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Abstract 

The novel non-isothermal Hot Forming and cold die Quenching (HFQ®) process can enable the cost-
effective production of complex shaped, high strength aluminium alloy panel components. However, 
the unfamiliarity of designing for the new process prevents its widescale adoption in industrial settings. 
Recent research efforts focus on the development of advanced material models for finite element 
simulations, used to assess the feasibility of new component designs for the HFQ® process. However, 
FE simulations take place late in design processes, require forming process expertise and are unsuitable 
for early-stage design explorations. To address these limitations, this study presents a novel application 
of a Convolutional Neural Network (CNN) based surrogate as a means of rapid manufacturing 
feasibility assessment for components to be formed using the HFQ® process. A diverse dataset 
containing variations in component geometry, blank shapes, and processing parameters, together with 
corresponding physical fields is generated and used to train the model. The results show that near 
indistinguishable full field predictions are obtained in real time from the model when compared with 
HFQ® simulations. This technique provides an invaluable tool to aid component design and decision 
making at the onset of a design process for complex-shaped components formed under HFQ® 
conditions.  

Keywords: Design for manufacture, sheet forming, hot stamping, machine learning, deep learning, 
convolutional neural network 

1 Introduction 

The growth in demand for lightweight materials in the automotive and other transport industries has 
accelerated in recent years, in response to the ever-growing concerns surrounding global environmental 
impact [1]. Aluminium alloys are a family of lightweight alloys with exceptional strength to weight 
ratios, beginning to find widespread applications in the automotive industry. Despite many advantages 
compared to conventional heavier steels, aluminium alloys exhibit poor formability under cold working 
conditions and display a significant degree of springback once removed from the forming tools [2].  

To overcome these limitations, the novel Hot Forming and cold die Quenching (HFQ®) process has 
been developed by Lin et al. [3]. A summary of the HFQ® process is shown in Figure 1, and described 
further by Mohamed et al. [4]. Briefly, aluminium blanks are heated to their solution heat treatment 
(SHT) temperature, before being formed and quenched simultaniously in cold dies, followed by 
artificial aging. Since the material formability is improved under the designed thermal conditions [4], 
the HFQ® process enables enhanced design freedom from high strength aluminium alloys, at the 
production efficiency of a hot stamping process.  
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Figure 1 A schematic summary of the HFQ® process, adapted from Raugei et al. [1]. 

The HFQ® forming process is non-isothermal, due to the temperature difference between the heated 
blank and cold dies [5]. The material flow stress response of aluminium alloys at elevated temperatures 
is temperature and strain rate dependant [4,6]. In hot stamping, the temperature and strain rate vary 
dynamically with both time and location in the sheet metal, which is unlike traditional and more familiar 
cold stamping processes [7]. Due to these inherent manufacturing complexities, there is a lack of 
familiarity amongst industrial designers. Consequently, it has been observed that the uptake of HFQ® 
technology is limited in modern industrial settings, meaning the potential weight saving and design 
capabilities of the new process are currently not realised to the full potential. 

Published literature on HFQ® focuses largely on the development of advanced material models that 
predict the material constitutive behaviour under HFQ® conditions [4,6,8–10]. These models are then 
used to accurately simulate the forming response of HFQ® formed components using Finite Element 
(FE) simulations [5,9,11] in order to assess their manufacturing feasibility. Though useful, forming 
simulations usually take place late in design processes, when the component design is near completion. 
Further, the numerical cost and forming process expertise deem FE simulations unsuitable for early 
stage decision making and design exploration, particularly for the new, less familiar HFQ® process. 

The advent of machine learning (ML) has introduced a new way to establish time efficient process 
models. ML, and in particular supervised learning, approaches fundamentally comprise of learning 
system dynamics from representative input-target data samples in a process known as training. Once 
trained, the ML models can be employed to infer system behaviours when presented with previously 
unseen  inputs [12]. Such models are commonly known in the literature as surrogate models. 

Surrogate models based on FE simulation data have been extensively used to support the design of sheet 
forming processes. Classic approaches involve scalar based models to regress the performance 
landscape, given a low dimensional design space parameterisation. As typical examples, Harsch et al. 
[13] used surrogate models to construct process forming window maps for a cold metal stamping 
process. Ambrogio et al. [14] employed a Kringing surrogate model technique to establish a relationship 
between incremental sheet forming processing parameters and final sheet thickness. However, those 
models are only effective for scenarios that can be parameterised using relatively few parameters and 
are highly dependent on a well-designed parameterisation schema. Examples of such scenarios are 
process parameter optimisation assuming a fixed geometry [15] or relatively simple shapes [16]. 
Engineering companies may conduct hundreds of forming simulations each day, resulting in an 
accumulation of large datasets that may not share common CAD parameterisations, especially for 
complex geometries that are often described by several dimensions. Data that falls outside of the pre-
determined parameterisation therefore cannot be leveraged by conventional approaches. 

In addition to the above limitations, the data extracted from simulations is commonly simplified into a 
manufacturing feasibility scalar evaluator, such as maximum strain. As mentioned by Zhou, Li & Xu 
[17], scalar based models lack informativeness due to this data consolidation. This is particularly true 
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in scenarios where the manufacturing feasibility is determined by distribution based indicators, such as 
post form thickness gradients [18], surface slip lines [19] and wrinkle distributions [20]. To provide 
richer data representations, other references predicted full field data on a FE mesh using deep neural 
networks (DNNs). For example, Sauer, Schleich & Wartzack [21] trained a DNN model to predict the 
10,000 node-based equivalent plastic strain for a locking tooth component and Pfrommer et al. [22] 
used DNNs to predict shear angles from over 24,000 elements in textile forming simulations. However, 
these models predict the mesh dependent simulation results; the element type, numbering strategy and 
mesh connectivity must be common between the training data and the model predictions. A mesh 
independence is desired for generalisation in forming applications, since components are of different 
shapes and sizes. 

To overcome the aforementioned limitations, researchers have recently borrowed modelling techniques 
from the field of deep learning, a subset of machine learning. In particular, Convolutional Neural 
Networks (CNNs), in conjunction with image representations of design inputs and computer simulation 
results outputs have been employed to preserve prediction informativeness without a mesh based 
dependency [17,23–29]. CNNs are a particular class of neural networks that have gained popularity 
when working with spatially structured data such as grids or images. Nie, Jiang & Kara [30] used CNNs 
to predict stress fields in 2D cantilever structures deforming elastically. Thuerey et al. [31] predicted 
full flow fields around varying aerofoil shapes at several flow conditions. Lino et al. [32] and Fotiadis 
et al. [33] simulated the dynamics of wave propagation within varying curved and multi-faceted open 
and closed geometries. 

