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1 Introduction 
 
1.1 The Role of Water in Ligand-Protein Binding Processes 
 
1.1.1 The Importance of Water for Protein Stability, Function and Dynamics 
 

"Water is life's matter and matrix, mother and medium. There is no life without water." 

This famous quote of Albert-Szent Györgyi emphasizes the crucial role of water for the 

emergence of life (Ball, 2017). Yet, even though the importance of water for biological processes 

has been known for decades, its role has been underestimated, merely attributing it a passive 

function, that for example facilitates the diffusion of biomolecules (Chaplin, 2006).  

It is only recently that the manifold and active roles that water plays in the machinery 

of life are gradually unraveled (Levy and Onuchic, 2004). In terms of protein folding, Kauzmann 

already in 1959 postulated the existence of a hydrophobic driving force, derived from favorable 

transfer free energies of hydrocarbons from water to organic solvents (Kauzmann, 1959), a 

mechanism now well-accepted in the field (Dill, 1990).  

However, water also plays a more direct role in protein stability and function. Buried 

water molecules with long residence times (10-8 – 10-2 s) are integral parts of the protein 

architecture (Otting et al., 1991), forming tight hydrogen bonds and thereby stabilizing the 

protein structure. Furthermore, long-range water-mediated interactions between hydrophilic 

groups guide the folding of proteins and biomolecular recognition processes (Papoian et al., 

2004). These examples point out that water is not only involved passively as a solvent, but as an 

active agent in these processes. 

At the surface of proteins, water molecules span networks, glued together by hydrogen 

bonds (Brovchenko et al., 2005; Nakasako, 2004). The water molecules in these networks have 

distinct properties compared to bulk water (Chen et al., 2008) with residence times between 10-

12 and 10-11 s. These residence times are longer compared to bulk, but much shorter compared 

to deeply buried, structural water molecules. These hydration networks facilitate the dynamics 

of the protein, governing for example domain motions (Nakasako, 2004).  

Water also takes place in biochemical reactions as both a weak acid or a weak base 

(Spyrakis et al., 2017) and is essential for the functional role of hydrolases, a class of enzymes 

that cleave chemical bonds using a water molecule as an electrophile (Busto et al., 2010).  
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1.1.2 The Importance of Water in Molecular Recognition  
 

 Considering the formation of a complex between a macromolecule and a small 

molecule (typically a receptor and a ligand, or an enzyme and a substrate) or between two 

macromolecules, the effect of water on the process is expected to be crucial, since it is the 

solvent in which the complex formation occurs.  

 

 

 

 

 

 

 

 

 

 

A simplified depiction of the protein-ligand binding process is given in Figure 1 (Miller 

et al., 2012). Whereas the picture is valid for the formation of a molecular complex between two 

species in general (receptor-ligand, receptor-receptor, receptor-DNA,…), we will refer to 

receptor-ligand binding processes in the course of this section.   

 

∆𝐺#$%&(𝑳) = ∆𝐺+,-.(𝑷𝑳) − ∆𝐺+,-.(𝑳) − ∆𝐺+,-.(𝑷) + ∆𝐺#$%&,34+(𝑳)										(𝟏) 

 

Equation 1 is an expression for the binding free energy of  ligand L towards the protein 

P (Miller et al., 2012). The terms -∆Gsolv(L) and -∆Gsolv(P) describe the desolvation free energy 

for the ligand and the receptor respectively. The desolvation free energy is the negative of the 

free energy of solvation. The free energy of solvation corresponds to the free energy change 

from transferring a molecule from gas to bulk. ∆Gsolv(PL) describes the solvation free energy 

of the complex. Hence, high desolvation costs for the ligand and the binding site of the receptor 

counteract binding. High desolvation penalties usually stem from the stripping of water 

molecules from charged or polar functional groups (Claveria-Gimeno et al., 2017), whereas non-

Figure 1. Thermodynamic cycle of protein-ligand binding 
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polar functional groups are associated with negligible or even positive solvation free energies 

(Cabani et al., 1981). 

The term [∆Gsolv(PL)-∆Gsolv(L)-∆Gsolv(P)] is the overall difference between the 

solvation free energy of the complex and the summed solvation free energy of the ligand and 

the receptor. Assuming that no large-scaled structural changes occur upon ligand-binding that 

would lead to the desolvation or solvation of protein atoms far from the binding site, this 

difference in solvation free energy mainly occurs because of the displacement of water molecules 

in the receptor binding site by functional groups of the ligand. The degree to which a receptor 

binding site is solvated (Matthews and Liu, 2009) and what the energetic cost of displacing these 

solvent molecules into bulk (“desolvation”) amounts to, strongly depends on the shape and 

electrostatic properties of the binding site (Baron et al., 2010 ; Haider et al., 2016; Michel et al., 

2014; Snyder et al., 2014). In general, displacement of binding-site water molecules is considered 

one of the determining factors influencing the equilibrium in  ligand-protein binding (Friesner 

et al., 2006; Hummer, 2010; Wang et al., 2011a).  

 Baron et al estimated free energy changes from explicit solvent Molecular Dynamics 

(MD) simulations for ligand-cavity associations of various model systems and came to the 

conclusion that water is “an active player in determining binding or rejection” (Baron et al., 

2010). Water molecules that are expelled out of a hydrophobic cavity result in a favorable energy 

change, due to increased water-water interactions in bulk, which is termed as the enthalpy-driven 

hydrophobic effect (Homans, 2007). Interestingly, the simulations predict an entropic cost for 

the release of the cavity–water molecules, since they possess highly-correlated interactions in the 

bulk with other water molecules. On the other hand, desolvation of charged groups leads to an 

enthalpic penalty due to the loss of the strong charge-water interactions, but to a gain in entropy. 

This is because of the restriction of rotational and translational degrees of freedom of the water 

molecules in proximity of charged groups , attributed to the strong charge-dipole interaction 

(Baron et al., 2010).  

 Though investigations of such model systems can lead to interesting findings about the 

influence of water on the thermodynamics of binding, they only partly reflect the much more 

complex situation of protein-ligand binding (Baron et al., 2010). An interesting motif in protein 

active sites is hydrophobic enclosure (Friesner et al., 2006). Theoretical studies suggest that such 

lipophilic and enclosed binding sites lead to a perturbed solvent structure, since the water 

molecules located there can neither interact strongly with the protein nor form stable clusters 

with other water molecules (Young et al., 2007). Expelling solvent from such cavities is expected 

to lead to a vast increase in binding free energy (Young et al., 2007). Mentionable examples are 

streptavidin and cyclooxygenase-2 (COX-2).  

 It has been proposed that when a cavity or binding site provides a structural motif that 

leads to solvent configurations that are energetically too unfavorable, dehydration occurs (Wang 
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et al., 2011a). Yet, the existence of truly empty cavities inside proteins is a highly controversial 

matter (Matthews and Liu, 2009).  “Nature abhors a vacuum” is a famous statement from 

Aristotle and contradicting experimental and theoretical results about the water content of 

various protein cavities were reported (Matthews and Liu, 2009). The excess chemical potential 

of water in bulk amounts to -6.4 kcal/mol (obtained from MD simulations (Wade et al., 1991)), 

which is approximately the cost in free energy that has to be paid from transferring a water 

molecule from bulk into a strictly hydrophobic cavity where there are no other water molecules 

present. There is indeed experimental data from x-ray crystallography that support the existence 

of empty cavities that possess the adequate size to host one single water molecule (Liu et al., 

2008).  

 For larger non-polar cavities on the other hand, thermodynamically stable water cluster 

can be formed (Collins et al., 2005; Yin et al., 2007), whereby the geometries of the clusters are 

governed by the shape and size of the cavity (Vaitheeswaran et al., 2004). Young et al studied 

different proteins with largely hydrophobic cavities using MD simulations and observed total or 

partial dewetting of several cavities (Young et al., 2010). Another example is the binding site of 

mouse urinary protein 1 (MUP-1), which possesses a suboptimally hydrated binding site (Barratt 

et al., 2005). The association process is driven by the dispersion interactions between protein 

and ligand, which are not offset by any binding-site desolvation costs. Overall, this leads to a 

largely favorable enthalpic contribution to the binding free energy (Malham et al., 2005). 

 

1.1.3 Water Thermodynamics in Drug Discovery 
 
 Due to the active role of water in molecular recognition processes, knowledge about 

water thermodynamics in ligand-binding is expected to lead to the design of compounds with 

stronger affinity, and therefore is of high importance in drug discovery. Polar functional group 

of the ligand are associated with a desolvation cost upon binding (Cabani et al., 1981) and should 

therefore not be buried in a lipophilic environment in the binding site (Barratt et al., 2006). 

When this high desolvation cost for strongly polar or charged groups is not compensated by 

strong interactions with the protein, a loss in binding affinity occurs, as shown by experimental 

studies on binding thermodynamics in MUP-1(Barratt et al., 2006; Biela et al., 2012). Klebe and 

coworkers modified thermolysin inhibitors by changing the location of an ammonium group 

(Cramer et al., 2017).  Their findings were that charged groups that are mainly solvent-exposed, 

but still close to the protein surface, suffer from partial desolvation and therefore have to be 

placed with great care in drug design projects.  

The general concepts for the desolvation of ligand atoms are also valid for polar protein 

atoms that are solvated in the unliganded state. If the breakage of the hydrogen bond between 

protein and water is not compensated by strong interactions between the protein and the ligand, 

this results in a desolvation penalty (Klebe and Böhm, 1997).  
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A well-studied example is the ASP189 residue in the binding site of thrombin, where 

the desolvation cost for the displacement of water molecules around the charged carboxylate 

has a decisive effect on ligand binding (Figure 2) (Biela et al., 2012).  

A different aspect of drug design governed by water thermodynamics is the 

displacement of single, buried water molecules with well-defined positions. An analysis of 392 

high-resolution crystal structures of protein–ligand complexes revealed that every ligand in 

average interacts with 4.6 structural water molecules (Lu et al., 2007). Such interfacial water 

molecules can increase the specificity and/or affinity of a ligand to its target (Ladbury, 1996). 

Modifying the chemical structure of a ligand in a way that optimizes interactions with such 

structural water molecules can be a design strategy to improve affinity. An outcome that is 

difficult to predict results from attempts to displace such water molecules by ligand functional 

groups. A showcase example is the displacement of a structural water in the binding site of HIV-

1 protease by a new class of inhibitors bearing a cyclic urea (Lam et al., 1996). The carbonyl 

oxygen of the urea moiety displaces the water molecule and mimics its acceptor functionality by 

interacting with the backbone NH-groups of Gly49 and Ile 50 (Figure 3 and Figure 4A). This 

class of inhibitors displays increased potency and bioavailability compared to peptidic inhibitors 

(Lam et al., 1994). 

Another thermodynamically favorable displacement of a crystallographic water 

molecule that resulted in an increased affinity was reported for p38a MAP kinase. Replacing a 

triazine-core by a 5-cyanopyrimidine in the ligand results in the displacement of a water molecule 

and a more than 10-fold gain in affinity (Liu et al., 2005a). A similar structural motif was 

exploited for Scytalone dehydratase inhibitors, were also the displacement of a water molecule 

by a cyano-group resulted in an affinity gain (Chen et al., 1998). 

 

 
 

Figure 2. Superposition of the apo structure of thrombin (PDB ID: 2UUF) and a thrombin-inhibitor complex 
(PDB ID: 3QTO). The charged inhibitor displaces two water molecules that were solvating the carboxylate 
group of ASP 189. 
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Yet such an approach is not a guaranteed success. For quinazoline inhibitors of 

epidermal growth factor receptor kinase (EGFR), substituting one of the ring nitrogen atoms 

by a nitrile group results in the displacement of a water molecule that bridges the interactions 

between the ring nitrogen and the protein. Whereas this describes in general the same situation 

as for the two aforementioned examples, the displacement in this case results in a slight loss in 

affinity (Wissner et al., 2000). 

Figure 3. Structural water molecule with tetrahedral coordination in the binding site of HIV-1 protease 
(PDB ID: 1HPX). The cyclic urea inhibitor (green) displaces the water molecule (PDB ID: 1DMP). 

Figure 4. Different ligand modifications that lead to the displacement of a bridging water molecule while 
restoring the hydrogen bonds to the receptor. 
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 In general, for the successful displacement for such bridging water molecules in terms 

of an increase in affinity, a ligand functional group with optimal geometry has to be introduced, 

that not only displaces the water molecules, but also adequately replaces its interactions with the 

protein. For a water molecule adjacent to a ring nitrogen and interacting with the protein by 

accepting a hydrogen bond, a nitrile group is an attractive choice (Davies et al., 2012), as 

exemplified by various cases. A depiction of the structural features of water displacement by a 

nitrile group is given in Figure 4B. For  bridging water molecules adjacent to ring acceptors 

that interact with the protein as a hydrogen bond donor, Smith and coworkers developed an 

interesting strategy by extending the pyridyl scaffold to an indazole (Smith et al., 2015). They 

successfully applied it to a series of Bruton’s Tyrosine Kinase (BTK) inhibitors and observed an 

increase in affinity. The indazole moiety can mimic both the donor and the acceptor 

functionality of the water molecule (Figure 4C) and therefore undergoes tight interactions with 

the receptors.  

