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ABSTRACT 
 

Genomic analysis of Burkholderia and Rhodococcus equi bacteriophages (April 2008) 
 

Robert Charles Orchard II 
Department of Biology 
Texas A&M University 

 

Research Advisor: Dr. Elizabeth Summer 
Department of Biochemistry and Biophysics 

 

Recently there has been an increase in bacterial infections that are resistant to traditional 

antibiotics.  With this upward trend of resistance, many scientists are turning to 

alternative treatments like phage therapeutics.  In this report there is discussion of 

isolating and characterizing novel phages of Rhodococcus equi and Burkholderia 

cenocepacia.   Burkholderia cenocepacia is part of the Burkholderia cepacia complex 

(BCC), which causes pulmonary infections in cystic fibrosis patients (10).  Rhodococcus 

equi is an intracellular pathogen which invades the macrophages of 

immunocompromised individuals such as young foals.   While phylogenetically R. equi, 

a Gram-positive bacterium, and Burkholderia, Gram-negative bacteria, are unrelated, 

they both occupy the same ecological niche as soil saprophytes.  Therefore, it is possible 

to isolate novel phages from the soil for both of these bacteria.  Using a soil enrichment 

procedure, it has been possible to isolate and amplify 12 novel R. equi bacteriophages.   

These bacteriophages all appear to have the same morphologies as siphophages and 

similar genome sizes.  Five of the R. equi phage genomes were pooled together with 
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other bacteriophages and pyrosequenced using 454 LifeSciences Technology.  These 

phages are mosaic and sequencing traditional plasmid libraries were sufficient to 

deconvolute the 454 data.  Also reported is the complete genomic sequencing of 

BcepNY3, a Burkholderia cenocepacia bacteriophage via a Whole Genome Shotgun 

Approach.  BcepNY3’s 47,382 bp genome was found to encode 70 proteins and 1 tRNA.  

It was determined that BcepNY3 is part of the previously described Bcep781 family of 

phages (26).  Surprisingly, it is also related to the Xanthomonas oryzae phage OP2, and 

proposed in this report is a possible evolutionary connection between OP2 and the 

Bcep781 family of phages. 
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NOMENCLATURE 

 

BCC Burkholderia cepacia complex 

bp Base pairs 

CF Cystic fibrosis 

gp Gene product 

hyp. Hypothetical 

kb Kilobases 

LB Luria-Bertani 

OD Optical density 

pfu Plaque forming units 

λ-dil Lambda dilution buffer 
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CHAPTER I 

INTRODUCTION: PHAGE THERAPY- A SOLUTION TO 

ANTIBIOTIC RESISTANCE 

 

An overview of Burkholderia 

Burkholderia is a Gram-negative bacteria and a member of the Betaproteobacteria class.  

Burkholderia species occupy a wide variety of niches.  Ecologically, most Burkholderia 

species are either plant pathogens or soil saprophytes, but Burkholderia mallei and 

Burkholderia pseudomallei are prominent animal and human pathogens (9).  In humans, 

B. mallei and B. psuedomallei are the causative agents of glanders and melioidosis 

respectively and are potential bioterrorism agents (12).  Because of their significance to 

global security, there is an emphasis on investigating B. mallei and B. psuedomallei.  

While these Burkholderia species are important, perhaps an even greater focus has been 

on the species in the Burkholderia cepacia complex (BCC) because of its diversity and 

its tendency to act as an opportunistic pulmonary pathogen. 

 

The BCC is a complicated grouping of species that were once classified as Burkholderia 

cepacia genomovars.  The current listing of BCC members include:  Burkholderia 

_______________ 
This thesis follows the style of Journal of Bacteriology. 
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cepacia, Burkholderia multivorans, Burkholderia cenocepacia, Burkholderia stabilis, 

Burkholderia vietnamiensis, Burkholderia  dolosa, Burkholderia  ambifaria, 

Burkholderia anthina, and Burkholderia  pyrrocinia (10).  BCC members have diverse 

ecological niches as they can be found as soil saprophytes, mutualistic plant symbiots, 

plant pathogens, and animal pathogens (9).  Most are also capable of colonizing 

immunocompromised human lungs.  The most prevalent cases of lungs inhabited by the 

BCC are in cystic fibrosis (CF) patients.  It is estimated that about 10% of all CF patients 

have a BCC infection and even up to 40% have BCC infections in some regional areas 

(13).  While BCC colonization is not as predominant as Psuedomonas aeruginosa 

colonization in CF patients, BCC is resistant to most antibiotics used to treat P. 

aeruginosa infections (13).    BCC’s resistance to multiple antibiotics has two 

implications.  First, BCC infections are more difficult to treat and therefore more 

hazardous to CF patients.  Second, to treat these dangerous infections, traditional 

antibiotics typically are not an appropriate means to fully clear the infection. 

 

An overview of Rhodococcus equi 

Rhodococcus equi is a Gram-positive bacterium and a member of the group Mycolata.  

Mycolata are defined as having a genome rich in guanine-cytosine nucleotides and cell 

envelopes that contain mycolic acid linked to arabinogalactans (20).  Notable Mycolata 

pathogens include Nocardia, Corynebacterium, Mycobacterium, and Rhodococcus.   The 

best characterized of these pathogens is Mycobacterium tuberculosis, the etiological 

agent of tuberculosis.  M. tuberculosis is phagocytized by alveolar macrophages and is 
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capable of surviving in the macrophage and will eventually cause cell lysis.  R. equi 

manifests a similar molecular pathology in young foals and recently in 

immunocompromised individuals, which results in pyogranulomatous pneumonia (22).  

Due to R. equi’s ability to remain in macrophages, it has been quite difficult to treat with 

antibiotics.  R. equi is already resistant to β-lactams, excluding carbapenems (11).  

Currently, foals are treated by a combination of rifampin and erythromycin due to their 

ability to penetrate into macrophages (24).  There is a great need for innovative 

treatments because of the increased resistance of R. equi to carbapenems such as 

imipenem, and a reduction of the efficiency of rifampin in foals derived from acquired 

resistance (23, 27). 

 

Phage therapeutics- a plausible solution 

With the increasing number of resistant bacteria, and the declining production of novel 

classes of antibiotics, many scientists are investigating alternative methods to treat 

bacterial infections.  One popular idea is using bacteriophages, viruses that infect 

bacteria, to treat bacterial infections.  This idea of phage therapy is not nascent, as it has 

been used in the Eastern European countries and the Soviet Union, while Western 

countries have focused on antibiotics.  While phage therapy in these countries has been 

slightly successful, historically there have been significant numbers of clinical failures, 

which are attributed to the dearth of understanding of phage biology (15). With decades 

of phage biology research completed, a greater understanding of the molecular aspects of 
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bacteriophages has been achieved.  This foundation of phage biology can be used to help 

develop therapeutic agents derived from bacteriophages. 

 

A basic understanding of the phage life cycle 

Bacteriophages are viruses that infect a specific bacterium or a specific bacterial strain.  

Because bacteriophages are viruses, they are totally dependent upon their host for the 

energy and machinery to generate new progeny.  The phage life cycle is depicted in FIG. 

1.  It is important to remember that not all phage have the ability to lysogenize, but all 

phage can proceed through the lytic pathway.  This information is vital when 

considering phage for phage therapy.  Lysogenic phages are inappropriate to use for 

therapeutics for two major reasons.  First, it is obvious that if a population of phage 

lysogenizes, the bacterial hosts will not be immediately killed.  Therefore, the efficiency 

of using lysogenic phage to clear a bacterial infection will be low.   

 

While the inefficiency of lysogenic phages is a hindrance for using them in phage 

therapeutics, the major deterrent in using these phages is their ability to carry virulence 

factors such as morons.  Morons are genetic elements that are found in between a group 

of genes on the opposite strand.  The term moron comes from the fact that there is “more 

DNA” and the “on” is added as part of the tradition of naming genetic elements.  When a 

phage lysogenizes, these morons typically increase the fitness of the bacterium.  Some 

elements prevent infection from other phage, while others convert innocuous bacteria to 

dangerous pathogens.  The latter includes the phage encoded toxins of Clostridum 
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botulinim (botulism), Corynebacterium diptheriae (diphtheria), Escherichia coli (Shiga 

toxin), Streptococcus pyogenes (scarlet fever) and Streptococcus aureus (food 

poisoning).  The ability of lysogenic phage to exacerbate bacterial infections is a major 

concern for phage therapy, because any therapeutic phage must be constitutively lytic 

and not temperate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

FIG.  1. A depiction of the phage life cycle, 
A) Bacteriophage recognizes and adsorbs to its bacterial host. 
B) The bacteriophage injects its DNA into the cell.  At this point if the phage is temperate, it has a 
choice to lysogenize (leftward arrow) or proceed directly through the lytic cycle (rightward arrow). 
C) Initial steps of the lytic pathway involve replication of the phage genome followed by the 
production and assembly of the structural proteins. 
D) Phage mediated lysis of the cell leads to the loss of a membrane potential and death of the cell.  
Release of progeny virions allows for the infection of other cells. 
E) After injection of the virion genome, temperate phages may choose to proceed through the 
lysogenic pathway and integrate into the host genome. 
F) After lysogeny the bacterial cell will continue to grow and replicate and in doing so will 
replicate the integrated prophage as well.  This process continues until some environmental factor 
triggers the phage excision (G). 
G) An environmental signal causes the phage to be excised and proceed through the lytic pathway 
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Digging for therapeutic phage 

Bacteriophages are the most numerous biological entities on the planet.  It is estimated 

that there are more than 1030 bacteriophages in the biosphere (7).  With the high 

concentration of phage in the biosphere, it can be assumed that novel phage from any 

ecosystem can be isolated.  While the bacteria of interest, Burkholderia and R. equi, are 

phylogenetically unrelated, they both share the same ecological niche as soil 

saprophytes.  Therefore, a high concentration of bacteriophages for both Burkholderia 

and R. equi should be able to be isolated from the soil. 

 

Characterizing phage using genomics 

The rapid advances of biotechnology has increased the availability of sequencing 

technology, which has led to the sequencing of more than 150 bacteriophage genomes 

(5).  The growth of phage genomics has allowed researchers to gain better insight into 

the biological machinery of phage.  Using a genomic approach to characterize an entire 

phage proteome will not only give a greater understanding of phage biology, but also 

determine if a specific phage carries the genes required for lysogeny.  As this applies to 

phage therapeutics, genomics allows for a detailed analysis and screening of potential 

candidates. 

 

Here in this report, novel bacteriophages of Burkholderia and R. equi have been isolated 

from the soil and their genomes analyzed.  The objective is to first determine if these 
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phage can be used as therapeutic agents, then to use the information obtained to further 

understand the molecular biology of bacteriophages. 
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CHAPTER II 

METHODS 

 

Rhodococcus equi phage hunt 

 

Generating a soil rinse-ate 

Phages were isolated using an enrichment procedure with soil from farms and paddocks 

in Kentucky where horses have developed R. equi infections.  The first step in this 

procedure is making a soil rinse-ate.  600 g of rich soil was mixed with 50 mL of Luria-

Bertani (LB) media.  This mixture was incubated over night at 30° C with shaking.  At 

this point the flask contains a plentiful mixture of assorted microorganisms (bacteria, 

bacteriophages, amoebas, amoeboid viruses, etc.).  Chloroform was added so that the 

solution was 0.3% by volume.  Chloroform kills the majority of the living cells in the 

solution.  To isolate only virus particles, a series of centrifugations and filtrations were 

preformed.  Large soil debris was pelleted by a low centrifugation of 2,988 g for 5 

minutes.  After centrifugation, the supernatant was filtered through Mira cloth to remove 

any remaining large particles.  The filtered supernatant was then centrifuged again at a 

low speed at 11,952 g for 10 minutes.  The new supernatant was then filtered through a 

0.45 µm filter followed by a 0.22 µm filter.  This new solution is termed rinse-ate. 
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Phage enrichment and isolation 

To amplify R. equi viruses from the rinse-ate, 25 mL of the rinse-ate, 25-mL of LB 

broth, and 5 mL of R. equi at an OD550 of 0.05 were mixed together and incubated at 30° 

C overnight with shaking.  Different enrichments were performed where soil R. equi 

strains and clinical R. equi isolates were used.  After the overnight incubation, 

chloroform was added so that the mixture was at 0.3% chloroform by volume.  The 

solution was then centrifuged at a low speed for 10 minutes and then filtered through a 

0.45 µm filter followed by a 0.22 µm filter.  5 µL of the enrichment was spotted onto a 

bacterial lawn of R. equi on LB plates to test for bacteriophages. 