The above studies have proven that CNNs provide strong predictive capabilities when modelling highly 
non-linear physical systems. However, the applications of CNNs to predict the manufacturing feasibility 
of components formed through hot stamping has not yet been explored. The complex non-isothermal 
nature of the HFQ® process together with the strain-rate dependency of aluminium alloys at elevated 
temperatures [4,6] make the process a challenging physical system to accurately model using 
conventional surrogate techniques.  

The purpose of this study is to present a novel application of a CNN based surrogate model as a means 
of real time manufacturing feasibility assessment of components to be formed through the HFQ® 
process. To the best of the authors’ knowledge, this is the first time CNN based deep learning techniques 
are applied to a non-isothermal forming process. The main contributions of this work are listed below: 

 A novel method for processing CAD geometries and FE simulation results from stamping 
simulations into image based representations for CNN training and evaluation. 
 

 A new dataset for corner shaped components formed under non-isothermal HFQ® conditions.  
 

 The implementation of the CNN-based approach for rapid manufacturing feasibility 
assessment, given a component geometry, blank shape, and processing parameters. 
 

 The demonstration of the approach for the non-isothermal HFQ® process, where complex 
forming responses such as deformation, thinning localisation and wrinkling are predicted. 
 

 A comparison between the predicted and real FE simulated forming responses, establishing 
the effectiveness of the approach.  
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2 Overview of the proposed component feasibility assessment approach 

An overview of the proposed approach is presented in Figure 2. Typically, a conventional feasibility 
assessment for a production process is carried out following the simplified process shown in the green 
boxes. The feasibility of candidates design is assessed by forming simulations based on finite element 
analysis (FEA) [5]. As mentioned in the introduction, forming simulations are unsuitable for design 
explorations and early stage decision making. Since the simulator would have to be run by a process 
engineer with knowledge of the HFQ® process each time a designer wishes to make a geometry change, 
this makes the design process slow and costly. A typical engineering approach would therefore be to 
only simulate a small set of potential design candidates without an extensive search of potential design 
solutions. This process can be prolonged by improper initial designs for HFQ® by designers unfamiliar 
with its process limits. Consequently, the HFQ® process may be overlooked by designers and more 
conventional less efficient, heavier, or higher embedded CO2 solutions may be adopted instead. 

 

Figure 2 An overview of the proposed design feasibility assessment approach (blue boxes) for HFQ®, compared with the 
conventional approach (green boxes). 

This paper presents a data-driven alternative approach to rapidly predict component manufacturing 
feasibility of geometries to be formed using HFQ® technology without extensive knowledge of the 
process, for use at the onset of a design process, seen by the blue boxes in Figure 2. Data from design 
choices (e.g., component geometry, etc) together with forming simulation results are first mapped into 
a suitable form before being used to train a CNN based surrogate model. Once trained, the surrogate 
will be used to assess the feasibility of new component geometries to be HFQ® formed in real time. 
Once suitable solutions are found from the model, detailed component design can continue, with only 
manufacture-intent geometries reviewed by the FE simulator, thus removing the need for extensive FEA 
iterations. Therefore, this paper provides an invaluable design support tool, enabling designers to 
become familiar with the design capability of the HFQ® process and design without requiring the 
involvement of an HFQ® expert.  

As well as variations in geometry, the proposed CNN based surrogate model takes as input HFQ® 
forming process parameters such as blank shape, which a designer can approximate using common 
CAD unfolding tools, and manufacturing parameters. The outputs are taken to be the displacement and 
thinning fields, which are used to evaluate the manufacturing feasibility of the designed component.  
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3 Problem definition and design of experiments  

Prior to model training, a diverse dataset must be established which captures the key forming 
characteristics of the considered system. As mentioned in the overview, data used to train the model is 
sourced from FE forming simulations. The problem definition, details on the design of experiments are 
discussed in this section. 

3.1 Geometry and blank definition 
3.1.1 Geometry 

Being common limiting design features for rectangular or square components, deep drawn corners are 
considered in this study as an example use case. Specifically, flanged shrink corners are considered, 
which are formed when blank material is drawn into a plan view radius that is smaller than the blank 
corner radius, as described by Horton et al. [34]. Due to their symmetry, quarter boxes are modelled, 
with a half side length of 500 mm. Three corner fillet radii and the deep draw height are considered as 
geometric parameters, as seen in Figure 3 together with some example die geometries. The tool 
geometries are determined by surface offsets from designed components. 

  
(a) (b) 

Figure 3 (a) Geometric parameter definitions for shrink corners and (b) example die geometries. 

3.1.2 Blank shape 

The blank shape has been reported in the literature to be a critical factor in ensuring a successfully 
formed component under HFQ® conditions. Politis et al. [11] explained that blank shape optimisation 
was essential in forming trials of a complex shaped deep drawn door inner geometry using HFQ® 
conditions. Zhu et al. [35] demonstrated how local necking was eliminated when removing excessive 
blank material from a L-shaped deep drawn component. Since part designers are often not familiar with 
creating optimal blank shapes, it is useful to include the effect of blank shape, while understanding that 
the final blank design will be optimised at a later stage of development. 

The blank shapes in this study are schematically in Figure 4. Figure 4(a) shows a section through a 
generic as-formed corner and Figure 4(b) gives the undeformed blank dimensions. The blank half-
length and blank radius are denoted by 𝐿  and 𝑟  respectively in the figure and are functions of 
the component dimensions to ensure sufficient blank material. The flange width and punch half width 
are denoted by 𝐹 and 𝑊 and are kept constant at 50 and 500 mm, respectively. To allow further variation 
in the blank shapes, the blank dimensions are scaled by scaling factors 𝐴 and 𝐵, as seen in Figure 4(b).  

  
(a) (b) 

Figure 4 Determination of undeformed blank shape geometries with (a) section through the as-formed corner with 
calculation of blank half length 𝐿  and blank radius 𝑟 , and (b) square quarter blank with scaling factors 𝐴 and 𝐵. 
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3.2 HFQ® Simulation setup 

To build the simulation models, the tool and blank CAD variant generation was automated using the 
VBA programming language in SolidWorks. Filtering rules as well as upper and lower bounds were 
applied to preserve geometric integrity during the automation process, as described by Ramnath et al. 
[36,37]. To mesh the CAD geometries for the FE simulations, the commercial FE pre-processing 
software HyperMesh was used. Within HyperMesh, the TCL programming language was utilised to 
automate the FE mesh generation.  

Due to its specialisation for sheet metal forming, the FE software PAM-STAMP was utilised for the 
HFQ® forming simulations. Due to the vast number of simulations required to populate the dataset, the 
Python programming language was used in conjunction with PAM-STAMP’s scripting interface to load 
in the prepared mesh files for each geometry and automate the computations. Each simulation model 
represents one unique sample in the dataset and consists of five components, as shown by the example 
in Figure 5. Due to the symmetry of the problem, only one quarter of the geometry was modelled, and 
symmetry boundary conditions were imposed. 

