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ABSTRACT 

Modeling Scattered Intensities from Microspheres 

in an Evanescent Field. (December 2007) 

Suhani Kiran Shah, B.Eng., Nirma Institute of Technology, Gujarat University 

Chair of Advisory Committee: Dr. Kenith Meissner 

 

 The technique of single particle Total Internal Reflection Microscopy (TIRM) 

has been used to study the scattering intensity from levitated microspheres. TIRM can be 

used to monitor the separation between microscopic spheres immersed in liquid (water 

in our case) and a surface with nm resolution. In the technique, microspheres scatter 

light when the evanescent waves are incident upon them. The intensity of the scattered 

light is directly related to the height above the surface and allows determination of the 

height. From the separation distance histograms, the interaction between the microsphere 

and interface may be characterized with a force resolution in the range of 0.01 

picoNewtons. Such a system can be applied to the measurement of biomolecular 

interactions biomolecules attached to the microsphere and the surface. The intensity and 

scattering pattern of this light has been modeled using a modified Mie theory which 

accounts for the evanescent nature of the incident light.  

Diffusing Colloidal Probe Microscopy (DCPM) is an extension of the TIRM 

technique that simultaneously monitors multiple microsphere probes. The use of 

multiple probes introduces the issue of probe polydispersity. When measured at the 

surface, a variation in scattered light intensity of nearly one order of magnitude has been 
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observed from a purchased microsphere sample. Thus the polydisperse collection of 

microspheres adds significant complexity to the scattered light signal. It is hypothesized 

that the dependence of the total scattered light intensity on microsphere size accounts for 

the scattered intensity distribution in a polydisperse microsphere sample. Understanding 

this variation in the scattered light with microsphere size will allow improved 

characterization of the microsphere/surface separation. Additionally, larger microspheres 

have the ability to resonantly confine light and produce spectrally narrow Whispering 

Gallery Modes (WGMs). It is hypothesized that WGMs may be excited in microspheres 

with the DCPM system. These modes may be used as a refractometric biosensor with 

high sensitivity to local refractive index changes on the surface of the microsphere. 

This research involves modeling scattered intensity distributions for polydispersed 

collections of microspheres based on modified Mie theory.  The theoretical results are 

compared to experimentally obtained results and found to qualitatively explain the 

scattered light intensity distribution in a multiple probe DCPM system.  This is an 

important result suggesting that microsphere size variation plays a major role in 

determining the distribution of scattered intensity in multiple microsphere probe 

systems. This work also suggests that it may be possible to excite such WGMs in a 

DCPM system. The introduction of WGMs would enable refractometric biosensing in 

such evanescent mode systems.  
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INTRODUCTION 

This work investigates the scattered light intensity from levitating microspheres 

of different sizes when excited by evanescent waves. Evanescent waves are produced in 

a medium of lower refractive index due to the phenomenon of total internal reflection in 

a medium of higher refractive index, and decay exponentially with distance above the 

interface. Because of the spatial variation of the light, microsphere distance from the 

surface causes variations in the scattered light from microspheres at or near the interface. 

Single particle Total Internal Reflection Microscopy (TIRM) is a technique which uses 

this phenomenon to monitor the separation distance between a microsphere immersed in 

an aqueous solution and the interface with nm resolution. Because it relies on the 

Brownian motion of the microspheres, TIRM can be used to measure the biomolecular 

interactions taking place between biomolecules bound to the microsphere and to the 

interface with sub-picoNewton resolution.  

Diffusing Colloidal probe Microscopy (DCPM), developed in the Bevan 

laboratory, combines TIRM and Video microscopy (VM) to simultaneously monitor 

multiple microsphere probes. This technique maintains the sensitivity and resolution of 

single particle TIRM. However, the introduction of a polydisperse sample of 

microspheres adds greatly to the complexity of the scattered light signal due to variations 

in microsphere radii.  

__________ 

This thesis follows the style of Langmuir. 
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Understanding these variations in the scattered light with respect to the 

microsphere size will allow improved characterization of microsphere-surface 

separation. The intensity and patterns of the scattered light are modeled using modified 

Mie theory which accounts for evanescent nature of the incident light. All the parameters 

in the calculations are set to match experimental conditions and there are no free 

parameters in the calculations. 

 The scattered intensity from the microsphere is very sensitive to the size and 

refractive index of the microspheres as well as the effective refractive index of the 

medium surrounding the microspheres.  It is hypothesized that the dependence of the 

total scattered light intensity on microsphere size accounts for the scattered intensity 

distribution in a polydisperse microsphere sample. Additionally, larger microspheres 

have the ability to resonantly confine light through total internal reflection and produce 

Whispering Gallery Modes (WGMs). These microspheres exhibit a shift in wavelength 

when the refractive index of the surrounding material or the material inside the cavity 

changes
1
 and may be utilized as refractometric biosensors. It is hypothesized that WGMs 

may be excited in microspheres with the DCPM system. 

In this work scattered intensity values for polydispersed microspheres as 

observed under DCPM are compared with calculated values using modified Mie theory. 

From the scattered intensity modeling, the effects of sample polydispersity may be better 

understood and predicted. It is also found that decay of calculated scattered intensity 

from a microsphere with distance from the interface matched well with the expected 

evanescent wave decay. Further, the results suggest that microsphere size variation plays 
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a major role in determining the distribution of scattered intensity in multiple microsphere 

probe systems.  Finally, the results suggest that it may be possible to excite and use 

WGMs in a DCPM system.   
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BACKGROUND 

1. Microspheres 

Microspheres are spherical particles with diameters on the order of micrometers. 

The polystyrene microspheres used in this work are chosen due to their relatively high 

index of refraction compared to other common microsphere materials (i.e. silica). The 

value for the index of refraction is calculated at a given wavelength using an empirical 

fit to data specifically taken on polystyrene microspheres
2
 

42

00034779.00031080.0
5725.1


epolystyrenm                                                   (1) 

The use of this value will remove all free parameters from the theoretical model. For the 

investigation into sample polydispersity, polystyrene microsphere samples with mean 

diameters of 1 and 4 µm are used to compare the modeled light scattering with 

experimental data.  

2. Evanescent Waves 

 Evanescent waves are generated at an interface between two materials with 

different indices of refraction.  When light propagating in the higher index material is 

incident on the interface it is reflected at an angle equal to the incident angle and 

refracted at an angle described by Snell’s law. 

