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Abstract. Observational constraint of simulated aerosol and
cloud properties is an essential part of building trustwor-
thy climate models for calculating aerosol radiative forcing.
Models are usually tuned to achieve good agreement with
observations, but tuning produces just one of many poten-
tial variants of a model, so the model uncertainty cannot
be determined. Here we estimate the uncertainty in aerosol
effective radiative forcing (ERF) in a tuned climate model
by constraining 4 million variants of the HadGEM3-UKCA
aerosol–climate model to match nine common observations
(top-of-atmosphere shortwave flux, aerosol optical depth,
PM2.5, cloud condensation nuclei at 0.2 % supersaturation
(CCN0.2), and concentrations of sulfate, black carbon and
organic carbon, as well as decadal trends in aerosol optical
depth and surface shortwave radiation.) The model uncer-
tainty is calculated by using a perturbed parameter ensemble
that samples 27 uncertainties in both the aerosol model and
the physical climate model, and we use synthetic observa-
tions generated from the model itself to determine the poten-
tial of each observational type to constrain this uncertainty.
Focusing over Europe in July, we show that the aerosol ERF
uncertainty can be reduced by about 30 % by constraining it
to the nine observations, demonstrating that producing cli-
mate models with an observationally plausible “base state”
can contribute to narrowing the uncertainty in aerosol ERF.
However, the uncertainty in the aerosol ERF after observa-
tional constraint is large compared to the typical spread of a
multi-model ensemble. Our results therefore raise questions
about whether the underlying multi-model uncertainty would
be larger if similar approaches as adopted here were applied
more widely. The approach presented in this study could be

used to identify the most effective observations for model
constraint. It is hoped that aerosol ERF uncertainty can be
further reduced by introducing process-related constraints;
however, any such results will be robust only if the enormous
number of potential model variants is explored.

1 Introduction

It has proven extremely challenging to reduce the large un-
certainty in aerosol model simulations and the calculated
aerosol radiative forcing since pre-industrial times. Although
extensive improvements in the physical realism of aerosol–
climate models have been made in recent years (Ghan and
Schwartz, 2007), resulting in a set of quite sophisticated
models (Mann et al., 2014), aerosol model simulations are
still surprisingly uncertain – up to a factor of 10 or more
spread in key aerosol properties among models (Mann et
al., 2014). Calculated aerosol radiative forcing also remains
stubbornly uncertain among multiple models (Boucher et al.,
2013; Myhre et al., 2013), making it difficult to establish
the causes of forcing uncertainty. Until the uncertainty is re-
duced, climate models will not be robust in their predictions
of decadal-scale climate change and its global and regional
impacts (Andreae et al., 2005; Myhre et al., 2013; Seinfeld
et al., 2016).

The uncertainty in aerosol radiative forcing has persisted
through multiple generations of climate models because it re-
sults from the combined effects of dozens of complex and un-
certain climate model processes related to aerosols, clouds,
radiation and dynamics. Changes in aerosols cause the entire
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aerosol–cloud–radiation dynamics system to respond, result-
ing in an effective radiative forcing, or ERF (Boucher et al.,
2013). The complexity of the processes causing the aerosol
ERF (and the fact that it cannot be measured directly) means
that it may essentially be treated as a tuneable model quan-
tity (Hourdin et al., 2016; Mauritsen et al., 2012) rather than
being properly constrained by extensive measurements that
define the state and behaviour of aerosols and clouds. This is
not a firm basis for climate projections.

There are three ways in which observations help to con-
strain the uncertainty in aerosol ERF. The first, which ap-
plies to the aerosol–cloud-related forcing, is based on the
recognition that the forcing depends on the interlinked sen-
sitivities of aerosols, clouds and their radiative properties to
changes in aerosol emissions. For example, the magnitude of
the aerosol–cloud interaction component of radiative forcing
(R) can be broken down into a product of sensitivities re-
lating the forcing to aerosol emissions (E), cloud condensa-
tion nuclei concentrations (NCCN) and droplet concentrations
(Nd) (Ghan et al., 2016):

d lnR
dlnE

=
dlnNCCN

dlnE
×

dlnNd

dlnNCCN
×

dlnR
dlnNd

. (1)

Relationships between various aerosol, cloud and radiation
variables are widely used or proposed as a way of constrain-
ing the uncertainty in aerosol–cloud forcing in climate mod-
els (Ban-weiss et al., 2014; Grandey et al., 2013; Gryspeerdt
et al., 2016, 2017; Gryspeerdt and Stier, 2012; Lebo and
Feingold, 2014; McCoy et al., 2016; Quaas et al., 2009, 2010;
Terai et al., 2015; Yi et al., 2012; Zhang et al., 2016).

The second aspect of model constraint is to test the
model’s ability to reproduce observed trends in aerosols,
clouds and radiation (Allen et al., 2013; Cherian et al., 2014;
Leibensperger et al., 2012; Li et al., 2013; Liepert and Tegen,
2002; Shindell et al., 2013; Turnock et al., 2015; Zhang et
al., 2017). For example, Cherian et al. (2014) showed that
among several climate models there is a relationship be-
tween the simulated trend in European surface solar radiation
(SSR) over recent decades and the pre-industrial to present-
day aerosol ERF (models with large SSR trends tend to simu-
late larger ERFs). Cherian et al. (2014) used this relationship
to define the observationally constrained ERF based on the
models that simulate SSR trends closest to observations (a
so-called emergent constraint).

The third aspect of model constraint is to observationally
constrain the model “base state” – i.e. properties like aerosol
optical depth (AOD) or aerosol concentrations in a partic-
ular period. Considerable effort is put into constraining the
model base state because observations are readily available
and models that cannot simulate aerosol and cloud properties
close to observations would not be trusted to predict changes
in these properties over time (which determines the forc-
ing). Models can also be constrained under a range of cloud
regimes as well as under pristine and polluted conditions,
which will have a bearing on a model’s ability to simulate

the change from the pre-industrial period to the present-day
(Carslaw et al., 2013, 2017). Model skill in simulating AOD
was used in the Atmospheric Chemistry-Climate Model In-
tercomparison Project to screen the models (Shindell et al.,
2013) and global AOD reanalysis products have been used to
help constrain the aerosol forcing (Bellouin et al., 2013). It
is also argued that the wealth of available measurements will
help to constrain direct radiative forcing (Kahn, 2012).

There are limitations with all three methods outlined above
in terms of constraining the uncertainty in aerosol forcing
over periods outside the observational record. The main lim-
itation with the first method (aerosol–cloud–radiation rela-
tions) is that there is no guarantee that present-day (or “in-
stantaneous”) relationships can be extrapolated to pristine
pre-industrial conditions (Penner et al., 2011). Even the most
sophisticated approaches still rely on model estimates of how
aerosols changed over the industrial period (Gryspeerdt et
al., 2017). The same main limitation applies to the second
method (aerosol and radiation trends): most data records are
quite short so typically do not include pristine pre-industrial-
like conditions (Carslaw et al., 2017; Hamilton et al., 2014).
With the third method (constraining the state of aerosols,
clouds and their radiative properties) it is not obvious how
the model accuracy can be related to the uncertainty in sim-
ulated radiative forcing (i.e. there is no equivalent to Eq. 1
defining how a bias in simulated aerosol properties affects
the forcing). One aim of our study is to make that link, and
we show in Sect. 3.5.1 that observational constraint of many
state variables only weakly constrains the direct and indirect
radiative forcings.

In this paper we focus on observationally constraining un-
certainty in the base state of an aerosol–climate model as
well as trends in radiative properties. Our approach is shown
schematically in Fig. 1. We begin with a large set of model
variants produced by adjusting multiple uncertain model in-
put parameters (a tiny fraction of which would be explored
in model tuning). These model variants (parameter combi-
nations) define the prior model uncertainty (which can be
defined by a probability density function, PDF), which we
then constrain by identifying variants that produce plausible
outputs compared to aerosol and cloud observations. Model
variants that produce implausible results (i.e. output outside
of an observation’s estimated uncertainty range) are rejected
and, likewise, the forcings that they calculate are also re-
jected. A similar constraint methodology has been applied
to environmental models (Salter and Williamson, 2016), hy-
drological models (Liu and Gupta, 2007), galaxy formation
(Rodrigues et al., 2017), disease transmission (Andrianakis
et al., 2017), climate models (Murphy et al., 2004; Regayre
et al., 2018; Sexton et al., 2011; Williamson et al., 2013)
and aerosol models (Lee et al., 2011, 2013; Reddington et
al., 2017; Regayre et al., 2018, 2014, 2015). In this paper
the observations comprise aerosol and cloud state variables
and trends, but the approach could readily be extended to in-
clude any observations, such as of aerosol–cloud–radiation
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Figure 1. Schematic of the methodology for observational con-
straint of parametric model uncertainty.

relationships. We constrain using each aerosol–cloud obser-
vation individually and the combination of all observations.

We define observational constraint as finding the full set of
model variants that can be considered plausible against ob-
servations, and from which we can estimate the prior (uncon-
strained) and remaining (observationally constrained) uncer-
tainty. This approach is different to traditional model tuning,
which produces only one result on the right side of Fig. 1
with no information about uncertainty. We note, however,
that such model adjustments towards observations are often
misleadingly called constraint.

