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Summary 
Plasmodium falciparum is the leading cause of malaria infection and a major cause of 

morbidity and mortality across the globe, particularly in the African region. The burden of 

malaria is unevenly distributed, with some countries, districts or even households within 

villages harboring a disproportionally higher burden. There is an intricate relationship 

between the mosquito vector, humans and the parasites they carry, and how they interact 

with the environment. Small movements on a fine-scale lead to the patterns observed in the 

community. Quantifying transmission dynamics on a fine-scale, how malaria infections spread 

locally and the processes leading to the observed spatial and temporal distribution patterns 

is important for many aspects of malaria epidemiology, in particular, the design of targeted 

interventions against malaria, the design of studies to evaluate the effectiveness of vector 

control in the field, and the parameterization of mathematical models to predict the likely 

impact of interventions for settings where data is not available. 

Mathematical and statistical models have been developed to quantify fine scale malaria 

transmission dynamics and investigate the effects of interventions. Since data on the spread 

of vectors and parasites is challenging to collect, it is not available from many endemic 

settings for analytic methods to provide estimates, or to validate model predictions. Due to 

variability between settings, findings from one setting cannot be easily generalized. There is 

thus a need to involve methods that can extract information from imperfect but available 

datasets, to make the most of the existing data sources from settings with a variety of 

characteristics.  

The overall aim of this thesis was to use statistical and mathematical modelling approaches 

to characterize fine scale malaria transmission dynamics and their consequences on the 

measurement of heterogeneity on a local scale for targeted interventions.  

Chapter 2 used an established comprehensive simulator of malaria epidemiology developed 

at the Swiss Tropical and Public Health Institute (Swiss TPH) to predict the proportion of 

malaria infections that are in mosquitoes and humans and how this varies by setting specific 

characteristics. A substantial proportion of infections was predicted to be in mosquitoes, to 

vary with setting specific characteristics, and in response to interventions. The predictions also 

highlighted the role of the dynamics of infections in humans and mosquitoes following the 

introduction or scale-up of interventions. 

In Chapter 3, a statistical model which takes into account movement between houses in a 

village to estimate how far and where mosquitoes fly to in the presence of spatial repellents 

was developed. This was a secondary use of data on mosquito densities. The method 
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evaluation using simulation showed that the model could be used as a potential tool to gain 

information on mosquito movement, estimating the distance between the houses the 

mosquitoes were repelled from and the houses they move to, the proportion of mosquitoes 

repelled, and the proportion of repelled mosquitoes moving to another house as opposed to 

somewhere outside. However, the trial data needs to contain sufficient information to be able 

to disentangle the effects of the underlying processes and provide accurate estimates for all 

the parameters. We found that additional data on the total number of mosquitoes and 

sufficient numbers of mosquitoes repelled were required in the case of the motivating trial. 

Findings from the simulations could inform the design of studies and help quantify criteria 

for trial settings.   

In Chapter 4, a simulation method was developed and applied to data on parasite genotypes 

from Kilifi County, Kenya. A previous study found an interaction between time and 

geographical distance on the genetic difference between pairs of parasite genotypes: genetic 

differences were lower for pairs of parasite genotypes which were evaluated within a shorter 

time interval and found within a shorter geographic distance apart. A stochastic individual-

based model of malaria infections, people and homesteads was developed and fitted to the 

genetic differences in order to investigate hypotheses and parameter values consistent with 

the observed interaction. 

The observed interaction could be reproduced by the individual-based model. Although 

hypothesis about immunity to previously seen genotypes, and or a limit on the number of 

current infections per individual could not be ruled out, they were not necessary to account 

for the observed interaction. The mean geographical distance between parent and offspring 

infections was estimated to be 0.40km (95%CI 0.24 – 1.20), in the base model. This was the 

first modeling study that we know of which has attempted to estimate parameter values and 

test hypotheses from malaria genotyping data with a low coverage of infections in a setting 

with moderate transmission. The findings glean some insights on how simulation can be used 

in quantifying factors driving transmission, and in estimating unknown parameters when 

analytic methods are limited.   

The work in Chapter 5 uses the simulation model developed in Chapter 4 to investigate how 

the method chosen, local seasonality and movement of infections influence the detection of 

areas of higher transmission on fine spatial scales for targeted interventions. Our findings 

show that the identification of hotspots was less accurate when there was a gentle decay in 

risk from the hotspot boundary, the hotspot was irregularly shaped, there was seasonality in 

the area or when the mean distance between parent and offspring infections was longer. The 

findings highlight the importance of setting characteristics, the choice of outcome, and 

method of detection on the accuracy of identifying areas of higher transmission for targeted 
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interventions. The underlying fine scale transmission dynamics should be taken into account 

when performing and interpreting analyses of heterogeneity for targeted interventions. 

Taken as a whole, this thesis provides information on the characteristics of transmission 

dynamics on a fine scale. It highlights that a substantial proportion of malaria infections are 

in mosquitoes, and places emphasis on the role that vectors, and humans play in the spread 

of infections and the implications of fine scale movement for the measurement of 

heterogeneity for targeted interventions. The estimates have implications for the design and 

evaluation of malaria control and elimination interventions. 
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Chapter 1 
1. Introduction 
Malaria in humans is caused by a single celled protozoan parasite of the Plasmodium genus. 

Plasmodium falciparum is the most virulent of the four main species that cause malaria, is 

predominantly found in the African region, and together with Plasmodium vivax account for 

most of the malaria cases and deaths reported worldwide (1,2). According to the World Health 

Organization (WHO), approximately 3 billion people are still at risk of malaria infection 

globally (2).  

Between 2000 and 2017, significant declines in the burden of malaria have been observed 

from many endemic settings (2,3). This has mainly been attributed to the substantial 

investments and efforts towards malaria control and case management, including the scale 

up of effective interventions such as insecticide treated bed nets (ITNs), indoor residual 

spraying (IRS) and artemisinin combination therapies (ACT’s) (2–6). However, malaria still 

remains one of the greatest global health challenges (7,8). In many sites which have seen 

decreases, malaria transmission continues and in some sites, the burden of malaria morbidity, 

mortality and incidence rates has either remained stable or increased over time (2,8,9).   

Understanding the complex relationship between malaria vectors, hosts and parasites, and 

factors affecting their interaction is imperative, if the recent successes in reducing malaria 

transmission are to be sustained (3,10,11).  

1.1. Transmission and Life Cycle 

Plasmodium falciparum malaria is transmitted through the bite of a female Anopheles 
mosquito. Transmission may occur when a mosquito bites an infected host during a blood 

meal and after 10 – 15 days the mosquito may transfer  parasites to another host (12). After 

a blood meal, sporozoites from the mosquito’s salivary glands are inoculated into the 

bloodstream from where they migrate to the liver of the human host. The hepatocytes (liver 

cells) become infected and following the development of parasites, rupture to release 

merozoites which then invade the red blood cells (RBCs). The sequence of reproduction 

continues as infected RBCs rupture, releasing thousands of newly formed merozoites into the 

blood stream. The clinical symptoms associated with malaria including fever and chills arise 

during this stage. Only a small proportion of the merozoites differentiate into the sexual forms 
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of the parasite, the male and female gametocytes, which are then taken up by the mosquito 

during a subsequent blood meal. In the mosquito gut, the gametocytes develop into male 

and female gametes and then fuse to form a zygote. The zygote then develops into an oocyst 

which then bursts to release sporozoites which migrate to the mosquito’s salivary glands, 

completing the transmission cycle (Figure 1). During the sexual development stages in the 

mosquito, gametes from genetically distinct parasite clones could recombine, giving rise to 

an offspring that is different from both parents.  

Figure 1.1 Life Cycle of the Plasmodium malaria Parasites 

 

Adapted from Cowman et al (13) 

For Plasmodium vivax the parasite can stay dormant in the form of hypnozoites in the liver 

cells for days, months or even years after first inoculation causing relapses of parasitemia and 

incidences of disease (14).  

1.2. Heterogeneity in fine-scale malaria transmission 

Spatial and temporal variations in the transmission and consequences of malaria infections 

have been observed at varying scales. Marked heterogeneities exist in both malariological 

outcomes and the factors that drive transmission at regional, national and local levels. Even 

at micro-epidemiological scales such as within villages and between individuals within 

households, the risk of malaria infection is heterogeneous (15–19). At such scales, some 

individuals or a cluster of households within a study site tend to carry a disproportionately 

higher burden, with individuals in the surrounding areas having fewer or no instances of 

infection (16,18–22). This is partly due to fine scale variations in the abundance and behaviour 
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of vector populations (23), which is driven by environmental variables such as distance to the 

nearest mosquito breeding site or vegetation (24–26), and human behavioural, economic and 

genetic factors such as access to treatment, knowledge of malaria signs and symptoms, socio-

economic status, structural features of housing, and the coverage of interventions (3,27,28). 

A focus of malaria transmission is a defined geographical area situated within a region which 

is formerly or currently malarious, and is characterized by epidemiological conditions 

necessary to support the transmission of malaria (22). Malaria hotspots or pockets of 

transmission are smaller areas within a focus of transmission where the level of transmission 

is significantly higher than the average in the neighbouring areas (20,22).  

1.3. The need to understand malaria transmission on a 

local scale  

Ultimately, the spatial and temporal patterns observed for different metrics at the community 

level are made up of tiny movements of individual mosquitoes, human hosts and the parasites 

inside them. Vector dispersal is the most frequent pathway through which infections spread 

(29–31), and mosquitoes have been shown to fly for distances ranging from a few hundred 

meters to more than a few kilometres (32,33). Human movement could also contribute 

substantially to the transfer of parasites, beyond the range of vector dispersal (34). These fine-

scale transmission dynamics have implications for many areas in malaria epidemiology.  

As transmission declines, patchy spatial patterns, driven mainly by heterogeneous exposure 

to mosquito bites become more evident and might require a shift in efforts towards focused 

control (35,36). Blanket interventions have proved efficacious in recent decades (3), but the 

changing epidemiology of malaria following declines in transmission over time has resulted 

into persistence heterogeneous patterns which could be targeted with interventions 

(25,37,38).  

At fine resolutions, this distance is mediated mostly by mosquito dispersal in search of blood 

meals and ovipositing sites. For instance, if mosquitoes fly for only short distances then 

transmission is only within a hotspot and the effects of targeted interventions can only be 

observed within this area. If mosquitoes disperse for distances further than the hotspot 

boundary, then targeted interventions could potentially have community wide effects. 

Understanding how malaria infections spread locally and the processes leading to the 

observed spatial and temporal distribution patterns is important for the design of 

interventions aiming to reduce and interrupt transmission by targeting foci where there is 

fine scale heterogeneity. 
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Estimates of fine-scale transmission dynamics are also important for parameterizing 

mathematical models for predicting the impact of interventions. Since Ross and MacDonald’s 

models in the early 1900’s (39,40), many models which investigate malaria transmission 

dynamics have assumed an enclosed system of humans, vectors and parasites in which 

movement of mosquitoes over geographical space has not been considered. This uncertainty 

raises a need to develop spatially explicit frameworks to model the movement of vectors, and 

as a consequence, the malaria parasites they carry.  In recent decades, fine scale spatial 

heterogeneities have been incorporated in both statistical and mathematical models (41–44), 

for instance, including the interaction of mosquito dispersal with environmental 

heterogeneity and vector control interventions like spatial repellents (44,45)(44). Models 

which account for some aspects of mosquito movement have been developed (33,44,45). 

Some of these studies have quantified the connectivity between adjacent regions, either 

movement between patches or zones, particularly those of varying risk, providing information 

which could potentially guide the choice of interventions (44,45).  

Ignoring vector dispersal in the design and analysis of trials of the effects of intervention 

strategies might underestimate community wide effects or fail to detect differences between 

study arms due to contamination (5). A further implication of the distances between parent 

and offspring infections is the measurement of hotspots for targeting interventions. The 

methods to detect heterogeneity may perform less well when there are longer distances 

between parent and offspring infections. Results from hotspot targeted interventions are 

varied (46,47) which may be in part be due to the characteristics and measurement of the 

hotspots themselves.  

Fine-scale movement of infections may also impact the estimation of the spread of drug 

resistance (3,48). Mixing of mosquito sub-populations is heterogeneous and this influences 

the rate of gene flow (49).   

There still remains uncertainty on how best to quantify the spread of malaria parasites across 

local scales, and how relevant this is to the measurement of heterogeneity in fine-scale 

transmission and in evaluating the effect of interventions. However, there is limited 

information on patterns of transmission dynamics on a fine scale.  

If we are interested in reducing or interrupting malaria transmission, then we need 

information on how infections are spreading. Specifically, there is a need to know i) where 

the malaria infections are, (ii) how far infections spread and (iii) the consequences of these 

processes on the measurement of heterogeneity for targeted interventions. 
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1.4. Investigating fine scale malaria dynamics using 

mathematical and statistical models 

Epidemiological and statistical methods have been applied in the estimation and 

quantification of malaria at fine scale, often using routine surveillance or survey health data 

to obtain realistic estimates (50–54). Mathematical modelling on the other hand provides a 

framework through which we can explore the anticipated effects of different aspects of 

malaria epidemiology or interventions against malaria, on a range of outcome measures [47–

50]. Mathematical models include both observable and unobservable transmission dynamics, 

from which biologically plausible mechanisms can be developed.  Models which have both a 

biological structure and are fitted to data contain both mathematical and statistical elements, 

with the advantage of realistic parameter estimates of meaningful quantities.  

Both mathematical and statistical approaches have previously been used to characterize 

aspects of transmission using data such as the duration of infections (55,56), quantifying 

heterogeneity, and estimating transmission levels using measures such as the prevalence or 

number of infectious bites per person per year, reproductive number (Ro), and the effects of 

control measures.  

More recently, efforts have been made to estimate the spread of infections. Using genomic 

data, cross-sectional studies have found fine-scale spatial clustering of related malaria 

parasites, showing very little parasite movement (57–61), others have found a high degree of 

parasite mixing (62), which is an indication of infection flow. Genetic markers provide an 

avenue through which parasites can be identified and tagged for further monitoring and 

analysis, for instance, to improve surveillance systems (e.g. detecting and tracking drug 

resistance), distinguish between local and imported transmission, and can also be used as an 

independent measure to validate changes in the transmission intensity and the impact of 

control programs [53,54]. Network models have been developed to investigate transmission 

pathways in Swaziland [55] and Zanzibar [56] or using identity by descent (IBD) or identity by 

state (IBS) models to estimate relatedness between parasite genotypes [57–59]. 

One limitation is with data sources. Data that are sufficient for these methods in terms of the 

proportion of malaria infections sampled and low transmission are available from only a few 

sites. Similarly, vector dispersal studies are challenging to carry out and have limitations. 

These are laborious and costly, and methods for collecting and sampling mosquitoes such as 

mark and recapture studies (MMRR) and genetic studies are not standardized. It is hence not 

easy to generalize across settings, since the epidemiology of malaria varies with site specific 

characteristics. Therefore, methods that can extract information from imperfect but available 
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datasets are needed. To make the most of the available data sources, there is a need to involve 

models with both mathematical and statistical aspects. 

This thesis uses both statistical and mathematical modelling approaches to develop models 

and fit them to data, to estimate quantities which would have otherwise not been possible 

without adding biological structure. I use available data from observational studies with 

genotyped samples, field-trials of spatial repellents for mosquitoes and surveys. I validate the 

models using simulation and the predictions from the models using field data.  

1.5. Objectives of the Thesis 

The overall aim of this thesis was to use statistical and mathematical modelling approaches 

to characterize fine scale malaria transmission dynamics and their consequences on the 

measurement of fine scale heterogeneity.  

The specific objectives were: 

1. Predict the proportion of malaria infections that are in mosquitoes and humans 

(Chapter 2) 

2. Develop and validate a statistical model to estimate movement of vectors within three 

villages from data collected for a trial of spatial repellents in Kilombero Valley, Tanzania 

(Chapter 3) 

3. Develop an individual-based stochastic simulation model of malaria infections to 

investigate characteristics of transmission, which drive the observed spatial and 

temporal patterns of genetic differences between Plasmodium falciparum malaria 

infections in Kilifi County, Kenya (Chapter 4) 

4. Assess and evaluate the effect of movement of infections on the performance of 

different common statistical measures of heterogeneity in malaria transmission 

(Chapter 5) 
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2.1. Abstract 

Background 
Designing effective malaria intervention strategies calls for knowledge of where the infections 

are. Little is known about the proportions of infections that are in humans and mosquitoes, 

or how these vary with setting-specific characteristics, both before and after the introduction 

of interventions. 

Methods 

We use comprehensive simulation models of malaria epidemiology which have been 

extensively fitted to data and validate where possible using observed data. 

Results 

The predicted proportion of infections that is in mosquitoes was substantial and varied by 

transmission intensity. For Plasmodium falciparum, the proportion was 60% in areas of intense 

transmission declining to a floor of approximately 20% for low transmission. The proportion 

varied by Plasmodium species and the tendency of the vector species to feed on animals as 

well as humans. The proportion of infections in mosquitoes changed in different ways over 

time following the introduction of interventions for vectors and humans, and included a sharp 

spike following mass drug administration.  

Conclusion 

A substantial proportion of infections are in mosquitoes. Quantifying weak spots in individual 

interventions enables optimal combination strategies to be developed, and knowledge of the 

proportion helps place decisions on resources in context.  

 

 

 

 

 

 

 

Keywords: P.falciparum, P.vivax, malaria, mosquito, mass drug administration, long-lasting 
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2.2. Background 

Knowledge of how malaria parasites and infections are distributed between humans and 

mosquitoes, both before and after the introduction or scale-up of interventions, would inform 

the design of effective strategies to interrupt malaria transmission. 

Although the numbers of parasites in people and mosquitoes would be an informative 

measure, they are difficult to quantify. Low densities of parasites are challenging to measure 

[1,2] and data are not available on the numbers of parasites sequestered away from peripheral 

blood [3,4], in the liver cells or in mosquitoes leaving a limited evidence base for calculations. 

A commonly reported measure is the prevalence, and both the prevalence of blood-stage 

infection in humans and the sporozoite rate (SR) in mosquitoes are straightforward to 

quantify. However, this does not provide information on the overall distribution between 

people and mosquitoes since the relative numbers of people and vectors are not taken into 

account.  

