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ABSTRACT

Communication Synthesis of Networks-on-Chip (NoC). (December 2007)

Praveen Sunder Bhojwani, B.Tech.(H), Indian Institute of Technology (IIT),

Kharagpur;

M.S., Texas A&M University;

Chair of Advisory Committee: Rabi N. Mahapatra

The emergence of networks-on-chip (NoC) as the communication infrastructure solu-

tion for complex multi-core SoCs presents communication synthesis challenges. This

dissertation addresses the design and run-time management aspects of communica-

tion synthesis. Design reuse and the infeasibility of Intellectual Property (IP) core

interface redesign, requires the development of a Core-Network Interface (CNI) which

allows them to communicate over the on-chip network. The absence of intelligence

amongst the NoC components, entails the introduction of a CNI capable of not only

providing basic packetization and depacketization, but also other essential services

such as reliability, power management, reconfiguration and test support. A generic

CNI architecture providing these services for NoCs is proposed and evaluated in this

dissertation.

Rising on-chip communication power costs and reliability concerns due to these,

motivate the development of a peak power management technique that is both scal-

able to different NoCs and adaptable to varying traffic configurations. A scalable

and adaptable peak power management technique - SAPP - is proposed and demon-

strated. Latency and throughput improvements observed with SAPP demonstrate its

superiority over existing techniques.

Increasing design complexity make prediction of design lifetimes difficult. Post
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SoC deployment, an on-line health monitoring scheme, is essential to maintain con-

fidence in the correct operation of on-chip cores. The rising design complexity and

IP core test costs makes non-concurrent testing of the IP cores infeasible. An on-line

scheme capable of managing IP core test in the presence of executing applications is

essential. Such a scheme ensures application performance and system power budgets

are efficiently managed. This dissertation proposes Concurrent On-Line Test (COLT)

for NoC-based systems and demonstrates how a robust implementation of COLT us-

ing a Test Infrastructure-IP (TI-IP) can be used to maintain confidence in the correct

operation of the SoC.
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CHAPTER I

INTRODUCTION

In 1965, Gordon E. Moore predicted that the number of transistors on a chip would

double every two years [1]. Technology improvements have allowed for this prediction

to hold true for over four decades, allowing for density to almost double every 18

months. The International Technology Roadmap for Semiconductors (ITRS) indi-

cates that these trends will continue till atleast the end of the decade, allowing for

more than a billion transistors on a chip [2].

This technology scaling trend allows for the design of complex multi-core systems-

on-a-chip (SoC). These SoCs will be capable of executing multiple applications pro-

viding a wide variety of features. Early SoC designs utilized bus-based communication

infrastructures for interactions between the Intellectual Property (IP) cores. In 2000,

Guerrier and Greiner identified that as designs got more complex and applications

became communication intensive, bus-based infrastructures would no longer be suf-

ficient [3]. They proposed the use of on-chip packet-switched networks to address

contention, scalability and availability concerns. This idea was also reiterated by

Towles and Dally, in the form of an abstract design of a SoC utilizing a folded 2D

torus packet-switched network and a regular IP core layout [4]. In research litera-

ture, these on-chip networks are referred to as Networks-on-Chip (NoC). Figure 1

illustrates an architecture considered by most NoC researchers. This architecture

consists of a regular layout of network tiles. These tiles consist of IP cores interfaced

with NoCs via core-network interfaces (CNI). On-chip routers route communication

between the source and destination network tiles, over links between them. A pro-

The journal model is IEEE Transactions on Automatic Control.



2

tocol stack similar to the one used in wide-area networks has also been proposed for

the on-chip network environment [5].

Fig. 1. NoC architecture

Communication synthesis of NoCs involves the design of components required

for on-chip communication and the necessary support for its run-time management.

Design aspects for NoCs cover challenges such as application mapping, topology se-

lection and NoC synthesis. Application mapping determines mapping of application

task graphs to processing elements in the SoC. This mapping is typically constrained

by execution time budgets and deadlines. This idea is pretty similar to the traditional

hardware/software partitioning [6], with the exception that communication between

the IP cores is no longer trivial. In [7], the authors proposed energy constrained

mapping of task graphs to processors, setting communication routes based on band-

width constraints. An energy aware mapping and routing technique was also proposed

in [8]. To improve on algorithm run-time, the research in [9] proposed a heuristic to

determine the neighborhood for communicating cores in a regular NoC, while schedul-

ing communication on the network links to ensure performance constraints are met.

Topology exploration and selection techniques were proposed in [10, 11, 12]. A number

of NoC sythesis techniques using heuristics and optimization algorithms have been

proposed in [12, 13, 14, 15], allowing for the design of application specific NoCs.

Run-time management of NoCs considers issues such as peak power control,
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hotspot avoidance, communication reliability and on-chip core health. These present

critical challenges to the reliable operation of the SoC. Peak power management has

an impact on design reliability and the cooling costs associated with the system.

Techniques to address this challenge have been proposed in [16, 17]. By controlling

communication flow in the NoC, these techniques manage power consumption. Pro-

viding reliability in on-chip networks were explored in [18, 19, 20]. The first efforts

at looking into the on-line health management for SoCs have been addressed in this

dissertation [21, 22]. Figure 2 illusrates how these design challenges fit into a NoC-

based system complete design process, identifying challenges to be addressed design

time and run-time. The steps in bold have been researched in this dissertation.

This dissertation makes three novel contributions in both aspects of communica-

tion synthesis for NoC-based systems. The primary contribution is in the domain of

Core-Network Interfacing. In the IP reuse design space, providing for an interface to

NoCs is an essential design step. Apart from allowing the IP core to talk the language

of the network, this dissertation identifies other services that may be provided by the

Core-Network Interface (CNI) - reliable communication, peak power management,

IP core test support and NoC reconfiguration. A generic architecture that can be

customized to varying IP core interfaces and NoC configurations is also proposed.

An evaluation of the costs associated with the CNI is reported, demonstrating the

feasibility of the proposed design.

Peak power management in NoCs is a design concern that can be addressed in

different ways. This dissertation examines peak power management at (i) design

time (static) and (ii) run-time (dynamic). Design time approaches lead to pesimisstic

solutions that impact performance. Dynamic approaches allow for adaptive solutions

to address these performance concerns, but are limited by available compute resources

to aid in the peak power management for NoCs. A Scalable, Adaptable Peak Power
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Fig. 2. NoC design process illustrating off-line and on-line steps
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(SAPP) management technique is proposed in this dissertation to address scalability

and adaptability limitations of previously proposed techniques.

Lifetime reliability challenges presented by complex multi-core SoCs require the

deployment of an on-line health monitoring technique to track the health of the on-

chip cores. Post SoC deployment, confidence in the health of on-chip cores can be

obtained by performing IP core test using existing test support. This would typically

be performed non-concurrently, i.e. by turning off executing applications. But with

rising design complexity and test costs - test time and test power - non-concurrent

testing is not feasible. Concurrent test of IP cores in presence of executing applications

in the system is essential. NoC components can facilitate this process, with the help

of an infrastructure-IP (I-IP). This dissertation proposes the deployment of a Test

Infrastructure-IP (TI-IP) into a NoC-based SoC, to provide Concurrent On-Line Test

(COLT) support for the on-chip components. The challenges to COLT are identified

and addressed by the proposed TI-IP design. A robust protocol of operation is also

documented along with implementation costs.

This dissertation is organized as follows: Chapter II discusses the Core-Network

Interfacing issues and proposes the essential CNI service set and support architec-

ture required for efficient and reliable operation of NoCs. Performance support from

on-chip routers in the form of class-based virtual channel allocation is also discussed

with results demonstrating their effectiveness. Chapter III proposes a novel peak

power management techniques for NoCs, while addressing the scalability and adapt-

ability limitations of prior research attempts. Evaluation highlighting the observed

improvements are also reported. Chapter IV motivates the need for a concurrent on-

line health monitoring system for SoCs. Challenges to the proposed technique COLT

are documented and solutions are deployed using a a robust TI-IP implementation.

Performance on different SoC configuration prepared using academic benchmarks are
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reported to establish the feasibility of deploying COLT. Finally, the dissertation is

summarized in the last chapter, and a few concluding remarks on future work are

presented.

Note: Since this dissertation does not investigate design exploration strategies

for NoC-based system designs, a single baseline NoC configuration is assumed and

configured into the evaluation platform NoCSim. This platform is configured for a

2D folded torus 4x4 layout of IP cores in an SoC. Source routing is used to route

communication between network tiles, while virtual channel based flow control is

utilized to avoid communication blocking.

Concepts proposed in this dissertation are implemented into NoCSim for func-

tional validation. Appendix B lists the features of this evalutation platform.
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CHAPTER II

CORE-NETWORK INTERFACE DESIGN

In light of rising shorter time-to-market (TTM) pressures and design reuse, inter-

facing pre-existing IP cores to formulate complex multi-core SoCs presents a critical

design challenge. When designing NoC-based systems, modifying core interfaces to

communicate over a NoC is not feasible and sometimes impossible. The interface

protocols and specifications are extensively pre-verified and validated, and may not

have been designed with the intent for deployment in NoCs.

These interfaces can broadly be classified into two categories: (i) standard inter-

faces and (ii) non-standard (or in-house) interfaces. Standard interfaces like the Open

Core Protocol - International Partnership (OCP-IP) [23], VSI Alliance (VSIA) [24]

and Advanced Microcontroller Bus Architecture (AMBA) family of interfaces [25] are

widely used in present day system designs. Their interface specifications are well-

defined and widely available in the public domain or by membership. Non-standard

interfaces are usually propietary to a corporation and used to design SoCs with IP

cores from a single library or vendor.

To integrate IP cores with this variety of possible interfaces, an adapter is re-

quired to translate signals from the IP core domain into signals in the NoC domain

and back again. This translation would be provided in the form of a packetization and

depacketization functionality, thus allowing for communication over the NoC. Besides

these services, this dissertation proposes a set of essential services to be provided by

the CNI to manage the NoC operation. The following sections discuss related research

and present the proposed services and a generic CNI architecture that can be applied

to any IP core interface and NoC configuration, by configuring specific blocks of the

design, thus avoiding complete redesign of the CNI.
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A. Related Work

The first research [9, 26] addressing the interfacing aspects in NoCs, compared costs

(area and performance) of providing packetization in software, hardware and with a

co-processor attached to a Xtensa core [27]. The software implementation provided an

API for the programmer to send data over the IP core interface in a packetized form.

The hardware implementation utilized a hardware adapter that packetized interface

signals. The co-processor based implementation added a special instruction to the

Xtensa processor Instruction Set Architecture (ISA) using the Tensilica Instruction

Extension (TIE) language. Other NoC research limit interface service to packetization

and de-packetization. This dissertation proposes a generic, enhanced CNI architecture

design that provides services required for the reliable and efficient operation of NoCs.

Concurrent research efforts documented in [28] identified a similiar service set essential

for NoCs.

B. Proposed CNI Design

The CNI design is specified in terms of its services and architecture. The following

subsections detail the proposed service set and generic CNI architecture.

1. CNI Services

The purpose of the CNI is to provide an interface for the IP cores to the NoC. Apart

from packetization and de-packetization functionality, it would also provide: end-to-

end reliability, communication scheduling, NoC reconfigurability, power management

and testing of IP cores.
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a. End-to-end Reliable Communication

With reducing noise margins in current and future SoC designs, data communication

in on-chip networks are susceptible to errors and schemes to recover from these need

to be incorporated into the NoC. In a multi-hop NoC, these schemes can either be

used in a hop-to-hop or end-to-end fashion. Deciding between these will depend on

the error rates of the design. If reliability concerns warrant the use of end-to-end

reliability, these schemes would be implemented within the CNI. Appendix A reports

on some of the studies performed in this regard. Error detecting codes such as CRC

and hamming have been previously suggested to detect errors and request retransmis-

sions [20, 29]. Forward error correction (FEC) can also be used to reduce the number

of retransmissions, especially if the power and latency costs associated with them are

unacceptable. Previous research have examined the feasibility of using a scaled down

low density parity check coders (LDPC) [30] for use in on-chip networks [19].

b. Communication Scheduling

With SoCs being proposed for use in real-time (RT) systems, it places timing con-

straints on all operational aspects of the system. These not only apply to the com-

putational components of the system, but also the communication infrastructure.

Providing latency constraints to on-chip communications will be essential for correct

operation of the system. Since the CNIs control the communication entering the NoC,

they are in the ideal position to provide for communication scheduling. Schemes pre-

viously used in distributed embedded systems may not be feasible for use in cost

constrained NoCs where a simple, yet effective scheme is needed. Support for such a

scheme would also be needed from the NoC. We utilize the proposed class-based VC

allocation scheme which is supported by the router discussed in Section C.
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c. Peak Power Management and Network Reconfigurability

Network reconfigurability is essential in dynamic systems. With changing commu-

nication requirements, certain aspects, such as flit routes and stream bandwidth

allocation may need to be modified at runtime. In the NoC configuration consid-

ered, we use source routing, which requires a route table to provide the flit with the

route to the destination. Routes within a dynamic system may need to be changed

to accommodate avoidance of hotspots that may lead to system failure and latency

violations. In [31], the authors used a static bandwidth allocation scheme when VC

based communication was used. Since the power consumption in the NoC is directly

proportional to the bandwidth of the communication on-chip, the bandwidth allo-

cation may need to be scaled to manage power and control propagation latency to

the destination. Scaling of bandwidth is implemented in the CNI itself and may be

implemented in the routers, but this will lead to buffering issues at the intermediate

nodes in the NoC. This dissertation also proposes a dynamic peak power manage-

ment technique to address any limitations of off-line techniques. Chapter III details

the proposed schemes for peak power management in NoCs and compares them to

existing techniques.

