A. Chapter Overview

This chapter presents the experimental results for the algorithm described in the previous

chapter. Section IV-B describes the preprocessing steps used in all the experimental results.

Section IV-C shows the methodology used to determine the the parameters that control the

node selection algorithm. Section IV-D reports the results obtained when comparing with

the mfsw approach of [21], which is the most powerful technique among single-node opti-

mized approaches (in terms of runtime and quality of results). Section IV-E discusses some

variations on the original algorithm and their results. Section IV-F shows the properties of

the node pairs that either did or did not produce gains when minimized. The chapter is

concluded in Section IV-G.

The metric for quality that is used throughout this chapter is literal count. This is

the sum of the number of literals for each node in the network. The fewer the number of

literals in the network, the better the optimization technique. The literal counts shown in the

results are all relative to another approach used for comparison. Runtimes are also reported

in these results. For some experiments, absolute runtime is reported, and for others, runtime

relative to another approach is reported.

The approach in this thesis was implemented in SIS [20], a logic synthesis package

written in C. The ROBDD package used was the CUDD package [9]. A sample of 15

medium and large circuits from the mcnc91 and itc99 benchmarks were used in the exper-

iments. The experiments were performed on a Linux-based Dell Optiplex with a 2.6GHz

Core 2 Quad CPU with 4 GB of RAM.

31

IV-B. Preprocessing Steps

Before any minimization is performed on the original network, two preprocessing steps are

performed. The first is the network sweep command of SIS, which eliminates constant-

valued nodes as well as nodes which do not fanout anywhere.

The second step is running sat sweep [28] on the network. This command uses a

Boolean Satisfiability (SAT) checker to determine if two nodes u and v are functionally

identical by calling SAT CHECK(u⊕ v). This checks if there is any input vector to u

and v for which the outputs of u and v differ. If there is, then the nodes are functionally

different and cannot be merged, and a new pair is selected. Otherwise, then the nodes are

functionally equivalent and can be merged together. This algorithm quickly reduces the

literal count of a circuit by removing redundancies. The results in this chapter are obtained

over and above what sat sweep achieves. The results reported for the competing technique

mfsw [21] were also preceded by a sat sweep command. In other words, sat sweep is run

first. Then the additional improvements obtained by the proposed method are compared to

those obtained by mfsw.

IV-C. Parameter Selection

As described in Section III-C, the node selection algorithm is based on four user-defined

parameters, namely thresh, k1, k2, and α. Tuning these parameters can customize the trade-

off between quality of results and runtime. In general, the longer the runtime, the better

the quality of results. However, the runtime is heavily dependent on the number of nodes

chosen. If changing a parameter increases the runtime, this is because either more node

pairs were selected, or the processing time of a node pair is increased. Depending on the

‘quality’ of the additional pairs, the literal reduction could change as well. Because of this,

optimal values need to be determined for all parameters as a first step.

32

The experiments in this section are conducted to find a ‘golden’ set of parameter values

for the proposed approach. In these experiments, the ranges of values for each parameter

are listed in Table IV-C. The nominal values of these parameters are also listed in this table.

Table IV.1. Initial Values, Final Values, Increments, and Nominal Values of the Node Selec-
tion Parameters

Parameter Low High Increment Nominal

α 0 1.0 0.1 0.5

k1 2 3 1 2

k2 2 4 1 3

thresh 0 1.0 0.1 0.5

IV-C.1. Selecting α

The first parameter to determine is α. This parameter determines the weight that PIs and

POs of the subnetwork are given when selecting a node pair. The parameter α can range

from 0, which considers only POs, to 1.0, which considers only PIs. The reason for deter-

mining α first is because it is the parameter least dependent on the others. Since thresh, k1,

and k2 affect only the number of pairs selected and the window size, α can be chosen first.