A measure for which there is some data as a basis for quantification is the number of 

infections. We define this as the number of successfully established individual infections 

through separate inoculations which have not yet been cleared. It includes inoculations 

leading to liver-stage or blood-stage parasites in humans, and to the presence of oocysts in 

mosquitoes. The number of infections is more sensitive than prevalence to transmission 

intensity. With the numbers of infections in mosquitoes and humans, we can calculate the 

proportion of infections that are in mosquitoes and thus provide a measure of the relative 

load between humans and mosquitoes. For many policy questions, this measure has similar 

implications to that of the total parasite load. For example, showing where the infections or 

parasites are following mass drug administration (MDA) both provide information on weak 

spots in the intervention. Similarly, both many parasites and many infections in mosquitoes 

will not transmit further due to the life span and the time needed to become infectious 

following an infected bite.  

Despite the fundamental nature and practical relevance, information on the proportion of 

infections that are in mosquitoes and how this varies by setting specific characteristics is 

limited. It is challenging to estimate the component measures such as the number of 

infections in humans and the number of infected host-seeking mosquitoes per adult in real 

field settings. The observed number of infections, or multiplicity of infection (MOI), is 

quantified using genotyping techniques which suffer from low detectability [5], tend to be 

restricted to younger age-groups rather than represent the whole community and does not 

detect low density infections or infections that are only in the liver. However, in some settings, 
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data on the mean MOI in the whole community using high-resolution genotyping together 

with the number of infected host-seeking mosquitoes per adult are available. In addition, 

mathematical models provide a framework to synthesize data on different aspects of malaria 

epidemiology and leverage it to provide predictions for settings where data on the numbers 

of infections in humans and mosquitoes do not exist.  

We use simulation models to predict the proportion of Plasmodium falciparum and 

Plasmodium vivax infections that are in mosquitoes. We use OpenMalaria [6], an established 

comprehensive simulator of P.falciparum malaria epidemiology and control which has been 

extensively fitted to and validated using field datasets, and a recent simulation model of 

P.vivax [7], which has also been parameterized and validated using field data. We predict the 

proportions by transmission intensity, seasonality, mosquito species, and after the 

introduction of interventions aimed at control in the vector and the human, long-lasting 

insecticidal nets (LLIN) and mass drug administration (MDA).  

2.3. Methods  

Model for P.falciparum in humans 
OpenMalaria comprises an ensemble of discrete-time individual-based models of malaria in 

humans [8,9] linked to a deterministic model of malaria in mosquitoes [10,11]. These models 

have been extensively fitted and validated using different field data sets [6]. The simulated 

population of humans are updated at each five-day time step via model components 

representing dynamics of new infections to humans [12], blood-stage parasite densities [13], 

acquired immunity [13], morbidity and mortality [14–16], and infectivity to mosquitoes 

[17,18]. The parameter values for the model components of the individual-based model were 

estimated by fitting to data from a total of 61 malaria field studies of different aspects of 

malaria epidemiology [6]. An ensemble of simulation model variants has previously been 

described in detail [9]. The present work uses a subset of six of the model variants previously 

used for large-scale predictions of the impact of the pre-erythrocytic vaccine, RTS,S/AS01 

[9,19].  

Model for P.vivax in humans 
The model for P.vivax in humans is a simple individual-based model updated at five-day time-

steps for dynamics of new infections, primary infection, relapse, clearance of blood-stage 

infection, acquired immunity, morbidity, and infectivity to mosquitoes [7]. The parameter 

values were estimated by statistical analyses of longitudinal cohort data [7,20].  
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Model component for mosquitoes 
The individual-based models for malaria in humans are linked to a compartmental model of 

vector dynamics (10,11). The vector model describes the life stages of the female mosquito. 

After emergence from a breeding site, mosquitoes mate and the females search for blood 

meals which are necessary for egg development. They enter a sequence of feeding cycles 

with discrete phases for host-seeking, encountering a host, searching for a resting place, 

resting and ovipositing, if they survive. The mosquitoes are infected according to their feeding 

behaviour and human infectiousness. The models can accommodate multiple mosquito 

species with varying periodical emergence rates, and non-human hosts (10,11). Mosquitoes 

can be either infected or uninfected, but they cannot have multiple infections. A mosquito 

taking up multiple infections in a single blood meal is counted for the purposes of this paper 

as one infection. Mosquitoes have been reported to feed on multiple hosts within a feeding 

cycle (21–23) and in subsequent cycles. However, the low probability of a mosquito being 

infected per blood meal and the short mosquito lifespan limit potential bias.  

Parameter values for each part of the feeding cycle, survival, and the human blood index (HBI) 

are input separately for each mosquito species. The seasonal emergence rate is calculated as 

that necessary to produce the input seasonal inoculation entomological rate from the specific 

vector parameters combined with the vector and human models. The model output explicitly 

includes the number of infected host-seeking mosquitoes. We adjust this to include resting 

mosquitoes using the predicted mean durations of the host-seeking and resting phases. 

Definition of infections in humans and mosquitoes 
We define an infection as having occurred through a separate inoculation and not having 

been cleared at the time of measurement. For humans, the infection can be liver-stage, blood-

stage or both. A P.vivax infection in a human is counted once per inoculation regardless of 

the number of relapses arising from the inoculation. 

Different diagnostic methods have different limits of detection: for this study, the numbers of 

infections in humans and mosquitoes are estimated assuming the use of a perfect diagnostic, 

successfully detecting all individual infections. To predict the mean number of infections in 

mosquitoes, we do not model gametocytes or sporozoites explicitly but consider infected 

mosquitoes as having oocysts, sporozoites or both. They are infected but may or may not be 

infectious. 

Predicted measures  
We predict the mean number of infections in mosquitoes in a time-step for one human, ), 

the mean number of infections in a time-step per human, *,	and the proportion of infections 
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which are in mosquitoes as )/() + *). If there was a single infection in a mosquito then, at 

that time-point, the proportion would be one and if the single infection was in a human, the 

proportion would be zero. To compare the proportions by transmission intensity easily, in 

seasonal settings we average the proportion over one year.  

Scenarios simulated 
We predict the proportion of infections in mosquitoes and the impact of transmission 

intensity, seasonality, mosquito species and interventions, LLIN and MDA (Table 2.1). 

Table 2.1 Scenarios simulated* 

 Plasmodium falciparum Plasmodium vivax 
Annual EIR 0.5,1,2,5,10,20,50,100,200 0.5,1,2,5,10,20,50,100,200 

Seasonality Constant, Garki,Nigeria (24) Kilifi Town, 
Kenya (25,26) 

Constant, Maprik, Papua New Guinea (27), 
Hobe, Ethiopia (28) 

Mosquito species An.gambiae, An.arabiensis An.farauti (29) , An.arabiensis, An.gambiae 
Case-management Low coverage Low coverage 
LLIN None, 70% coverage None, 70% coverage 

MDA None, blood-stage drug 70% coverage None, MDA (blood-stage drug) 70% 
coverage, 

MDA (liver-stage) 55%, 

MDA (both liver and blood stages) 55%, 
Model variants Base model, remaining 5 model 

variants in ensemble** 
Base model, model variant reflecting 
uncertainty in duration of blood-stage 
infection  

*The reference scenario is shown in bold.  

**The P.falciparum model variants are based on varying asumptions about heterogeneity in 

transmission, immunity decay and heterogeneity in co-morbidity. 

The parameter values for the mosquito species and the long-lasting insecticidal nets follow 

those of Stuckey and colleagues (30) which were derived from Briet et al (31) and Chitnis et 
al (32) and updated for Yukich et al (33) (Table 2.2). We used a health system with a low 

coverage (less than 5%) of uncomplicated case management with artemisinin-based 

combination therapies (ACTs) (30). For the mass drug administration, we used a simple model 

component with a blood-stage drug which cleared blood-stage infections for 30 days. The 

P.vivax liver-stage drug was assumed to clear all hypnozoites in one five-day time-step. The 

coverage of the liver-stage drug was assumed to be lower to allow for individuals not being 

treated due to mutations in CYP2D6 and GP6D. The human age distribution follows that of a 
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typical rural African population based on Ifakara, Tanzania (2002) (13,34). All scenarios are 

simulated with a population of 10,000 individuals.  

Table 2.2 Vector parameters 

  An.gambiae ss An.arabiensis An.farauti 

Duration of resting period in days 2 2 2 

Extrinsic incubation period 12 12 10 

Proportion of mosquitoes’ host-seeking on same 
day as ovipositing 

0∙313 0∙313 0∙728 

Maximum proportion of day spent host-seeking 0∙33 0∙33 0∙33 

Probability that mosquito survives the feeding 
cycle 

0∙623 0∙623 0∙577 

Probability that mosquito successfully bites 
chosen host 

0∙95 0∙95 0∙95 

Probability that mosquito successfully escapes 
host and finds a resting place after biting 

0∙95 0∙95 0∙95 

Probability of mosquito successfully resting after 
finding a resting place 

0∙99 0∙99 0∙99 

Probability of mosquito successfully laying eggs 
given that it has rested 

0∙88 0∙88 0∙88 

Human Blood Index, the proportion of mosquitoes 
which fed on human blood during the last feed  

0∙85 0∙5 0∙72 

 

Validation  
Validation of saturation in the number of infections in humans with transmission 
intensity 

To validate the relationship between the number of infections in humans and transmission 

intensity as far as possible, we collected data on the observed MOI, prevalence and EIR for 

study locations where all three were available. In order to represent the community MOI we 

excluded studies where the sample included only febrile patients, but include studies which 

comprise of asymptomatic individuals only or surveys with asymptomatic and symptomatic 

individuals sampled randomly. We also excluded studies with a limited age range. We used 

literature searches by Karl et al (35), Ehle et al (submitted), Arnot (36) and Owusu-Agyei et al 
(37) as the basis of the search for P.falciparum. For P.vivax, there are few data available with 
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both multiplicity of infection and transmission intensity, and the number of liver-stage 

infections is not known. To gain the mean MOI in all individuals, rather than those with 

infections only, we adjusted the mean MOI reported for individuals with at least one infection 

using the prevalence by polymerase chain reaction (PCR). If the prevalence by PCR was not 

reported, then we estimate it from the rapid diagnostic test (RDT) or microscopy prevalence 

using the algorithm by Okell et al (38). We plot the observed mean MOI against age for 

settings with different transmission intensities.   

Validation of the relationship between the proportion of mosquitoes that are 
infectious and transmission intensity 

For some settings, both sporozoite rates and EIR are available for the same study locations 

(39). We use this data to validate the model component of the relationship between the 

proportion of mosquitoes that are infectious and transmission intensity. Infectious 

mosquitoes are a fraction of infected mosquitoes. We plot the observed proportion of 

mosquitoes with sporozoites against transmission intensity for the different study sites: we 

acknowledge that there is variation between sites in the approaches for measuring the 

components of the sporozoite rate and EIR and in site characteristics in this ecological analysis 

(39). We compare the plotted relationship to predictions of the proportion of host-seeking 

mosquitoes that are infectious for one reference scenario with no seasonality with different 

EIR. 

2.4. Results 

The relationship between the proportion of infections that are in 
mosquitoes and transmission intensity 
Both the predicted number of P.falciparum infections that are in mosquitoes (Figure 2.1a) and 

in humans (Figure 2.1b) increase at higher transmission intensities. In humans, the mean 

number of infections saturates principally due to the relationship between the transmission 

intensity and the force of infection [12], but also to a lesser extent due to acquired immunity, 

morbidity, mortality, and treatment. In mosquitoes, there is little saturation since even at high 

transmission intensities the proportion of mosquitoes infected is predicted to never become 

high. As a consequence, the proportion of infections that are in mosquitoes increases with 

increasing transmission intensity (Figure 2.1c). Taking the mean over one year, the pattern is 

not substantially affected by the seasonality of the setting (Figure 2.1). At very low 

transmission intensities (not shown), the proportion of infections in mosquitoes maintains the 

floor. Simulations were run with transmission intensities down to 0.001 infectious bites per 

person per year, but interruption of transmission prohibits lower values.  
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Figure 2.1 Predicted P.falciparum infections in mosquitoes and humans by transmission 

intensity for different seasonal patterns 

a) mean number of infections in mosquitoes for one human; b) mean number of infections 

per human; c) proportion of infections that are in mosquitoes. The values are the mean over 

one year and use the OpenMalaria base model with An.gambiae mosquitoes. Red solid line: 

constant transmission; blue dashed line: Kilifi seasonality; brown two-dash line: Garki 

seasonality. 

There is a seasonal pattern in the predicted proportion of infections that are in mosquitoes 

which peaks slightly earlier than the transmission intensity (Figure 2.2).  

 

Figure 2.2 Seasonal transmission and the predicted proportion of P.falciparum infections in 

mosquitoes 

Blue dashed line: transmission intensity, red solid line: proportion of infections in mosquitoes. 

Simulations were run using the base model with the reference scenario with  a seasonal 

pattern for  Kilifi. 

The species of the mosquito affects the predicted proportion of infections that are in 

mosquitoes (not shown). We found that this was driven chiefly by the human blood index 

(HBI). An.arabiensis has been parameterized with a markedly lower HBI than An.gambiae and 
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so a higher number of infected host-seeking mosquitoes would be required to produce the 

same transmission intensity. For all levels of transmission intensity, the proportion of 

P.falciparum infections that are in mosquitoes decreases as the HBI increases (Figure 2.3).  

 

Figure 2.3 Predicted P.falciparum infections in mosquitoes and humans by transmission 

intensity for different human blood indices 

a) mean number of infections in mosquitoes for one human; b) mean number of infections 

per human; c) proportion of infections that are in mosquitoes. The reference scenario with no 

seasonality was used and values are the mean for one year. Solid red line: base model with 

HBI=0.85; purple dotdash lines: HBI=0.2; yellow dashed lines: HBI=0.4; light blue dotted line: 

HBI=0.6; dark green twodash line; HBI=1.0 

In addition to the OpenMalaria base model, we used a further five model variants with varying 

assumptions about heterogeneity in transmission, immunity decay, and heterogeneity in co-

morbidity [9,19]. These assumptions predominantly affect humans and lead to variation in 

the predicted mean number of infections per human (Figure 2.4b). The highest numbers of 

infections per person are predicted for the model variant with heterogeneity in transmission 

since heterogeneity rather than saturation of successful inocula accounts for the relationship 

between transmission intensity and force of infection. The patterns of the predicted 

proportion of infections in mosquitoes are nevertheless reasonably similar for all of the model 

variants (Figure 2.4c).  



22 
 

 

Figure 2.4 Predicted P.falciparum infections in mosquitoes and humans by transmission 

intensity for different model variants 

 a) mean number of infections in mosquitoes for one human; b) mean number of infections 

per human;  c) proportion of infections that are in mosquitoes. The reference scenario with 

no seasonality was used and values are the mean for one year. Solid red line: base model 

variant; yellow dashed line: heterogeneity in transmission (OpenMalaria model variant 

number R0068); blue lines: decay in immunity in effective cumulative exposure (R0131 light 

blue dotted line), proxies (R0132 dark blue dotdash line) or both (R0133 mid-blue long dash 

line); green two-dash line: heterogeneity in co-morbidity (R670). 

The pattern for P.vivax is similar to that of P.falciparum with a floor in the predicted proportion 

of infections in mosquitoes at low transmission intensities (Figure 2.5). The numbers of 

infections are greater due to mosquito species, liver-stage infections and because the model 

component for the relationship between the force of infection and transmission intensity in 

P.vivax is based on the model variant for P.falciparum which uses heterogeneity in 

transmission [7]. The P.vivax model variant reflecting uncertainty in the duration of blood-

stage infections predicted similar patterns (not shown). 
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Figure 2.5 Predicted P.vivax infections in mosquitoes and humans by transmission intensity 

for different seasonal patterns 

a) mean number of infections in mosquitoes for one human; b) mean number of infections 

per human c) proportion of infections that are in mosquitoes. Infections in humans were 

counted once whether they were liver-stage, blood-stage or both. Red solid line: base model 

with constant seasonality with An.farauti; Blue dashed line: PNG Seasonality with An.farauti; 
Brown dotdash line: Ethiopia seasonality with An.arabiensis 

Validation 
We use available data to validate (i) the relationship between the number of P.falciparum 

infections in humans and transmission intensity and (ii) the relationship between the 

proportion of mosquitoes that are infectious and transmission intensity (Table 2.3). 

 



24 
 

Table 2.3  Data sources for model validation 
Study Study site Age-

range 
MOI Time 
period 

Study design Marker EIR EIR year EIR ref 

Engelbrecht et 
al(40) 

Kaduna State, 
Nigeria 

5-70y Cross-sectional 
survey 

104 asymptomatic individuals in 
cross-sectional survey at end of 
the rainy season 

msp2 High  - 

 

(40) 

Smith et al(41) Kilombero, 
Tanzania 

0-82y 1989-1996 1677 individuals from multiple 
surveys 

msp2 400 1994 (41) 

Owusu et al(42) Navrongo, 
Ghana 

All ages June-July 2000 308 individuals in a cross-
sectional survey 

msp2 300 2000 (42) 

Konaté et al(43) Dielmo, Senegal 1-84y October 1994 144 villagers, survey at the end of 
transmission season 

msp2 120 1994 (43) 

Bereczky et al(44) Rufiji, Tanzania 1-84y March & April 
1999 

873 individuals in a cross-
sectional survey 

msp2 High -  

Färnert et al(45) Chonyi, Kenya 0-11y October 2000 264 children, cool dry season msp2 22-53 1997-98 (45,46)  

Mayor et al(47,48) Manhica, 
Mozambique 

4mo-83y 1997-1999 826 samples in 5 cross-sectional 
surveys 

msp2 15 1998 (47) 

Cortes et al(49) Wosera, Papua 
New Guinea 

All ages June & 
November 2000 

628 samples from cross-sectional 
surveys 

msp2 12  (50) 

Färnert et al(45) Ngerenya, Kenya 0-11y October 2000 273 children, cool dry season msp2 10 1992-93 (26,45) 

Roper et al(51) Daraweesh, 
Sudan 

9-36y 1993-1996 Cohort of 106 residents msp1 1 - (52) 
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The mean observed multiplicity of infection per individual varies substantially by transmission 

intensity and age (Figure 2.6a and Table 2.2). The decrease in older ages may reflect acquired 

immunity lowering the density of individual genotypes to below the limit of detection. This 

makes it difficult to compare MOI by transmission intensity; however we use the saturation in 

peak MOI with transmission intensity to validate the saturation in the predicted relationship 

between the number of infection in humans and the EIR. 