The CNI can also be reconfigured based on events monitored in the NoC. [32]

introduced the monitoring service for NoCs. Events monitored can be provided to

the relevant CNIs in the system to allow for reconfiguration.

d. IP Core Test Support

Another functionality for the CNI is that of testing of the IP cores attached to it.

Prior research [33] has indicated the possibility of reusing the NoC as a Test Access

Mechanism (TAM). Since test requests and responses need to be properly interfaced,
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by providing a test controller, we believe that the testability of the SoC can be

managed more effectively. The Concurrent On-Line Test technique proposed in this

dissertation (see Chapter IV) utilizes the test controller to interface test with the IP

core.

2. CNI Architectural Sub-components

An architectural sketch of the proposed CNI is shown in Figure 3 below. It high-

lights the major components. To provide the essential CNI services, the following

Fig. 3. Core-Network Interface architecture

sub-components are integrated into the proposed architecture.

IP Interface Arbiter: The arbiter behaves as a proxy for communication between

the IP cores attached to the NoC. It accepts (delivers) communication requests (re-

sponses) to the various IP cores. It replays the communication protocols associated

with the core interface standard. A FSM representing the protocol is be used to

configure the arbiter. For this research we have considered the OCP-IP 2.0 interface

specification and have developed an arbiter capable of interfacing with the basic signal
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set of the OCP interface. Actual implementations and protocols cannot be specified

here due to privacy considerations. The arbiter tracks communication requests from

multiple cores attached to it via the state table.

Encoder/Decoder: The coders are used to provide for end-to-end reliability. Data

to be transmitted is encoded at the sender CNI, transmitted over the NoC to the

receiver CNI where it is decoded. The decoder either detects or corrects errors in the

transmitted data based on the selected coding scheme. The ”strength” of the coding

scheme depends on the desired level of reliability and the acceptable cost of imple-

mentation in terms of silicon area, power and latency. In the presence of multiple

coders in the CNI, varying levels of strengths maybe supported based on the detected

error rates in the system. The CNIC would be responsible for the selection amongst

multiple schemes based on observed error rates.

Packetizer/De-packetizer: Data to be sent over the NoC is sent in the form of

packets. These packets are further broken up into flits (flow digits), which are the

smallest atomic data chunks sent over the NoCs. The flits are limited by their size,

hence a single packet of data is made up of multiple flits. Each packet larger than a

single flit in size, contains a HEAD flit and TAIL flit. Packets larger than two flits

in size also have DATA flits, which contain application data. Figure4 illustrates the

data fragmentation.

As mentioned in [26], the main functionality of the packetizer is to prepare the

flits to be sent out over the NoC. It packetizes the encoded data and sets all the

fields of the flit. The de-packetizer accepts flits from the NoC and forwards them to

the decoder before delivery to the target IP core. The NoC parameters that affect

the packetizer configuration are: topology, routing, flow control policy, VC allocation

scheme, etc.

Route Table (RT): The RT provides for address translation between the IP core
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Fig. 4. Application data is sent over the NoC in the form of packets, which are further

broken up into flits

and the NoC addressing. It maps addresses issued by the IP cores into routes to

the intended destinations (i.e. host intelligent routing). When responses are to be

returned, the query is made in the form of network addresses. The network address

consists of the network tile ID and the IP core ID that will be assigned at design time.

When requests are packetized, the source id field of the flit is set with the network

address of the sending CNI.

When router intelligent routing is used in the NoC, the DT/RT will provide the

network address of the destination IP core. This address will be looked up in the RT

at the intermediate hops in the NoC.

CNI Controller (CNIC): The CNIC manages the operation of the CNI and con-

trols its sub-components. Since the CNI is pipelined (5 stages), CNIC manages control

signals for each of the pipelined stages. When reconfigurability is supported by the

CNI, the CNIC will be responsible for updating the sub-components like CNI-CS and

DT/RT. Connected to the ST, the CNIC assigns and records stream IDs to com-

munications originating from the network tile. When issuing responses, it provides

the packetizer with stream ID from the received request flit. On the receipt of a

response, the stream ID entry is removed from the ST, allowing it to be reused on
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future outgoing requests.

CNI Communication Scheduler (CNI-CS): The CNICS provides initial VC al-

location to the flit emerging from the CNI. It does so based on the requested VC

allocation class. Details on class-based VC allocation scheme, its benefits and setting

of the class id field of the flit are discussed in Section C. When supporting dynamic

bandwidth scaling, the CNICS is responsible for modifying the bandwidth allocated

to the communication streams originating from this CNI. The bandwidth allocations

are modified by the CNIC.

Link Controller (LC): It provides an interface for the CNI to the NoC. Its purpose

is to match CNI operation parameters like clock rate to that of the NoC. In cases

where clock rates do not match, additional buffers may be needed to match the arrival

and service rates of the CNI and NoC.

Power Manager (CNI-PM): Most IP cores are capable of operating in low power

modes. When determination of the operating mode is dependent on the communica-

tion characteristics, the CNI-PM will be used to manage the states of operation. The

CNI-PM also manage NoC power. Since power consumption in the NoC is depen-

dent on the volume of traffic, managing traffic injection into the NoC control power

consumption. Chapter III details the investigation performed on this aspect.

Test Controller (TC): The TC handles testing of the IP cores through available IP

test interfaces. It may either receive test vectors from remote network tiles or obtain

them from a local test memory. Results from the TC can be utilized in reconfigur-

ing the NoC too. In the current implementation of the CNI, we do not include the

CNI-PM and TC since these are dependent on the IP core characteristics.

Some sub-components of the CNI are IP core specific, while others are NoC

specific. The interface arbiter is IP core interface specific and is configured to replay

the interface protocol. The packetizer, depacketizer, link controller, DT/RT and
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CNIC are NoC specific. The encoder and decoder are technology specific as they are

dependent on error rates present in the design.

To provide communication scheduling support in the NoC, the on-chip router

needs to be modified to provide for latency constrained on-chip communication. The

following section describes the motivation and approach taken towards providing this

service.

C. Latency Constrained On-chip Communication

VC allocation in on-chip networks can yield unwanted jitter in end-to-end commu-

nication. This dissertation proposes a class-based VC allocation scheme to bound

end-to-end jitter. It is important to note that even in the absence of the proposed

scheme, the worst case (WC) jitter is bounded. The proposed scheme would only

be useful when WC exceeds desired latency bounds. VC allocation could easily be

setup to provide best case jitter results. But this may not always be desirable in

RT environments where latency constraint budgets are critical to only part of the

communication set.

1. Factors Affecting End-to-end Latency

The end-to-end latency is the sum of delays incurred by a flit at each on-chip router

enroute to the destination. The delay (in the absence of congestion) at each net-

work tile is constituted of VC configuration dependent delay and VC configuration

independent delay. The VC configuration properties include number of VCs and VC

service policy. For our experiments, we consider a simple round-robin service policy.

The on-chip router is constituted of input ports, output ports, switch, switch

allocator and a virtual channel allocator. The input ports receive flits from neighbor-
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ing network tiles. The output ports forward flits to the neighboring tiles. The switch

interconnects input and output ports. The switch allocator decides on which input

and output ports are connected at any given time. The VC allocator allocates virtual

channels over the next communication hop. Figure 5 illustrates these components.

Fig. 5. On-chip router internals

2. Proposed VC Allocation Scheme

We propose a class-based VC allocation scheme for the VC Allocator (VCA) of the

router, which provides next VC allocations for the requested class of communication.

The VCA receives requests from the input ports. These requests specify the target

output port and the desired class of communication. The VCA responds with a VC

id and class id for the next hop - this is needed to support class migration.

One of the situations that may arise is that of the unavailability of VCs for the de-

sired class of communication. In such a case, a VC at a lower priority communication

class is provided. Over the next hop, an attempt is made to restore communication
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to its original classification. We term this as class migration, that is restricted be-

tween certain levels of classes to prevent any drastic degradation in performance. In

certain cases, where communications have stringent deadlines, class migration may

be unacceptable. The current configuration of the design does not have a provision

for selective class migration, i.e. allow migration for certain communication streams

when allowed. Support for such a scheme can be achieved by incorporating additional

fields in the flit headers to provide the VCA with additional information that can be

used to make VC allocation. We now present the architectural modifications made

to the VCA to support the proposed scheme.

3. VCA Architecture

The traditional VCA consisted of direction registers that indicated the availability of

free VCs in the output directions. To restrict the allocate-able VCs, class registers

are introduced. The number of VCs assigned to each class is identical. Since these

change every clock cycle, they are rotated at every clock edge. Based on the requested

output port and requested class, the VC decoder determines the next VC id and the

class to which it belongs to. The VCA micro-control manages the credit updates for

the neighboring network tiles (Figure 6). To support low latency class migration,

the VC decoder simultaneously determines next VC ids for a window of classes. The

highest available class next VC id is returned to the requesting input port.

4. NoC Support

To support the class-based VC allocation, the NoC flit headers have additional fields,

class id and original class id. The original class id field is used to restore the class

of communication to its original class after it has migrated to a lower class. The

proposed scheme has a very low overhead when compared to the original design,
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Fig. 6. Simplified architecture for class-based VCA

since the additional components are the class registers and utilizes a slightly more

complex VC Decoder. This was one of the original design goals. A better scheme

may be achieved but with a much larger overhead.

5. Setting the Class id Field

We have shown how the class id field of the flit can be used to provide end-to-end

latency jitter bounding. Setting the class of communication is an important aspect.

We believe that the class can be set in two ways: (i) by application: The application

will stipulate desired class for every communication stream via the available ports of

the interface. One implementation we considered provided the class via the address

port of the IP core. This information is then used to set the class id field of the flits

and (ii) by CNI configuration: The DT/RT can be pre-programmed with a class for

each communication stream originating from the CNI and intended for a particular

destination. This would require the addition of a single port and an additional field

to the DT/RT. The packetizer would obtain the class id from the DT/RT and sets it

in the flits.
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6. Evaluating Class-based VCA

NoCSim was used to evaluate the effectiveness of our proposed scheme. Two versions

of the NoC router - classless VC allocation and class-based VC allocation - were

tested.

The first experiment analyzed the end-to-end latency bound for the different

classes of communications over different hop distances. We set up the class-based

VCA with support for 4 classes (0-3). Random traffic sources were used to determine

the average flit latency to the destinations. We observe that the performance of

the classless VC allocation is not the same as the WC - in fact it is better than

the latency observed for class 3. The absence of class-based VC allocation leads to

unpredictability and a latency variation of up to 400% (see Figure 7).

Fig. 7. Latency vs hop distance for varying classes

We considered a processor-memory setup [34] with the following characteristics:

Processor: 1GHz, Assumed CPI = 1.0, Instruction Mix: 25% Load/Stores, 4:1 =

Load:Store, Cache miss rates considered: 5% and 25%, Memory miss penalty: 35

cycles. The layout considered is shown in Figure 8. For the two cache miss rates, the

generated NoC traffic leads to varied throughput in the processor. To keep commu-
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nication latency at a minimum, class 0 was assigned to the communication stream.

Using the communication characteristics from the previous experiment, we estimated

the effective throughput in terms of MIPS. This experiment clearly shows a 25% im-

provement in throughput in the low miss rate scenario, while in the case of a high miss

rate, there is a 22% improvement when using a class-based VC allocation scheme.

Fig. 8. Effective MIPS for processor for different cache miss rates

D. CNI Evaluation

The proposed CNI architecture is implemented for a OCP-IP compliant IP core inter-

face and a 4x4 2D folded torus NoC providing the communication infrastructure for

16 cores. Functional validation of the proposed CNI is achieved in two steps. A Sys-

temC model of the CNI is developed and integrated with NoCSim. Using trace-based

and task-graph based traffic generation, CNI functionality is validated.

A Verilog HDL implementation of the CNI was synthesized with Synopsys Design

Compiler [35] using the Virginia Tech VLSI for Telecommunications TSMC-0.25um,

2.5V standard cell library [36, 37], the gate count for the CNI was estimated at

21,283.Table I lists the breakdown of gates between design modules.

The Verilog design was also synthesized on a FPGA using using the Xilinx ISE.
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Table I. Gate count breakdown for CNI modules

Module Gate Count

Interface Arbiter 3478

Encoder 1208

Packetizer 2212

Route Table 205

Link Controller 6022

Depacketizer 944

Decoder 2995

CNI Power Manager 808

CNI Communication Scheduler 2154

CNI Controller 1257

Total 21,283
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The design utilized 1,467 slices of the FPGA. The equivalent gate count was estimated

at 24,154.

E. Unconsidered Design Issues

Two interface design aspects have not been considered in this dissertation. The first

is the clock domain mismatch. The clocking domains of the IP cores and NoCs maybe

different, leading to different arrival and service rates in the CNI. These issues are

also found in present day systems and can be addressed with additional buffers to

handle the different rates of operation. In the proposed CNI architecture, the interface

arbiter would operate at the IP core interface rate, while the link controller would

operate on the NoC clock. Buffers between the arbiter and encoder/decoder can be

used to address the mismatch. The selected buffer depth would impact the number

of outstanding requests managed by the CNI.

Transaction ordering in traditional bus-based systems are ordered. This is pos-

sible with low overheads due to the presence of a direct link between the components.