Figure IV.1 shows α being swept from 0 to 1.0, while the other three parameters are

held constant. The nominal values for thresh, k1, and k2 were chosen in the middle of their

ranges at 0.5, 2, and 3 respectively. The left axis represents the ratio of literals obtained

compared to that obtained after running sat sweep, and the right axis represents the average

runtime of the method used here. For each value of α, the average literal ratio and runtime

is presented in Figure IV.1, across all the benchmark examples.

33

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90
Ra

tio
of

Li
te

ra
ls

to
sa

t
sw

ee
p

Av
er

ag
eR

un
tim

e(
s)

α

Literals
Time

Fig. IV.1. Sweeping α with thresh = 0.5, k1 = 2, k2 = 3

The main observation is that in general, lower values of α yield lower runtimes as

well as fewer literals. This means that PO compatibility is more important when choosing

node pairs than PI compatibility. At the extremes, it is seen than an α value of 0 provides

40% more literal reduction in a quarter of the runtime than with an α value of 1.0. Since

both runtime and literal count increase with α, one can infer that with the higher α values,

more node pairs were chosen, but the pairs gave less literal count reduction. This shows

that when two nodes are minimized together, more flexibility is obtained if they reconverge

quickly than if they share a common variable support.

For 0≤ α < 0.5, both runtime and literal count are relatively flat. Therefore, the value

of 0.25 is chosen for α for the rest of the experiments in this thesis. Although there is no

empirical data to guide the selection of α for values less than 0.5, a value in the middle of

34

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

(2,2) (2,3) (2,4) (3,2) (3,3) (3,4)
0

10

20

30

40

50

60

Li
te

ra
ls

Ra
tio

to
sa

t
sw

ee
p

Av
er

ag
eR

un
tim

e(
s)

(k1,k2)

Literals
Time

Fig. IV.2. Sweeping k1 and k2 with thresh = 0.5 and α = 0.25

the range is chosen. This is so that PI compatibility still contributes to the node selection,

but not enough to degrade the results.

IV-C.2. Selecting k1 and k2

The parameters k1 and k2 are determined next. The size of the window is determined by k1,

because the subnetwork created includes nodes k1 levels back and k1 levels forward from

the nodes to be minimized, as shown in Figure III.2(a). Therefore a larger value of k1 means

more nodes are included in the subnetwork. The parameter k2 affects the number of nodes

in nnn, shown in Figure III.1(b), which are tested against the first node ni for compatibility.

A larger value of k2 means that more partners are tested for ni.

Figure IV.2 shows the literal ratio and average runtime for different values of (k1,k2).

The first observation is that the point (3,2) has a distinctly higher literal ratio than the other

points. This is because node n j is selected by going back 3 topological levels from ni but

35

then forward only 2 levels from there. This precludes any node n j that is on the same level

as ni from being selected. By comparing points (3,2) and (3,3) in Figure IV.2, is is clear

that these nodes account for a large portion of the gains in literal ratio.

From the other points, it can be seen that increasing k1 or k2 has little effect on the

literal ratio but causes a much higher increase in runtime. Therefore the values k1 = 2 and

k2 = 2 are chosen.

IV-C.3. Selecting thresh

The final parameter to determine is thresh. This parameter controls how ‘compatible’ two

nodes must be for them to be selected as a pair. A high value of thresh means that only node

pairs with a high percentage of outputs and inputs in common are chosen for minimization.

A low value of thresh allows the nodes with fewer inputs and outputs in common to be

minimized as well.

Figure IV.3 shows thresh being swept with k1 = 2,k2 = 2, and α = 0.25. The left

axis again shows the ratio of the number of literals using this technique to the literals from

the original network after calling sat sweep. The right axis shows the average runtime

in seconds for the minimization to complete, plotted on a log scale. This shows that for

thresh≤ 0.2, the runtime increases exponentially as thresh decreases, and the literal ratio

decreases linearly. For large values of thresh, the runtime decreases, but the literal ratio

increases drastically. This is because very few nodes are selected for minimization when

the threshold is high.

While either extreme can be chosen if speed or literal ratio alone were desired, se-

lecting an intermediate value of thresh can achieve a balance between the two. Therefore

thresh = 0.4 is selected for the remaining experiments in this thesis.