21 sinsin  nn                 (2) 

  



 5 

where n=high refractive index, n΄=low refractive index. It should be noted that the angle 

of the refracted light, θ2 is greater than the angle of the incident light, θ1 due to the lower 

index of refraction in second material. At the critical angle, the angle of the refracted 

light θ2 goes to 90º and the light is totally reflected in the medium in which it is 

traveling. This angle is defined as
3
                                                                                                     

 

                                                                                                  (3)                                     

When light is incident at an angle greater than critical angle, total internal reflection 

(TIR) occurs. Despite the fact that light is not refracted in TIR, light does penetrate the 

medium of lower refractive index as an evanescent field propagating a short distance 

along the interface.  Most importantly, this light has the property of decaying 

exponentially with distance from the interface.  As shown in figure 1, refractive index of 

medium 1, n, is greater than medium 2, n’. So, the part of the incident light shown 

penetrating in medium 2 is an exponentially decaying evanescent wave. 

 








 
 

n

n
c

1sin
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Figure 1 Evanescent wave generation. The evanescent waves are traveling in the direction along Z axis. 

The refractive index of medium 1 is greater than that of medium 2. α is the incident angle which is greater 

than critical angle5. 

 

 

 In this work, the interface is glass and water having refractive indices of 1.515 and 

1.33, respectively.  Here, the critical angle is 61.38° when the incident light is in the 

glass. Any angle greater than this critical angle will generate evanescent waves via TIR 

in the water.  

The evanescent wave decay constant in medium 2 is given by following formula
4
.  

 

                                                                                                                                          (4) 

Here k' is the wave propagation constant of the medium in which the evanescent waves 

are traveling and is given by the formula: 

1
sin

2

22





n

n
k
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nk 





2
                                                                                                                     (5) 

β is the decay constant and the inverse of the decay constant gives the penetration depth. 

The penetration depth is dependent upon the incident angle, the refractive index of 

medium 1 and the index of medium 2. Thus, the penetration depth may be tuned with 

incidence angle and gets smaller as the incidence angle increases beyond the critical 

angle. With an angle of incidence of 68° and refractive indices of 1.33 for water and 

1.515 for the glass prism, the depth of penetration is calculated to be 88nm. The 

evanescent light intensity as a function of distance from the interface is given by
4-6

: 

   vIdI  exp0                                                                                                        (6) 

here, I0 is the intensity at the water side of the interface and v is the distance from the 

interface. This evanescent light serves as the source for microsphere scattering in the 

theoretical model and experiments. 

3. Single Particle TIRM 

Incoming incident light from a laser is incident upon the interface at an angle 

slightly greater than the critical angle. The generated evanescent light produced in the 

water is incident upon a microsphere which scatters light away from the interface. This 

scattered light may be collected perpendicular to the interface, along the x-axis, as 

labeled. The scattered intensity is assumed to be directly related to intensity of 

evanescent waves and microsphere size as shown in figure 2. Since the intensity of the 

evanescent wave exponentially decreases as the distance from the surface increases, the 

scattered intensity is also expected to decrease with distance from the interface and 



 8 

follow the relation described in equation (6)
7
. Here, I0 is the scattered intensity when the 

microsphere is on the surface and d is the distance from the interface to the bottom of the 

microsphere. Using equation (6), the measured I0, and the calculated penetration depth, 

the distance between the sphere and glass interface can be calculated from the scattered 

intensity. Experimentally, the distance from the interface to a microsphere suspended in 

water may be monitored. The initial step is to determine I0 for the microsphere. Due to 

gravitational force, the relatively dense microsphere comes in close contact with the 

glass slide
5
. At this point, the microsphere is at a distance 0 above the surface and the 

base line intensity or “stuck particle’ intensity is measured. After establishing I0, the 

microsphere is suspended in water above the glass/water interface. It should be noted 

that the value of I0 varies significantly between microspheres within a relatively 

monodisperse sample, this fact was addressed while discussing polydispersity issue with 

Dr. Bevan. This variation appears to become larger as the microsphere index increases 

(i.e. from silica to polystyrene).  
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Figure 2 Single particle TIRM. The radius of microsphere is a, and it is located at distance (d-a) from the 

surface, the distance between the centre of the microsphere and surface is d8. 

 

 

Once the microsphere is levitated above the surface, Brownian motion causes the 

microsphere to continuously change its height above the surface. As shown in the figure 

below the microsphere is located at distance (d-a) from the surface, d is the distance 

between the centre of the microsphere and interface, a is the microsphere radius. This 

change in height is measured as a change in the scattered intensity. This technique is 

sensitive, since it utilizes Brownian motion to cause the changes in height. A 
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microsphere height histogram, n(h), can be built from time dependent height 

fluctuations, h(t), for the microsphere due to Brownian motion as
8
:  

h(t) -> n(h)                (7) 

Then, a probability density function given by the following formula can be substituted 

for n(h)
8
  

 
 











Tk

h
Ahp

B


exp                                     (8) 

Here, p(h) is the probability of sampling height above the glass surface, φ (h) is the 

microsphere and surface potential energy profile, A is a normalization constant, kBT is 

the thermal energy.  

Ensemble averaging can then be used to determine the reference height or the most 

probable height, hm, which is then taken into account as a reference for further 

calculations. Now, the potential energy relative to the reference height can be given by 

following expression
8
 

    
     

  










hn

hn

Tk

hh ref

B

ref
ln


                                                                                          (9) 

here, href = most probable height or the reference height, φ(href) = potential energy of the 

sample at corresponding reference height, n(h) = histograms providing good 

approximation of the probability density of heights p(h). Thus distances calculated 

between the microsphere and surface directly corresponds to the interaction between the 

glass surface and the microsphere. Thus it is possible to study biomolecular interactions 

between biomolecules attached to the surface of the microsphere and on the surface of 



 11 

the glass slide. This technique allows derivation of forces acting on the microsphere with 

kT resolution and can be utilized to characterize the interaction between biomolecules. 

TIRM is a very sensitive technique and it measures force non- intrusively. Thus with the 

help of TIRM we can measure forces in the sub-picoNewton range
9
. Liebert and Prieve 

used TIRM to measure specific interactions between immunoglobulin G (IgG) 

covalently bound to a polystyrene microsphere and protein A covalently bound to the 

glass slide
10

. Robertson et al. measured the potential energy of interaction between a 

glass interface and a leukocyte at very low ionic strengths
11

. Robertson and Bike have 

used TIRM to measure non-specific, interactions between biomolecules and a glass 

surface. These interactions play an important role in controlling the adhesion of cells and 

liposomes to surfaces
12

. Rudhardt et al. used TIRM to measure the depletion interactions 

between polystyrene microspheres and a glass interface in the presence of poly (ethylene 

oxide) (PEO)
13, 14

. 