 All these examples have in common that the ligand modification introduces an 

additional polar group that displaces the water molecule and compensates for the lost water-

protein hydrogen bonds. Yet, there is also the possibility to introduce nonpolar functional 

groups to the ligand that sterically displace binding site water molecules. Katz and coworkers 

achieved selectivity for inhibitors of Ser190 trypsin-like serine proteases by displacing a water 

molecule from the S1 site by ligand halogen atoms (Katz et al., 2001). Depending on the 

interaction pattern of this S1 water molecule in the corresponding binding sites, displacing this 

water molecule led to no change in affinity for some kinases and to strong loss in binding affinity 

for other kinases. 

The group of Klebe investigated a different water molecule in the S1 pocket of 

thrombin and observed a significant affinity gain for its displacemenet by a nonpolar ligand 

atom (Baum et al., 2009).  

Displacement of two water molecules by substituting a hydrogen atom for a methyl 

group in a series of Hsp90 inhibitors left the affinity  unchanged (Kung et al., 2011). 

 These examples point out that it is not a priori clear if and by which functional group a 

water molecule can or should be displaced in order to gain affinity or specificity and it is clear 

that it is the environment of the water molecule (number of interactions, shape of the cavity,…) 

that influences the outcome of the displacement. To decide in a prospective fashion if a water 

molecule can and should be targeted for displacement by a ligand functional group, the exact 

thermodynamic contributions towards the change in binding affinity should be understood and 

quantified. Several of the above examples have been studied by molecular simulations to assess 

the exact energetics of the water displacement (Li and Lazaridis, 2003; Michel et al., 2009). The 

results indicate that expelling water molecules into bulk is energetically unfavorable, due to the 

loss of strong solute-water interactions. Yet their calculations were conducted for the water 
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molecules that are tightly bound and displaced by  polar functional groups, such as for HIV-1 

protease (Li and Lazaridis, 2003) and EGFR, Scytalone dehydratase and p38a MAP kinase 

(Michel et al., 2009). In general, it is the fine balance between free energy change for the release 

of the water molecule into the bulk, the newly formed protein-ligand interactions and the change 

in ligand solvation free energy upon the structural modification that determines if expelling a 

water molecule leads to an affinity gain (Michel et al., 2009).  

 We so far discussed about the non-specific effect of water in protein-ligand binding 

(protein and ligand desolvation) and about the displacement of single well-defined water 

molecules by ligand modifications. Yet, an interesting property of water molecules is their ability 

to interact favorably with other water molecules, leading to specific arrangements in water 

networks, so called “clusters” (Figure 5). Such water clusters display a sheer endless diversity, 

regarding the number of water molecules involved, their shape and interaction patterns 

(Maheshwary et al., 2001). Theoretical studies have shown that in nonpolar protein cavities, the 

lack of favorable solute-solvent interactions can be compensated by the formation of water 

clusters with strong solvent-solvent interactions, which are the driving forces to make the 

hydration free energies of such cavities favorable (Vaitheeswaran et al., 2004; Yin et al., 2007). 

Depending on the hydrogen bond network, such water clusters can profit from cooperative 

stabilization or anticooperative destabilization (Albrecht et al., 2013; Pérez et al., 2014).  

 

 

 Yet, there is still not much understanding of the exact role and influence of such water 

clusters on protein-ligand binding. Studies on inhibitor binding at thermolysin suggest that the 

quality and completeness of the water network formed around the ligand-receptor complex have 

a direct impact on the enthalpy and entropy of binding (Betz et al., 2016; Krimmer et al., 2014). 

Similar conclusions were drawn from a study of carbonic anhydrase inhibitors (Breiten et al., 

2013). Whereas it is now understood that these water networks play a role in protein-ligand 

binding, quantifying their exact contributions is not yet possible. 

   

Figure 5. Examples of water clusters with three, four and five members. 
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1.1.4 Influence of Water on Ligand-Receptor Binding Kinetics 
 

Recent studies point out that optimizing and investigating the residence times of drugs 

instead of only targeting the binding affinity in drug design projects can lead to more efficient 

and safer drugs (Copeland et al., 2006; Lu and Tonge, 2010; Schuetz et al., 2017). Therefore, 

understanding the exact factors that influence the binding kinetics of drugs can have a big impact 

in drug design projects. As discussed for the thermodynamics of receptor-ligand binding, 

binding site water molecules also seem to have a direct influence on the receptor–ligand binding 

kinetics (Schmidtke et al., 2011; Setny et al., 2013).  

 Results from molecular simulations of different systems indicate that a complete 

dewetting of the binding pocket occurs before the entrance of the ligand and that this stage 

possesses the highest energy barrier and is therefore rate-determining (Dror et al., 2011; Mondal 

et al., 2014; Setny et al., 2013). It is however to be expected that the shape of the binding site 

and the extent of solvent-exposure influence the exact contribution of binding site water 

molecules to the binding kinetics. For the unbinding of dasatinib from the c-Src kinase, MD 

simulations revealed a concerted and more complex mechanism of binding, but again the 

hydration of the binding site is a rate-determining step, which was also confirmed for 

simulations at p38 MAP kinase (Casasnovas et al., 2017). The hydration of the binding site is 

the first slow step in the unbinding process (Liu et al., 2015). Yet it has also been found that 

desolvation of highly polar ligand groups can influence the association rate of protein–ligand 

complexes, as measured for a set of Hsp90 inhibitors (Schuetz et al., 2018).  

 

 

  

 
 

 
  

It has been proposed that hydrogen bonds that are shielded from solvent lead to longer 

residence times of ligands, since the breakage of such hydrogen bonds is associated with a higher 

energetic barrier (Figure 6) (Schmidtke et al., 2011). This argumentation was also used to explain 

varying residence times of different natural substrates bound to their native lectin binding site, 

where lectins that have narrow and buried pockets possess ligands with longer residence times 

(Sager et al., 2017). 

A

H
D

L

H
O
H

A
H
D

H
O
H

L
A B

Figure 6. Schematic depiction of a hydrogen bond accessible to solvent (A) and a shielded hydrogen bond 
(B). The water molecule stabilizes the transition state of the hydrogen bond breakage in A, leading to a 
lower energetic barrier. 
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1.2 Structure-Based Drug Design 
 
1.2.1 General Overview 
 

It is widely accepted that computer–aided drug design (CADD) has a big impact on 

the development and discovery of novel drug candidates and that it is an established 

methodology extensively used by the pharmaceutical industry (Śledź and Caflisch, 2018). 

Computational tools have manifold applications in the drug discovery pipeline (Figure 7), from 

target identification, library design, lead identification, lead optimization, ADMET prediction to 

elucidation of the mode-of-action of a drug (Tang et al., 2006). Structure-based drug design 

(SBDD) is a branch of CADD for the discovery and optimization of drug candidates guided by 

the 3D structure of the binding site. The applications of SBDD are the prediction and evaluation 

of how small molecules bind to their target (binding pose prediction) and the estimation of the 

strength of the binding (affinity prediction) (Śledź and Caflisch, 2018). A basic requirement for 

the application of SBDD is the availability of a valid 3D structure of the receptor, either s dolved 

by experiment (x-ray crystallography, NMR, EM) or by homology modeling (Levoin et al., 2011).  

 Increased accuracy of a computational method is usually associated with a higher 

computational cost, and therefore different methodologies of CADD are applied in different 

stages of the drug discovery pipeline. Virtual high-throughput screening (vHTS) is performed 

with computationally less expensive methods such as molecular docking. The goal of vHTS is 

to enrich chemical libraries with compounds that are more likely to bind and therefore reduce 

the experimental expenses and in the end lead to more cost–efficient drug–discovery processes 

(Sliwoski et al., 2014). 

 

 

 More accurate methods such as relative binding free energy (RBFE) calculations based 

on free energy perturbation (FEP) or thermodynamic integration (TI) are applied in lead–

optimization phases (Jorgensen, 2004; Sliwoski et al., 2014). 

 

1.2.2 Molecular Force Fields 
 

In order to accurately explore the conformational space of small-molecule drugs bound 

to their targets and to get reliable protein-ligand interaction energies for the estimation of 

Figure 7. Simplified depiction of a typical drug-discovery pipeline. SBDD methods are mentioned in bold. 
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binding free energies, a method that maps molecular coordinates to a potential energy value is 

required. Whereas quantum chemical calculations are the method of choice for assessing 

geometries and energies of chemical structures in terms of accuracy, their high computational 

cost prevents them from being routinely used in CADD applications (Leach, 2001). Molecular 

Force Fields provide an alternative that facilitates rapid energy valuation of molecular systems 

by approximating the energies as a sum of intramolecular and intermolecular contributions. 

Since the various terms are described by equations taken from classical physics (harmonic 

oscillator, hard sphere potential, electrostatic potential) this concept is termed as “molecular 

mechanics”.  

 

𝑉(𝑟) = 9 (𝑟 − 𝑟:	); + 9 (𝜃 − 𝜃:	); +	 9
𝑉%
2 				>1 + cos	

(nω − γ)F
G,H+$,%+4%3-I+#,%&+

+	9(4𝜖$L MN
𝜎$L
𝑟$L
P
Q;

− N
𝜎$L
𝑟$L
P
R

S
$TL

+
𝑞$𝑞L

4𝜋𝜖:	𝑟$L
	)																	(𝟐)	 

 
Equation 2 describes the typical form of a classical force field. The bond and angle energies are 

calculated by means of a classical harmonic oscillator, where deviations from the equilibrium 

bond lengths are associated with a high energetic penalty, increasing quadratically. The torsion 

term is composed of a summation of cosine functions with varying periodicity, whereas the 

intramolecular interactions are given by two pair potential functions: the first describes the van 

der Waals interactions by a so called 12-6 Lennard-Jones potential, whereas the second term 

accounts for electrostatic interactions by means of a classical point charge Coulomb model.  

 In order to assess the validity and accuracy of computational algorithms employing 

force fields, it is crucial to be aware of their strengths and shortcomings. Approximating bond–

stretching and angle–stretching energies as harmonic oscillators is only valid for geometries close 

to energetic minimum. This approximation prohibits bond-breaking and is therefore not 

suitable to model chemical reactions. This is in general not a big drawback in the field of CADD, 

where one usually works with geometries close to equilibrium. The bond–stretching and angle–

stretching terms are referring to the “hard” degrees of freedom, since they only allow for subtle 

changes (Leach, 2001). Rotation about a bond is a soft degree of freedom and the associated 

energy is given by the torsion term. Whereas the functional form of this term can reproduce the 

potentials obtained from ab initio calculations with good accuracy, it needs a lot of parameters 

to fully cover the complexity of the chemical space and recent advances in force field 

development aim into this direction (Harder et al., 2016).  

 Calculating interaction energies between ligands and receptors is of great importance 

in CADD and therefore an accurate representation of the non-bonded energy terms is an 

absolute necessity to obtain correct sampling of the energy landscape of a ligand–receptor 
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complex (Ponder et al., 2010). The simple point-charge model with pair–wise interactions is a 

simplification of the true charge distribution which is highly anisotropic (Kramer et al., 2012).  

Hydrogen bonds for example have certain geometric preferences, depending of the type of the 

acceptor atom (Vedani and Dunitz, 1985). The YETI force field expands the classical force 

equation by a specific hydrogen bond term, that accounts for the directionality and linearity of 

the hydrogen bond (equation 3).  

 

   

𝐸Y#,%&	 = Z
𝐶
𝑟$LQ;

−
𝐷
𝑟$LQ:

] 𝑐𝑜𝑠;(𝜑b⋯dedd − 𝜑:) 

																				𝑐𝑜𝑠;(𝜔geb⋯d − 𝜔:)		(𝟑)	

	

	𝐶 = −5𝐸j$%𝑟:Q;				(𝟒)	

𝐷 = −6𝐸j$%𝑟:Q;				(𝟓) 
    

C and D are constants that depend on the atom types of the donor and acceptor atom, 

the associated well-depth (Emin) of the potential and he optimal hydrogen-bond distance (r0) 

(Vedani, 1988). The two cosine terms have the effect of lowering the energy in terms of 

deviations from the optimal directionality (φ0) and linearity (w0). The optimal values for the 

linearity and directionality were derived from geometric analysis of small-molecule crystal 

structures (Vedani and Dunitz, 1985). 

 

 

 

 

 

 

 

 

A further drawback of the simple point-charge model is the insufficient coverage for 

special interactions such as S···O chalcogen bonds (Lupyan et al., 2012; Yan et al., 2017) or 

halogen bonds (Jorgensen and Schyman, 2012; Rendine et al., 2011).  

Recent improvements to overcome these limitations are the addition of off–center 

charges (Figure 8) (Jorgensen and Schyman, 2012; Yan et al., 2017) or expanding the point 
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Figure 8. Electrostatic repulsion between an aromatic chlorine and a carbonyl oxygen in the classical point 
charge model (left) and correct representation of the Cl-O halogen bond by addition of an off-site positive 
charge. 
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charges by means of atomic multipoles (Kramer et al., 2012, 2013). A further limitation of the 

fixed–charge models is the lack of a polarization term (Warshel et al., 2007), and therefore 

electronic many–body effects such as cooperative hydrogen bond networks (DeChancie and 

Houk, 2007) are not captured by classical force fields.  