36

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 0.2 0.4 0.6 0.8 1
1

10

100

1000
Li

te
ra

ls
Ra

tio
to

sa
t

sw
ee

p

Av
er

ag
eR

un
tim

e(
s)

thresh

Literals
Time

Fig. IV.3. Sweeping thresh with k1 = 2,k2 = 2, and α = 0.25

IV-D. Comparison of the Proposed Technique with mfsw

As described in Section I-B, many single node techniques have been developed for mini-

mizing Boolean networks using don’t cares. Of these techniques, the method of [21], called

mfsw, has the best results and scales well. In this section, the results from the method pre-

sented in this thesis are labeled as relation and are compared with the results from mfsw.

The mfsw technique uses a SAT-based CDC method and a 2x2 window for creating subnet-

works.

For the remaining experiments, the ‘golden’ values of the parameters as described in

Section IV-C are used. In particular, thresh = 0.4, k1 = 2, k2 = 2 and α = 0.25.

For the results shown in Table IV.2, sat sweep is run first, providing the starting point

37

for both the mfsw technique and the method described in this thesis. The literal count

after sat sweep is shown in Column 2 of Table IV.2. The literal count and runtime after

running mfsw is reported in Column 3 and Column 4, respectively. The literal count and

runtime after running relation is reported in Column 5 and Column 6, respectively. For

these columns, the average literal count relative to sat sweep is shown in the last row.

Column 7 shows the ratio of literals in Column 5 to Column 3, and Column 8 shows the

ratio of runtimes in Column 6 to Column 4. Column 9 reports the peak number of ROBDD

nodes for relation, and Column 10 shows the percentage of node pairs selected by relation

that actually reduce the number of literals in the network.

From Table IV.2 it is seen that after sat sweep, the relation method reduces the literal

count by approximately 12% over what mfsw achieves. This shows that minimizing two

nodes simultaneously has significant benefits in terms of literal count over the don’t care

approach of mfsw. The memory requirements are also very low regardless of the size of the

circuit, due to the aggressive quantification scheduling performed. This supports the claim

that relation scales well, and is a robust technique. Column 7 shows that the node selection

method is quite efficient. On average, 45% of the node pairs chosen resulted in a reduction

in the number of literals in the network.

In terms of runtime, mfsw is clearly more efficient than relation, which requires nearly

40x more runtime on average. However, the absolute time values must be taken into ac-

count. Column 6 shows that for most circuits runtimes are under one minute, and the peak

runtime is still under four minutes for the largest circuit. Compared to the time scale of

the entire design process, which is measured in months or years, these times are therefore

quite small. In addition, as discussed in Section IV-C, the parameters for selecting node

pairs can be altered to decrease the runtime.

It should also be noted that increasing the window size of mfsw to a 10x10 window

greatly increases the runtime of that method but reduces the literal count by less than 1%.

38

Table IV.2. Results after sat sweep

orig mfsw relation ratio

circuit lits lits time lits time lits time mem % gain

c1355 992 992 0.09 598 1.53 0.603 16.96 339 1

c1908 759 748 0.09 595 6.74 0.795 74.88 54939 0.41

c2670 1252 1197 0.11 901 4.04 0.753 36.76 1025 0.78

c5315 3062 2935 0.29 2372 12.37 0.808 42.65 2683 0.74

c7552 3796 3549 0.43 2990 14.30 0.842 33.25 3314 0.68

b15 15084 14894 1.78 14654 49.31 0.984 27.70 5594 0.64

b17 49096 48595 5.74 48047 228.57 0.989 39.82 6578 0.60

b20 22037 21816 2.56 21501 91.40 0.986 35.70 3489 0.26

b21 22552 22306 2.59 21933 92.08 0.983 35.55 3489 0.32

b22 33330 33001 3.97 32321 203.11 0.979 51.16 3519 0.28

s1494 1239 1177 0.13 1195 3.68 1.015 28.31 594 0.20

s5378 2327 2283 0.27 1993 7.36 0.873 27.26 3306 0.38

s13207 5052 4833 0.38 4259 27.35 0.881 71.96 1430 0.30

s15850 6624 6342 0.52 5519 26.10 0.870 50.19 1234 0.51

s38417 17531 17314 1.43 17158 68.68 0.991 48.02 2598 0.41

average 1 0.974 - 0.859 - 0.882 38.62 - 0.45

39

This means that while relation does require more runtime, the minimization it performs

cannot be matched by mfsw regardless of the time it is allowed to run.

