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Printable graphene BioFETs 
for DNA quantification 
in Lab‑on‑PCB microsystems
Sotirios Papamatthaiou*, Pedro Estrela & Despina Moschou

Lab‑on‑Chip is a technology that aims to transform the Point‑of‑Care (PoC) diagnostics field; 
nonetheless a commercial production compatible technology is yet to be established. Lab‑on‑Printed 
Circuit Board (Lab‑on‑PCB) is currently considered as a promising candidate technology for cost‑
aware but simultaneously high specification applications, requiring multi‑component microsystem 
implementations, due to its inherent compatibility with electronics and the long‑standing industrial 
manufacturing basis. In this work, we demonstrate the first electrolyte gated field‑effect transistor 
(FET) DNA biosensor implemented on commercially fabricated PCB in a planar layout. Graphene ink 
was drop‑casted to form the transistor channel and PNA probes were immobilized on the graphene 
channel, enabling label‑free DNA detection. It is shown that the sensor can selectively detect the 
complementary DNA sequence, following a fully inkjet‑printing compatible manufacturing process. 
The results demonstrate the potential for the effortless integration of FET sensors into Lab‑on‑PCB 
diagnostic platforms, paving the way for even higher sensitivity quantification than the current 
Lab‑on‑PCB state‑of‑the‑art of passive electrode electrochemical sensing. The substitution of such 
biosensors with our presented FET structures, promises further reduction of the time‑to‑result in 
microsystems combining sequential DNA amplification and detection modules to few minutes, since 
much fewer amplification cycles are required even for low‑abundance nucleic acid targets.

Electrochemical biosensors are considered to be at the forefront of the Point-of-Care (POC) testing due to their 
portability, fast response, high specificity and low  cost1. These characteristics along with the miniaturization 
capability have rendered them critical elements in Lab-on-Chip (LoC) platforms. Although impressive devel-
opment has been observed in the LoC field regarding their performance  characteristics2,3 there are still certain 
challenges to overcome in order to achieve widespread adoption in real-life applications, principally in the remit 
of economy-of-scale manufacturing of such devices.

A considerable impediment in the widespread use of LoC is the use of materials not ideally fitted for the mass 
production of high-performance devices. Several materials have been explored as candidates for the adoption 
of a standardized LoC technology among the research community and the industry; nevertheless none has 
managed to emerge as the definitive solution to the commercial upscaling bottleneck of  LoC4. More specifically, 
silicon, glass, PDMS and paper are some of the most used materials in laboratories and have exhibited satisfac-
tory results so far. However, silicon is too expensive for mass production when cm-scale LoC devices are needed, 
despite the advantage of a well-established manufacturing infrastructure. Glass is transparent (convenient for 
optical microfluidic testing) and biocompatible, but at the same time an expensive material lagging in electron-
ics integration. PDMS is cheap, transparent, biocompatible, flexible and versatile but similarly to glass, it lacks 
in electronics integration thus the cost becomes unviable for advanced quantification applications. Paper is a 
fairly novel material for LoC having exhibited moderate quantification sensitivity with more research required 
to unlock its full potential, especially in terms of microfluidic  integration4.

Lab-on-Printed Circuit Board technology (Lab-on-PCB) has been developed for addressing the aforemen-
tioned issues, as it promises a seamless and holistic integration of electronics, sensing, fluidic handling and 
packaging via the already mature and well-established PCB  industry4. PCB manufacturing is a mature and well-
established industry for over 70 years. It has massively contributed to the evolution of the consumer electronics 
by reducing the size and the cost of the circuitry. Contemporary PCB infrastructure is capable of comparable 
manufacturing precision and quality to the micrometer-scale semiconductor industry. This technology claims the 
potential to apply the benefits it introduced to the electronics industry to the LoC field, thus promising a similar 
impact regarding the broadening of consumer access to bioelectronics. The effortless electronics integration 
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that is offered by Lab-on-PCB eliminates the need for deposition methods that require expensive clean-room 
facilities. Indeed, this applies not only to the electrical tracks and sensing electrodes but also to the uncompli-
cated customization of the device with electronic components that are required, in many cases, for sensitivity 
and reliability improvement. Such components include micro-heaters, amplifiers, filters, optoelectronics and 
control circuitry. The microfluidic integration is achievable with standard PCB industry equipment and practices 
(or newly developed PCB compatible), aiming to produce devices ready to be used directly out of the factory. 
Interestingly, the usual dimensions of the microfluidic features incorporated in the bioelectronic devices are in 
the range of 50 μm–100  mm4. This characteristic perfectly matches the standard PCB machinery capabilities 
making redundant the highly precise and complex Si technology offering nm-scale features. In addition to this, 
the unification of the electronics and microfluidics manufacturing in the PCB industry mandates the same unify-
ing practice in the design phase. Thus, the adoption of the PCB industry standard CAD software to design the 
microfluidic structures of the Lab-on-PCB platform is a very recent  ambition5. Merging the electronics design 
with the microfluidics design in a single CAD platform will bring easier communication with the factory and 
unhindered implementation of the design to the manufacturing phase. Another convenient asset of the PCB 
industry is the fabrication of flexible printed boards, equally useful in biosensing  applications6. Finally, envi-
ronmental concerns about the disposability of Lab-on-PCBs are alleviated by the already established recycling 
facilities and standardized processes of the PCB industry.