The vast majority of observational constraint efforts are
severely limited by the very small number of models used,
which makes it impossible to reach robust statistical conclu-
sions about model uncertainty. In a multi-model ensemble
the number of models is often about 10 or so, and in model
tuning perhaps only a few dozen parts of parameter space are
explored. To get around this problem we build emulators that
enable model outputs to be generated for millions of model
parameter combinations (Lee et al., 2011, 2013), which en-
ables us to relate the uncertainty on the left side of Fig. 1 (in
the form of a PDF) to the observationally constrained uncer-
tainty on the right side.

The main aims of this paper are first to determine how
much uncertainty could potentially remain in an aerosol–
chemistry–climate model that is tuned to match various sets
of observations, and second, how this uncertainty might af-
fect conclusions drawn from multi-model ensemble studies
which do not explicitly account for this source of uncertainty.
Although large observational datasets of aerosol in situ mi-
crophysical and chemical properties are available (Redding-
ton et al., 2017), we use synthetic observations here – i.e.
observations that are generated from a model simulation –
to postpone addressing some of the challenges faced when
comparing model output and in situ observations (Schutgens
et al., 2016a, b).

The analysis is restricted to the region of Europe (defined
in this study by the longitude range 12◦W to 41◦ E and lat-
itude range 37.5 to 71.5◦ N) for the month of July. We take
a regional approach primarily because regional observations
provide a better constraint on model uncertainty than global
mean observations (Regayre et al., 2018). The sources of un-
certainty in aerosols and forcing vary regionally (Lee et al.,
2016; Reddington et al., 2017; Regayre et al., 2015). There-
fore, a global analysis would essentially be a scaled-up ver-
sion of what we present here – i.e. a set of regional evalua-
tions. We choose Europe in July as this is a region and month
for which a distinct set of parameter uncertainties affect the
aerosol properties and the ERF, providing a good test case
for our methodology. Europe is also a region for which a di-
verse set of long-term measurements of different aerosol and
radiative properties are available, that we can use to inform
our assessments of observational uncertainty.

The following section describes the aerosol–climate
model, the set-up of the simulations and the statistical
methodology we use to sample the model uncertainty. Sec-
tion 3 describes our results, starting with an analysis of the
magnitude and causes of model uncertainty. We then exam-
ine the effects of observational constraint on the simulated
aerosol properties, the multi-century (1850–2008) and multi-
decade (1978–2008) aerosol ERF uncertainty and the plausi-
ble parameter ranges. In Sect. 4 we estimate the potential im-
plications of our results for multi-model emergent constraint
studies and other studies that use observations to screen out
models.

2 Methods

2.1 Summary of the constraint methodology

The steps involved are as follows (Fig. 1):

1. A perturbed parameter ensemble (PPE) of the
HadGEM3-UKCA aerosol–chemistry–climate model
(Sect. 2.2) is created to efficiently sample combinations
of 27 uncertainties related to the aerosol model and
physical processes in the host climate model (mostly
related to clouds). The PPE (Sect. 2.3) consists of three
sets of 191 single-year simulations which differ only in
the anthropogenic aerosol emissions prescribed (1850,
1978 and 2008). The use of HadGEM enables us to
diagnose the aerosol ERF rather than just the cloud
albedo forcing as in our previous studies (Carslaw et
al., 2013; Regayre et al., 2014, 2015).

2. Emulators are built based on the PPE training data
(step 1), which define (within quantifiable uncertainty)
how aerosol properties and aerosol radiative forc-
ing vary over the 27-dimensional parameter space
(Sect. 2.4). We validate each emulator’s ability to repro-
duce model output, then use them to sample the 4 mil-
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lion Monte Carlo points from the parameter space to
produce the set of model variants on the left side of
Fig. 1. This step is essential because, with 27 dimen-
sions of model uncertainty, the 191 PPE simulations
are sparsely distributed. A denser sample of the multi-
dimensional parameter space from the emulator enables
us to conduct robust statistical analyses.

3. The causes of uncertainty in the aerosol and forcing
variables are determined using variance-based sensitiv-
ity analysis (Sect. 2.5). This step is not essential for
constraining the model, but is useful for understanding
which processes in the model account for the uncertain-
ties in the outputs (Carslaw et al., 2013; Lee et al., 2013;
Regayre et al., 2018, 2014, 2015).

4. A set of “synthetic” observations (Sect. 2.6) is created
with realistic uncertainty ranges. We use one PPE mem-
ber to define these synthetic observations.

5. We identify which of the 4 million model variants are
consistent with the observations within their individual
uncertainty ranges (Sect. 2.7). This reduced set of vari-
ants defines the ways in which parameter values can
be combined to reproduce multiple observations and is
equivalent to identifying several thousand equally plau-
sible tuned HadGEM3-UKCA models. This procedure
is often called “history matching” or “pre-calibration”
(Craig et al., 1997; Edwards et al., 2011; Williamson et
al., 2013; Lee et al., 2016; Andrianakis et al., 2017).

6. The reduction in aerosol ERF uncertainty is quantified
using the observationally constrained parameter space
(Sect. 2.8).

The observational constraint approach we apply here is quite
different to aerosol data assimilation (Bellouin et al., 2013),
which cannot directly estimate aerosol ERFs or the uncer-
tainty. In principle, both approaches should generate similar
distributions of AOD (the usual assimilated observation vari-
able) if similar observations are used. However, we can di-
rectly determine aerosol ERF and its uncertainty by running
the plausible model variants in both the present day (where
the model uncertainty was constrained) and the pre-industrial
period. In contrast, estimation of the ERF using the assimila-
tion approach relies on assumptions about how present-day
natural AOD represents pre-industrial aerosols because the
approach generates only a present-day aerosol state and not a
model that can be used to simulate pre-industrial conditions.

2.2 The HadGEM3-UKCA climate model

We use the UK Hadley Centre Unified Model HadGEM3
(HadGEM3, 2017), incorporating version 8.4 of the UK
Chemistry and Aerosol (UKCA) model. UKCA simulates
trace gas chemistry and the evolution of the aerosol particle
size distribution and chemical composition using the GLObal

Model of Aerosol Processes (GLOMAP-mode; Mann et al.,
2010) and a whole-atmosphere chemistry scheme (O’Connor
et al., 2014). The model has a horizontal resolution of 1.25×
1.875◦ and 85 vertical hybrid pressure levels.

The aerosol size distribution is defined by seven log-
normal modes: one soluble nucleation mode as well as sol-
uble and insoluble Aitken, accumulation and coarse modes.
The aerosol chemical components are sulfate, sea salt, black
carbon (BC), organic carbon (OC) and dust. Secondary or-
ganic aerosol (SOA) material is produced from the first-stage
oxidation products of biogenic monoterpenes under the as-
sumption of zero vapour pressure. SOA is combined with
primary particulate organic matter after kinetic condensation.

GLOMAP simulates new particle formation, coagulation,
gas-to-particle transfer, cloud processing, and deposition of
gases and aerosols. The activation of aerosols into cloud
droplets is calculated using globally prescribed distribu-
tions of sub-grid vertical velocities (West et al., 2014), and
the removal of cloud droplets by autoconversion to rain is
calculated by the host model. Aerosols are also removed
by impaction scavenging of falling raindrops according to
the parametrization of clouds and precipitation collocation
(Boutle et al., 2014; Lebsock et al., 2013). Aerosol water up-
take efficiency is determined by kappa-Kohler theory (Pet-
ters and Kreidenweis, 2007) using composition-dependent
hygroscopicity factors.

Anthropogenic emission scenarios prepared for the At-
mospheric Chemistry and Climate Model Inter-comparison
Project (ACCMIP) and prescribed in some of the CMIP
Phase 5 experiments are used here. Carbonaceous biomass
burning aerosol emissions for recent decades were prescribed
using a 10-year average of 2002 to 2011 monthly mean
data from the Global Fire and Emissions Database (GFED3;
van der Werf et al., 2010) and according to Lamarque et
al. (2010) for 1850. The prescribed volcanic SO2 emissions
combine emissions from the Andres and Kasgnoc (1998)
dataset for continuously erupting and sporadically erupting
volcanoes and the Halmer et al. (2002) dataset for explosive
volcanoes.

Horizontal winds in the simulations are nudged towards
European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim reanalyses for 2006 between ap-
proximately 2.15 and 80 km using a 6 h relaxation timescale.
Nudging means that pairs of simulations have near-identical
synoptic-scale features, which enables the effects of pertur-
bations to aerosol and chemical processes within the bound-
ary layer to be quantified using single-year simulations.
Without nudging, the model fields would need to be averaged
over several decades in order to produce signals stronger
than the noise caused by internal variability (Kooperman et
al., 2012). By nudging horizontal winds but not temperature,
liquid water path and atmospheric humidity can respond to
aerosol-induced changes in temperature, allowing more of
the rapid responses of clouds and radiation to aerosol per-
turbations to be captured.
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Each simulation was subject to a 4-month spin-up period
with parameters set to their median values. Parameter pertur-
bations were then applied distinctly to individual ensemble
members and spun up for a further 3 months. We analyse the
data from July for each simulation following the spin-up pe-
riod. The calculation of the aerosol ERF and its components
is described in Sect. 2.8.

2.3 Perturbed parameter ensemble

A perturbed parameter ensemble (PPE) is a set of simulations
with excellent space-filling properties that provides informa-
tion about model output across the multi-dimensional space
of uncertain model input parameters. The PPE, described in
detail in Yoshioka et al. (2018), was specifically designed to
sample aerosol as well as host physical climate model param-
eters of importance to the aerosol ERF. Regayre et al. (2018)
show that host model parameters cause most of the uncer-
tainty in the radiative state of the atmosphere but aerosol pa-
rameters contribute more to the uncertainty in the change of
state (aerosol ERF).