 The most widely used molecular force fields include the AMBER molecular force fields 

(Case et al., 2005), CHARMM (Brooks et al., 2009), OPLS (Jorgensen et al., 1996), GROMOS 

(Oostenbrink et al., 2004) and the MMFF94s (Halgren, 1996). Due to their fast evaluation of 

molecular energies and the existence of analytical derivatives, force fields find wide application 

in structure minimization (Kini and Evans, 1991), biomolecular simulations (Mackerell, 2004), 

conformational searches of small to medium-sized molecules (Grebner et al., 2013; Gürsoy and 

Smieško, 2017) and molecular docking (Liu and Wang, 2015). 

 There are ongoing efforts to improve and extend the current force fields for better 

coverage of small–molecular chemical space (Vanommeslaeghe et al., 2010; Wang et al., 2004), 

improved parameters for protein conformations (Maier et al., 2015) or the aforementioned 

developments for more realistic description of charge distributions. Force field parameters for 

equilibrium bond lengths and angles are usually taken from experimental crystal structures 

(Wang et al., 2004) or quantum chemical calculations (Halgren, 1996) and the force constants 

can be fitted to reproduce experimental vibrational spectra (MacKerell et al., 1998). The 

parameters for the non-bonded terms are optimized to reproduce hydration free energies 

(Oostenbrink et al., 2004) or interaction-potentials obtained from ab initio potentials 

(Vanommeslaeghe et al., 2010). Torsional parameters are typically fitted to torsional energy 

profiles from quantum chemical calculations (Halgren and Nachbar, 1996; Vanommeslaeghe et 

al., 2010; Wang et al., 2004). 

 

1.2.3 Molecular Docking 
 
 Molecular Docking is a computational tool for studying the interactions of a small 

molecule with the binding site of a receptor, with the ultimate goal to predict the mode of 

binding as well as the binding free energy, or affinity of the complex (Meng et al., 2011). While 

there is an application of docking to the field of protein–protein docking, only algorithms 

dealing with small–molecule docking are discussed here, though some of the principles and 

strategies are also valid for other docking problems.  

 Molecular Docking is one of the key methods in SBDD and has applications in hit 

identification as well as hit-to-lead and lead optimization phases (Enyedy and Egan, 2008; 

Kitchen et al., 2004; Meng et al., 2011), since it allows for a rapid assessment of the steric and 

electrostatic complementarity of a candidate molecule to a receptor binding site. Due to its 

relatively low computational cost, even screening of large virtual libraries is feasible  
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(Kontoyianni, 2017). Although reliable prediction of binding affinities with chemical accuracies 

is still out of reach for molecular docking algorithms (Liu et al., 2017; Wang et al., 2003, 2016), 

applying it in vHTS applications can lead to libraries that are enriched with true active and this 

can accelerate the drug discovery pipeline (Sliwoski et al., 2014).  

While a plethora of different docking programs and methodologies exist, the common 

strategy is to sample the ligand degrees of freedom (translational, rotational, torsional) in the 

binding site of the receptors. The different configurations of these ligand degrees of freedom 

lead to so called docking poses, which are ranked by means of a scoring function (Meng et al., 

2011).  

 There are different strategies for the exploration of the ligand degrees of freedom in 

the binding site, ranging from genetic algorithms (Morris et al., 1998), swarm intelligence (Korb 

et al., 2007) or Monte Carlo (MC) (Hart and Read, 1992). The protein can thereby be kept rigid 

(flexible ligand–rigid protein docking) or flexible (flexible ligand–flexible protein docking). A 

third strategy is to dock compounds into an ensemble of different binding–site conformations 

of the same receptor (ensemble docking) (Amaro et al., 2018). These ensembles can either be 

taken from experimental crystal structures (Osguthorpe et al., 2012a) or molecular simulations 

(MD or MC) (Osguthorpe et al., 2012b). A typical workflow of a docking program is depicted 

in Figure 9.  

 

 Accurate scoring functions are necessary for correct binding pose prediction, 

estimation of affinities, ranking of compounds by affinity and discriminating binders from 

nonbinders (Li et al., 2014). Most scoring functions are composed of additive terms that aim to 

capture the important energetic contributions of protein–ligand binding. Favorable interactions 

such as hydrogen bonds, salt bridges, hydrophobic interactions and attractive Coulomb 

interactions lead to better docking scores, while desolvation of polar groups, steric clashes or 

repulsive coulomb interactions are detrimental for binding. Furthermore, changes in 

conformational entropy upon binding are estimated by approximations such as functions taking 

into account the number of rotatable bonds of the ligand (Ben-Shalom et al., 2017). The scoring 

Figure 9. Workflow of a typical molecular docking algorithm 
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functions can be classified into four categories: i) physics–based, ii) empirical, iii) knowledge–

based and iv) machine–learning (Liu and Wang, 2015). For physics–based scoring functions, the 

individual energy terms are taken from the molecular force field and complemented by a 

desolvation term from an implicit–solvent model (Huang et al., 2006).  

Empirical scoring functions have a less rigorous functional form and are calibrated to 

reproduce experimental affinities (Böhm, 1994). They can include certain force–field terms, but 

often are composed of additional, physically not always rigorous contributions such as lipophilic 

contact scores or special hydrogen bond rewards.  

Knowledge–based scoring functions estimate the binding affinity by means of pair–

wise statistical potentials, derived from analysis of protein–ligand complexes from the PDB 

(Muegge, 2006). The distance–frequencies of atom–atom contacts between protein and ligand 

are binned into histograms and the energy function is then derived.  

  The performance of scoring functions can be evaluated in terms of the docking power, 

the scoring power, the ranking power and the screening power (Li et al., 2014) . The docking 

power is the ability to select the correct pose (taken from the experimental structure of the 

protein–ligand complex) from a set of decoy poses.  The scoring power describes how well the 

scoring function can predict experimental binding affinities, if the correct binding pose is given 

as an input.  

The ranking power refers to the ability of correctly ranking a set of compounds that 

bind to the same receptor. The screening power finally is an indication of how well the scoring 

function can discriminate true binders from inactive molecules (decoys).  

 A comparative assessment on several widely–used docking algorithms showed that 

pose prediction and screening are less of a problem than scoring and ranking (Li et al., 2014). 

Furthermore, strong binders are often predicted too weak and weak binders too strong and a 

weakness of docking functions for the binding of rigid molecules to deeply buried pockets was 

discovered. The authors of the study concluded that non–additive effects and desolvation of 

polar groups need to be improved in current scoring functions.  

 

1.2.4 Molecular Dynamics Simulations  
 

Molecular Dynamics (MD) simulations are based on Newton’s law of motion. They 

simulate the movement of particles over time (Leach, 2001). In classical MD simulations that 

are typically applied in medicinal chemistry and structural biology, the moving particles are the 

atoms that the chemical system is composed of. The result of an MD simulation is a trajectory, 

that specifies the positions and velocities of the atoms at different points in time.  

Newton’s second law is given in equation 6: 
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𝑑;𝑥$
𝑑𝑡; = 	

𝐹rs
𝑚$
								(𝟔) 

  

By knowing the force F acting on a particle in the direction xi, solving the differential 

equation yields the time-dependent motion of the particle. In classical MD simulations, the 

forces on the particles can be obtained by means of a molecular force field. The molecular force 

field describes a potential energy function, mapping the coordinates of a molecular system to a 

potential energy value. In classical physics, the force is defined as the negative of the gradient of 

the potential V (equation 7). 

 

𝐹rs = −
𝑑𝑉(𝑥$)
𝑑𝑥$

																									(𝟕) 

 

 In molecular force fields, the force on a particle depends on its position relative to all 

other particles in the system. As a consequence, the atomic motions are not independent of each 

other and the equations cannot be solved analytically (Leach, 2001). Therefore, finite difference 

methods with a given time step ∆t are applied, such as the Verlet algorithm (Verlet, 1967) . The 

new positions of the particles are thereby derived from the current step and the previous step. 

The forces on the particles are calculated at each step.  

Since chemical and biological systems are by nature dynamic, MD simulations can 

provide insights into the role and function of proteins, transports across membranes and 

molecular recognition (Karplus and Kuriyan, 2005; Nair and Miners, 2014). Furthermore, the 

theory of statistical mechanics provides a rigorous physical framework to extract 

thermodynamic quantities from these simulations. Thermodynamic properties are calculated as 

time averages over the trajectory and the ergodic hypothesis states that ensemble average equal 

time averages, assuming complete sampling of the phase–space (space of all possible states).  

In terms of SBDD, MD simulations can aid binding-site prediction (Feng and Barakat, 

2018), refinement of protein structures from homology modeling or low-resolution experiments 

(Xun et al., 2015), binding pose prediction and refinement (Liu and Kokubo, 2017), binding free 

energy calculations (Cournia et al., 2017) and assessment of binding kinetics (De Vivo et al., 

2016). Such methodologies are now widely established in the field of CADD (De Vivo et al., 

2016) , supported by the development of novel simulation techniques (Hamelberg et al., 2004; 

Laio and Parrinello, 2002; Liu et al., 2005b), the increase in computational power (Borhani and 

Shaw, 2012), increase in experimental structural data available (Hollingsworth and Dror, 2018) 

and force field development (Harder et al., 2016). 

Careful selection of the simulation protocol and underlying parameters is needed for 

an adequate and reliable application of MD simulations in drug design projects (van Gunsteren 
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and Mark, 1998). Apart from selecting a simulation package (e.g. AMBER (Case et al., 2005), 

CHARMM (Brooks et al., 2009), Desmond (Bowers et al., 2006) being popular choices), the 

force field used for evaluating the forces between the particles has a direct impact on the 

outcome of the simulation, as shown by different studies (Feig et al., 2003; Martín-García et al., 

2015; Watts et al., 2018). Furthermore, a thermodynamic ensemble has to be chosen, specifying 

if the simulation is run under constant number of particles, volume and temperature (NVT), 

constant number of particles, pressure and temperature (NPT) or constant number of particles, 

constant volume and constant energy (NVE). Since the conditions for biological systems are 

usually room temperature and atmospheric pressure, simulating in the NPT ensemble at T=298 

K and p = 1 is a widely used setting when simulating biomolecules.  

 

1.2.5 Free Energy Perturbation 
 
 As previously mentioned, statistical mechanics enables the calculation of 

thermodynamic quantities as time averages from molecular simulations. The Helmholtz free 

energy of a system is directly obtained by the partition function Q through equation 8: 

𝐴 = 𝑘y𝑇𝑙𝑛
1
𝑄						(𝟖) 

The partition function Q is as follows: 

 

𝑄 =�𝑒e�(𝒒,𝒑)/���𝑑𝒒𝑑𝒑					(𝟗) 

  

Where q and p are the positions and momenta of all particles in the system and the 

integral is over the whole phase space. Inserting equation 9 into equation 8 then leads to the 

following formulation of the Helmholtz free energy: 

 

𝐴 = 𝑘y𝑇𝑙𝑛 Z
∬𝑒�(𝒒,𝒑)/���𝑒e�(𝒒,𝒑)/���𝑑𝒒𝑑𝒑				

∬ 𝑒e�(𝒒,𝒑)/���𝑑𝒒𝑑𝒑					
]							(𝟏𝟎) 

 

This expression is valid since the integral on top equals one. Introducing the probability density 

p(q,p) leads to: 

 

𝐴 = 𝑘y𝑇𝑙𝑛 ��𝑒�(𝒒,𝒑)/���p(𝐪, 𝐩)d𝒒𝑑𝒑				�					(𝟏𝟏) 

 
Since the total system energy E(q,p) occurs in the exponential, system configurations 

with high energy make a significant contribution to the Helmholtz free energy. However, since 

simulation algorithms such as MD primarily sample low-energy regions of the phase space, the 
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sampling problem that prevents free energy values to converge (Cramer, 2005). If we compute 

the difference in Helmholtz free energy between a system in state A and state B and reformulate 

the integrals as ensemble average, we can write  

 

〈𝐴〉y − 〈𝐴〉d = 𝑘y𝑇𝑙𝑛�
1
𝑀y

9𝑒	�s ���⁄

��

$

� − 𝑘y𝑇𝑙𝑛 �
1
𝑀d

9𝑒	�s ���⁄

��

$

�	

= 	𝑘y𝑇𝑙𝑛〈𝑒	�s ���⁄ 〉y −	𝑘y𝑇𝑙𝑛〈𝑒	�s ���⁄ 〉d	

= 𝑘y𝑇𝑙𝑛 N
〈𝑒	�s ���⁄ 〉y
〈𝑒	�s ���⁄ 〉d

P			(𝟏𝟐)	 

 

If the phase space of the two ensembles would perfectly overlap, this would simply 

equal to  

 

 

〈𝐴〉y − 〈𝐴〉d = 𝑘y𝑇𝑙𝑛〈𝑒	(��e��) ���⁄ 〉d				(𝟏𝟑) 
 

 Equation 13 is called the Zwanzig relation (Zwanzig, 1954). The advantage lies in the 

fact that the equation doesn’t contain energies, but energy differences. For two biomolecular 

systems that are very similar and for example just differ by one atom, most energy terms 

(solvent-solvent e.g.) remain roughly the same and cancel out. Yet, the accuracy of the Zwanzig 

relation depends on how well the phase space of systems A and B overlap. To obtain a better 

overlap, the transformation from system A to B can be split into smaller steps by using a 

parameter l with values ranging from 0 to 1 (equation 14).  