Transaction re-ordering tends to take place on split buses and is addressed by ad-

vanced modes of bus protocols. In NoCs, ordering becomes more difficult. Global

ordering required a central arbitration mechanism. Local ordering between source-

destination pairs is achievable with costly overheads in the form of sequence numbers

and additional buffering to allow for reordered delivery.
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CHAPTER III

PEAK POWER AWARE NOCS

The emergence of complex SoC designs with increased communication requirements

have led to the deployment of NoCs. They address scalability challenges presented

by traditional bus-based communication infrastructures. However, these also present

power related cooling and reliability challenges making the peak power consumption a

critical design time constraint. As identified in [17, 38], 50% of the electronic failures

are temperature related, since circuit reliability is exponentially dependent on oper-

ation temperature. The increasing dominance of the power consumption of on-chip

networks in present day systems poses critical challenges that need to be addressed

lest they become a bottleneck in the development of high performance systems [39].

The power consumption in routers and links of the Alpha 21364 microprocessor were

found to be about 20% of the total power consumption [40]. In the MIT Raw on-chip

network, network components constitute 36% of the total power consumption [41].

These numbers indicate the significance of managing the interconnect power con-

sumption.

Peak power of NoCs can be managed at design time or dynamically at run-time.

Dynamic peak power management can be further classfied into (i) deterministic and

(ii) non-deterministic budget conservation techniques. Figure 9 illustrates the taxon-

omy of peak power management techniques. At design time, peak power budget for

on-chip communication is ensured by setting communication parameters like maxi-

mum bandwidth and communication routing [31]. However, design time peak power

management lacks adaptability which can lead to performance degradation. Dynamic

peak power management schemes are essential to meet varying run-time performance

requirements. PowerHerd [17] is a dynamic peak power management scheme proposed
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for on-chip networks. It manages peak power budgets across the NoC and attempts to

meet peak power requirements by sharing power budget between neighboring on-chip

routers. Jin et al. [16] proposed a QoS-aware peak power management scheme (PC)

that controls flit injection into the NoC while providing an improvement in average

latency when considering best effort and real time traffic. These schemes perform suit-

ably for well-behaved and predictable traffic in smaller NoCs. However, they cannot

meet adaptability and scalability needs for unpredictable traffic and larger multi-core

NoC designs. A comparison of the key requirements of a peak power management

scheme is discussed later.

Fig. 9. Taxonomy of peak power management techniques for NoCs

A. Related Work

1. Energy/Power Model

Bit-level power models for on-chip networks have been utilized by various researchers [42,

43]. In this research, the power consumption of the NoC has been estimated at the

per-flit level. Using the thermal time constant (TTC), we determine the number of

flits that are present in the network during this time window and the consequent

energy consumption of each of these flits. Flit traversal in the network can be broken

down into a sequence of operations (1) buffer read, (2) switch traversal, (3) external
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link traversal and (4) buffer write [17]. The energy consumption of the flit can be

estimated with equation 3.1:

Eflit = (n+ 1)[EBR + EBW + ES] + nEL (3.1)

where, Eflit - energy consumption of flit, EBR - buffer read energy, EBW - buffer

write energy, ES - switch traversal energy, EL - external link traversal energy, and n -

number of hops to destination. Hence the power consumption during TTC for t flits

can be determined with equation 3.2

P =

∑
t∈flitsEflit(t)

TTC
(3.2)

where, P - power consumption, and Eflit(t) - energy consumption for flit t.

Using energy/power values from the IBM 90nm workbook, we experiment to

determine the effect of varying traffic loads on the energy distribution amongst the

network tile components (buffer, switch and links). The energy distribution profile in

Figure 10 emphasizes the contribution of the buffer operation energy to the total flit

energy for the varying loads. With over 60% of the total energy contribution being

made by the buffers, it stands in sharp contrast to the chip-to-chip link scenario,

where the buffer contributes about 10% and the link contributes over 80%.

2. PowerHerd

PowerHerd was proposed for the dynamic monitoring and management of peak power

consumption in NoCs. The technique ensures that the total energy consumed over the

thermal time constant duration is bounded by the global peak power budget - PGPB.

PowerHerd is deployed in on-chip routers and consists of power estimation, prediction,

sharing, routing and regulation. The router estimates is power consumption based on
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Fig. 10. Energy distribution profile for different loads

observed activity. This is then used to predict future budget requirements. This infor-

mation is used to determine the amount of budget to be shared with the neighboring

routers. Regulation is achieved by throttling switch allocation. Route decisions are

made based on power budgets in the neighboring routers. These operations take place

dynamically and are used for peak power management.

The observed limitations of PowerHerd are:

1. Delay in budget migration from one end of the chip to the other. Since budget is

exchanged with neighbors only, the response of this approach to rapidly chang-

ing budget requirements in the system will be slow. This leads to scalability

and adaptability limitations.

2. The budget sharing method can lead to formation of islands which would localize

power budgets, reducing the effectiveness of the budget sharing.

3. Peak power budget management at routers involves additional buffer require-

ments in the routers.
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3. Peak Power Control (PC)

In [16], a peak power control technique (PC) involved deploying an injection throttle

logic at the injection point into the network. The injection is bound by power budgets.

Using a QoS aware on-chip router, performance improvement over PowerHerd was

reported. This approach is similar to that proposed in this dissertation.

The observed limitations of PC are:

1. There is no budget re-allocation amongst the injection throttle logic. This limits

the adaptability of the PC to varying peak power budget requirements.

2. Using a uniform distribution of the peak power budget amongst the injection

throttle logic does not scale well with increasing NoC sizes, especially when

there is no re-allocation between them.

The following section discusses the design time peak power management explored

as a part of this dissertation.

B. Static Peak Power Aware Design

When designing SoCs, predictable communication parameters allow for off-line peak

power constraining. This research exploits this idea, and provides a bandwidth con-

trolled peak power constraining scheme. The effect of the scheme in terms of cost

and benefit is also presented.

This research utilizes a mode-based communication model that allows for the

abstraction of the multimode communication within the system. The information

provided by the model aids in reducing the design space explored and yields a solution

that conforms to the communication restrictions set by the design specifications. A

design heuristic to aid in determining the immediate neighbors of a resource in a
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regular NoC topology and the routing of the communication within the system is

presented here.

The solution obtained does not provide the exact mapping of resources onto the

NoC. It only determines immediate neighbors of the resources in the SoC and routes

taken by all communications in the system. This flexible solution provided can then

be mapped onto the NoC template, depending on placement constraints that the

system designer may have. A scenario where such flexibility may be essential is

when a particular resource may need to be placed along the chip boundary for I/O

operations. The solution obtained is verified through NoCSim.

A crucial step in the design methodology, the neighborhood determination stage

facilitates the determination of immediate neighbors of resources within the NoC

topology and the communication routing between them. Power cost associated with

the solution obtained is evaluated and depending on the Peak Power Budget, the

communication bandwidth is throttled to constrain the peak power consumption.

1. Problem Formulation

The Mode Characterization Graph, MCG(N,C), shown in Figure 11(a), characterizes

the communication characteristics of the target multimode system. The node set

(N) enumerates the set of communicating resources and the edge set (C) specifies the

communications in all modes. Communication edges are characterized by:

1. mode: mode of operation,

2. bandwidth required : performance constraint,

3. data volume: amount of data to be transferred in each iteration, and

4. injection load : indicates the amount of load injected into the network by this
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communication pattern.

It belongs to the range (0,1]. These communication edges are also referred to as

secondary edges.

The Network Graph, NG(T,L), shown in Figure 11(b), provides the neighborhood

characteristics of the network tile set(T). If a network edge ne ∈ L, has an edge

between t1 and t2 (t1, t2 ∈ T), then t1 and t2 are immediate neighbors in the NoC.

The network edge ne, highlights the secondary edges that flow through it, and the

link bandwidth that has been allocated to that communication edge.

Fig. 11. (a) MCG, (b) NCG, (c) NCG after merge operation

The neighborhood determination problem is framed as a transformation of the

arbitrary cardinality MCG into the fixed cardinality NG. The constraint applied during

transformation is bandwidth reservation from source to destination for each of the

secondary edges.



30

2. Definitions and Operations

Definition 1: A candidate for transformation is a node in the MCG that has cardi-

nality greater than the constraint set by the target topology.

Definition 2: A critical edge is a secondary edge that is selected by the heuristic to

merge with one of the network edges.

Operation 1: The merge operation - merge(se, ne) - adds a secondary edge se to

a network edge ne. During the merge operation, the heuristic attempts to allocate

bandwidth to the secondary edge. If enough bandwidth is not available, the heuris-

tic redistributes the link bandwidth amongst the secondary edges flowing through it.

When the bandwidth of a secondary edge on ne is modified, its bandwidth is updated

from source to the destination along all network edges it flows in.

Operation 2: The rank operation ranks the network edges with which a secondary

edge would be merged. The ranking is based on three criteria:

• network edge already visited: This helps keep check on the cyclic propagation

of secondary edges amongst the resources.

• network edge backtracked from: prevent wasted effort

• number of secondary edges - at the resource pointed to by the network edge -

whose communication clashes with the mode of the candidate secondary edge.

Example: In the example in Figure 11, consider the given MCG. The target NoC

topology is a 2D torus. We need to reduce the cardinality of resource A to 4 and

route the extra edge through the other resources. The heuristic selects the four most

critical outgoing edges of resource A and assigns them to the four vacant outgoing

network edges. In this case, it has selected the edges to B, C, D and E to be the

critical edges and hence places B, C, D and E as the immediate neighbors of A. The
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edge to F will be routed through the four outgoing edges, i.e. we need to merge the

communication of A to F through B, C, D or E. From Figure 11(c) we notice that

the heuristic selects resource D to be the candidate through which this connection

is to be routed. This selection is done based on the results obtained by the ranking

operation.

3. Heuristic

The heuristic (see Algorithm 1) that has been shown here is iterative in nature.

In each of the iterations we consider a resource (candidate) and attempt to make

decisions on its immediate neighbors in the NoC. The objective of the heuristic is to

merge these secondary edges with the network edges. These network edges are the

network links between tiles in the NoC network.

When we attempt to merge a secondary edge with a network edge, there are three

possible scenarios. In scenario 1, when the network edge has no destination specified

yet, the merge operation will set the destination resource of the secondary edge as an

immediate neighbor of the candidate. In scenario 2, the network edge has the same

destination as that of the secondary edge. Here we just merge the communication

and update the bandwidth for the different modes of communication on this network

edge. In scenario 3, the destination of the network edge is not the same as that of the

secondary edge. In this case too, we merge the communication with the network edge.

Aside from that we also add a secondary edge to the destination resource pointed too

by the network edge. This new secondary edge would have the same destination as

that of the critical secondary edge being merged. These steps are performed for each

un-merged secondary edge of each resource in the system.
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Algorithm 1 Neighborhood Determination Heuristic

while n ∈ N : n is a candidate do
SEn = set of secondary edges of n
NEn = set of network edges of n
while |SEn| 6= Φ do
se = getCriticalSE()
if ∃ne ∈ NEn : ne.dest = se.dest then
merge(se, ne)
SEn = SEn − se
UpdateRoute(se)

else if ∃ne ∈ NEn : ne.dest = Φ then
if N(ne.dest) supports a return edge to n then
merge(se, ne)
SEn = SEn − se
UpdateRoute(se)
setNetworkEdge(ne.dest, n)
setNetworkEdge(n, ne.dest)

else
getMultihopReturnPath()

end if
else

rank ne ∈ NEn

select best candidate for merge
merge(se, ne)
SEn = SEn − se
SEne.dest = SEn.dest + se
UpdateRoute(se)
if merge not possible then

Backtrack2Predecessor( )
end if

end if
end while

end while
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4. Off-line Peak Power Control

Another aspect that needs to be addressed in SoC design is that of peak power

management. The peak power is the maximum power consumed during a TTC and

is directly proportional to the number of flits traversing the on-chip network. It

can be controlled in two ways: (i) dynamically, and (ii) statically. Dynamic peak

power control would require the deployment of an on-line power control/management

strategy. Some techniques that have been proposed are link voltage scaling [44], link

on/off technique [45], and Powerherd [17]. But these techniques are mostly for off-

chip networks. The cost associated with implementing such techniques on-chip might

be too. For the off-line (static) peak power control, there are essentially two schemes:

(1) admission control, and (2) communication scaling.

When designing SoCs, admission control cannot be used to reject communication

since it is not a viable design option. So the appropriate solution would be to use the

communication scaling scheme where the communication would be accepted, but the

bandwidth allocated to it may not be equivalent to its demand.

The network model in [4], utilizes virtual channels and in this scenario, the link

bandwidth is divided equally amongst them. So by modifying the number of virtual

channels allocated to a communication, we can modify the bandwidth allocated to

it and thereby its power consumption. In the peak power constraining phase of the

design, the bandwidth allocated to the communications is scaled down in the modes

in which there is a peak power violation. The bandwidth allocation is reduced by

scaling down the number of virtual channels that are allocated to the communications.

Performance degradation in terms of throughput reduction is expected. We provide

results to demonstrate the effect of the bandwidth control
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5. Evaluation

For our experiments, we used two test cases. For each test case we examine the peak

power results for:

• Adhoc mapping solution: This solution is a random mapping of resources

in the NoC. It is not the worst possible configuration.

• Expected peak power without bandwidth control: These peak power

results are obtained from the neighborhood determination heuristic.

• Actual peak power without bandwidth control: These peak power results

are obtained through NoCSim simulations.

• Expected peak power with bandwidth control: These peak power results

are the expected peak power results due to the effect of the offline peak power

control through bandwidth control.