The 27 perturbed parameters are listed in Table 1. They
are categorized as either aerosol (aer) or atmospheric (atm)
according to their role in the model. To define the set of pa-
rameters we used expert elicitation and carried out one-at-a-
time parameter perturbation screening experiments to quan-
tify the effect of individual parameter perturbations away
from the default setting. The selected parameters are de-
scribed in more detail in related papers (Regayre et al., 2018;
Yoshioka et al., 2018).

A total of 18 parameters related to aerosol and precursor
gas emissions, deposition, and aerosol processes were per-
turbed based on their importance (Lee et al., 2013; Carslaw
et al., 2013; Regayre et al., 2014, 2015). Several parame-
ters available in the HadGEM3-UKCA model but not in the
chemistry transport model were included after analysing the
one-at-a-time perturbation screening experiments. These are
the updraft velocity in shallow clouds, the fraction of large-
scale cloud in which rain-scavenging of aerosols can occur,
and the refractive indices of BC and OC. In some cases we
perturbed similar parameters as in Regayre et al. (2014) but
these parameters are handled differently within the HadGEM
model. These are the dry deposition velocity of SO2, dust
emissions and the fraction of ice in mixed-phase clouds
above which aerosol scavenging is suppressed.

Nine physical model parameters were perturbed. These
were selected from a much larger set tested by the UK Met
Office in developing their ensemble prediction system (Sex-
ton et al., 2017) based on their potential to contribute to
uncertainty in a broad range of aerosol, cloud and radia-
tion properties; in particular particle number concentrations,
cloud condensation nuclei, PM2.5, aerosol optical depth, sul-
fate and SOA concentrations, cloud reflectivity, liquid water
path, precipitation, and aerosol ERF. These nine atmospheric
model parameters are considered the most likely causes of

uncertainty in low-altitude clouds and aerosol–cloud interac-
tions because they influence boundary layer clouds by alter-
ing cloud radiative properties, cloud drop concentrations and
microphysical processes, atmospheric humidity, convection
processes, and boundary layer stability.

A probability density function was defined for each param-
eter to represent shared expert beliefs about parameter uncer-
tainty. These distributions have no effect on the model simu-
lations (although the ranges define the span of the parameter
space), but are used at the stage of generating PDFs of model
output based on Monte Carlo sampling from the emulators.
We used mainly trapezoidal distributions that avoid overly
centralized Monte Carlo sampling of the multi-dimensional
parameter space (Yoshioka et al., 2018).

Maximin Latin hypercube sampling was used to create an
initial set of 162 simulations that sample model output across
the 27-dimensional parameter space. A further set of 54 sim-
ulations was used to validate the emulators. In total 217 per-
turbed parameter simulations of the global model were run
for a full year for each anthropogenic emission period (1850,
1978 and 2008 emissions). Each simulation had a spin-up
period of 7 months from a consistent starting simulation,
where the parameters were set to their median values for
the first 4 months and the perturbations then applied in the
final 3 months. A total of 25 simulations did not complete
the full annual cycle and so were not used in our analysis.
Consequently, the ensemble of simulations used for analysis
for each period was made up of the remaining 191 simula-
tions, all of which were used to build the final emulators.
Radiative forcings were calculated as the difference in top-
of-atmosphere (ToA) radiative flux for pairs of simulations
with identical parameter settings but different anthropogenic
emissions (1850, 1978 and 2008).

2.4 Model emulation and Monte Carlo sampling

For each model output (such as the regional mean ToA flux,
CCN0.2 concentration, etc. for Europe in July) we construct
a statistical emulator model over the 27-dimensional param-
eter uncertainty using the 137 training simulations and val-
idate it using the 54 validation simulations (as described in
Lee et al., 2011). Once validated, a further new emulator is
then created using both the training and the validation simu-
lations of the PPE, to obtain a final emulator based on all of
the information that our simulations contain. A “leave-one-
out” validation procedure (where each simulation in turn is
removed from the merged set, and a new emulator is con-
structed and used to predict that removed simulation) is ap-
plied to additionally verify the quality of our final emulator.
We then use this emulator to predict the model output for
a large sample (here 4 million) of parameter input combi-
nations that span the 27-dimensional parameter space of the
PPE. From this sample we obtain a PDF of the uncertainty
in this output variable caused by the defined uncertainty in
the model parameters (left-hand side of Fig. 1). In each case,

www.atmos-chem-phys.net/18/13031/2018/ Atmos. Chem. Phys., 18, 13031–13053, 2018
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Table 1. The 27 host model and aerosol parameters included in the PPE. Further details are provided in a separate publication (Regayre et
al., 2018).

Index Name Type Description

1 Rad_Mcica_Sigma Atm Fractional standard deviation of sub-grid condensate seen by radiation (controls the
overlap of sub-grid clouds)

2 C_R_Correl Atm Cloud and rain sub-grid horizontal spatial correlation (determines the accretion rate
of cloud drops and aerosols by raindrops)

3 Niter_Bs Atm Number of microphysics iteration sub-steps
4 Ent_Fac_Dp Atm Entrainment amplitude scale factor (controls the convective mass flux and sensitiv-

ity of convection to relative humidity)
5 Amdet_Fac Atm Mixing detrainment rate scale factor (controls the rate of humidification of the at-

mosphere and the shape of the convective heating profile)
6 Dbsdtbs_Turb_0 Atm Cloud erosion rate per second (the rate at which unresolved sub-grid motions mix

clear and cloudy air)
7 Mparwtr Atm Maximum value of the function controlling convective parcel maximum condensate
8 Dec_Thres_Cld Atm Threshold for the ratio of buoyancy consumption to production before decoupling

occurs
9 Fac_Qsat Atm Rate of change in convective parcel maximum condensate with altitude
10 Ageing Aer Ageing of hydrophobic aerosols (no. of monolayers of soluble material)
11 Cloud_pH Aer pH of cloud droplets (used to calculate the conversion of SO2 into sulfate)
12 Carb_BB_Ems Aer Carbonaceous biomass burning emissions scale factor
13 Carb_BB_Diam Aer Carbonaceous biomass burning emission diameter (nm)
14 Sea_Spray Aer Sea spray aerosol scale factor
15 Anth_SO2 Aer Anthropogenic SO2 emission scale factor
16 Volc_SO2 Aer Volcanic SO2 emission scale factor
17 BVOC_SOA Aer Biogenic secondary aerosol formation from volatile organic compounds scale factor
18 DMS Aer Dimethyl sulfide surface ocean concentration scale factor
19 Dry_Dep_Acc Aer Accumulation mode dry deposition velocity scale factor
20 Dry_Dep_SO2 Aer SO2 dry deposition velocity scale factor
21 Kappa_OC Aer Kappa-Kohler coefficient of organic carbon
22 Sig_W Aer Updraft vertical velocity standard deviation (used to calculate the activation of

aerosols into cloud drops)
23 Dust Aer Dust emission scale factor
24 Rain_Frac Aer Fraction of cloud-covered area in large-scale clouds where aerosol scavenging by

raindrops occurs
25 Cloud-Ice_Thresh Aer Threshold of cloud ice fraction above which nucleation scavenging is suppressed

(restricting further activation of aerosols into cloud drops)
26 BC_RI Aer Imaginary part of black carbon refractive index
27 OC_RI Aer Imaginary part of organic carbon refractive index

the output PDF can be sampled according to the elicited pa-
rameter probability distributions (Yoshioka et al., 2018), in
which case the PDF accounts for prior beliefs about the like-
lihood of different parameter values. Alternatively uniform
sampling can be applied, in which case the output PDF as-
sumes that all parameters have equal likelihood of lying be-
tween their elicited upper and lower limits. Our approach
is to use the prior probability distributions, informed by ex-
pert knowledge, to sample the parameter combinations of the
4 million model variants over the 27-dimensional parameter
uncertainty space.

2.5 Sensitivity analysis

Sensitivity analysis (Lee et al., 2011; Saltelli et al., 1999)
is used to decompose the uncertainty in European regional
mean aerosol properties, trends and forcing variables for
July into contributions from each individual model param-
eter. Here, we use the extended-FAST method (Saltelli et al.,
1999) in the R package “sensitivity” (Pujol et al., 2017) to
sample from the emulators (as described in Sect. 2.4) and
decompose the variance into its individual sources. We then
calculate the percentage by which the total variance (for a
specific model output) would be reduced if the value of the
parameter in question was known precisely. These percent-
age reductions are used in the analysis of the main causes of
model uncertainty in Sect. 3.3.
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Table 2. Observed quantities and corresponding uncertainty ranges used for the constraints applied over Europe. Values are a European July
mean, synthetically generated from the model output of a selected PPE member.