 

Phage isolation 

To create pure phage stocks, the enrichments were diluted ten-fold serially from 10-1 to 

10-6 and 100 µL of each dilution was mixed with 100 µL of the respected R. equi host 

within an OD550 range of 0.5 to 1.1.  The mixture incubated at room temperature for 10 

minutes to allow time for phage adsorption.  After the 10 minutes, the phage-bacteria 

solution was added to 3 mL of either tryptone nutrient agar or LB T-top agar (tryptone 

nutrient broth/LB and 0.5% agar), vortexed briefly and plated onto LB plates.  After top 

agar solidification, the plates were incubated overnight at 30°C.  The following day 

individual plaques were picked from the plate with the most well dispersed plaques and 

resuspended in 1 mL of λ-dil (10 mM Tris pH 7.6, 5 mM MgSO4, 0.08% gelatin, pH 

7.4).  Taking this pick-ate solution the same procedure of diluting and plating was 
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preformed.  The end result is a 2nd pick-ate that is considered a pure solution of phage, 

which means it only contains one species of phage. 

 

Phage amplification 

2nd pick-ates were titered and plaque forming units (pfu) per mL were determined.  To 

amplify the phage stock, 8 plates were made of dilutions resulting in 104 and 105 

plaques per plate.  The plating procedure was the same as listed previously.   5 mL of λ-

dil was added to the plates and the t-top was scraped off and placed into an oakridge 

tube.  Chloroform was added to a final concentration of 0.3%.  This solution was placed 

on a shaking table to stir the contents for at least 45 minutes.  Bacteria and agar were 

pelleted by centrifugating at 17,211 g for 10 minutes. The supernatant was then filtered 

through a 0.45 m filter and then a 0.22 m filter to isolate the virions.  This phage lysate 

was then titered.  The ideal titer is 109 pfu/mL so that ample DNA can be isolated. If the 

newly amplified phage stock was not at a high enough concentration, the amplification 

procedure was repeated with the phage lysate used in lieu of the pick-ate. 

 

Host range studies of the enrichments and purified phages 

5 µL of solutions from various sources were spotted onto lawns of different strains of R. 

equi on LB plates and incubated at 30 °C overnight.    Sources included purified phage 

stocks, enrichments, λ-dil, and the rinse-ate.   
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Examining phage genomes 

DNA was isolated from the phage lysates by first adding 40 µL of a nuclease mix ( 0.25 

mg/mL RNAse A, 0.25 mg/mL DNAse I, 150mM NaCl, and 50% glycerol) to 10 mL of 

phage lysate and incubating for 30 minutes at 28°C.  The virions were precipitated by 

adding 4 mL of a phage precipitate solution (PEG 8000).  This mixture was placed on 

ice for 30 minutes.  The solution was then pelleted by using a low speed centrifugation at 

11,952 g for 10 minutes.  The pellet was drained and the DNA was purified by using 

Promega’s Wizard DNA Cleanup Kit (Promega cat. # A7280). 

 

CHEF gel of isolated DNA 

10 µL of phage DNA was placed in a 1% agarose gel and the gel was loaded unto a 

contour-clamped homogeneous electric field (CHEF) and electrophoresed under the 

conditions listed in Table 1.  A CHEF gel is a specific way of using pulse-field 

electrophoresis to separate large DNA molecules (8). 

 

TABLE 1. CHEF gel conditions 

Condition Setting 

Angle 120° 

Pulse time 50-90 s 

Ramping factor 0 (linear) 

Run time 22 hrs. 

Voltage gradient 6V/cm 
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Phage restriction digest 

To determine if the phage isolated were unique, DNA restriction digests were performed 

with three endonucleases: EcoRI, EcoRV, and HindIII.  To digest the DNA standard 

procedures were used for each respective endonuclease with the reaction continuing 

overnight at 37°C.  Fragments were viewed by electrophoresis on a 1% agarose gel. 

 

Pooling DNA for 454 LifeSciences sequencing 

DNA from 16 bacteriophages was pooled together and sent to 454 LifeSciences 

(www.454.com) to sequence.  The genome sizes ranged from 34 kb to 250 kb and the 

total length of genomic sequence was 1.267 * 106 base pairs.  To ensure that each 

genome was present in equal quantities, the samples were normalized to 210 ng per 

genome equivalent.  For this case a genome equivalent was defined as 50 kb.  There 

were 24 genome equivalents in the DNA pool.  Dr. Elizabeth Summer kindly generated 

the DNA pool for 454 LifeSciences. 

 

Sequencing phage genomic libraries 

Phage genomic libraries were graciously provided by Dr. Elizabeth Summer.  Libraries 

were comprised of Lucigen’s E. cloni cells with Lucigen’s pSMART-LC KAN with 

genomic phage DNA inserted. Individual colonies from the plasmid library were picked 

and placed in a 96-well block containing LB broth supplemented with kanomycin ( 30 

mg/L).  The block was incubated at 32°C overnight.  The following day each block was 
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placed in a low speed centrifuge at 120 g for 10 minutes.  After removing the 

supernatant, the plasmids were isolated using the Qiagen Miniprep Kit.  After isolating 

the plasmids, the inserts were sequenced using standard ABI BigDye Termination 

methods with the primers SR1 (GGTCAGGTATGATTTAAATGGTCAGT) and SL1 

(CAGTCCAGTTACGCTGGAGTC).  Purification of the reaction began by adding 30 

µL of 75% isopropanol to each well.  The plate was then centrifuged at 480 g for 2 hours 

and the supernatant was removed.  Plasmids were precipitated by adding 100 µL of 70% 

ethanol to each well.  The plate was centrifuged again at 480 g for 30 minutes and pellets 

were resuspended in 10 µL of formamide.  The reactions were then resolved on an 

ABI3100 capillary sequencer (Laboratory for Plant Genome Technology, Texas A&M). 

 

Assembly of phage genomes 

Sequence assembly was performed using the computer program Sequencher (Gene 

Codes Corporation) was used.  Assembled 454 contigs were assigned to their respective 

phage by comparing them to the plasmid library sequences.  Primer walking was used to 

close gaps and to resequence ambiguities.  Primer walking uses designed internal 

primers to amplify the region of interest using traditional PCR methods with the phage 

genome as the template.  The listing of all primers used in this project is located in Table 

2.  After purifying the PCR product, the product was then sequenced using the ABI 

BigDye Termination method, previously described.  If the sequencing reaction did not 

yield a fragment long enough, new primers were created based on this new sequencing 

data.  The PCR and Sequencing procedures were then repeated.   
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Predicting genes 

Protein coding regions were predicted initially using GeneMark.hmm 

(http://opal.biology.gatech.edu/GeneMark/) (2).  Genes were refined through usage of 

the program Artemis (http://www.sanger.ac.uk/Software/Artemis/) (25).  Changes were 

made based upon homology and presence and distance of Shine-Dalgarno sequences.  

To determine homology and putative functions of the predicted genes, protein sequences 

were compared with those of the NCBI database by BLASTP 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?PAGE=Proteins&PROGRAM=blastp).  To 

determine structural features like transmembrane domains and signal sequences the 

programs TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) and LipoP 

(http://www.cbs.dtu.dk/services/LipoP/) were used, respectively.  t-RNA were predicted 

using tRNAscan-SE (http://lowelab.ucsc.edu/tRNAscan-SE/).  Genomic maps were 

constructed using DNA Master (http://cobamide2.bio.pitt.edu/computer.htm). 
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TABLE 2. Primers used for BcepNY3 sequencing project 
 

 

 

 

 

 

 

 

 

 

Name Sequence 
NY3.1 GCTAAGATTGCGCGACCTAC 
NY3.2 ACTCCTCGATGCTGTCGAAT 
NY3.3 CTGCGCGAACTTCTTGAAC 
NY3.4 CTTCCATGTTGGCTCCTACG 
NY3.5 TGGGATAAGCGATGAAGGAT
NY3.6 GCAAGGAGAACATCCTCGTA 
NY3.7 CAATCCAGCATCGCAGTCT 
NY3.8 GAGAAGAGGTTGCCGAACTG
NY3.9 GCGCTTCTCGCAAATCTTC 
NY3.10 CTTTGCGACTTCGGCATAGT 
NY3.11 CCGACGTACTCGACTGGATG 
NY3.12 TATTCCAGGACAGCCGATTC 
NY3.A.R GAACCCGGTCACAAGGTCTA 
NY3A.L GCTGCAGCATGAACAGCA 
NY3.B.R CATATTTCGCGAACGTGTCC 
NY3.B.L GAGTACTTGACGCCCCGATA 
NY3.Y GTGGTCGCTCTGCGAGTATT 
NY3.Z CGCAGTTGCATGTACGTCTG 
NY3.1GL GCAACCGGTTACGATTGTTT 
NY3.1GR GTGCGCAACTTGACGTGAT 
NY3.2GL GTGACCTTGTTCGCATCGT 
NY3.2GR CCGGTACGTTTCTTTCCTTG 
NY3.3GL TCGAGCTTCTTCCCGTAGAC 
NY3.3GR AACGGTGTGTCGTTCAACCT 
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CHAPTER III 

RESULTS 

 

Rhodococcus equi phages 

 

Phage hunt 

The first round of phage enrichments used 4 soil strains of R. equi that were isolated 

from Kentucky soils (Hil-n-Dale 1C, Milstream Barn, Hil-n-Dale 5B, and Venture 16 

acre).  The bacterial strains were isolated from the same location as the soil used for the 

enrichments.  All four of these enrichments had R. equi phages and one phage from each 

was isolated.  After determining that phage could be isolated from the soil, another 

round of enrichments was conducted with clinical equine isolates of R. equi.  The strains 

used were 04-172, 04-181, 04-195, 04-200, 05-300, 05-305, 05-306, 06-383.  All strains 

are VapA and ChoE positive, which are two R. equi virulence factors.  Table 3 describes 

the strains of R. equi used in the enrichment.  All 8 of the enrichments with clinical 

isolates yielded at least one phage isolated.  Out of the 12 isolated phages, 11 were able 

to be grown to a high titer. 

 

Prophages are dormant viruses whose DNA is inside the bacteria.  Prophages can 

become lytic in response to external stimuli.  To ensure that the phages isolated were in 

fact from the soil and not induced prophages, 2 mL of host strains were centrifuged at 

11,952 g and 5 µL spotted onto bacterial lawns.  In all cases the supernatants did not 



  17 

have a clearing effect, demonstrating that the phages isolated were indeed from the soil.  

The enrichment procedure was effective in generating a concentration of phages that 

could be measured.  The enrichment process was determined to be essential because 5 

µL spots of the rinse-ate did not have any clearing effect on any bacterial lawns.  