 

𝐸(𝜆) = 𝜆𝐸y + (1 − 𝜆)𝐸d					(𝟏𝟒) 
 

This methodology is called free energy perturbation (FEP). Whereas FEP can be used 

to predict absolute binding free energy (Singh and Warshel, 2010), it shows its strongest 

potential in CADD for the prediction of relative binding free energies, meaning the difference 

in binding free energy DDG between two ligands (Cournia et al., 2017). This is also due to the 

fact that relative binding free energies are easier to converge and usually profit from a 

cancellation of errors (Chodera et al., 2011), since these calculations are often performed for 

congeneric series of structural analogues in lead optimization stages. 

 Factors that diminish the accuracy of binding free energy calculations (FEP, 

thermodynamic integration,…) are shortcomings of molecular force fields (Wang et al., 2015) 

and insufficient sampling (Mobley et al., 2007). If the change in ligand structures leads to large 
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conformation rearrangements in the protein, substantially longer sampling times are needed 

(Lim et al., 2016). Recent developments in enhanced sampling methods such as replica exchange 

with solute tempering (REST) (Wang et al., 2011b) allow improved accuracy. It is the 

combination of better force fields, enhanced sampling, increased computational power through 

GPU and automatized workflows that led to an increased application of relative binding free 

energy calculations in drug discovery projects (Cournia et al., 2017).   

 

1.2.6 Water Models in Molecular Simulations 
 

In general, two approaches exist for the representation of water in molecular simulations: 

implicit solvent and explicit solvent.  

 In the implicit representation of the solvent, the water molecules are not explicitly 

treated, but merely the effect that they have on the behavior of the system is emulated. Liquid 

water for example has a relative permittivity (dielectric constant) of e = 80.1 at room temperature  

(Hobbs et al., 1966), leading to a large shielding of charges according to Coulomb’s law. This 

effect can for example be taken into account by replacing the constant dielectric constant e by 

a distance–dependent dielectric e  = rij or by a sigmoidal function, that has shown to more 

accurately reproduce the structure of DNA-binding protein in molecular simulations (Guenot 

and Kollman, 1992). While in the past (early 90s), such simple models were used in molecular 

simulations due to the computational expense of adding explicit water molecules (Guenot and 

Kollman, 1992), they nowadays are mainly applied in scoring functions for docking (Friesner et 

al., 2006), where rapid evaluation of the interaction energies is necessary and the sampling of 

the solvent needs to be eliminated for computational efficiency.  

 More realistic implicit representations of solvent that are computationally less 

expensive than treating the solvent explicitly are the Generalized-Born and the Poisson-

Boltzmann methods (Leach, 2001), that allow for estimations of solvation free energies and can 

be used in combination with molecular mechanics to estimate binding free energies (Genheden 

and Ryde, 2015). 

Nowadays, molecular simulations are mainly conducted with explicit water molecules 

and it is expected that an accurate representation of the true physical and structural properties 

of water is a necessity to accurately reproduce the true dynamics of a biomolecular system. In 

recent decades, different water models with varying complexity have emerged. Depending on 

the number of interaction sites, widely used water models can be categorized into 3–site, 4–site 

and 5–site models (Figure 10).    
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Figure 10. Schematic depiction of different rigid water models used in molecular simulations with classical 
force fields. Apart from the number of interaction sites, the water models differ in terms of geometry (rO-H, 
�) and their charge distributions. 

 

The most widely applied 3-site water models are the TIP3P (Jorgensen et al., 1983) and 

the SPC (Berendsen et al., 1981). In these models, the interaction sites coincide with the 

positions of the three atoms of the water molecule. The TIP4P is 4-site model that has an 

additional dummy atom along the bisector of q. This dummy atom does neither bear a mass nor 

does it interact with other particles over Lennard-Jones interactions, it solely bears the negative 

charge of the oxygen (Jorgensen et al., 1983). The interaction site located at the oxygen atom 

thereby still has the full mass associated with it as well as the Lennard-Jones parameters. In the 

TIP5P model, two charge-bearing dummy particle are present with the aim to mimic the lone 

pairs of the oxygen that should lead to a better representation of the tetrahedral interaction 

geometry of water molecules (Mahoney and Jorgensen, 2000). Water models are usually 

parametrized against experimental, physical properties of liquid water (density, pressure, radial 

distribution function, dielectric constant,…) (Berendsen et al., 1981; Jorgensen et al., 1983). For 

the parametrization, typically molecular simulations are performed and it is evaluated how well 

the calculated values derived from the simulation reproduce the experimental ones. 

 With increasing number of particles, the computational cost for evaluating the forces 

increases, and therefore in terms of speed, the 3-site models perform best and this fact is 

contributing to their popularity (Wang et al., 2014). The question remains, if this reduced 

computational cost comes at the expense of accuracy. The TIP3P water model for example 

shows overestimated mobility, which actually leads to faster dynamics of the system and can 

increase sampling (Florová et al., 2010). However, simulations of bulk water with TIP4P 

reproduce diffraction data better and lead to more accurate thermodynamic properties 

compared to SPC and TIP3P (Jorgensen et al., 1983).  

 In terms of reproducing positions of crystallographic water molecules, simulations that  

were performed using a TIP4P water model were shown to be superior compared to TIP3P and 

TIP5P (Betz et al., 2016). It has also been shown that the choice of the water model can have a 
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significant impact and the dynamics, structure and thermodynamic properties of binding site 

solvent in protein–ligand complexes (Fadda and Woods, 2011).  

 All mentioned water models are associated with major approximations: they are rigid 

in geometry and have a fixed charge distribution with a point–charge model. Furthermore, the 

parameters for the water models are usually fitted to reproduce the properties of bulk water, 

however, due to the different dielectric constant in the protein environment, the dipole moment 

of water is expected to be significantly different in the interior of proteins (Morozenko et al., 

2014). The simple point–charge model and lack of polarization are on the other hand a general 

shortcoming of the classical force fields used for the simulations. Improved water models with 

atomic multipoles and polarization terms also need the corresponding force fields (Qi et al., 

2015). The AMOEBA force field is a noteworthy example for a polarizable force field with 

atomic multipoles (Ponder et al., 2010), at a higher computational cost compared to classical 

force fields.  

												 

1.2.7 Computational Methods for the Thermodynamic Characterization of 
Water Effects in Drug Discovery 

 
Due to the crucial role that water plays in molecular-recognition processes, there is a 

clear need for computational methods that guide drug discovery projects in this aspect. This can 

range from algorithms that predict hydration free energies of small molecules (Mobley et al., 

2009), to scoring functions that account for the solvation and desolvation of polar atoms 

(Schneider et al., 2013), or to tools that provide a three-dimensional map of the solvent 

thermodynamics of binding sites to guide drug design (Abel et al., 2008). 

 Prediction of small–molecular hydration free energies can be obtained by implicit 

solvent models in combination with force field or ab initio calculations (Brieg et al., 2017; 

Mennucci et al., 2002). For simulations conducted with explicit solvent models, solvation free 

energies of small molecules are typically calculated by means of  free energy calculations such as 

FEP (Mobley et al., 2009). 

 To guide ligand design in terms of optimizing the contributions from solvent effects, 

the distribution and thermodynamic properties of the binding site solvent should be 

investigated. Arguably the first published approach for determining possible locations and 

properties of solvent molecules in the binding site is GRID (Goodford, 1985). In GRID, a water 

probe systematically scans points on a grid and evaluates the associated interaction energies. 

This results in a 3D contour plot showing potentially favorable and unfavorable locations for 

water molecules. The advantage of this approach is the low computational cost, but a 

disadvantage is the focus on solute–probe interactions, neglecting water-water interactions. This 

makes the approach feasible for identifying structural water molecules with strong interactions 
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with the protein, but identifying clusters that are stabilized through solvent–solvent interactions 

is challenging. A similar method is MCSS (multiple copy simultaneous search), which differs in 

terms of probe representation and functional forms of the interaction energies, but provides 

similar information about preferred locations for water molecules in biomolecules (Bitetti-

Putzer et al., 2001). 

 SZMAP (solvent–Zap–mapping) is also a method that relies on sampling a grid on the 

binding site with a water probe. However, the remaining solvent is represented as Poisson–

Boltzmann implicit solvent (Bayden et al., 2015), therefore the method accounts for interactions 

of the water probe with the remaining solvent, although in an implicit manner. Furthermore, 

SZMAP facilitates the estimation of the free energy difference of the probe compared to bulk, 

together with the energetic and entropic contributions. These quantities are derived from a 

partition function, summing over the probe orientations for a given grid point. SZMAP was 

shown to successfully reproduce the locations of crystallographic water sites and predict if they 

are conserved or displaced upon the binding of various ligands in a set of HIV-1 protease and 

FXa inhibitors. The obtained free energies for the water site correlated well with free energies 

obtained by more rigorous calculations based on MD simulations with thermodynamic 

integration (Bayden et al., 2015). 

 3D-RISM is based on the integral equation theory of liquids and uses reference 

interaction site model (RISM) in three dimensions (Beglov and Roux, 1997) to calculate the 

distribution and thermodynamic properties of a liquid around a solute. 3D-RISM achieves the 

complete sampling of solvent in accessible computational time, which is an advantage compared 

to methodologies based on molecular simulations such as molecular dynamics, where sampling 

is finite (Sindhikara and Hirata, 2013). 3D-RISM derived free energy densities were used in a 

partial least squares regression model and successfully captured SAR trends in a series of fXa 

ligands (Güssregen et al., 2017). 

 Another possible approach is to extract thermodynamic properties of solvent 

molecules from Molecular Dynamics Simulations. Inhomogeneous Fluid Solvation Theory 

(IFST) is a rigorous framework that facilitates the calculation of solvation free energies by 

quantifying the change in solvent structure due to the insertion of a solute (Lazaridis, 1998). The 

thermodynamic properties of the solvent can thereby be extracted from the trajectory analysis 

from molecular simulations such as MD simulations. Separate terms for enthalpic and entropic 

contributions to the solvation free energy are calculated. Furthermore, solvation energies and 

entropies are decomposed into solute–solvent terms (Esw,Ssw ) and solvent–solvent 

reorganization terms (Eww,Sww) (Li and Lazaridis, 2003). The second order terms for the 

solvation energy and entropy are (Li and Lazaridis, 2006): 

 

∆𝐸+,-. = 𝐸�� +
Q
;
𝐸�� − 𝐸#�-�					(𝟏𝟓)   
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∆𝑆+,-. = 𝑆+� + ∆𝑆��			(𝟏𝟔) 
 

Evaluation of the energetic term is straightforward for simulations with classical force fields and 

can be taken as the force field interaction energies of the solvent with the solute (Esw) and the 

mean solvent–solvent interaction energy (Eww). Ebulk is the mean solvent–solvent interaction 

energy in bulk.  

The entropic terms are taken from solute–solvent and solvent–solvent pair correlation 

functions. The solute–solvent term is given as 

 

𝑆+� = 	−𝑘𝜌�𝑔+�GH (𝒓) 𝑙𝑛	𝑔+�GH (𝒓)𝑑𝑟 −
𝑁�4G
8𝜋; �𝑔+�

,H (𝜔) 𝑙𝑛	𝑔+�,H (𝜔)𝑑𝜔		(𝟏𝟕) 

 

Where 𝑔+�GH  and 𝑔+�,H  are the translational and rotational correlation functions respectively. These 

integrals can be evaluated by numerically integrating over the probability distribution functions 

of the orientations and the translations (Li and Lazaridis, 2006). These integrals can be evaluated 

for specific subregions of a biomolecular system, yielding information about the thermodynamic 

properties of the solvent occupying these regions. This led to the concept of so called hydration 

sites, which are spherical regions with high water density. They are typically obtained by 

clustering the water positions from a molecular simulations (Abel et al., 2008; Li and Lazaridis, 

2006). 

 The possibility to obtain a spatial map of the thermodynamic properties of the solvent 

around a solute has interesting applications in CADD. The best-known tool for integrating IFST 

into drug discovery projects is the WaterMap software from Schrödinger ( Schrödinger Release 

2018-4: WaterMap, Schrödinger, LLC, New York, NY, 2018.). The principal idea is to run a 

simulation of the unliganded state of the protein and analyze the locations and thermodynamic 

properties (DG,  DE, -TDS) of the hydration sites in the binding site. Hydration sites with high 

DG values provide hot spots for ligand design, since their displacement expected to result in an 

affinity gain (Abel et al., 2008). Typical cases are hydration sites in hydrophobic environment 

(unfavorable DE) and hydration sites with few and highly correlated hydrogen bonds 

(unfavorable DE and -TDS) (Young et al., 2007).  WaterMap has been successfully applied to 

predict SAR trends in congeneric ligand series (Abel et al., 2008), for the prediction of binding 

sites (Beuming et al., 2012), assessing ligand-binding kinetics (Pearlstein et al., 2013), understand 

kinase selectivity (Robinson et al., 2010) and develop novel ligands for platelet-derived growth 

factor receptor (Horbert et al., 2015).  
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 Other implementations of this type of hydration site analysis have been developed and 

published (Hu and Lill, 2014; Huggins, 2012; Li and Lazaridis, 2012). An outcome of a hydration 

site analysis is shown in Figure 11. 

 
 
  

 

 

 

 

 

 

 

 

 

 

 The shortcoming of WaterMap and related algorithms is that because of the clustering of 

the water positions into spherical hydration sites, thermodynamic properties of regions with 

lower solvent density are not assessed. Furthermore, if the density distribution is not radial, 

clustering into spheres also does not fully capture the whole solvent density even in regions that 

are highly occupied by water.  