  
(a) (b) 

Figure 5 Finite element model example: (a) cross sectional view and (b) HFQ® formed component. 

To simulate non-isothermal HFQ® conditions, coupled thermo-mechanical simulations were 
conducted. During each simulation, the die and blank holder were kept at a fixed distance apart, 
determined by the spacer thickness. The punch was fixed in all degrees of freedom, while the die, spacer 
and blank holder could move in the vertical direction under imposed displacement boundary conditions 
to deform the blank over the punch. The tools were modelled as mechanically rigid bodies but with 
active temperature degrees of freedom to allow for heat transfer. The blank was modelled using 
deformable reduced integration Belytschko-Tsay shell elements with a 2 mm blank thickness for all 
samples, and five through thickness integration points. The main process and simulation parameters are 
given in Table 1 and the physical properties of the blank and tools are given in Table 2, based on typical 
values found in HFQ® literature [4,5,38,39]. 

Table 1 Main process and simulation parameters. 
Parameter Value 
Initial workpiece temperature °C Variable – See Table 3 
Initial tooling temperature °C 25 
Stamping speed mm/s Variable – See Table 3 
Spacer thickness mm Variable – See Table 3 
Friction coefficient (all interfaces) 0.1 [38] 
Velocity scaling factor 10× 

Since a large number of simulations were needed, efforts were made to reduce simulation time where 
possible, while maintaining the integrity of the simulation results. Adaptive mesh refinement was used 
on an initial course blank mesh to refine mesh iteratively during the computation only where it is 
needed, for example, to capture local bending characteristics, as highlighted in Figure 5(b). A velocity 
scaling factor was used to further reduce the simulation times, and the strain rate correction feature in 
PAM-STAMP was enabled to maintain the correct strain rates at scaled stamping speeds. Simulation 
times were on average 5 minutes for each sample on an Intel Core i7-9700 CPU using 8 processors.  
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Table 2 Physical properties of the AA6082 blank and tool steel. 
Property AA6082 Tool steel 

Thermal conductivity (tonne·mm)/(s
3
·K) 170 20 

Specific heat capacity (mm
2
)/(s

2
·K) 8.9E8 5E8 

Density tonne/mm
3
 2.7E-9 7.8E-9 

Poisson's ratio 0.33 0.3 
Young’s modulus MPa 7E4 2.1E5 
Heat transfer coefficient Function of gap and pressure [40] 

3.3 Material model 

To capture the material constitutive behaviour under HFQ® conditions, the FE simulations used a 
temperature and strain rate dependant viscoplastic material model for AA6082, adapted from El Fakir 
[40]. This material model enables the viscoplastic effects on the flow stress of AA6082 after SHT at 
elevated temperatures to be considered and covers typical temperature and strain rate ranges seen during 
the HFQ® forming process. Examples of flow stress-strain curves plotted from the material model are 
shown in Figure 6. Further details of the material model can be found in the original paper [40]. 

  
(a) (b) 

Figure 6 Temperature and rate dependant flow stress-strain model [40] for AA6082 used in HFQ® simulations. 

3.4 Preliminary HFQ® processing simulations 

Recall that the purpose of the numerical experiments was to establish a diverse dataset that captures all 
the key forming characteristics of the considered system. As such, the most important factors which 
influence the material forming response were first identified by conducting preliminary simulations. 
The influence of geometric parameters when forming corners was previously characterised by the 
authors of the present paper [41]. The effect of processing parameters is now considered. 

With the AA6082 material model introduced above, a representative corner geometry was formed under 
a combination of initial blank temperatures and stamping speeds under HFQ® conditions. Figure 7 
highlights variation in post-form thinning as a consequence of varying these processing parameters. 
Under these conditions, it was found that a lower temperature and higher forming speed contributed to 
improved thickness uniformity. This trend is in good agreement with the conclusions drawn by Zheng 
et al. [42] when experimentally investigating the hot drawability of AA6082 under HFQ® conditions. 

  
(a) (b) 
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Figure 7 Thinning response of a typical AA6082 HFQ® formed shrink corner at initial blank temperatures of 350, 425 
and 500 °C at speeds of (a) 50 mm/s and (b) 500 mm/s. 

Forming with an initial blank temperature of 350 °C at 500 mm/s produced an optimum forming 
response, however these processing conditions might not be easily achievable. Since in a HFQ® 
process, is a solution heat treatment step (at 525 °C for AA6082 [43]) is required prior to forming [3,4], 
pre-cooling to 350 °C might not always be possible and may require specialist equipment. Further, 
existing presses used for older and more conventional forming technologies, such as cold forming or 
hot stamping steels, may operate at lower maximum press speeds than the speeds typically required for 
HFQ® (250 mm/s and above [44]). For example, Ganapathy et al. [45] use speeds as low as 60 mm/s 
when hot stamping a boron steel B-pilar component. Therefore, there is a need to evaluate a candidate 
component design under a range of processing parameters, to determine whether or not a feasibility 
window exists, using available resources, for that geometry when formed using the HFQ® process.  

To further exploit the predictive capability of the model, samples with wrinkling were deliberately 
included in the dataset. In this study, wrinkling was provoked by varying the spacer thicknesses (see 
Figure 5(a)). The effect of varying the spacer thickness can be seen in Figure 8 where large ripples can 
be seen in the flange area at greater spacer thicknesses. It was also found that wrinkles induce regions 
of localised thinning on the lower sidewall of the corner component, as seen in the figure, due to the 
increased difficulty to draw in material. 

  
(a) (b) 

Figure 8 Thinning and wrinkling response of a typical AA6082 HFQ® formed shrink corner with spacer thicknesses of 
2.2, 5 and 10 mm at speeds of (a) 50 mm/s and (b) 500 mm/s. 

Following the preliminary forming simulations, the novel HFQ® dataset developed in this study 
included the effects of initial blank temperature, stamping speed and spacer thickness, to capture their 
associated effects. Another merit of including such parameters into the dataset is that the developed 
model is compatible with engineering data collected over time by engineering companies, which may 
be generated under different process settings. 

3.5 Design of experiments  

The parameters considered in this study are summarised in Table 3. Each parameter was assigned a 
defined range to generate a diverse distribution of forming characteristics within the dataset. Examples 
of forming characteristics to be included in the dataset include excessive localised thinning due to non-
uniform temperatures distributions and sharp tool geometric features, thickening, and excessive 
wrinkling.  

It is to be noted that extreme forming responses such as excessive thinning, and wrinkling are indeed 
undesirable when forming a real component, and are considered as forming induced defects [4,15]. 
However, only by including samples (i.e., combinations of input variables) which are responsible for 
producing such unwanted forming induced defects can the model learn to understand when these defects 
occur. Therefore, the parameter ranges were deliberately selected to induce such defects onto some 
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samples. As an example, the spacer thickness upper bound was set to 10 mm, meaning wrinkles with a 
10 mm ripple height would be induced for those samples as seen in Figure 8. 