IV-E. Additional Experiments

Section IV-D presented the gains of the relation-based minimization approach after running

sat sweep. In this section, a variety of other experiments are performed to further explore

the relation-based technique.

IV-E.1. Running relation After mfsw

For this experiment, relation is run on networks that have already been reduced by sat sweep

and mfsw. The purpose is to test how much relation can improve upon the minimization

results of mfsw. Table IV.3 shows the results of this experiment. Column 2 (3) reports

the literal count (runtime) of running sat sweep followed mfsw. Columns 4 and 5 show

the literal count and runtime (respectively) of running relation on the netlist obtained by

sat sweep followed by mfsw. The literal and runtime ratios are shown in Column 6 and

Column 7, respectively.

It is seen from Column 6 that running relation after mfsw can further reduce the literals

by about 13%. Since the window sizes of both methods were identical, this improvement

represents the benefits of two node minimization over single node minimization. In the

specific case of circuit c1355, nearly 40% of the literals can be removed only through the

node pair technique. Columns 6 and 7 demonstrate again that the memory utilization is

very low, and the node selection method is effective.

40

Table IV.3. Results after sat sweep and mfsw

mfsw m f sw+ relation ratio

circuit lits time lits time lits time mem

c1355 992 0.09 600 1.53 0.605 16.994 336

c1908 748 0.09 588 2.86 0.786 31.759 12026

c2670 1197 0.11 906 4.21 0.757 38.307 742

c5315 2935 0.29 2298 11.57 0.783 39.912 1452

c7552 3549 0.43 2795 13.17 0.788 30.635 1842

b15 14894 1.78 14558 44.18 0.977 24.822 1262

b17 48595 5.74 47639 213.90 0.980 37.264 5648

b20 21816 2.56 21293 91.65 0.976 35.802 3490

b21 22306 2.59 21711 91.97 0.973 35.509 3489

b22 33001 3.97 32050 202.72 0.971 51.063 3511

s1494 1177 0.13 1142 3.29 0.970 25.319 673

s5378 2283 0.27 1972 6.95 0.864 25.738 5666

s13207 4833 0.38 4256 27.15 0.881 71.442 13121

s15850 6342 0.52 5331 23.92 0.841 46.004 1212

s38417 17314 1.43 16968 55.62 0.980 38.897 2009

average - - - - 0.868 34.684 -

41

IV-E.2. Running relation Twice

In this experiment, after running sat sweep, relation is run twice in succession on the same

network. The purpose of this experiment is to determine if there are improvements that

can be had by minimizing a network multiple times. Three separate experiments are tried.

In the first, only nodes pairs that did not give any literal count reduction during the first

run are minimized again. In the second, only node pairs that did give a reduction in literal

count are minimized again. And finally, all node pairs were rerun regardless of whether

they yielded a literal reduction or not during the first run.

The results for all three experiments showed a less than 1% improvement in literal

count compared to the first run of relation. These experiments show that even though the

network has changed significantly after the first run of relation, these changes have almost

no impact on the ability of other nodes to be further minimized in a subsequent iteration.

The same conclusion can be drawn for the mfsw method as well, which also yields almost

no further reductions when run more than once on a network.

IV-E.3. Minimizing Single Nodes

In this experiment, sat sweep is run first, followed by relation. During the relation algo-

rithm, some nodes get minimized while others do not, either because they were not selected

in a node pair or because the algorithm did not reduce their literal count. For such nodes, an

additional step of minimization was performed after running relation. After relation, these

nodes are again minimized individually using ODCs. This is implemented using the same

steps in Chapter III, by creating a relation corresponding to the subnetwork, and then using

BREL to minimize it. The only difference is that only one node is used. This experiment

ensures that some type of minimization is attempted for each node in the network.