Therefore, the enrichment process is an appropriate and necessary step in isolating novel 

R. equi bacteriophages from the soil. 

 

 

TABLE 3. Summary of R. equi strains 
Strain Source VapA and ChoE 

Hil-n-Dale 1C Soil Unknown 

Milstream Barn Soil Unknown 

Hil-n-Dale 5B Soil Unknown 

Venture 16 acre Soil Unknown 

04-172 Equine Positive 

04-181 Equine Positive 

04-195 Equine Positive 

04-200 Equine Positive 

05-300 Equine Positive 

05-305 Equine Positive 

05-306 Equine Positive 

06-383 Equine Positive 
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Phage characterization 

Phages were characterized first based upon morphology.  Dr. Jason Gill and Dr. Christos 

Savvaa have generously provided electron microscopy images of phages Reqi4, 

ReqiDocB7, ReqiPepy6, ReqiPine5, ReqiPoco6, ReqiRob04-200, ReqiRob06-325, and 

ReqiZip11 (FIG. 2.).  All the bacteriophages have long flexible tails, which are 

characteristics of siphophages.  Reqi4 has a very long and flimsy tail and there are 

several instances where the phage head was not attached to the phage tail (FIG. 2).  This 

flimsy tail could explain why it has been unfeasible to grow it up to a high titer, but it 

could also be an artifact of staining.  

 

Five different virions’ tail length and head length and width were measured and 

averaged for each phage (Table 4).  There appears to be two different groups of phages 

based upon tail length.  The first group includes Reqi4 and ReqiDocB7 which have tails 

averaging 443 nm and 473 nm respectively.  The other examined phages belong to a 

group that has significant shorter tails averaging approximately 280 nm.  The head 

measurements do show some variation, but due to their small size and their sensitivity to 

osmotic changes, it is difficult to obtain accurate measurements.  Therefore, it is not 

surprising that the data provided does not show any distinct groupings. 
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FIG. 2. Electron microscopy images of R. equi bacteriophages. 
These are negatively stained electron microscopy of R. equi bacteriophages.  All scale 
bars represent 200 nm. 
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TABLE 4. Measurements of R. equi bacteriophages 
 
 

 

 

 

 

 

 

Genomic differences 

Genomic differences were analyzed to determine the number of distinct phage types and 

the diversity of the phage isolated.  Genome size of phage ReqiDocB7, ReqiPoco6, and 

ReqiZip11 was determined by a CHEF gel (Fig. 3a).  All 3 of these phages have a 

similar genome size of approximately 75 kb.  Diversity was then assessed by analyzing 

restriction digestion patterns of these phage genomes (Fig. 3b).  The EcoRV digest 

patterns reveal that ReqiDocB7 is clearly distinct from ReqiPoco6 and ReqiZip11.  This 

data supports the previously mentioned morphological differences (significant 

differences in tail lengths) between ReqiDocB7 and both ReqiPoco6 and ReqiZip11.  

There appears to be small differences between ReqiPoco6 and ReqiZip11 in the HindIII 

digest, but the ReqiPoco6 bands are too faint to make a confident conclusion.  

Phage Tail length Head length Head width 
ReqiDocB7 473 nm 72 nm 70 nm 
ReqiPoco6 281 nm 75 nm 71 nm 
ReqiZip11 274 nm 67 nm 73 nm 

Reqi4 443 nm 60 nm 55 nm 
ReqiRob-06-325 272 nm 64 nm 61 nm 
ReqiRob-04-200 298 nm 80 nm 73 nm 

ReqiPepy6 285 nm 80 nm 74 nm 
ReqiPine5 272 nm 66 nm 65 nm 
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Sequencing results of R. equi bacteriophages 

5 of the 16 bacteriophage genomes submitted for 454 LifeSciences pyrosequencing were 

R. equi phage (ReqiDocB7, ReqiPepy6, ReqiPine5, ReqiPoco6, and ReqiZip11).  

Genomic libraries for ReqiDocB7, ReqiPepy6, ReqiPoco6, and ReqiZip11 were 

sequenced.  Assembling all plasmid reads with all 454 contigs yielded 454 contigs that 

FIG. 3. CHEF gel and restriction digest of R. equi bacteriophages 
(A) A CHEF gel of ReqiPoco6, ReqiDocB7 and ReqiZip11 DNA, stained 
with ethidium bromide (B). A DNA restriction digest of ReqiPoco6 (6), 
ReqiDocB7 (7) and ReqiZip11 (11) with enzymes EcoRI, EcoRV, and 
HindIII and stained with ethidium bromide.  

6 7 11 11 6 6 7 11 7 
EcoRI EcoRV HindIII 

A B
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had plasmid reads from multiple phages.  This demonstrates that these R. equi 

bacteriophages have mosaic characteristics.  Out of these phages, ReqiPine5 was clearly 

distinct, due to a dearth of other phage plasmid reads aligning with its 454 contigs.  

ReqiZip11 and ReqiPoco6 had the greatest number of plasmid reads coinciding in the 

same 454 contigs.  This mosaicism confirms the restriction digest result that these 

phages are similar.  Deconvoluting the mosaicism was made possible based upon the 

individual plasmid reads.  Individual sequencing projects were set up in Sequencher and 

454 contigs that did not have plasmid reads spanning the entire contig were removed 

from the phage’s project.  The plasmid reads and 454 contigs were then reassembled and 

the process continued.  This method led to identification of ReqiDocB7, ReqiPepy6, 

ReqiPine5, ReqiPoco6, and ReqiZip11’s 454 contigs.  ReqiPine5’s genome assembled 

into one contig and was identified by default.  The 454 data demonstrates that the phages 

analyzed are similar, but clearly are distinct phage species. Table 5 summarizes the 

characterization of the isolated R. equi phages. 
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TABLE 5.  A basic overview of the isolated R. equi bacteriophages 

 

 

 

 

 

 

 

 

 

Host range studies 

Host ranges were determined for phages Reqi4, ReqiDocB7, ReqiPoco6, and ReqiZip11.  

At the time of the experiment, the other 8 phages had not been isolated, so instead the 

host range of their respective enrichments was determined.  The estimated titer or all 

sources used is listed in Table 6.  The phages and enrichments were tested against all 8 

previously mentioned clinical hosts.  Also tested was λ-dil to ensure that the dilution 

solution was not contaminated.  As mention previously, the supernatants and rinse-ate 

was tested to determine the validity and efficacy of an enrichment procedure for R. equi 

bacteriophages.  An example of a plate used in the host range study is in FIG. 4.  The 

strong clearing by the sources indicates that the phages are competent for replication in 

the host.  Table 7 summarizes the host range results. 

Phage R. equi host 
strain 

Morphology DNA 
isolated

Sequencing 
project 

ReqiDocB7 Hil-n-Dale 1C Siphophage Yes Started 
ReqiPoco6 Milstream Barn Siphophage Yes Started 
ReqiZip11 Hil-n-Dale 5B Siphophage Yes Started 

Reqi4 Venture 16 acre Siphophage No Not Started 
ReqiRob04-172 04-172 Unknown No Not Started 
ReqiRob04-181 04-181 Unknown No Not Started 
ReqiRob04-195 04-195 Unknown No Not Started 
ReqiRob04-200 04-200 Siphophage No Not Started 
ReqiRob05-300 04-300 Unknown No Not Started 
ReqiRob06-325 06-325 Siphophage No Not Started 

ReqiPine5 05-305 Siphophage Yes Not Started 
ReqiPepy6 05-306 Siphophage Yes Started 
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     TABLE 6. Titer of R. equi phages and enrichments 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIG. 4. Host range plates 
 
These plates are characteristic of the results of the host range experiment. The 

enrichments (#E), supernatants (S), rinse-ate (R), λ-dil (λ), Reqi4 (Φ4), ReqiDocB7 

(Φ7), ReqiPoco6 (Φ6), and ReqiZip11 (Φ11) are all respectively labeled. 

 

Sourcea Titer 
Reqi4 105 pfu/mL
ReqiDocB7 >107 
ReqiPoco6 >107 
ReqiZip11 >107 
E-172 105 pfu/mL
E-181 106 pfu/mL
E-195 105 pfu/mL
E-200 107 pfu/mL
E-300 105 pfu/mL
E-305 107 pfu/mL
E-306 105 pfu/mL
E-325 107 pfu/mL
a E represents an enrichment 
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TABLE 7. Host range results 

 

 

 

The enrichments demonstrated a very broad host range, but this could be the result of 

these solutions being crude (containing multiple species of phages).  This data can be 

used in the future when the host range of the respective purified phages is determined.  If 

it differs from this data, then one can take the respective host and enrichment and select 

for that phage.  Surprisingly, ReqiDocB7, ReqiPoco6, and ReqiZip11, all of whom were 

enriched with soil strains of R. equi, were competent for growing on all clinical strains.  

This demonstrates their potential usage in therapeutics due to their broad spectra of 

hosts.  Reqi4, which has not been able to be grown up to a high titer, showed very weak 

clearing, and may be due to its flimsy tail. 

 

R. equi strains 
Spot 

Source 
04-172 04-181 04-195 04-200 05-300 05-305 05-306 06-325

Reqi4 - - +/- - +/- - - -
ReqiPoco6 + + + + + + + +
ReqiDocB7 + + + + + + + +
ReqiZip11 + + + + + +/- + +
E-04-172 + + + + + + + +/-
E-04-181 + + + + + + + +
E-04-195 + + + + + + + +
E-04-200 + + + + + + + +
E-05-300 + + + + + + + +
E-05-305 +/- +/- +/- +/- +/- +/- +/- +
E-05-306 + + + + + + + +
E-06-325 +/- + +/- +/- + +/- +/- +

strong clearing (+), weak clearing (+/-), no clearing (-) 
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Genomic analysis of BcepNY3 

BcepNY3 was previously isolated by Dr. Jason Gill.  BcepNY3 was sequenced solely 

using the traditional genomic plasmid libraries.  The genome was found to be circularly 

permuted, and has a linear length of 47,382 bp with 63.6% GC content.  The genome 

was found to encode 70 proteins and 1 tRNA encoding for tyrosine and recognizing 

UAC.  Only 23 of the 70 predicted protein encoding genes have a putative function, but 

only 1 of the remaining 47 did not have a homologue in the database.    Table 8 

describes the predicted proteome of BcepNY3 which has been submitted to Genbank 

(accession number: NC_009604.1).  FIG. 5 is a genomic map of BcepNY3 with proteins 

colored by function and significant proteins labeled.  Overall, BcepNY3 is very similar 

to Bcep1 another Burkholderia cenocepacia bacteriophage, which is part of the 

previously described Bcep781 family (26).  Due to BcepNY3’s high homology and 

mosaicism between Bcep1 and the other Bcep781 phages, we can conclude that 

BcepNY3 is part of the Bcep781 family. 
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TABLE 8. Coding regions of BcepNY3 
 

Gene F/R Function Homology Amino Acid 

BcepNY3 gp01 R Hyp. 
conserved 

Similar to Bcep1 
gp2 

MPLIEGKSDKSRSENIRTEVEAGKSPKQAEAI
GYAVQRRAQHGADFARDCDMNLRHVMDV
AKDYKR 
 

BcepNY3 gp02 R Hyp. 
conserved 

Similar to Bcep1 
gp3 

MAGTLTTANSTMYCTTEALFPTAQRIQGYA
ADDAFDPDAVENGEYSMGIDGTLSAGFVFN
EVPLTITLQADSPSLAQFEQIWMYEFQNRTKL
QQDLTITNPAVGKRYEYKRGFMRSFKAAAG
KKILQPAVIVFVFNQLQFTPIA 
 