Several LoC components have been showcased on  PCBs4,6 (spanning from micropumps and microvalves 
to μPCR modules), including the state-of-the-art in genetic analysis, comprising seamlessly integrated rapid 
(10–15 min) DNA amplification and on-chip electronic detection of the  amplicons7. However, biological field-
effect transistors (BioFETs) have yet to be realized, despite their potential for even higher sensitivity and much 
more rapid quantification, with sensing devices limited mainly to 2–3 electrodes electrochemical  biosensors4,6. 
For diagnostic applications that demand high sensitivity (e.g. cell-free nucleic acid cancer biomarkers), more 
sophisticated sensors are required. The BioFET is a label-free electrochemical biosensor that has been studied as 
a sensitive and low-cost portable proposal for a variety of biological agents’  detection7–12. The electrolyte gated 
FET is one of several FET sensor structures in which electrochemical gating is achieved through a reference 
electrode immersed into the  solution13–16.

In parallel, several channel materials have been explored in BioFETs, with graphene gaining significant atten-
tion recently. Graphene, a sheet of  sp2-bonded carbon atoms arranged into a honeycomb  structure15,17 has been 
exploited as the sensing element in BioFETs owing to its unique electronic and chemical  properties13. Graphene 
BioFETs display improved performance (i.e. increased transconductance) when operated in electrolyte gated 
mode without a solid-state gate  dielectric15,18–20 owing to the few angstroms thick electric double layer (EDL)18,20 
formed between the electrolyte-graphene interface. It has been found that the electrochemical gate is over two 
orders of magnitude more efficient than the conventional back gate with hundreds of nm thickness of  SiO2

15,21. 
High transconductance is a desirable feature for a BioFET as a tiny change in the gate bias (induced by charged 
analytes) will have a significant change in the channel current. Additionally, graphene is a popular choice for 
the active material in electrolyte gated FETs as its unique properties (e.g. direct doping from the adsorbed 
analytes) are better exploited by this “open”  structure22 while being suitable for direct chemical and biological 
 functionalization15,22. In terms of manufacturability, commercially available dispersions enable its effortless drop-
casting or inkjet-printing deposition, thus rendering it highly compatible with PCB manufacturing processes; 
it is worth noting that inkjet-printed electronics processing has been converging with conventional electronics 
manufacturing in the last 5 years.

In this work, we demonstrate the first electrolyte gated graphene FETs (EGGFETs) on commercially manufac-
tured PCBs. It is the first PCB based FET, utilizing the core board as the substrate and the PCB electrodes as the 
transistor drain, source and gate pads. Here, it has to be highlighted that the conventional, bulky, wire reference 
electrode is replaced by an in-plane PCB electrode for optimum miniaturization and integration. This layout 
is not widely explored in the  literature18,23 where the vast majority of works make use of an external reference 
 electrode19,20,24,25. The electrical behavior of the devices is investigated and a preliminary biosensing assessment 
is explored towards DNA detection. The DNA sequences that have been selected are oncogenic mutations of 
PIK3CA, one of the most commonly mutated oncogenes in human  cancer26,27.