However, experimental results showed that this idea does not further reduce the lit-

42

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14 16 18 20

Si
ze

of
BD

D

Iteration

Q1
Q2
Q3
Q4

Fig. IV.4. Effects of Quantification Scheduling on BDD Size

eral count by more than 1%, across all the circuits. Almost all of the nodes which were

subjected to single node optimization techniques were those that were originally selected

but did not reduce their literal count when minimized with other nodes in a pair. The con-

clusion that can be drawn is that if a node cannot be minimized with another node, then

minimizing it alone does not yield any gains either.

IV-E.4. Effects of Early Quantification

Section III-C.4 discusses the methods for early quantification used for the approach pre-

sented in this thesis. Figure IV.4 shows the effects of quantifying during different stages

of the computation of P(xxx) from R (Y). One node pair of the network c432 is being min-

imized in this example, and the number of nodes in the BDD during each iteration of the

P(xxx) computation is reported.

43

The plot Q1 represents the incremental size of the relation BDD without any early

quantification. Note that the BDD size is reported on a logarithmic scale. After only 20

BDD calculations, the size of the BDD is almost one million nodes. Only at the end of the

computation, when the zzz and xxx variables are quantified out, does the size of the BDD drop.

The plot Q2 shows the BDD size when the output variables zzz are quantified out after

each iteration of the computation. The number of nodes stays near 1000 until a particular

output in zzz is quantified out, and then the BDD size drops to 25.

The plot Q3 is the case when only the xxx\x′x′x′ variables are quantified out after each

iteration. The BDD size steadily climbs to over 100, until the final iteration, when the xxx

variables are quantified out.

Q4 shows the results when the quantification techniques Q2 and Q3 are applied in

tandem. The size of the BDD never grows past 25 during the entire computation.

This example demonstrates that for a single node pair, even when a windowing tech-

nique is employed, the BDD of R (Y)can blow up in size unless both the early quantification

techniques of Section III-C.4 are employed.

IV-E.5. Code Profiling

Table IV.4 shows the tasks of the minimization algorithm that contribute most to the total

runtime. The results for networks with less than 5000 nodes are shown in Column 2, and

the results for networks with more than 5000 nodes are shown in Column 3.

For the small networks, relation minimization using BREL takes the vast majority of

runtime. Selecting node pairs and creating the relation do not take much time comparatively

because they are based on network size.

For the large networks, the node selection and relation building take longer because

the number of nodes that are processed is much higher. The runtime for BREL is not

necessarily smaller but is smaller in proportion to the total runtime.

44

Table IV.4. Contribution of Algorithm Components to Total Runtime

Percentage of Runtime

Section of Algorithm Small Networks Large Networks

BREL Relation Minimization 78% 21%

Node Pair Selection 13% 36%

Building the Relation 9% 35%

IV-F. Node Pair Properties

The first step of the Boolean relation-based minimization technique presented in this thesis

is to select node pairs that are likely to provide reductions in literal count when minimized

together. The efficacy of this selection algorithm can be seen in Table IV.2, where 45%

of the pairs resulted in a literal count reduction. However, the other 55% of the pairs did

not give any gain. To find out the characteristics of these pairs, Table IV.5 presents 15

properties of all the node pairs, selected across every circuit. Column 2 shows the average

value of any property (per node) for the pairs that did result in a literal count reduction,

and Column 3 shows the average values for the nodes that did not. Column 4 takes the

ratio of Column 2 to Column 3. It helps determine if there is any difference between the

pairs that did result in a literal count reduction and pairs that did not (for that property). A

value significantly different from 1 indicates that there is a strong correlation between the

property and the minimization ability.