Table 3 Considered parameters and ranges. 
Parameter Symbol Group Range 

Die radius 𝑟  Geometry 5 – 25 mm 

Punch radius 𝑟  Geometry  5 – 25 mm 

Plan view radius 𝑟  Geometry 60 – 120 mm 

Design height 𝐻 Geometry 60 – 120 mm 

Blank width scaling factor 𝐴 Blank shape 1.1 – 0.9 

Blank radius scaling factor 𝐵 Blank shape 1.1 – 0.1 

Spacer thickness 𝑡  Processing 2 – 10 mm 

Initial blank temperature 𝑇  Processing 350 – 500 °C 

Stamping speed 𝑆 Processing 50 – 500 mm/s 

In total, 1800 unique samples, consisting of CAD geometries, undeformed blank shapes, and processing 
parameters, were built. The Latin hypercube [46] design of experiments (DoE) technique was 
employed, together with the variable ranges given in Table 3. It is a popular sampling strategy for 
deterministic computer simulations, enabling a uniform distribution of samples within the design space 
while avoiding recurrences. 

4 Data preparation 

The component geometries, blank shapes, processing parameters and corresponding FE simulation 
results are used for training and evaluating the CNN based surrogate model. Before training, the data 
must be mapped into a unified image representation. Details on the novel data preparation strategy used 
in this study are given in this section.  

4.1 Input images 

For any stamping process, an undercut-free geometry is a necessary requirement in avoiding collision 
with forming tools. As such, the 3D die geometries were projected onto a 2D plane (i.e., an image) with 
a height contour without information loss. All images in this study used uniform Cartesian grids with a 
fine resolution of 256 × 256 pixels to capture small geometric features in the die, such as sharp radii. 
To perform the projection, the CAD models were first converted into meshes, which enabled them to 
be represented by a discrete set of nodes. The mesh nodes were treated as point clouds with Cartesian 
coordinates in 3D space and the out of plane height values were then interpolated onto a uniform 2D 
Cartesian grid.  

Similarly, the blank position was also interpolated onto an image to form a binary map, with a pixel 
value of ‘1’ where there is material and ‘0’ for void regions. It is conjectured in this paper that 
representing scalar inputs as images improves model prediction performance, since it allows the CNN 
kernels to convolve on those images and learn the corresponding kernel weights during training. To 
generate an image representation of the scalar process parameters, the spacer thickness 𝑡 , initial blank 

temperature 𝑇  and stamping speed 𝑠  for sample 𝑖 were all multiplied to ‘1’ and ‘0’ blank images to 

form image representations. Consequently, the pixel location on these images remained a representation 
of the blank geometry, while the pixel values represented the scalar parameters. An example sample 
from the dataset is shown in Figure 9. 
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(a) (b) 

Figure 9 Example sample from the dataset: (a) CAD models of the die and blank (b) prepared 256 × 256 resolution input 
images for network training and evaluation. 

The procedure for obtaining input images from CAD files is summarised in Algorithm 1. Once collated, 
one sample from the dataset had an input size of 4 × 256 × 256. It is to be noted that Algorithm 1 can 
be implemented in any programming language and the meshing steps performed using open source 
meshing libraries, such as PyMesh [47], for a fully automated procedure. 

Algorithm 1 Procedure for obtaining input images for network training and evaluation 

Require: 𝑛  = total number of samples, 𝐻 × 𝑊 = image resolution, 𝑮 = Die CAD geometries,  𝑩 = Blank CAD 
geometries, 𝒕𝒔 = Spacer thicknesses, 𝑻𝒊𝒏𝒊𝒕 = Initial temperatures,  𝑺 = Stamping speeds 

Arrays: 

 𝑮 = 𝑔 , 𝑔 ,  … ,  𝑔  where 𝑔  is the die CAD geometry of sample 𝑖 

 𝑩 = 𝑏 , 𝑏 ,  … ,  𝑏  where 𝑏  is the blank CAD geometry of sample 𝑖 

 𝒕𝒔 = 𝑡 ,  t ,  … ,  𝑡  and 𝑡  is the spacer thickness of sample 𝑖 

 𝑻𝒊𝒏𝒊𝒕 = 𝑇 ,  𝑇 ,  … ,  𝑇  and 𝑇  is the initial blank temperature of sample 𝑖 

 𝑺 = [𝑠 , 𝑠 ,  … ,  𝑠 ] and 𝑠  is the stamping speed of sample 𝑖 

1: for 𝑖 = 1, …, 𝑛  do 
2:     Sample 𝑔 , 𝑏 , 𝑡 , 𝑇 , and 𝑠  from prepared arrays 
3:     Die mesh ← die CAD geometry 𝑔  
4:     Grid heights  ← interpolate(die nodal heights, 𝐻 × 𝑊 grid) // 1 die image 
5:     Blank mesh ← blank CAD geometry 𝑏  
6:     Grid blank positions  ← interpolate(blank nodal positions, 𝐻 × 𝑊 grid)  // 1 blank binary map 
7:     Multiply scalars 𝑡 , 𝑇 , and 𝑠  individually to blank binary map // 3 scalar parameter blank images 
8:     Channel wise concatenation of images from 4. and 7. // obtain 4 × 𝐻 × 𝑊 array for sample 𝑖 
9:     Store sample 𝑖 from 8. in 𝑛  × 4 × 𝑁 × 𝑁 array 
10: end for 
11: Export pre-processed input 𝑛  × 4 × 𝑁 × 𝑁 array 
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4.2 Simulation quality assessment 

Before processing the simulation results into target images, the quality of the FE simulation results was 
assessed to ensure a high quality dataset. Extreme variable sets (e.g., excessively tight radii and large 
spacer thicknesses) were included in the dataset to provoke forming induced defects as mentioned 
previously. Because of this, it was found that some samples in the dataset contained physically 
implausible numerical outliers on the FE simulation results. Figure 10 shows two examples of 
physically implausible outliers on simulation results caused by material splitting due to excessive 
thinning, and material folding due to the drawing of wrinkles. In both cases, element distortions were 
found, with approximately 52% thinning and 75% thickening respectively, which clearly indicate 
material failures, but those values are not be physically plausible. These samples had to be corrected 
since they risked deteriorating the performance of the model. 

  
(a) (b) 

Figure 10 Simulation results of samples with numerical outliers due to (a) excessive thinning and splitting and (b) 
excessive wrinkling. 

The distributions of samples with such outliers were clipped at their 99.5th percentiles to eliminate the 
risk of dataset corruption. A sample was flagged during image pre-processing as having implausible 
outliers if the maximum thinning or thickening values across its entire distribution violated predefined 
thresholds. Thresholds 𝑐  and 𝑐  were defined as maximum allowable thinning and thickening (i.e., min 
allowable thinning) respectively. The distributions of the flagged samples were then clipped and an 
example of thinning spectrums across all elements before and after clipping a sample with excessive 
wrinkling are shown in Figure 11. This approach was found to preserve the quality of the dataset.  