 A solution to this problem was presented by Nguyen et al (Nguyen et al., 2012) in the 

form of a grid-based formulation of IFST (GIST), where the thermodynamic solvent properties 

are mapped onto a discrete grid. All of the mentioned algorithms are implementations of IFST, 

but they differ slightly in the way the thermodynamic properties are calculated. Entropic 

contributions can be calculated using a histogram-based approach (Abel et al., 2008; Li and 

Lazaridis, 2006) or a k-nearest neighbor approach (Huggins, 2014; Ramsey et al., 2016) and the 

latter exhibits improved convergence, especially with a combined translational-rotational 

distance metric (Huggins, 2014).  

 Furthermore, the WaterMap method does not involve a scaling of the solvent-solvent 

interaction energies Eww by a factor of 0.5 (Abel et al., 2008), as opposed to the original 

formulation of IFST (Lazaridis, 1998). This leads to a different physical interpretation of the 

obtained thermodynamic solvent quantities. In IFST, contributions of regions towards the 

solvation free energy are calculated (Lazaridis, 1998; Nguyen et al., 2012), whereas in the 

formulation used by WaterMap, a cavitation term is obtained which describes the change in free 

Figure 11. Hydration Site Analysis of the S1 pocket of Thrombin. The hydration sites are colored according 
to their DG values. HS2 and HS3 possess strong interactions with the carboxylate group and have low free 
energies. HS1 is surrounded by hydrophobic residues, resulting in a high DG value. 
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energy between growing the repulsive core of the ligand in the active site versus growing it in 

the bulk (Abel et al., 2010). The formulation of this so called displaced-solvent functional is only 

valid for ligands that are complementary to the protein (hydrogen bonds formed in the bulk are 

conserved in the receptor binding site) (Abel et al., 2010).  

 The obtained DG values for the hydration sites in WaterMap often display positive 

values (Abel et al., 2008), and the interpretation is as follows: if the ligand binds complementary 

to the protein (hydrophobic ligand parts interact with hydrophobic protein residues and polar 

ligand functional groups interact with polar protein functional groups), then the displacement 

of this hydration site is expected to result in an affinity gain. In the original IFST formulation 

on the other hand, the DG values are usually negative and this indicates a desolvation cost for 

the displacement of this hydration site (Li and Lazaridis, 2003). The interaction energy of the 

ligand with the protein should then be large enough to compensate for this desolvation cost. 

Both approaches were recently incorporated into scoring functions, aiming at a more accurate 

description of water thermodynamics and its quantitative contribution towards protein-ligand 

binding (Balius et al., 2017; Murphy et al., 2016). 

 

  

1.2.8 The Importance of Water in Molecular Docking 
 

We emphasized in the previous sections the important contributions of protein and 

receptor desolvation and the effect of single well-defined water molecules on the quantification 

of ligand-protein binding processes. Since molecular docking aims to identify correct ligand 

binding poses and estimate the associated affinity, accurate scoring functions should include 

terms that account for these effects. Since scoring functions should be computationally fast, 

explicitly sampling all solvent degrees of freedom is out of reach. A possible, physically rigorous 

physics-based formulation is to incorporate solvation/desolvation effects using an implicit 

solvent model such as Generalized-Born (GB) or Poisson-Boltzmann (Gilson et al., 1997; Zou 

et al., 1999). Yet, although these methods are computationally cheaper than explicitly sampling 

the solvent degrees of freedom, they are still too expensive for  large screenings of compounds 

(Liu et al., 2004). 

Empirical terms that are physically less restrictive but still aim to capture the underlying 

concept of ligand and receptor desolvation upon binding can provide a solution to this 

challenge. Such methods usually assess how the solvent accessibility of ligand and/or protein 

atoms change upon binding, and the desolvation penalty is then based on the corresponding 

atom type (Huey et al., 2007; Mysinger and Shoichet, 2010; Schneider et al., 2013).  

Though these methods account for general solvation and desolvation effects, they 

cannot account for specific water molecules with well-defined positions that are known to be 
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important in molecular recognition (Ladbury, 1996) and it was shown that incorporating such 

water molecules into docking studies improves pose prediction (Roberts and Mancera, 2008; 

Thilagavathi and Mancera, 2010). Since such water molecules can either be conserved across a 

series of ligands or displaced (García-Sosa et al., 2003), a flexible treatment of explicit binding 

site solvent is necessary for incorporating these water molecules correctly.  

Such dynamical treatment of binding site water molecules is for example incorporated 

in GOLD (Verdonk et al., 2005) or AutoDock (Forli and Olson, 2012). However, there still 

remains the challenge of accurately quantifying the energetics of the displacement of such water 

molecules. Recent developments aim to incorporate thermodynamic solvent properties obtained 

from molecular simulations in combination with inhomogeneous fluid solvation theory. WScore 

combines Glide (Friesner et al., 2004) with WaterMAP (Abel et al., 2008), whereas GIST 

(Nguyen et al., 2012) was combined with Dock (Balius et al., 2017) and Autodock (Uehara and 

Tanaka, 2016). 

 
 

1.3 In silico toxicity prediction 
 
Apart from their importance in drug design, computational methods can also be used for the 

estimation of the toxicology of chemical substances (Raies and Bajic, 2016). A wide range of 

technologies were applied for toxicity predictions, such as QSAR (Helma, 2006), machine 

learning (Yang et al., 2018) or structural filters (Sushko et al., 2012). Yet, when the toxicological 

effect of a compound is initiated by the binding to a biological receptor, also methods that are 

usually applied in SBDD can be used (Trisciuzzi et al., 2017). 

 The VirtualToxLab, developed by Prof. Angelo Vedani, is an in silico tool for toxicity 

prediction that estimates the binding affinity of  small molecules towards a panel of 16 receptors 

that are known to trigger adverse effects (Vedani et al., 2012, 2015). The targets involve various 

nuclear receptors (androgen receptor, estrogen receptor a and b, thyroid receptor a and b, 

progesterone receptor, mineralocorticoid receptor, glucocorticoid receptor, liver X receptor, 

peroxisome proliferator-activated receptor g), members of the cytochrome family (cytochrome 

P450 1A2, 3A4, 2C9, 2A13, 2D6), the aryl hydrocarbon receptor and the human Ether-a-go-go 

related gene. The VirtualToxLab relies on molecular docking with flexible ligand and flexible 

receptor in combination with a physical-scoring function based on the YETI force field, whereas 

the binding affinities are determined by a Boltzmann-weighted scoring approach (Vedani et al., 

2015).  
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1.4 Aim of the Thesis 
 

The aim of this thesis is to quantify the contributions of water thermodynamics to the binding 

free energy in protein-ligand complexes. Various computational tools were directly applied, 

implemented, benchmarked and discussed. 

 An own implementation of the IFST formulation was developed to facilitate easy 

integration in workflows that are based on Schrödinger software. By applying the tool to a well-

defined test set of congeneric ligand pairs, the potential of IFST for quantitative predictions in 

lead-optimization was assessed.  

 Furthermore, FEP calculations were applied to an extended test set to validate if these 

simulations can accurately account for solvent displacement in ligand modifications.  

 As a fast tool that has applications in virtual screening problems, we finally developed 

and validated a new scoring function that incorporates terms for protein and ligand desolvation.  

 This resulted in total in three distinct studies, that all elucidated different aspects of 

water thermodynamics in CADD. These three studies are presented in the next section. In the 

conclusion, the results and implications of these studies are discussed jointly, as well with 

possible future developments.  

 An additional study was focused on virtual screening and toxicity prediction at the 

androgen receptor, where distinguishing agonists and antagonists poses difficulties. We 

proposed and validated an approach based on MD simulations and ensemble docking to 

improve predictions of androgen agonists and antagonists. 

 
 

 
 
 

 

 

 

 

 
 



2 Manuscripts 

 28 

2 Manuscripts  
 

2.1 “Thermodynamic Insights into the Effects of Water 
Displacement and Rearrangement upon Ligand Modifications using 
Molecular Dynamics Simulations”  

Wahl, J.; Smiesko, M. Thermodynamic Insights into Effects of Water 
Displacement and Rearrangement upon Ligand Modification Using Molecular 
Dynamics Simulations. ChemMedChem 2018, 13, 1325-1335. 
 
2.1.1 Summary 
 
A test set of seven congeneric ligand pairs that contain structural modifications that either lead 

to the displacement or to a rearrangement of binding site water molecules was constructed from 

literature data. Inhomogeneous Fluid Solvation Theory (IFST) was applied to calculate the 

thermodynamic contributions of the change in the water network towards the total change in 

binding free energy between the ligand pairs. Whereas an approach combining IFST and 

differences in interaction energies, solvation free energies and binding entropies could 

qualitatively predict if the change in binding free energy is favorable for a ligand pair, predictions 

with chemical accuracy (<1 kcal/mol) were not possible for all systems. This highlights that lead 

optimization strategies that are based on considerations about water thermodynamics are 

challenging and the outcomes are difficult to predict, even with state-of-the-art methods.  

 
2.1.2 Author contributions 
 
J.W. developed a script that implements the IFST algorithm. The script extracts the positions 

and thermodynamic properties of hydration sites directly from an MD trajectory. J.W. compiled 

the test set, designed the study and performed the calculations, all under supervision and 

guidance of M.S.  

J.W. wrote the manuscript. M.S. proofread and improved the manuscript.   

 

2.1.3 Potential Impact on the Scientific Field 
 
The article discusses several theoretical considerations for the application of IFST calculations 

in lead optimizations, such as the importance of the rearrangement of the water molecules due 

to structural ligand modifications and the problem of double-counting of water-water 

interactions between different hydration sites. Furthermore, the article supports the 

understanding of structure-activity relationships (SAR) that involve the displacement of binding 

site water molecules.  
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2.2 “Assessing the Predictive Power of Relative Binding Free Energy 
Calculations for Test Cases Involving Displacement of Binding Site 
Water Molecules”  

2.2.1 Summary 
 
FEP calculations were applied to a benchmark set of 6 congeneric ligand pairs that involve the 

displacement and/or rearrangement of binding-site water molecules upon structural 

modification. The calculated relative binding free energies were compared to the experimental 

values reported in the literature. For some of the systems, large deviations from the experimental 

DDG values were observed, together with a high dependency on the initial solvent structure. 

These results indicate that the insufficient equilibration of binding site solvent is a main reason 

for these inconsistencies, due to a slow exchange with the bulk.  

A hydration site analysis of all trajectory end-states from the transformations was 

applied that supports this hypothesis. This was furthermore confirmed by running calculations 

of control examples from the same ligand series that do not involve a change in binding site 

solvation. A protocol that adds a GCMC solvent equilibration step before the FEP calculation 

was tested that leads to better equilibration of the binding site solvent. Yet, this approach still 

needs improvement.  

 
 
2.2.2 Author contributions 
 
J.W. developed a script to analyze the solvent distributions and thermodynamic properties from 

FEP calculations. J.W. composed the benchmark set, planned the study and made all 

calculations, all under the supervision and guidance of M.S.  

J.W. wrote the manuscript, M.S. proofread and improved the manuscript.  

 

2.2.3 Potential Impact on the Scientific Field 
 
The study points out a shortcoming of common FEP simulation protocols and in detail 

discusses the problem of insufficient binding site equilibration for buried cavities. State-of-the-

art simulation protocols and very long simulation times (50 ns per l-window, summing up to 

600 ns per transformation in total) were applied. The presented benchmark set can serve as a 

gold standard for FEP protocols that address the issue of binding site solvent equilibration. It 

is furthermore the first study that tests a GCMC pre-equilibration step in RBFE calculations. 

Since FEP calculations benefit from increased interest recently, this study should be of great 

interest to the field.  
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Assessing the Predictive Power of Relative Binding Free Energy
Calculations for Test Cases Involving Displacement of Binding Site
Water Molecules
Joel Wahl† and Martin Smiesǩo*,†

†Molecular Modeling, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel,
Switzerland

*S Supporting Information

ABSTRACT: Improved sampling methodologies, more accurate force fields, and access
to longer simulation time scales have led to an increased application of Relative Binding
Free Energy (RBFE) calculations in drug discovery projects. In order to assess the
strengths and limitations of such tools, adequate benchmark sets are required that
challenge the methodology in certain well-defined aspects. We applied Free Energy
Perturbation (FEP) calculations to six congeneric ligand pairs taken from the literature, in
which addition of a functional group resulted in the displacement of buried binding site
water molecules and compared the calculated relative binding free energies with the
experimental ones. We started the perturbations from different initial solvation states and
registered large inconsistencies (large hysteresis) between the calculated values. We
furthermore applied a Grand Canonical Monte Carlo (GCMC) solvent sampling step
prior to the FEP calculation that led to a smaller hysteresis for the simulations. By
applying a hydration site analysis to the trajectories of the end-states of the perturbation,
we could point out that the low accuracy of the predictions as well as the high dependence
of the prediction on the chosen initial state is likely caused by the trapping of binding site water molecules and/or insufficient
solvation of buried cavities that are formed upon completion of the perturbation. This work highlights that RBFE calculations
can suffer from slow solvent exchange of buried parts of the binding sites with the bulk.