Observable quantity Value Uncertainty range

Top-of-atmosphere upward SW flux (W m−2) 129 122–135
Change in surface downward solar radiation from 1978 to 2008, 1SSR 3.8 3.2–4.4
Cloud condensation nucleus (CCN) concentration at 0.2 % supersaturation (cm−3) 536 483–590
Aerosol optical depth (AOD) 0.17 0.14–0.19
Change in AOD from 1978 to 2008, 1AOD −0.05 −0.06 to −0.04
PM2.5 mass concentration (µg m−3) 8.0 7.2–8.8
Particle sulfate concentration (µg m−3) 1.7 1.2–2.2
Particle OC concentration (µg m−3) 4.4 3.9–4.8
Particle BC concentration (µg m−3) 0.23 0.21–0.26

2.6 Synthetic observations

The “observations” are taken from the output of the PPE
member with each model parameter set to the median value
from its corresponding elicited prior distribution. This PPE
member was chosen as it lies reasonably centrally within the
27-dimensional parameter uncertainty space. We also tested
a marginal set of observations (from a PPE member that had
many parameter values located towards the edges of their
uncertainty range) but the conclusions of our study did not
change, so we focus on the results from the more centralized
choice of observations.

We use synthetic observations (Table 2) of European July-
mean cloud condensation nuclei concentration at 0.2 % su-
persaturation (CCN0.2) at approximately cloud-base height,
surface concentrations of PM2.5, mass concentrations of sul-
fate, OC and BC at the surface, the outgoing shortwave ra-
diative flux at the top of the atmosphere (ToA flux), AOD at
a wavelength of 550 nm, and the change in AOD (1AOD)
and surface solar radiation (1SSR) between 1978 and 2008.
The period 1978 to 2008 was originally chosen because it is
an interesting period for global and regional forcing changes.
Although AOD measurements are not available back to 1978,
this is not vital to the present study, which aims to assess
potential constraint over a period with substantial aerosol
changes.

The observation uncertainties are based on our judgement
about the combined effect of instrument uncertainties and the
uncertainty associated with measurement representativeness
(collocation of high-frequency point measurements within
low-spatial-resolution, monthly-mean model output subject
to meteorological variability; Reddington et al., 2017; Schut-
gens et al., 2016a, b). Where available, we have used sets of
real observations to inform these judgements and estimates.
For example, we selected our uncertainty range on the ToA
flux such that it is in line with information from the Clouds
and the Earth’s Radiant Energy System (CERES) and IPCC
uncertainty estimates (Hartmann et al., 2013). In the con-
straint process we also account for the emulator error (i.e.

the estimated uncertainty in each of the 4 million points as-
sociated with using the emulator instead of the model itself).

There are other constraints that could be applied to the
model such as the aerosol spatial distribution (Myhre et al.,
2009), aerosol vertical profile, absorption AOD and single-
scatter albedo. It would also be possible to screen the model
variants according to skill in capturing high temporal reso-
lution variability (Myhre et al., 2009) or skill in different re-
gions dominated by different aerosols (Shindell et al., 2013).
Here, in this idealized constraint exercise, we restrict the
analysis to July monthly mean aerosol properties over Eu-
rope.

2.7 Identification of plausible model variants

Observationally plausible model variants are defined to be
those that simulate aerosol and radiation properties within
the uncertainty ranges of the observations, defined in Ta-
ble 2. As we use statistical emulators to generate the sim-
ulated output values for each model variant, rather than us-
ing the climate model directly, an emulator prediction error
ϕ (valued at 1 standard deviation on the emulator prediction
from the Gaussian process uncertainty) is also taken into ac-
count. Hence for a given observed variable, a model variant
is rejected as implausible if the range defined by its emulator
prediction ±ϕ lies outside the corresponding observation’s
uncertainty range in Table 2. Furthermore, for a joint obser-
vational constraint we retain only the model variants that are
classed as plausible for all individual observation types that
make up the joint constraint. Such a criterion is possible with
synthetic observations because we know that the idealized
truth is within the model uncertainty space, but the method-
ology would be more complex if we were using real obser-
vations. It is likely that some of the real observations will
deviate from the model significantly because of model struc-
tural errors and issues related to the representativeness of the
observations. Therefore, the use of real observations would
necessitate the definition of a measure of plausibility that
accounts for known structural and representativeness errors
(McNeall et al., 2016; Williamson et al., 2013).
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Figure 2. Pairwise scatter plots of the PPE member regional mean model output for Europe in July, for the aerosol properties used as
constraints: ToA flux (W m−2); change in SSR (1SSR, W m−2) between 1978 and 2008; CCN0.2 concentration (cm−3); AOD; surface
mass concentrations of PM2.5, sulfate, OC and BC (µg m−3); the change in AOD (1AOD, W m−2) between 1978 and 2008; and the 1850–
2008 forcing variables: aerosol ERF, ERFACI, ERFARI and ERFARIclr (W m−2).

2.8 Aerosol effective radiative forcing (ERF)

We test the effect of observational constraint on the pre-
industrial (PI, here 1850) to present-day (PD, 2008) July-
mean European aerosol ERF and its components ERFACI
(aerosol–cloud interaction) and ERFARI (aerosol–radiation
interaction) as well as on the clear-sky component of the
ERFARI (ERFARIclr). The ERFs (except the ERFARIclr term)
account for above-cloud aerosol scattering and absorption
(Ghan, 2013) and are calculated using a fixed sea-surface
temperature from 2008.

3 Results

3.1 Relationships among the observed quantities and
forcing variables

Figure 2 shows pairwise scatter plots of the PPE member out-
put (European July mean), which provides an overview of
the spread of the model outputs as well as the relationships

between the variables. We further quantify any linear rela-
tionships between the variables using the Pearson correlation
coefficient (r) in Table 3.

The aerosol variables show clear inter-relationships. In
particular, AOD and PM2.5 concentration show the strongest
relationship (Pearson correlation, r = 0.88), which is ex-
pected given that satellite AOD measurements are frequently
used as a proxy for ground-level PM2.5 (Chu et al., 2016).
This suggests that AOD and PM2.5 observations will con-
strain the model uncertainty to a similar extent and there-
fore only one of these observable quantities is required. AOD
and PM2.5 are also clearly correlated with sulfate, OC and
BC, which are major components of PM2.5 in polluted re-
gions. CCN0.2 has a relatively weak positive relationship
to both AOD (r = 0.46) and PM2.5 (r = 0.21). A positive
correlation is expected because, in general, greater aerosol
loading will produce greater CCN0.2 concentrations, but the
correlations are weak because the model aerosol size dis-
tribution (which determines CCN0.2) can be configured in
many different ways to produce the same AOD. The weak
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Table 3. Pearson linear correlations (r) between the PPE member regional mean model outputs for Europe in July, for the aerosol properties
used as constraints and the 1850–2008 forcing variables, corresponding to the pairwise scatter plots in Fig. 2.

ToA flux 0.20 0.00 0.23 −0.30 0.16 0.10 0.04 −0.03 −0.59 −0.65 0.25 −0.05
1SSR −0.04 0.22 −0.72 0.12 0.49 −0.04 0.11 −0.32 −0.22 −0.52 −0.61

CCN0.2 0.46 −0.20 0.21 0.03 0.37 0.09 −0.14 −0.14 −0.01 −0.09
AOD −0.50 0.88 0.59 0.66 0.59 −0.33 −0.27 −0.33 −0.55

1AOD −0.32 −0.71 −0.17 −0.20 0.48 0.38 0.55 0.76
PM2.5 0.54 0.69 0.54 −0.21 −0.15 −0.33 −0.44

Sulfate 0.47 0.64 −0.41 −0.28 −0.67 −0.77
OC 0.62 −0.34 −0.31 −0.20 −0.30

BC −0.27 −0.22 −0.28 −0.46
ERF 0.98 0.16 0.48

ERFACI −0.04 0.33
ERFARI 0.83

ERFARIclr

AOD–CCN0.2 relation has implications for model constraint:
for example, AOD values in the range 0.15–0.2 encompass
CCN0.2 concentrations of around 400 to around 1000 cm−3.
These results are similar to those of Stier (2016) who showed
similarly weak CCN–AOD correlations.

There are clear relationships between industrial-period
forcing variables and some of the observable aerosol prop-
erties. For ERFARI and ERFARIclr the strongest relationships
are with the sulfate concentration (r =−0.77 for ERFARIclr
and −0.67 for ERFARI) and multi-decadal 1AOD (r = 0.76
for ERFARIclr and 0.55 for ERFARI). As expected, a present-
day higher sulfate concentration corresponds to a stronger
(more negative) ERFARI. 1AOD is negative over Europe
due to the reductions in anthropogenic aerosol emissions. Pa-
rameter settings that produce a strong multi-decadal 1AOD
also tend to produce a strong pre-industrial to present-day
ERFARIclr and therefore a stronger ERFARI. Based on these
relationships, uncertainty in ERFARIclr would be easier to
constrain than uncertainty in ERFARI and the most useful
aerosol observation for this purpose would be European-
mean atmospheric sulfate concentration.

For the ERFACI there is a relationship with the reflected
shortwave ToA flux (r =−0.65), with a larger flux corre-
sponding to a stronger (more negative) forcing. This rela-
tionship means that the parameter settings that produce more
reflective aerosols and clouds in the present-day atmosphere
also enhance ERFACI forcing. There is also a relationship be-
tween the aerosol ERF (pre-industrial to present-day) and the
1978–2008 change in surface shortwave radiation (1SSR;
r =−0.32). However, there is a lot of scatter in the rela-
tionship because the model parameters that cause uncertainty
in decadal radiative changes are similar but not identical to
those that cause uncertainty in forcing over the full industrial
period (Regayre et al., 2018, 2014). The relationship between
1SSR and aerosol ERF among seven models was used by
Cherian et al. (2014) as an emergent constraint on aerosol

ERF over Europe. In Sect. 4 we explore the implications of
our uncertainty analysis for such emergent constraint studies.