  
(a) (b) 

Figure 11 Example of distributions on a sample with wrinkling: (a) before and (b) after clipping at 99.5th percentile. 

4.3 Target images 

The target images are defined as the ground truths (i.e., actual FEA observations) for the network 
predictions to target during training. In this paper, these are images processed from the HFQ® 
simulation results. The simulation results considered were the post form thinning fields as well as X, 
Y, and Z components of displacement fields.  

Similar to the input images, FE nodes were taken as point clouds and interpolation operations are used 
to convert nodal data to images. However, the thinning fields are computed at the element integration 
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points, rather than at nodes, by the FE solver. To avoid troublesome calculation of the locations of 
integration points, the elemental field data was converted to nodal data, by averaging the elemental 
values to the connected nodes, as graphically illustrated in Figure 12. In the figure, 𝑡 ( ) is the thinning 
value from sample 𝑖 at element 𝐴, and 𝑡 ,  is the thinning value at node 𝑘 averaged over its connected 
elements. The required connectivity information was extracted from the FE mesh files. Reduced 
integration elements were used for the simulations in this study, and therefore each element had only 
one integration point at the mid thickness. 

 

Figure 12 Illustration of averaging elemental field values to connected nodes. 

Once the elemental field values were converted to nodal field values, the nodal point cloud of the as-
formed component was converted back into the undeformed blank shape to enable a convenient 2D 
configuration for the images. Since adaptive mesh refinement was used during the FE computation (see 
Figure 5(b)), the nodes at the final stamping stage (which contain the field values) were different to the 
initial set of nodes belonging to the undeformed blank. Equation (1) was used to obtain the undeformed 
positions from the nodes at the final stamping stage,  

𝒅 , = 𝒅 − 𝜹  (1) 

where 𝒅 ,  are the 3D nodal coordinates of the undeformed flat blank, 𝒅  are the 3D nodal coordinates 
of the as-formed component and 𝜹  is the 3D nodal displacement field calculated by the FE simulation, 
all for sample 𝑖. The 2D point cloud data from the undeformed flat blank was then interpolated onto a 
uniform Cartesian grid, and field values were masked to ‘0’ where there is no blank material using the 
blank shape binary maps (see Section 4.1). This process is illustrated in Figure 13, and the overall 
proposed procedure for obtaining target images is summarised in Algorithm 2, which again is 
automatable. 

 

Figure 13 Illustration of converting an FE simulation result into an image representation with thinning contour displayed. 
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Algorithm 2 Procedure for obtaining target images for network training and evaluation 

Require: 𝑛  = total number of samples, 𝑛  = total number of fields,  𝐻 × 𝑊 = image resolution, 𝒄 = allowable 
extreme elemental values, 𝒕 = thinning fields, 𝜹 = displacement fields, 𝒅 = deformed nodal coordinates, 𝑪 = 
element connectivity 

Arrays: 

 𝒄 = [𝑐 , 𝑐 ], where 𝑐  and 𝑐  are maximum and minimum allowable elemental values respectively 

 𝒕 = 𝒕 , 𝒕 ,  … ,  𝒕  where 𝒕  is a vector containing the elemental thinning field of sample 𝑖 

 𝜹 = 𝜹 , 𝜹 ,  … ,  𝜹  where 𝜹  is a vector of the 3D nodal displacement field of sample 𝑖 

 𝒅 = 𝒅 , 𝒅 ,  … ,  𝒅  where 𝒅  is a vector of the 3D deformed nodal coordinates of sample 𝑖 

 𝑪𝒆 = 𝑪𝒆 , 𝑪𝒆 ,  … ,  𝑪𝒆  where 𝑪𝒆  is the element connectivity of sample 𝑖, commonly found in any 

standard FE mesh file 

1: for 𝑖 = 1, …, 𝑛  do 
2:     Sample fields 𝒕 , 𝜹 , 𝒅  and 𝑪𝒆  from prepared arrays 
3:     𝒅𝟎,𝒊 ← 𝒅𝒊 − 𝜹𝒊 // undeform final stage nodes 
4:     Determine nodal connectivity 𝑪𝒏  from 𝑪𝒆  
5:     for 𝑗 = 1, …, 𝑛  do 
6:         if field 𝑗 is element based do // i.e., if field was calculated at integration points by FE solver 
7:             field 𝑗 ← average(field 𝑗, 𝑪𝒏 ) // average field to connected nodes using nodal connectivity 𝑪𝒏  
8:             if max(field 𝑗) > 𝑐  or min(field 𝑗) < 𝑐  do 
9:                 field 𝑗 ← clip(field 𝑗, 99.5th percentile) // clip extremes to eliminate outliers 
10:             end if 
11:         end if 
12:         field 𝑗  ← interpolate(field 𝑗, 𝒅𝟎,𝒊, 𝐻 × 𝑊 grid) // interpolate onto a uniform Cartesian grid 
13:         Store field 𝑗 from 12. in 𝑛 × 𝐻 × 𝑊 array 
14:     end for 
12:     Store sample 𝑖 from 13. in 𝑛  × 𝑛  × 𝐻 × 𝑊 array 
15: end for 
16: Export pre-processed target 𝑛  × 𝑛  × 𝐻 × 𝑊 array 

5 Network architecture and training 

A neural network architecture was developed to be tailored for extracting characteristic features of the 
input images and mapping those features to corresponding HFQ® simulation results. Details of the 
network architecture and employed training scheme are given in this section.  

5.1 Neural network architecture 

The fundamental components of the neural network architecture utilised in this paper are its 
convolutional layers. By convolving learnable kernels across input images, convolutional neural 
networks (CNNs) hieratically detect and extract locational features. Important design features on a 
component geometry or blank shape were therefore automatically detected without human supervision, 
deeming CNNs suitable for the application of component feasibility analysis. The network architecture 
is presented in Figure 14.  

A Res-SE-U-Net was selected in this paper to serve as the CNN architecture. Res-SE-U-Nets have 
recently been proven to be effective architectures for image-to-image translation tasks by a number of 
studies [17,25,30]. This novel architecture consists of two key components: a U-Net backbone with 
concatenative skip connections and integrated ResNet layers with Squeeze and Excitation modules 
(Res-SE) (detailed in Figure 15). U-Nets were originally proposed by Ronneberger, Fischer & Brox 
[48] for the application of biomedical image feature extraction and segmentation. Since then, U-Nets 
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have been extensively applied to model physical systems, such as simulating wave dynamics by Lino 
et al. [32] and predicting airflows around aerofoils by Thuerey et al. [31] to name a few. 

Figure 14 Res-SE-U-Net architecture of the neural network: a U-Net structure with Res-SE architectural blocks at its 
bottleneck, and illustration of images used for network training. 