4. TIRM Compared to Other Techniques 

The primary force measurement techniques currently being used for biomolecular 

measurements are atomic force microscopy (AFM) and optical tweezers. More recently 

developed, TIRM offers an alternative method with some advantages over the traditional 

techniques. This technique has shown that the force sensitivity is two order higher in 

magnitude than Atomic Force Microscopy (AFM)
5
.  

AFM is a tool for directly measuring force in the pN range and imaging matter at 

nanometer scales. When characterizing force, the AFM operates by measuring attractive 

or repulsive forces between the tip and a sample
15

. Two types of biomolecular forces are 
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normally measured; the binding and unbinding forces between the biomolecules. The 

unbinding forces are more easily measured through rupture force measurement. For 

measuring the unbinding forces with AFM, a cantilever with a sharp, biofunctionalized 

tip is used. The cantilever is scanned across the sample and comes in contact with the 

sample of interest. Interaction between the biofunctionalized tip and the sample causes 

deflection of the cantilever and the deflection is measured by the change in a reflected 

laser beam detected with a photodetector. From these distances and the stiffness of 

cantilever, the forces acting between the biofunctionalized tip and sample are calculated 

through Hooke’s Law
16

: 

dkF  ,                                    (10) 

Here, F is the force measured, k is the stiffness of the cantilever and d is the distance 

measured by the deflection of cantilever. 

This ability of AFM to measure discrete intermolecular forces has been exploited 

by many research groups for biomolecular force measurement. Jeong and group worked 

on detecting direct force measurement between biotin attached to a 10 µm polystyrene 

bead and streptavidin on the surface
17

. The forces measured were in the range of 

hundreds of picoNewtons, 636±176 pN
17

. Allen and group worked on detecting the 

unbinding forces between ferritin antigen and anti ferritin antibody attached to the AFM 

probe and surface in contact respectively. The precise forces in the range of 49±10pN 

were measured
18

. Lee and group measured the forces between complementary strands of 

DNA. The forces measured were in the range of nano Newtons
19

.  



 13 

Optical tweezers use the force of radiation from a focused laser to trap small 

particles on the order of nano- to micro-meters
20

. The trap functions on transparent 

particles with an index of refraction that is greater than the surrounding media. Stable 

trapping is achieved when the gradient force is larger than the scattering force. The 

forces acting on the trapped sphere can be calculated from the amount of displacement it 

undergoes from the focal point. This technique is utilized in measuring the interaction 

and adhesion between the biological samples attached to microspheres. The forces on the 

order of 1 to 100 pN have been characterized
21

. The principle of force calculation is 

similar to that mentioned for AFM. Tinoco and group calculated the forces acting on the 

RNA from the distance between microbeads. Their paper describes a review on the use 

of optical traps for understanding the mechanisms of folding and unfolding of RNAs
22

. 

Finer and group used laser trap that allowed for direct force and displacement 

measurement that results from interaction of a single myosin molecule with a single 

suspended actin filament, the forces measured were around 3 to 4 pN and distances of 11 

nm
23

. The system developed by Fallman and group has been used to measure the binding 

forces between Escherichia coli bacterial adhesins and galabiose-functionalized beads. 

The binding between the biomolecules ruptured at the forces of 10-15 pN
24

.  

TIRM offers a number of advantages compared to traditional techniques for 

measuring biomolecular interactions. The following table summarizes the various 

advantages and disadvantages of the techniques discussed above
25

: 
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Table 1 Summary of comparison between the techniques 

Technique Advantages Disadvantages 

AFM 1) Direct force measurement, 

2) technique works in air or 

liquid, 

3) provides high resolution 

imaging in addition to force 

information
26 

1)Requires chemical or physical 

immobilization of the biomolecules 

when measurements are made in 

liquids, 

2) No absolute measurement of distance 

so calibration is required,  

3) Maximum force measured is in range 

on pN 

4) Physically touches the sample and 

might transfer energy to sample
27 

Optical 

Tweezers 

1) No immobilization 

required,  

2) works best for spherical 

particles  

3) light must pass through the 

trapped particle
20, 28 

1) Valid over very narrow particle range 

2) Maximum force measured is in range 

on pN 

TIRM 1) Forces as small as 10
-14

– 

10
-10

 N can be resolved  

2) Distances between the 

particle and surface can be 

1) Low refractive indices and flexible 

membranes hamper the practical use of 

TIRM on cells. 

2) Biomolecules should be labeled 
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measured directly
9, 29 

fluorescently for imaging purpose
9 

 

5. MIE Theory 

In order to model light interactions with spherical particles, Mie theory is 

traditionally used. Mie theory was independently developed by Gustav Mie
30

 and Ludvig 

Lorenz. Mie theory provides a complete mathematical solution for scattering of 

electromagnetic radiation from spherical particles
3
. Mie theory is well described in 

numerous texts including those by Bohren and Huffman
31

, Kerker and  van de Hulst
32

. 

Two parameters important for the calculations in Mie theory are size parameter, 

x, and effective refractive index, neff, The size parameter of the spherical particle is 

defined by the following formula 

n
a

akx 


2
            (11) 

where k΄ is the wave number of the medium in which waves are propagating, λ is the 

wavelength of the incident incoming light, a is the microsphere radius, n΄ is the 

refractive index of the medium surrounding the microsphere. The size parameter gives 

the idea that when the microsphere size is more or the wavelength of incident light is 

less the size parameter will be more and more the size parameter more is the light 

scattered from them. The effective refractive index is given by: 

n

n
neff


 1                         (12) 
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where, n1 and n΄ are the refractive indices of microsphere and of the medium 

surrounding the microsphere, respectively. This parameter shows the amount of contrast 

or confinement provided by the particle. These two parameters are very sensitive. Small 

shift in them can cause a large change in the value of the scattered intensity as will be 

seen in the results and discussion section. 

Mie theory makes the following assumptions
5
: 

1) The microspheres are assumed to be homogeneous, made up of linear and 

isotropic materials. 

2) Each microsphere is assumed to be located in an infinite homogeneous, 

lossless medium (AT).  

3) The incident light is assumed to be continuous and an infinite plane wave. 

The first two assumptions match well with the system under investigation. However, the 

final assumption is not acceptable for our system. Hence, Mie theory is not directly 

applicable for the theoretical calculations. Thus, modified Mie theory which accounts for 

the evanescent nature of the source light is required in our calculations.  