Experimental
The prototype PCB platform for the EGGFET-assisted biosensing applications was designed in Altium, imple-
menting the drain, source and reference electrodes in Ag-plated electrode format and was manufactured with 
commercially available technologies by Newbury Electronics Ltd, UK. Figure 1 shows the PCB with 12 devices 
in total. The source, drain and reference electrodes were placed in the same plane and the reference electrode 
was electrically insulated from the transistor channel in the absence of electrolyte droplet. The length (L) of the 
drain-to-source channel was 0.13 mm and the width (W) was 5 mm. The chips were briefly cleaned by rinsing 
them with acetone, isopropanol and distilled water. Chlorination of the silver PCB reference electrodes was 
achieved by drop-casting 10 μL of sodium hypochlorite solution (6–14% active chlorine) while the chip was 
heated at 80 °C on a hotplate until the solvent evaporated. After this stage, a change in color was observed from 
silver to dark grey as Figure S1 (Supplementary Information) depicts, visually indicating surface  chlorination28,29. 
Similar PCB pseudo-reference electrodes from Newbury Electronics have been thoroughly evaluated previously 
regarding their electrical stability, proving themselves as reliable components for Lab-on-PCB  platforms28.

Graphene ink in water with N = 13 mean number of monolayers and L = 990 nm ± 130 nm length of the 
flakes at 1 g/L concentration was purchased from Advanced Material Development, UK. A short sonication was 
performed before the drop-casting. Two successive drop-casts of 5 μL each of the graphene ink were applied 
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between the drain and the source electrodes to form the channel while the chip was heated at 80 °C on a hotplate 
until the solvent evaporated.

The amine-modified PNA probe molecules were synthesized by Eurogentec, Belgium with the sequences: 
N-TTT CAG CCA CCA TGA CGT GCA-C. The sequences of the target complementary DNA (Sigma Aldrich) 
employed for hybridization were 5′-TGC ACG TCA TGG TGG CTG-3′ and the non-complementary control 
sequences were 5′-CAT GTA CTG CAA CAA TCA-3′. The PNA oligomers were diluted to 100 μM in distilled 
water and were kept below − 18 °C. DNAs were diluted to 10 μM in TE buffer (10 mM Tris–HCl, 1 mM disodium 
EDTA) and were kept at − 50 °C. The working principle of the EGGFET DNA sensor is illustrated in Fig. 1. In 
order to immobilize the PNA on the graphene, 5 mM of 1-pyrenebutanoic acid succinimidyl ester (PASE) (Sigma 
Aldrich) in dimethylsulfoxide (DMSO-for biological applications, Sigma Aldrich) was drop-casted on the channel 
to act as the linker molecule and was incubated for 1 h followed by being rinsed with 0.1 × Phosphate Buffered 
Saline (PBS, Sigma Aldrich). PASE binds to graphene via non-covalent π–π stacking interactions between its 
pyrene group and the graphene  surface30–33. The composition of 0.1× PBS was 1 mM phosphate buffer, 0.27 mM 
KCl and 13.7 mM NaCl. The PASE modified graphene was treated with 10 μM PNA in 0.1× PBS for 2 h followed 
by being rinsed with 0.1× PBS to remove any non-immobilized probes. The N-terminus of the PNA is immo-
bilized on the amine-reactive succinimide group of the  PASE30–33. The neutralization of non-specific binding 
events was achieved by drop-casting 1 mM ethanolamine solution (Sigma Aldrich, in 0.1× PBS) for 0.5 h and 
washed with 0.1× PBS. The complementary PNA-DNA hybridizations were performed by dropping an appropri-
ate DNA concentration in 0.1× PBS for 0.5 h and the non-hybridized sequences were removed by washing the 
channel with 0.1× PBS. The same was repeated for the control sequences. All the incubations were performed 
at room-temperature.

Figure 1.  Top: Photograph of the printed circuit board (PCB) designed in Altium for evaluation of graphene 
as the channel material of electrolyte-gated FET. In magnification, one of the devices where the drain, source, 
gate electrodes are visible along with the drop-casted graphene channel. Self-adhesive Teflon tape was attached 
to confine the electrolyte droplet. Bottom: Schematic of assay steps for PNA-DNA hybridization detection 
employing an electrolyte-gated graphene field-effect transistor.
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In order to get reliable and repeatable electrical measurements of the EGGFET devices, self-adhesive Teflon 
tape was attached around the channel to accommodate the electrolyte (0.1× PBS) in a confined space. Electrical 
measurements were performed inside a Faraday cage in ambient environment. The operation of the EGGFETs 
was controlled with a semiconductor device parameter analyzer (Keysight B1500A) using a built-in interface. The 
devices incorporated common reference and source electrodes while the selection of the device to be measured 
was performed by the corresponding drain pad. Regarding the extraction of the transfer curves, the drain to 
source voltage  (Vds) was fixed to 100 mV and the maximum absolute value of the gate to source voltage  (Vgs) was 
always kept below 1 V. This was done to avoid any side-effects from voltage-induced chemical reactions. The  Vgs 
scan rate was 50 mV/s unless otherwise stated.