In summary, the identified relationships in Fig. 2 sug-
gest that for Europe, constraints on sulfate concentration
and 1AOD could lead to some constraint on uncertainty
in ERFARI and ERFARIclr. Constraint on ToA flux could
lead to some constraint on uncertainty in aerosol ERF and
ERFACI over Europe and observed multi-decadal changes in
SSR could provide additional constraint. Observational con-
straints of ERFs are explored in Sect. 3.5.

3.2 Uncertainty in aerosols and radiative forcings

Figure 3 shows probability density functions of the observ-
able aerosol quantities and the ERFs from the Monte Carlo
sample of 4 million model variants (Sect. 2.4). These PDFs
sample the complete multi-dimensional parameter space of
the model, weighted according the prior probability distribu-
tions on the input parameters (Yoshioka et al., 2018). The
ranges are similar to those in Fig. 2, but the PPE mem-
bers themselves do not sample the parameter space densely
enough to enable a statistically robust PDF to be generated.

The most uncertain observable aerosol properties, with the
largest relative standard deviation (ratio of standard devia-
tion to mean value) in our sample are the sulfate and OC
concentrations and the multi-decadal 1AOD (Table 4). This
suggests that constraining these properties will substantially
reduce the sample size and constrain the parameter space.
Some of the PDFs have long tails (e.g. OC concentration and
1AOD), which suggests that a subset of parameters may be
combining in a specific manner to obtain these extreme val-
ues. The tails of the forcing PDFs contain the values most
likely to be considered implausible against observations (Re-
gayre et al., 2018).
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Figure 3. Calculated uncertainty in the aerosol quantities and aerosol ERF terms from the 4 million member sample. Results are for the July
mean over Europe. The red bar shows the assumed range of each synthetic observation used to constrain the uncertain parameter space and
the aerosol forcing uncertainty from Table 2.

3.3 Sensitivity analysis

We can decompose the overall variance in a model output
into percentage contributions from the individual input pa-
rameters (Lee et al., 2011; Saltelli et al., 1999). The results
of this analysis are shown in Fig. 4.

For many of the output variables there is little correspon-
dence with the forcing variables in terms of the main param-
eters that cause uncertainty. In particular, only about 10 % of
the CCN0.2 concentration uncertainty comes from the main
causes of uncertainty in any of the corresponding forcing
variables, which is consistent with the weak correlations in
Fig. 2 and the conclusions of Lee et al. (2016).

There is reasonable correspondence between the sources
of uncertainty in sulfate concentration, 1AOD, ERFARI and
ERFARIclr, which is again consistent with Fig. 2. Around 60–
70 % of the output variance in these variables is accounted for
by anthropogenic SO2 emissions (Anth_SO2) and the accu-
mulation mode dry deposition velocity (Dry_Dep_Acc). This
degree of similarity in the parametric uncertainty sources im-
plies that an individual observational constraint on 1AOD

should lead to some constraint of the ERFARI and ERFARIclr
forcing uncertainty. Dry_Dep_Acc is also a significant cause
of uncertainty in AOD, PM2.5 and concentrations of sul-
fate, OC and BC (between ∼ 25 and ∼ 70 % for each).
Hence, it is possible that constraint of these observable
aerosol quantities may lead to some constraint on ERFARI
and ERFARIclr uncertainty. We also see that the uncertainty in
the ToA flux is dominated by the cloud radiation parameter
Rad_Mcica_Sigma (which affects the spatial homogeneity of
the clouds), which also accounts for about 35 % of the vari-
ance in ERF and ERFACI. This parameter also causes most of
the uncertainty in global mean ERF and ToA flux (Regayre
et al., 2018). However, over Europe in July there are multi-
ple other parameters causing a small amount of the aerosol
ERF uncertainty, which suggests an effective constraint will
require the use of multiple complementary observations.

3.4 Constraint of aerosol properties

We first explore how constraining an individual aerosol prop-
erty helps to constrain the range of other observable proper-
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Table 4. Mean, standard deviation (σ ) and absolute relative standard deviation (|σ/mean|) of the calculated uncertainty in the aerosol
quantities and aerosol ERF terms from the 4 million member sample. Results are for the July mean over Europe.

mean σ |σ/mean|

Top-of-atmosphere upward SW flux (W m−2) 128.66 10.83 0.08
Change in surface solar radiation from 1978 to 2008 (W m−2) 3.29 0.52 0.16
Cloud condensation nucleus (CCN) concentration at 0.2 % supersaturation (cm−3) 542.95 78.1 0.14
Aerosol optical depth (AOD) 0.17 0.04 0.23
Change in AOD from 1978 to 2008, 1AOD −0.05 0.01 0.31
PM2.5 mass concentration (µg m−3) 8.27 2.28 0.28
Particle sulfate concentration (µg m−3) 1.63 0.54 0.33
OC particle concentration (µg m−3) 4.25 1.48 0.35
BC particle concentration (µg m−3) 0.23 0.03 0.12

1850 to 2008 ERF (W m−2) −4.14 1.07 0.26
1850 to 2008 ERFACI (W m−2) −3.52 1.04 0.3
1850 to 2008 ERFARI (W m−2) −0.68 0.2 0.3
1850 to 2008 ERFARIclr (W m−2) −1.02 0.28 0.27
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Figure 4. Variance-based sensitivity analysis results, showing the percentage parameter contributions to model output uncertainty in the
observable aerosol quantities and the forcing variables for Europe in July. Only those parameters which cause at least 1 % of the variance are
shown in colour.

ties and multi-decadal trends. AOD is the aerosol property
most frequently observed and used to evaluate and constrain
models (e.g. Shindell et al., 2013) and is used as the con-
trol variable in data assimilation used to evaluate the aerosol
forcing (Bellouin et al., 2013). Figure 5 shows the reduc-
tion in uncertainty of the modelled atmospheric properties
and trends by constraining the model to match observed
AOD. Credible intervals (95 %) corresponding to the indi-
vidual constraints are provided in Table 5.

Constraint of July European monthly-mean AOD to lie
in the range 0.14–0.19 (23 % of the full ensemble range)
leads to a fairly strong constraint of PM2.5 uncertainty: the
standard deviation of PM2.5 (σPM2.5) is reduced by 34 %

when the range of AOD is reduced by about 77 %. The stan-
dard deviation of the PM components and the multi-decadal
trend 1AOD are also reduced, but by a smaller amount:
around 20 % for OC and only around 10 % for BC, sulfate
and1AOD. Constraint of individual chemical components is
weaker because there are many combinations of sulfate, BC
and OC that can account for high or low AOD. Uncertainty
in the other observable quantities (CCN0.2 and ToA flux and
the multi-decadal trend 1SSR) are essentially unaffected by
the constraint of AOD. The reason for the weak constraint is
that there are many model variants within the observed range
of AOD (or PM2.5) that produce very different CCN0.2, ToA
flux and 1SSR.
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These results provide some indication of the possible re-
maining uncertainty in a model that has been tuned to agree
with AOD observations. A tuned model that agrees with
AOD observations within the observational uncertainty is
just one of many potential variants of the model that have
equally good agreement with the observations. For example,
our model suggests that the remaining uncertainty (absolute
range) in July European-mean CCN0.2 concentration could
be 755 cm−3 in a model constrained by AOD observations,
which is only slightly less than the unconstrained range of
782 cm−3. Most surprisingly, constraint of AOD leaves open
a wide range of potential values of the change in AOD over
decadal periods. The range of the July 1AOD from 1978 to
2008 after constraint of 2008 AOD is 0.105 (from −0.109 to
−0.004), which is only slightly lower than the unconstrained
range of 0.115. Screening model variants based on their abil-
ity to reproduce a single aerosol-related observation is not
a sufficient constraint on aerosol-related model uncertainty.
Therefore tuning a model to AOD observations is completely
inadequate for producing a robust aerosol model.

3.5 Constraint of 1850–2008 aerosol ERF uncertainty

3.5.1 Effects of individual aerosol and radiation
observational constraints

Figure 6a–d show the potential constraint achievable on
uncertainty in the July 1850–2008 aerosol ERF, ERFACI,
ERFARI and ERFARIclr when we constrain July-mean AOD
over Europe. Each box and whisker plot shows the uncer-
tainty distribution from the original sample of 4 million
model variants (grey, left) and the sample of constrained
models (pink, right). Table 6 shows means and standard de-
viations for the original and constrained distributions from
AOD and all other individual observational constraints.

Observational constraint of simulated AOD has essentially
no effect on the range of aerosol ERF and the ERFACI com-
ponent of forcing over Europe. There is some reduction in
uncertainty in the ERFARIclr component of forcing (standard
deviation reduced by around 12 %) but not in ERFARI, de-
spite both sharing common causes of uncertainty with AOD
(Sect. 3.3).

Figure 7 summarizes the effect of the other individual con-
straints. For ERFACI (and therefore aerosol ERF, which is
dominated by ERFACI) the only observation that has any
meaningful effect on the range is the ToA flux. When the
flux is constrained to be within the range 122–135 W m−2

(from the prior range of 90–175 W m−2), the standard de-
viation of ERFACI over Europe in July falls by 24 % (Ta-
ble 6). The 1SSR observation reduces the aerosol ERF and
ERFACI standard deviations by less than 3 %. The only other
constraints on uncertainty in aerosol ERF and ERFACI come
from constraining AOD or 1AOD, which reduce the forcing
uncertainties by around 3 % each. The effect of applying all
observations in combination is discussed in Sect. 3.5.2.
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Figure 5. Effect of observational constraint of AOD on other
aerosol properties in the model over Europe. The bars show the
absolute range of the PDF before (thin line) and after (thick line)
constraint. Results are for mean properties over Europe in July.