The first treatment of scattering problem with modified Mie theory was presented 

by Chew et. al
6
. They calculated the scattered light from a 1 µm diameter microsphere in 

air with plane wave as well as evanescent wave excitation using Mie and modified Mie 

theory, respectively. The results showed scattered light intensity from evanescent 

excitation differed significantly from that of plane wave excitation.  Additionally, the 

angular scattering pattern and the total amount of scattered light were found to depend 

upon the size of the microsphere, the penetration depth of the evanescent light, the 
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polarization of the light, and the distance of microsphere from the interface
33

. Due to 

assumptions made to decrease computational time, the calculated results hold in two 

principal planes. Recently, Ganic et. al
7
 solved the scattering of the microspheres of 

particle radius 2 µm in air with evanescent wave excitation and calculated the three 

dimensional scattering from the sphere using the modified Mie theory based on the work 

of Chew et al. They looked theoretically at the resonant modes occurring in the pattern 

of the scattered intensity, and they attributed sharp peaks occurring in this process as 

morphology dependent resonances (MDRs).  This theoretical model is used in this work 

and is described in detail in theoretical methods section. 

6. Diffusing Colloidal Probe Microscopy 

As shown above, single particle TIRM is useful for characterizing 

particle/surface or biomolecular interactions. However, the technique may be extended 

by the simultaneous use of multiple microsphere probes.  By multiplexing an ensemble 

of microsphere probes, the system can measure many interactions at once to provide a 

more complete experimental picture. Dr. Bevan’s lab has recently combined TIRM and 

Video Microscopy (VM) to simultaneously monitor the activity of multiple microsphere 

probes. 
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Figure 3 DCPM system for multiple particles. The laser light is incident on the prism from the right, the 

evanescent waves are generated above the slide and the microsphere sample on the slide is illuminated by 

these waves. The inset shows the microspheres of different sizes located at different distances above the 

slide. The images shown in above the setup is the different patterns of the microsphere scattering, the 

images are captured by CCD.  

  

  

I(d)2 I(d)1 
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This system is referred to as diffusing colloidal probe microscopy (DCPM) and is shown 

in the figure 3. Just as TIRM uses a single probe, DCPM is used to simultaneously 

monitor scattered light from an ensemble of microsphere probes.   From these 

measurements, the microsphere height distribution and eventually the 

microsphere/surface interaction may be calculated.  

The simultaneous use of multiple microspheres introduces issues of microsphere 

polydispersity. As shown in figure 3, courtesy Dr. Bevan and group, the microsphere 

sample dispersed in water sits on the glass slide above the prism and as described before 

evanescent waves produced are incident upon them and they scatter light. This scattered 

light is captured by the CCD camera and the images appear as shown in the figure. The 

right image is taken when the backlight is off and left is the image with backlight. In the 

left image we can distinctly see the differences in microsphere size, and those 

microspheres do not emit the same amount of light. This effect is possibly due to the 

distance between the microsphere and surface, differences in microsphere size or 

changes in refractive index. The insets below the main figure are cartoons showing a 

sample of microspheres dispersed in water and how the microspheres at different heights 

scatter light differently. The work by Chew and Kerker demonstrated that this scatter 

may be due to both microsphere/surface distance and also microspheres size
6
. This work 

investigates the effect of microsphere polydispersity on the distribution of scattered light 

intensity as a function of microsphere size.  

DCPM maintains the sensitivity and resolution similar to that of single particle 

TIRM, with the advantage of simultaneous probing by multiple microspheres. Hence the 
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time required for calculation decreases. For the study of biomolecular interactions for 

multiple particles, Everett et al have looked at interactions of BSA adsorbed 

microspheres and its interaction with copolymer PEO attached to a glass slide with 

DCPM
34

. The data in the paper show distinct improvement of measuring simultaneous 

microspheres together rather than measuring the data for each single microsphere and 

then averaging it
34

. Thus DCPM is a new technique to measure biomolecular interactions 

with kT resolution. 

7. Whispering Gallery Modes  

When light is confined inside the microsphere due to the phenomenon of TIR, 

the resonant modes generated are called Morphology Dependent Resonances or 

Whispering Gallery Modes (WGMs). These resonance modes are critically dependent 

upon the size and refractive of the microsphere, and the local refractive index of medium 

surrounding the microsphere. For a given microsphere, these modes occur at particular 

resonant wavelengths of light and may be very sharp with quality factors (Q) up to 

10,000: where Q equals the center frequency divided by the frequency bandwidth
35

. As 

shown in the figure 4, when light is coupled inside the microsphere, it undergoes 

constructive interference as it undergoes TIR and circulates near the surface of the 

microsphere. These modes have a wide variety of applications as filters, lasers, sensors 

and modulators
36

. The scattering intensity pattern of the microsphere when coupled in a 

WGM differs distinctly from the normal scattering pattern which we will see in the 

result section. The enhanced scattering characteristics provide good information for the 

fields of microscopy and optical sensing
37

. These modes have high Quality (Q) factor, 
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which we will discuss in the section of mode sensing
36

. Due to the high Q of these 

resonant modes, microsphere WGMs may be used for refractometric biosensors
35, 38, 39

.  

 

 

Figure 4 Whispering Gallery Modes (WGM) resonances occur due to TIR on the inner surface of the 

microsphere. They are efficiently excited with evanescent light due to the high angle of incidence near the 

bottom of the microsphere. 

 

 

8. WGM Biosensing 

Due to the evanescent tail of the WGMs extending into the surrounding medium, 

the resonant frequencies, or wavelengths, of these WGMs are extremely sensitive to the 

refractive index near the microsphere surface. Thus by attaching biomolecules to the 

surface of these microsphere, the system may be used as a biosensor. Adsorption of 

biomolecules on the surface of the WGM microsphere sensors results in a change in the 

effective refractive index of the surrounding medium and may lead to a measurable shift 

in resonance wavelength. Examples of potential applications for WGM microsphere 
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biosensors include detection and monitoring of proteins, DNA, peptides and toxin 

molecules
40

 

The system senses changes in the refractive index of the medium directly 

surrounding the microsphere, n', due to the attachment of biomolecules. Since the mode 

generally remains at a fixed value of the size parameter, x, sensing is accomplished 

through the observation of wavelength shifts in the resonant WGMs as n' changes. Due 

to minimal losses, the WGM resonances may possess very high Quality factors: the 

parameter that indicates the strength of resonance modes coupled inside the 

microspheres. So to improve measurement precision, the narrow mode linewidth 

achieved from high Q factor may be used
35

. Q factor is defined as
41

: 






 0Q

                        (13) 

where, Δω is the resonance linewidth here and ω0 is the resonant frequency. The results 

of change in wavelength are dependent upon the Q factor and the microsphere radius 

greatly influences the value
35

.  