Results and discussion
Electrical characterization of electrolyte gated graphene FETs. To investigate the electrical prop-
erties of our EGGFETs, the transfer characteristics were firstly extracted. The typical amphipolic graphene 
behavior is confirmed in Fig.  2a in a narrow  Vgs sweep range with asymmetric n-type and p-type branches 
while p-type semiconductor behavior is observed as indicated by the positive magnitude of the Dirac point. The 
asymmetrical branches and this p-type doping are consistent with previous reports and can be attributed to the 
environmental exposure influence. More specifically, the adsorption of charged impurities may lead to different 
scattering strengths for holes and electrons, expressed by the asymmetrical nature of the transfer  curves34–36. 
Also, graphene is known to be susceptible to p-type doping from water and oxygen molecule adsorption in 
ambient  environment30,32,34,37,38. As it is expected for these devices, the leakage current  (Igs) between the gate 
and the source is not negligible as the drain and source electrodes are not passivated to prevent contact with 
the electrolyte through the discontinuation of the graphene layer covering them. Nevertheless, Fig. 2a shows  Igs 
being less than 4.7% of  Ids at the − 0.25 V to 0 V range of  Vgs while two orders of magnitude difference is exhibited 
at positive values of  Vgs. These values compare  well19 and  favorably18 with other EGGFETs with non-passivated 
electrodes in the literature. The minimal influence of the  Vgs scan rate to the  VDirac and the linear left shift of 
the  VDirac with increasing concentration of the PBS buffer solution are also shown in Figure S2 (Supplementary 
Information) and are in good agreement with previously reported  results34.

Proceeding to the output curves, Fig. 2b shows the decrease of  Ids with a reduction of the gate voltage from 
0.98 to 0.48 V. This designates the gate influence to the channel current and reveals again the p-type doped 
graphene. The linear behavior of the curves indicates the lack of noticeable Schottky barriers or charge traps at 
the electrode–graphene interface.

After having established the field-effect channel current modulation, the hysteresis characteristics were inves-
tigated. Hysteresis is a common characteristic of transistors and consequently this applies to their applications, 
including  biosensors39. It is worth to study the hysteresis of an electrolyte gated transistor as hysteresis can 
introduce uncertainty in measuring the doping level of graphene, therefore degrading the device sensitivity and 
accuracy towards the detection of the  analyte39–43. To this end, forward (starting from negative  Vgs values) and 
backward (starting from positive  Vgs values) transfer curves were performed for three different  Vgs scan rates. For 
the sake of comparison, all of the investigated devices exhibited reproducible hysteresis in  Ids versus  Vgs charac-
teristics. Figure 3a,b show that the two curves tend to converge by decreasing the scan rate from 100 to 20 mV/s 
as also revealed by the shrunken enclosed loop area and the  VDirac shift (Fig. 3d). Further decrease of the enclosed 
loop area is exhibited at 10 mV/s (Fig. 3c) where a left-shift hysteresis has changed to a right-shift hysteresis.

The hysteresis reduction by the scan rate decrease and the inversion between the hysteresis curves for the low-
est tested scan rate indicates the co-existence of two competing mechanisms; the electrical double layer capaci-
tance effect and the charge trapping effect. The finding of this hysteresis behavior of our drop-casted graphene 
on PCB devices are in agreement with Wang et al.41 for electrolyte gated FETs with CVD graphene transferred 
on  SiO2/Si substrate, suggesting that similar mechanisms apply. Their proposed underlying mechanism for the 

Figure 2.  (a) Transfer and leakage current curves  (Vds = 0.1 V) and (b) output curves of the graphene 
electrolyte-gated transistor. The gate voltage is varied from 0.48 to 0.98 V with an interval of 0.1 V. Magnification 
in inset.
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negative hysteresis (occurred at faster  Vgs scan rates) is the electrical double layer capacitance effect caused by 
the delay in the movement of ions accumulated at the graphene/electrolyte interface during the second sweep 
due to the “remembering” effect from the first sweep. The relaxation time of the gate potential distribution in the 
solution is sensitive to sweeping rate and thus slower scan rate leads to reduced hysteresis. However, the slow scan 
rate reveals a second hysteretic mechanism which originates from the charge trapping effect. This is the modula-
tion of the trapped charges density by the gate voltage, which accumulate in the pre-existing defects between 
graphene and the  substrate41. In this case, the hysteresis shift is positive (i.e. right shift of the second sweep curve) 
as negative charges are accumulated in charge traps below graphene during the first voltage sweep in the positive 
regime, so graphene is even more p-doped and subsequently the  VDirac of the hysteresis curve is more positive.