ERFARI and ERFARIclr are constrained by several indi-
vidually applied observations. 1AOD and sulfate concen-
trations provide the strongest constraints. 1AOD reduces
the standard deviation of ERFARI and ERFARIclr by 14 %
and 24 % respectively. Constraining sulfate concentrations
reduces the uncertainty in ERFARI by 18 % and in ERFARIclr
by 21 %. The strong constraint of ERFARI and ERFARIclr un-
certainty is consistent with Fig. 4, where we saw that around
60–70 % of the uncertainty in1AOD, ERFARI and ERFARIclr
could be attributed to the same two parameters. Again, the
relatively weak constraint is caused by interacting combi-
nations of parameter effects (Lee et al., 2016; Regayre et
al., 2018; Sect. 3.7), so there is potential for significant er-
ror compensation (or equifinality, Beven and Freer, 2001). In
all other cases the individual observational constraints reduce
the uncertainty in ERFARI and ERFARIclr by less than 10 %.
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Table 5. Effect on the uncertainty in aerosol properties over Europe in July when the model is constrained by AOD (assumed measurement
uncertainty range 0.14–0.19). The aerosol uncertainties are given as the 2.5th and 97.5th empirical percentiles of the PDF to form a 95 %
credible interval.

95th CI unconstrained 95th CI constrained by AOD

Top-of-atmosphere upward SW flux (W m−2) (108.9, 149.5) (109.0, 149.0)
Change in surface solar radiation from 1978 to 2008 (W m−2) (2.27, 4.30) (2.29, 4.30)
Cloud condensation nucleus (CCN) concentration at 0.2 % supersaturation (cm−3) (396, 704) (408, 698)
Aerosol optical depth (AOD) (0.105, 0.257) (0.130, 0.201)
Change in AOD from 2008 to 1978, 1AOD (−0.076, −0.022) (−0.072, −0.024)
PM2.5 mass concentration (µg m−3) (4.41, 13.15) (5.31, 10.98)
Particle sulfate concentration (µg m−3) (0.71, 2.72) (0.79, 2.58)
OC particle concentration (µg m−3) (2.10, 7.61) (2.24, 6.66)
BC particle concentration (µg m−3) (0.179, 0.284) (0.183, 0.277)
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Figure 6. The effect of the AOD constraint (a–d) and all observational constraints together (e–h) on the uncertainty in the 1850–2008
forcing variables over Europe in July. Columns left to right show constraint of aerosol ERF, ERFACI, ERFARI and ERFARIclr (W m−2). The
boxes show the interquartile range (with the median value shown by the black line that cuts it) and the whiskers show the full range of the
distribution. The short horizontal bars on the whiskers correspond to 95 % credible interval bounds. The grey boxes show the distribution for
the variable predicted over the original sample (4 million model variants that span the underlying parameter uncertainty) and the pink boxes
show the corresponding distribution of the remaining samples after the constraint has been applied. The predicted forcing using the input
combination of the model run used as the idealized observation is shown by the blue cross.

3.5.2 Effect of all observational constraints

Figure 6e–h and the right-most bars in Fig. 7 show the
reduction in July European-mean 1850–2008 aerosol ERF,
ERFACI, ERFARI and ERFARIclr uncertainty when we si-
multaneously apply all nine observational constraints. The
standard deviations are reduced by 29.4 % for the aerosol
ERF, 29.5 % for ERFACI, 27.8 % for ERFARI and 34.3 % for
ERFARIclr (Table 6) and Fig. 6 shows a reduction in the in-
terquartile range (box width) and 95 % credible interval in
each case.

Our results show that multiple observational constraints
are very effective at reducing the plausible parameter space
(ruling out 96.4 % of model variants). However, these re-
ductions in parameter space have only a modest impact on

aerosol ERF uncertainty. This occurs because the 27 param-
eter values in the constrained space can be combined to pro-
duce a wide range of ERFs (Lee et al., 2016). These re-
sults highlight the value of exploring the wider underlying
modelling uncertainties (achieved here using a well-designed
PPE to inform statistical emulation). The more comprehen-
sive exploration of the parameter space using several million
model variants from the emulators enabled us to explore the
wider uncertainties that would not have been captured even
by the 191 PPE members. Furthermore, a 96.4 % reduction
in parameter space would have reduced the number of PPE
members to one or two, which would not have revealed that
a large fraction of the ERF uncertainty (70.6 %) remained
unconstrained. Likewise, a single model variant arrived at
through tuning cannot represent model behaviour over the
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Table 6. Mean and standard deviation (in brackets) of the forcing distributions over Europe in July for the original unconstrained sample, the
multiple-constraint sample and the individually constrained samples where each observational constraint is applied independently.

Applied constraint ERF (W m−2) ERFACI (W m−2) ERFARI (W m−2) ERFARIclr (W m−2)

No constraint −4.144 (1.075) −3.523 (1.044) −0.683 (0.204) −1.024 (0.281)

All constraints −4.391 (0.759) −3.707 (0.736) −0.710 (0.148) −1.044 (0.184)

ToA flux −4.137 (0.863) −3.496 (0.790) −0.683 (0.201) −1.024 (0.280)
1SSR (1978–2008) −4.247 (1.045) −3.593 (1.034) −0.710 (0.193) −1.067 (0.260)
CCN0.2 Concentration −4.181 (1.065) −3.547 (1.036) −0.695 (0.204) −1.039 (0.277)
AOD −4.123 (1.034) −3.500 (1.017) −0.684 (0.194) −1.014 (0.246)
1AOD (1978–2008) −4.175 (1.003) −3.541 (1.011) −0.693 (0.176) −1.034 (0.214)
PM2.5 concentration −4.173 (1.057) −3.541 (1.039) −0.688 (0.197) −1.021 (0.257)
Sulfate concentration −4.231 (1.037) −3.589 (1.040) −0.695 (0.167) −1.035 (0.222)
OC concentration −4.245 (1.047) −3.622 (1.027) −0.682 (0.207) −1.018 (0.278)
BC concentration −4.263 (1.058) −3.607 (1.046) −0.707 (0.195) −1.052 (0.259)
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Figure 7. The relative constraint achieved for aerosol ERF, ERFACI, ERFARI and ERFARIclr over Europe in July given the individual
synthetic constraints applied (colours) and the simultaneous constraint (ALL). The relative constraint is evaluated as (a) the ratio of the
standard deviation of the forcing in the constrained sample (σconstrained) to the standard deviation of the forcing in the original, unconstrained
sample (σfull); (b) the ratio of the constrained forcing range (rangeconstrained) to the unconstrained forcing range (rangefull).

remaining plausible parameter space. Similar concerns about
non-robust samples apply also to the small number of mem-
bers in multi-model ensembles.

3.5.3 Effect of combinations of observational
constraints

An important question in model constraint is how quickly
the model uncertainty falls as additional observational con-
straints are applied. Figure 8 shows the average reduction
in forcing uncertainty versus the number of observational
constraints applied. With 9 possible observational constraints
there are 9 possible single constraints, 36 possible combina-
tions of 2 constraints, 252 combinations of 3 constraints, etc.

We therefore show a mean over all possible combinations of
each number of constraints.

Averaged across the many combinations of constraints,
uncertainty in aerosol ERF and its components initially falls
approximately linearly with the number of constraints ap-
plied, but then flattens out. This dependence implies that
some observations are constraining the same sources of un-
certainty as other observations (as shown in Sect. 3.3). So
while a large number of observations are needed to con-
strain forcing, it is also important to identify observations
that provide unique constraints on parameter uncertainties.
The effectiveness of each observational constraint depends
on which other constraints are applied with it. For exam-
ple, two positively correlated observations like PM2.5 and
AOD (Fig. 2) will reduce the allowable parameter space in
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Figure 8. The dependence of July aerosol ERF uncertainty on the number of observational constraints applied. The lines show the mean
effect of different numbers of constraints.

broadly the same dimensions because the same parameters
cause their uncertainty (Fig. 4). Therefore the constraint on
forcing uncertainty achieved by AOD and PM2.5 is not addi-
tive.

3.6 Constraint of 1978–2008 forcing uncertainty

Previous research has shown that the causes of uncertainty
in recent decadal forcing are quite different to the causes
of uncertainty in pre-industrial to present-day forcing (Re-
gayre et al., 2018, 2014). Much of the uncertainty in PI to
PD aerosol–cloud interaction forcing is caused by natural
aerosols (Carslaw et al., 2013, 2017), which are much less
important over recent decades. We therefore expect recent
aerosol and radiation observations to provide a greater con-
straint on recent decadal forcings than on forcing referenced
to PI conditions. Our results show that this hypothesis is cor-
rect: simultaneous application of the nine observational con-
straints reduces the standard deviation of the July 1978–2008
aerosol forcing distributions by 33.7 % for ERF, 32.3 % for
ERFACI, 35.0 % for ERFARI and 43.9 % for ERFARIclr, which
are all greater reductions than for the 1850 to 2008 forcing
(Fig. 7, Table 6). The main contributor to the reduction in un-
certainty in the aerosol ERF from 1978 to 2008 is the change
in AOD, followed by present-day AOD. These results sug-
gest that forcing uncertainty in recent decades may be more
readily constrained by observations than multi-century forc-
ing.