The first four properties in Table IV.5 show that pairs that minimize well have a higher

percentage of fanins and fanouts in common than those that do not. At first it may seem

contradictory that common fanins are more correlated to gains than common fanouts, since

Figure IV.1 shows otherwise. However, the statistics shown here are for nodes already

45

Table IV.5. Properties of Node Pairs that Can Be Minimized

Property Gain No Gain Ratio

% of fanin in common 34 14 2.42

% of fanout in common 46 25 1.84

% of subnetwork PI in common 38 27 1.40

% of subnetwork PO in common 49 42 1.16

Difference in level 1.06 1.35 0.79

Average level in network 11.16 9.59 1.16

Depth in circuit (0=PI, 1=PO) 0.26 0.24 1.10

Combined literals 4.50 4.62 0.97

Combined cubes 3.50 4.22 0.83

Combined immediate fanin 4.44 4.56 0.97

Combined immediate fanout 2.17 3.51 0.62

Network PI in subnetwork 0.31 0.53 0.59

Nodes in subnetwork 17.34 33.32 0.52

Literals in subnetwork 32.96 69.39 0.48

Size of Relation 7.87 16.28 0.48

46

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

605040302010
0

10

20

30

40

50
Li

te
ra

ls
Ra

tio
to

m
fsw

Ru
nt

im
eR

at
io

to
m

fsw

τ

Literals
Time

Fig. IV.5. Sweeping τ to Limit Subnetwork Size

selected with a low α. So while all pairs selected have many common fanouts, this table

shows that sharing common fanins as well allows more flexibility, as expected.

The next three properties deal with the level of the two nodes in the circuit. Nodes

that are closer in level to each other are also more likely to minimize well. However, there

is little correlation between absolute levels of the nodes and the minimization ability.

The next two properties show that while the number of literals of the node pair is not

important, the number of cubes does have a weak correlation with minimization ability.

When nodes have more cubes in them, it is harder for the relation to find the flexibilities

that can lead to minimization.

From the rest of the properties, a major trend emerges. The larger the size of the

subnetwork, which yields a larger relation, the less minimization can be done. Again, this

defies intuition at first, because an optimal solution would include all nodes in the network.

47

However, when the subnetwork is created, node pairs with fewer fanins and fanouts in

common require more nodes to build the relation on.

The high correlation between subnetwork size and ineffective node pairs warrants an

additional experiment. After the size of the subnetwork is determined for each node pair

processed by the relation algorithm, if the number of nodes in the subnetwork is above a

certain value τ, then the subnetwork is destroyed and the next pair is fetched. This effec-

tively puts a limit on how big the subnetwork can be and saves runtime by not minimizing

these node pairs.

Figure IV.5 shows the literal and runtime ratios of relation to mfsw, as the maximum

allowable number of nodes in the subnetwork τ increases. The data shows that by omit-

ting node pairs that create a subnetwork larger than τ = 40 nodes, the runtime is reduced

significantly with only a slight increase in literal ratio. This is consistent with the data in

Table IV.5, which found that node pairs with large subnetworks are not good candidates for

minimization.

IV-G. Chapter Summary

This chapter presents the experimental results for the algorithm described in the previous

chapter. Section IV-B describes the preprocessing steps used in all the experimental results.

Section IV-C shows the methodology used to determine the the parameters that control the

node selection algorithm. Section IV-D reports the results obtained when comparing with

the mfsw approach. Section IV-E reports the results of other experiments performed, with

modifications of the the original relation algorithm. Section IV-F shows the properties

of those node pairs that either did or did not produce gains when minimized, and reports

the results of the additional experiment using these properties. Conclusions based on the

experimental data obtained are discussed in the following chapter.

48

CHAPTER V

CONCLUSIONS

In this thesis, a scalable dual-node technology independent logic optimization technique

was presented. This technique scales well and can minimize both small designs and large

designs typical of industrial circuits.

The algorithm presented in this thesis first selects which node pairs will be minimized.

Rather than minimizing all possible node pairs, only those that are likely to give gains are

selected. The selection algorithm looks at how many fanins and fanouts the two nodes

have in common to decide whether or not they will be selected. The optimal parameters to

the node selection algorithm were chosen through experimentation, and it was found that

favoring common fanouts provided the best results.