■ INTRODUCTION
Alchemical Relative Binding Free Energy (RBFE) calculations
are increasingly applied in drug discovery processes, facilitated
by a variety of improvements in the methodology and successful
case studies that highlighted the robustness and usefulness of
these methods in hit-to-lead and lead optimization stages.1−6

Advances include improvements in force fields,7−9 enhanced
sampling methods,10,11 and accessibility of longer simulation
times due to acceleration provided by graphical processing units
(GPUs).12−14

RBFE calculations usually show the most accurate predictions
when they are applied to chemically similar ligands.6 Therefore,
they were so far mainly used for quantifying R-group
modifications. Recently developed methodological improve-
ments also facilitate core-hopping studies.15 The difficulties
associated with large changes in ligand structures are related to
the problem of the finite sampling of the conformational space,6

and systems that include protein reorganizations such as the
opening of binding cavities were shown to be challenging.16

Further sources of error for RBFE calculations are erroneous
protonation states of the protein and/or ligand,17 uncertainties
about binding modes18,19 and binding site solvation.20 The
problem of binding site solvation is related to the slow exchange
between bulk and buried binding site solvent molecules and the
finite sampling in the simulation time scales that are currently
accessible.1,6,21 Not only can this lead to unrealistic initial

solvation states20 but can also pose problems for minor ligand
modifications where introducing a functional group leads to a
displacement or rearrangement of binding site solvent
molecules.22 Michel et al. showed on the basis of three examples
that the growth of functional groups that displace buried water
molecules leads to a trapping of these water molecules in
energetically unfavored states.22 The accuracy of the predictions
was improved when the water molecule was decoupled (double
decoupling method) prior to the alchemical ligand trans-
formation. The binding free energy of the displaced water
molecule was added as a correction to relative binding free
energy. This work highlighted the problem of water trapping in
alchemical RBFE calculations. The drawback of the strategy is
that prior knowledge about the water displacement is necessary.
Furthermore, improper sampling of the phase space could occur
due to the simplified two-stepped nature of the simulated
thermodynamic cycle.
The problem of insufficient solvent exchange with the bulk

was also investigated for the calculation of the absolute binding
free energy of camphor to cytochrome P450.23 The authors
employed a GCMC/MD approach to circumvent the problem
of trapped water molecules. However, a systematic analysis for
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employing such an approach for the prediction ofΔΔG values in
congeneric ligand series has not been conducted yet.
An alternative to GCMC or the double decoupling of the

solvent for RBFE calculations is to define four states (Ligand A
with the water molecule present, Ligand B with the water
molecule absent, Ligand A with the water molecule absent,
Ligand B with the water molecule present) and to calculate the
free energy differences between all states.24 The water molecule
is thereby converted into a dummy particle.
There remains the question if the recent improvements in

enhanced sampling methods and the access to longer simulation
time scales can lead to sufficient solvent equilibration. Whereas
enhanced sampling methods such as replica exchange with
solute tempering (REST)25 have clear beneficial effects on the
accurate simulation of ligand and protein reorganization, their
effect on solvent exchange between the binding site and the bulk
has not been investigated thoroughly. The REST method used
in our study employs a Hamiltonian Replica Exchange

Molecular Dynamics (H-REMD) scheme,26 which involves
scaling of the interactions of the solvent with the solute atoms of
the hot region. Furthermore, enhanced sampling employing
REST can possibly facilitate the entering or leaving of solvent
molecules from the binding site due to larger motions of the
solute atoms.
To assess the ability of RBFE calculations to yield accurate

results for real-world applications, there is a need for benchmark
sets that challenge the algorithms in certain clearly defined
aspects, with the aim to point out systematic weaknesses.6 We
recently benchmarked the potential of Inhomogeneous Fluid
Solvation Theory (IFST) for quantitative predictions of relative
binding free energies in congeneric ligand pairs that involve
displacement of water molecules from the binding site, using a
set of seven well-characterized examples from the literature.27

The examples were picked carefully and fulfilled the following
criteria: (i) high-quality crystal structures available for all ligands
or for closely related analogues that confirm the absence/

Figure 1. Benchmark set containing six different ligand pairs from four different receptors. Examples I−VI: Hsp90 inhibitors, examples VII−VIII:
BACE-1 inhibitors, IX: scytalone dehydratase inhibitors, X: Bruton’s tyrosine kinase inhibitors. Examples that involve solvent displacement are colored
in blue; examples of the control set that do not involve change in binding site solvation are colored in red.

Journal of Chemical Information and Modeling Article
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presence of the water molecules that were targeted for
displacement; (ii) availability of thermodynamic data for all
ligand pairs with the measurements for the corresponding pairs
performed by the same lab; (iii) only minor modifications in
ligand structures that led to solvent displacement and/or
rearrangement; (iv) displacement and/or rearrangement of
solvent occurs in a buried region of the protein and does not
cause major conformational changes in the ligand−receptor
complex. We identified six ligand pairs in which these criteria are
fulfilled. In addition to this, we picked ligand pairs that fulfilled
criteria i and ii but do not result in water displacement. These
ligand pairs served as control examples, and the corresponding
calculations were performed in order to rule out other possible
sources of error of the simulation protocol, e.g. protein
reorganization, erroneous system setup, or force field
inaccuracies.
Due to these characteristics, we regard this set as a valid

benchmark set for challenging the ability of state-of-the-art
alchemical RBFE calculations to make predictions for
congeneric ligand pairs that involve the displacement of binding
site water molecules. We applied FEP/REST calculations to
these examples and compared the obtained relative binding free
energies with the ones from experiment. We furthermore
employed hydration site analysis (HSA) to investigate the
solvent distribution in the binding site and to identify trapped
water molecules. Our results indicate that even state-of-the-art
methods with enhanced sampling are still challenged by small-
modifications that lead to solvent rearrangements in buried
pockets, and even simulation times of 50 ns per λwindow do not
lead to sufficient solvent equilibration with the bulk for some of
the examples. We assess a solvent equilibration protocol using
Grand Canonical Monte Carlo (GCMC) and show that it can
improve the hysteresis for the systems. This study emphasizes
the need for methodological improvements in RBFE calcu-
lations and their rigorous validation to extend the applicability
and the reliability of the predictions for such cases.

■ MATERIALS AND METHODS
Benchmark Set. The examples of the benchmark set are

shown in Figure 1. For all examples, the ligand on the left
corresponds to the smaller ligand with the water molecules
present, and the ligand on the right has an added functional
group that displaces the water molecule(s).
Examples I−VI correspond to Hsp90 inhibitors. In example I,

compound Kung-1328 bears a pyrrolopyrimidine scaffold. The
crystal structure of the inhibitor bound to Hsp90 (PDB ID:
3RLQ) reveals the presence of two water molecules. Addition of
a methyl-group (compound Kung-16) facilitates the displace-
ment of the two water molecules (PDB ID: 3RLR), whereby the
affinity roughly remains the same.
Converting the nitrile group of the same inhibitor (Kung-

13)28 into a hydrogen (Kung-9)28 in example II leads to a
drastic decrease in affinity. This example does not involve a
change in binding site solvation and is used as a control example.
In example III, replacing the ring nitrogen of a purine scaffold

(Davies-13b,29 PDB ID: 4FCP) with a nitrile group (Davies-
15b)29 results in the displacement of a water molecule and a
significant gain in affinity.
Example IV is a control example. Changing the cyano-

pyrrolopyrimidine scaffold of Davies-15a29 to a cyano-
pyrazolopyrimidine (Davies-16)29 results in a significantly
higher binding free energy.

Example V involves the conversion of a phenol moiety
(Woodhead-1,30 PDB ID: 2XAB) to a methoxyphenyl (Wood-
head-2, PDB ID: 2XJG). Two water molecules are thereby
displaced and the affinity decreased.
Example VI is a control example. Converting the hydroxyl

group ofWoodhead-1 from example V30 to an NH and adding a
CH2 for the closing of a five-membered ring (Woodhead-4)30

does not lead to the displacement of structural binding site water
molecules (PDB ID: 2XJJ) but to a lower affinity.
Example VII consists of a pair of BACE-1 inhibitors. A

pyridinemoiety (Cumming-4j,31 PDB ID: 4DJW) engages in an
interaction with a bridging water molecule. Changing the
pyridine to a methoxyphenyl (Cumming-4b,31 PDB ID: 4DJV)
displaces the water molecule and increases the affinity.
Replacing the chlorine substituent from Cumming-17h from

the previous series example by a propyne chain (Cumming-
24)31 increases the affinity (example VIII). This example is used
as a control and does not involve the displacement of a water
molecule (PDB ID: 4DJY).
For the inhibitor pair of scytalone dehydratase in example IX,

a benztriazine moiety (compound Chen-3d32) interacts with a
water molecule. An added nitrile functionality (Chen-5d,32 PDB
ID: 3STD) displaces the water molecule and increases the
affinity.
In example X, the pyridine group of inhibitor Smith-833 (PDB

ID: 4ZLZ) is extended to an indazole (Smith-11, PDB ID: 4Z3
V). A structural water molecule is displaced, and the affinity is
increased.

Structure Preparation. Preprocessing of all structures was
performed with the Protein Preparation Wizard which is part of
the Schrödinger Small-Molecule Drug Discovery Suite.34 The
crystallographic water molecules were kept, and all hydrogen
atoms were added to the system. Ligand and protein
protonation states and tautomers were assigned at a pH of 7.4.
The hydrogen bond network was optimized, and a restrained
relaxation employing theOPLS_2005 force field was performed.
Missing loops and side chains were added where necessary. For
examples I, V,VI, VII, VIII, IX, and XI, crystal structures for both
ligands bound to the receptors are available from the PDB. For
the remaining ligand pairs, either only one of the ligands had a
crystal structure available or only crystal structures of close
analogues were available. The structure preparation for these
ligand pairs is described in more detail.
For example II, inhibitor Kung-13 has a crystal structure

available (PDB ID: 3RLQ). To generate the structure of Kung-
9, the nitrile group ofKung-13was converted to a hydrogen, the
hydrogen bond network was reoptimized, and the restrained
relaxation was applied.
In example III, a crystal structure of compound 15a is

available (PDB ID: 4FCQ). The input structure forDavies-15b
was prepared by changing one of the ring methyl groups into a
fluorine atom, followed by restrained minimization. No crystal
structure for Davies-13b is deposited, but for a purine fragment
(PDB ID: 4FCP), indicating that the purine core has the same
binding mode as the pyrrolopyrimidine. A water molecule
solvating the ring nitrogen of the purine fragment is present. The
nitrile group of Davies-15b was deleted, and the ring nitrogen
was added, together with the water molecule solvating it, to
obtain the structure for Davies-13b.
A crystal structure for Davies-15a in example IV is available

(PDB ID: 4FCQ). The input structure for Davies-15 was
obtained by changing the ring C−H group to a nitrogen. This

Journal of Chemical Information and Modeling Article
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was followed by a reoptimization of the hydrogen bond network
and a restrained minimization.
For Chen-3d from example IX, no crystal structure is

available. However, there is a crystal structure of a closely
related benztriazine-bearing inhibitor present (PDB ID: 5STD),
where the position of the water molecule solvating the ring
nitrogen is resolved. To prepare the structure of Chen-3d, the
nitrile group of Chen-5d (which has a crystal structure
deposited (PDB ID: 3STD)) was deleted, and the ring nitrogen
and the water molecule solvating it were added. The hydrogen
bond network was optimized, and a restrained minimization was
performed.
FEP Calculations.All FEP calculations were conducted with

the academic LigandFEP methodology of Desmond,35,36 using
the OPLS_2005 force field37 and the TIP4P-Ew water model.38

The applied relaxation protocol employed the standard
settings for both the bound complex leg and the solvent leg:
(i) 100 ps BrownianDynamics in theNVT ensemble at 10 K and
solute heavy atoms restraints (50 kcal/mol/Å2), (ii) 12 ps
simulation in the NVT ensemble, keeping the restraints and
temperature at 10 K, (iii) 12 ps simulation in the NPT ensemble,
keeping restraints and temperature at 10 K, (iv) 24 ps simulation
in the NPT simulation with solute heavy atom restraints at 300
K, and (v) 240 ps simulation in the NPT ensemble at 300 K
without restraints. The temperature and pressure were
controlled using a Langevin thermostat (relaxation time 1.0
ps) and a Langevin barostat (relaxation time 2.0 ps).
Electrostatic interactions were treated using the particle mesh
Ewald calculation. The cutoff for nonbonded interactions was
set to 9.0 Å.
The FEP production runs were performed for 50 ns per λ-

window for the bound complex leg and 5 ns for the solvent leg.
The REST regions included the ligand atoms and the following
protein residues in the complex leg: examples I, V, VI: SER52,
ASP93; II, III, IV: ASN51, SER52, ASP93; VII, VIII: SER290;
IX: TYR30, TYR50; X: PHE413, PHE414, VAL415. In the
solvent leg, the ligand atoms define the REST region.
The λ-hopping stage was split into 12 windows. The details of

the FEP/REST implementation are given elsewhere.5,10,11

Enhanced sampling is based on the replica exchange with solute
scaling method,26 which uses the Hamiltonian replica exchange
method (H-REMD).39 For all ligand pairs, the simulations were
started from two initial states A and B. State A refers to the
protein conformation and binding site solvation with ligand A
present, whereas state B is defined analogously for ligand B
present. We defined ligand A as the ligand with the binding site
water molecules present, which are displaced by a functional
group of ligand B.
Error estimates for the predictions were obtained using