It has been shown that when the effective refractive index increases due to 

adsorption of a protein, DNA or the peptides on the surface of a microsphere, the the 

resonance frequency will decrease or the resonance wavelength will increase
40

. So, the 

size parameter of the microsphere, as defined in the mie section always remains fixed. 

But due to the change in refractive index of the medium surrounding the microsphere, 

the value is to be manipulated in a way that size parameter remains constant. And 
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change in wavelength is possible if we have incoming light coming from a tunable laser 

at different wavelengths.  

Using this concept it has been shown that different proteins when attached to the 

WGM biosensors, induce different wavelength shifts
42

. The ratio of wavelength shift due 

to streptavidin binding compared to BSA biotin adsorption was 0.94. It is also shown 

that due to the addition of new materials on the surface the wavelength shifted to longer 

values to accommodate a larger effective circumference
42

.  

Arnold et al showed that single molecule detection on the surface may be 

possible through the use of WGM biosensors
38

. They used BSA (Bovine Serum 

Albumin) and a perturbation approach for analyzing the resonance shift, and showed that 

the shift in the frequency is inversely proportional to the microsphere radius. Vollmer et 

al quantified DNA attached to the surfaces of two microspheres together and found the 

fractional wavelength shift for a single DNA molecule
43

. In the latest paper by Quan and 

Guo, a refractive index change of 10
-5 

is distinguishable by a WGM biosensor when a 

linewidth of 10 MHz is considered
40

. They also showed that WGM biosensors can 

measure the adsorption and growth of one single peptide layer. When the peptides 

started to grow on the surface of a 30 µm diameter WGM biosensor, the wavelength was 

downshifted. They found a linear relationship between the peptide thickness and the 

absolute value of the decrement of resonance wavelength
40

. 
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SOLUTION 

1. Modified MIE Theory 

Due to the basic assumptions of Mie scattering, the technique is not applicable to 

DCPM experiments. Thus, basic Mie theory must be modified to account for the 

evanescent nature of the incoming incident light. The implementation of the modified 

Mie theory used in this work is based on the earlier work by Chew and Kerker
6
 but does 

not contain the limitations restricting results to the principle planes
7
. The scattered 

evanescent field from the microspheres is given in spherical coordinates as: 

                 

                                                                                                                      (14)  

Here l is the radial mode number and m is the azimuthal mode number, hl
(1)

(k´r) are 

spherical hankel functions of the first order, βM(l,m) and βE(l,m) are the scattered field 

expansion coefficients, ω is the angular frequency of the light, c is the velocity of light in 

vacuum, Yllm are the vector spherical harmonics, n΄ is the refractive index of the 

surrounding medium, k΄ is the wave number of the medium in which waves are 

propagating, and r is the radial spherical coordinate. To simplify equation 9, the del 

function required in the spherical coordinates,  

    rYrkh llml
ˆ)1(                          (15) 

is calculated from the simplified form as shown below. Let A be the simplified vector 

field  
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Curl of vector field A is given by the following formula 
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Vector spherical harmonics can be simplified further, with the help of following 

equation in spherical coordinates
44 

  m

l

m

l

m

ll YiYiYll    1csc11 ,                                                                (18) 

where spherical harmonics required for the expansion of the plane wave are generalized 

by Yllm, vector spherical harmonic. The vector spherical harmonics are expanded and 

they are given as shown in the equation 18. The expansion consists of scalar spherical 

harmonics given as Ylm. 

Substituting equations (16) and (17) into equation (14), and solving for the unit 

spherical vectors of r1, θ1 and φ1 gives the expansion of the formula for the scattered 

field in spherical coordinates as given in equation
7
 (19) 
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where r1, θ1, φ1 are the unit vectors in spherical coordinates,  k΄ is the wave number in the 

medium, r is the radial spherical coordinate, Ylm are the scalar spherical harmonic 

function of degree l and order m respectively, l and m are the redial mode numbers and 

azimuthal mode numbers respectively (l = 1 to ∞ and m = -l to +l), βM(l,m) and βE(l,m) 

for transverse magnetic and transverse electric mode respectively are the scattered field 

expansion coefficients required to expand  electromagnetic plane waves in spherical 

harmonics, c is the velocity of light in vacuum, hl
(1)

(k´r) are the Hankel functions of the 

first kind, ω is the angular frequency of the light. To calculate the scattered field using 

the equation (19), the equation is summed over modes, l, until the contribution becomes 

negligible. This equation holds true for the incident electric wave E0 is perpendicular to 

the plane of incidence (i.e. for the S polarized waves).  

2. Significance of Expansion Coefficients 

The primary modification to Mie theory for evanescent wave excitation comes in 

the scattered field expansion coefficients given by
6
:  
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Where, µ, ε, and k are the magnetic permeability, dielectric constant and wave number 

for the glass prism, µ1, ε1, and k1 are the magnetic permeability, dielectric constant and 
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wave number for the medium surrounding the sphere, µ′, ε′, and k′ are the magnetic 

permeability, dielectric constant and wave number of the sphere, β is the decay constant 

of the evanescent wave, jl(ka) are the spherical Bessel functions of the first order. 

αM(l,m) and αE(l,m)  are the expansion coefficients of the incident field  for transverse 

magnetic and transverse electric modes respectively, d is the distance between the 

microsphere centre and the glass surface, a is the microsphere radius.  The expansion 

coefficients also contain an exponent decay with distance from the surface.  

αE(l,m)and αM(l,m) are as defined below
6
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Here, Pl
m
 is the associated Legendre’s Polynomial, θk′ is the complex angle of incidence 

calculated from the critical angle 61.38º for glass water interface, to match the 

experimental conditions and for TIR we took 68º, for which the complex angle 

calculated is θk′. In our case the complex angle is taken as (0, 0.36663). The amplitude of 

the refracted wave is given by the following formula: 











tan

tan
1

2
0E               (24) 

The expansion coefficients are functions of the size parameter of the 

microsphere. And the size parameter as defined in the mie section are in turn dependent 

on the microsphere radius a and refractive index of the medium. Thus, the scattered field 
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is very sensitive to changes in these parameters. It should be noted that larger 

microspheres require more spherical harmonic modes to reproduce the initial plane wave 

excitation and convergent results.  

In summary, modified Mie theory used here takes into consideration the 

evanescent nature of the incident light.  It also indicates that the size of the microsphere 

influences the amount of light scattered in a complex manner. This work will explore 

this relationship to explain the variation in scattered light observed from polydisperse 

microsphere samples. 
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METHODS 

1. Experimental Method 

 DCPM experiments were performed by the Bevan Laboratory. Excitation was 

provided by the 488 nm line from an Argon Ion laser (Melles Griot, Carlsbad, CA). The 

light is normally incident on the side face of a Dove prism with the sides cut at 68º.  This 

yields the incidence angle of 68º and the laser is set to perpendicular, or S, polarization. 