For each node pair, a subnetwork is created around the nodes. This windowing is done

in order to make this approach feasible for large industrial circuits. Once the subnetwork

is created, the Boolean relation, which represents the flexibility of the nodes, is computed.

During this process, early quantification is performed. Experimental results show that with-

out early quantification, the BDD size can blow up exponentially during the intermediate

calculations.

BREL is used to minimize the Boolean relation, and the new nodes replace the original

nodes in the original circuit. This is done for all node pairs that were selected.

It is experimentally demonstrated that this technique produces minimized technology

independent networks that are on average 12% smaller than networks produced by a single-

node minimization technique called mfsw. Although the runtimes of mfsw are significantly

smaller than this approach, the runtime for any given circuit using this approach is never

more than four minutes. In addition, the memory usage is very low and is independent of

the circuit size.

49

Additionally, the approach in this thesis can further reduce the literal count of net-

works that have already been minimized by mfsw, by 13%. This result shows how the

increased flexibility from two-node minimization can simplify networks better than single-

node techniques.

Some of the future work involves using a SAT-based approach for constructing the

Boolean relation. An alternative SAT-based replacement for BREL can be implemented

as well. Both of these have the potential to reduce runtimes of the technique. In addition,

modifications to minimize three or more nodes simultaneously can be made to gain even

more flexibility using the Boolean relation-based multi-output optimization technique.

One final observation is that processing node pairs in parallel rather than serially would

greatly reduce runtimes on multi-core systems. To do this, a method for generating compat-

ible relations would have to be formulated. This means that if a node pair is minimized with

respect to its Boolean relation, the Boolean relations of all other node pairs are still valid

and do not need to be recomputed. Doing so will allow more node pairs to be processed in

the same amount of runtime.

50

REFERENCES

[1] Soha Hassoun, Ed., Logic Synthesis and Verification, Kluwer Academic Publishers,

Norwell, MA, Nov 2001.

[2] H. Savoj and R. K. Brayton, “The use of observability and external don’t cares for

the simplification of multi-level networks,” in Proc. Design Automation Conf., June

1990, pp. 297–301.

[3] Y. Jiang and R. K. Brayton, “Don’t cares and multi-valued logic network minimiza-

tion,” in Proc. Intl. Conf. on Computer-Aided Design, Nov 2000.

[4] R. K. Brayton and F. Somenzi, “Boolean relations and the incomplete specification

of logic networks,” in Proc. Intl. Conf. on VLSI, Aug 1989.

[5] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, “Multilevel logic

synthesis,” in Proc. IEEE, Feb 1990, pp. 264–300.

[6] B. Wurth and N. Wehn, “Efficient calculation of boolean relations for multi-level

logic optimization,” in Proc. European Design and Test Conference, Feb 1994, pp.

630 – 634.

[7] K. C. Chen and M. Fujita, “Efficient sum-to-one subsets algorithm for logic opti-

mization,” in Proc. Design Automation Conference, 1992, pp. 443–448.

[8] R. E. Bryant, “Graph based algorithms for Boolean function representation,” IEEE

Transactions on Computers, vol. C-35, pp. 677–690, August 1986.

[9] F. Somenzi, “CUDD: CU decision diagram package,” Accessed November 2007,

[Online]. Available: http://vlsi.colorado.edu/ fabio/CUDD/cudd.html.

51

[10] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic model checking with parti-

tioned transition relations,” in Proc. Intl. Conf. on VLSI, August 1991.

[11] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive paradigm to solve

Boolean relations,” in Proc. Design Automation Conf., 2004, pp. 416–421.

[12] J C Limqueco and S Muroga, “Optimizing large networks by repeated local opti-

mization using windowing scheme,” in IEEE International Symposium on Circuits

and Systems, ISCAS, May 1992, vol. 4, pp. 1993–1996.