BcepNY3 gp03 R Hyp. 
conserved 

Similar to Bcep1 
gp4 

MPTTTIPIDQIVQMLPGVIGAGGAPGRLTGLV
LTQDTSIQPGQLADFFQKTDVENWFGGLSNE
AVIADAYFPGIVNGGQLPYDLKFARYVAAD
APASVYGIPLTGVTLTQLQGYSGTLTVTTAA
QHVSSNISLAAATSFANAATLIEAAFTSPDFV
VSYDALRNRFVVNTNATGTAAAISAVTGTN
NLADELGLSAAAGASLQAAGVAADTPASAM
NRAVGLSRNWATFTTAWTAVIADRLALASW
NSGQAYKYMYVAPDLEPASIVTNNSASFGA
QVFAAPYQGTLPLYGDQATAGAVMGYAASI
NFQLRNGRTVLAFRQFNAGVPATAHDLGTA
NALRSNNYTYIGAYANAANNYTIAYDGKLS
GKFLWVDTYLDQIYLNAELQRAEFEAMLAY
NSLPYNEDGYTALYRAGVDVIDAAVTSGIIR
AGVTLTNSQLQQIDAAAGVAGAGQLVQMR
GWYFLIGDPANPGQARQNRTTPTCTLWYSD
GGSIQELTIGSNAVI 
 

BcepNY3 gp04 R Hyp. 
conserved 

Similar to Bcep1 
gp5 

MTNPVTLRPSEDEVFDTLWGWVTSLFDPAL
ASQIAKADQNATSTLYGTYALIRPGVREALN
QTIRTYDATAGTVSNELHTGYWYQVDCYGP
QAPDWANTIAAMWRTMWSADALRGTALIP
LYADQPQQLNIVNGENQFEQRYMVKLHAQV
NQVATAPQQFFTEVPATTATPVDIVPLD 
 

BcepNY3 gp05 R Hyp. 
conserved 

Similar to Bcep1 
gp6 

MNLHDIVRGAITQVNPDEAGTMFVSTGRTN
VRGILTPTFSSIDAQLQIQAQKHTPLQHERGA
LYTNSFLTVYAYGKFDDLSRPLGKGGDFAAF
RGGWWYITQFLEWWPDWCAFEVTQQLNAA
NIQTLLGYLQNGANLPVGLPPLPPGATTTP 
 

BcepNY3 gp06 R Hyp. 
conserved 

Similar to Bcep1 
gp7 

MSVTRRGLTLPKDRYRSMSVKAGVLAGATY
PDESGKKLADGTILTKDPRAGLPVAMIAMAL
NYGTSKLPARPFMEKTITDRSAEWIKGLTVM
MTMGYDAEVAMGQIGQAMKDDIKTTISEWP
ADNSADWAGKKGFNHGLIWTSHLLNSVEQE
IVK 
 

BcepNY3 gp07 R Hyp. 
conserved 

Similar to Bcep1 
gp8 

MSTPPYRITFDPAGFIAEYPEFATVATPRLQA
MFNQAQTALLDNTGGSPVTDDNVLRELFNM
LVAHLLTLFGATPTSANSRPPGRLSSAAEGTV
SSSFEFKLPEGSAIAPWYNQTQYGAMFWMA
TARYRSARYMVSGGSGIGTARAYGQPTIQIP
GGV 

BcepNY3 gp08 R Hyp. 
conserved 

Similar to Bcep1 
gp9 

MAAVESKKKTGNGMVRVACKLPHGLNVRM
PDGRTIELNGLHSRQAVAGHGMTYIPAKDW
DAIQVVYAEAKWLRNEHVFAFADADDAAA
MAEEREQVNAGFNPIDPKNPGIHGGVTIQRE
GAKDPNAE 
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Gene F/R Function Homology Amino Acid 

BcepNY3 gp09 R DNA 
Methylase 

DNA methylase 
N-4/N-6, similar 
to Bcep1 gp10 

MSEIANRCELMFGDCLLAMHELPAQSVDLV
LCDLPYGTTRNRWDTPLDLSRLWVAYRHVC
KPGAPVLLFAQTPFDKVLGASNLPELRYEWI
WEKTNATGFLNAKRAPLKAHENILVFCDRA
PTYRPIKTSGHVRKTSTRLGYSSNYGAQAVS
SYDSTERYPRSVLRFASDKQRSKLHPTQKPV
ALLEYLIRTHAAPGAVVLDNCMGCASTALA
AMQAGCAFIGIENDVEHFETAQRRVRDYRS 

BcepNY3 gp10 R Hyp. 
conserved 

Similar to Bcep1 
gp11 

MKAIEELAALAPAIGAMRHPSARDMQQKLN
DVIAELRREYPETGVRAAWAAVVDTLRAVR
PDWDETAGKPSMDNAVAAIRSMAAQCSAQE
LQSLQVQLTPPAGVTDYDLETIAAAIGVLYA
NDPVDDPIKLRLVDLFKSLRAHAPRT 

BcepNY3 gp11 R Major capsid 
protein 

major structural 
protein, similar to 
Bcep1 gp13 

MRDAQRIQNLARAGVILPRSVKNVSTPLAEY
AMDAADLSPHLSSTGSSGIPNYLTTYVDPSVI
DILVAPMKAAELVGESKKGDWTTLVAAFIT
AEPTTTVATYGDYSSDGDSGTNINYPQRQSY
FFQTWTRWGERELEMAGAGRVDLASELNYS
SALGLAKFLNGSYLFGVAGLENYGLINDPSL
SAPITATTPWSGSPAVEAVVNEVVTLFQVLQ
TQSQGIITQEAVLHMGLPPTAMSDLSKTNQY
GLSAAAKLKEIFPKLEFVTIPEYDTASGRLVQ
LWAPRVEGKDTATCGFTEKMRAHSIERYSSY
FRQKKSAGTWGAVIFRPFAVAQMIGV 

BcepNY3 gp12 R Minor capsid 
protein 

minor structural 
protein, similar to 
Bcep1 gp14 

MPFQKQVYITPAQGIAGDFASSNPMIYKLSSN
GKMIADSSGVTVGTFAVLNADGTVTSKPGA
APSSTSRIGFVHREMNAQIVTYLAEFGNTIQP
GMPVALFGTGDFFANADVVAGSPSRGTKIL
WDVVAGQINVGGTVSATLLDTGYILISESAT
VNSLIQISNTGA 

BcepNY3 gp13 R Prohead 
protease 

Prohead protease, 
COG3566, similar 
to Bcep1 gp 15 

MPEVCFAFDKQTARSFDADGRMRVRDCILST
AEVNPYRGREVVGYADLGLDPNRVYDLYRD
PTELGHPDTLKSFEGLPLMIKHVAQTADNPR
KEYVGGSVHNVRFDGKHLRGDLLVWDGHA
IDLIESDELSDLSCGYRYVPVMRSGDADGQA
YDGRMTAIRGNHVALVDDGRASGAHVADA
AFREPRAPNPTLNGDNAMPFPENEQPGAGAP
PAAGAQPADAAPAGAEGGGNELATIGAALK
QLVEQNAQAHAAILQKLEQLGGGAAPAPGA
QDGEPDGVRSPQGSEDDEMPGAEDNEEEGP
TPRADDEHESAEDNELNPAGGENPTVKPNPH
EGYAARGEAPPFGAMDAKSVRTAIDTAVAN
ERKRAAAVEQAKRDVRYVLGGDIALDSASQ
IYREALTQIGVDVSQVAKGSERAAWQAASA
ASVAAAHGRTIQPAHAMDSAGANEAASRID
ANLAKIKVRG 

BcepNY3 
gp13' 

R Scaffold 
protein 

Scaffold Protein, 
similar to Bcep1 
gp15' 

MPFPENEQPGAGAPPAAGAQPADAAPAGAE
GGGNELATIGAALKQLVEQNAQAHAAILQK
LEQLGGGAAPAPGAQDGEPDGVRSPQGSED
DEMPGAEDNEEEGPTPRADDEHESAEDNEL
NPAGGENPTVKPNPHEGYAARGEAPPFGAM
DAKSVRTAIDTAVANERKRAAAVEQAKRDV
RYVLGGDIALDSASQIYREALTQIGVDVSQV
AKGSERAAWQAASAASVAAAHGRTIQPAHA
MDSAGANEAASRIDANLAKIKVRG 

BcepNY3 gp14 F Hyp. 
conserved 

Similar to Bcep1 
gp16 

MLGSAQVARGYRKYEKDESTAKAWDDAAR
KQLFRLNGMAGNW 

TABLE 8. Continued 
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Gene F/R Function Homology Amino Acid 

BcepNY3 gp15 R Head portal Mu gp30 
homologue, 
similar to Bcep1 
gp17 

MARAPLRMPGRDDKVLAPVSVDRQTEAMY
RRKLERAVALMAASYLRSIERKYGRALEAN
VDTGRLPDIAQDASAQAPGAASSDMFDEMK
RLRDYWQRYFDTFAREVTTGAFEDLYVDNQ
RMWQSRLRNAGFDIKLDMTPSQRLVMEAKV
QENVALIRSISQEYHTAVEGEVLRHFIAGRDL
KGLQDKLVERGKVTTNRAAFIARDQCNKAT
AQFNSARQRELGLHWATWQHSSAGKEPRPN
HVRAGREKWIFNTQVGIDFGDKFGSVLPGEA
INCRCSSRTIIPGMGRTPGGREFDPGALGEITG
FPGAYREAA 

BcepNY3 gp16 R NUDIX 
Hyrdolase 

COG3567, 
NUDIX hydrolase 
domain containing 
protein, similar to 
Bcep1 gp18 

MSRRNAKKRTQLAHTGRRPEVAKAAALAA
AATIATATAAQPVPADMGRRGALNALDAAP
VAEPSPSLRLARQFEVDVSNYTPRERRAASY
ALDFNGTSMDALSFVTSSGFPGFPTLVLLAQ
LPEYRAMHEVLADECIRTWGEAIGGTKEKA
DTSGLAAGGNAASTSDGDQLKQINDEIERLRI
RDAVRTTVIHDQAFGRAHPYFKIKGDDQIMD
TPLVPRPYTVPKGSFQGLRVVEPYWVTPNNY
NSINPVADDFYKPSTWWMIGTEVHATRLHTI
VSRPVGDMLKPTYSFAGISMTQLAMPYIDN
WLRTRQSVSDIVKQFSVSGILMDLAQALMPG
ANVDLSMRAELINRYRDNRNILFLDKATEEF
FQFNTPLSGLDALQAQAQEQMSAVSHIPLIKL
LGITPTGLNASSEGEIRVWYDYVRAYQRNAL
QQLMNDVIVMIQLSLFGAVDPSIKWQWNAL
RELDDLEVAESRYKQAQSDVLYVQEQVIRPD
QVAARLNTEPDGPYAGKLDANDDPGVPADD
DIDGVLTYVQRLAEGGDTGAPGGARAGATA
PPTVANVNANVKPREAGAQDAAMRAAGAV
YVVDGKVLLMKRPAGDWGLPAGKVEGNET
PEEAARRETREETGYDHDGELVPLGKFDGFF
HAFVAHLEPFDVELNDEHTAFDWFNPDELPH
PLHRDTAAIVDAACKALDRLERA 