• Actual peak power with bandwidth control: These peak power results

are obtained through NoCSim simulations.

We also examine the effect of the peak power control on the throughput of the

NoC. The first test case was a synthetic case. Table II summarizes the specifica-

tions of the test case. Figure 12 shows the peak power consumption for each of the

modes of operation. The adhoc mapping solutions consume a considerable amount of

power (upto 2x). The neighborhood determination heuristic inherently constrains the

amount of power consumed. Through bandwidth control we were able to reduce the

peak power consumption to the 1.5W limit. Figure 13 shows the consequent degra-

dation in throughput. An example of how performance degrades with peak power

control can be seen in the case of mode 3 for test case 1. For a 40% reduction in peak

power, there is a 40% reduction in throughput.
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Table II. Test case 1 and 2 specification summary

Classification Synthetic test case Multimedia System

(MP3, MPEG, JPEG,

ADPCM)

No. of resource 16 4

No. of modes 5 3

Total no. of comm. edges 39 21

Mode::No. of comm. edges 0::6, 1::9, 2::8, 3::9, 4::7 0::8, 1::7, 2::6

Target Topology 2D torus (4x4) 2D torus (2x2)

Network link Properties 128 bit wide, 128 bit wide,

1Ghz⇒128Gbps 1Ghz⇒128Gbps

Number of VCs/ 4/32Gbps 4/32Gbps

Bandwidth per VC

Peak Power Budget 1.5W 0.35W

Fig. 12. Test case 1: Peak power results for different NoC configurations (Peak power

constraint = 1.5W)
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Fig. 13. Test case 1: Effect of peak power control on NoC throughput

The second test case was a conglomeration of MP3 encoder-decoder, MPEG en-

coder, JPEG compression and ADPCM encoder-decoder. The system was configured

to operate in three modes and the traffic loads have been scaled up to get results of

interest. Table II summarizes the test case specification of this test case. Figure 14

illustrates the peak power consumption in the different modes. In mode 1, we observe

that the peak power consumption for the adhoc solution is actually lower than that

expected by the heuristic. But as mentioned earlier, this adhoc solution was not setup

to be the worst case scenario, hence it turned out to be a suitable configuration for

mode 1 (but not for mode 0 and 2, else the heuristic would have determined it). The

latency degradation for peak power control for test case 2 is shown in Figure 15.

Fig. 14. Test case 2: Peak power results for different NoC configurations (Peak power

constraint = 0.35W)
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Fig. 15. Test case 2: Average flit latency

To address this performance degradation due to the pessimistic design decision, a

dynamic peak power management scheme is essential. The following section proposes

a novel peak power management scheme that is both scalable and adaptable.

C. SAPP: Scalable and Adaptable Peak Power Management in NoCs

This research proposes SAPP, a scalable and adaptable peak power management

technique for NoCs. Using a non-deterministic, independent and dynamic budget

re-allocation approach, this technique autonomously manages peak power budgets in

NoCs, making it suitable to multi-core processors and MPSoC designs where commu-

nication characteristics are not available. Scalability is provided by independent peak

power budget re-allocation that avoids the need for budget sharing amongst immedi-

ate neighbors. Adaptability is granted by the non-deterministic budget re-allocation

approach proposed here. The non-deterministic peak power budget variation is ob-

served to be within 5% of the global peak power budget and is guaranteed by periodic

check-pointing of allocated peak power. Evaluation of SAPP on uniform, non-uniform

and non-uniform with varying injection loads demonstrates average flit latency im-

provements averaging 47% and effective throughput improvements averaging 36%.
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1. SAPP

A peak power management scheme has two functions:

• Peak power constrained communication and

• Peak power budget management.

Peak power constrained communication ensures that communication being in-

jected into the NoC is constrained by the peak power budget allocated at the injec-

tion point (the CNI). Peak power budget management re-allocates the power budget

amongst the network tiles, while ensuring that global peak power budgets are not

violated.

This research proposes a scalable and adaptable peak power management tech-

nique. Scalability is provided by independent peak power budget re-allocation that

avoids the need for budget sharing amongst immediate neighbors. Adaptability is

granted by the non-deterministic budget re-allocation approach proposed here.

SAPP is deployed in the CNI-PM module of the CNI. All CNI-PMs in the NoC

manage power consumption in a distributed and independent manner. The three

SAPP operations that provide the aforementioned functions are:

• Flit Injection Control into the NoC,

• Peak Power Budget Re-allocation,

• Peak Power Budget Check-pointing

a. Flit Injection Control

Power consumed in the NoC is directly proportional to the number of flits traversing

the NoC links. Flit injection control ensures peak power consumed by communication
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emerging from a network tile is constrained by the budget allocated to it. This budget

can either be distributed uniformly through the NoC or custom allocated based on

the type of applications executing in the SoC. Let AllocPPBi be the peak power

budget allocated to network tile i. This peak power budget is represented in the form

of energy credits; we assume credits to be represented with integers allowing for low

overhead hardware implementation. Prior to egress of flit from the source CNI, the

link controller checks with CNI-PM to ensure presence of sufficient power budget.

If unavailable, injection at this network tile is throttled, else it is injected into the

NoC and the appropriate amount of energy credits are debited from the budget. Flit

Injection Control operation is specified in Algorithm 2.

Algorithm 2 Flit Injection Control

Calculate hd {hd - hop distance to destination}
Calculate # of energy credits Eflit needed by flit from source to destination
if Eflit ≤ Alloc PPBi then
Alloc PPBi = Alloc PPBi − Eflit

Send ready to send signal to Link Controller
else

Send insufficient PPB signal to Link Controller

end if

b. Peak Power Budget Re-allocation

Peak power budget re-allocation is essential to provide adaptability to changing

communication requirements across the NoC. Figure 16 illustrates two snapshots of

peak power budget allocation in the NoC. This research proposes the use of a non-

deterministic, independent and dynamic peak power budget re-allocation scheme.

The Budget Re-allocation Operation updates the allocated peak power budget

for network tile i - AllocPPBi - every Budget Re-allocation Interval (BRI). BRI is

application dependent and may be calculated based on the type of expected on-chip
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Fig. 16. Two snapshots of peak power budget re-allocation in NoC

traffic at design time. Otherwise, this interval may be changed on-line based on traffic

pattern observations. However for the purpose of this research, we keep BRI constant

through the duration of simulations.

This operation uses the following peak power budget prediction function (equa-

tion 3.3) to determine peak power budget allocation over the next BRI:

AllocPPBi
j = AllocPPBi

j−1 + α.β[γ(AllocPPBi
j−1 − UtilPPBi

j−1) +

δ(
∑

k∈neighborhood

(AllocPPBk
j−1 − UtilPPBk

j−1))] (3.3)

where, α sets the direction for budget re-allocation based on the communication

trend observed for network tile i, β weights the neighborhood spare budget (i.e. spare

budget for network tile i and its neighbors), γ weights the spare budget of tile i over

the previous BRI, δ weights the spare budget of tile i’s neighboring network tiles and

UtilPPB is the utilized peak power budget for tile i in interval j.

The prediction function uses neighborhood budget mis-prediction information,

since the availability of that information improves the peak power budget re-allocation

decision.

α is set to either -1 or +1 which determines whether tile i will reduce or increase

its AllocPPBi, respectively. It does so by observing peak power budget saturation
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rate in the CNI-PM. When peak power budget saturates fairly early in the BRI, α has

a higher probability of increasing peak power budget for the next BRI. As peak power

budget saturation takes place later in the BRI, the probability of budget increasing

decreases. For varying types of communication, γ, δ, β were determined to be 0.8,

0.25 and 0.0625, respectively, after examining peak power budget allocation over a

number of simulations.

Using a non-deterministic approach allows for a more adaptive budget sharing in

larger NoCs, since network tiles do not have to wait for peak power budget migration.

In the worst case, deterministic approaches may not be able to meet peak power

budget requirements if budgets are localized in an isolated region. The delay in

migration of the budget from one end of the chip to the other will affect effective

throughput of the system.

However, SAPP presents a challenge in the form of peak power budget conser-

vation. To address possible budget violations, a check pointing scheme is necessary

to provide periodic sanity checks.

c. Budget Re-allocation Check-pointing

To ensure that peak power budget is not violated by this non-deterministic approach,

after a fixed number of BRIs, the peak power budget allocation is reset to its original

value. This interval is termed as budget re-allocation check pointing interval (BRCI)

and is dependent on the aggressiveness of the peak power budget prediction function

discussed earlier. More aggressive peak power budget re-allocation requires frequent

check-pointing. Algorithms 3 and 4 further describes this operation.
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Algorithm 3 Budget Re-allocation

loop
every BRI cycles
Collect Budget Utilization information from neighboring tiles
Predict Alloc PPBi for the next BRI cycles

end loop

Algorithm 4 Budget Re-allocation Check-pointing

loop
every BRI cycles
Reset Alloc PPBi to original value

end loop

2. Feature Comparison with Other Schemes

This section compares SAPP features with that of PowerHerd and PC to highlight

various design aspects for adaptability of the approach due to changing communica-

tion scenarios.

The time taken for power budget migration in larger NoCs has a direct impact

on the observed effective throughput. Since PowerHerd exchanges power budgets be-

tween neighoring routers, the time taken for budget to migrate from a router with

spare budget to a router (on the path to the destination) requiring additional power

will depend on the hop distance which increases with larger NoCs. This issue also

requires additional buffering requirements within each router to handle budget lim-

itation scenarios. The power budget in PC is distributed uniformly throughout the

NoC and does not vary based on need. By using a non-deterministic approach, SAPP

reduces the time taken for the budget to migrate since each tile re-allocates its budget

independently.

With PowerHerd, under low utilization conditions in large NoCs, it is possible for

the power budget to lead to NoC partitioning. Each partition is a group of network
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tiles surrounded by routers that have no peak power budget left. This situation can

delay on-chip communication between partitions. With the non-deterministic peak

power budget re-allocation in SAPP, this scenario will not occur. This is not a concern

with PC since there is no budget re-allocation.

PC provides for QoS aware peak power control and support best effort and

real-time traffic. This leads to performance better than PowerHerd. However, the

absence of budget re-allocation capability puts it at a disadvantage in scenarios with

changing communication requirements. The CNI design used in this research provides

QoS support via the CNI-CS and is not an objective for peak power management.

The following section describes the test traffic configurations used to evaluate and

compare SAPP to PC and PowerHerd.

3. Experimental Setup and Results

A 4x4 2D folded torus topology is utilized to evaluate SAPP and PC. When demon-

strating scalability, this research compares budget migration latency for varying NoC

sizes to that of PowerHerd only. BRI is set to 5 microseconds, while thermal time

constant is set to 100 microseconds. These parameters are set from [17]. Observing

variance in the prediction function for different parameters and load values, the BRCI

was set to 10 BRIs. The global peak power budget for this design was set to 8.48W

based on the power levels achieved with a uniform injection rate of 30% [16].

a. Test Cases

The test configurations used to evaluate SAPP and compare performance are:

1. Uniform Load Injection: In this configuration, every tile in the NoC has the

same injection rate over the simulation time. Injections loads considered here
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are 20%, 40%, 60% and 80%.

2. Evens Injection Pattern: Figure 17 illustrates the evens pattern in which

only even tiles are active and injection load at a uniform injection rate.

3. Non-uniform Load Injection: In this configuration, 3 variations with 40%,

60% and 100% active network tiles with non-uniform load distribution are used

to inject traffic into the NoC. (See Figure 17)

4. Non-uniform Load Injection varying over time: In this configuration, a

single non-uniform load variation configuration is set to periodically change its

injection rate. This will allow for the demonstration of the adaptability of SAPP

to changing NoC peak power budget requirements. The periods considered for

the experiments are 3 microseconds and 8 microseconds. The non-uniform load

injection configuration chosen here had 40% active tiles.

b. Performance Evaluation

Since in [16], PC demonstrated better performance compared to PowerHerd, this

research demonstrates improvements over PC in terms of lower average flits latency,

higher effective throughput and efficient peak power budget utilization.

Table III lists the observed performance improvement percentages in the average

flit latency and effective throughput. For the uniform traffic, power budget migra-

tion has a negative impact on the effective throughput as can be seen by the 1-5%

reduction. However, it is unlikely that such a traffic pattern would be observed in

an actual system. Latency improvement for non-uniform load distributions averages

47%, while effective throughput improvement average to 36%. The improvement in

the performance is attributed to the adaptability of SAPP to changing peak power
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Fig. 17. Non-uniform test configurations

budget requirements across the NoC.

The adaptability to the changing NoC peak power budget requirements in the

case of non-uniform loads is also demonstrated by the improved allocated budget uti-

lization comparison illustrated in Figure 18. Under uniform loads, budget utilizations

are similar for PC and SAPP. But in the presence of non-uniform load distribution and

varying injection rates, the migrating peak power budgets allow for better utilization

of the available peak power budget.