Evaluation of biosensing application. To verify the biosensing capability of our devices, preliminary 
tests were performed introducing complementary target DNA to the PNA functionalized graphene surface. 
Prior to the first target DNA concentration incubation, a blank control measurement was performed in 0.1× PBS. 
Figure 4a shows the transfer characteristics of the PNA functionalized device incubated with 0.1× PBS and suc-
cessive target DNA concentrations ranging from 100 pM to 1 μM. Systematic positive shifts of the curves with 
increasing complementary DNA concentration are observed along with a decrease of the minimum  Ids value. 
The  VDirac shift of the calculated mean values of five different devices (device-to-device standard deviation is rep-
resented by error bars) for complementary and non-complementary target DNA concentrations is summarized 
in Fig. 4b. The complementary target sensitivity curve is clearly distinguished from the non-complementary one 
even though the error bars of the former are not negligible. The flat sensitivity curve of the non-complementary 
DNA sequence verifies that our EGGFETs response specifically to the binding of the complementary target 
DNA. Dashed line in Fig. 4b represents the noise level (7.5 mV) from the blank control test. The limit of detec-
tion (LoD) is 1 nM and was achieved by considering the 3× noise level. Significantly, a lower LoD of 100 fM 
has been reported for drop-casted graphene related material on  SiO2/Si chips using standard semiconductor 
 technology30. The LoD of our devices is expected to be relatively high as these are preliminary results without 
biochemistry  optimization44 or microfluidic  integration31,45–47; yet the ssDNA detection at this concentration 
range is successful with higher sensitivity (30.1 mV/decade) than electrolyte gated FETs with CVD graphene on 
glass, decorated with Au nanoparticles (~ 16.3 mV/decade)25. Table 1 summarizes the characteristics of previ-
ously reported EGGFETs. PCB substrate is exploited only in this work.

The potential for implementation of multiple, parallel sensor DNA microarrays was further explored and 
highlighted in Fig. 4c; such an implementation could further enhance the sensitivity and LoD of an EGGFET-
enabled Lab-on-PCB platform, by incorporating appropriate statistical analysis algorithms. Even though device-
to-device variability is demonstrated in Fig. 4b, Fig. 4c highlights that by measuring a group of sensors on the 

Figure 3.  (a)–(c) Hysteresis curves of the graphene electrolyte-gated transistor for various scan rates of the 
sweeping gate voltage (Ag/AgCl PCB reference electrode, 0.1× PBS), (d) Loop area enclosed between two 
transfer curves by sweeping forward and backward the gate voltage and respective  VDirac change as a function of 
the scan rate.
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sensor array, we can eliminate the device variability and obtain a signal which is statistically significant even for 
the lowest tested complementary DNA concentration (100 pM). Τhe signals of four EGGFETs (black columns) 
incubated with the complementary DNA concentration are compared to the respective non-complementary 
DNA induced signals of another four devices (red columns) and they can indeed be clearly distinguished in 
batches. The signal response manifestation of a sensor array may achieve improved detection against the usual 
approach of relying on the construction of a single, robust and ultra-sensitive  device50,51. This concept is highly 
compatible with our planar device layout and the inherent upscaling potential with the electronics-integration 
of the PCB technology.

The detection mechanism is attributed to the local gating induced by the negatively charged, hybridized 
 ssDNA23,31,52,53. The electrostatic field of the target DNA dopes graphene with holes and the  VDirac is shifted to 
more positive  Vgs. Positive shifts of the  VDirac upon ssDNA hybridization has been also reported by other works 
with the same linker molecule (PASE)23,31,53, apart from Cai et al.30 who reported a left shift for their reduced 
graphene oxide (rGO) FETs. It can be speculated that the interaction between rGO and PASE depends on the size 
or oxygen content of the rGO sheets, which in turn affects the morphology of the probe PNA anchored on the 

Figure 4.  (a) Transfer curves for blank (0.1× PBS) and various complementary target DNA concentrations, (b) 
mean values of  VDirac shifts for various complementary and non-complementary target DNA concentrations 
(bars represent standard deviations of 5 devices for each case), (c) high array yield of 8 graphene FETs; ΔVDirac 
data for 100 pM hybridization and control.