A U-Net consists of an encoder-decoder set up with concatenative skip connections established to 
bridge intermediate feature maps. The contracting path (encoder) and expansive path (decoder) can be 
seen in the left and right side of Figure 14 respectively. At each down-sampling operation in the encoder, 
the image spatial dimensions are reduced while the number of feature channels are increased. The 
encoder outputs a spatially condensed representation of the input images at the bottleneck of the 
architecture. Intuitively, this dense representation contains a “summary” of the most important features 
contained in the inputs. The dense representations are then passed through the bottleneck (detailed 
below) before being fed into the decoder. The decoder is a mirror of the encoder; at each up-sampling 
(i.e., up convolution) operation in the decoder, the image spatial dimensions are increased while the 
number of feature channels are reduced. The novel skip connections in the U-Net architecture perform 
channel-wise concatenations of feature maps from the encoder to the decoder. This ensures feature 
reusability and thereby helps recover spatial information lost during down-sampling [48]. Apart from 
the final layer, all convolutional layers in the encoder and decoder were followed by Batch 
Normalisation (BN) and ReLU layers. Table 4 summarises the configuration details of the network 
layers used in this study. 

Table 4 Dimensionality and configuration of each layer in the designed Res-SE-U-Net. 

Layer Function 
Input 

channels 
Output 
channel 

Spatial 
kernel 

Stride Padding BN? 
Activation 
Function 

Encoder 
E1 Conv2d 4 16 9 × 9 1 4 Yes ReLU 
E2 Conv2d 16 32 8 × 8 2 3 Yes ReLU 
E3 Conv2d 32 64 6 × 6 2 2 Yes ReLU 
E4 Conv2d 64 128 4 × 4 2 1 Yes ReLU 

Bottleneck (6x identical Res-SE layers with SE block reduction ratio 𝑟 = 16) 
B1 to B6 - 128 128 See Figure 15 
Decoder 

D1 ConvTransposed2d 256 64 4 × 4 2 1 Yes ReLU 
D2 ConvTransposed2d 128 32 6 × 6 2 2 Yes ReLU 
D3 ConvTransposed2d 64 16 8 × 8 2 3 Yes ReLU 
D4 Conv2d 32 8 5 × 5 1 2 Yes ReLU 
D5 Conv2d 8 1 or 3 5 × 5 1 2 No None 
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The bottleneck, defined as the zone between the encoder and decoder, is responsible for processing 
spatially dense representations (i.e., smallest H and W dimension) of the inputs, converting them into 
dense representations of the simulation results. Since dense representations are processed in this region 
of the architecture, Res-SE layers were chosen to enhance information flow. A Res-SE layer consists 
of a Residual Network (ResNet) module [49] with an integrated Squeeze and Excitation (SE) block 
[50]. Information is processed by the Res-SE layers as shown by the flow diagrams Figure 15.  

 
Figure 15 Composition of a Res-SE layer: (a) ResNet module with characteristic skip connection and integrated SE block 

shown in (b). 

The utilisation of ResNet module introduces several benefits in terms of model performance. Unlike 
the concatenative skip connections used in the U-Net backbone, the additive skip connection shown in 
Figure 15(a) enables an alternative identity mapping between the input and output of a ResNet module 
to be established. The identity mapping helps preserve gradients to combat the vanishing gradient 
problem [49]. Further, the identity mapping also helps tackle the degradation problem, where network 
training accuracy has been reported to drop with increasing the number of layers [51,52]. This is 
because it is easier to optimise a residual mapping. As an extreme, when an identity is deemed optimal 
during training, it would be easier to push the weight layers (Conv + BN + ReLU and SE block layers 
in Figure 15) to zero rather than fitting an exact identity mapping, as first hypothesised by He et al. [49] 
and later confirmed by Li et al. [53]. Overall, the ResNet modules allow for deep neural architectures 
to be established, and the weight layer depths to be dynamically selected during training.  

The SE blocks inside the ResNet modules are novel architectural units used as channel-wise attention 
mechanisms, first introduced by Hu, Shen & Sun [50]. To boost the representational capability of the 
network, the SE blocks adaptively recalibrate channel-wise feature maps within the ResNet module by 
explicitly establishing interdependencies between channels [50]. As shown in Figure 15(b), the inputs 
to the SE block 𝒖 ∈ ℝ × ×  are first squeezed by a global average pool layer into a spatially averaged 
representation vector 𝒘 ∈ ℝ × × , where 𝐶, 𝐻 and 𝑊 denote the channel, height and width dimensions. 
Then two fully connected (FC) layers are used to downscale 𝑤 with a reduction ratio 𝑟 (FC+ReLU 
layer) into 𝒑 ∈ ℝ ⁄ × ×  and then upscale (second FC layer) into 𝒒 ∈ ℝ × × . To embody the 
channel-wise recalibration of the input 𝒖, 𝒒 is spit along the channel wise direction to form 𝒆 ∈ ℝ × ×  
and 𝒃 ∈ ℝ × × , where 𝒆 is passed through a sigmoid activation function before scaling the input 𝒖 
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while 𝒃 provides an offset bias. The result of the SE block is the recalibrated or excited tensor 𝒗 ∈

ℝ × × . 

5.2 Network training 

A random 10% of the data was held back for testing while the remaining 90% was used for training. 
Each input instance was of size 4 × 256 × 256, following Section 4.1. For the target images, the thinning 
images were of size 1 × 256 × 256 and the displacement images were of size 3 × 256 × 256, with the 
3 representing the X, Y, and Z components of displacements. Separate Res-SE-U-Nets were trained on 
input-thinning and input-displacement data pairs to prevent the sharing of network weights, which 
would otherwise occur if both types of outputs were to be predicted simultaneously by a single network. 
These networks both followed an identical architecture to Figure 15 but varied only in the output 
channel size, as seen in the figure and in Table 4.  

The Mean Square Error (MSE) loss function was selected to evaluate network performance during 
training. The network prediction 𝑦 and ground truth 𝑦 are both displayed as 256 × 256 images, and 
were reshaped into a 1D array of length 𝑛 = 256  before being passed into Equation (2) to evaluate the 
MSE. 

𝑀𝑆𝐸 =  
1

𝑛
𝑦 − 𝑦  (2) 

Through an iterative training process, the optimiser sought to find the combination of network 
parameters to minimise the MSE loss function. In this way, the network was able to learn a function 
that can predict the HFQ® simulation results, and therefore manufacturing feasibility, given a new 
component geometry and process set up. 

The models were trained in the PyTorch framework using the commonly recommended Adam optimiser 
[54] with default beta parameters 𝛽 = 0.9 and 𝛽 = 0.999, learning rate of 0.0005 and batch size of 
20. The training loss history is shown in Figure 16, where steady declines can be seen indicating training 
stability for the designed network architecture. Training was set to be terminated at 1500 epochs. The 
thinning network took 3.4 hours to achieve convergence on the test set (300 epochs) and displacement 
network took 11.3 hours (1000 epochs). Both networks were trained on a NVIDIA Quadro RTX 5000 
GPU. 