 

Figure 2.6 Validation of the predictions for the number of infections in humans and 

mosquitoes with observed data 

a) Observed mean number of P.falciparum detected infections by age and transmission 

intensity. The colour bands correspond to the study specific EIR. The points represent the 

mean number of detected infections in all individuals (including those with no infections). b) 

Observed (boxplots) and predicted (blue dots) sporozoite rates in mosquitoes with 

transmission intensity. The observed data was obtained from different endemic settings with 

differing seasonality profiles and study periods. A reference scenario for the predictions was 

used with no seasonality. The slight decrease for the EIR of 200 is likely to be due to a 

reduction in infectiousness to mosquitoes due to acquired immunity in people living in high 

transmission settings. 

Both the observed and predicted sporozoite rates in mosquitoes were low and slightly 

increased with increasing transmission intensity (Figure 2.6b). There is a slight decrease for 

both observed and predicted SR for an EIR of 200. This may be due to lower infectiousness 

of humans with high levels of acquired immunity in high transmission settings. 
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Predicted impact of long-lasting insecticidal nets  

In both P.falciparum and P.vivax, an LLIN campaign with 70% coverage leads to a substantial 

decrease in the numbers of infections in both mosquitoes (Figure 2.7a,d) and in humans 

(Figure 2.7b,e). The decrease is sharper in mosquitoes due to the longevity of infections in 

humans, and this leads to an initial decrease in the proportion of infections in mosquitoes 

(Figure 2.7c,f). Over time, the numbers of infections in mosquitoes and humans increase. This 

is partly due to reduced effectiveness of the net through wear and tear and insecticide decay, 

and partly due to reduced exposure in humans leading to reduced acquired immunity and 

thus higher infectiousness to mosquitoes.  

 

Figure 2.7 The predicted impact of a mass campaign of long-lasting insecticidal nets on the 

proportion of infections in mosquitoes. P.falciparum (top row) and P.vivax (bottom row) 

a & d) mean number of infections in mosquitoes for one human; b & e) mean number of 

infections per human; c & f) proportion of infections that are in mosquitoes. The reference 

scenarios with constant seasonality were used and values were averaged over one year. Solid 
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black line: EIR 100; red line EIR 10; blue EIR 1. The LLIN campaign had 70% coverage and took 

place at year 2. 

Predicted effect of mass drug administration 

For P.falciparum, MDA with a blood-stage drug leads to a sharp drop in the number of 

infections in humans and mosquitoes (Figure 2.8a,b). The drop is immediate in humans and 

after 10 to 15 days in mosquitoes, leading to a dramatic spike in the proportion of infections 

that are in mosquitoes just after administration (Figure 2.8c).  

 

Figure 2.8 The predicted impact of mass drug administration on the proportion of infections 

in mosquitoes. P.falciparum (top row) and P.vivax (bottom row) 

a & d) mean number of infections in mosquitoes for one human; b & e) mean number of 

infections per human; c & f) proportion of infections which are in mosquitoes. Top row 

(P.falciparum): Solid black line: EIR 100; red line EIR 10; blue line EIR 1. The MDA campaign 

had 70% coverage and took place at year 2. Bottom row (P.vivax): Constant transmission, 

EIR=10. Solid purple line: liver stage only; Two-dash red line: blood stage only; dark green 

line: both blood and liver stage. The MDA campaigns had coverage of 70% for blood-stage 

and 55% for liver-stage drugs and took place at year 2.  

In a seasonal setting, the timing of MDA affects the height of the spike (not shown). The 

absolute increase in the spike is greatest if MDA is given around the time of peak transmission 
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and the relative increase (as a ratio) is greatest when the proportion of infections in 

mosquitoes is low, in the dry season.  

For P.vivax, MDA with a liver-stage drug or both blood-and liver-stage drugs produces 

substantial decreases in the numbers of infections in mosquitoes and humans (Figure 2.8d, 

e). The spike in the proportion of infections that are in mosquitoes is smaller than that for 

P.falciparum since a larger proportion of infections are in humans (Figure 2.8f). MDA with a 

blood-stage drug alone is predicted to have a limited impact since the liver-stage parasites 

are unaffected. Unusually for MDA, with the blood-stage drug only there is a decrease in the 

proportion of infections in mosquitoes just after administration, as a consequence of 

clearance of the blood-stage parasites.  

2.5. Discussion 

The predictions indicate that the proportion of infections in mosquitoes is substantial, for 

P.falciparum this ranges between 20-60%, decreases with decreasing transmission intensity 

and reaches a floor for low transmission intensities. This pattern is driven by saturation in the 

numbers of infections in humans at higher transmission intensities, and this saturation has 

been validated as far as possible using observed data. The predicted proportion of infections 

additionally depends on setting specific characteristics such as mosquito species and 

seasonality, and, in the case of P.vivax, relapse patterns.  

Transmission-blocking immunity is not included in our predictions and could alter the 

relationships. In humans, this would lead to more infections in humans required to infect the 

same number of mosquitoes, and vice versa in mosquitoes. We expect that the pattern of the 

relationship between the proportion of infections in mosquitoes by transmission intensity 

would remain similar. 

The predictions highlight the role of the dynamics of infections in humans and mosquitoes 

following the introduction or scale-up of an intervention. The interventions simulated LLIN 

and MDA, target the vector and the parasites in the human respectively, and were predicted 

to have different effects on the proportion of infections in mosquitoes. LLIN initially decreases 

the proportion, while MDA shows a striking spike for P.falciparum and for P.vivax liver-stage 

drugs. Using predictions to identify weak spots in individual interventions and their timing 

may aid the optimization of combinations of interventions for malaria control and elimination. 

Previous predictions of the impact of MDA on P.vivax also show that blood-stage drugs alone 

are not effective at interrupting transmission and that a liver-stage intervention with high 

coverage is needed [33–35]. The predicted spike in the proportion of infections in mosquitoes 
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following MDA suggests that, in low transmission settings where MDA may have a chance of 

interrupting transmission for P.falciparum (56), vector control or ivermectin preceding a round 

of MDA could potentially be beneficial in slowing the rate of re-infection. However, in practice, 

further challenges facing MDA are the difficulties in achieving a high coverage in humans 

(57), and in controlling the threat of resurgence from imported infections.  

There is an on-going debate about whether infections with low parasite densities should be 

detected and treated, given limited resources for malaria control, and uncertainty over their 

relevance to transmission and morbidity (58,59). New, highly sensitive diagnostic tests have 

been developed for use in humans (60). Our prediction that a substantial proportion of 

infections are to be found in mosquitoes helps inform the rational allocation of resources by 

informing the utility of ultra-diagnostic testing to find and clear the last malaria infections in 

humans and highlighting the shifting dynamics of infections in humans and mosquitoes in 

response to interventions. The use of existing vector control tools and effective anti-malarials 

has been shown to lead to substantial declines in the burden of malaria (61), and quantifying 

where infections are would help in identifying the weak spots in single interventions to allow 

the effective design and allocation of optimal combination strategies, especially in areas 

where resources are constrained. 

2.6. Conclusion  

The proportion of infections in mosquitoes is predicted to be substantial, and to vary with 

transmission intensity, human blood index, and in response to interventions. These 

predictions could inform the design of effective strategies with integrated interventions and 

diagnostic tools to reduce and interrupt malaria transmission and prevent resurgence.  
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3.1. Abstract 

Background  

Knowledge of mosquito movement would aid the design of effective intervention strategies 

against malaria. However, data on mosquito movement through mark-recapture or genetics 

studies are challenging to collect and so are not available for many sites. An additional source 

of information may come from secondary analyses of data from trials of repellents where 

household mosquito densities are collected. Using the study design of published trials, we 

developed a statistical model which can be used to estimate the movement between houses 

for mosquitoes displaced by a spatial repellent. The method uses information on the different 

distributions of mosquitoes between houses when no households are using spatial repellents 

compared to when there is incomplete coverage. The parameters to be estimated are the 

proportion of mosquitoes repelled, the proportion of those repelled that go to another house 

and the mean distance moved between houses. Estimation is by maximum likelihood. 

Results  

We evaluated the method using simulation and found that data on the seasonal pattern of 

mosquito densities was required, which could be additionally collected during a trial. The 

method was able to provide accurate estimates from simulated data, except when the setting 

has few mosquitoes overall, few repelled, or the coverage with spatial repellent is low. The 

trial that motivated our analysis was found to have too few mosquitoes caught and repelled 

for our method to provide accurate results.   

Conclusion 

We propose that the method could be used as a secondary analysis of trial data to gain 

estimates of mosquito movement in the presence of repellents for trials with sufficient 

numbers of mosquitoes caught and repelled and with coverage levels which allow sufficient 

numbers of houses with and without repellent. Estimates from this method may supplement 

those from mark-release-recapture studies, and be used in designing effective malaria 

intervention strategies, parameterizing mathematical models and in designing trials of vector 

control interventions. 

………………….. 
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3.2. Introduction 

There has been an increase in interest in the movement of vectors and people, and how each 

contributes to the spread of malaria infections (1–4). The flow of infections within and 

between households in an area has implications for interventions such as targeting areas or 

transmission foci and reactive case detection (5,6). Mosquito movement is the main mode of 

spread of malaria parasites within a community. Hence, information on how mosquitoes 

move can help inform the design of  intervention strategies and aid in the parameterization 

of mathematical models to predict their likely impact (7). It can also inform the design of 

cluster-randomised controlled trials (cRCTs) to estimate the effect of new tools (8).  

There is limited information on the movement of mosquitoes between households. Vector 

dispersal has been estimated at different spatial and temporal scales using mosquito mark-

release-recapture (MMRR) and genetic markers (9–14). Previous MMRR studies have shown 

that approximately 80% or more of mosquitoes recaptured are within three kilometres of 

release points up to two weeks after release (7,15–17), including those emerging from 

breeding sites (18–20). Long-range movement between villages, or farther, is only 

occasionally observed (17,21,22). Distances moved by the mosquito vary by vector species, 

distribution of host habitats, wind direction and the use of  vector control interventions 

(15,17,18)  among other factors. 

Both MMRR and genetic methods have limitations. MMRR is dependent on the recapture 

success, which is affected by factors ranging from geographical landscapes and climate, 

vector population structure and behaviour,  collection effort as a function of distance from 

release points (10) and how systematic the sampling is, in addition to ethical implications 

regarding the release of potential disease vectors back into the environment. Population 

genetic studies using microsatellites and other molecular variants to define fine scale genetic 

patterns of vectors might be subject to resolution effects, masking patterns (12), and are very 

costly, limiting the number of mosquitoes that can be analysed. These studies are challenging 

to carry out and further sources of data would be valuable. 

A potential source of data on mosquito movement which has not been fully harnessed is trials 

of repellents.  To estimate the effect of topical and spatial repellents, mosquito densities in 

households with and without repellents (23–32) have been compared.  Some studies have 

estimated the extent to which mosquitoes are diverted to houses without repellents when 

there is less than full coverage in a study area. They  report the possibility of diversion to non-

users (31,33),  no change in mosquito densities collected (33,34), while some experimental 

trials outline the impact of the repellents on the mosquito olfactory cues and delayed feeding 
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(35,36). These studies have not estimated the distance between households that the 

mosquitoes were diverted. We sought to determine if data from the trials with diversion could 

be used to estimate fine-scale movement of mosquitoes in the presence of spatial repellents 

as a secondary analysis and whether modifications to the trial design would be necessary to 

achieve this. 

Mosquito movement is likely to be altered by the presence of repellents. Spatial repellents 

such as transfluthrin induce orthokinesis, where the mosquito moves in a random fashion 

until it moves into a lower concentration when it resumes natural flight (36,37). Therefore, 

estimates of mosquito movement in the presence of spatial repellents complement those 

from other data sources.  

We develop a statistical model for estimating the movement of mosquitoes that are repelled. 

We validate the model using simulation to determine the characteristics of a study under 

which the model could provide accurate estimates of the parameter values. We apply the 

model to observed data from a trial in Tanzania where the main objective was to investigate 

whether mosquitoes are diverted from users to non-users of spatial repellents in an area of 

residual transmission and incomplete spatial repellent coverage (33).Methods 

3.3. Methods 

Trial design 

We use a trial of spatial repellents from Tanzania described previously in Maia et al (33). 

Briefly, the study was conducted in three villages, each with 30 households. The distance 

between any two villages was greater than two kilometres while households within villages 

were on average within 0.1km to 0.3km of each other. The study took place over 24 weeks 

between December 2012 and June 2013. Three coverage scenarios with mosquito coils 

containing 0.03% transfluthrin were rotated every two weeks among the villages: 1) 100% 

coverage, 2) no coverage, 3) incomplete coverage with 80% of the households using coils. 

Coils were distributed and used on each day of the week. Blank coils were used as a placebo. 

Mosquito densities were collected outdoors under the kitchen thatch roof as well as indoors 

for three consecutive days each week using Prokopok aspirating devices (38). There were a 

total of 72 collection days from each household. The presence of a spatial repellent in a 

household was defined as a combination of two features, availability of a coil with 

transfluthrin, and observed compliance to coil use. Compliance was assessed by inspecting 

the ashes produced the previous night. 
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The original study compared the numbers of mosquitoes collected in households in four 

groups:  households using repellent in weeks with complete coverage in a village, households 

using repellent in a village when there was incomplete coverage, households not using 

repellent in a village when there was incomplete coverage, and households in a village when 

there was zero coverage. For our analysis, we use Anopheles arabiensis mosquitoes since they 

were the most repelled by the active coils. 

Statistical Model 

a) Model Strategy 

We develop a statistical model with the aim of estimating the geographic distances between 

households that the mosquitoes diverted by the repellent move from and to. Movement of 

individual mosquitoes cannot be determined, but we can estimate the population parameters 

such as the distance between houses that the diverted mosquitoes move from and to. 

We define the baseline distribution of the proportion of mosquitoes in each house as the 

distribution of mosquitoes when there is 0% coverage. The proportions may vary between 

houses and must sum to 1. The total number of mosquitoes per day can vary throughout the 

study period but we assume that the proportions in each house remain the same in the 

absence of repellent use. In the case of unfed mosquitoes emerging from breeding sites, this 

assumption is unlikely to be true. Seasonal patterns in rainfall may vary emergence rates from 

breeding sites, and newly emerged mosquitoes may cluster in houses closest to a breeding 

site. Therefore, we restrict the analysis to blood-fed mosquitoes only. Mosquitoes in general 

take a few days for their first blood-meal (39,40) allowing time for dispersal away from the 

breeding site. We assume that the distributions of mosquito densities which differ from the 

baseline distribution when a proportion of households use repellent reflect the movement of 

the diverted mosquitoes (Figure 1). 

The model derives the expected proportion of mosquitoes in each house based on the 

baseline distribution of mosquitoes between houses when there is zero coverage and the 

excess outgoing and incoming mosquitoes for each house when some households use spatial 

repellents. The parameters that govern the outgoing and incoming mosquitoes to be 

estimated are, the proportion of mosquitoes diverted when repellent is used (!), the 

parameter for distance between households moved by the diverted mosquitoes (λ), and the 

proportion of those diverted that go to another house as opposed to elsewhere such as 

vegetation (#). 

Model A is the base model. Model B is a small extension of model A in the case where data 

on the seasonal pattern of mosquito densities in the absence of spatial repellents is available. 
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Model A 

Let $! be the total number of mosquitoes collected from all households on day	&. We assume 

that in the 0% coverage scenario, the proportion of mosquitoes in each house	ℎ in a village 

is given by;	(", (#…	($   

The proportion of mosquitoes diverted by the repellent is represented by	!. We use + and , 

to denote the house that a mosquito is potentially diverted from and to.  Of the total number 

of mosquitoes in houses on day	&, $!, the proportion diverted from house	+, -%! ,	is given by 

the proportion in the house in the absence of intervention, (% , multiplied by the proportion 

diverted, !, so that  

-%! =	(%	!	/%!          (1) 

where /%! is equal to 1 in a house with repellent use on that day and 0 if the repellent was not 

used. -%! = 0123 if no spatial repellent was used. 

Diverted mosquitoes may move to another house with probability # or to somewhere outside 

the houses with probability	(1 − #). Conditional on moving from house + to another house, 

the probability that a mosquito moves to house	,, 82(9%&!|9%.!),		depends on a function ; of 

the distance in kilometres, <%& , and the repellent status in house	, on day	&. The probability 

is scaled so that the probabilities of moving to each house in the village, conditional on 

moving to a house, sum to one. 

82(9%&!	|	9%.!) = 	
((*!")	-"#

∑ ((*!")	-"#"
        (2) 

We set the function ;, which describes the chance of the mosquito moving to a house 

depending on distance, to a normal kernel (Figure 3.1), which is similar to diffusion and 

represents the distance travelled by a random walk in a fixed time period, so that, 

;(<%&) = 1=>?−$
%	@

/#<%&
#A                           (3) 

where	@, the parameter for distance, is to be estimated. Other distributions may also be used. 
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Figure 3.1 Examples of the distributions of geographical distances given by the normal kernel. 

The dotted lines represent the mean distance; Red line: 0.40km and Blue line: 1.20km. The 

mean is estimated from the parameter for distance, @, where mean = @	B2 D⁄ .  

The proportion of all mosquitoes on day & who are diverted to house , from house +, F%&! , is 

given by multiplying the probability for being diverted from house + given repellent use, -%!, 
the probability of being diverted to a house rather than elsewhere, #, and the conditional 

probability of moving to house , given that the mosquito has moved to another house from 

house + so that, 

F%&! 	= 	82(9%&!	|		9%.!)	#	-%!        (4)   

The proportion moving to house , from all other houses, F&! , is then summed over all houses,  

F&! 	= 	∑ F%&!%	            (5) 

The proportion of mosquitoes in house ℎ of all mosquitoes on day	&,	8$! , is then given by the 

baseline proportion (that would occur if there is zero coverage), ($ , minus the proportion of 

diverted mosquitoes, -$! , and adding the proportion of incoming mosquitoes, F$! , 

8$! 	= 		 	($ 	− 	-$! 	+ 	 F$!          (6) 

The observed densities, I$! , are based on mosquitoes in houses only (as opposed to those 

diverted elsewhere) and include houses with missing data. To correspond to the observed 

densities, we set the predicted proportions to zero in houses with missing mosquito densities. 