To evaluate scalability, we compare SAPP to PowerHerd only, since PC does

not re-allocate peak power budget (see Table IV). For different network sizes, we

estimate the delay for transmission of a flit over the longest hop distance, on a route

without sufficient power budget. In PowerHerd, this would introduce a delay of 1 BRI

at every hop to allow for power sharing with its neighboring routers. Using SAPP,

when sufficient budget is unavailable at the source network tile, it would take 1 BRI
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Table III. Latency and throughput improvement of SAPP over PC

Test Configuration Average Latency Effective throughput

improvement over PC (%) improvement over PC (%)

UniformLoad 20 -26 -5

UniformLoad 40 56 -1.5

UniformLoad 60 38.08 -1.5

UniformLoad 80 27.98 -1.6

Evens 20 -49.31 -8.85

Evens 40 69.04 14.54

Evens 60 63.09 44.73

Evens 80 58.38 59.53

Non uniform 40active 67.99 70.07

Non uniform 60active 13.61 54.98

Non uniform 100active 44.72 11.81

Non uniform vl 3000 53.35 28.57

Non uniform vl 8000 51.57 22.82
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Fig. 18. Allocated budget utilization comparison between SAPP and PC for different

load injection configurations
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Table IV. Power budget migration latency when sufficient power budget is unavailable

along the path to the destination (for PowerHerd) and at injection point (for

SAPP)

NoC size PowerHerd SAPP

4x4 4 BRI if power budget is

6x6 6 BRI reallocated to the

8x8 8 BRI source tile,

10x10 10 BRI then 1 BRI, else bounded by 1 BRCI

to non-deterministically re-allocate that budget. In the case when sufficient budget

is not re-allocated, the delay is bounded by 1 BRCI (1 BRCI = 10BRI), making it

independent of network size hence demonstrating scalability.

Using a non-deterministic peak power budget re-allocation technique can lead

to peak power budget violations, until a reset after a BRCI. The magnitude of this

violation over numerous simulations was observed to be bound by 5%. To account for

this variance, a 5% margin maybe set around the original global peak power budget

allocation to the NoC. Figure 19 illustrates the case where this violation was observed.
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Fig. 19. Power profile variation demonstrating peak power budget violation due to

non-deterministic peak power budget prediction. This violation is bounded

to 5% with the current prediction function characterization
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CHAPTER IV

CONCURRENT ON-LINE TESTING

With a trend towards increasing levels of integration in SoC designs, designers are

faced with reliability concerns, specifically reliability degradation over lifetime of the

SoC. Failure mechanisms, such as electro-migration, stress migration, time-dependant

dielectric breakdown and thermal cycling [46] affect lifetimes and pose a significant

challenge to accurate estimation of mean-time-to-failure (MTTF) at design time and

consequently failure detection at run-time. These issues trigger the development

of mitigation techniques for recovery from failures. A precursor to such techniques

is identification of failure prior to recovery initiation. Typical non-concurrent in-

field test techniques provide for unacceptable solutions in light of prohibitive test

costs: test power and test time. Post SoC deployment into the target system, these

techniques simply turn ”off” executing applications and test for possible failures. But

with test costs being prohibitively large, it may not be possible to achieve the desired

effect economically. The ideal solution entails an online integrity check of the system.

This research proposes the integration of a Test Infrastructure IP (TI-IP) into the

design to provide Concurrent On-Line Test (COLT) - test of SoC without turning

off applications. The introduction of infrastructure IP (I-IP) blocks into SoC designs

is an emerging trend that provides supplemental on-chip support infrastructure to

address enhanced detection, test, diagnosis and yield optimization solutions [47].

Providing concurrent on-line SoC test support cannot be achieved by simply

deploying a test controller into the SoC. Test intrusion into concurrently operating

applications has to be managed. This can be quantified as power consumed by the IP

core in test mode and delay introduced into the finish time of executing applications.

Classical research has shown test mode power consumption to be 1.5x-2x normal
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mode power consumption [48], which will continue to scale with design complexity.

Judicious management of available system power budget is essential. If exact infor-

mation on executing applications is available, tests can be scheduled under power and

performance constraints using existing optimization algorithms. But unavailability

of this information requires the development of an on-line test strategy capable of

collecting information across IPs in the SoC and managing concurrent on-line SoC

testing. This research is a first step into demonstrating how this can be achieved. A

robust protocol to manage concurrent on-line test is also essential towards ensuring

correct operation of the TI-IP in a multi-core SoC environment.

A critical component to on-line SoC testing is the design and use of a Test Access

Mechanism (TAM). Networks-on-a-chip (NoC) have quickly emerged as a suitable in-

terconnect infrastructure for complex systems-on-a-chip (SoC) design with numerous

cores communicating amongst each other and providing multiple functionality. Scal-

ability, predictability, manage-able power consumption, etc. make the utilization of

NoCs an inviting prospect for SoCs [49, 5, 3]. The reuse of the NoC as a TAM has

been proposed by researchers [50, 33] and is also considered in this research.

A. Related Work

1. Off-line Testing

Traditional SoC test research focuses on test scheduling, test cost management and

TAM design. As summarized in [51], TAMs broadly fit into four categories: multi-

plexer based, serial scan based, bus based and network based. The first two categories

suffer from scalability issues and research literature has numerous works highlighting

the possibility of reusing the NoC as a TAM [50, 33, 51, 52, 53]. Optimizing for test

power consumption and test time via off-line schemes have also been studied [50, 53].
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These techniques are typically inapplicable for on-line testing due to the associated

run-time costs.

2. On-line Testing

On-line testing of SoCs can be categorized into (a) non-concurrent and (b) concurrent.

Non-concurrent testing (also referred to as in-field testing) is typically executed by

turning off executing applications in the device-under-test (DUT). Recent works have

demonstrated in-field test in multi-core SoCs [54, 55].

Concurrent on-line testing needs to manage test of DUT in presence of executing

applications. Software-based on-line health monitoring and diagnosis of microproces-

sors have been implemented in current systems. But these require the involvement

of the operating system and are limited to the microprocessors. Sun Microsystems’

Online CPU Diagnostic Monitor is one such program for Ultra-SPARC III and Ultra-

SPARC IV families of processors [56].

The proposed research eliminates the no-application restriction and demonstrates

how concurrent on-line testing can be accomplished in heterogeneous designs.

B. Challenges to COLT

Management of concurrent on-line testing (COLT) presents a challenge to system

designers wishing to deploy an on-line health management solution in the target

design. The key challenges to COLT are as follows:

1. Test Triggering: COLT for IP cores in a multi-core design can be triggered

(a) periodically or (b) on an event. Choosing between triggering techniques

depends on expected MTTF and system criticality. The type of failure model

chosen to model the lifetime of the IP core will impact the type of test triggering
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mechanism.

2. Test Feasibility: Since test and application have to execute concurrently in

the SoC, test intrusion management is essential. This would determine the fea-

sibility of performing on-line test on the on-chip cores. With complete system

operation characteristics available, COLT management is trivial. In practical

systems, this information will not be available. This requires COLT to deter-

mine feasibility of on-line test before it can be executed.

3. Test Prioritization: System criticality determines priority assigned to COLT.

Critical applications and devices need to operate at high levels of confidence.

4. Restorative nature of test: Since test can execute on IP cores that may be

executing applications, the context switch from application mode to test mode

and from test back to application mode has to ensure that states are restored.

The following section discusses the TI-IP design and how it manages COLT.

C. Test Infrastructure-IP Design

The objective of TI-IP is the management of online SoC testing in presence of exe-

cuting applications in the system. The test management has to ensure:

• Power constrained SoC testing and

• Minimized application intrusion, while ensuring reliable operation.

This research addresses the power constrained concurrent testing and application

intrusion management issues. For the on-line test of SoCs, the following components

in the NoC are the main participants: TI-IP, CNI and the test wrapper around

the IP cores. Analogous to a server-client environment, the CNI (client) acts as an
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intermediary between the TI-IP (server) and the test wrappers around the IP core

under test. The CNI initiates test requests to the TI-IP and interfaces the TI-IP with

the test wrapper of the IP core providing test vectors when using SCAN testing and

the necessary test control signals when using BIST. This research assumes SCAN test

of IP cores due to the limited availability of benchmark data. But support for BIST

has been incorporated into current designs of the TI-IP. It is also important to note

that one TI-IP in a SoC will control on-line testing of several IP cores and is capable

of doing so concurrently. For this research, we assume different TI-IP configurations,

one where we have a single TI-IP managing on-line test of the complete SoC and the

second where we have multiple TI-IPs managing the on-line test of multiple IP cores.

Figure 20 illustrates the envisioned system. The following subsections elaborate on

the TI-IP architecture and its operation.

Fig. 20. Conceptual NoC-based test infrastructure. TI-IP manages test of on-chip

cores.
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1. TI-IP Components

The key TI-IP components (see Figure 21) are (i) input/output queues, (ii) test

memory and (iii) TI-IP engine. Since we envision the use of a complete NoC tile for

TI-IP, the input/output queues basically handle incoming and outgoing requests and

responses between the TI-IP engine and CNI of the NoC tile within which it resides.

This research uses queues instead of single buffers, to allow for non-blocking TI-IP

operation to support multiple test requests from CNIs in the NoC. When utilizing

SCAN test, the test memory essentially stores test vectors that will be needed to test

IP cores in the SoC. At current technology trends, for a NoC tile of size 4mm x 4mm,

after setting aside silicon area for the TI-IP engine, the TI-IP core can accommodate

512KB of test memory. With migration of IP test towards BIST, the need for larger

on-chip test memory will diminish. The TI-IP engine is heart of the TI-IP and it can

be better understood via its operation.

Fig. 21. On-line test I-IP architecture
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2. TI-IP Operation

The operations to be supported by the TI-IP include (i) servicing test requests, and

(ii) managing concurrent on-line testing. It achieves this by collaborating with the

CNIs in the NoC and other TI-IPs in the design. The CNI (a) initiates test requests,

(b) forwards test data to IP cores from TI-IP, (c) test responses from the IP cores to

the TI-IP and (d) monitors IP core utilization with the help of an IP core monitoring

unit. The function of the IP core monitor is to determine IP core utilization. We do

not provide technical details regarding this, since it will vary depending on the type

of IP cores. For the purpose of our experiments, we treat this as a black box capable

of monitoring utilization of the IP core it is attached to. This collected information

will aid the TI-IP in assessing the feasibility of concurrent test. As stated earlier, for

concurrent on-line testing of SoCs, the CNI is responsible for issuing test requests to

the TI-IP for the IP cores attached to it. Determining the frequency of test is an

interesting and challenging task by itself. For the purpose of this research, we assume

that the CNI requests for test periodically. The frequency of test request depends

on (i) technology, (ii) utilization and (iii) criticality of the core. Future research will

formalize this concept. Test request can also be event-based and is an option being

explored in other research.

The on-line testing of a SoC is performed in a number of stages. A FSM sum-

marizing these is shown in Figure 22, while Figure 23 elaborates on the expected

timeline of execution for a multi-core SoC with on-line testing enabled. The signal

arcs of the FSM are discussed in Section V.A. The rest of this section describes the

activities in the various stages of TI-IP operation.

Test Request (TR): The TR stage involves the CNI issuing a request for test of

the IP cores attached to it. As mentioned earlier, test request frequency depends on
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a number of factors and is assumed to be periodic for this research.

System Snapshot Determination (SSD): To aid in ascertaining feasibility of

Fig. 22. TI-IP FSM

test in presence of executing applications, the TI-IP obtains a system snapshot (SS),

by issuing a request to all CNIs in the SoC. The CNIs collect utilization informa-

tion from IP monitors and provide it to the TI-IP. A timestamp is associated with

SS information to prevent use of stale information in Test Acceptance. The system

snapshot information is maintained in the System Snapshot Table (SST) in the TI-IP.

The fields of the SST are listed in Table V.

By virtue of using a packet-switched interconnection network to provide com-

munication between on-chip cores, network latency can degrade the freshness of the

system snapshot information collected by the TI-IP. In smaller NoCs, this is not a

major concern. But in larger designs this issue can be resolved by weighting informa-
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Fig. 23. SoC operation timeline with integrated COLT

Table V. System snapshot table fields

Sender ID Network address of source network tile

Measured Utilization This field stores utilization values returned by CNIs

Timestamp This field is used to indicate freshness of utilization value

Test Request This field indicates CNI requesting test

tion delivered from farther CNIs. The Test Throttling mechanism discussed later in

this dissertation provides sufficient protection against power budget violations.

Test Acceptance (TA): In the TA stage, a routing solution for test vector deliv-

ery from test memory to the target IP core is determined and using SS information,

the feasibility of test is made. Test feasibility is determined using utilization met-

rics. Equation 4.1 aids in deciding whether a requested test can be accepted within
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intrusion bounds.

∑
i∈IPcores

Ui +
∑

j∈NoCcomponents

Uj +
∑

k∈Core−under−test

Uk +
∑

l∈linksonpath

Ul ≤ 1.0 (4.1)

where, the U terms are the utilization indices of the components in the SoC. The

first two terms measure utilization of the IP cores and NoC components. The third

term measures the utilization of the IP cores under test. The final term considers

cost of test vector delivery to the IP core requesting test. These utilization indices

are normalized using (i) the measured IP core utilization, (ii) a multiplier and (iii)

total power budget. The multiplier normalizes measured core utilization with system

power budget and can be determined from the core specifications. By using this uti-

lization index as a prediction of SoC utilization we determine the feasibility of test.

Once accepted, the test is scheduled and queued into the output queue of the TI-IP.

When test requests are rejected, corresponding messages have to be provided to the

requesting CNIs.

Test Delivery (TD): In the TD stage, test vectors are delivered over the NoC via

the route determined in TA stage. The intended target is the CNI attached to the

IP core that requested the test. When SCAN testing multiple cores simultaneously,

to prevent starvation test vector delivery to the multiple cores is interleaved. Test

vector delivery is paced to prevent buffer overflow on the intermediate hops and at

the destination test site.