  
(a) (b) 

Figure 16 Loss histories of the proposed neural network models: (a) thinning network and (b) displacement network. 
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6 Results and discussion 

The performance of the trained networks was evaluated to understand to what extent the models could 
be used for rapid HFQ® feasibility assessment. Details of the network performance, advantages and 
limitations are given in this section. For better reader visualisation, the scalar field distribution maps 
are presented as coloured images, note that the networks process monochrome images. 

6.1 Thinning field prediction 

The thinning field prediction performance was evaluated by comparing the predictions given by the 
network with ground truths (i.e., actual HFQ® FE simulation results). For brevity, network predictions 
are denoted as PD and ground truths as GT hereafter. Cases from the test set were used for evaluating 
the network predictions. These cases contained new component geometries formed under different 
processing conditions and different blank shapes to those seen by the network during training. 

Figure 17 compares the thinning fields from five randomly sampled cases from the test set, without 
wrinkles, predicted from the network with equivalent ones from FE simulations. For all cases, 
indistinguishable distributions between network predictions and ground truths can be seen. Recall that 
the network does not solve any system dynamics iteratively like a FE solver does and has therefore 
learnt the physics of the HFQ® forming process from data supplied during training. 

Figure 17 Comparison of ground truths with network predictions for thinning distributions and pixel wise differences for 
five random test set cases without wrinkles. Contours plotted on undeformed blank geometry. 

A similar comparison can be seen in Figure 18 but this time for test set samples which showed the 
greatest maximum absolute error (MAE) between the network prediction PD and ground truth GT, 
defined as in Equation (3). 

𝑀𝐴𝐸 =  |𝑚𝑎𝑥(𝑃𝐷) − 𝑚𝑎𝑥(𝐺𝑇)| (3) 

It was found that the samples responsible for the greatest MAE for thinning prediction were samples 
which had experienced wrinkling when formed. In Figure 18, wrinkling is evidenced by the nebulous 
thinning distributions in both the PD and GT images, particularly around the blank borders, and were 
later confirmed by viewing the displacement distributions (discussed below). Such patterns were not 
present in the samples shown in Figure 17 which had no wrinkling and clear distributions.  



18 
 

 
Figure 18 Comparison of ground truths with network predictions for thinning distributions and pixel wise differences for 
the top five largest MAE test set cases, all of which had wrinkles. Contours plotted on undeformed blank geometry. Red 

circles highlight small local differences in distributions. 

To study the predicted thinning distributions in more depth, Case 1 from Figure 17 (without wrinkles) 
and Case 6 from Figure 18 (with wrinkles) are taken as representative samples. Figure 19 presents the 
thinning distributions cut along a diagonal line through these cases. For the case without wrinkles, an 
excellent agreement between PD and GT can be seen. The case with wrinkles still shows the 
characteristic peaks, although the peaks do not match exactly between the PD and GT.  

(a) (b) 

Figure 19 Thinning along a diagonal line for (a) Case 1 from Figure 17 (without wrinkles) and (b) Case 6 from Figure 18 
(with wrinkles). 

To further evaluate the overall thinning prediction performance, the data distributions are visualised by 
violin plots in Figure 20 and the Kullback-Leibler divergences (KLD) between the GT and PD 
distributions are calculated, shown in the figure headings. The KLD is selected, among others, as a 
metric to quantify the similarity between two distributions, where a value of 0 indicates identical 
distributions. To represent the distributions, the max and mean values of each image in the training and 
test sets were calculated for both GT and PD. As seen in Figure 20, all distributions show excellent 
agreement and are confirmed by the small values of KLD between GT and PD distributions. 
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(a) (b) 

Figure 20 Comparison of dataset distributions with KLD similarity metric between PD and GT, for training and test sets, 
for (a) max and (b) mean absolute thinning. 

6.2 Displacement field and wrinkle prediction  

A comparison between the X, Y, and Z displacement fields obtained from network predictions and ones 
from ground truths were made and presented in Figure A.1 in the Appendix. The cases shown are the 
five random test set cases from Figure 17 where displacement field network predictions are seen to be 
indistinguishable from their FE simulation counterparts. 

The results presented thus far have been plotted on 2D undeformed blank shapes and were the raw 
outputs from the trained networks. The high quality displacement predictions exemplified in Figure A.1 
enabled the displacement fields predicted by the network to be used to generate 3D as-formed 
predictions. By deforming a uniform cartesian grid using the 2D displacement vector fields (i.e., X, Y, 
and Z components of displacement for each pixel), 3D representations of the as-formed components 
were established. Thinning distributions were then superimposed as shown in Figure 21 for 
representative test case samples without and with wrinkles. 

 
(a) 

 
(b) 

Figure 21 Comparison of ground truth and network prediction of 3D as-formed components with thinning distributions 
superimposed for samples (a) without and (b) with wrinkles. All cases from the test set, unseen during training. 

To analyse the prediction of wrinkles further, Case 16 from Figure 21 is selected as a representative 
sample for a closer look, shown in Figure 22. Plotted are contours of wrinkle height, and a comparison 
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between the ground truth and network prediction can be seen. It is seen that wrinkle heights are correctly 
predicted with remarkable accuracy. Specifically, ripple patterns and locations are also correctly 
predicted; there are zones of wider wrinkles near the straight edges of the as-formed component, while 
narrower wrinkles at the transition zone between the straight edges and the corner. 

  
(a) (b) 

Figure 22 Comparison of wrinkle height prediction on the 3D as-formed component geometry for Case 16 from Figure 
21: (a) ground truth and (b) network prediction. 

6.3 Effect of training data size  

The effect of training data size on the generalisation performance was investigated by evaluating the 
thinning field predictions by additional networks trained with smaller dataset sizes. Since unseen 
geometries are the most difficult factor to generalise to, the smaller datasets varied only in the number 
of die geometry images. To remove bias towards specific geometries, three random seeds were used in 
conjunction with the Latin Hypercube method to create three different datasets for each dataset size. 
For the performance evaluation, a test set containing 160 unique die geometries unseen to these 
networks during training was used, and MSE and mean relative error (MRE) metrics were calculated. 
Figure 23 shows the variations in MSE and MRE when varying dataset sizes. 

 
Figure 23 Effect of training data size on the thinning field network prediction performance on test sets. 