This makes no assumption about their actual values. We then re-scale the proportions to sum 

to one. 

J$!	 =
	0&#	1&#

∑ 	0&#	1&#&
	           (7) 
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where K$! is an indicator set to 0 if the house has a missing mosquito density on that day 

and 1 if the data is present. 

The observed densities follow a multinomial distribution around the predicted probabilities.  

 I$!~9M(J"! , … , J2! , $!)                   (8) 

 

Model B 

If data on the total number of mosquitoes including those diverted elsewhere is available, 

then there is potentially more information with which to disentangle the effects of repellency, 

movement and diversion elsewhere. Mosquitoes diverted elsewhere are not sampled in the 

houses, but this information can be gained by having data on the seasonal pattern of 

mosquito densities in the absence of spatial repellents, either from another control village or 

from a rotation of coverage levels which allows the seasonal pattern to be estimated. 

The model can be modified to incorporate information on the proportion of mosquitoes that 

are diverted elsewhere. In this case, the observed data is fitted to a multinomial distribution 

with the expected proportion in each house, J$!3  and an additional category for the expected 

proportion of mosquitoes that were diverted elsewhere,	J4!3 . These probabilities are scaled to 

sum to one. The total number of mosquitoes is	$!3. 

I$!~9M(J"!3 , … , J2!3 , J4!3 , $!3)	               (9) 

J4!3 	is calculated by subtracting	$! (the total number of mosquitoes sampled from 

households) from $!3 (total number of mosquitoes including those which are diverted 

elsewhere). 
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Quantities in the models  

Table 3.1 Quantities in the models 

Quantity Description 
Included in model A and model B 
!!  number of mosquitoes caught in all houses on day " 
#"  baseline proportion of mosquitoes in house $ of mosquitoes in all houses, when 

there is zero coverage 
%"! proportion of mosquitoes in house $ on day " of those in all houses 
&#! proportion of mosquitoes diverted from house ' on day " of those in all houses  
($! proportion of mosquitoes diverted to house ) on day " of those in all houses  
%*	(-#.!) probability of mosquito being diverted from house ' on day " 
%*	(-#$!) probability that diverted mosquitoes move from house ' to house ) 
/"!	 predicted proportion of mosquitoes in house $ on day " of those in all houses 
0  proportion of mosquitoes diverted of those in houses using repellent  
1 proportion of mosquitoes moving to another house of those diverted 
2 parameter for distance between households for diverted mosquitoes (mean = 

3	45 6⁄ ) 
8#! presence of spatial repellent in house ' on day " 
9#$ distance between house ' and house ) 
 
Additionally, included in model B  
!!'   number of mosquitoes caught in houses and those diverted elsewhere 
/(!' 	 predicted proportion of mosquitoes diverted elsewhere on day " of mosquitoes 

in houses or diverted elsewhere 
/"!'   predicted proportion of mosquitoes in house $ on day " of those in all houses 

or diverted elsewhere 

Implementation 

The statistical model was written in C++. The simulations were run on sciCORE 

(http://scicore.unibas.ch/) scientific computing core facility at the University of Basel. We used 

Nelder-Mead optimization (41,42) to maximize the multinomial log likelihood in order to 

estimate the parameters of interest; the proportion of mosquitoes repelled from houses with 

spatial repellents (!), the parameter for distance between households moved by the diverted 

mosquitoes (@), and  the proportion of mosquitoes repelled that go to a household as 

opposed to elsewhere (#). 

Model Validation 

We evaluated the ability of the models to recover known values using simulated data. We 

assess the method under different conditions to establish at what level of coverage, the 

proportion of mosquitoes repelled from households using repellents, the proportion of 
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mosquitoes repelled going to households as opposed to elsewhere, and mean total number 

of mosquitoes collected per day, the model is able to reproduce accurate parameter values.  

 

We base the scenarios of trial characteristics on the design of the trial of spatial repellents 

from Tanzania. We specify a reference scenario in which the model could work well and vary 

each of the input parameters in turn to determine the values at which the model no longer 

works well (Table 3.2). We simulate trial datasets of observed numbers of fed mosquitoes for 

each household per day using our underlying model assumptions and random variation. 

Since there is stochasticity in the simulations, we simulate 100 datasets for each scenario, and 

estimate the parameter values for each dataset. 

For simplicity, the total number of mosquitoes collected per day remains constant and there 

is no seasonality.  

 

Table 3.2 Simulated scenarios of trial characteristics to evaluate the method 

Quantity Value 
0,	proportion diverted from houses using repellent 0.10, 0.30, 0.50, 0.80 
1,	proportion of those diverted that go to another house 0.20, 0.50, 0.80 
3, parameter for distance of movement for diverted 
mosquitoes (km) (mean = 3	45 6⁄ ) 

0.05,0.10,0.20,0.30,0.40,0.50,0.80,1.00 

!!,	number of mosquitoes on day "  in houses (Model A) 10,100, 1000 
!!' ,	number of mosquitoes on day " including those 
diverted elsewhere (Model B) 

 
10,100, 1000 

number of experimental days 72 
number of days with zero coverage 18 
number of households with spatial repellent out of 30 per 
day 

6, 15, 24, 28 

*The reference scenario is indicated by bold font.  

Ethics Statement 

Ethical approval for the trial was given by the Ifakara Institutional Review Board (IHI-IRB), from 

the Tanzanian National Institute for Medical Research (NIMR) and from the Interventions 

Research Ethics Committee of the London School of Hygiene and Tropical Medicine (33). 

Permission to publish the data was obtained from the Tanzania National Institute of Medical 

Research. 
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3.4. Results 

Trial Data 

The trial characteristics for the three villages are summarized in Table 3.3.  

Table 3.3 Trial Characteristics for the three villages 
 

Uwata Matete Igima 
Number of mosquitoes collected 
per day 

   

median (90% central 
range) 

6 (2 - 20) 2 (0 – 9) 0 (0 – 3) 

Distance between all pairs of households (km) 
median (90% central 
range) 

0.31 (0.14 – 
0.50) 

0.21 (0.07 – 
0.30) 

0.14 (0.09 – 
0.21) 

Compliance to repellent use in 
each treatment arm 

              Complete coverage 

 
 
  90% 

 
 
  89% 

 
 
  93% 

              Incomplete coverage1 90% 90% 93% 
1The denominator is the total number of households allocated the treatment. There were 30 households in 
each study village. 
 

Model validation  

We use simulation to assess how well the method was able to recover known parameter 

values. The simulations are based on the design of the trial and using the house coordinates 

for one village, Uwata. 

Model A worked well for some parameters, but not others. The estimates are reasonable for	!, 

the proportion of mosquitoes repelled from households with repellents, across the range of 

values for distance (Figure 3.2a), the proportion of diverted mosquitoes that go to another 

house (Figure 3.2b), for different coverage levels (Figure 3.2c), and numbers of mosquitoes 

collected per day (Figure 3.2d). However, for	@, the parameter for distance of diversion 

between houses, model A estimates were accurate only for scenarios where 80% of 

mosquitoes were repelled (Figure 3.2e), 80% of mosquitoes repelled went to a house (Figure 

3.2f) and with a coverage of around 50% (Figure 3.2g).  The estimates for	#, the proportion 

of mosquitoes repelled that go to households as opposed to elsewhere were poor for all 

scenarios (Figure 3.2 (bottom row)).  
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For Model A, there was little information in the simulated datasets to disentangle the effects 

of the parameter for distance moved by mosquitoes that were repelled, the proportion 

repelled and the proportion of mosquitoes repelled that go to households as opposed to 

elsewhere. 

 

Figure 3.2 The ability of the model to return known parameter values. 

Estimated values for O,	the proportion of mosquitoes repelled from houses using spatial 
repellents (top row) a) Estimates by parameter for distance between households moved, b) 

by proportion of mosquitoes repelled that go to households as opposed to elsewhere, c) by 

the number of households using spatial repellents (out of the total of 30), d) by the total 

number of mosquitoes collected from all households per day, for	#, the proportion of 
mosquitoes repelled that go to households as opposed to elsewhere (middle row) e) By 

the proportion of mosquitoes repelled, f) by the parameter for distance between households 

moved by diverted mosquitoes, g) by the number of households using spatial repellents on 

any given day, h) by the total number of mosquitoes collected from all households per day, 

for	P, the parameter for distance between households moved by mosquitoes (bottom 
row) i) by the proportion of mosquitoes repelled from houses using a spatial repellent, j) by 

the proportion of mosquitoes repelled that go to households as opposed to elsewhere k) by 

the number of households using spatial repellents out of a total of 30, l) by the total number 

of mosquitoes collected per day from all households. The horizontal lines represent the 

different known values to be returned coded by colour: Red (0.1), Blue (0.3), Black (0.5), and 
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Grey (0.8). The boxplots represent the estimated values from 100 simulated datasets for each 

scenario. The reference scenario is based on the trial design and trial house coordinates and 

is given in Table 3.2. We alter one characteristic at a time. 

 

For Model B, we extend the model to include data on mosquitoes that were diverted 

elsewhere. For the method evaluation, this can be simulated easily but for a trial, data on the 

seasonal pattern in the absence of repellents would be required. 

For Model B, we extend the model to include data on mosquitoes that were diverted 

elsewhere. For the method evaluation, this can be simulated easily but for a trial, data on the 

seasonal pattern in the absence of repellents would be required. 

The model returned the correct values for	!, the proportion of mosquitoes repelled from 

households with spatial repellents, for all levels assessed for the parameter for distance 

between households (Figure 3.3a), the proportion of mosquitoes repelled that go to 

households as opposed to elsewhere (Figure 3.4b), the coverage of households using spatial 

repellents (Figure 3.3c) and the total number of mosquitoes collected per day (Figure 3.3d).  

 

Figure 3.3 The ability of the model to return the known values for β, the proportion of 

mosquitoes repelled from houses using spatial repellents. 

a) By parameter for distance between households moved, b) by proportion of mosquitoes 

repelled that go to households as opposed to elsewhere, c) by the number of households 

using spatial repellents (out of the total of 30), d) by the total number of mosquitoes collected 

from all households per day. The horizontal lines represent the different known values to be 

returned coded by colour: Red (0.1), Blue (0.3), Black (0.5), and Grey (0.8). The boxplots 

represent the estimated values from 100 simulated datasets for each scenario. The reference 

scenario is based on the trial design and trial house coordinates and is given in Table 3.2. We 

alter one characteristic at a time. 



 
 

 

49 
 

Estimates for #, the proportion of mosquitoes repelled that go to households as opposed to 

elsewhere, were also reproduced precisely over the range of parameter for distance (Figure 

3.4b), coverage (Figure 3.4c) and total number of mosquitoes collected per day (Figure 3.4d). 

But, estimates were less precise if the proportion of mosquitoes repelled was low (Figure 3.4a). 

There is too little information provided by the relatively small number of mosquitoes repelled 

to produce accurate estimates. 

 

Figure 3.4 The ability of the model to return known values for φ, the proportion of mosquitoes 

repelled that go to households as opposed to elsewhere 

a) By the proportion of mosquitoes repelled, b) By the parameter for distance between 

households moved by diverted mosquitoes, c) by the number of households using spatial 

repellents on any given day, d) by the total number of mosquitoes collected from all 

households per day. The horizontal lines represent the different known values to be returned 

coded by colour: Red (0.2), Blue (0.5), and Black (0.8). The boxplots represent the estimated 

values from 100 simulated datasets for each scenario. The reference scenario is based on the 

trial design and trial house coordinates and is given in Table 3.2. We alter one characteristic 

at a time.  

Parameter for distance between households moved by the mosquito: Estimates 

for	@, the parameter for distance between households that the mosquitoes were diverted, 

were accurate when the known values were shorter, but not when the parameter for distance 

was greater than 0.8km (Figure 3.5a). This is likely to be due to the configuration of the trial 

village where more than 90% of distances between pairs of houses were less than 800 metres 

apart (Figure 3.5b). 
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Figure 3.5 Estimated and Known values for @	,	the parameter for distance between households 

moved by the mosquito. (mean = @	B2 D⁄ ) 

a. Estimated (box plots) and actual (dotted lines) simulated parameter for distances between 

households moved by mosquitoes diverted by the spatial repellent. b. Distribution of the 

distances between all pairs of households in the study area. The boxplots in (a) represent the 

estimated values from 100 simulated datasets for each scenario, and the colours represent 

the different parameters for distances. The reference scenario is based on the trial design and 

trial house coordinates and is given in Table 3.2.  

For the parameter for distance of 800m or less, the model estimates were accurate for 

scenarios where more than 30% of mosquitoes were repelled (Figure 3.6a), 50% or more 

mosquitoes repelled went to a house (Figure 3.6b), and with sufficient coverage (Figure 3.6c) 

and a higher number of mosquitoes collected per day (Figure 3.6d). One hundred mosquitoes 

per day (3 per house) provided precise estimates, but for 10 (0.3 per house) the precision was 

less. If there is low coverage, or few mosquitoes are repelled, then there is little information 

in the dataset to estimate the parameter for distance.  

 

Figure 3.6 The ability of the model to return known values for λ, the parameter for distance 

between households moved by mosquitoes 
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a) By the proportion of mosquitoes repelled from houses using a spatial repellent, b) by the 

proportion of mosquitoes repelled that go to households as opposed to elsewhere c) by the 

number of households using spatial repellents out of a total of 30, d) by the total number of 

mosquitoes collected per day from all households. The horizontal lines represent the different 

known values to be returned coded by colour. Red (0.05km), Blue (0.2km), Black (0.3km), 

Brown (0.5km), Grey (0.8km). The boxplots represent the estimated values from 100 simulated 

datasets for each scenario. The reference scenario is based on the trial design and trial house 

coordinates and is given in Table 2. We alter one characteristic at a time. 

Application to data from Kilombero Valley, Tanzania 

We applied the method to the observed trial data on collected mosquito densities from 

Kilombero, Tanzania (Table 3.4). The trial data have characteristics which, from the method 

evaluation, indicate that the model would not provide accurate estimates.  The mosquito 

densities were low and there was a very low proportion of mosquitoes repelled. There was no 

evidence of an impact on mosquito abundance of the spatial repellent (33).  It has been 

suspected that the transfluthrin concentration in the coils might have been too low to repel 

mosquitoes in this particular study. 

We applied the model to two of the villages, Uwata and Matete. Due to the extremely low 

numbers of mosquitoes collected in Igima, it was excluded from further analysis. The 

estimates are consistent with the study findings that a very low proportion of mosquitoes 

were diverted by the spatial repellents.  

Table 3.4 Parameter estimates using the trial data 

Parameter Estimate1 Uwata 
Est. (95%CI) 

Matete 
Est. (95%CI) 

proportion of mosquitoes repelled 0.04 (0.03 - 0.04) 0.04 (0.03 - 0.05) 

parameter for distance moved between 
households (mean = !	#2 %⁄ ) 

0.12 (0.09 - 0.35) 0.04 (0.00 - 0.14) 

proportion of mosquitoes moving to 
households of those repelled 

0.88 (0.54 - 1.00) 0.87 (0.04 – 1.00) 

Log likelihood -1716.51 -686.02 

1Blood-fed Anopheles arabiensis mosquitoes were used in this analysis 
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3.5. Discussion  

We have developed a statistical model to estimate the proportion of mosquitoes repelled 

from households using spatial repellents, of these, the proportion that are diverted to another 

house and how far apart the houses are. The evaluation of the method suggests that although 

Model A, the model without information on seasonality, works well for some parameters, it 

does not provide accurate estimates for others. The method only works well when there is 

information on the total number of mosquitoes in the study area, including those diverted 

elsewhere as opposed to only those diverted to households (Model B). Taken together, these 

results suggest that trials of repellents could potentially be used to estimate mosquito 

movement, as long as the trial design is modified so that information on the total number of 

mosquitoes or the seasonality pattern is available. 

Findings from this study may help quantify the criteria for trial settings seeking to estimate 

mosquito movement by providing insights on what type of data needs to be collected. Our 

results show that trial data needs to contain sufficient information for the different variables. 

We found that estimates were not precise if there was a low coverage with repellents (less 

than 50%) and a low proportion of mosquitoes were repelled from households using repellent 

(less or equal to 30%). Estimates for longer distances moved between households by the 

repelled mosquitoes (greater than 800m) were also imprecise: this is expected since the 

houses in the village were closely arranged. Estimates were reasonably precise if 100 

mosquitoes per day (3 per house) were caught, but less precise if this was reduced to 10 

mosquitoes (0.3 per house). Simulation could be further exploited to refine the trial design, 

by investigating factors such as the number of mosquito collections and number of houses 

when specific trials are being planned. The code is available from the authors on request. 

Estimates of mosquito movement in the presence of interventions can inform the design of 

trials of interventions where effectiveness is affected by movement generally.  Mosquito 

movement has been shown to affect the effectiveness of interventions; the effectiveness can 

be attenuated through contamination from different study arms, or community wide effects 

conferred to the surrounding areas (8). In previous trials of bed nets in some African settings, 

the failure to observe any significant differences between the intervention and control study 

villages could partially be attributed to the movement of mosquitoes between villages which 

might have led to the underestimation of the intervention effect (8,22). In Tanzania, 

mosquitoes were diverted to non-users in trials of topical and spatial repellents in sites with 

incomplete coverage (31,33), highlighting the need for feasible allotment strategies if 

complete coverage is hard to achieve. These estimates of mosquito movement can also be 

used to parameterize mathematical models for assessing the anticipated impacts of 
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intervention strategies where data is not available. It is not clear how much mosquito 

movement varies depending on whether spatial repellents are present or absent, but as more 

studies are carried out, further estimates will become available and potentially allow 

comparison in similar settings. 