Test Application (TAP): Test vectors are applied to the IP core in this stage. CNI

receives test vectors from the TI-IP. The test wrapper prepares these for application

to the IP cores. COLT does not advocate a particular type of test for the IP cores.

This will be IP core specific. The TI-IP can support both SCAN and BIST. Due

to large test times, the IP core may not be completely testing in a single attempt.

Partial test may be performed based on the availability of idle periods.
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Test Response Collection (TRC): Once test vector application completes, test re-

sponse collection and comparison needs to be performed before the TI-IP can respond

with a recovery scheme. The comparison can either be performed at the application

site, i.e. the CNI attached to the IP core being tested, or at the TI-IP. In the for-

mer case, the expected response will have to be sent to the CNI, while in the latter,

the test responses need to be forwarded to the TI-IP. Trade-offs involved in selecting

between TRC implementation includes buffer storage at the CNI, processing delays

at TI-IP due to multiple test response comparisons and test response delivery energy

consumption.

TI-IP Response (TPR): After evaluation of test response completes, the TI-IP

has to respond to detected phenomenon. This response could include system recon-

figuration, IP core shutdown, communication rerouting and application termination.

This response depends on the type of SoC configuration and is a part of the on-line

health management system. Since this research is focused on COLT, SoC recovery is

not discussed here.

CNI Alarm Handler: In this stage, when the CNI detects utilization mis-prediction,

it sends a cni alarm message to the TI-IP. The TI-IP throttles IP core test by modi-

fying the pace of test vector delivery, thereby controlling test power consumption.

TI-IP Configuration: In the TI-IP configuration stage, the TI-IP Configuration

Table is populated with the test related information and is loaded when the SoC is

deployed and initialized. The fields of this configuration table are listed in Table VI.

3. Multi TI-IP Operation

To manage the test power efficiently in larger SoCs a single TI-IP in the design will

not be sufficient. Energy consumed in delivering test vectors from test memory to
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Table VI. TI-IP configuration table fields

Tile ID This field indicates the network tile ID.

Test Type This field indicates the type of test support by the IP

core, i.e. SCAN or BIST.

Test Volume This field indicates the test volume associated with this

test entry.

Test Memory Pointer This field provides a pointer to the

test vectors in the test memory.

the IP cores is directly proportional to the distance between them and the volume

of the test data. Figure 24 demonstrates how this energy consumption grows with

test volume and hop distance. This provides adequate motivation for the formulation

of a multi-TI-IP technique to test larger SoCs. In such a scenario, multiple TI-IPs

provide for energy efficient testing by reducing the average hop distance for test vector

delivery. But the introduction of additional TI-IPs makes it difficult to ensure power

constrained testing without co-operation between these TI-IPs.

Introducing multiple TI-IPs into a SoC design is not a trivial solution, since they

have to co-operate in test decisions. For this research we configured the TI-IPs to

operate in a token ring manner. In this case, only the TI-IPs with the test manage-

ment tokens are permitted to schedule test of the IP cores. To manage this aspect,

the Test Management Token Handler state was added into the TI-IP controller FSM

in Figure 22. The multi-TI-IP configuration also introduces an additional task of

mapping IP core test responsibility to the individual TI-IPs. For our initial experi-

ments, we have assigned test responsibilities based on proximity. A formal technique

considering test parameters and design constraints is currently being assessed.
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Fig. 24. Proximity effect on test vector delivery energy consumption

D. Robust Protocol for COLT

Following extensive simulation and functional validation of TI-IP operation, exposed

hazards which prevented correct operation of COLT. This motivated the development

of robust COLT operation. This section addresses the robustness aspect of COLT

communication protocol by specifying the communication protocol, identifying pro-

tocol hazards and describing hazard mitigation techniques.

1. Protocol Specification

Protocol Step 1: Test Request

This step of the protocol involves the TI-IP and CNI of IP core requesting test.

On the occurrence of the test request event, the CNI issues a test request (TReq)

command to the TI-IP. Before issuing a test response, the TI-IP executes the System

Snapshot Collection protocol step and performs the Test Acceptance operation dis-

cussed in the previous section. The Test Acceptance step decision is provided to the
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CNI of IP requesting test via a test request response (TReqResp) command. Figure 25

illustrates this protocol step.

Fig. 25. Test request protocol step

Protocol Step 2: System Snapshot Collection

This protocol step involves the TI-IP and CNIs of all network tiles in the NoC.

The TI-IP issues a system snapshot request (SSReq) command to all the CNIs. The

CNIs respond with system snapshot response (SSResp) command to all TI-IPs in the

NoC. Figure 26 illustrates this protocol step. This requires the CNIs to be aware of

all TI-IPs in the SoC. As mentioned earlier, this system snapshot response provides

utilization information for the IP core attached to that CNI.

Protocol Step 3: Test Vector Delivery

This protocol step involves the TI-IP and CNIs of IP cores requesting test. When

using SCAN test, TI-IP delivers test vectors to these CNIs in an interleaved manner.

The interleaved delivery is needed prevent test starvation due to large test vector

volume. Figure 27 assumes a scenario where 3 IP cores have successfully requested

concurrent on-line test and are in Test Vector Delivery COLT protocol step.

Protocol Step 4: Test Management Token Transfer

In the multiple TI-IP configuration, to allow for co-operative testing of IP cores,
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Fig. 26. System snapshot collection protocol step

Fig. 27. Test vector delivery protocol step



65

TI-IPs need a Test Management Token. As discussed in Section 3, the TI-IP with the

Test Management Token is the only TI-IP allowed to schedule COLT. The multiple

TI-IPs are configured in a token ring configuration and they periodically exchange

the Test Management Token. Figure 28 illustrates a 3 TI-IP configuration where the

TI-IPs periodically exchange tokens.

Fig. 28. Test management token transfer protocol step

Protocol Step 5: Test Throttle

Since test acceptance and scheduling is predictive in nature and depends on

history information in the form of IP core utilization, the introduction of new appli-

cations into the system, may render collected information to be invalid. To account

for mis-predicted system utilization information (also referred to as misbehaving ap-

plications), the TI-IP has to be able to throttle concurrent on-line test. The need

for such a mechanism is dominant in scenarios with dynamically changing application

characteristics. Periodic and well-behaved applications would not utilize this protocol

step. The participants in this protocol step are the TI-IPs, CNIs of ”misbehaving”

IP cores and CNIs of IP cores-under-test. When misbehavior is detected, the CNI

issues a CNI alarm (CNIAlarm) command to the TI-IP. The TI-IP then determines

whether any concurrent tests need to be reconfigured. It can control two aspects
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of concurrent test reconfiguration: (a) alter test vector delivery pace and (b) halt

test application on IP cores-under-test. Figure 29 illustrates the CNI Alarm issuance

and the corresponding test throttle (TThrottle) command delivery to CNIs of IP

cores-under-test.

Fig. 29. Test throttle protocol step

2. Protocol Hazards

The following are hazards presented by the protocol specification to concurrent on-

line testing of the SoC. The impact of each hazard on the communication protocol

steps is also described.

Hazard 1: Starvation due to Application/Test

Since application and test communication flow over a common communication

infrastructure, large volumes of application (test) data can starve test (application)

data. Impact of hazard on the communication protocol steps are discussed below:

1. Test Request: Starvation due to application can prevent test requests from

flowing to the TI-IPs, prevent on-line test.

2. System Snapshot Collection: Starvation due to application can prevent the CNI

from responding to system snapshot request commands.
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3. Test Vector Delivery: Starvation due to applications can prevent test vector

delivery to the test wrappers. High test vector volume can also lead to starvation

due to test at the TI-IP.

4. Test Management Token Transfer: Starvation due to high test vector volume

can prevent test management token transfer.

5. Test Throttle: Starvation due to application can prevent the CNI alarm from

being delivered to the TI-IP. Starvation due to high test vector volume can

also prevent Test Throttle command from being delivered from TI-IP to CNI

of cores-under-test.

Hazard 2: Test Input Queue buffer overflow

The Test Input Queue buffer overflow hazard can prevent the TI-IP from receiv-

ing commands critical to concurrent on-line testing. This hazard has an impact on

all protocol steps of COLT.

Hazard 3: TI-IP Failure

The TI-IP Failure hazard can prevent the concurrent on-line testing of the SoC.

In the single TI-IP configuration, the major impact of the failure is loss of concurrent

on-line test capability. In a multi TI-IP configuration, the testability of the SoC is

reduced, since test of IP cores assigned to the failed TI-IP may not be transferable to

other TI-IPs in multi TI-IP configuration. Impact on the following communication

protocol steps:

1. Test Request: TI-IP failure can prevent test request command handling.

2. System Snapshot Collection: TI-IP failure prevents snapshot collection.

3. Test Vector Delivery: TI-IP failure prevents on the delivery of test vectors to

IP cores being tested by the failed TI-IP.
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4. Test Management Token Transfer: This hazard can result in the loss of the Test

Management Token in the multi TI-IP configuration.

5. Test Throttle: This hazard can lead to constraint violation due to concurrent

on-line test.

Hazard 4: Test Wrapper buffer overflow

The test wrapper buffer overflow hazard will lead to loss of test vector data for

test of IP cores. This hazard only has impact on the Test Vector Delivery protocol

step.

Hazard 5: CNI Failure

This hazard prevents correct operation of the CNI. CNI failure can lead to the

isolation of the network tile from the rest of the NoC.

3. Hazard Mitigation

This subsection discusses the approaches taken to circumvent potential hazards iden-

tified in the previous sub-section.

Hazard 1 Mitigation: Starvation due to application/test

1. Test Request: For this protocol step, to mitigate hazard 1, test would need

to be assigned priority over application. Temporarily swapping priorities can

resolve this hazard.

2. System Snapshot Collection: Hazard mitigation for this protocol step involves

the usage of the timeout value. Once timeout occurs, the CNI being starved by

application is assumed to be busy and in high utilization mode.

3. Test Vector Delivery: To mitigate this hazard, priorities of application and test

would need to be swapped.



69

4. Test Management Token Transfer: Interleaving outgoing communications from

Test Output Queue of TI-IP addresses all starvation concerns.

5. Test Throttle: To mitigate this hazard, priorities of application and test would

need to be swapped.

Hazard 2 Mitigation: Test Input Queue buffer overflow

The test input queue buffer overflow hazard is mitigated by requesting a retrans-

mission from the source CNI. This technique would require additional buffering at

the source CNI.

Hazard 3 Mitigation: TI-IP failure

Hazard 3 mitigation techniques are only applicable in multi TI-IP configuration.

1. Test Request: CNIs in the NoC need to communicate with all TI-IPs in the

SoC. When a TI-IP failure event is detected, all CNIs need to be informed.

When using SCAN test, IP core test responsibilities cannot be handed over to

alternative TI-IPs since test vector data is only assigned to TI-IP responsible

for the test. Responsibility hand off is easier for BIST of cores.

2. System Snapshot Collection: Mitigating the hazard during the system snapshot

collection protocol step is not possible. It requires hand off of test responsibili-

ties, if possible.

3. Test Vector Delivery: TI-IP failure during the Test Vector Delivery protocol

step will prevent successful test of the IP cores assigned to it.

4. Test Management Token Transfer: Mitigating this hazard is considerably more

difficult when more than 2 TI-IPs are deployed in the multi TI-IP configuration.

A complex election protocol amongst the TI-IPs is required to recover the lost

token.
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5. Test Throttle: TI-IP failure can prevent test throttling of tests initiated by

the failed TI-IP. Mitigation of this hazard can be achieved by exchanging IP

core test status between TI-IPs in the SoC. This can be coupled with Test

Management Token Transfer protocol step.

Hazard 4 Mitigation: Test wrapper buffer overflow

Test wrapper buffer overflow is prevented by scheduling test vector delivery to

test wrapper of IP core-under-test. Since test vector delivery at the TI-IP source is

interleaved, test vector block sizes sent out in a single iteration have an upper bound

stipulated by the test wrapper buffer capacity.

Hazard 5 Mitigation: CNI failure

CNI failure is a hazard that cannot be mitigated. However, once detected, the

event should be registered with TI-IPs to prevent wasted effort due to unnecessary

communication between TI-IP and failed CNIs.

E. Experimental Setup and Results

1. NoCSim Modification

A SystemC functional model of the proposed TI-IP has been embedded into a network

tile in NoCSim and is used to manage test of IP cores embedded in the design. It

does so through the embedded CNI model and generic test wrapper around the IP

core modules. Minor modifications to the packet headers were also required to allow

for special handling of flits in the CNIs.

2. ITC’02 SoC Test Benchmark

In the absence of an actual SoC design with corresponding applications and test

configurations, the ITC’02 SoC Test Benchmarks [57] and Embedded Systems Syn-
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thesis Benchmark Suite (E3S) [58] are used to provide the test configuration and

application configuration information, respectively. The ITC’02 benchmarks provide

sufficient test data for modular designs, to allow researchers to solves problems in the

domain of TAM design, test scheduling and wrapper design.

The benchmark provides typical SoC test parameters - test volume and test exe-

cution time. Test power consumption for most of these is unavailable. Since research

has shown that power consumption in test mode to be about 1.5x normal mode power

consumption [48], we utilize this knowledge to estimate test power consumption for

the selected IP cores in our test configurations.

3. Embedded Systems Synthesis Benchmark Suite

The E3S is used to provide application related information for our test configura-

tions. Relevant E3S information for this research included power, area and execution

times for 47 tasks from 5 application domains on 17 commercial processors. Task

graphs from the 5 application domains were embedded into two SoC configurations

in NoCSim as illustrated in Figure 30.