BcepNY3 gp17 R TerL TerL, similar to 
Bcep1 gp19 

MGANAALVEPPVVAASSPAALGTPSAVVDP
VAFLINLARTNFAAFVSLVHRPRYRHSAFSA
RVCAEIDKFIDDLLEGKRPVLMLTAPPQHGK
SSLISRCLAPYLYGRLTGLLPAVRIANATYAL
PLARRNATDAKSIMKEPVYRAVFPHVSLIGF
KGGKDTSNEFDVPAGGEFRGVGVGGPLTGF
SIDVGIIDDATKNAEEALSAVVQDGLENWYD
SVLLTRLQQLSGVILIGTPWSANDLLARVRR
KMEGQPNFTLLSFPALNDPDQIGYNPDLPLG
ALVPHLHSADKLREMRRNISEFWWSAMYQQ
VPLSEFGAIFPREHLQYYHAADLPKQFVRVI
MSCDATFKDGQASDFVFVGVWGKTADERV
WLIDWRREKLAFMATAQAIADLKRKHAAVS
RVYIEEAANGAALIDMLKKHFPMLEGVPPLG
SKEARAHAVAWVWSNNCVMLPHPDERPGIG
PVVNEITSFPDTVTGHDDSVDGMTIALHQLC
LRTPIAAMITRDILNKA 

BcepNY3 gp18 R Hyp. 
conserved 

Similar to Bcep1 
gp20 

MADLQPIKASLVADLVDLINENLADLLKVRT
ATCPDCGGSGTVGGERKWNDRGGTDVFDD
GTLTTCVTCGGVGAIERFEIDHDLLKSRRFGR
YVEGFDVKHGIIVPKMRSKDKAFAMLVKLL
GFDKAVIEVANGASFVDTVSDEQRAVVVEQ
LKELAAMGLLDGR 

TABLE 8. Continued 
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Gene F/R Function Homology Amino Acid 

BcepNY3 gp19 F Hyp. 
conserved 

Similar to 
Salmonella phage 
MB78 13.6 kDa 
late protein, 
protein similar to 
Bcep1 gp21 

MLRLRDLQHQGQVMSNPGVVEHSTLSFSGR
ERWRNCPASVTLSKGMPDNSSPAAAEGTCA
HTVGEFYVRQHFDLPGAAPRGTEAPLQAVPE
GLDLEGKTVEEWNDDLRRHGKAYRDFIISLI
PPGVEAFVSLEQRVAAKTIDGRLFGTADCLI
WCPGARVLIVVDYKYGFMVVDVGTAEKPN
AQLAAYAVAALDSCTLQANGVMLAVFQPR
RNIGEPGHKVYLSAEHVAAEQQRMREEVVR
VDKATASPDLFIVAGDHCRYCKAKPACPRM
QDALQIAFDVNAGRRSILDMPEDDLIALYSA
RSGVKSLWEDVEQRIELLAQRGHDALTIKTS
PGRRMWRNAKAAALTLLALDRTDLLQPVAL
SEAIAHIPEALHDDLIGKSRDSQSIVVKTPAAP
GAVADTFAKYAKSVDTTQDKA 

BcepNY3 gp20 F Hyp. 
conserved 

Similar to Bcep1 
gp22 

MSTIDKLAGYEAILTHHSIITPQINKLKPTKPA
EFYALIALPAAAQADLWAILCERATSAFGHA
NNFEHGIKTNATSKKPIAGVPGDALVVRAAS
QYAPEIYDADGTLLNPQNPAHLQTIKAKFFA
GTRVRTILTPFHWTFQGRNGVSFNLAGIMLV
PSEAQRLAIGGVDTASAFKKFAQPGTGGVPA
TAGAPTDAAAAFAAGGNPDAAGGTLPANPN
PFAQQTGSAAGAGGNPFL 

BcepNY3 gp21 F Rus Holliday junction 
resolvase Rus, 
similar to Bcep1 
gp23 

MPTTRYSLTLPFPPSLNRAYRAVAGRVVLSK
AARQYGVAVRNALPAGRVERIAGRLRVVVT
VHPPARLVGRAWDVANREKLLSDALTKAGF
WRDDSQIDSFRVDRGEFLETRPAGCAVVDVE
VLAPVRFFP 

BcepNY3 gp22 F Hyp. 
conserved 

Similar to Bcep1 
gp24 

MGKDKFIENANGILAAFRAALEQYGLDVTN
MHTSGDLVLLASKYTAVYGKKLEPGVEPKF
NFVDIALEQFNSQLTILLMRYAYAALPVTFTR
VPAPPGVSA 

BcepNY3 gp23 F Rz Rz, similar to 
Bcep1 gp25 

MIQFYAIGAGALAALVAVWAIVRKLTGAGR
AAGTAQGESRAIDDANKVTASAASAADAGR
QQLATEIQDNAQASDDYAARVLGAGSVQDG
ATAVNDAIGRANTRDRAAR 

BcepNY3 gp24 F Rz1 Rz1, similar to 
Bcep1 gp26 

MRKLLTIMLLACSALAACKTAPLPSTTRSAA
PTHGIVPRVECDALLTDAGNIPAYPVPAEGA
DAQAYARAQQLWAIRAIRIIDDERAGRRAAV
ECFARLRAAGLIH 

BcepNY3 gp25 F Hyp. 
conserved 

Similar to Bcep1 
gp27 

MNFNLSSFANAMAAAVPTIAAVGADTGVIH
SFVAGVIASTEQAYAAAGAGAHKKAAVLAA
AETFVTSIGHEWSTVAPHVESFIEVAVGAYN
LAATLVPGLPAVPTGTATGFVNAVENEVKA
VAAVAAPLVTAFENTFGGAKPAPVVTQPVS
VPAAAAQPLPAAAAPLAGGL 

BcepNY3 gp26 F Endolysin Endolysin, similar 
to Bcep1 gp28 

MAAPLIVGASGRAVVFLQSRLGLAQSGQFD
AGVATALRQWQEAHGMTPDGVYGSQTNAV
MTARALSDIADAAARLRVDVPAFQAIIQVET
TGSGFLPDGRPRILLERHKVWAATSPAQRVL
LGAQDCNPTPGGYATGPDADARGAGEWVR
FERVAAVTGDEVAAQCCSWGLGQVMGANY
ATCGFTNAVGLMFASALNERAQLDVMVRFA
LPQAGLLGALRAHQWAAVARIWNGPNFAIN
RYDTKLAEAYTALTSQ 

BcepNY3 gp27 F Hyp. 
conserved 

Similar to Bcep1 
gp29 

MNQLEIDWSAAPAWASWAAQDADGGVFWF
SQEPTLSRVTSRWHCRDDDTTCSAALVGVV
RVGPAAKWRESLTRRPPAFDKEQPAANFDPE
GMLRAQIGHLLEDMTAEQLDALYAHVRQQL
DAAKFDELNRQLDKPFGEVPREWQLKAFEA
FLDGNPIEYRDVARAASWFAAPSPNWAPSLR
YRVKPKQS 

TABLE 8. Continued 



  31 

Gene F/R Function Homology Amino Acid 

BcepNY3 gp28 R Holin Holin, similar to 
Bcep1 gp31 

MNDRFDTMFTSLGQVAIAFLGGLIGALMRRE
ASTWQTAILGACGAGFVGFLVAKLCHASGL
SDDWTFVMVGVSGWLGAERTISYLERLFAA
RLGIEQAAAAEPPPAAAGDKEKQS 

BcepNY3 gp29 R Hyp. 
conserved 

Similar to Bcep1 
gp32 

MNNYAIVKDGTVVNIVVWDGRAAWAPPSG
TNAVPIPADESVTLGDTYNGVKFQSAGAPA 

BcepNY3 gp30 R Tail fiber possible tail fiber, 
gpH similar to 
Bcep1 gp33 

MTAQTNQPAKFLVPFAQNDSSRVELPVTTAD
ATRASQSLGFPPSTMQPPEAGGVPPQGEDFN
GALNQVARIAWWLMLGGQFPFDSAFATATQ
IGGYPKGAALQSADALGSWISTADNNSANPD
TSTDPAGGGYVPGYQYGTTALTGLTGGTVT
LTNAQAAKATVTLAGALTSALTLVVPTWLK
HWTVTNNTTGAFAATIKTAAGTGIAIPQNGA
PTPVVGDGANIVQVGENIAQATRLTQGVRLD
QLYGTAKGFLRATSSGSTTVPPNVTTIYVSGS
AGGAGGGGCATVGTPNIMSGAGGGGAGQFT
EWQALTVVPGETLTYTIGGAGNGGAPNVPG
GAGGNTTITGSVSGLLLSLTGGVGGSPGVGG
AYSVYTAGGNGGAGAPAGGYGQDTGPQGV
GANGGAGGSNPFGGGGTAVRGSQIGNTMLA
GLAATGYGCGGGGCGGVYAAGNTTIPTSTG
NSGGAGTPGVLLFAW 

BcepNY3 gp31 R Hyp. 
conserved 

Similar to Bcep1 
gp34 

MTDYLGRTVQKQYSNSPVLLALLASFDQWV
DPTKFSADFLANVWDISTAQGFGLDIWGRIL
GRSRLFQVAQTPGNNFGFFSTGGTPWKPWG
QAPFYGGQAGGTVAFALQDAYYRKLLLVKA
AANIARCDCPSINALMRSMFGDRGKCYVGY
DIAHPMDIAYHYEFFPTAIEKAIIESGLFPQPA
GTNPHYVYKTLTYAPFGFRTMNGGTNPNVV
VGFNQNPFYSA 

BcepNY3 gp32 R Hyp. 
conserved 

gpW, similar to 
Bcep1 gp35 

MTTTNVPQPTFTPTGLQLAGEQAILAGVQAD
QVAAFATAGKTLSTELTTPQGQLASSEAFIV
AAWQALFAQLIANVDPLTSSGAYQDALGRIY
FMTRNPAVAATIPGVVVTGTPGVTAAAGTL
QARSPDGSLWSNQTDVTYDATTGNATVTYV
AAVAGVGPVATPNTLKIYQQVNGWLGIANP
NGSVAGVDVESRSEFETRRQESVSIGGIGQA
ANVRAAVLAVPGVTDCYVYNNGSDSAINYG
ATNYPIPAHSVAISVTGGADADVALAINSKL
DCGCGFSGQGTTTVTVMDSINYPPPYPQYPV
RFVRPPTVEVYFNVQVAQLPNVPATYIQDIQ
KAIVAAFVSGFSTDDGKITLSRARIGMQLIGA
AYKPVVAVLDPNLIPVNIFIGTHANPTGESIT
MGIDQQPTIANLNISVSQIAV 

BcepNY3 gp33 R Hyp. 
conserved 

Similar to Bcep1 
gp36 

MNLPEPNPKEHWPFQRRVLAAGVDAARNSY
IKAQCGDARRMALAHQALLQIRIDRLTRP 

BcepNY3 gp34 R Hyp. 
conserved 

Similar to Bcep22 
gp42 

MKTYHRMHTELVLLAGGYLEVACPNPEAPP
LRRHWQIRRTVDYRSIPWC 

BcepNY3 gp35 R Hyp. 
conserved 

Similar to Bcep1 
gp37 

MTPTPLSALQPSAITTDGSDVINVRGELFRIR
VAQILSSTGFRIDGAVRATYCLTFDEAVAWM
S 

BcepNY3 gp36 R Baseplate 
assembly 
protein 

baseplate 
assembly protein 
gpV, similar to 
Bcep1 gp38 

MADRAPTPYNSPFEAQFHEGRAQEWMIVKLI
REIHTATPVEVKAVRIIDDRVGFVDVLPLLEE
TDTNDAVIEQSLIYNVPFLRVQGGQSAVVLD
PAEGDIGLAVFAERDATALATTLQAGPSATK
RAYSSADGFYFGGFLNGAPTQWVKFLAGAA
GIDIHTPGDLTLSAAGAITLTSGGATTINAASF
VVNAPTTFNDTIAGTKTGAGSVQFAAPVGAP
DFIDGNGVRHATHIHDDPQGSQVGTPHN 