3.7 Constraint of plausible parameter ranges

The overall objective of our approach is to identify all the ob-
servationally plausible variants of the model so that they can
be used to calculate an observationally constrained spread
of aerosol ERFs. Each variant is associated with a particu-
lar part of parameter space. We can therefore use the emula-
tors to compute the constrained magnitude and range of any
other aerosol property (or the changes between 1850, 1978
and 2008). Alternatively a sample of these variants (param-
eter settings) could be used in the model itself to simulate
aerosol effects for any situation (for example, with very dif-
ferent meteorological conditions, or anthropogenic aerosol
emissions).

Figure 9 shows a one-dimensional projection of the re-
maining parameter space after constraining to the nine obser-
vations. There are some substantial reductions in the plausi-
ble marginal range of several individual parameters. It needs
to be borne in mind that, with 27 parameter dimensions, the
parameter relationships which have been constrained by mul-
tiple observations cannot be seen in the one-dimensional pro-
jection. That is, the remaining plausible individual parameter
values can be combined in many ways with the remaining
space of the other parameters and still reproduce all of the
observations (Lee et al., 2016; Regayre et al., 2018). Fig-
ure 9 identifies parts of the marginal parameter space that
are effectively ruled out in white. For example, a very low
setting of the BVOC_SOA parameter cannot produce obser-
vationally plausible results when combined with any of the
possible combinations of the other 26 parameters.
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The constraint of the parameter ranges will be different
when using real observations, but it is interesting to see how
nine observations can marginally constrain 27 parameters
when there is a high degree of potentially compensating ef-
fects. The strongest marginal constraint is on the following:
the sea spray aerosol emissions (Sea_Spray; the highest 25 %
and lowest 15 % of values are implausible), biogenic sec-
ondary aerosol formation (BVOC_SOA; the lowest 40 % and
top 20 % of the range are implausible), the hygroscopicity of
organic carbon (Kappa_OC; the top 40 % of values are im-
plausible) and the imaginary part of organic carbon refractive
index (OC_RI; top 30 % is implausible). Furthermore, the
lowest 10 %–20 % of the range of several aerosol emission
parameters are also deemed implausible – biomass burning
(Carb_BB_Ems), degassing volcanic (Volc_SO2), DMS, an-
thropogenic sulfur dioxide (Anth_SO2).

The atmospheric (host model) marginal parameter ranges
are much less constrained because the observable variables
that we used are not strongly dependent on them, except
for ToA flux observations, which are known to be affected
by the Dec_Thresh_Cld and Rad_Mcica_Sigma parameters
(Regayre et al., 2018). Values of the threshold for cloudy
boundary layer decoupling parameter (Dec_Thresh_Cld) are
concentrated towards the lower end of the range (the up-
per 40 % are implausible). We also show that the top 20 %
of values are implausible for the parameter controlling the
amount of overlap between sub-grid clouds as seen by the
model’s radiation code (Rad_Mcica_Sigma). However, the
lowest 40 % of this parameter range can be entirely ruled out
by constraining the ToA flux in the North Pacific (Regayre
et al., 2018). These results highlight the important benefits

which will come from constraining the model uncertainty us-
ing multiple observations in multiple environments.

This analysis highlights the complexity of the multi-
dimensional parameter uncertainty space that remains after
observational constraint: there are clearly a large number of
ways of tuning a model to be observationally plausible.

4 Implications for model screening and emergent
constraints

In multi-model ensembles it is usually the case that each
modelling group submits a single well-tuned version (vari-
ant) of a model. The uncertainty in the ensemble is deter-
mined by the structural differences between the models, but
the uncertainty in the individual models (caused by multiple
uncertain parameter settings) is not quantified. Here we use
the uncertainty in HadGEM3-UKCA to estimate the effect it
might have on the results of multi-model emergent constraint
studies. Clearly the uncertainties in each model will differ, so
we use our model uncertainty only as a rough estimate of the
potential effect.

In the ACCMIP study (Shindell et al., 2013), model skill
at simulating AOD was used to screen nine models. We have
described in Sect. 3.4 and 3.5 why constraint of AOD can
only be considered the first step in model screening; AOD
does not effectively reduce model uncertainty when used in
isolation. The standard deviation of the modelled global an-
nual mean ERFARI in the ACCMIP study was about 50 % of
the multi-model mean. In our results, after we have screened
out model variants that are inconsistent with synthetic AOD
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Figure 10. An example of an emergent constraint of the aerosol forcing using results from multiple models. (a) A relatively tight apparent
constraint when the uncertainty in the individual models is neglected; (b) a much weaker constraint when the uncertainty in the individual
models is accounted for.

observations (i.e. effectively tuning to AOD), the standard
deviation of the HadGEM-UKCA ERFARI over Europe in
July is about 30 % of our mean. Therefore the standard de-
viation in HadGEM3-UKCA caused by uncertain input pa-
rameters is a significant fraction of the multi-model standard
deviation, and would affect the constrained range of ERFARI.
Shindell et al. (2013) acknowledged that uncertainties in the
emissions could alter the relative agreement of the models
with observations and thereby affect the spread of plausible
model predictions. However, uncertainty in emissions is just
one of many possible sources of uncertainty that could affect
the conclusions (Fig. 4).

In emergent constraint studies a linear relationship be-
tween aerosol forcing and an observable variable simu-
lated by multiple models is used to define an observation-
ally constrained value of the variable of interest. In the
Cherian et al. (2014) study European-mean aerosol ERF
was estimated by regressing modelled ERF against the
1990–2005 modelled trend in SSR over Europe from seven
aerosol–climate models. An observed SSR trend of −4.0±
0.6 W m−2 decade−1 enabled the European-mean aerosol
ERF to be constrained to −3.56± 1.41 W m−2 (correspond-
ing to the range of −4.97 to −2.15 W m−2). Their analysis
accounted for the uncertainty in SSR caused by meteorolog-
ical variability but did not account for the influence of para-
metric uncertainties.

In our HadGEM3-UKCA simulations the July European-
mean aerosol ERF 95 % credible interval is −6.0 to
−2.7 W m−2 after constraining the model using nine obser-
vations (i.e. a tight tuning of the model). This range provides
some measure of the range of alternative ERFs that could be
obtained by the individual models had they been tuned differ-
ently (but equally well) to observations (although we do not
know what actual tuning was undertaken). Our single-model
uncertainty range is comparable to the multi-model ensemble
range, but was not accounted for by Cherian et al. (2014) in
deriving the emergent constraint. The effect of including this
previously neglected source of single-model uncertainty is to

substantially increase the uncertainty on the emergent con-
straint (Fig. 10). Furthermore, the likely magnitude of forc-
ing derived from emergent constraints is sensitive to the un-
certainties accounted for in the process (Samset et al., 2014).

In many emergent constraint studies, the constrained ERF
(or other quantity) is essentially based on the very small num-
ber of models that lie within the uncertainty range of one ob-
servation (Fig. 10). With our approach, model variants that
are plausible against this one observation type are then ex-
amined to determine their plausibility against many other ob-
servation types – in this study, nine observations in total. Ul-
timately, multivariate constraint is essential to reach robust
conclusions because of the many compensating sources of
model uncertainty.

5 Conclusions

The use of observations to produce a well-configured model
variant is a fundamental aspect of ensuring that models can
make trustworthy predictions. For example, in a review of
progress on reducing uncertainty in direct radiative forc-
ing, Kahn (2012) argues that models can be “constrained
by the aggregate of observational data, to calculate the re-
gional and global radiation fields and material fluxes with
adequate space–time resolution to produce the best result we
can achieve”. The primary objective of our study was to de-
termine how much uncertainty could remain in an aerosol–
climate model when it is constrained to match combinations
of observations that define the base state of the model: top-
of-atmosphere upward shortwave flux, aerosol optical depth,
PM2.5, cloud condensation nuclei at 0.2 % supersaturation,
concentrations of sulfate, black carbon and organic material
as well as multi-decadal change in surface shortwave radia-
tion and aerosol optical depth. Our results refer to July-mean
conditions over Europe.

To estimate the uncertainty that might typically exist in a
climate model before and after tuning, we used a perturbed
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parameter ensemble that sampled uncertainties in 27 parame-
ters related to aerosol emissions, aerosol and cloud processes,
and parameters in the host physical climate model that influ-
ence clouds, humidity, convection and radiation in the base
state of the model. We performed 191 model simulations that
spanned the 27-dimensional space of the model uncertainty
and then built surrogate model emulators from which we cre-
ated a Monte Carlo sample of 4 million “model variants”.
Using synthetic observations (taken from the output of one of
our simulations) we determine the extent of the potential con-
straint that the nine aerosol and cloud-related properties can
generate. Constraining the model outputs using all nine ob-
servations rules out over 96 % of the model variants and the
associated implausible parts of parameter space. The remain-
ing 153 000 model variants have been used to estimate the
observationally constrained aerosol ERF and the uncertainty
associated with one tuned version of HadGEM3-UKCA.