4. Test Configurations

Assuming a chip size of 22mm x 22mm [4], consisting of network tiles sized at 4mm

x 4mm, the IBM 405GP processor was selected from E3S processor list. Using the

relevant specifications of the IBM 405GP (idle power, peak power and clock rate), the

network tiles in NoCSim were configured accordingly to provide the compute support

to applications.

Two baseline SoC configurations were also developed using the tasks graphs in

E3S. soc config1 was assigned 11 task graphs spanning 4 application domains - office

automation, consumer, networking and auto industry. These were mapped onto a 4 x
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Fig. 30. Experimental SoC configurations

4 2D torus utilizing 13 network tiles (i.e. execute on 13 IBM 405GPs). The mapping

of the tasks has an impact on the performance of the design [31], but for the purpose

of this research, we mapped the task graphs by hand. The test parameters of the

cores were assigned based on the g1023.soc ITC’02 benchmark.

The second SoC configuration (soc config2) also utilized the IBM 405GP and

had 9 task graphs from the telecom application domain mapped over 11 network

tiles. Test parameters were assigned based on the d695.soc ITC’02 SoC benchmark.

Figure 31 below illustrates the mapping of the test core specifications onto the cor-

responding network tiles. The digits in the tile correspond to the core id in the

benchmark specification. Using these two baseline configurations, four additional

configurations were prepared, differing in the number of TI-IPs assigned and their

locations in the design. Figure 30 illustrates these additional configurations. To il-
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lustrate how the TI-IP would operate in the absence of executing applications, four

additional configurations with just TI-IPs were also prepared. We report power pro-

files and finish time variations on these ten configurations in the following sub-section.

It must be noted here, that the simulations in NoCSim do not actually run the ap-

plications or the test benchmarks, but instead characterizes execution profiles of the

system which is reflected in the power profiles.

Fig. 31. ITC’02 SoC test benchmark mapping to experimental configurations

5. TI-IP Validation

a. SoC Configuration 1

Figure 32 illustrates the power profile comparison between the 3 variations (applica-

tions only, test only and applications + test) of this configuration. In the simulation

interval specified and for the configured input test parameters (from ITC’02 bench-

marks), only a single IP core was tested. The power variation in this case is not

much. When the parameters were altered to allow 2 additional IP cores to be tested,

the power profile in Figure 33 was observed. This demonstrated the sensitivity of

the concurrent testing to the test parameters. For comparison purposes, the power
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Fig. 32. SoC configuration 1 power profile, 1 IP core tested
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Fig. 33. SoC configuration 1 power profile, 3 IP cores tested
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profile for just the IP cores testing has also been plotted in the same.

When multiple TI-IPs were deployed into the design (soc config1 tiip2), similar

power trends were observed (see Figure 34), with one exception: fewer cores were

tested in this configuration, since the TI-IP responsible for testing those cores did

not have the test management token, highlighting the consequence of the IP core test

responsibility mapping to individual TI-IPs.

When the average task execution times of the task graphs in soc config1 were

analyzed, there were no variations observed. This is attributed to the fact that the

IP core that was tested, was not executing any tasks at that time, which highlights

the test scheduling aspect and the need for an accurate on-line monitoring scheme

to detect when to test an IP core. Figure 35 compares the power profiles of the two

TI-IP configurations.
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Fig. 35. SoC configuration 1 comparing single TI-IP with multi TI-IP setup power

profiles

b. SoC Configuration 2

In this test configuration, the observed power profile was similar in observed trends to

that of SoC configuration 1 (see Figure 36 and Figure 37). Since the test configuration

for this was based on d695.soc, the different test specifications demonstrated different

operational characteristics (in terms of test power profile), especially in the TI-IP

only scenarios. In TI-IP configuration 1 (single TI-IP), 9 IP cores were tested, while

in TI-IP configuration 2 (two TI-IPs), 4 IP cores were tested. As observed earlier, this

is due to the IP core test responsibility mapping to the individual TI-IPs discussed

earlier.

Figure 38 illustrates the power profile comparison between the single TI-IP and

multi TI-IP configurations for SoC configuration 2.

For this test configuration, a finish time variation of 1% was observed for a task
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graph 4 in the system. But this variation did not lead to any deadline misses.
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Fig. 36. SoC configuration 2 power profile, single TI-IP setup

6. Robust Protocol Validation

Figure 39 demonstrates the energy profile for the system snapshot collection and

beginning of test application on an IP core in the NoC. The normal on-line test mode

curve is compared to the case of test starvation due to communication intensive

application. The timeout based mitigation technique delays start of test application.

In the absence of this technique, no test application would take place.

A test case to demonstrate test throttling due to misbehaving application is

demonstrated in Figure 40. Since only SCAN test data was available, the TI-IP

reduced the pace of test vector delivery to reduce test energy consumption.
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Fig. 37. SoC configuration 2 multi TI-IP setup power profile
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Fig. 39. Energy profile demonstrating starvation hazard mitigation

Fig. 40. Energy profile demonstrating TI-IP test throttling effect on misbehaving ap-

plication
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7. Synthesis Results

An HDL implementation of the TI-IP was synthesized with Synopsys Design Com-

piler [35] using the Virginia Tech VLSI for Telecommunications TSMC-0.25um, 2.5V

standard cell library [36, 37], the gate count for the TI-IP was estimated at 83K and

power consumption estimated was 520mW (leakage: 32uW).
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CHAPTER V

SUMMARY

A. Conclusions

This dissertation presents an architecture for the CNI that provides services beyond

the basic packetization and de-packetization. A 5-stage pipelined implementation

of the CNI was analyzed and included into NoCSim for functional verification. We

also propose a scheme to manage end-to-end latency jitter by using class-based VC

allocation. In the absence of such a scheme, for a particular configuration of the NoC,

latency jitter of 400% was observed. Using such a scheme provides for predictable

end-to-end latency. The modified VC allocation scheme was included into NoCSim to

evaluate the jitter bounding capability in the end-to-end latency. Performance over

varying hop distances was evaluated. A processor-memory setup was configured and

at two cache miss rates, the throughput of the system was evaluated.

With increasing contribution of on-chip communication power to total system

power consumption, a dynamic peak power management scheme is essential for re-

liability and cooling considerations. This research proposed SAPP, a scalable and

adaptable peak power management technique. Using non-deterministic, independent

and dynamic peak power budget re-allocation in NoCs, it provides for a scalable and

adaptable technique for large designs where communication characteristics are un-

available. The autonomous nature of SAPP makes it applicable to any NoC design.

Other schemes in research literature suffer from scalability and adaptability concerns

that are addressed by SAPP. An average flit latency improvement of 47% was observed

for non-uniform load injection distribution. Effective throughputs showed an average

improvement of 36%. Higher utilization of allocated peak power budget provides for
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the observed performance improvement.

With reducing lifetime reliability in complex SoC designs and challenges in es-

timating MTTF, deployment of a concurrent on-line SoC test framework is the next

step to address rising test costs. This research proposes the introduction of a test

infrastructure IP into a SoC design to provide on-line test support in presence of

executing applications. Previous works consider SoC test in the absence of applica-

tion, but prohibitive test times make turning off of the system infeasible. To address

scalability aspects, the designed TI-IPs are capable of operating in a multi-TI-IP con-

figuration, in which they co-operatively handle concurrent on-line test responsibilities.

A NoC-based SoC design is considered as it provides for a superior communication

infrastructure. Basic operation of the TI-IP is outlined and a functional model is

included into NoCSim. Using application benchmarks (E3S) and SoC test bench-

marks (ITC’02 SoC Test bench), two baseline SoC configurations and their eight

TI-IP variations were built and simulated on. Experiments demonstrated the correct

operation of the TI-IP. For this research we only consider SCAN testing of IP cores

due to the lack of BIST test data. BIST support has been included in the current

version of the TI-IP, but has not been tested with actual BIST test benches. Com-

munication protocol specifications are also presented in this dissertation. Potential

hazards to concurrent on-line testing have been identified and techniques to mitigate

them have been proposed. Experimental results demonstrate robust operation of the

communication protocol.

B. Future Work

For autonomous on-line health management for SoCs, a concurrent on-line test, diag-

nosis and recovery mechanism is essential. This research addresses the complex issue
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of concurrent on-line test. Diagnosis and recovery functionality has to be integrated

into the TI-IP. Investigation into an efficient global ordering mechanism for NoC is

also required.
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APPENDIX A

FORWARD ERROR CORRECTION IN NOCS

A. Introduction

The emergence of NoCs as the communication infrastructure alternative to bus-based

communication in SoCs has presented the SoC design community with numerous

challenges. Designing energy efficient, high performance, reliable systems requires

the formulation of strategies to rectify operational glitches.

The design of low power systems has highlighted the contribution of interconnect

power, upto 50% of total system power [59]. To reduce the interconnect energy con-

sumption, voltage scaling schemes are being used, which in turn reduce the circuit’s

noise margin. The decrease in noise margin makes the interconnect less immune to

errors during transmission. Furthermore internal noises such as power supply noise,

crosstalk noise, and inter signal interference and external noises like thermal noise,

electromagnetic noise, slot noise and alpha-particle induced noise. Thus combining

low-power strategies with data reliability in SoC has become a daunting task for the

designers.

As identified in [60], noise mitigation and tolerance are the two alternatives to

addressing the reliability concerns. But due to the energy inefficiency of the former,

noise tolerance is the preferred approach. In order to deal with interconnect errors in

an energy efficient way, suitable encoding and decoding schemes need to be employed

[39]. Reliability concerns can be addressed using either error detecting codes (EDC)

or error correcting codes (ECC). VLSI self-checking circuits use error detection codes

such as parity, two-rail and other unidirectional EDCs (m-out-of-n and Berger codes)
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[61]. Since crosstalk is bidirectional [62], these codes would not be sufficient. The

authors in [29] make a case for the use of Hamming code [63] on on-chip data buses,

highlighting its capability to handle single, double errors, its low complexity and

flexibility as a purely detecting code or a purely correcting code. For on-chip networks,

authors in [20] suggest using Hamming code for error detection and in [18] cyclic

redundancy check (CRC) [64] is used to detect errors over every hop. Retransmissions

are then used to correct the detected errors. When it comes to using ECCs in a design,

[29] compares the energy efficiency of forward error correction (FEC) versus error

detection and retransmission for on-chip data buses. The reported results indicate

that FEC is energy inefficient in described applications. However, the overhead for

FEC is expected to subside in emerging NoCs that span large devices using increasing

number of hops and complex buffering/ signaling structures. Use of FEC may be cost

inefficient when the size of the network is small and the cost of the FEC codecs is

high. But as the network size increases and error rates increase, error detection and

retransmission schemes become unacceptable with respect to energy use and latency.

Turbo codes [65] are perhaps the most popular code for FEC in communica-

tion systems and its coding gain approaches very close to Shannon limit. Numerous

researches have revealed the high implementation complexity and the high latency

associated with the turbo decoders. For the low latency and hardware-overhead re-

quirement of the SoC designs, use of Turbo code based FECs is prohibitive. Hamming

codes, on the other hand, can be decoded using simple hardware structures. These,

however, have very poor bit error rate (BER) performance when compared to a simi-

lar rate turbo code. Rivaling the performance of turbo codes, [30] proposed a class of

linear block codes referred to as Low Density Parity Check (LDPC) codes. This code

is suitable for low-latency, high gain, and low power design because of its streamlined

forward-only data flow structure. A number of LDPC decoder architectures have
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been previously presented. Blanksby presents a 690mW LDPC decoder in [59]. A

low-power decoder architecture was also presented in [66]. The objectives of these

designs are throughput and very high coding gain. The application targets for these

decoders include optical channel, magnetic-media storage, and wireless communica-

tion devices among other error-prone devices. And as consequence, the complexity of

decoder designs presented in the aforementioned papers is very high and infeasible at

the SoC level.

The LDPC code decoder design can be tailored to suite the performance and

overhead requirements imposed by NoC designs. A novel LDPC decoder design that

minimizes the hardware requirement by utilizing only the minimum precision neces-

sary to achieve objective error rate is presented in this dissertation.

Ideally, a transparent forward error correction scheme is desired for SoC ap-

plication. Error correction schemes must be (1) complete, i.e. it does not require

interruption to or from the network controller, (2) compact and power thrifty enough

to be implemented as an integral component of on-chip network interface and (3)

yield high coding gain and cover a wide-range of error models specific to the SoC

design.

B. Related Work

1. FEC Basics

LDPC codes are linear block codes and have a sparse parity check matrix H. A special

class of LDPC codes have H that has the following properties:

• The number of 1s in each column is j

• The number of 1s in each row is k > j
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Like the other linear block codes, encoding is simple and involves matrix oper-

ations such as addition and multiplication that can be implemented using a highly

regular hardware structure consisting of simple gates. Decoding of LDPC codes is

iterative and uses the Log maximum-likelihood apriori (LOG MAP) algorithm [67].

There are two decoding methods for LDPC decoder: soft decision and hard decision

decoding. In hard decision decoding, the received code word is sampled as 0s or 1s

and then parity check equation is implemented as XORs for each check in the H

matrix. If the parity check is satisfied, the code bit is not flipped, otherwise flipped.

Each code bit will receive j values from the above operation and then does majority

voting to decide the final update. This is an iteration of hard decision. In soft decision

iteration, quantized values rather than 0s or 1s are used for the inputs. The parity

check operations involve multiplication of hyperbolic tangent values of the quantized

information. In this design, a minimum number of bits are used to satisfy the preci-

sion requirement of coding gain: One hard decision stage, one soft decision stage with

three bit quantization, and lastly a hard decision stage for N = 264 bits to provide

optimum frame error rate results. In the context of NoC, frame error rate (FER)

rather than BER is important because retransmission occurs when a frame error is

detected.