[13] J C Limqueco and S Muroga, “SYLON-REDUCE: An MOS network optimization

algorithms using permissible functions,” in Proc. Intl. Conf. on Computer-Aided

Design, Sept 1990, pp. 282–285.

[14] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS: A multiple-

level logic optimization system,” IEEE Trans. on CAD/ICAS, vol. CAD-6(6), pp.

1062–1082, Nov 1987.

[15] S Dey, F Brglez, and G Kedem, “Circuit partitioning and resynthesis,” in Proc.

Custom Integrated Circuits Conf., May 1990, pp. 29.4/1 –29.4/5.

[16] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli,

Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers,

Norwell, MA, 1984.

[17] R Brayton, “Compatible output don’t cares revisited,” in Proc. Intl. Conf. on

Computer-Aided Design, Nov 2001, pp. 618–623.

[18] H Savoj, R Brayton, and H Touati, “Extracting local don’t cares for network opti-

mization,” in Proc. IEEE Transactions on Computer-Aided Design, Nov 1991, pp.

514–517.

52

[19] N. Saluja and S. P. Khatri, “A robust algorithm for approximate compatible observ-

ability don’t care (CODC) computation,” in Proc. Design Automation Conf., 2004,

pp. 422–427.

[20] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A System for

Sequential Circuit Synthesis,” Tech. Rep. UCB/ERL M92/41, Electronics Research

Lab, Univ. of California, Berkeley, CA 94720, May 1992.

[21] A. Mishchenko and R. K. Brayton, “SAT-based complete don’t care computation for

network optimization,” in Proc. Design, Automation and Test in Europe, 2005, pp.

412–417.

[22] S. Sinha and R. K. Brayton, “Implementation and use of SPFDs in optimizing

Boolean networks,” in Proc. Intl. Conf. on Computer-Aided Design, 1998, pp. 103–

110.

[23] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to express functional

permissibilities for LUT based FPGAs and its applications,” in Proc. Intl. Conf. on

Computer-Aided Design, Nov 1996, pp. 254–261.

[24] E. Cerny and M. A. Marin, “An approach to unified methodology of combinational

switching circuits,” in Proc. IEEE Transactions on Computers, Aug. 1977, vol. 26,

pp. 745–756.

[25] H. Savoj and R. K. Brayton, “Observability relations for multi-output nodes,” in

Proc. International Workshop on Logic Synthesis, May 1993.

[26] Y. Watanabe and R. Brayton, “Heuristic minimization of multi-valued relations,” in

Proc. IEEE Transactions on Computer-Aided Design, Oct 1993, pp. 1458–1472.

53

[27] F. Somenzi and R. K. Brayton, “An exact minimizer for Boolean relations,” in Proc.

Intl. Conf. on Computer-Aided Design, Nov 1989, pp. 316–319.

[28] A. Kuehlmann, “Dynamic transition relation simplification for bounded property

checking,” in Proc. Intl. Conf. on Computer-Aided Design, 2004, pp. 50–57.

54

VITA

Jeffrey Cobb was born in Ft. Worth, Texas in 1982. In 1993, he moved with his family

to Sugar Land, Texas and attended Clements High School where he played trumpet in the

marching and symphonic bands. He graduated from Clements in 2000 and enrolled that

year in the electrical engineering program at Texas A&M University in College Station,

Texas. During the summers of his undergraduate career, he worked at Halliburton and Dell

as an engineering intern. In his senior year, he participated in the Undergraduate Research

Fellows Program where he studied automated test pattern generation methods under Dr.

M. Ray Mercer. He received his bachelors degree in 2004 and enrolled in the computer

engineering department at Texas A&M University the same year to earn his masters degree.

His area of interest includes logic synthesis and logic minimization. He graduated with a

Master of Science in computer engineering from Texas A&M in December of 2007. He

can be contacted at the Electrical and Computer Engineering Department, c/o Dr. Sunil P.

Khatri, MS 3259, Texas A&M University, College Station, TX 77843.

The typist for this thesis was Jeffrey Cobb.