Tuning HadGEM3-UKCA to AOD alone has almost no ef-
fect on the reliability of the tuned model to simulate CCN0.2
(and hence cloud drop number concentrations) (Fig. 5). Con-
straining European-mean AOD in July to lie within a real-
istic range of 0.14–0.19 (23 % of the full model uncertainty
range) results in a reduction of less than 5 % in the uncer-
tainty in CCN0.2 generated by the full set of 4 million vari-
ants of the model. The CCN0.2 concentration range is then
268–1022 cm−3 compared to 241–1022 cm−3. This provides
a measure of the parametric uncertainty when AOD measure-
ments are used to infer CCN, although the range would po-
tentially be larger had we perturbed more parameters (Yosh-
ioka et al., 2018). Tuning a model to AOD alone also has very
little effect on the modelled range of the trend in AOD over
a multi-decadal period. The complete set of model variants
produces a range of changes in AOD over Europe in July of
0.115 for the years 1978 to 2008, and this range is only re-
duced to 0.105 (from −0.109 to 0.004) when the model is
constrained to match July European-mean 2008 AOD within
observational uncertainty.

Constraint of AOD alone has a negligible effect on the un-
certainty in the aerosol ERF over Europe in July. Although
the aerosol ERF simulated by a model will change as pa-
rameters are tuned to achieve agreement with AOD measure-
ments, any resulting ERF will have large uncertainty (i.e.
there are many other equally well-tuned model variants that
produce different ERFs). This uncertainty cannot easily be
estimated without a full uncertainty analysis of the model as
we have done here. The weak constraint calls into question
the robustness of estimates of aerosol forcing based on AOD
reanalyses (Bellouin et al., 2013).

It is often argued that AOD is a poor variable to use for
understanding aerosol–cloud interactions. However, our re-
sults show that even the most strongly related measurement
(CCN0.2) does not provide a strong individual constraint on
ERFACI either (Fig. 7). It is doubtful that other derived vari-
ables like aerosol index will be any better. The key to model
constraint is to find combinations of observations that help to

constrain ERF: Individual constraints are unlikely to be ef-
fective, although they may appear to be effective if the model
uncertainty is not fully sampled.

Observational constraint using nine observations has the
potential to reduce the uncertainty in aerosol ERF slightly
more over a multi-decadal period than over the full indus-
trial period: the standard deviation falls by 29.4 % for the
July 1850–2008 aerosol ERF, 29.5 % for ERFACI, 27.8 % for
ERFARI and 34.3 % for ERFARIclr. The standard deviation of
1978–2008 aerosol ERF in July could be reduced by around
34 %, which is greater than for the 1850–2008 ERF because
there is greater correspondence between the causes of un-
certainty in near-term aerosol forcing and the 2008 aerosol–
cloud–radiation state than there is between the 1850–2008
ERF and the 2008 state (Regayre et al., 2018, 2014). Be-
cause near-term future changes in aerosols and clouds are
likely to resemble recent changes more than centennial-
scale changes, we are optimistic that the uncertainty in near-
term aerosol ERFs could be constrained and used to pro-
vide policy-relevant information on near-term temperature
changes (Hawkins et al., 2017). A shift of emphasis of the
research community towards trying to constrain decadal forc-
ing uncertainty, instead of industrial era forcing, is likely to
accelerate progress.

The most effective observational constraint on the uncer-
tainty in aerosol ERF and ERFACI is the top-of-atmosphere
upward shortwave flux. When the flux for July is constrained
to be within the range 122–135 W m−2 (from the prior range
of 90–175 W m−2) the standard deviation of ERFACI over
Europe in July falls by 24 %. Other observational constraints
reduce the ERFACI uncertainty by a few percent at most, in-
cluding the change in surface SW radiation. Effectively, this
result means that routine tuning of radiative fluxes in cli-
mate models will have a bearing on the magnitude of the
aerosol ERF that the models calculate. The reason for the
constraint on forcing uncertainty is that model parameters
that control cloud and atmosphere brightness also control
how that brightness responds to changes in aerosols over Eu-
rope. However, it is only likely to be an effective constraint
where the brightness is controlled by tuning the parameters
we have identified here. In regions dominated by quite differ-
ent processes, like mixed-phase clouds, tuning the flux will
have a much weaker effect on the aerosol ERF.

The most effective observational constraints on the uncer-
tainty in July ERFARI and ERFARIclr over Europe are the
sulfate concentration and the change in AOD over a multi-
decadal period (we used 1978–2008). When applied individ-
ually, sulfate concentrations constrain ERFARI standard de-
viation in our ensemble by 18 % over Europe in July. The
1978–2008 change in AOD constrains the ERFARI standard
deviation by 14 % when applied individually. Constraint of
AOD itself (in 2008) reduces the ERFARI uncertainty by only
5 %, and would not provide a realistic way of screening mod-
els. The other constraints were much less effective.

Atmos. Chem. Phys., 18, 13031–13053, 2018 www.atmos-chem-phys.net/18/13031/2018/



J. S. Johnson et al.: The importance of comprehensive parameter sampling 13049

The plausible ranges of some natural aerosol emissions
are reduced after constraining to the nine observations, par-
ticularly sea spray emissions and biogenic volatile organic
aerosol formation. We were also able to constrain some
aerosol process parameters such as the CCN hygroscopicity
(kappa), the imaginary refractive indices of BC and OC, and
parameters controlling boundary layer stability and the radia-
tive properties of overlapping sub-grid clouds which control
cloud brightness. Observational constraint generates a set of
constrained parameter settings that can be taken forward and
used to make model predictions under any other conditions
(e.g. for future projections).

The range and combinations of observationally plausible
parameter values remain very large even after constraint us-
ing nine observations, which explains why the aerosol ERF
uncertainty remains large after constraint. This result is not a
failure of our approach, but rather an indication of the mul-
tiple ways in which uncertain model parameters can com-
bine to predict a wide range of outputs with equal skill when
compared to observations. These multiple model variants are
neglected when a single model variant is produced through
tuning.

Widely used procedures of aerosol–climate model evalua-
tion and observational “validation” lack statistical robustness
because they do not adequately sample the model uncertainty
space. We showed that observational constraint against nine
observations identified less than 4 % of the 4 million sampled
points in multi-dimensional parameter space as plausible (i.e.
the model value is within the observational uncertainty). A
96 % reduction in parameter space would have reduced our
original set of 191 ensemble members to one or two, which
would not have revealed that a large fraction of the ERF un-
certainty (about 71 %) remained unconstrained. This creates
a fundamental problem for multi-model ensembles (which
have far fewer members) and model tuning (which may ex-
plore only a few dozen model variants and mostly with single
parameter perturbations). From such small samples of mod-
els it is not possible to determine how observations help to
reduce model uncertainty, so estimates of radiative forcing
should not be considered robust.

Our results have implications for studies that seek emer-
gent constraints on a small set of models based on one obser-
vational metric. An emergent constraint can be informative,
but cannot be expected to reduce the uncertainty in a com-
plex model when used in isolation. The example closest to
our study is Cherian et al. (2014), in which the relationship
between aerosol ERF and the trend in surface solar radiation
(SSR) over Europe for seven climate models was used to es-
timate the observationally constrained uncertainty in aerosol
ERF. Our results for the HadGEM3-UKCA model show that
the uncertainty in aerosol ERF and SSR trends in any one
tuned version of the model is likely to be of the same order
of magnitude as the multi-model range. If the uncertainties in
individual models in an ensemble are not accounted for, then
we risk being over-confident in the emergent constraints.

Efforts to quantify and observationally constrain individual
models are therefore not an alternative to multi-model stud-
ies, but individual model uncertainty needs to be quantified
and incorporated as an essential component of such efforts to
understand and then reduce aerosol ERF uncertainty.

There is considerable scope to extend our approach to in-
corporate more observation types and more regions. These
should include the following: (1) aerosol and radiation trends
(Allen et al., 2013; Cherian et al., 2014; Leibensperger et al.,
2012; Li et al., 2013; Liepert and Tegen, 2002; Shindell et al.,
2013; Turnock et al., 2015; Zhang et al., 2017) – so far we
used changes in AOD and SSR, but changes in ToA SW flux
as well as aerosol components like OC (Ridley et al., 2018)
and sulfate could provide useful constraints; (2) observations
from pristine regions that might provide a constraint on pre-
industrial-like aerosol and cloud properties (Carslaw et al.,
2017; Hamilton et al., 2014); (3) information on the vertical
profile of aerosols; and (4) observed relationships between
changes in aerosol and cloud variables (Ghan et al., 2016;
Gryspeerdt et al., 2017; Quaas et al., 2009) such as defined
in Eq. (1). Such relationships are a favoured way to constrain
forcing. Although it is conceivable that relationships between
change-of-state variables can be predicted more reliably than
state variables themselves (because of cancellation of corre-
lated model errors), the model uncertainty in these relation-
ships has not been determined in studies that have applied
them.

Whichever approach is used to reduce uncertainty in
aerosol forcing, it is essential to acknowledge that aerosol–
chemistry–climate models are highly complex with dozens
of sources of uncertainty that can be combined in many ways.
Such a system cannot be constrained by one or two observa-
tions at a time, and emergent constraints are no different in
this respect. Robust constraint of a high-dimensional system
requires large numbers of combined constraints so that the
multiple compensating dimensions of uncertainty can be re-
duced (Reddington et al., 2017). We are reasonably confident
that extension of our approach to more and varied observa-
tions will enable the uncertainty in aerosol radiative forcing
to be reduced significantly.
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