The code-word size of 264 bits was found to be an ideal size for both the NoC

and the LDPC. The rate code for this design was set at 75%.

2. Energy Model

The energy consumed in transmitting a flit (flow digit) from the source to destination

network tile - in an error free environment - can be estimated using the following

expression:

Eflit = (n+ 1) ∗ (Ei + Eo + Esw) + n ∗ Elink (A.1)
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where, Ei - energy consumed in tile in-port, Eo - energy consumed in tile out-port,

Esw - energy consumed in tile switch, Elink - energy consumed on link between tiles,

n - number of hops. This expression is similar to those proposed in [18, 43].

When applied to the different reliability schemes, Eq. A.1 can be modified to

estimate the energy consumption pertaining to that implementation.

The energy consumption of the input/output controllers is dominated by the

register read and writes. These have been estimated to be 0.075pJ/bit at 180 nm

technology [18]. The energy consumption for the links at 50% driver supply, at TSMC

0.18 micron and using differential signaling has been found to be 0.12pJ/mm/bit [68].

As mentioned earlier, the flit size being used here is 264 bits.

C. Motivation

An error detection and retransmission scheme has been shown to be suitable for

bus-based communication [29, 20]. While this solution is elegant for small length

bus design, it needs to be re-evaluated in the context of low latency requirements

of real-time applications mapped onto SoCs. Since the cost of FEC implementation

has been a confining factor for earlier researchers, an analysis is needed to determine

the strength of the FEC scheme from above perspective. The results shown in this

research will further highlight the benefits of using FEC.

Formulating an optimal design requires determination of a target FEC decoder

complexity. Our analysis of energy consumption (see Figure 41) and average flit la-

tency (see Figure 42) over different hop lengths for varying FERs has aided us in

making decisions regarding the error recovery requirement of the FEC. The commu-

nication considered here was non-congestive, since our goal was to examine the trend

in such situations.
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Fig. 41. Motivation behind selecting target FER for FEC module: Energy vs FER at

varying hop lengths

Fig. 42. Motivation behind selecting target FER for FEC module: Average Flit latency

vs FER at varying hop lengths
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The cost for retransmission (energy and avg. flit latency) has been found to be

almost the same for FERs less than 0.01. This allowed us to design a scaled down

LDPC decoder that had a target FER of 0.01.

Figure 43 shows the FER plot of the number of decoding iterations at different

signal to noise ratios (SNR). The number of iterations n shown in the figure cor-

Fig. 43. Error rate vs signal to noise ratio for varying LDPC iterations

respond to initial hard decision iteration followed by n-1 iterations of soft decision

decoding and a hard decision. From the Figure 43, n=1,2 has poor FER performance

compared to n = 3,4,5. Beyond n = 3, the performance saturates and hence n = 3

configuration is adopted. This configuration corresponds to an iteration of hard deci-

sion decoding followed by a 3-bit precision soft decision iteration and a hard decision.

This configuration achieves a FER of less than 0.01 for a wide range of operating

SNRs. And as determined earlier, the NoC requires a FER of 0.01 for the given error

correction scheme to provide any energy savings.
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D. On-chip Communication Reliability

The challenge of providing cost effective data reliability in NoCs is not merely pro-

tecting the application data. Network control signal (flit headers) reliability is also

critical for correct operation of the SoC. We chose to provide independent reliability

schemes for both the control and application data lines since most of the strategies

discussed in this section are not conducive to providing equal protection to both.

This unequal error protection can be tuned at design time to achieve cost efficiency.

Since the proportion of the control lines, to those of the data, is comparatively lower,

a simple forward error correction through Hamming codes is used to facilitate the

control signal reliability.

Application data reliability can be achieved via two strategies:

• error detection and retransmission (ED+R), or,

• FEC and limited retransmissions (FEC+R).

The following subsections discuss the possible scenarios of operation in each

strategy and their associated costs.

1. Error Detection and Retransmission (ED+R)

In the ED+R strategy, the transmitter encodes the data to be sent. At the receiver,

a decoder determines whether an error has occurred in the transmission. If an error

is detected, a retransmission request is made to the sender. ED+R can operate in

two scenarios:

• End-to-end, and,

• Hop-to-hop.
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Fig. 44. CNI structure

a. End-to-end Retransmission

In this scenario, data is transferred from the source to destination tile and is checked

for errors at the destination CNI. If an error is detected, a retransmission request is

made to the source CNI via a negative acknowledgement (NAK) flit. This scheme

uses an error detection and retransmission request module as shown in Figure 44(b).

The overhead for such a scenario is the need for an encoder and decoder pair in

the CNI of every tile. An increased buffer requirement at the sending CNI, will be

needed to hold flits until they are correctly delivered to the destination tile. Since we

did not use a positive acknowledgement (ACK) for correctly received flits, the buffers

were periodically purged, based on a time-out. The value set for the time-out will be

dependent on the target SoC application and size of the NoC. Traditional issues with

using time-outs, like that of lost flits is not applicable in the NoC designs because we

use credit based communication and so no flits are lost in the network due to buffer
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overflows.

Extending Equation A.1, we can estimate the energy consumption in an end-

to-end reliability scenario. The energy per flit and the corresponding transmission

energy over a noisy network will be:

Eflit = (n+ 1) ∗ (Ei + Eo + Esw) + n ∗ Elink + Er (A.2)

Etransmission = (1− FEP )Eflit + FEP (EtransmissionN + EtransmissionR) (A.3)

where, FEP - frame error probability, Er - energy cost of providing reliability, EtransmissionN

- energy consumed in transmitting the negative acknowledgement and EtransmissionR -

energy consumed in transmitting the original flit. Er for CRC was found to be 19.8pJ

at 0.18 microns, while that of Hamming was 17.4pJ at the same technology.

Since (1-FEP) will tend to 1, Equation A.3 will recursively expand to:

Etransmission = Eflit(1 + 2FEP + 4FEP 2 + 8FEP 3 + ) (A.4)

b. Hop-to-hop Retransmission

In this scenario, data is transferred from the source to the destination tile, and is

checked for errors at every hop through to the destination. This scheme is imple-

mented between the in-ports and out-ports of neighboring network tiles. So in this

scenario, each in-port and out-port will have a decoder and encoder respectively. The

buffer requirement in this case is much lower when compared to end-to-end.

As in the case above, energy consumption in the hop-to-hop scenario can also

be estimated. The energy per flit and the corresponding transmission energy over a

network with an frame error probability of FEP is given by:

Eflit = (n+ 1) ∗ (Ei + Eo + Esw + Er) + n ∗ Elink (A.5)
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Etransmission = (1− FEP )Eflit + FEP (EtransmissionR) (A.6)

Etransmission = Eflit(1 + FEP + FEP 2 + FEP 3 + ) (A.7)

In hop-to-hop scenario, the energy consumption term for the negative acknowl-

edgement is absent (since it is only over a single hop).

The expected latency in the hop-to-hop scenario is higher for lower FERs, but it

remains lower when the FER exceed 0.05 (see Figure 45). The energy consumption

is higher than that of the end-to-end scenario, but at higher FERs, it does not grow

as rapidly (Figure 46).

Fig. 45. Average flit latency for end-to-end vs hop-to-hop reliability (CRC)

Fig. 46. Energy for hop-to-hop vs end-to-end reliability
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The results in Figure 45 and 46 are for a CRC based error detection module. The

energy consumption for our design of the Hamming error detector was slightly lower,

but it followed a similar trend. Another benefit of such a scenario is the availability

of network link status information for network routing reliability purposes.

The cost associated with this implementation, in terms of the area overhead

makes it scheme infeasible for larger NoCs. Each network tile will require four times

as many encoder decoder pairs, when compared to the end-to-end scenario. The

gate count for CRC was estimated at 1874 gate equivalents at 0.18microns. When

the communication channel becomes noisy, variation in the average flit latency and

energy consumption can be as much as 25%. We now take a look at the prospect of

using FEC to help circumvent this degradation.

2. Forward Error Correction (FEC+R)

With the variation in average flit latency and energy consumption going up by about

25% for channels with high FERs, the challenge of meeting communication constraints

becomes difficult. Since the energy consumption in the ED+R strategy - for long

hop distances - is dominated by that on the interconnection network, controlling the

number of retransmissions is the key to the total energy consumption. Using an

FEC strategy will reduce the number of retransmissions and also provide for better

performance at high FERs and long hop distances.

In general, the use of FECs becomes critical when the communication have real-

time constraints, or when the cost of retransmission, exceeds that of FEC. The cost

of providing FEC is:

• area overhead

• higher energy consumption (when compared to error detection)
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The FEC design selected earlier was used to evaluate the FEC+R strategy. The

modules of the design were included into the CNI (see Figure 44(c)).

In this strategy the data to be transmitted is encoded with error correcting

codes (ECC) so as to transmit a code word which allows for error recovery. The

decoder at the receiver then decodes the codeword and extracts the application data.

By designing a FEC with a higher FER - to lower implementation cost - the need

for retransmission cannot be eliminated. The last stage of FEC decoding is a hard

decision checksum calculation of code-word bit values. If any of the checksum output

is high, it is an indication that an error is present in the bit values and the code

word has not converged/corrected to a valid word. A logical ”OR” operation of all

check-values is carried out to determine if a retransmission is necessary.

FEC+R will only be used in an end-to-end fashion, since the area and energy

cost for a hop-to-hop implementation will be very high. Our gate count estimate for

the LDPC architecture at 0.18 microns TSMC was 27,126 gate equivalents (per tile).

Though this value may seem high, it is comparatively lower with respect to the routing

elements. The energy evaluation of this scheme will be similar to Equations A.2, A.3

and A.4. The difference is in the Er term, which reflects the energy consumption

of the FEC scheme. Er for LDPC was found to be 262.1pJ at 0.18 microns TSMC

and was obtained via synthesis with Cadence tools. The FEC decoder that was used

provided an improvement in the energy consumption for FERs over 0.04 (see Figure

47). The average flit latency was better for FERs above 0.01 (see Figure 48).

3. Hybrid Scheme (FEC/ED+R)

Identifying the strengths of the aforementioned strategies, we developed a hybrid

scheme that uses error detection and retransmission for shorter hop distances, and

a FEC scheme for longer distances and real-time constrained communications. We
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Fig. 47. Energy of ED+R and FEC+R vs hop length for varying FERs

Fig. 48. Average flit latency for ED+R and FEC+R vs hop length at varying FERs
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introduced a simple controller into the CNI - whose function is to decide on the type of

error reliability scheme that is to be used for the transmitted flit. This scheme required

the presence of both ED+R and FEC modules in the CNI (see Figure 44(d)). To

attain target energy and latency constraints, a compromise will be required towards

the network logic area.

For the hybrid scheme to operate the decision between the reliability schemes has

to be obtained from either the transmitting IP core or the routing table. To achieve

energy efficiency through the FEC scheme over long hop distances, we determined the

hop distance beyond which it would be beneficial. We obtained the crossover point

from Figure 47. So if the operational FER were to be around 0.09, the crossover

point would be 6 hops. So communications beyond 6 hops would use FEC based

communication to control the energy consumption.

Figure 49 enumerates the structure of the flits used in our experiments. The

header contents and field sizes are dependent on the size, topology and routing policy

of the network.

Fig. 49. Flit fields/overheads for different schemes
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E. Conclusions

This research compared the energy and latency performances for error detection with

retransmission (ED+R), forward error correction with retransmission (FEC+R) and

the hybrid scheme. The ED+R scheme was implemented for two scenarios: end-to-

end and hop-to-hop. The end-to-end scenario provides for better energy and latency

performance at low error rates. But the graceful performance degradation in the hop-

to-hop scenario would make it more attractive. The area overhead for the hop-to-hop

scenario is four times larger when compared to end-to-end. But for high FERs, the

degradation in latency and energy is as much as 25% and this may not be acceptable

for communications with real-time constraints.

The FEC+R scheme was used to address the performance degradation at high

FERs. We formulated a streamlined LDPC based FEC decoder to provide reliability

at an FER of 0.01 (since the benefit for a lower FER is negligible). The energy

efficiency of this scheme at long hop distances and the corresponding reduction in the

average flit latency make a strong case for FEC based reliability.

To obtain the maximum energy efficiency, we designed a hybrid scheme that

utilized ED+R for shorter hop distance and FEC+R for communications over long

hop distances and with real-time communication constraints.
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APPENDIX B

NOCSIM

NoCSim [9, 31] is a SystemC-based [69] model for a NoC simulator and is configured

to the feature set in Table VII.

Table VII. NoCSim features

Topology, routing, size 2D-torus, source routing, 4x4

Link properties 128 bit wide 1GHz

Types of traffic sources Constant bit rate, random Poisson distribution,

execution trace-based, task-graph execution based

Flow control & buffer Wormhole, credit-based flow control

management

Configurable parameters Number of Virtual Channels (VCs), buffer depth

of VCs, network size, link width

CNI configuration OCP-IP 2.0 basic interface set compliant

Power model 180nm technology

(leakage power not considered).

NoCSim includes models for the CNI and on-chip routers. For the task-graph

based execution, NoCSim can also track deadline misses (if deadline is provided)

and the average task graph execution time over multiple iterations. NoCSim as an

experimental platform can be configured with the desired IP cores in each NoC tile to

act as traffic generators, processing elements and functionally testable components.
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