TABLE 8. Continued 
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Gene F/R Function Homology Amino Acid 

BcepNY3 gp37 R Hyp. 
conserved 

Similar to Bcep1 
gp39 

MTPIRYPLDFTPWQPGRIIGFAGSWRPFSQSE
YEASAQADAAITTAMYRAKHGLPPHLGGAH
G 

BcepNY3 gp38 R Hyp. 
conserved 

Similar to Bcep1 
gp40 

MTFNPFQERRVRVTVTVTRPDAQGNQEPDIY
TFVEHRMRIAVSLGGAQYGNARVEIFGVPLD
TMNQIARIWQDVLTPITSDTISIDVWNGQDY
VPFYQGTIAYSYIDPESMPFVPLVIEANASYA
LMAEVMSPYSNAGPVKLSDVLKAVCTPAGF
AVDYSASTTDYMLTNVRLTGSAADQIRAAIA
QFPNLTYDVSLQRVQVRDSQVSMFADAVPV
NAGNGMQKAPRYSTSGITFTSLFNAQIRPGA
ALAIDTSIAYINRTQWIAAVVQHTLEPNYPNG
VWSTAVAAQGYGKRDGTAVAPGTSTATAP 

BcepNY3 gp39 R Hyp. 
conserved 

Similar to 
Bcep781 gp39 

MAIRQHVRCRECTRRRALPKVLTLYLRVPRC
DCGARNWRPDKHMNQRDNGATRCDCAGY
WFPHRRGCLYCHYRRDGTMRMFGDYDFAD
RNYDPELGWT 

BcepNY3 gp40 R Hyp. 
conserved 

Similar to Bcep1 
gp41 

MDYRVKRQIGAIVGGAVLALVIVLAARDAH
ADPAAVQLIAAFDRVNNACLGAPLRADGKY
APACVERDRAARALERAGYERSRHDVWFRS
ADMRTLYALTRVATADARRPEDAPRGLRAL
VRLAGLSDVELLAIWQQHASELRDGDPAAW
AVASELMGQISAAHPNDPRFMVD 

BcepNY3 gp41 R Hyp. 
conserved 

Similar to Bcep1 
gp42 

MEEQHIQDWGNGWNDAMRGFVQRPDQSLD
YYVGYADAMADAYRPPTIH 

BcepNY3 gp42 R Hyp. 
conserved 

Similar to Bcep1 
gp43 

MKGSQRRDGQKCYAVCFVGDEPLEVRVKQP
RGWYTLWLQGEPFKNRIAMDAIKAARAA 

BcepNY3 gp43 R Hyp. 
conserved 

Similar to Bcep1 
gp44 

MDDVLDFLKFIGALALALVIILTAIGGGVGGI
VYVSNRSECAQYHTLSGRATYFSWSTDCLV
RNDDGKWVMLAAFKGNTADVTVRNK 

BcepNY3 gp44 R Tape measure 
protein 

gpT, tape measure, 
similar to Bcep1 
gp45 

MADAANANIVDELVVTLELDARQYENADKT
IDKLVTKTEKKAVENDKKAKKRHEAQKKRF
DETKRAAASLGGGLMKLAGIAGAVLGVGAG
AAGLAGMVLALTNTETALRRAAVATGMTN
RQMSALSSTARRLGSDAKAGGDAFAGLARE
QQLAPLTGQAPNLQALASFGVNIQQDVPHM
LQQLQRTYRASSPQQQGFMESRLTAAGVSPD
VIVAMKASVDALDAFNQSMRETSEENRQAL
DAFYDAVSTVSNNLRNMANVVMTVAAPYV
QRFGEYLSDATAELADFENDVAAAGGGVNG
FMKVLEQRTPRLAALLHDLASGLGFLGEAV
DVAVFGWQTIAKALEWGWDKLAGSKIGQFF
GLDKAGQAVVSTVKQTWREAVATAREFGP
APVASTFGIAVDDPNRVKLSAGAAARLAGG
VAGATAASSPSKLDDSRLYVMNALIARGASI
DQAAAITANGVRESGLVPSAYNTNGGGQGA
QGIFQWRGSRIDAFRRRYGIDPRFGTVDQQID
FLMSDPDERRRMGLALGAGGSAAALGTRFS
QIFEAHGKAAEDAARGPIAQRFADDYRARFA
ANDQSTGGAPISINGPVTVVANDPRQLVNGI
QRQSGVQNYASGQR 

BcepNY3 gp45 R Hyp. 
conserved 

E, similar to 
Bcep1 gp46 

MAGLPTVAAFDVLALIASELPSLNAPTPIYAI
VASDTFFPLTIPSSWGEFDVKYEYALSDYPTE
QGGFGVFNKVRRPSSIDVTLVKTGSDLARFA
WLAAIQQMQANNPLQLYTLISPQGIYLDFTIG
RMSHDTRADKGSNMLYLTLTFVEIPQIASSV
DGLSNTVDAKSGPIEQIGRLFTRAATAAETAL
INIGNFLTS 
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Gene F/R Function Homology Amino Acid 

BcepNY3 gp46 R Hyp. 
conserved 

Similar to Bcep1 
gp47 

MTMNETISAVIDASAPRDVGKRFRVNEISPLV
LSGYMLRLVAALKGAEYETLVSELREARAD
TENPDAALNVVLRTLSGSDPAAVHALVTDLL
THVDIAADPRHPEGFRPLLPTDIRELKTLGDV
LIALVVLNLGE 

BcepNY3 gp47 R Hyp. 
conserved 

Similar to Bcep1 
gp48 

MITLTELPALVADRYARAALKAIDADPDSGI
AGLAFQHYAEVAKLPDAHAYLLPFVRGTVA
GSEFSLEFHLKGWRNIDRLEQAALMLHVAFL
TDREPLDIPVAMQGAALMAGGSDLRVTFCSP
AIAAVLNSRHADYVQLETVLSTEDVYNLTEC
INVEAAREYAARKRDK 

BcepNY3 gp48 R Hyp. 
conserved 

Similar to Bcep1 
gp49 

MKDEYVDVDGKRYCRTTFYRDSGHHVVMF
TAFTAKGVWRVLPPRCAKIRARIDSALDNPQ
TSD 

BcepNY3 gp49 R Hyp. 
conserved 

Similar to Bcep1 
gp50 

MIKTPQQLWIARRDAANTAGLAATIRRTLAG
PQLSPFYAIGQQAFRDGVPFARNESDPWRAG
WLAAAGATRALG 

BcepNY3 gp50 R Tail spike Tail Spike, similar 
to Bcep1 gp51 

MNMKKILSRVFACAIVLAAFSQFALGQFAPG
QILTAAQLNAAFANVLPIAGGTLTGPLTATTL
TATTSVSAPAVNATASMSTPALVVTTSLTGA
AKAALTGTATSALTTDQAQITGQLNNPTATA
DYIYGAALGAIGQPVFDGAGVRGVATQTAG
STNWTTNGVAGYVLNNQAGATATKSAVGL
LGINICAVDNCQSWGTSTIVSDVLGFTGVSA
GVGRQLYGNESDLNVSSPNTNGIAYMAAGT
ALTPSAYLVGFQVSNLYGGTGAKWNYAFSS
PDGNSTNAMYIGLTATSGNNLSSQPIVFNYT
DAGGAKHAPQLLATPNGLQTTAGALIPGSAN
STALGLPALPWGTIYGTTAVISDTSASNQATL
TVAAPNDTQGASIKFQGNGVTTPTKTIRVQN
GAFQWVNDAFNNIIATLSDSGSLSVNGNITTP
TGTGALPVYTATGASLNGPHAVQGSNALSA
GAATVTFSGAAAFSSASSYVCTANDTTAAN
AVRVNQTSGTSVTFVGTGADSIQYRCVGN 

BcepNY3 gp51 R Hyp. 
conserved 

Similar to Bcep1 
gp52 

MSLIVIPIKATANQIASTVLDGLNAQIALMTT
DFGLFADVTYNGTRVATGRLCLDRTDINAA
KYLGLPQPLFFADLQGTSDPAWTGFGTRYLL
CYGTPPAAVTAPAPTLAFATEGRLDIDFVLD
KSILG 

BcepNY3 gp52 R Hyp. 
conserved 

Similar to Bcep1 
gp53 

MDSLALDPATWDITTDAYGNLATVGDATPG
DHSGGAYRMAQDVACRCMSWLGEVYYDTT
QGVRYEQVLGLAPNLVLVQALFVNEALKVA
PVAQAVANLTYTAGAQRRVTGQLVVSDGSV
TTGVVQL 
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BcepNY3 gp53 F DNA Primase DNA primase 
domain protein, 
VirE, similar to 
Bcep1 gp54 

MQIQFAQVTATNCELTKTFQIGHNGQLDSSA
IAHMTEGFARIRAIEDVGQLRGVLEALTPHD
AITCGIPQRGDTPLTTRAGAEFRRDAVARTN
EAFTYPYGAALFPIDVDVEGDAFQSVAAVLD
ALESASPWLRDVHRVARPSSSSYVGARGLRG
VHVYCGVTNGADIPALAKRMQIEQWAAGH
GHVKISRSGALLVRQLADALVYQPSRLMFES
SPVLHDVTRDIPPDQAFVERAPDPLAGRPGA
WRLNGLLDVGKLPRLREIDERRFVTQAKQA
KDAKRRDAKRIAIEYQTQNAIASGLEPEAGE
RFGLLAIRALGDAKLPASWEVHVKDIGRVTV
ANILDALPASLGFQCADPFDTWRPDLDAKHF
GKAEIVMLNGLPGIWSHKLQQFFAFDADPAA
DLGTPLAMAAEKLCGLIEYPESSKRAAPFVN
VMHALKCLFDEIDARATVHAATGEMRLEGV
PPEAELIDALSRVGCAGVTPATVKTAIETLAA
SNFVDPWRDAMIALPQWDGTQRLDTFFVDL
CDALPSDALTATTQLLFAGIVKRQLQPGAPL
PVVPVLIGPGGTGKSYFVEQLAAALKFPQPP
ALAFTDTIRMTMEAATSGIAELAEMSGMGR
RETEEIKLWTTDTSDTYRAPYERRPSAHPRRF
ALIGTANKHETNHDATGNRRFMPVFVNRPID
PNWHVEALQLFAEAKARFVEPDGEYARLVR
RASALVKEYNDADMRDGIGMPITDLDDILPP
VLRALHRQHGPRIPSAELRAMLDRTPSGRQA
HARAIAGWLLTRGWQPIRSAAARFYDAPQA
FIDNLIDEKINSALNSTSSPFNTP 

BcepNY3 gp54 F Hyp. 
conserved 

Similar to Bcep1 
gp55 

MTWAEFKAKMEARGVTDDTPIGYIDIGCGA
DVDVDFRDDGSVCVSDA 

BcepNY3 gp55 F Hyp. 
conserved 

Similar to Bcep1 
gp56 

MNEQRVHEHPSGRLLPDANFTVAEAARFLV
GLPAPLTTSDLGKLGKDCSMVCRIKGLQWTI
RPTPLALWPSERAYPAAVIQEVFKTNPMTAP
YVPQPKTQEQTA 

BcepNY3 gp56 F Hyp. 
conserved 

Similar to Bcep1 
gp57 

MNAIDALGEAIEQALEECPTNEVLAFLTGAF
VGLITELARRHGADASQDIKIDGGKNRDITIH
AAKAA 

BcepNY3 gp57 F Hyp. 
conserved 

Similar to Bcep1 
gp58 

MMARFVYIHGSLHSVVHSDAEAWAIIRRFPL
GTLYEVRDAAGQPIDEFEPF 

BcepNY3 gp58 F Hyp. 
conserved 

Similar to Bcep1 
gp59 

MRGLSMYARSFENPGQYSTNSPESANGAHA
ARPTRTRLKTGKGRNATPTKRDRSKKVKYG
AAAGYGSVT 

BcepNY3 gp59 F Helicase DNA or RNA 
helicases of 
superfamily II, 
Uvs helicase, 
similar to Bcep1 
gp60 