bootstrapping.40

GCMC. To obtain a better equilibration of binding-site
solvent prior to the λ-hopping stage, the newly available
GCMC/MD regime from Desmond was applied.41 The details
of the algorithm have not yet been fully disclosed by the
developers, but the solvent equilibration is achieved in two steps:
For every λ-window, a GCMC/MD stage is performed with
constraints on the solute heavy atoms. The number of water
molecules is allowed to vary between the different λ windows in
this stage. This is followed by a second GCMC/MD stage
without any constraints. The solvent molecules are thereby
equalized across the λ windows so that every λ has the same
number of particles. The simulation time was 1 ns for both

stages. The excess chemical potential of water was set to −7.17
kcal/mol.42

Hydration Site Analysis. In order to monitor the solvation
of the binding site during the FEP calculation, we applied a
hydration site analysis (HSA) to the end-state trajectories of the
production stage (λ-hopping). Since the λ-hopping stage was
split into 12 windows, 12 replicas were run, resulting in 12
trajectories. The trajectories of the replicas that correspond to
the two end states (λ0 (λ = 0) and λ11 (λ = 1)) were subject to the
HSA. The spatial clustering of the water positions requires them
to be in the same frame of reference, which is usually acquired by
running the MD simulations with applied constraints to the
solute heavy atoms.43−45 Since FEP calculations run without any
constraints, we circumvented this problem by applying a
clustering procedure to the trajectory frames.
The whole workflow, including the trajectory processing,

trajectory clustering, and HSA, was performed using an in-house
script written in Python, making use of the Python API of
Schrödinger’s Small-Molecule Drug Discovery Suite.34 The first
step consisted of the calculation of the binding site RMSD (root-
mean-square deviation) matrix of all frames of the trajectory.
The binding site was defined as the ligand heavy atoms and all
heavy atoms of residues that have atoms within 5.0 Å of any
ligand atom. The RMSDmatrix was then used as an input for the
clustering with a cutoff criterion of 1.0 Å. The trajectory frame
with the highest number of similar frames within an RMSD of
1.0 Å was selected as the center of the first cluster. This
procedure was repeated until all frames were assigned to a
cluster.
The optimal RMSD cutoff for the clustering is somewhat

arbitrary. The number of the clusters should be large enough so
that a single cluster does not exhibit too much structural
diversity, since this would blur the water density and lead to false
negatives, referring to regions with high solvent density that
cannot be identified as spherical hydration sites. For all
examples, we also visually inspected the trajectories to check if
water molecules were occupying regions where no hydration
sites were detected. In such cases, theHSAwas supplemented by
a contour plot of water density in the binding site. A rather small
cutoff of 1.0 Å also makes it possible to calculate more reliable
estimates for the solvation entropies. If the members of the same
cluster exhibit high RMSD values, then the water positions are
smeared out which affects the entropy estimations.46 We
therefore regard a cutoff of 1.0 Å as a good compromise, since
it still allows the generation of large clusters but at the same time
ensures limited structural divergence among the cluster
members.
Each cluster was then separately subjected to the HSA. and all

frames belonging to the same cluster were aligned by a roto-
translational fit to the corresponding cluster center. The size of
the hydration site was set to 1.0 Å, and the clustering of the water
positions was performed as described elsewhere.43 The
clustering stopped when the occupancy of a hydration site
reached less than 0.5 times the number of analyzed frames. For
every hydration site, the occupancy, the average water-solute
interaction energy (Esw), and the average water−water
interaction energy (Eww) were calculated. The water−water
interaction energy involves interactions with all waters of the
system. All interaction energies were calculated without cutoffs,
employing the minimum image convention. To assess if a
hydration site is in an energetically unfavorable state, the energy
of solvation was calculated (eq 1)44,47
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Δ = + −E E E E1
2sw ww bulk (1)

where Ebulk is the average interaction energy of a water molecule
in bulk, derived from a simulation of pure solvent (−11.412
kcal/mol for the TIP4P-Ew water model). The factor of 0.5 is in
accordance with the original formulation of IFST.44 The
solvation entropy was calculated by means of the k-nearest
neighbor method46 using the total distance metric.48 Only the
first-order solute-water entropy was calculated. This leads to the
following expression for the solvation free energies of the
hydration sites:

Δ = Δ − ΔG E T Ssw (2)

Simulation Analysis. Convergence plots for the FEP
calculations were generated by the FEPAnalysis tool from
Desmond.
Graphics. All molecular graphics were created with the

UCSF Chimera package.49

■ RESULTS AND DISCUSSION
Accuracy of the FEP/REST Calculations. The quality of

the obtained results can be assessed not only in terms of the
accuracy (how much the calculated values deviate from the
experimental values) but also in terms of the discrepancy
obtained by starting the transformations from two different
states.16 This can be expressed by the so-called hysteresis,50

which in our examples refers to the absolute difference between
ΔΔGA and ΔΔGB.

Inaccuracies and inconsistency in alchemical RBFE calcu-
lations can stem from various sources, such as insufficient
sampling in general,6 force field errors,5 or uncertainties in
system setup,1 and it is challenging to narrow down the exact
cause(s) for the inaccurate results. The hysteresis however is
mainly a problem of insufficient sampling.50 The results of the
calculations and a comparison with the experimental values are
provided in Figure 2. Six out of the ten examples studied (II, III,
VI, VIII, IX, X) showed good agreement (error of less than 1
kcal/mol) with the experimental results as well as small
hysteresis (<0.5 kcal/mol) in the standard simulation protocol
(no GCMC sampling), whereby all control examples showed
high accuracy (except for example IV) and small hysteresis
(Table 1). Example IV exhibits a small hysteresis, butΔΔGA and
ΔΔGB both differ more than 1.5 kcal/mol from the experimental
value. Examples I, V, and VII exhibit a hysteresis of larger than
1.9 kcal/mol, indicating a high dependency of the result from the
initial state (Table 1).
Since the two initial states for all systems mainly differ in their

solvation pattern and not in terms of ligand binding mode and/
or protein conformation (as indicated by the experimental
crystal structures), we suggest that insufficient equilibration of
binding site solvent as the main reason for these discrepancies
that are expressed as high hysteresis values. This is further
supported by the fact that for all of these three examples with
high hysteresis, the control examples did not exhibit a large
hysteresis. The control examples refer to ligand pairs from the
same system, that have structural modifications at similar atomic
positions, but do not involve changes in the solvation pattern.

Figure 2. Comparison of calculated ΔΔG values from standard FEP/REST calculations and FEP/REST calculations with GCMC solvent sampling
versus experimentalΔΔG values for simulations starting from initial states A and B. Examples involving solvent displacement are colored in blue. The
error bars for the individual simulations are obtained by applying the bootstrapping method.

Table 1. Comparison of Experimental and Calculated ΔΔG Values

ΔΔGA (kcal/mol) ΔΔGB (kcal/mol) ΔΔGA_GCMC ΔΔGB_GCMC ΔΔGexp (kcal/mol) hysteresis (kcal/mol) hysteresis GCMC (kcal/mol)

I 4.33 ± 0.11 0.70 ± 0.06 1.66 ± 0.07 2.86 ± 0.11 −0.17a 3.63 1.20
II 2.60 ± 0.08 2.89 ± 0.07 2.32a 0.29
III −1.02 ± 0.16 −1.12 ± 0.12 −0.86 ± 0.17 −1.00 ± 0.13 −1.41b 0.10 0.14
IV 1.69 ± 0.05 1.55 ± 0.07 3.25c 0.14
V 3.21 ± 0.11 −3.62 ± 0.11 3.47 ± 0.13 3.81 ± 0.10 2.01d 6.83 0.34
VI 3.57 ± 0.06 3.65 ± 0.06 3.77d 0.08
VII −1.98 ± 0.14 −3.91 ± 0.20 −2.15 ± 0.14 −1.78 ± 0.16 −0.61e 1.93 0.37
VIII −1.61 ± 0.14 −1.74 ± 0.19 −1.42e 0.13
IX −1.45 ± 0.18 −1.85 ± 0.18 −0.91 ± 0.14 −1.33 ± 0.13 −1.98f 0.40 0.42
X −2.25 ± 0.20 −2.03 ± 0.36 −1.76 ± 0.37 −3.32 ± 0.26 −1.91g 0.22 1.56

aDetermined using a competitive assay and a reported accuracy of 10−15%.28 bDetermined by ITC.29 cDetermined by SPR.29 dDetermined by a
cell-based assay.30 eDetermined by a FRET-peptide substrate hydrolysis assay.31 fDetermined by an enzymatic assay.32 gIC50 obtained by mobility
shift assay, converted to affinity by the Cheng-Prusoff equation.33
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The control example for I is IV, the control example for VI is V,
and the control example for IX is VII.

In addition, adding a GCMC solvent equilibration stage
before the λ-hopping significantly decreased the hysteresis for

Figure 3. HSA for all examples that involve displacement of binding site solvent molecules. Letters A and B indicate the initial state from which the
simulation was started. The given percentage numbers indicate the occupancy of the displayed cluster, obtained from the trajectory clustering. The
values in blue are the calculated ΔE values of the hydration sites. For clarity, the dummy atoms present in the respective end states are not shown.
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examples I, V, and VII yet did not improve the accuracy of the
predictions. For example X, adding the GCMC stage led to a
higher hysteresis.
Analysis of Binding Site Solvation for Standard FEP

Simulations. To analyze the binding site solvation and
determine examples with trapped water molecules or lacking
resolvation, we performed HSA for the trajectories of the end
states (λ = 0 and λ = 1) of the productions runs (λ hopping
stage) of all examples that involve a change in the number of
binding site water molecules upon ligand modification. The
results of the HSA are only reported for the most populated
cluster from the trajectory clustering by binding site RMSD for
each perturbation. If the most populated cluster has a low
occupancy, HSA for additional clusters is provided in the
Supporting Information.
In case the binding site solvent achieves full equilibration

along the FEP trajectory, the presence and also thermodynamic
properties of the hydration sites should be similar for the replicas
that correspond to the same bound ligand. Another indication of
insufficient equilibration of binding site solvent are ΔE or ΔG
values that are bigger than 0 kcal/mol. This would indicate that
it is actually thermodynamically favorable to expel such a water
molecule into bulk, but that the diffusion coefficient of the
binding site solvent is too slow considering timespan of the
trajectory for exchange with the bulk.
The solvation free energy ΔG of a hydration site is the actual

property of interest that decides if the solvent occupying this
specific subregion of the binding site is energetically favorable
compared to bulk. However, the obtained ΔG values from the
IFST procedure described in the Materials andMethods section
have to be assessed with care, primarily due to the way the
solvation entropy is treated. We only calculate the first-order
entropic term, the solute-water entropy ΔSsw, and neglect the
water−water contributionsΔSww. However, since the trueΔS of
a hydration site in a protein binding-site is expected to be
unfavorable compared to bulk water,51 hydration sites with
positive ΔE values will have positive ΔG values. For hydration
sites with slightly negative ΔE values (>−2 kcal/mol), there is
still a chance that the overall ΔG value is unfavorable, whereas
for hydration sites with very low solvation energies (<−2 kcal/
mol), the ΔG values are expected to be negative, given to the
proposed upper boundary of 2 kcal/mol for the entropic cost of
water molecules in protein binding sites.51 Still, for complete-
ness, all thermodynamic properties of the hydration sites (ΔG,
ΔE,ΔS) are given in the Supporting Information (S3), while our
argumentation is generally based on the ΔE values. We would
like to point out that the primary goal of the HSA was to
compare the solvent distribution of simulations that were started
from different initial states and not to make a quantitative
assessment of the thermodynamic properties of the binding site
solvent.
All examples except for III showed a high dependency on the

initial state in terms of the number, exact location, and
thermodynamic properties of the identified hydration sites
(Figure 3). In these examples, the initial binding-site solvent
pattern in the vicinity of the ligand modification was roughly
conserved along the FEP simulation, indicating that solvent
exchange with the bulk is not achieved. All identified hydration
sites exhibit favorable ΔE values except for simulation A of
example I, where one hydration site is trapped in an unfavorable
energy state with a ΔE of 2.79 kcal/mol. In the crystal structure
of Kung-16 bound to Hsp90 (PDB ID: 3RLR), no water
molecule can be observed at this hydration site, and also visual

inspection of the electron density (EDS) map does not indicate
the presence of this water molecule.
Another example of hydration sites that are conserved in the