For the glass-water interface, Corning glass slides (Corning, NY) were used for all the 

experiments and optically coupled to the prism with index matching oil (n=1.515).  The 

slides were washed for 30 minutes in Nochromix (Godax Laboratories, Takoma park, 

MD), rinsed repeatedly with double deionized water (DDI), and dried thoroughly with 

high purity nitrogen. O-rings, 10mm ID × 12mm OD, (Viton, McMaster Carr, Los 

Angeles, CA) were used to form two samples on each slide. The microspheres with 

mean diameters of 1, and 4 µm were purchased from Interfacial Dynamics Cooperation 

(Eugene, OR). Microsphere samples were diluted with DI water to create low 

concentration samples for the experiments. Dynamic light scattering was used to 

measure the microsphere size distributions (ZetaPALS, Brookhaven Instrument 

Corporation, Holtsville, NY). The schematic representation of the actual setup is shown 

in figure 4 from the DCPM section above. An Axioplane 2 optical microscope (Zeiss, 

Germany) with a 40X objective lens (NA = 0.6) was used to collect the scattered 

intensity. A 12-bit CCD camera (ORCA-ER, Hamamatsu, Japan) operated with 2x 

binning and a capture rate of 18 frames/second was used to record the scattered light 

from the microspheres. Images contained 672 pixels x 512 pixels, had a pixel resolution 
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of 304 nm and yielded an image field of 204 x 155 m
2
. The image shown in figure 5 

(a), courtesy Dr. Bevan and group, is of polydispersed microspheres scattering light 

when the evanescent waves are incident on the microspheres from the right side. Hence 

we see a bright illumination on the right side which is forward scattering and a very low 

backward scattering as well.  

 

 

  

Figure 5 (a) Shows the evanescent wave scattering intensities profiles of 4 µm single PS microspheres. 

Figure 5 (b) Shows the scattering image corresponding to (a) recorded from the optical microscope. 

 

   

 Image analysis algorithm and software code coded in FORTRAN were used to 

track the location of the microspheres and record the scattered intensity. To locate and 

track evanescent wave signal on each of the microsphers, standard video microscopy 

algorithms were used
45, 46

. The total scattered intensity from individual microspheres was 

calculated as the integrated sum for each of the pixels falling in a specified radius around 

each microsphere. Only isolated microspheres are tracked to prevent cross-talk.  These 
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intensities are recorded as a function of time and yield the height distributions for each 

microsphere.  

2. Theoretical Calculation 

 

Figure 6 Model configuration for theoretical calculations showing the axis. Here evanescent waves travel 

along Z axis, the size of the microsphere chosen for the polar plot is 4 µm diameters PS. The light is 
scattered more in the forward direction and hence higher values of scattered intensity at around 0˚. A weak 

lobe also occurs at the end near 180˚, which can be mainly attributed to backward scattering.  
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 The software code used to calculate the scattered light is a modified version of 

code previously used to study evanescent wave scattering from microspheres by Ganic et 

al
7
. To increase computational speed, the program is written in FORTRAN 77. Figure 6 

shows the configuration for the theoretical calculations. In this work, the scattered light 

distribution is calculated at a YZ plane located above the interface. Parameters set in the 

code included:  

 The wavelength of incident light from Argon Ion laser: 488 nm 

 The angle of incidence: 68º 

 Refractive index of water: 1.33 

 Refractive index of glass prism: 1.515 

 Index of refraction for polystyrene microsphere: 1.59168 

 Polarization of the light: perpendicular 

The working distance of the 40x objective used to collect the scattered light 

determines distance to the YZ collection plane: 2mm in this case.  The numerical 

aperture of the 40x objective determines the angular collection cone: approximately 30º 

in this case. Thus, the collection angle varies between 60º and 120º in θ and between -

30º and 30º in φ. The light distribution is calculated for equal steps across the defined 

circular collection area in the YZ plane in order to keep the individual collection area 

segments constant. For each step, the values for r, θ, and φ are determined which in turn 

are used to determine the scattered intensity in that area element.  The scattered intensity 

from all area elements are then summed to find the total scattered intensity. 
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Experimental measurements showed that the polydispersed polystyrene 

microsphere sample of diameter 1 spanned the range from 0.6 µm to 1.4 µm and 4 µm 

particle spanned the range from 2.5 µm to 4.5 µm  Thus, calculations were performed 

over the range between 0.25 µm radius to 2.5 µm for including all the sizes required for 

1 and 4 µm sample. The step size in the YZ collection plane in this size range was 5 nm. 

For larger microspheres, the peaks become sharper and frequent and so to capture all the 

values required, we should chose a still smaller step size.  

Figure 7 below is the plot of microsphere radius versus the scattered intensity. 

The peak at about 2.45 µm is the narrowest peak in these calculations. This peak is well 

defined by the 5nm step size and hence the step size of 5 nm was chosen for 2 and 4 µm 

diameter microspheres. Also to be noted here that the broad peaks in the earlier portion 

of this curve for small microspheres are very well defined with the step size of 5 nm.   
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Figure 7 Plot of microsphere radius versus scattered intensity for a polydispersed PS sample in water. The 

data points are shown here for the maximum peak value. Here the data points are the calculated values and 
the curve is a fit. 

 

 

 For the microspheres, the number of vector spherical harmonics needed increases 

rapidly with microsphere size. Thus, the number of modes, l and m (mode number and 

azimuthal number) increases rapidly. The values of l and m define expansion coefficients 

required for the scattering field as well as for the incident field. For smaller microspheres 

small number of l are sufficient.  
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The code just not produced the values when those coefficients were not sufficient to 

generate the scattered field and hence by checking those values empirically, following 

values of l were introduced in the code.  

 l  is chosen as 159 for any values of microsphere size a, greater than 5 µm 

radius,  

 for a < 5 µm, the value is 139 µm.  

 for a < 3.45 µm the l is 99,  

 for a < 2.45 µm, l is 79, 

 for a < 1 µm, l is 49,  

 for a < 0.3 µm, l is 27 and for any values of a < 0.3 µm the values is 17. The m 

values varies from –l to +l  

 To determine the required step size, the scattered intensity was calculated for 

different step sizes across the YZ plane. Figure 8 shows that the calculated scattered 

intensity converges at step sizes below 125 µm. The light is collected across the YZ 

collection plane in steps of 100 µm. 
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Figure 8 The total scattered intensity versus step size considered was calculated for a microsphere 

diameter of 1 µm. This convergence pattern holds for larger microspheres as well. 