MTRKTPRWYQAEAADELFGALATAKNTNPI
AAIVTGGGKSLLNAMLIERIAQTWPQARVMS
LAPSMELIKQNVEEARAFWSPAMVARLGIYC
AGLRMKDRMHQYIFATPQSVARQAKRFGPF
DFVLVDEAHLFNIDMKTARTIVDTFRAANPH
VRFVGMTATDFIMKGLKAVPLTQCGLFDAK
VYDLTSGRNFNRLVREGYLSPVVSPSLRFPQI
DTGGVKTKGGDFDEAELARRAMDVTRECV
RVALEHAPDRKHFMWFAVNIEHAHMIEQAL
LDAGESAVVIHGELEKSERVSGVDEYLKKQH
RHIVSVAMLTTGFNAPFVDCLVALRPTRSLV
LWRQIVGRGLRPYAGKENILVLDAGGNFGR
HGAINEEIGAGDSRAGLWVCTSEEVRSPFPV
KLPDGTTAPGRERSGIRFPINSPEQPEFDLRVI
LGLMEPDSEGCGYLNDAEHMTCRQCGRPRQ
GFLSVRVKRAANERGVLAESDSYEIHDEDSV
VLRDEACREVRQLPVHEMQIAPEGNSVLKFE
FGTDFGPYRLRLDFDRTTADNKWYAFARKF
YEKATGRKVPTEAYRVLLQRELIPKPIDITLT
KYEDGQVFLTELRFLRNEQLESFKYDPNY 
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BcepNY3 gp60 F Hyp. 
conserved 

Similar to Bcep1 
gp61 

MIRTTDESRADALKNAAWRLKRDLERGNVG
AETSHVYMADLRVLLEAVEQHEAAPAETAM
LDWAVGRWDAEVKNRPLTNVHRRSLDDTW
RQVVRHCGGDDVSLIGPRHDDLVAASAPAPS
ASLEGTGNGADERMAFDSWARDIRMDVSVS
LEGHYTDAATAYALAAWRARAAASQPAAE
PTIPAELHHDTAKLVRRFARALANKLLSAQR
KYGYSDNWMRDDWADECRAELVRHIQKGD
PRDVAAYCAFLWHHNESTAAAAAAGQEAV
ATLHDDGHYTWNPKVPRPDGYDRAGWRMS
VYTAPPAQVATRQGLTFEDWFKAELVADRM
HGTDEEVARIAWNAARAPLDHDGA 

BcepNY3 gp61 F Hyp. 
conserved 

Similar to Bcep1 
gp62 

MTAPDRVNGVPRIRLERECASKNRYPDEIMA
RASGLHHQDRNKLDALWVYSCKHCAGWHL
TRRDNGPRWRV 

BcepNY3 gp62 F XRE 
transcription 
regulator 

XRE xenobiotic 
response element 
family of 
transcriptional 
regulators, similar 
to Bcep1 gp63 

MSFAIQLIKARNARAWSAPELSRRAGVRHSL
IYDFEADKRLPNLKTLLRLADALGVTLDWLC
GRTPE 

BcepNY3 gp63 F Hyp. 
conserved 

Similar to Bcep1 
gp64 

MKRFIVFAYDEYYPGGGWNDFVTTVDEFDA
ADQEARRQLASEAGTKDYAHIVDTVTGRVW
EYA 

BcepNY3 gp64 F Hyp. Novel Hypothetical novel MLQVPKLRVCVMPHRNRIAAWFPDQPLDGK
LFVGNDTRLTVQYMYGRRLRKLTQRLR 

BcepNY3 gp65 F DNA 
Polymerase 

COG0749, DNA 
Pol I, similar to 
Bcep1 gp66 

MTERLLFLDFETSSHTDLTEHGLGRYLADQS
TRAYCFTFRLPGMSTADLWEVGQRVPEVITR
HVRAGHLFVAHNAPFDFWIWNTVLRRQRGY
HDLPELQIGQVRCSAARARYNGLPGSLAGAC
EALGLPVQKDTEGAKWMKEIAANPDWTPA
DHPEHFARTYKYALIDTDAMVGVWENTVPL
PAREQAYFEMDMRINARGIGVDVEAAQAME
DLKAFAEAQLDYEMAYLTDGGVLAVSEVEK
IKTYAATLGEDMDDAGRETLKKIAARDNLP
DSLRQLIELRLDASRAPKKSAAILRAHVGGR
LQHSTIYHGALSGRSTARGAGGAQTLNTARP
RPGKKTADCEAILDACLRHDRAYLSSPEVGPI
LAALADAQRQLFRATQPGHVLVGADLSGIE
ARFSPWIAGDLELLEAFEKGVDPYKLAAAAI
FQVTYEAVTKDQRQIGKVAMLALTYGGGAG
AFVSMAANYGVHLPPEQVDEIVLNWRAARP
AFERWWSLCEYSVLMALDQPNREITMPIGRD
FCSHVTFVHDGRALRMQLPSGRAISYHNARL
HLEPGANVPIAIYDKPEGYIETLDRKILSNNM
TQGLARDLFWSVLLDVDRVEQIVHHVYDEA
LLEVREEVAELRCDQLVERMCRGEAWCPGL
PLGAEGWFGLRWRKD 

BcepNY3 gp66 F Hyp. 
conserved 

Similar to Bcep1 
gp67 

MTDLTATLAERGARYGKFEDHAVIAQGLKD
QMWATEGWSRLAPDQRQALEVIQDKVARIL
NGDPDYTDNWHDIAGYSRLVEDRLNERAPL
CAAADLARPRTVGEQRAPERGWIEWKGGEC
PVPADTLVEYVLRDYYKGCKRAGGLSWGDT
GSDSNIVAYRLLPKQG 

BcepNY3 gp67 F Hyp. 
conserved 

Similar to Bcep1 
gp68 

MPQPTNTELAARYKKLPVDQFTITELTDALG
VEVSAALLGTSKRAVYTVRNTNVLGIERHKL
LIDAVRSKETECRERLLFMLQRRERREASRA
AKAARADDKQ 
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BcepNY3 gp68 F Hyp. 
conserved 

Similar to Bcep1 
gp69 

MKFEFDSIEELQGFLEFARNVSAIFRAAPTEP
YPDRASWPDDIALVPDAHLTPEERAAAQHE
AQVAATGALLSSGLSIAVQSAAPDSASVAQF
GTSVKPPRKRRTKAEIEADKAEAANTPPDET
KAPSDAQATAATSPLAGANPFDASTSNPPAA
TAALNEAPAGTTGTLSALGSDVRAEAQSAV
DGLGADVDPQTYMQLRVAEMGGAFDAREH
MKKCVEFIGALGKARYDEAFDLAGTSRSVA
TYTPADCAKHIAALEYLQLSSKGA 

BcepNY3 gp69 F Hyp. 
Conserved 

Similar to Bcep1 
gp70 

MYIGALLILLAAFAFASAGLYYVAAILVLFG
KLLGALVVGIVGGCRLFAKGAWLALLGLAW
IVSRLAGIAWELAHRAAQEGDAATASAHRA
GMVAVEWLKRTYVKREKRERGL 
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FIG. 5. Genomic map of BcepNY3 
 
Genomic map of BcepNY3 divided in half.  Boxes represent ORFs and are color coded 
based upon function: unknown, blue;  lysis, yellow; structural, green; metabolism, red. 
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Metabolism 

BcepNY3 has 5 genes involved in DNA metabolism: Holliday junction resolvase (NY3 

gp21, DNA methylase (NY3 gp9), DNA primase (NY3 gp53), helicase (NY3 gp59), and 

a DNA polymerase I (NY3 gp65).  Prior to recombining, a cruciform structure forms 

with the two strands of DNA and endonucleases, called Holliday junction resolvases, 

cleave part of the structure, allowing the strands to recombine.  BcepNY3’s Holliday 

junction resolvase is highly similar to Bcep1 gp23, both of which are homologues of 

RusA in coliphage 82 (26).  Methylation of DNA can be used as a regulatory function or 

to protect bacteriophages from endonucleases.  The functional role of BcepNY3 gp9, a 

predicted DNA methylase, is unknown like its relatives in the Bcep781 family (26).  For 

DNA replication to initiate, it requires a primer provided by DNA primase.  Bcep NY3 

gp53 demonstrated homology to Bcep1 gp54, a previously predicted DNA primase (26).  

As observed with the Bcep781-like phages, BcepNY3 has a gene (NY3 gp59) that shows 

significant homology to a T4 helicase protein, UvsW, which is involved in DNA-DNA 

and likely even DNA-RNA unwinding at branch points during phage replication and 

transcription (4, 26).  NY3 gp65 is predicted to be a homologue of DNA polymerase I 

based upon its homology with Bcep1 gp66.  Even though it has a conserved DNA 

polymerase I domain, the functionality of this gene along with the Bcep781 family and 

other similar phage homologues is unknown (26).  Although all members of the 

Bcep781-like phages were annotated for a DNA polymerase III beta-clamp unit, 

BcepNY3 gp14 only received a BLAST return for Bcep1 gp16, most likely because 

Bcep1 gp16 differs significantly from gp15 of Bcep781 and Bcep43 (26).  In 
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prokaryotes, the DNA polymerase III beta-clamp clamps on to the lagging strand, 

keeping the replication complex together and increasing the processivity of the 

replication reaction.  As observed in Bcep1 gp16, the BcepNY3 gp15 has a significantly 

short sequence in comparison to the typical length in bacterial genomes, which leaves 

the functional capability, and thus the annotation, of BcepNY3 gp15 unclear. 

 

Along with DNA metabolism genes, BcepNY3 has two other genes involved in 

metabolism: an XRE transcriptional regulator (BcepNY3 gp62) and a NUDIX hydrolase 

(BcepNY3 gp16).  XRE stands for xenobiotic response element.  XRE transcriptional 

regulators respond to foreign chemicals or substances and alter transcription of specific 

genes.  It is unknown what BcepNY3 gp62 actually senses or regulates.  NUDIX 

hydrolases hydrolyze organic pyrophosphate bonds on a wide variety of substrates.  

Recently, it has been shown that there is a linear relationship with the number of NUDIX 

hydrolases in a bacterium and the linear size of the bacterial genome (17).  It was found 

that Burkholderia cepacia has more NUDIX hydrolases for its genomic size than 

expected (19).  It can be suggested that the Bcep781’s NUDIX hydrolases were acquired 

through the large available pool of hydrolases in the BCC.  Also, because NUDIX 

hydrolases have broad applications, the actual metabolic function of BcepNY3 gp16 is 

unclear. 
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Morphogenesis 

In the Bcep781 family, there are a predicted 21 genes that are related to the tail or 

baseplate themselves or the assembly of these structures (26).  BcepNY3 has 

homologues to all 21 of these proteins in the region BcepNY3 gp30 to BcepNY3 gp52 

with an extra gene that is homologous to only Bcep781. 

 

The tails of bacteriophages are vital in recognizing and adhering to the bacterium.  

BcepNY3 gp30 is predicted to be a tail fiber, due to a 99% similarity with Bcep1 gp33.  