The need to estimate mosquito movement from as many sources of data as possible stems 

from the low number of datasets designed specifically to measure mosquito movement. This 

is compounded by the need to have estimates from different settings and in the presence of 

different interventions due to the lack of generalizability. The distances travelled are highly 

dependent on the setting, due to factors like the vector species and environmental features 

such as vegetation, breeding sites, wind direction and the spatial distribution of households 

(13,18).  

There are some limitations with our modelling strategy. We did not take into account the 

number of consecutive evenings that the spatial repellent had been used within each two-

week period of intervention or placebo but rather assumed that the effect was constant over 

time. This may not be correct and could be validated by estimating any trend in mosquito 

densities among the houses over the fortnight in trials with sufficiently large numbers of 

mosquitoes. The model could be extended to take further time detail into account, for 

example by using the estimates of the previous day for the distribution of mosquitoes 

between houses as the baseline proportions of the current day. Validation could be carried 

out using further datasets and approaches such as individual-based simulation modelling of 

mosquito movement (Denz et al, in prep). Our model could also be extended to test 

hypotheses about mosquito movement, such as whether mosquitoes prefer to move to the 

first house they encounter without repellents or any other. Incorporating data on the number 

of hosts as a measure of attractiveness or on excess mosquito mortality could refine the 

estimates.  

The low proportion of mosquitoes repelled from households using spatial repellent estimated 

by the method was consistent with results published previously (33), where there were no 

significant differences in the number of mosquitoes collected in households with and those 

without spatial repellents. The reason for the lack of repellency is likely to be the 

concentration of transfluthrin which would have been too low for substantial action in natural 

settings with free air movements (37). The deterrence and repellency effects of transfluthrin 

are dose-dependent with substantial protective effects seen at higher concentrations than 

those used in the current study e.g. 0.03% Transfluthrin coils used indoors (35). Using blank 

coils as a placebo may also reduce differences between houses with spatial repellents and 

those without due to the effects of smoke. 
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3.6. Conclusion 

We have developed a statistical model as a potential tool to gain information on mosquito 

movement from trials of repellents. If the design of trials of repellents is modified to provide 

information on the total number of mosquitoes using the seasonal pattern, then the method 

is able to reproduce known values from simulated datasets well. Further work to validate the 

method in field settings is needed. Estimates of mosquito movement can inform the design 

of both intervention strategies and trials of interventions where effectiveness is affected by 

movement generally, and in particular estimates of movement in the presence of spatial 

repellents may inform decisions on implementation and allocation.  
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4.1. Abstract 

Knowledge of how malaria infections spread locally is important both for the design of 

targeted interventions aiming to interrupt malaria transmission, and the design of trials to 

assess the interventions. A previous analysis of 1602 genotyped Plasmodium falciparum 

parasites in Kilifi, Kenya collected over 12 years, found an interaction between time and 

geographic distance: the mean number of single nucleotide polymorphism (SNP) differences 

was lower for pairs of infections which were both a shorter time interval and shorter 

geographic distance apart. We determine whether the empiric pattern could be reproduced 

by a simple model, and what mean geographic distances between parent and offspring 

infections and hypotheses about genotype-specific immunity or a limit on the number of 

infections would be consistent with the data.  We developed an individual-based stochastic 

simulation model of households, people and infections. We parameterized the model for the 

total number of infections, and population and household density observed in Kilifi. The 

acquisition of new infections, mutation, recombination, geographic location and clearance 

were included. We fit the model to the observed numbers of SNP differences between pairs 

of parasite genotypes. The patterns observed in the empiric data could be reproduced. 

Although we cannot rule out genotype-specific immunity or a limit on the number of 

infections per individual, they are not necessary to account for the observed patterns. The 

mean geographic distance between parent and offspring malaria infections for the base 

model was 0.40km (95%CI 0.24 – 1.20), for a distribution with 58% of distances shorter than 

the mean. Very short mean distances did not fit well, but mixtures of distributions were also 

consistent with the data. For a pathogen which undergoes meiosis in a setting with moderate 

transmission and a low coverage of infections, analytic methods are limited but an individual-

based model can be used with genotyping data to estimate parameter values and investigate 

hypotheses about underlying processes. 

 

……… 
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4.2. Introduction 

Ultimately, the spatial and temporal patterns of malaria infections at the community level are 

made up of movements of individual mosquitoes, human hosts and the parasites inside them. 

Understanding how malaria infections spread locally and the processes leading to the 

observed spatial and temporal distribution patterns is important for the design of 

interventions aiming to reduce and interrupt transmission by targeting foci, to estimate the 

spread of drug resistance, or to prevent resurgence 1,2.  

Investigating genetic patterns can give insights into how infections spread  3–7. The availability 

of high-throughput genotyping methods has enabled the genetic characterization of the 

malaria parasite, identifying polymorphisms on the genome that can be used to infer the 

degree of genetic relatedness between infections 6,8. Using single nucleotide polymorphism 

(SNP) genotyping, some studies show clustering of parasites into distinct sub-populations 

between Thai and African 9–11, West and East African 10,12, and Asia and African isolates 10,12 

while others report persistent clustering of genetically identical parasites across years in 

Senegal 9. On a sub-national scale, a study from school surveys in western Kenya, an area of 

high malaria transmission, found no spatial structure to genetic relatedness over geographical 

distance in a well mixing parasite population 4. Studies have also used genetic information to 

estimate the risk of imported infections 7,13, to estimate transmission networks in Swaziland 
14, to provide confirmatory signals of the decline of transmission in Senegal 15,16, and to 

describe the relatedness of parasite pairs between proximal clinics at the Thai-Myanmar 

border 17 and focal transmission in Zambia 18. However, there are a few studies focusing on 

parasite genotype patterns in the community on a fine scale, such as within a district. 

A recent study investigated Plasmodium falciparum genotypes in two districts in Kenya, and 

in one district in The Gambia 3. All possible pairs of observed parasite genotypes within each 

site were formed and the number of SNPs different calculated. In the sites with longitudinal 

data, the effect of the time interval on the pairwise SNP differences was modified by 

geographic distance. For short distances, the number of SNPs different increased with time, 

but saturated as distance between parasites increased 3.  

While these studies provide information on the distribution of malaria parasite genotypes 

over space and time with qualitative inferences on parasite mixing, the underlying parameters 

and processes leading to these patterns have not been well established and the geographic 

distances between parent and offspring infections remain unclear. 

In many malaria endemic areas, vector movement is likely to be the most frequent mechanism 

for the spread of infections. Studies have shown that mosquitoes tend to fly relatively short 
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distances from their breeding sites in search of blood meals 19,20, depending on the distance 

to human settlements, the availability of easily accessible hosts, and whether any barriers to 

movement exist 20,21. In Kilifi, mosquitoes were recaptured in households within 0.7km of larval 

habitats up to 14 days after release 19, while in other settings flight distance from release 

points including breeding sites, was reported to range from less than 100m to 3km 22–25, or 

further 26. However, there is limited information on the distances between households moved 

by the mosquito from the initial bite when the mosquito becomes infected to the subsequent 

bites when further humans are infected. After a blood meal, the mosquito looks for a resting 

place to digest the blood and develop eggs and after two to three days, searches for a 

breeding site to oviposit before seeking another host. The extrinsic incubation period (EIP) 

takes approximately 10 to 12 days for the mosquito to become infectious, corresponding to 

roughly two or three feeding cycles. Human movement may also inform malaria distribution 

patterns 27,28, especially in populations with low transmission and high rates of imported 

infections 28,29. Hence, simply knowing the dispersal distance from breeding sites does not 

lead to a calculation from which we can predict the mixing of parasite genotypes.  

The interaction between time and geographic distance on genetic differences found by 

Omedo et al raises questions about the processes behind it. The explanation may be 

stochastic drift or may require additional processes such as genotype-specific immunity. The 

effective repertoire of antigenic variation may be reduced by immunity raised from the 

previous infections with the same or similar genotype. Deliberate infections of the same strain 

in naïve adults as malaria therapy led to shorter patent infections with lower parasite densities 

than infections with a different strain 30,31. It is not also known if there is a limit on the number 

of infections that one person can have at a time. There is saturation in the mean multiplicity 

of infection (MOI) detected with transmission intensity 32,33 but this may be due to the limits 

of detection. This would decrease the chance of large numbers of similar infections circulating 

in the same household. Recombination may occur in the mosquito during meiosis if 

gametocytes from multiple infections are drawn up in a blood meal. Recombination is likely 

to be dependent on the intensity of transmission and the relative gametocyte densities of the 

infections 34,35 and may play a role in the distribution of parasite genotypes across time and 

space, mainly through reshuffling of alleles that are already present. 

Our aim was to assess which processes and parameter values are consistent with the observed 

spatial and temporal patterns of parasite genetic differences observed in Kilifi County, Kenya 
3. We develop a stochastic simulation model and fit it to the observed number of SNPs 

different between pairs of parasite genotypes. We estimate the distance between parent and 

offspring malaria infections, and investigate the role of recombination, imported infections, 
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and hypotheses about functions of immunity. We evaluated the ability of this method to 

recover known parameter values using simulated data.  

4.3. Methods 

i. Data Sources 

Study site. The study was conducted within the area covered by the Kilifi Health and 

Demographic Surveillance System (KHDSS) on the Kenyan Coast. The area covers 891km2 with 

a population of approximately 260,000 people 36. Most of the residents live off small scale 

farming and fishing. Malaria transmission in Kilifi is seasonal 37, with long rains between April 

and June and short rains between October and December. Malaria prevalence reported from 

both health facilities and community surveys declined over the period of the study 38,39, 

attributed mainly to increased coverage of control interventions, improved case management 

and environmental changes 38,40.  

Sample collection and genotyping. The details of sample collection and genotyping 

process have been described elsewhere 3. Briefly, 1602 P.falciparum infected blood samples 

were collected over 14 years between 1998 and 2011 in Kilifi. Of these, 1259 (79%) samples 

were from hospital cases in children between three months and 13 years old, 195 were from 

community surveys with participants between 3 weeks and 85 years old and 148 were from 

short term laboratory cultured samples 3. The residence location of the participant providing 

the sample was recorded. The samples were genotyped using the Sequenom MassARRAY 

iPLEX platform 41. Up to 256 SNPs were typed in each sample, across the 14 parasite 

chromosomes 3. Sample success rates and genotyping pass rates were determined for each 

sample and for each SNP. SNPs and samples with high failure rates (>30%) were excluded 

from the final analyses 3.  

Data preparation. For the present study, the number of SNPs included, M-,	is 53. We selected 

bi-allelic SNPs with a minor allele frequency (MAF) of greater than 5%. We denote the 

presence of a major allele at each SNP position by 1 and the minor allele by 0. Each infection 

is then characterized by a string of zeros and ones to represent the observed alleles at each 

of the selected loci. The base-10 number is generated from this base-2 number to give a 

unique identifier for each infection genotype. We assume that the genotypes represent single 

infections.  

Calculating pairwise time, distance and SNP differences. Following Omedo et al 3, the 

observed parasite genotypes were paired and the number of SNPs different between them 
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used as the measure of genetic difference. Pairwise differences in time in days and distance 

in kilometres were also computed. 

ii. Modelling Strategy  

We aimed to determine which processes and parameter values were consistent with the 

observed patterns of genetic differences over time and distance in Kilifi , where the observed 

numbers of SNPs different were fewer for parasite pairs with both a shorter time interval and 

a shorter geographic distance apart 3.  

We developed a simple individual-based stochastic simulation model describing how malaria 

infections are transmitted over time and space. The acquisition and clearance of individual 

blood-stage infections in people living within homesteads was simulated. The site-specific 

inputs such as house density, number of people per house, the total number of infections 

and prevalence over time were derived from published estimates from Kilifi 36,38. We extended 

the base model to a set of model variants including the effects of imported infections and 

hypotheses about whether there needs to be genotype-specific acquired immunity or a limit 

on the number of current infections per individual for model predictions to be consistent with 

the patterns in the data.  

We objectively measured how well the model variants and parameter values fit the data using 

a likelihood function which compares the numbers of SNPs different in pairs of blood samples 

to those from pairs of simulated infections drawn from the same time points and closest 

locations. We estimated the mean distance between parent and offspring infections and the 

probability of recombination in multiply infected individuals. 

iii. Base Model  

We refer to the simplest simulation model as the “base model”.  The simulation model was 

seeded with a number of initial current infections. Households and people within households 

were randomly selected for each initial infection. The initial infection genotypes were 

generated by randomly selecting alleles based on the MAF in the observed data at each locus 

for the selected SNPs.  

At each five-day time-step, each current infection could give rise to new infections. The 

number of new infections for an infection	Q of age + at time	&, M5%! ,	was stochastic and was 

drawn from a Poisson distribution with mean	R%!, so that M5%!	~	83Q//3M(R%!). The mean 

number of new infections,	R%!, was the product of the relative infectiousness to mosquitoes 

of an infection	of age	+, F%, and a constant, S!, so that R%! = F%S!	 (Table 1). Values of S! were 

fixed to generate the number of infections which was set to the estimated prevalence in Kilifi 
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multiplied by the number of individuals and the  MOI corresponding to the prevalence and 

estimated by a systematic review (39, Malinga et al submitted). F% followed a decay function 

which was derived from the estimated period of higher infectiousness of an infection 42. 

Each new infection was assigned a genotype. The genotype was the same as that of the parent 

infection except for two processes, mutation and recombination. Mutations may occur in the 

new infection, where each allele mutated with probability	>6. In individuals with more than 

one current infection, recombination occurred with probability	>7 . If a new infection was the 

product of recombination, then the infection with which it recombines was drawn at random 

from the remaining infections in the same individual. The two infections may have the same 

genotype, in which case selfing occurs. Recombination hotspots for different chromosomes 

have been reported 43,44, but we assumed that the probability of a break is equal along the 

length of the chromosome and each chromosome could break in only one place 43. The new 

recombinant infection had one genotype. We recognize that meiosis results in four different 

genotypes but including all four would substantially increase complexity for little gain in 

accuracy: infections are expected to lead to zero or one subsequent infection due to declining 

transmission, the chance of selecting a pair of simulated infections arising from the same 

recombinant infection is small and the number of infections is tailored to that of Kilifi thus 

either co-infections or separate infections would allow a similar number of recombinations. 

The effect of the model not capturing the full complexity of the recombinations in the 

observed data would likely be conservative by increasing the imprecision of the estimates. 

We assumed a constant probability of clearance of each infection in a five-day time-step,	>8 .  

Each new infection was also assigned a homestead. The homestead was selected randomly, 

with probability according to a function of the distance from the location of the current 

infection. We assumed that the probability follows a normal kernel, simulating diffusion. The 

cumulative distance of Brownian motion at a specified time is given by the kernel for positive 

distances of a normal distribution with mean of zero and a standard deviation denoted by	T. 

Therefore, the mean distance between parent and offspring infections is given by T	B2 D⁄ ,	and 

58% of distances are shorter than this value (Figure 4.1). The probabilities are not scaled so 

that an isolated household has a lower chance of transmitting to other households than does 

a house which is close to other houses. An individual within each homestead was selected at 

random to host the new infection. 
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Figure 4.1 Examples of the half-normal distribution probability density function for positive 

values of the distance between parent and offspring infections. The dotted lines mark the 

mean of the distribution; Red line = 0.40km, Blue line = 1.20km. 

 

Table 4.1 Quantities in the simulation model 

Quantity Description Units of measurement 
;) number of SNPs positive integer 
'  age of an infection five-day time-step 
"  time from start of simulation five-day time-step 
;*#!  number of new infections for infection <	of age ' at 

time-step " 
Integer, greater or equal to 
zero 

=#!  mean number of new infections for an infection of age 
' at time-step " 

Numeric, greater or equal to 
zero 

>!  mean number of new infections for an infection at time-
step " 

Numeric, greater or equal to 
zero 

(# relative infectiousness to mosquitoes of an infection	of 
age	'  

Numeric, ? ≤	 (# ≤ A 

B+ probability of mutation for one allele per infection 
cycle 

Probability 

B,  probability of clearance per five-day time-step Probability 
B-  probability of recombination conditional on multiple 

infections in a host 
Probability 

C parameter for distance between parent and offspring 
infection (mean = C	45 6⁄ ) 

Kilometres 
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iv. Model variants 

We included alternative model variants to investigate the effect of imported infections and 

whether hypotheses about specific immunity are supported by the observed data. We 

simulated (i) the base model, (ii) the base model with imported infections, whose alleles were 

chosen with probability equal to the individual allele frequencies, (iii) the base model with a 

limit on the number of current infections: new infections cannot establish in a person if they 

already have the maximum permitted number of infections, (iv) the base model with acquired 

immunity to recently seen genotypes: a new infection cannot establish in a person if they 

have already seen a number of genotypes with a limited number of SNPs different in a recent 

time period, (v) the base model with heterogeneity in transmission at the household level, 

and (vi) the base model with each combination of pairs of (ii) – (v). 

We did not simulate acquired immunity in individuals in general, but only specific acquired 

immunity to recently seen genotypes since it may affect the spatial and temporal distribution 

of parasite genotypes. 

v. Model Inputs 

The area simulated. Population and household density estimates were derived from the 

KHDSS surveillance reports (Table 4.2). We required 20 homesteads per kilometer squared, 

with eight residents per homestead. Using the estimated parasite prevalence in Kilifi 38, and 

an estimate for MOI of 1.5 corresponding to the prevalence 32, we would require 

approximately 200 malaria infections per square kilometer at the beginning of the study 

period declining to 25 by the end. For the whole study area of 891km2, however, this would 

have high computational demands. Instead, we simulated an area of 9km by 9km. This is the 

largest size that could be run within 24 hours for the base model and comfortably covers the 

range of zero to 3km where the interaction between time and distance was observed 3. We 

included 1800 homesteads each with eight people. The number of simulated infections 

present in the 9km by 9km square at the same time is around 13,000 at the beginning of the 

study period declining to 2,000 at the end of the study.   

At the edge of the grid, infections have a restriction on the direction in which they can move. 

To avoid artificially pushing too many infections back towards the centre of the grid, we 

specified that current infections in a 5% border at the edge of the 9km by 9km grid give rise 

to half as many new infections per time-step. We used the central 6km by 6km area for fitting, 

allowing a 3km border to minimize edge effects on the pattern of genetic differences. 
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Table 4.2 Inputs to the model 

Parameter Value reference 
Kilifi Characteristics   
population density 
area size (in km2) 

260,000 people 
891 

36 
36 

median number of people per homestead (IQR)  8 (6 - 11)  
median homestead density per km2 (IQR) 20 (7 – 58)  (a) 
estimated parasite prevalence  60% in 1998; 10% in 2011 38 
number of infections per km2 200 in 1998, 25 in 2011 (b) 
mean number of new infections per five-day time-
step	(=!) 