 

 

3.  Angular Scattering 

The observation cone of interest is determined by the numerical aperture of the 

objective lens used for the experiment. For the theoretical calculations, this angle is 

taken to be 30º as seen in the theoretical section above. Figure 9 shows the scattered 

intensity with angle in the XZ plane. The region of interest for the DCPM system is from 

60˚ to 120˚ where 0˚ is forward scattering and 180˚ is backward scattering. Within our 
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area of interest, the dominant scattering occurs in the forward scattering direction with a 

smaller peak appearing in the backward scattering direction. Since forward scattering is 

more intense than backward scattering, we observe a peak of higher intensity in that 

region. As seen in the experimental image, figure 5 the strong forward scattering results 

in the bright spot and the backward scattering may yield a dim spot on the other side of 

the microsphere. From this plot we can see that along with forward and backward 

scattering there is also light being scattered across the entire numerical aperture. So 

scattered light intensity is calculated and integrated across the entire field.  

 

 

 

Figure 9 Angular scattering for microspheres in water and perpendicularly polarized incident light. These 

are the simulation results for 3 µm radius polystyrene microsphere in water. 
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RESULTS AND DISCUSSIONS 

1. Separation Distance and Scattered Intensity 

 To investigate the expected exponential decay of the scattered intensity with 

distance from the interface, the scattered intensity was calculated as a function of 

separation distance (d-a) between the microsphere and the interface. The results are 

shown in figure 10. It is anticipated that the scattered intensities from the microsphere 

will show an exponential decay following that of the incident evanescent waves. 

Scattered intensities are plotted for a microsphere with a diameter of 4 µm.  However, 

the same dependence has been shown for microspheres of other sizes. If the graph is 

plotted for the separation distance in logarithmic scale, the slope of the theoretical 

calculated values should produce a value which is equal to β, the decay length of the 

evanescent wave. The calculated value of approximately 88 nm matches the 

experimental conditions. So, this theoretical study indicates that scattered intensity 

follows the decay of the incident evanescent waves being light. 
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Figure 10 Separation distance versus scattered intensity for the microsphere of size 4 m mean diameter in 
air. The separation distance is (d-a) and wavelength of incident light is 488 nm. 

 

 

2. Simulations 

 Calculations were performed for microsphere samples with mean diameters of 

the 1 and 4 µm to study the effects of polydispersity on the scattering intensities. The 

steps taken for the radius were 5 nm. All the other parameters considered for theoretical 
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calculations are as described in the theoretical calculations section. Thus there are no 

free parameters in the calculation except for the microsphere radius. 

3. 1 µM Radius of the Microsphere 

 The total scattered intensity collected at height of 2 mm, for microspheres around 

1 µm diameter are shown in figure 11. As expected, the scattered intensity increases as 

the size of the microsphere increases. In this size range, the scattered intensity can 

increase by up to a factor of two with only a 200 nm microsphere size difference.  

 

Figure 11 Scattered intensity in arbitrary units (a.u.) versus microsphere size of 1 µm polydispersed PS 

sample when excited by evanescent waves. 
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The stuck particle scattering intensity data was experimentally collected by the 

Bevan laboratory using the technique described in the experimental section.
47

 In order to 

avoid errors, the data were averaged in 40 continuous snapshots. Also the concentration 

prepared was very dilute in order to avoid interfering signals from neighboring 

microspheres.  

Since the microsphere sample is polydisperse, the size distribution was measured 

and shown in figure 12(a) by dashed lines and circles. With the help of Confocal Laser 

Scanning Microscopy (CLSM), the microspheres are seen and their corresponding sizes 

are determined by measuring the diameter of the microspheres. The image is then 

processed and with the help of fourier Radius values are used to calculate the number of 

microspheres in each bin selected. So, the points in this plot show the number of 

microspheres present in a sample of the same microspheres used in the experiment.  

Note that this is not a characterization of the same microsphere sample used in the 

DCPM system. This produces the plot of size distribution. The solid line in the same plot 

depicts the scattered intensity values calculated theoretically over the size distribution 

range of the 1 µm sample. 

To compare the experimental data with theoretical calculation, scattering intensity 

data particle histograms are created as shown in the figure 12(b). For easy comparison, 

both the histograms are shown as normalized frequencies (fi) and normalized intensities 

(I/Im). Where the plots are normalized to maximum frequency and most probable 

intensity (Im) as shown in the plot 12 (b). The experimental scattered intensity is shown 



 42 

with the dashed lines and circles. The theoretically calculated scattered intensity was 

combined with the experimental size distribution to yield the solid curve. The histogram 

of the theoretical scattered intensity values was created by dividing the intensity 

distribution into bins that are equally spaced. Since there is 1500 data points for each 

experiment the number of bins chosen are 50.  

The theoretical results qualitatively match the experimental results. The 

normalized intensity results show a tail toward lower scattered intensities due to the tail 

toward smaller diameters in the size distribution. The calculated intensity distribution is 

a bit broader than the measured intensity distribution. It is possible that the size 

distribution of the characterized sample did not exactly match that of the sample used to 

determine the size distribution. Also for the calculations boundary conditions and 

surface reflections are neglected. However, these calculations qualitatively predict the 

scattered light intensity distribution from a polydisperse microsphere sample with a 

mean diameter of about 1 μm. 
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Figure 12 Comparison of values with experimental data for 1µm size distribution and scattering intensity 

of 1µm PS microspheres. (a) The solid lines represent the theoretical calculated values. For the size 

distribution plot the frequency (fd) of microspheres are normalized to most probable frequency. (b) The 

histograms of scattering intensity obtained by theoretical calculations (solid lines) and experimental 

measurements (dash lines). 
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4. 4 µM Radius of the Microsphere 

 Figure 13 is the plot of the theoretically calculated scattered intensity versus the 

microsphere radius for 4 µm size. Here scattering intensity variations calculated by 

modified Mie theory show oscillation behavior which are sharper than those in for 1 µm. 

Also the sharp peaks indicate the development of weak resonances. As described before, 

in the section of mie as well in the section of WGM, larger microspheres or those in 

media with a higher effective refractive index such as microspheres suspended in air 

instead of water, would cause the occurrence of resonance peaks. Thus the oscillatory 

behavior is seen in the microspheres of larger particle sizes and also these oscillations 

are correspondingly more if the microspheres are seen in water instead of air. Water 

reduces the effective refractive index calculated and hence we observe this pattern.  