Table 1.  Literature survey of graphene-based electrolyte-gated FET DNA biosensor characteristics.

Reference Substrate Graphene Reference electrode LoD Sensitivity (mV/decade)

Dong et al.25 Glass CVD grown, Au NP decorated External  > 10 pM  ~ 16.3

Manoharan et al.48 SiO2/Si Mechanical exfoliation Integrated/Planar  > 10 nM –

Cai et al.30 SiO2/Si Drop-casted rGO External 100 fM  ~ 30.4

Yin et al.49 SiO2/Si Langmuir–Blodgett method, rGO, Pt 
functionalized External 2.4 nM –

Chen et al.34 SiO2/Si CVD grown External 1 pM  ~ 14.5

Xu et al.50 SiO2/Si CVD grown External 100 fM –

Campos et al.23 SiO2/Si CVD grown Integrated/Planar  ~ 25 aM 24

This work PCB Drop-casted ink Integrated/Planar 1 nM 30.1
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channel surface. The spacer bases (TTT) of our PNA sequence also contribute to the PNA-DNA hybridization 
robustness by giving more flexibility to the bottom bases to interact with the complementary DNA. In addition, 
considering that the Debye length in Cai et al.30 was reduced compared to this work (due to the more heavily 
concentrated measuring electrolyte (1× PBS)), the reported left shift can be attributed to direct electron transfer 
from the electron-rich, aromatic nucleotide to rGO as a result of not properly tethered PNA-DNA hybridized 
strands and increased screening of the negatively charged  ssDNA20,25,52.

In addition to the  VDirac shift, the minimum  Ids also decreased with increasing target DNA concentration 
(Fig. 4a). It is worth noting that the minimum current did not exhibit a repeatable decreasing trend among the 
tested devices and the lack of suitability of this parameter for DNA hybridization detection has also been sup-
ported by previous  reports25 as it is significantly affected by non-specific binding of charged molecules or ions. 
Finally, the severely asymmetric transfer curves for the n-type and p-type branches with the flattened n-type 
branch that Fig. 4a depicts can be explained by the Schottky barrier  mechanism54. More specifically, PNA probes 
or ssDNA sequences are adsorbed on the metal contact and alter the contact-to-channel workfunctions difference 
leading to asymmetric conductance at the two  branches54.

Conclusions
In this work, we demonstrate for the first time electrolyte gated field-effect transistors (FETs) implemented on 
commercially fabricated printed circuit boards (PCBs). Graphene ink was drop-casted to form the transistor 
channel and one of the most commonly mutated oncogenes in human cancers was used as the target analyte to 
evaluate the device suitability for high-sensitivity biosensing applications. The electrical characteristics and the 
biosensing performance were assessed while the underlying mechanisms of transfer curve hysteresis and DNA 
detection were investigated and critically compared to the conventional silicon substrate based EGGFETs. This 
work proposes for the first time that Lab-on-PCB platforms could fully exploit their inherent electronics-com-
patibility to further improve sensor limit of detection, sensitivity and repeatability, via printing active electronic 
devices and implementing signal-post-processing algorithms on-chip in parallelized EGGFET arrays. Further 
advancement could be achieved via the optimization of the graphene functionalization protocol (e.g. optimum 
PNA probe to ethanolamine ratio) and microfluidic integration. Seamless integration with already demon-
strated sample preparation, Lab-on-PCB components (e.g. μPCR-on-PCB device for rapid DNA amplification) 
provides a realistic route for detecting minimal DNA concentrations in commercially manufactured Lab-on-
Chip  devices4,55; such sensitivity levels can prove critical for the realization of high specification applications, 
such as cell-free nucleic acid cancer biomarker quantification. In addition, this work proves for the first time 
the feasibility of seamlessly integrating semiconductor devices in Lab-on-PCB  platforms56 via inkjet-printing, 
paving the way for inkjet-printed, Lab-on-PCB platforms powered by printed electronic circuits of much higher 
complexity and processing power.
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