Varies (c) 

General fixed inputs   
probability of clearance per five-day time-step, B, 0.025 (d) 45,46 
probability of mutation per SNP, B+ 2.0*10-7 (e) 
relative infectiousness of an infection by age of 
infection, (# 

Varies (f) 42 

(a) The co-ordinates for households in the simulated 9km by 9km grid were randomly drawn from 
two independent uniform distributions. 

(b) The expected number of infections was derived from microscopy and RDT prevalence data and 
multiplied by the MOI corresponding to the prevalence in a systematic review (39, Malinga et al 
submitted).  

(c) The values of '! are fixed according one of the phases of the simulation to produce the correct 
numbers of infections estimated for Kilifi in (b).  

(d) Assuming an exponential decay function, a probability of clearance of 0.025 per five-day time-
step corresponds to a mean duration of infection of 200 days 46,46–48. 

(e) The probability of a mutation per base pair per generation has been estimated to be 1.7x10-9 49. 
We multiplied this by the estimated number of generations in the liver stage, for the gametocytes 
and in the asexual blood-stage, each of 48 hours, before the mature gametocytes are taken up in 
a blood meal. The probability of at least one mutation per SNP per infection cycle is then 
approximately 2.0x10-7. 

(f) Assumes an exponential decay function estimated from a period of higher infectiousness of an 
infection (probability of infection > 5%) 42. 

 

Number of infections and model run time. The was initialized with 13,000 current 

infections, distributed randomly across homesteads and to individuals within the homesteads.  

The model running period was divided into three phases. To achieve the required numbers 

of infections over time, values of	S!, the multiplier for the number of new infections for a 

current infection in time-step	&, were set to be constant within but to vary between the 

different phases of the simulation. Value of S! also needed to vary slightly according to the 
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input parameter values, to reach the required numbers of infections in the study area. The 

initial phase was made up of 1000 five-day time-steps with	S!, set to lead to an increasing 

number of current infections. This phase was not necessary if the number of initial infections 

was equal to the number required at the start of the study period. The second phase had 

1000 time steps with S!	set to keep the number of infections constant as a warm-up period 

to allow the structure in the genetic differences to develop, and the study period phase 

covering the 850 five-day time steps for the observation period with S! set to reproduce the 

decline in the number of infections observed in Kilifi.  

Sensitivity analysis. We conducted sensitivity analyses to investigate the influence of input 

parameter values where the real value was unclear. These include varying the amount of 

clustering of the distribution of households within the study area, the number of initial current 

infections, the warm-up period and the size of the simulation area.  

There is also uncertainty surrounding the genotyping of infections from samples collected 

from individuals with multiple P.falciparum infections. It may be that a dominant infection is 

captured during genotyping, or that the process selects different alleles from different 

infections. For the base model, we assume that only one of the infection genotypes is sampled 

from individuals with multiple or recombinant infections. However, we investigate the effect 

of detecting a mix of alleles for different SNPs from different infections in the same person.  

vi. Fitting the models to the data 

The model was fitted to the data by comparing the number of SNPs different between 

simulated infections to the number of SNPs different in the observed infections. The 

simulated infections were matched to the observed infections on time-step and location. 

The study area was divided into 6km by 6km grid squares. The locations of each observed 

infection in each square were transformed from GPS co-ordinates into the co-ordinates of 

the 6km by 6km area, and the date that the sample was collected converted into the time-

step of the simulation. We nest the 6km by 6km square within the 9km by 9km simulated 

square. The 3km buffer serves to provide the correct spatial structure for infections within the 

nested area. 

For each observed infection, a number of simulated infections were selected at exactly the 

same time-step. Infected individuals closest to the location of the observed infection were 

identified, and a maximum of one infection per individual was sampled. To balance the effects 

of stochasticity, the requirement for selected infections to lie close to the observed location 

and computational demands, five simulated infections were selected for each observed 

infection, and each simulation was repeated with ten random seeds.  
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Within each 6km by 6km square	U, we formed all possible pairs of observed infections, and 

for each pair	V,	calculated the observed number of SNPs different, <9: . We then calculated the 

number of SNPs different in the simulated data, W97: within each 6km by 6km square	U, for 

each pair	V, for each of the 10 replicates of the simulated infections	2. We gained the mean 

proportion of SNP differences for the replicates	WX9:/M-. The Binomial log likelihood was used 

to quantify the amount of support from the data, calculated by summing over all the pairs	V 
within each square	U and over all the squares. 

ZZ = 	[[<9: 	 log _
WX9:
M-
` + ?M- − <9: 	Alog	 a1 − _

WX9:
M-
`b

9:
 

The observed pairs are not independent given that one observed parasite genotype 

contributes to multiple pairs of data. Therefore, 95% confidence intervals were obtained by 

using bootstrap resampling of the observed number of SNP differences. 

vii. Method evaluation 

We evaluated how precisely the method could estimate parameter values. We simulated data 

with known values for the T,	the parameter for distance between parent and offspring 

infections, and probability of recombination, >7 ,	and then applied the method to the 

simulated data to see how well the known values can be recovered. We used the reference 

scenario with the base model (Table 4.3), but with a constant rather than declining number 

of infections over the study period. 

viii. Scenarios simulated for the Kilifi setting 

We simulate all combinations of the different parameter values as a grid search (Table 4.3) 

and calculate the log likelihoods.  

Table 4.3 Simulated scenarios 

Parameters to be estimated by a grid search Value 
parameter for the distance between parent and offspring 
infections (in kilometers)** 

0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 
0.70, 0.80, 1.00, 1.20, 1.50, 2.00, 
2.50, 3.00 

probability of recombination resulting from multiply infected 
individuals 

0.01, 0.50, 1.00 

Parameters included in the model variants Value* 
imported infections per 1000 people per year (model variant 
(ii)) 

0, 5, 10 
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total number of current infections per person (model variant 
(iii)) 

no limit, 20 

maximum number of recently seen similar genotypes for new 
infection to establish (model variant (iv)) 

no limit, 10 

number of SNPs different for defining ‘similar’ genotypes 
(model variant (iv)) 

0, 10 

number of time steps for counting recently seen similar 
genotypes (model variant (iv)) 

0, 40 

heterogeneity between houses in transmission (model 
variant (v)) 

No heterogeneity, log 
normal distribution with mean 
=#! and standard deviation of 
0.01 

*The base model scenario is indicated by bold font 
**The mean of a half normal distribution is given by T	B2 D⁄  

The individual based stochastic simulation model was created in R statistical software (version 

3.02). The simulations were run on sciCORE (http://scicore.unibas.ch/) scientific computing 

core facility at the University of Basel. ……………..……….. 
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4.5. Results 

i. Method evaluation  

The method was able to recover known values from simulated data for T, the parameter for 

distance between parent and offspring infections, and the probability of recombination 

(Figure 4.2). The model could reproduce reasonable estimates for T, but the estimates were 

less precise if the 	T was 2.0km or greater. For longer distances, the size of the area simulated 

may limit the accuracy. 

 

Figure 4.2 Ability of the method to recover known parameter values from simulated 

data 

Black solid line: indicates the true parameter value for T. Red dashed line: the log likelihood. 

The log likelihood is a measure of the support from the data for a parameter value. The 

estimated parameter value is the one which coincides with the maximum log likelihood. In 

this figure, the estimated parameter values are correct since they align with the black lines.  

The method and simulated data used the base model with the probability of recombination 

in multiply infected individuals set to 0.5 (details of the base model are given in the Methods 

section). 

ii. Application to data from Kilifi County 

Reproducing the number of infections. We were able to reproduce the estimated number 

of infections in the study area and their decline over the study period, by altering the input 

mean number of new infections per current infection (Supplementary Information). The 

required value of this input varied by scenario, where longer mean distances and adding 
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immunity functions increased the number of new infections required per current infection per 

time-step. 

Model variants and parameter values consistent with the observed data. We fit each 

model variant to the observed data on the numbers of SNPs different for pairs of parasites.  

The aim was to determine which model variants and parameter estimates were consistent 

with the observed interaction between the time and geographical distance. 

Different values for the probability of recombination in multiply infected individuals resulted 

in similar values for the best-fitting mean distance at the maximum log likelihood (Figure 4.3). 

The probability of recombination had an impact on the log likelihood only for very short mean 

distances of parasite movement, where it increased variation in the genotypes and increased 

the log likelihood. Hence, we adopted one value (0.5) for all further analyses shown.  

 

 

Figure 4.3 Patterns of the log likelihood for different values of recombination for the base 

model  

The x-axis shows the value of T, the parameter for the distance between parent and offspring 

infections. The log-likelihood is a measure of support from the data for the parameter values. 

Red solid line: the base model with probability of recombination in multiply infected 

individuals set to 0.5; Green line: 0.0; Blue line: 1.0. 

The estimates of the mean distance between parent and offspring infections vary slightly by 

model variant, and the confidence intervals are wide (Table 4.4).  
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Table 4.4 Estimated mean distance between parent and offspring infections for each 
model variants 

Model Variant** mean distance in km* (95%CI) 
Base model 0.40 (0.24 – 1.20) 
Model variant (ii) 0.32 (0.24 – 1.20) 
Model variant (iii)  0.80 (0.40 – 1.99) 
Model variant (iv)  0.24 (0.24 – 1.20) 
Model variant (v)  0.32 (0.24 – 1.20) 

*The mean of a half-normal distribution is T	B2 D⁄ . In all cases, the probability of a short 

distance is highest and 58% of parent-offspring distances are shorter than the mean value 

(Figure 4.1)  

**Model variant (ii): the base model with imported infections; Model variant (iii): the base 

model with a limit on the number of current infections per person; Model variant (iv): the base 

model with immunity to recently seen similar genotypes; Model variant (v): the base model 

with heterogeneity in transmission at the household level.  

The maximum log likelihood values, a measure of the goodness-of-fit, were similar for the 

model variants. The differences in the log likelihoods between model variants were greatest 

for the short mean distances, where the likelihoods tended to increase when the model 

variants were likely to increase the variation between the genotypes (Figure 4.4). While it was 

not possible to rule out any model variant, the base model alone was sufficient to reproduce 

the observed patterns. This suggests that stochastic drift is sufficient to account for the 

observed interaction. 
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Figure 4.4 Patterns of the log likelihood by T, the parameter for the distance for the different 

model variants. 

Red line: the base model; Blue line: the base model with imported infections; Green line: the 

base model with heterogeneity in transmission at the household level; Purple line: the base 

model with immunity to recently seen genotypes, Brown line: the base model with a limit on 

the number of current infections per person. 

We explored the possibility that the distribution of distances comprises a mixture of short 

and longer mean distances between parent and offspring infections. This may arise due to a 

mix of human and vector movement,  a mix of local and imported infections,  because the 

normal kernel implicitly assumes the same length of time between the mosquito bites 

infecting the mosquito and the human and this is likely to vary, or due to the influence of 

wind or interventions on mosquito dispersal 19. We simulated data using the base model, but 

assuming a mixture distribution for the mean distance with half of the distances from a 

distribution with a short and half from a distribution with a longer mean distance. Applying 

the method to the simulated data produced a log likelihood profile which was also consistent 

with the Kilifi data indicating that it is a potential explanation (Figure 4.5), although the exact 

values for the mixture proportions and the two means are unknown and would be difficult to 

estimate from this data. 

 

 

Figure 4.5 Patterns of the log likelihood by T, the parameter for the distance for data 

simulated from mixture distributions. 
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Data was simulated assuming a 50:50 mixture distribution for short and longer mean 

distances of movement. Red two-dash line: 0.05 & 3.0km; Green two-dash line: 0.1 & 2.5km; 

Blue two-dash line: 0.4 & 4.0km. 

Reproducing time-distance patterns in observed data. For each model variant, the 

observed interaction shown by Omedo and colleagues 3 could be reproduced for at least 

some parameter values. The number of SNPs different between pairs of malaria infections 

increased with geographical distance for short time periods, but this trend was less apparent 

for longer time periods. The predictions for the base model are shown (Figure 4.6), and these 

patterns were similar for all model variants including the variants of model combinations (ii) 

– (iv) with imported infections, functions of acquired immunity and heterogeneous 

transmission at the household level. 

  

Figure 4.6 Predicted effect of time and distance interaction on the number of SNPs different 

between pairs of infections. 

These predictions are from the base model with the best-fitting value for mean geographical 

distance (0.40km) 

The residual plot showed that the model fitted well with no systematic patterns in the 

residuals (Figure 4.7).  
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Figure 4.7 Plot of residuals by geographic distance. 

The base model was used with the best fitting value for mean geographic distance (0.40km). 

Sensitivity analysis of the impact of uncertain input values. We explored the impact of 

varying the inputs in the base model on the parameter estimates: the number of initial 

infections, the warm-up period of the simulation, and the degree of clustering of the 

homesteads. The log likelihood values, measuring how well the model fits, were slightly lower 

overall for the clustered homesteads and with a shorter warm-up period. A smaller number 

of initial infections lead to slightly lower log likelihood values for short mean distances, due 

to the decrease in variation in the genotypes. However, none of these factors substantially 

influenced the estimated distance between parent and offspring infections (Figure 4.8). The 

effect of assuming that the observed genotypes are a mix of alleles from multiple infections 

within individuals was to increase uncertainty in the parameter estimates (not shown). 
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Figure 4.8 Patterns of the log likelihood by T, the parameter for distance for different values 

of the input parameters. 

Red dashed line: reference scenario for sensitivity analysis (base model with constant 

transmission, 13,000 initial infections with only the warm-up and model run-in period, 

uniform distribution of households), Blue dashed line: reference with a lower number of initial 

infections (1000 initial infections with an additional run-in period), Green dashed line: 

reference scenario with half the warm-up period (500 time-steps), Purple dashed line: 

reference with 50% clustering of households in the study area. 

4.6. Discussion 

We have developed an individual-based stochastic simulation model of malaria infections to 

determine processes and parameter values which are consistent with the observed patterns 

of genetic differences in Kilifi County, Kenya. The method was able to recover known 

parameter values reasonably well from simulated data and could reproduce the number of 

infections in the study area during the study period.  

The observed spatial and temporal patterns of genetic differences could be reproduced for 

some parameter values for all of the model variants. The log likelihood for the best-fitting 

parameter values was similar for most of the variants. While we cannot rule out effects of 

imported infections, genotype-specific acquired immunity or a limit on the number of current 

infections per person, they were not necessary to account for the observed patterns in the 

data. This suggests that stochastic drift is a sufficient explanation.  

Studies have found that the genotypes of people from the same house are more similar than 

those from further apart in a village 50–52 and that index and secondary cases within a radius 

of 140m in a study of reactive case detection (RCD) study in Zambia were more genetically 

similar than cases from the radii of other index cases 18. One might conclude, based on these 

and the data of Omedo et al, that short distances between parent and offspring infections 

are more likely. The range of possible values for the mean distance between parent and 

offspring infections in our study ranged between 0.24km (0.24km – 1.20km) and 0.80km 

(0.40km – 1.99km) for the different model variants. These results are consistent with these 

previous findings, since with the distribution used, 58% of the distances are less than the 

mean. 

Our results also indicated that mixtures of short and longer mean distances were consistent 

with the observed data, which could potentially represent vector and human movement. It 

would be challenging to determine the exact mixture of distributions given that the patterns 
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of the log likelihoods are similar for different combinations of values. The mixture of 

distributions we used to investigate whether this would be consistent with the data was 

composed of two normal kernels. If one kernel should represent human movement, then 

another distribution may be more appropriate since it is likely to be incorrect if people only 

tend to stay elsewhere overnight for distances too far to get home or if human movement 

tends to follow major roads rather random movements in all directions.  

Findings from this study have implications for the assessment and planning of malaria 

interventions which are affected by parasite movement such as vector control, for setting radii 

for targeted interventions, for designing trials to evaluate interventions and for informing  

estimates of the spread of drug resistance 53,54. While targeting interventions to areas of 

relatively higher risk on fine scales has been considered 54–56, our findings highlight the need 

to consider the movement of infections between untargeted and targeted zones. A modelling 

study investigating the contribution of RCD towards malaria elimination in Zambia 

emphasised the need to limit importation of infections from connected high transmission 

areas, since they could reduce the overall benefits 57.  

There are some limitations to our method. Some of the parameter inputs in the study area 

were simplified, we did not consider differences according to age in the population, nor did 

we assume any population turn-over. Our rationale was that this simplifies the model and 

that although general acquired immunity affects the parasite densities, it does not affect the 

spatial distribution of genotypes as long as the age-groups are geographically mixed in the 

population. In one model variant, we account for genotype-specific immunity, but this is 

limited to recent exposure.  

During the study period, the area experienced moderate declining to low transmission 

intensity and the proportion of infections sampled out of the total number in the area was 

small: we estimate using the reported prevalence 38,39 and the relationship between 

prevalence and MOI 32 that this proportion is less than 1%. In addition, the number of SNPs 

sampled was not extensive. Therefore measures of identity by descent (IBD) 58–60 or network 

models of transmission 61,62 could not be used.  

The sampling may have affected the patterns seen, but this is not known. The samples came 

from hospital admissions in children aged three months to 13 years and community surveys 

in individuals aged three weeks to 85 years. We assume that the genotypes in those sampled 

are no different from those in individuals not sampled. The community surveys were carried 

out in specific locations but were not otherwise restricted. The hospital sampling may have 

affected the locations and socio-economic status (SES) of the individuals included. Individuals 

with higher SES may be over-represented because they may be more likely to present for 
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treatment or under-represented because they may be less likely to have co-morbidities which 

can increase the risk of severe illness. The distances travelled by the mosquito could 

potentially be greater in areas of higher SES due to greater protection by LLIN or housing. 