The tail spike is required for adsorption to the bacterium.  BcepNY3 gp50 is 100% 

identical to Bcep1 gp51, a predicted tail spike.  It is noteworthy that BcepNY3’s tail 

genes are highly identical to Bcep1 and only slightly (less than 50%) identical to the 

other members of the Bcep781 family (Bcep781 and Bcep43).  Because tail fibers and 

spikes require a degree of host specificity, it is reasonable that BcepNY3’s tail related 

genes would be more identical to Bcep1 due to the fact that they both are pathogens of 

Burkholderia cenocepacia, whereas Bcep781 and Bcep43 infect Burkholderia cepacia.  

To connect the tail fibers to the base of the tail, phages use a baseplate protein as a 

connecting device.  In BcepNY3 the predicted baseplate assembly protein is BcepNY3 

gp37, based upon its homology with Bcep1 gp38. 

 

To regulate the length of the tail, bacteriophages employ a protein called the tape 

measure protein.  The tail is constructed around the tape measure protein until it is as 

long as the protein itself.  In BcepNY3 the tape measure protein is BcepNY3 gp45.  Tail 
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assembly is dependent upon a frameshift protein in lambda.  An unknown mechanism 

causes the frameshift to occur on a slippery sequence (18).  These frameshift mutations 

are highly conserved among tailed phages (28).  Summer et al. found the sequence 

GGCAAC in Bcep781 gp45, which is a slippery sequence that has a   -1 frameshift (26).  

The GGCAAC sequence found in Yersinia lambda, a phage of Yersinia pestis, originally 

reads G-A-K, but then shifts back one base pair and reads G-K-V (28).  However, the 

slippery sequence is absent in the Bcep1 homologue, Bcep1 gp46 (26).  BcepNY3 gp45 

is 99% identical to Bcep1 gp46.  After performing a search of the BcepNY3 gp45 gene, 

the Yersinia lambda slippery sequence was absent with the same single base pair change 

GGCGAAC as in the Bcep1 gp46.  Therefore, if BcepNY3 gp45 and Bcep1 gp46 are the 

frameshift proteins they must have a unique mechanism compared to the rest of the 

Bcep781 family and should be similar to each other.  A gene in this tail and baseplate 

cluster is BcepNY3 gp48.  BcepNY3 gp48 is 100% identical to Bcep1 and has no 

homologue in Bcep781 or Bcep43.  Because of its placement and it being solely present 

Burkholderia cenocepacia phages and not in Burkholderia cepacia phages, it may be a 

host specific protein. 

 

The terminase protein is used in regulating the packaging of DNA into the capsid.  The 

large subunit (TerL) has mechanical activities which include cutting and an ATPase site 

for energy usage.  The small subunit (TerS) is the cos recognition domain of the protein.  

BcepNY3 gp18 is 99% homologous to Bcep1 gp19, which Summer et al. predicted as 

TerL.  Just as the TerS protein could not be accurately predicted in the other Bcep781 
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family members, the BcepNY3 genome and the NCBI database currently do not have 

enough information to confidently annotate TerS in BcepNY3 (26). 

 

The process to develop a mature capsid is a complicated process that requires several 

proteins.  These proteins have been predicted in BcepNY3.  BcepNY3 gp11 and 

BcepNY3 gp12 are nearly 100% identical to the major and minor structural head 

proteins of Bcep1, respectively (26).  The minor capsid protein here is the decoration 

protein, which is added to the exterior capsid to stabilize it.  Bcep1’s major capsid 

protein was determined by using PredictProtein software to justify that its secondary 

structure is similar to lambda E, the capsid protein of lambda (26).  Prohead proteases 

are used to convert a precursor (prohead) to a mature phage head.  BcepNY3 gp13 is 

100% identical to Bcep1 gp15, a prohead protease (26).  Bcep1 gp15 was one of nearly 

200 head maturation prohead proteases determined by Cheng et al. (6). The 

morphogenesis genes are highly identical to the Bcep781-like phage genes and also have 

the same linear order.  Therefore, the Summer et al. paper demonstrates that Bcep781-

like phage have the following gene order: terL, minor head protein(s), prohead protease, 

decorator protein, and major capsid protein, which is the same order found in BcepNY3. 

 

Lysis 

In Caudovirales host cell lysis requires, at a minimum, two proteins: an endolysin and a 

holin.  Endolysins are small enzymes that degrade cell wall peptidoglycan at a specified 

time during the infection cycle.  BcepNY3 gp26 encodes a primary sequence homologue 
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of Bcep781 gp27, which has previously been demonstrated to be an authentic endolysin 

(29).  An expect value of 3E-133 and 97% identity with Bcep781 gp27 indicate that the 

lytic function of this sequence is likely to be conserved in BcepNY3 gp26.  

 

Holins are hydrophobic integral membrane proteins that create an opening in the 

bacterial membrane, allowing endolysins to attack the peptidoglycan as described above.  

Holins are grouped into two classes based on their primary structure: Class I holins, 

which generally have more than 95 residues and form three transmembrane helices; and 

class II holins, which are smaller and form only two transmembrane helices (14).  

BcepNY3 gp28 shares significant structural similarities with Bcep1 gp31, a known 

holin.  Additionally, sequencing of BcepNY3 and Bcep1 has shown a high degree of 

similarity in the locations of these genes with respect to the theoretical endolysin coding 

regions.  Further TMHMM analysis of BcepNY3 gp28 suggest that it is a class I holin, 

with three transmembrane domains and a predicted N-out, C-in topology. 

 

Rz and Rz1 facilitate in lysis by rupturing the outer membrane.  The Rz protein, 

BcepNY3 gp26, was predicted by GeneMark and annotated by its homology to the 

Bcep781-like phages. Additionally, TMHMM predicted a transmembrane domain for 

BcepNY3 gp23, confirming the Rz annotation, as Rz’s N-terminus is imbedded in the 

inner membrane.  Rz1, BcepNY3 gp24 was not predicted by GeneMark but was 

manually predicted by the presence of a strong Shine-Dalgarno in the middle of the Rz 

gene, a conserved cysteine at the N-terminus, and by the SPII lipoprotein predicted by 
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LipoP.  This cysteine is modified and results in the formation an Rz-1 lipoprotein 

embedded in the outer membrane. 

 

BcepNY3’s relationship to Bcep1 

In the entire BcepNY3 genome, only 3 of the 70 predicted proteins do not have a Bcep1 

homologue.  Out of these 67 related genes, 30 are 100% identical and 32 are greater than 

90% identical.  Not only are these genes identical, but the genome organization is 

identical as well (FIG. 6). 

 

BcepNY3’s relationship to OP2 

BcepNY3 has 28 putative homologues with the Xanthomonas oryzae phage OP2.  All of 

the 28 homologues showed less than 60% identity; however, the gene order appears to 

be strongly conserved (FIG. 6).  This strong homology is interesting for phage that have 

different geographical locations and different host specificity (X. oryzae is a 

Gammaproteobacterium and B. cenocepacia is a Betaproteobacterium). 
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FIG 6. Comparison map of BcepNY3 to OP2 and Bcep1 
Three genomic maps are represented here.  From top to bottom they are as follows: OP2 
BcepNY3, and Bcep1.  The map consists of a bar in the center with boxes drawn as a 
predicted ORF.  ORFs above the bar are in the forward direction while ORFs below the 
bar are found on the reverse strand.  The function of the genes are color coded based 
upon function as follows: yellow, lysis; green, structural; red, metabolism; blue, 
unknown.  Lines are drawn from BcepNY3 to homologues in Bcep1 and OP2.  The color 
of the line represents the percent identity of the homologue to BcepNY3 as follows: light 
blue, less than or equal to 70% identity; lime green, 70% to 89% identity; purple, 90%-
99% identity; orange, 100% identical 

BcepNY3 

Bcep1 

OP2 
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CHAPTER IV 
 

SUMMARY AND CONCLUSIONS 

 

The Rhodococcus equi phage hunt yielded twelve novel phages isolated, making these 

the first reported R. equi phage isolated.  Surprisingly, these phages all appear to have 

similar morphologies, despite the fact that viruses are quite numerous and diverse, 

especially in local environments (3).  The dearth of diversity found in these 

bacteriophages raises several new questions.  First, is the enrichment procedure leading 

to a bias in phage morphologies isolated?  While this seems like a logical possibility, 

there have been other reports of using the same enrichment procedure with other bacteria 

that yielded other morphologies of phages (26).  Another concern with the enrichments 

used is that soil from different locations was pooled together.   Therefore, one location 

might have extremely virulent bacteriophages that are dominating the pool 

bacteriophages.  Work has already begun on this topic by using enrichments with soil 

from one location and characterizing these bacteriophages.  One other possibility is that 

these siphophages are the most fit virus for Rhodococcus equi.  Investigating this notion 

requires a wider study of R. equi bacteriophages and their interactions with the 

bacterium itself that is currently unavailable because these 12 R. equi bacteriophages are 

the first reported.  One important aspect to not overlook is that while these 

bacteriophages are all siphophages, their genomes have the potential to be quite diverse.  

Therefore, it is important to obtain genomic sequencing and annotation for these 

bacteriophages to help answer these questions. 
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Perhaps the most significant findings of the R. equi phage hunt are the broad host ranges 

of the soil enriched bacteriophages on clinical hosts.  The genomic projects of these 

bacteriophages has already been initiated and appear to have great potential for 

therapeutic usage.  Work is currently underway to use these bacteriophages and perhaps 

some of the clinically enriched ones to generate a cocktail of bacteriophages to be used 

as a prophylactic spray.   

 

Horses are only susceptible to R. equi infections during their first 4 to 5 months and 

afterwards become resistant to infection due to the development of a stronger immune 

system.  Due to the intracellular mechanism of pathogenesis and the short time frame of 

susceptibility, it would be more appropriate to use these phages in a prophylactic 

therapeutic spray, that could be opportunistically used, rather than direct treatment of 

foal infections.  There is a lot of work needed in this area to determine the proper 

concentration of each specific phage in the cocktail and the frequency of sprays required 

to sustain lower levels of R. equi infections. 

 

With the genomic project of BcepNY3, a Burkholderia cenocepacia bacteriophage, 

complete, it can be concluded that BcepNY3 is part of the previously described Bcep781 

family of phages (26).  One surprising discovery is that BcepNY3, and therefore the 

other Bcep781 phages, is related to the Xanthomonas oryzae phage OP2.  X. oryzae is the 

causative agent of leaf blight in rice (1).  At first glance it would not be expected that 



  48 

OP2 and BcepNY3 have a strong homology because their hosts are a 

Gammaproteobacterium and a Betaproteobacterium respectively.  Also, BcepNY3 was 

isolated in soils from New York and OP2, while the exact location of isolation is 

unknown, it can be assumed that it was most likely isolated from soils in Asia due to X. 

oryzae’s prevelance there (17).  However, upon further analysis there appears to be a 

potential link for horizontal gene transfer between the two phages.  Burkholderia 

cepacia, which is thought to be found ubiquitously in soils around the world, is believed 

to enhance its virulence by exchanging genes with Burkholderia psuedomallei (16).  B. 

pseudomallei is the causative agent of meleiodosis, a disease that plagues Southeast 

Asia.  Therefore, there is a geographical link between the host bactieria.  Also, another 

Burkholderia species, Burkholderia platnarii, is a pathogen of rice like X. oryzae, which 

leads to another possible avenue for gene transfer to occur (21).  Therefore, there are 

both geographic and pathogenic relationships between the two host of BcepNY3 and 

OP2, demonstrating a potential evolutionary relationship between these two 

bacteriophages and perhaps others of the same clade. 
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