The comparison of the experimental and theoretical values is as shown in the 

figure 14 (b). As in the previous results, figure 14(a) shows the size distribution (open 

circle) and theoretical intensity variation (solid line) for 4 µm PS microsphere. 4 µm are 

more polydispersed than 1 µm PS microspheres. The values again match fairly well and 

the variations may be attributed to the errors in the experiments as mentioned in the 

discussion of 1 µm microspheres. The variations can be due to the experimental errors. 4 

µm PS sample is more polydispersed than 1 µm and hence there is a possibility that 

entire sample is not considered for the size distribution calculations here. Again here 

also the boundary conditions are neglected and hence surface reflections are not taken 

into consideration.  A long tail to the high intensity side is observed in the scattered 
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intensity values in figure 14 (b). This may be due the larger number of large 

microspheres in the polydispersed sample of 4 µm.  

 

 

Figure 13 Scattered intensity in arbitrary units (a.u.) versus microsphere size of 4 µm polydispersed PS 

sample when excited by evanescent waves. 
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Figure 14 Size distribution and scattering intensity of the 4 µm polydispersed microsphere sample size 

distribution and scattering intensity of 4µm PS microspheres. (a) The solid lines represent the theoretical 

calculated values. For the size distribution plot the frequency (fd) of microspheres are normalized to most 

probable frequency. (b) The histograms of scattering intensity obtained by theoretical calculations (solid 

lines) and experimental measurements (dash lines). 
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5. WGM Results 

 To investigate WGMs in the DCPM system, the scattered intensity was 

calculated for polystyrene microspheres of approximately 3 µm in air. Choosing air as 

the medium provides additional confinement for the WGMs increasing effective 

refractive index, and causes the WGMs to occur at smaller size parameters.  Figure 15 

shows the results of these calculations. A sharp peak is observed at a radius of 

approximately 3.25 µm. Thus when a polydisperse microsphere sample of approximately 

this diameter is observed under DCPM, some microspheres should exhibit WGMs. Since 

the peaks are narrow, only a few microspheres are expected to show this effect. To 

predict what the microsphere should look like in the DCPM system, angular 

distributions for microspheres with a WGM (blue) and without a WGM (magenta) are 

plotted in Figure 16. The exact sizes for the microspheres are indicated on figure 15. 

There are distinctively more features in the scattered intensity for the microsphere with 

the WGM than the microsphere without the WGM.  In terms of the DCPM system’s 

collection cone from 60º to 120 º, the collected scattered light is significantly higher and 

should be visible across the entire microsphere instead of at the front and back as seen in 

microspheres without WGMs. 
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Figure 15 Theoretical calculation results for the microsphere size vs. scattered intensity for polydispersed 

PS microspheres in air with mean diameter of 6 µm. 

 

Figure 16 The angular scattering pattern for the microspheres of mean diameter 6 µm for PS microspheres 

in air. 3.25 µm is the WGM and 3.15 µm is the microsphere without WGM. 
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To experimentally observe WGMs, stuck intensities were imaged for polystyrene 

microspheres of radius 3 µm with CV of 5.1%. Experimental images for the 

microspheres in air produced the results shown in figures 17 and 18 with the evanescent 

light traveling from left to right. Figure 17 is an image in air with only scattered light. 

Figure 18 is a backlit image with scattered light. Here, one of the microspheres produced 

significantly more scattered intensity than similar-sized microspheres. As seen in the 

figure this microsphere scatters light throughout the equatorial surface. For all the other 

spheres distinct forward scattering and some back scattering are observed as expected.  

The differences in these scattering patterns are consistent with those predicted by 

the theoretical model for a WGM.  It is clear that the microsphere of interest is different 

than the other microspheres and the scattered light distribution indicates that it could be 

supporting a WGM.  However, we cannot say for sure because we are not able to tune 

across the WGM with the laser wavelength. The appearance and use of WGMs could 

open the technique to biosensing applications. The details are mentioned in the section 

of biosensing before. It can be used to sense the biomolecules like proteins, peptides 

attached on the surface of the microsphere from the shift of wavelength
48

.  
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Figure 17 Scattering from approximately 6 micron polystyrene microspheres in air without any 

background light. 
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Figure 18 Scattered light from around 6 micron diameter polystyrene microspheres in air with background 

light. 
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SUMMARY AND FUTURE WORK 

This work demonstrated that modified Mie theory can be used for modeling 

scattered intensity from a polydisperse sample of microspheres in an evanescent field. 

The modified Mie theory accounted for the exponential decay of the evanescent field 

away from the glass-water interface. In addition to the height above the surface, the 

scattered intensity was found to be highly dependent upon the microsphere size and 

index of refraction, and the index of refraction of the surrounding medium. Scattered 

intensity values were calculated for a range of polystyrene microspheres. Using a 

experimentally determined microsphere size distributions for samples with nominal 

diameters of 1 μm and 4 μm, and the calculated scattered intensity values for each 

microsphere size, the distribution of scattered intensities was calculated for each of the 

samples.  These distributions were then normalized to the most probable scattered 

intensity and compared to experimentally collected data. The theoretical data 

qualitatively matched the experimental scattered intensity distribution. This indicated 

that scattering differences due to microsphere size play a role in the distribution of 

scattered intensity observed in polydisperse microsphere samples. Through 

understanding the physical mechanism behind the distribution, techniques using multiple 

microsphere probes simultaneously, such as DCPM, may be improved or modified to 

yield lower experimental error. Such a system would be extremely useful in the study of 

biomolecular interaction in the sub-picoNewton range. 
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 Future work will include additional calculations for different microsphere size 

ranges and the inclusion of boundary effects, such as surface reflection from the glass, in 

the calculation.  Additionally, the FORTRAN code should be modified to include 

automatic adjustment of the number of spherical harmonics required to produce accurate 

results for each microsphere size. At this time, the parameter is manually adjusted and 

must be checked through convergence plots. 

An initial investigation into the use of WGMs in a DCPM system was performed. 

Calculations indicated the appearance of narrow WGMs in larger-sized microspheres 

(approximately 6 μm diameter) when excited in air. Total scattered light intensity and 

scattered light intensity as a function of angle were calculated. Experimental data was 

collected from a polydisperse microsphere sample with a mean diameter of 6 μm in air. 

A small number of microspheres produced a scattered intensity pattern similar to that of 

a WGM. Unfortunately the current DCPM cannot be used to positively determine the 

existence of a WGM due to the fixed wavelength excitation. However, we believe it is 

possible to produce WGMs in such a DCPM system. These resonant modes could be 

utilized as refractometric sensors and greatly extend the utility of the DCPM system by 

incorporating a sensing component. To accomplish this goal, a tunable laser must be 

coupled to the DCPM system. 
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