This is the first study that we know of which has attempted to estimate parameter values or 

test hypotheses from malaria genotyping data with a low coverage of infections in a setting 

with moderate transmission. Few methods are available and although our method is a blunt 

tool, we have gleaned some insights. Our findings raise questions about whether there is a 

mixture of more than one distribution for the distances between parent and offspring 

infections, and a potential influence of immunity on the spatial and temporal distribution 

patterns of genotypes. It may be possible to gain more definitive results by incorporating 

additional data sources to isolate mosquito dispersal or human mobility patterns. To fully 

utilise the information from genotyping tools, purpose-designed datasets have been 

recommended 5, ideally with a greater number of SNPs and greater coverage of infections. 

4.7. Conclusion 

The observed interaction between time and space in the patterns of genetic differences 

between pairs of Plasmodium falciparum infections in Kilifi can be reproduced by an 

individual-based simulation model. The model did not need any assumptions about 

genotype-specific acquired immunity or a limit on the number of current infections per 

person in order to reproduce the patterns, suggesting that stochastic drift is sufficient to 

account for the interaction.  

The estimate of the mean distance between parent and offspring infections was 0.40km 

(95%CI 0.24 – 1.20) for the base model. The pattern of results was also consistent with a 

mixture of distributions with short and longer mean distances.  

Estimates of the spread of infections have implications for the design and evaluation of 

malaria control and elimination interventions. Simulation models fitted to genotyping data 

can be used as an analytic tool to glean insights in settings with moderate transmission and 

a low coverage of infections where methods are limited. 

Availability of data 

The code and data analysed during this study are available at: 

https://github.com/josemalinga/Patterns-of-genetic-differences-in-Kilifi 
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4.9. Supplementary information 

Supplementary Figure 1: Estimated and simulated total number of malaria infections in 
the study area over time 

 

Black solid line: the estimated total number of infections in Kilifi over time. The estimated 

total number of infections is a product of the estimated prevalence in Snow et al, population 

and house density in the Kilifi HDSS, and the multiplicity of infections estimated from Karl et 

al. Red line: the base model with T, the parameter for distance set to 0.1km; Blue line: 0.3km; 

Green line:  0.4km; Purple line: 0.5km; Cyan line: 0.8km; Brown line: 1.2km; Yellow line: 2.0km 

Tomato line:  3.0km. (The mean distance is given by TB2 D⁄ , giving 0.24, 0.32, 0.40, 0.64, 0.96, 

1.60, 2.39km). 
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Supplementary Figure 2: Log likelihood by distance for different assumptions about 
recombination in multiply infected individuals 

 

The x-axis shows the value of T, the parameter for distance between parent and offspring 

infections (where the mean distance is given by TB2 D⁄ ). The log-likelihood is a measure of 

support from the data for the parameter values. Red solid line: the base model with 

probability of recombination in multiply infected individuals set to 0.5; Black line: the base 

model with probability of recombination in multiply infected individuals set to 0.5 and 

allowing four sibling genotypes per recombinant infection. 
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5.1. Summary 

As malaria transmission declines in many settings, there has been increasing interest in 

variation in the risk of infection at local scales such as within and between villages. Methods 

to detect hotspots frequently rely on statistical significance and do not consider underlying 

processes which may affect both the ability to detect and the choice of intervention strategy, 

such as the geographical distance between parent and offspring infections, season, the 

relationship between the malariological outcome and underlying transmission intensity, or 

the shape and gradient of the hotspot. We assess the influence of these features on the 

performance of different methods to identify pockets of higher transmission intensity.   

We used an individual-based simulation model of malaria transmission dynamics. We 

simulated an area of 100km2 with 2000 households and set pockets of higher transmission 

with different characteristics and transmission dynamics. We took cross-sectional surveys of 

the simulated area for a commonly used outcome for quantifying heterogeneity, the 

prevalence of malaria infection. We applied the detection methods, both Kulldorf’s circular 

and elliptic, and Tango’s flexibly shaped spatial scan statistic and a Bayesian geospatial model 

of the prevalence and calculated the sensitivity and specificity for households lying inside the 

simulated pockets of higher transmission.  

The size of the detected hotspot was larger when there was a greater distance between parent 

and offspring infections, and in the high transmission season. Overall, the sensitivity was lower 

when there was a gentle decay in risk from the hotspot boundary, the hotspot was irregularly 

shaped or with a greater mean distance between parent and offspring infections. The 

specificity was reasonably high for all characteristics and methods. The Kulldorff’s scan 

statistic with elliptical or circular windows and the Bayesian model both had greater sensitivity 

than Tango’s flexible scan. Only the Bayesian model gave estimates of how much higher the 

prevalence was in the pocket of higher transmission. 

The method of detection, characteristics of the areas of higher transmission and the 

underlying transmission dynamics affected the detection of areas of higher transmission 

intensity. These factors should be considered when interpreting analyses of heterogeneity. 

.  
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5.2. Introduction 

Malaria transmission is unevenly distributed with variations in the incidence of infection and 

clinical illness on all spatial scales. Major factors  driving the heterogeneity are  the abundance 

and behaviour of vector populations 1, environmental characteristics 2–4, human behavioural, 

economic and genetic factors 5, and the coverage of interventions 6. Interest in heterogeneity 

in transmission and infection on local scales, such as between villages and between 

households within villages, has grown 7–11. There have been reductions in malaria transmission 

over the last decade 12 leading to increasing interest in targeting interventions to pockets of 

higher transmission in the search for cost-effective strategies 3,6,13.  Targeted indoor residual 

spraying (IRS) 14, focal mass drug administration (fMDA), test and treat (fTAT), and packages 

of interventions 15 have been trialled. There has also been interest in the impact of the pockets 

of higher transmission intensity on the surrounding areas 15–17.      

This raises the question of how best to identify these pockets of higher transmission. 

Although many studies have described heterogeneity, there is uncertainty in how it should 

be defined and measured at fine scales 6,15,18,19. Measures of global clustering such as Moran’s 

I and Tango’s excess events test (EET) provide information on whether there is significant 

spatial autocorrelation or clustering in a given study area, but do not identify where the 

clusters are 20,21. The targeting ratio, which is a measure of the number of individuals that 

would need to be sampled randomly to the number who actually receive an intervention to 

cover the same proportion of the infections 22 has been proposed for parameterizing 

mathematical models of the impact of reactive case detection (RCD), but similarly does not 

identify where the clusters are. Measures of local clustering such as Kulldorf’s spatial scan 

statistic (SaTScan) and Tango’s flexibly shaped spatial scan statistic (Tango FSS) aim to 

uncover the size and location of any possible cluster 23–25, often referred to as hotspots. 

Geostatistical models have also been developed to provide estimates at each location, 

accounting for spatial autocorrelation. 

These methods have shortcomings. The  detection of hotspots uses the difference in risk or 

prevalence within and outside the hotspot and often relies on hypothesis tests 20,23. These 

produce only an indication that there is an area of higher transmission, yet decisions on 

implementation usually require estimates of how much higher the transmission is. Statistical 

significance depends in part on the amount of data available 19, and may be affected by how 

steep the gradient in transmission around the edges of the hotspot is or heterogeneity within 

the hotspot 9,26. The shape used by the detection method may also affect the results 24–29. 

Several hotspot detection methods apply a circular scan window, while areas of higher 

transmission may be irregularly shaped, for example running alongside a river.  
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The epidemiology of malaria and underlying dynamic processes are frequently not well 

considered.  Analyses tend to use cross-sectional surveys as snapshots in time and do not 

consider that the pattern may alter by the time that interventions can practically be 

implemented. For instance, seasonality may lead to the contraction or increase in the size of 

the hotspot. They also do not consider the mean geographical distance between parent and 

offspring infections, carried by the vector or human, which affects how far and fast infections 

spread. This distance may play a role in the apparent size, gradient at the edge, and 

persistence over time of the hotspot and whether the prevalence in the surrounding areas is 

increased . Knowledge of the underlying processes may influence the choice of intervention 

strategy. 

The choice of malariological outcome affects the hotspots detected 30–32. If the aim is to 

interrupt transmission, the most useful outcome for targeted interventions would be the 

underlying transmission intensity. Analyses of heterogeneity commonly use more easily 

measurable outcomes such as prevalence or clinical episodes. However, where the infections 

are may not necessarily be where transmission occurs. The relationship between the spatial 

distributions of transmission intensity and prevalence may vary seasonally, and with vector 

density and dispersal and human movement 3,9,18. The limit of detection of the diagnostic 

tests also affects the detection of hotspots 30. 

In this study, we use an individual-based spatial stochastic simulation model of malaria 

infection dynamics to assess the extent to which different statistical methods can accurately 

detect pockets of higher transmission and also investigate the influence of movement, shape, 

gradient and seasonality. We aim to inform the interpretation of analyses for the detection of 

hotspots. 

5.3. Methods 

Strategy 

We use a previously developed individual-based spatial simulation model of malaria 

transmission dynamics 33. We simulate hotspots with different characteristics by altering the 

spatial patterns of the underlying transmission intensity. We systematically vary the shape, 

gradient and number of hotspots, the seasonality, and the mean geographic distance 

between parent and offspring infections. We then take cross-sectional surveys of the 

simulated individuals and whether they have infections or not. We apply the different 

statistical methods to these simulated surveys in order to evaluate their ability to identify the 

households known to lie in the areas of higher transmission intensity. 
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Simulation model  

A simple spatial individual-based simulation model of Plasmodium falciparum malaria 

transmission dynamics has previously been developed 33. Infections, individuals and 

households are simulated. The original model included genotypes of infections and was fitted 

to data from Kilifi County, Kenya to estimate the mean geographic distance between parent 

and offspring infections. In the current version, genotype information is unnecessary and has 

been removed. The simulation is updated at every five-day time-step. Each current infection 

may lead to a number of new infections at each time-step, with the number drawn from a 

Poisson distribution. The location of a new infection is selected with probability determined 

by the distance of the household from the parent infection. Infections clear with a constant 

probability, equivalent to a mean duration of 200 days 34,35. 

Scenarios 

We simulated a 10km by 10km square with 2000 households each with 8 people following 

the population density of Kilifi 33. The households were randomly distributed across the 

simulated square. The total population in each square is 16,000 people. The number of initial 

infections was set to correspond to a prevalence of 5%, 10%, or 20%, and the initial infections 

are distributed at random. We set areas of higher transmission to contain approximately 200 

households (Table 5.1).  

The mean number of new infections per current infection per time-step can be modified to 

generate the desired number of simulated infections to match a given overall prevalence. The 

prevalence was assumed to remain constant over the simulated study period, with the 

exception of scenarios with seasonal patterns. 

Table 5.1 Simulated scenarios 

Model Inputs  
Area simulated 10km by 10 km 
Number of households 2000 
Number of people per household 8 
Initial prevalence 5%, 10%, 20% 
Number of seeds per scenario 10 
Run-in period 500 (5-day time steps) 
Geographic distance between parent and offspring 
infections 

0.1km, 0.3km, 2.0km 

Seasonal pattern constant, Kilifi (35), Garki district 
Nigeria (36) 

Spatial patterns of transmission intensity  
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Number of households in areas of higher 
transmission per scenario 

200 

Increase in transmission intensity in areas of higher 
transmission 

50% increase 

Number of clusters single, multiple 
Shape of clusters circular, irregular 
Gradient at edge of cluster step function, gentle decay 

*reference scenario highlighted in bold 

We assessed how well the statistical methods detected areas of higher transmission in areas 

with different features:  1) single and multiple circular areas of higher transmission, 2) areas 

of higher transmission with steep and gentle gradients at the edge, and 3) areas of 

transmission with varying shapes (circular, irregular). We created variations in transmission 

intensity in the simulated area by modifying the mean number of new infections per current 

infection for households within hotspots. 

For single areas of higher transmission intensity, we randomly selected a single household 

and then took the closest 199 households based on their co-ordinates. We replicate the 

process for the other  features: for multiple pockets of higher transmission intensity, we 

randomly select more than one cluster of households in the study area, for irregular ones, we 

superimpose a river-shaped feature for simplicity, and pick the 200 households within and 

around it, and for a  gentle gradient, we first create a single core area with 100 households 

and then create an exponential decay surface of risk as one moves away from the boundary 

of the core for the remaining? 100 households (Figure 5.1). 

 
Figure 5.1 Examples of hotspots with varied features 

a. Single hotspot, b. multiple hotspots, c. single hotspot with a decay gradient at the edges, 

d. irregularly shaped hotspot. Black dots: households outside the area of higher transmission. 

Red dots: household within the area of higher transmission. Green dots: households within 

the gradient zone. The prevalence of malaria infections is 10% s, and the transmission level 
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(defined by the mean number of new infections per infection per timestep) is 50% higher 

within the hotspot or core of the hotspot.          

Methods to be assessed 

We focus on measures of local clustering. There are a number of methods reported in 

literature that have been applied in the detection of malaria hotspots. For this study, we select 

commonly used measures: the Kulldorf’s spatial scan statistics (SaTscan) circular and elliptic 

versions, the flexible shaped scan statistic (Tango FSS) and a simple Bayesian model (Table 

5.2). 

Table 5.2 Methods included in the evaluation 

Method Description Reference  property 
SatScanO Kulldorf's spatial scan statistic1 23 circular window 
SatScanE Kulldorf's spatial scan statistic1 24 circular and elliptic windows 
Tango FSS Flexible spatial scan statistic2 25 irregular window 
Geospatial 
model 

Simple Bayesian model3 37 estimates prevalence at each 
household  

1 The Kulldorf’s spatial scan statistic is estimated using the SaTscan software for both the 

circular and elliptic versions 23,24. The method takes each household as a centroid (central 

point within a cluster) and then constructs multiple circles or both circles and ellipses of 

varying sizes (with radius and angles specified by the user) around it, as it moves across the 

geographical area. The observed number of cases for each location and size of the window 

are counted and compared with the average across the population using a log likelihood 

statistic. A cluster is identified when the number of cases within the window (circle or ellipse) 

is significantly higher than the average across the study area. 

2 The Tango flexibly spatial scan statistic is estimated using the FleXScan software developed 

by Tango and Tanashi to detect irregularly shaped clusters 25. The statistic uses an irregularly 

shaped scan window which is created by connecting a geographical unit (household) with its 

adjacent neighbours and calculating the prevalence within the scan window. The number of 

nearest neighbours is specified by the user. A cluster is identified when the number of cases 

within the window (irregular) is significantly higher than the average across the study area.  

3 A simple Bayesian geo-statistical model provides estimates of the prevalence for each  

household 37. The model has a logistic link function and includes a random effect for location 

and a matern covariance function, where the covariance only depends on the distance 

between any two points.  
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The cluster size used by the methods for detecting hotspots was arbitrarily set to 200 as a 

size potentially appropriate for a targeted intervention. In this case, this is approximately the 

same size as the underlying pockets of higher transmission themselves. If a specific targeted 

intervention is to be triggered, then the size should depend on the smallest area that would 

be practical and cost-effective to implement. This may depend on setting characteristics, such 

as the range of vector dispersal and the density of households. We avoid administrative 

boundaries. These are arbitrary in the context of malaria transmission and frequently, areas 

of varying transmission intensities are found within administration units and areas with similar 

transmission intensities are divided by boundaries 16,38.  

Evaluating the methods performance in detecting areas of higher transmission 

We took cross-sectional surveys of the prevalence of infected simulated individuals at three 

months, one year and three years. We chose three time-points since the patterns of 

heterogeneity are not stable over time when there is constant seasonality. Only the results at 

one year are presented in this paper. The higher transmission areas tend to have an increasing 

prevalence over time and the lower transmission areas see the prevalence reduce. This effect 

is not necessarily observed when there is seasonality.  

We calculated the sensitivity (the proportion of households that are in areas of higher 

transmission that are identified as being so) and the specificity (the proportion of households 

outside areas of higher transmission that are correctly identified), and the agreement between 

the estimated and known transmission intensities per household. 

The spatial scan methods allow the identification of households inside and outside the 

detected hotspots. The geospatial model estimates the prevalence, from which we can 

estimate areas of higher transmission. To compare the evaluation measures with the methods 

for identifying hotspots, we choose an arbitrary cut-off of a 50% increase in the predicted 

prevalence from the baseline value to define households inside hotspots (Table 1). For the 

hotspot with a gradient in risk at the edge, we arbitrarily set the underlying 

5.4. Results 

The simulated areas of higher transmission and the detected hotspots are shown for one seed 

and for one method as an example (Figure 5.2) 
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Figure 5.2 An example of simulated areas of higher underlying transmission and detected 

hotspots of prevalence  

a. Single hotspot, b. multiple hotspots, c. single hotspot with a decay gradient at the edges, 

d. irregularly shaped hotspot, Red dots: True hotspots in underlying transmission intensity, 

Brown dots: households within the gradient zone (top row), Blue dots:  Detected hotspots in 

prevalence (bottom row). The simulated data was taken as a cross-sectional survey after a 

period of 1 year with constant transmission (no seasonality) and an initial prevalence of 10%?. 

Hotspots were detected using the SaTScan statistic with a circular scan window and run for 

one seed. 

In general, the shape and number of the underlying areas of higher transmission affected the 

accuracy of the detected hotspots. A gradient at the edge of the area of higher transmission, 

a longer distance between parent and offspring infections, presence of multiple clusters or 

irregular shaped clusters tended to decrease the accuracy. Some small hotspots were 

detected outside the area of higher transmission intensity due to stochasticity in the predicted 

prevalence.  

When the mean distance between parent and offspring infections was longer, the size of the 

detected hotspot for prevalence tended to be larger than the underlying area of higher 

transmission intensity (Figure 5.3). Over time with constant transmission, the prevalence 

hotspot completely disappeared when the mean distances were longer.  
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Figure 5.3 Simulated of detected hotspots with varying distance between parent and offspring 

infection after a period of 1 year 

a. Single hotspot, b. detected hotspot using simulated data assuming the mean distance 

between parent and offspring infections is 100m, c. assuming the mean distance between 

parent and offspring infections is 2.0km. Red dots: households within the simulated area of 

higher transmission. Blue dots:  Households within the hotspots detected using SaTScan with 

a circular window. 

The size of the detected hotspot for prevalence also varied by season, tending to be larger 

during the wet compared to the dry season (Figure 5.4).  

 
Figure 5.4 Example of simulated hotspots with by season 

a. Single known hotspot, b. dry season, c. wet season. The seasonal profile was obtained from 

Kilifi, Kenya (40). Red dots: household within the area of higher transmission. Blue dots:  

Detected hotspot using SaTScan with a circular window after 1 year. 