Both the MSE and MRE declined when increasing dataset size. The standard deviation across the three 
datasets for each dataset size is plotted as the error bars, which also decrease with increasing dataset 
size, suggesting improved generalisation performance to unseen geometries. It is noteworthy that the 
trend is non-linear, and the decline is not as pronounced above a certain threshold; in this case, more 
than 80 unique die geometries in the dataset provided very little performance gain. Clearly the threshold 
will depend on the considered design space, but a general conclusion can be drawn that excessively 
large datasets might not be required to achieve acceptable generalisation performance for the proposed 
network, even under the complex non-isothermal HFQ® forming conditions. 
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6.4 Discussion 

This work presents a technique for the rapid manufacturing feasibility evaluation of any geometry 
formed through the HFQ® process. Through the use of deep CNNs, thinning and wrinkling fields were 
predicted in real time, given a candidate geometry, blank shape and set of HFQ® processing parameters. 
By comparing the predicted fields with their FE simulation counterparts, near indistinguishable field 
outputs (i.e., forming responses) were obtained from the networks. Despite the accuracy of the 
predictions, a number of questions still need to be addressed. 

The largest MAEs for the thinning distribution in the test set were found to be on wrinkled samples. 
Since wrinkle patterns are largely randomised, it was hypothesised that the reason the networks slightly 
underperformed in resolving local wrinkling induced thinning defects (see Figure 8) was because the 
networks were less exposed to such complex and disordered thinning patterns during training. However, 
since thinning defects are less important when wrinkles are present, this was not explored at length in 
this work, and wrinkle prediction took precedence. Nevertheless, excellent performance was seen 
overall. 

The scope of the network was limited to components with standard shrink corner features in this study 
(Figure A.2(a)). The dataset developed can be extended to include more complicated geometric features. 
Some variants of complex shaped corners are shown in Figure A.2(b-c), commonly used on some 
battery tray designs [55]. A major strength of the image based technique used in this paper is that such 
complex geometries, typically represented by many CAD dimensions, can be uniformly represented as 
images. 

To understand how the networks would process the more complex shapes in Figure A.2(b-c), 
intermediate feature maps from encoder layers E1 and E4 were visualised, shown in Figure A.3. Recall 
that the networks were trained only on images of standard corners (Figure A.2(a)). The feature maps 
reveal that the convolutional kernels learnt during training on standard corners are still able to detect 
the more complex stepped sidewall or chamfer corner design features. The encoder part of the network 
may interpret the shapes learnt from the standard corners as curves made up of lots of straight walls of 
size equal to the stride size. In this case, the higher the image resolution and smaller the stride size, the 
greater the encoder has tenancy to generalise to shapes outside the domain of shapes seen during 
training. This could mean that when new engineering data (i.e., from FE simulations) becomes available 
for new corner shapes, only the decoder part can be fine-tuned, i.e., by transfer learning, to capture the 
physical fields associated with the new geometries. Note that in an industrial setting, continual 
enrichment of training datasets with novel data samples would result in an increasingly proficient model 
which would require less and less retraining over time. 

The methodology developed was able to predict the physical fields through being trained on examples 
seen in the training dataset, instead of directly inputting physical parameters, which is significant. 
Although, inputting physical parameters to guide prediction, perhaps by introducing a regularising term 
in the loss function, may be beneficial [56,57]. To demonstrate the learnt HFQ® dynamics, Figure 24 
visualises an interpolation of stamping speeds from 50mm/s to 500mm/s for an arbitrary shrink corner 
with tight radii formed at two initial blank temperatures 350°C and 500°C. The thinning localisation 
reduces slowly with increasing speed, which is in good agreement with HFQ® literature [5,42]. Further, 
the smooth transition indicates an inexistence of overfitting, where network would otherwise memorise 
the training data. Moreover, all images were generated in real time, which facilitates a rapid 
identification of feasible processing conditions and blank shape for any given corner geometry design. 



22 
 

 
Figure 24 Interpolation of stamping speeds from 50mm/s to 500mm/s for initial blank temperatures of 350°C and 500°C. 

The smooth transition of thinning localisation to thinning uniformity shows the inexistence of overfitting and learnt 
HFQ® dynamics. 

Although the training process of the networks is computationally expensive, approximately 2 days for 
the data generation and training steps combined, this process can be fully automated. Further, once 
trained networks are obtained, they can be employed to generate simulation results inexpensively and 
with high accuracy. The ability of the networks to provide rapid manufacturing feasibility assessment 
for any component geometry with any blank shape has profound consequences for the future of design 
for manufacture and early stage decision making for new, and existing, metal forming technologies. 

7 Conclusions 

HFQ® is a new non-isothermal hot stamping technology that can provide a means of forming complex 
shaped panel components from high strength aluminium alloys. However, the uptake of HFQ® is 
limited by its unfamiliarity among industrial designers. In response, this paper has presented a novel 
design support tool for HFQ® applications that can aid in early stage design and decision making. Based 
on the conducted research, the following conclusions can be summarised: 

 A novel application of deep convolutional neural networks (CNNs) was presented for 
evaluating the manufacturing feasibility of components formed through the HFQ® process. 
The network architecture was tailored to extract geometric features from input images of 
design choices and generate corresponding forming responses under HFQ® conditions. 
 

 In order to address the lack of data in the literature, novel algorithms were developed to 
automatically process CAD geometries and FE simulation results into image representations 
for network training and evaluation. 
 

 Using the newly developed algorithms, a new dataset for shrink corners formed under non-
isothermal HFQ® conditions was developed which contains a wide range of forming 
responses.  
 

 Full thinning and displacement fields were predicted by the CNNs inexpensively and with 
high accuracy. Given a designed candidate geometry, it’s manufacturing feasibility through 
HFQ® technology could be determined at early component design stages. 
 

 In particular, the CNNs were able to capture non-trivial forming behaviours, such as material 
deformation of a 3D as-formed component, thinning localisation, and wrinkling. 

The proposed methodology can be implemented in industrial settings to allow component designers to 
become familiar with the design limitations of the new HFQ® process without underlying knowledge 
of the process intricacies. In this way, component redesign for HFQ®, even for complex shapes, can be 
quickly identified and corrected at the onset of a design process. In order to allow for the discovery of 
new component designs which exploit the lightweighting potential of HFQ®, future research work will 
focus on the implementation of the proposed networks in design optimisation frameworks.  
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Appendix 

 
(a) 

 
(b) 

 
(c) 

Figure A.1 Comparison of ground truth with network prediction for (a) X, (b) Y and (c) Z displacement distributions in 
mm and pixel wise differences for five random test set cases. Contours plotted on undeformed blank geometry. 
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(a) (b) (c) 
Figure A.2 Shrink corner variants: (a) standard corners used to train the presented networks 

and (b) and (c) more complex design features typically represented by many CAD 
dimensions. 

 

  
(a) (b) 

Figure A.3 Visualisation of encoder feature maps for different corner types, generated from a  network trained only on 
images of standard corners: (a) Image representation of geometries from Figure  (top row) with four random encoder 

feature maps from layer E1 (all other rows) for each corner design, (b) four random encoder feature maps from layer E4 
for each corner. Same blank shape image used for each corner design. 
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