The results for all seeds and all methods are summarized in Table 3. The results for sensitivity 

varied by method and by the characteristics of the area of higher transmission (Table 3).  
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Characteristics which lead to a lower sensitivity in general were those that were influenced by 

a change in risk from the center of the hotspot for instance the decay gradient scenario or 

the mean distance of movement. All methods showed a poor sensitivity for a long mean 

distance between parent and offspring infections. 

Both the SaTScan circular and elliptic methods had a high sensitivity for detecting households 

within areas of higher transmission except when there was a decay gradient at the edge of 

the hotspot or long mean distance between parent and offspring infection after the first year.  

The Tango FSS method had low sensitivity. For the Bayesian model, where we had an arbitrary 

cut-off for the predicted prevalence per household, had a high sensitivity particularly for 

irregularly shaped hotspots, except when there was a decay gradient at the edge of the 

hotspot or long mean distance between parent and offspring infection. 

 All of the methods had a reasonably high specificity for all the different underlying features.  

In practice, areas of higher transmission are likely to be irregular, have multiple hotspots, may 

have a gradient at the boundary and decision-makers are likely to require estimates of how 

much higher the prevalence is inside the hotspot. A method which performs reasonably well 

on all of these criteria taken together is the geospatial model.  
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Table 5.3 Assessment of measures to detect hotspots 

     1refers to the circular version of the Kulldorf spatial scan statistic 
      2refers to the elliptic version of the Kulldorf spatial scan statistic 
 

  

 
 

Single Circular 
hotspot 
%(95%CI) 

Multiple 
hotspots 
%(95%CI) 

Hotspot with 
decay 
%(95%CI) 

Irregular-
shaped hotspot 
%(95%CI) 

Short mean 
distance 
%(95%CI) 

Long mean 
distance 
%(95%CI) 

With Kilifi 
seasonality 
%(95%CI) 

Sensitivity 
SaTScan O1 85(72,98) 88(75, 100 ) 34 ( 28 , 39 ) 78 ( 66 , 89 ) 55 ( 26 , 83 ) 47 ( 11 , 83 ) 89 ( 76 , 100 ) 
SaTScan E2 85 ( 72 , 98 ) 81 ( 69 , 93 ) 34 ( 28 , 39 ) 81 ( 69 , 93 ) 53 ( 23 , 84 ) 46 ( 1 , 91 ) 89 ( 76 , 100 ) 
Tango FSS 54 ( 45 , 63 ) 57 ( 48 , 66 ) 22 ( 12 , 32 ) 72 ( 55 , 90 ) 42 ( 33 , 51 ) 6 ( 3 , 8 ) 65 ( 44 , 86 ) 
Specificity 
SaTScan O 90 ( 76 , 100 ) 92 ( 79 , 100 ) 92 ( 79 , 100 ) 85 ( 72 , 97 ) 87 ( 74 , 100 ) 76 ( 60 , 91 ) 90 ( 77 , 100 ) 
SaTScan E 90 ( 77 , 100 ) 92 ( 79 , 100 ) 92 ( 79 , 100 ) 87 ( 75 , 100 ) 91 ( 78 , 100 ) 82 ( 70 , 94 ) 87 ( 75 , 100 ) 
Tango FSS 92 ( 79 , 100 ) 92 ( 80 , 100 ) 46 ( 1 , 91 ) 89 ( 76 , 100 ) 90 ( 77 , 100 ) 92 (80,100) 73 ( 47 , 99 ) 
PPV 
SaTScan O 67 ( 34 , 100 ) 78 ( 66 , 91 ) 86 ( 72 , 100 ) 51 ( 39 , 63 ) 44 ( 8 , 80 ) 27 ( 4 , 50 ) 52 ( 44 , 59 ) 
SaTScan E 68 ( 35 , 100 ) 74 ( 58 , 90 ) 87 ( 73 , 100 ) 59 ( 51 , 67 ) 56 ( 25 , 88 ) 29 ( 5 , 53 ) 39 ( 34 , 45 ) 
Tango FSS 76 ( 53 , 100 ) 86 ( 74 , 99 ) 85 ( 70 , 100 ) 66 ( 54 , 79 ) 46 ( 24 , 68 ) 7 ( 2 , 12 ) 70 ( 59 , 81 ) 
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5.5. Discussion 

This study adds to the knowledge of how the features of heterogeneity in malaria 
transmission and the choice of method affects the accuracy of detection of pockets of higher 
transmission or prevalence. 

We found that the characteristics of the areas of higher transmission affected the 
performance of the detection methods: identification was less precise for all methods when 
there was decay in risk from the edge of the underlying area of higher transmission, the area 
was irregularly shaped, there was seasonality or when the mean distance between parent and 
offspring infections was longer than 2km.  

In practice, most areas will contain multiple, irregularly shaped hotspots with seasonality and 
movement and will require knowledge of the how much higher the transmission is within the 
hotspots, sizes and locations of hotspots, and the spread of infections. For such areas, 
Kulldorf’s circular and elliptic methods had reasonable sensitivity but the geospatial model 
was the only method to estimate the prevalence. 

Areas of higher transmission which tend to have long distances between parent and offspring 
infections, and no seasonality or interventions to mitigate the spread, appeared to be less 
pronounced over time in our simulations. Movement of infections can create a gradient of a 
change in risk as one moves away from the boundary. It is possible that an area of higher 
transmission with a gentle decay at the edge could appear similar to one with a steep gradient 
and longer distances of movement when looking at prevalence, so appearances alone may 
not reveal the underlying processes. There is a need for information on how far infections 
spread in an area, as well as information on the apparent heterogeneity. Future research may 
allow a separate measure for movement to be used in conjunction with the measure of 
heterogeneity to inform the likely impact of interventions. 

Malaria transmission has been reported to persist within hotspots even during the dry 
seasons 3,6,9. The simulated hotspot sizes contracted and expanded with seasons. This may 
have implications for the area for targeted interventions at different times of the year. For 
instance, there may be a rationale to adapt the radius to be considered in the case of reactive 
case detection (RCD) according to season. 

The prevalence of asymptomatic infections, clinical episodes and serological markers have 
been used as the outcomes of measure for detecting hotspots at different scales for different 
purposes 16,30,39.  If the aim is to detect areas of higher transmission intensity, then the choice 
of outcome may affect the results. We found that the relationship between the detected 
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prevalence hotspot and the area of higher underlying transmission varied by shape and 
gradient of the hotspot, and the season.  

5.6. Conclusion 

The choice of outcome, method of detection and features affected the accuracy of hotspot 
detection. The identification of hotspots was less accurate when there was decay in gradient 
with risk from the hotspot boundary, the hotspot was irregularly shaped, there was 
seasonality or when the mean distance between parent and offspring infections was longer. 
The SatScan method with elliptical or circular windows performed better than Tango FSS in 
our tests. The choice of method and underlying transmission dynamics should be taken into 
account when performing and interpreting analyses of heterogeneity for targeted 
interventions.  
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Chapter 6 
 

6. Discussion 
Ultimately, the spatial and temporal patterns observed for different metrics at the community 
level are made up of tiny movements of individual mosquitoes, human hosts and the parasites 
inside them. Information at such fine scales, are relevant for the bigger picture, in particular, 
the design of intervention strategies aiming to reduce and interrupt malaria transmission, the 
design of studies to evaluate their effectiveness in the field, and the parameterization of 
mathematical models to predict their likely impact for settings where data is not available. 

This thesis aimed at describing the development and use of both statistical and mathematical 
modeling approaches to characterize fine scale malaria transmission dynamics, and their 
consequences on the measurement of heterogeneity on a local scale. Taken as a whole, this 
thesis highlights the role that vectors, and humans play in the spread of infections and the 
implications of fine scale movement for the measurement of heterogeneity and targeting 
interventions. 

A detailed discussion of the findings was given separately in each chapter. In this discussion, 
the main contributions of the thesis are summarized and set in the context of malaria 
epidemiology. The strengths and limitations of the approaches used and possible 
implications for malaria control and are also outlined.  

 

 

  



 
 

 

106 
 

6.1. Summary of Main Findings 

In Chapter 2, OpenMalaria was used to predict the proportion of malaria infections that are 
in mosquitoes and how this varies by characteristics of the setting. The main findings show 
that a substantial proportion of infections are in mosquitoes, that this varies with transmission 
intensity, and highlights weak spots in individual malaria interventions and their timing.  

Chapter 3 describes the development of a method to estimate mosquito movement as a 
secondary analysis of data from trials of spatial repellents. The method was evaluated by 
simulation and found to work well but only if there was sufficient data, and if data on the 
seasonal pattern of mosquito densities in the village in the absence of repellents could 
additionally be obtained. Findings from the simulations could inform the design of studies 
and help quantify criteria for trial settings.   

The work in Chapter 4 aims to characterize and estimate the processes underlying the empiric 
patterns of genetic differences between P.falciparum parasites by time and geographic 
distance. Methods are limited in the case where transmission intensity is moderate, and the 
coverage of sampled infections is low. The chapter describes the development of an 
individual-based stochastic simulation model of households, people and malaria infections 
and the process of fitting it to genotyping data; with the aim of estimating the mean distance 
between parent and offspring infections and testing hypotheses about the underlying 
processes. The model could reproduce the observed patterns in the study area. The findings 
suggest that random drift (as opposed to selection pressure) is sufficient to explain the 
empiric patterns, but other hypotheses cannot be ruled out. The mean distance between 
parent and offspring infections was estimated to be 0.5km (95%CI 0.3 – 1.5). The findings 
glean some insights on how simulation can be used in quantifying factors driving 
transmission, and in estimating unknown parameters when analytic methods are limited.   

Chapter 5 extends the simulation model developed in Chapter 4, to investigate and predict 
the consequences of fine-scale movement dynamics on the measurement of heterogeneity 
in prevalence on a local scale. The mean distance between parent and offspring infections 
was found to be an important determinant on the shape, size and stability of hotspots. This 
study also found that underlying features of fine scale malaria transmission (e.g. seasonality) 
could have a substantial influence on the ability of common methods to identify areas of 
higher transmission. This has important implications especially when decisions about where 
to implement interventions are to be made.  
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6.2. The use of mathematical and statistical models  

Mathematical models provide a representation of the underlying mechanisms of a system. 
This can allow us to quantify unobservable processes. They do not necessarily involve data. 
Statistical models describe the distribution of data as a function of unknown parameters, 
without necessarily understanding the mechanisms that lead to the observed data. This thesis 
contains models which have both mathematical and statistical aspects, both representing the 
underlying biological mechanisms and being fitted to data.   

Mathematical models have long been used to provide predictions on aspects of malaria 
transmission that cannot be accurately measured [1,2], allowing the quantification of different 
dynamics, including predicting the effect of various interventions [3–6]. In Chapter 2, the 
proportion of malaria infections that are in mosquitoes and how this varies by characteristics 
of the setting were predicted using OpenMalaria. The findings highlight weak spots in 
individual interventions and their timing. Current tools against malaria are imperfect and so 
interventions are frequently combined to gain more leverage. Quantifying the shifting 
proportions of infections in mosquitoes before and after the introduction of different 
interventions would inform the design of optimal combination strategies for malaria control 
and elimination. 

In Chapter 3, a model which incorporates data on household locations within villages and 
numbers of mosquitoes collected over time was used to estimate mosquito movement. The 
model included both mathematical and statistical elements, having both structure for 
mosquito movement and being fitted to data. In Chapter 4, an individual-based simulation 
model is developed to estimate parameters of infection movement, and again was fitted to 
data on using pairs of parasite genotypes.  

In Chapter 5, the model developed in Chapter 4 is used to characterize fine scale malaria 
transmission dynamics in order to evaluate statistical methods for measuring heterogeneity 
on a local scale. The underlying processes leading to the relative difference in transmission 
(for instance within and outside pockets of transmission) is hard to quantify in real field 
settings. Simulation models with biological realism provide an avenue through which existing 
statistical methods can be evaluated. In Chapter 5, the simulation and statistical models are 
used separately but in the same study.   
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Table 6.1: Table of Methods 

Chapter Objective Model description 
Chapter 2 Prediction of the distribution of 

infections between humans and 
mosquitoes 

Comprehensive simulation 
model of malaria epidemiology, 
fitted to data 

Chapter 3 Estimate vector movement Model with mathematical 
structure, fitted to data 

Chapter 4 Estimate infection movement Simulation model with processes 
represented, fitted to data 

Chapter 5 Evaluation of methods for 
detecting hotspots 

Statistical methods for detecting 
hotspots, evaluated using a 
simulation model of malaria 
transmission 

 

6.3. The importance of setting characteristics 

The findings in this thesis highlight the importance of having sufficient knowledge on setting-
specific characteristics before decisions on interventions or the design of studies are made.  
In each chapter, changes in the characteristics of model inputs or assumptions lead to 
different results; mosquito species (Chapters 2 and 3), human blood index (Chapter 2), 
transmission intensity (Chapter 2 and 4), season (Chapters 2, 3 and 5), house clustering 
(Chapter 3 and 4), movement of humans and mosquitoes (Chapter 5).  

To be able to generalize findings across settings, there is need for additional datasets or 
purpose-designed studies to collect this data in the field, since the epidemiology of malaria 
varies with site specific characteristics.  

6.4. Potential impact of recent advances in the detection of 

infections 

Recent advances have seen decreases in the limits of detection in parasite densities [7]. This 
raises the question of whether this would affect the findings in this thesis. OpenMalaria was 
fitted to data which did not include sub-patent infections. The numbers of infections in both 
humans and mosquitoes may be underestimated, but it is not known if this would affect the 
predicted proportion of infections that are in mosquitoes. If infections have been missed in 
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the genotyping data in Chapter 4 then, since the analysis was designed to accommodate a 
low coverage of infections, as long as the assumption that detectability is not related to the 
genotype, the main findings would hold. In Chapter 5, the simulations assume perfect 
detection. This is unlikely, even in the case of highly sensitive tests, and so the tendency would 
be that the detection of hotspots would have slightly less power and the prevalence would 
be underestimated by geostatistical models.  

6.5. Implications of fine scale movement  

Based on the findings of this thesis, information on fine scale movement of mosquitoes and 
humans, and the parasites they carry is important, for malaria epidemiology, to inform the 
design and analysis of studies, and in evaluating the effect of interventions. 

Understanding how malaria infections spread locally and the processes leading to the 
observed spatial and temporal distribution patterns is important for the design of 
interventions aiming to reduce and interrupt transmission by targeting foci where there is 
fine scale heterogeneity.  In Chapter 5, the distance between parent and offspring malaria 
infections was shown to have substantial effect on the abilities model to detect areas of higher 
transmission. The findings show that areas of transmission are harder to detect when the 
mean distance between parent and offspring infections was long as opposed to the small, 
isolated clusters observed when this distance was shorter. 

Vector dispersal has been shown to negate the effects of interventions especially if 
mosquitoes are moving between households in different study arms or to confer a 
community wide effect when interventions are targeted to those at higher risk.  Disentangling 
these effects in exploratory analysis can be challenging and more tools are needed. It is vital 
to understand the role in mosquito or infection movement in the spread of infection to 
estimate an efficient spatial scope to be covered with interventions. 

Fine scale variations in malaria transmission are driven predominantly by mosquitoes. As 
transmission declines, heterogeneous patterns become more evident and the range across 
which mosquitoes fly can be used to estimate the relatedness of infections. This could be 
valuable in estimating the spread of drug resistance. 

Information of fine scale movement can also be used in the parameterization of mathematical 
models and predict their likely impact. 
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Some issues 
Data Availability: 

Ideally, instead of describing what data can or cannot be used for, models should be 
extensible to answer different research questions since type and quality of data varies 
substantially from one site to another. 

Some of the methods in this thesis were developed in response to lack of sufficient data to 
provide plausible estimates. In Chapter 3 and 4, we use simulation to validate the model 
predictions but fit the model to the available data.  While these data are imperfect, the 
findings highlight the potential value of using all the information available (including previous 
trials) to estimate parameters that cannot be observed in the field. For instance, the 
movement of individual mosquitoes is hard to estimate - and the statistical model in Chapter 
3 can be used to estimate dispersal parameters. The mean distance between parent and 
offspring infections is also challenging to estimate, but a simulation model that quantifies the 
underlying processes can be applied. 

The methods developed can be used to inform purpose-designed studies, in terms of how 
much data one would need to collect. Findings from Chapter 3 underline the type of data 
that would be needed to provide accurate estimates of mosquito movement in a village. 
Simulation models could be used to determine what sampling strategy is needed for a study 
on parasite movement using genotyping.  

Validation: 
The model used in Chapter 2 has been extensively fitted to field data and this has previously 
been described [8]. We used the available field data to validate some of the model predictions 
(Chapter 2 and 3). Using trial data to validate model predictions can be challenging, as some 
of the trial parameters might be unknown. In Chapter 3 to 5, validations of the methods were 
based on reproducing known initial values, and this lends confidence to the results. There is 
no consensus on how to evaluate uncertainty and goodness of fit for models which do not 
conform to standard statistical distributions, and it is still remains unclear on the best ways to 
quantify stochasticity for model predictions [9].  
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6.6. Outlook and future work 

The methods developed, and the findings from this thesis have the potential for application 
to inform the design of interventions. 

Future work may tackle the need for many estimates from many sites to allow a body of 
evidence tailored to setting characteristics to grow. There is limited information on vector 
movement, and few studies estimating the geographical distance between parent and 
offspring infections. Since setting characteristics are important, it is difficult to generalize from 
a few settings. However, if methods can be developed to allow secondary analysis of existing 
data sources as well as purpose-designed studies carried out, then there could be a body of 
information on how the distances relate to setting characteristics and how vector distances 
relate to infection distances. This information would be valuable for allowing generalizations, 
stratifying interventions and intervention designs by setting characteristics. 

Following the changing malaria epidemiology in many endemic settings, future studies 
should take into account the underlying site-specific transmission dynamics when performing 
and interpreting analyses of heterogeneity for targeted interventions. In studies aiming to 
identify areas of higher risk or burden, there should be greater awareness that the 
characteristics of the area or the methods themselves might influence the accuracy of 
detection. 
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