FEP simulations but absent in the crystal structures occurs in
example V, simulation A. In the presence of inhibitor
Woodhead-2 (PDB ID: 2XAB), the two water molecules
solvating ASP93 and SER52 are not present in the crystal
structure but are conserved in the end-state replica (λ11) of the λ-
hopping and show furthermore favorable solvation energies.
They are present in the initial state of the simulation
(Woodhead-1 bound to Hsp90) and are not displaced by the
added methyl group.
In the end-state replica (λ11) of simulation B from example IX,

the water molecule that is initially solvating the triazine ring of
inhibitor Chen-3d is not displaced in the presence of inhibitor
Chen-5d. With a ΔE value of −0.79 kcal/mol, the actual
solvation free energy of this hydration site is probably slightly
positive, considering the expected unfavorable entropy of
solvation.
The opposite situation occurs in simulation B of examples V

and VII. In example V, the inhibitor Woodhead-2 is in a
desolvated state in the end-state replica (λ11), lacking the two
hydration sites observed in the crystal structure (PDB ID:
2XJG). Since the initial state of simulation B corresponds to the
crystal structure of Woodhead-1 bound to Hsp90, these two
hydration sites are initially absent and do not get populated in
the course of the simulation.
In example VII, the water molecule bridging an interaction

between the ring nitrogen of inhibitor Cumming-4j and the
backbone oxygen of SER290 is neither observed in the λ0-replica
of simulation A nor in the λ11-replica of simulation B, even
though the former simulation was started from an initial state
with this water molecule present. However, visual inspection of
several trajectory frames revealed the presence of a water
molecule solvating the ring nitrogen in the λ0 replica of
simulation A. Due to the flipping of the pyridyl ring in the course
of both simulations, the ligand and the binding site residues
exhibit great flexibility, which makes the hydration site analysis
challenging in this case.
Therefore, we calculated contour plots of the solvent density

on a grid with a resolution of 0.5 Å. A grid cell was considered to
be occupied by solvent in a given trajectory frame when it
contained a water oxygen atom. The contour plot (S2) reveals a
difference in solvent density between the λ11-replica of
simulation B and the λo-replica of simulation A, with the latter
showing increased solvent density around the pyridine nitrogen,
indicating better solvation. It is worth mentioning that whereas
the cluster centers show distinct conformation of the pyridine
rings, all shown clusters contain frames with different ring
conformations.
Example X exhibits a complex and fluctuating solvation

pattern. For the λ0 replica of simulation A, the two most
populated clusters (Figure 3 and S1) show one hydration site in
the subpocket close to the ligand transformation. The third most
populated cluster has three hydration sites, which is in
agreement with the crystal structure (PDB ID: 4ZLZ). For the
λ11-replica replica of simulation A, the two most populated
clusters have one and two hydration sites respectively in the
vicinity of the indazole ring reported. For simulation B, the λ0-
replica has one predominant cluster with over 80% occupancy
and two well-defined hydration sites. The λ11-replica again
shows larger binding site flexibility, with three dominant clusters
containing one, three, and three hydration sites, respectively
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Figure 4.HSA for all examples that involve displacement of binding site solvent molecules, obtained from FEP calculations with an additional GCMC
step. Letters A and B indicate the initial state from which the simulation was started. The given percentage numbers indicate the occupancy of the
displayed cluster, obtained from the trajectory clustering. The values in blue are the calculated ΔE values of the hydration sites.
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(Figure 3 and S1). Yet, compared to the λ0-replica, the hydration
sites exhibit different thermodynamic properties, indicating that
full solvent equilibration is not achieved.
In summary, the HSA revealed several examples where the

obtained positions and thermodynamic properties of the
binding site water molecules show high dependency on the
initial state, indicating insufficient equilibration, in spite of
applying enhanced sampling and quite long simulation times (50
ns). The HSA is however difficult to interpret for examples with
high flexibility of the binding site and/or ligand.
Analysis of Binding Site Solvation for FEP Simulations

with GCMCSolvent Sampling.TheHSA of the FEP/GCMC
simulations of the same examples is shown in Figure 4. Addition
of the GCMC stage for solvent sampling leads in general to a
better equilibration of the binding site solvent compared to the
standard simulation protocol. The problem of desolvated polar
ligand groups in the simulations V B and VII B was vastly
improved by the GCMC protocol. In the λ11-replica of
simulation V B, the two hydration sites solvating the hydroxyl
group of inhibitorWoodhead-1 are present. Importantly, waters
in these hydration sites were populated by the GCMC step and
did not enter by chance in the course of the FEP simulation. The
locations and thermodynamic properties of the hydration sites
of both simulations of example V are similar, indicating a low
dependency on the initial state, which is in contrast to the results
from the standard FEP calculation. In the λ0-replica of
simulation VII A, corresponding to Cumming-4j bound to
BACE-1, two hydration sites are detected in the vicinity of the
pyridyl ring, whereas again the pyridyl seems to be desolvated in
the λ11-replica of simulation VII B. However, the solvent density
contour plot (S2) shows that the region around the pyridine ring
is well solvated. Again, these additional water molecules were
added in the GCMC stage.
The discrepancy of the obtained hydration sites in depend-

ence of the initial state of the simulation is also improved by the
GCMCprotocol in example IX. The triazine nitrogen is solvated
in the respective replicas of both simulations (λ0 for IX AGCMC
and λ11 for IX B GCMC), and no trapping of a water molecule
occurs in the λ11-replica of IX A GCMC. Again, this solvent
distribution was already achieved after the GCMC step.
The only example where the discrepancy between simulations

A and B in terms of binding site solvation still exists is example 1.
There is both a discrepancy between the number of hydration
sites in the presence of inhibitor Kung-13 (one hydration site
detected for I A GCMC λ0 and two hydration sites for I B
GCMC λ11), as well as in the presence of inhibitor Kung-16 (no
hydration site detected for I A GCMC λ11 and one hydration
sites for I B GCMC λ0). In this case, the GCMC equilibration
itself showed dependency on the initial state, placing two water
molecules in this cavity for Kung-13 in simulation A but only
one water molecule in simulation B. For Kung-16, one water
molecule was placed in the cavity for simulation A, and no water
molecule was placed in simulation B.
In example III, the GCMC presampling only has a minor

effect on the obtained solvent distributions. The purine nitrogen
seems to be desolvated in the λ0-replica of simulation A due to
the absence of HS3. However, the density plot (S2) reveals that
this region actually is solvated. HS3 shows occupancy values of
around 0.5 in all simulations of the bound purine fragment
Davies-13b. In the current case, the occupancy of HS3 is slightly
below the occupancy cutoff of 0.5 that was employed in the
HSA.

In example X, the GCMC presampling does not result in a
better solvent equilibration, and the hysteresis is even higher
than for the FEP/REST protocol without the GCMC stage.
The improved solvent sampling prior to the λ-hopping stage

leads in general to a smaller dependency on the chosen initial
water positions. This is even more of importance in examples
where−in contrary to our study−no crystallographic water
positions are available.52 This is of great benefit for the
robustness of RBFE calculations. In terms of the accuracy of
the predictions, avoiding states of water molecules trapped in
unfavorable environments and states of desolvated protein/
ligand groups due to slow exchange of binding water molecules
with the bulk reduces the number of wrong predictions.
However, not in all examples did the additional solvent-
sampling stage lead to a full independency from the initial state.
Whereas improving the solvent sampling generally lowered

the hysteresis of the different simulations, the accuracy of the
predictedΔΔG values depends on other factors such as the force
field.7 Furthermore, in some of the examples there is a
discrepancy between the predicted number and locations of
binding site water molecules from the FEP/GCMC protocol
and the crystal structure, which can also diminish the predictive
power of the calculations in case the water positions from the
GCMC sampling are erroneous. In some examples, the standard
FEP calculations without GCMC presampling showed differ-
ences between the obtained hydration depending on the initial
solvation state but still exhibited a small hysteresis and high
accuracy (examples IX, X). This is a probably an example of
getting the “right answers for the wrong reasons”, due to
cancellation of errors.

Convergence of Relative Binding Free Energies.
Another way to assess the quality of the simulation results is
to check the convergence of the FEP simulations by plotting the
calculated ΔΔG values against the simulation time (S4).
Simulations I A, V A, VII A, VII B, and X B are not converged
after 50 ns. They all correspond to ligand modifications that
involve solvent displacement. Interestingly, whereas simulation
V B shows a vast disagreement with experiment in terms of the
estimated change in binding free energy, it exhibits good
convergence already after 10 ns. For the control examples, II A
and B converge after 10 ns. IV A and B show convergence after
approximately 20 ns, VI A and VI B show convergence after 30
ns, and VIII A and VIII show convergence after 40 ns. Therefore,
the control examples all converged to a deviation of
approximately 0.1 kcal/mol within the 50 ns time frame. The
GCMC presampling improved the convergence for simulations
V A, VII A, and VII B but not for the remaining examples of the
test set.
To assess the influence of longer simulation times on the

accuracy and the hysteresis of the calculations, we compared the
results obtained after 5 ns and after 50 ns (S5). For the standard
FEP/REST simulations, the hysteresis is decreased for all
examples, whereas the accuracy is increased in examples III A, IX
A, X A, and X B. The hysteresis values for the simulations
employing the GCMC equilibration step are less sensitive to
prolonging of the simulation time (S5). In terms of the accuracy,
examples VII A, VII B, X A, and X B show significant
improvement for a sampling time of 50 ns compared to 5 ns.

Conformational Flexibility in the Binding Site of
BACE-1. BACE-1 inhibitors that are structurally similar to the
ones from example VII have been previously studied extensively
by means of FEP calculations, in general yielding a good
agreement with the experimental values.53,54 These studies
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however did not address the solvent equilibration in the binding
site.Whereas we could show that improved solvent equilibration
can lead to a smaller hysteresis for the given example, the
agreement with the experimental binding affinity remains poor.
Keran̈en et al. proposed that insufficient sampling of the
movement of the 10s loop and the closing and opening of the
binding site flap can have a detrimental effect on the accuracy of
the predictions. We monitored the loop movement and the flap
opening/closing for the standard FEP/REST simulations of
example VII (S6). Whereas both states were sampled for the flap
in all end-state replicas, only the closed state of the 10s loop is
sampled, which could be a possible explanation for the low
accuracy obtained for that example. One strategy to overcome
this is to repeat the FEP calculations by using a different random
number seed to generate the initial velocities.54 It has been
furthermore shown that the OPLS3 force field leads to a more
realistic representation of structural rearrangements in the S3
loop, compared to older versions of the OPLS force field.7 We
employed the OPLS_2005 and not the OPLS3 force field in our
study, and this can also contribute to the inaccuracy of the
prediction of this particular system.

■ CONCLUSION
We applied state-of-the-art RBFE calculations toward a
benchmarking set consisting of six ligand modifications that
led to the displacement of buried water molecules, along with
four control examples where ligand modifications left the
binding site water network unchanged. Comparison with
experimental ΔΔG values revealed that cases with water
displacement are indeed challenging and that in several cases,
the predictedΔΔG value highly depends on the initial solvation
state of the binding site. Analyzing the solvent distribution in the
binding site for the two end-states of each trajectory (λ = 0 and λ
= 1) of the production phase from all examples by means of HSA
revealed the problem of trapped water molecules on one hand
and lacking resolvation on the other hand. This indicates that
current simulation protocols and even long time scales (50 ns in
our case) do not lead to sufficient equilibration of binding site
solvent molecules in some cases, despite applying enhanced
sampling methodologies such as REST.
This equilibration can be improved by adding a GCMC

solvent sampling stage before the λ-hopping, as introduced in
the new Desmond/GCMC module by Schrödinger.41

To detect if insufficient exchange of binding-site solvent with
bulk is a problem in real-world examples, where no experimental
data on water positions is available, HSA can be a solution to
detect hydration sites with unfavorable thermodynamic proper-
ties (ΔE > 0). Furthermore, inconsistencies for the obtained
ΔΔG values when conducting the perturbations from different
initial states can be an indication for insufficient sampling not
only in general16 but also more specific to insufficient solvent
sampling. We therefore recommend to carefully check
perturbations that occur in solvated, buried regions of the
binding site for trapped water molecules. In such a case, one
should question the outcome of the RBFE calculation. Running
an MD simulations of the receptor of interest prior to the RBFE
calculation and analyzing the mobility of the binding site solvent
molecules and their exchange with the bulk can also be
employed for assessing if the system is problematic in this regard.
Convergence for the examples that involved changes in the

number of binding site solvent molecules was more challenging
compared to the control examples. The latter all converged
within the 50 ns simulation time. The problem of convergence in

RBFE calculations was previously addressed for ligand
modifications that led to large reorganizations in the protein,16

and our study extends these findings toward changes in binding
site solvation for buried pockets. All ligand modifications
investigated in our study consisted of addition/deletion of not
more than three heavy atoms, and typically such small changes
are not expected to raise convergence problems.
A comparison between the high-occupancy clusters centers of

the FEP transformations of the test set and the initial structures
is provided in the Supporting Information (S7). It confirms that
for examples I, III, and V, the mobility of the ligand as well as the
binding site is limited. These examples are especially suited for
studying the effect of the solvent equilibration, since sampling of
ligand and protein should not be of an issue. Examples IX and
VII exhibit flexibility of the ligand, whereas example X shows
also high flexibility in the binding site, making a proper analysis
of binding site solvation patterns challenging.
Solvent sampling using GCMC is an interesting approach to

solve the issue of solvent equilibration. The GCMC stage
lowered the hysteresis significantly in half of the studied
examples. One example already exhibited a small hysteresis in
the standard simulation protocols, whereas two examples did
not benefit from the solvent equilibration step. Furthermore, it
also led to a faster convergence of the simulations in average.
However, we think that this approach needs further testing and
improvement in the future. In one of the examples, the number
of water molecules placed by the GCMC protocol depended on
the initial state, and maybe longer sampling times in this
GCMC/MD solvent equilibration stage are necessary to fully
converge the number of the binding site water molecules.
Therefore, we think that the currently employed protocol in

the Desmond GCMC/MD module has room for optimization,
in order to give access to converged solvent distributions even
for challenging systems.
A more elaborate approach for the incorporation of GCMC

sampling into RBFE calculations was recently published by
BruceMacdonald et al.55 Instead of running the GCMC as a pre-
equilibration step, it is directly incorporated into the alchemical
free energy calculation. It furthermore allows for the extraction
of the energetic contribution of the change in the water network
toward the total change in binding free energy.
We hope that our study increases the awareness of the

community toward the importance of the correct assessment of
binding site solvation in RBFE calculations, and we think that
our test set is composed of suitable benchmark systems to
validate new approaches and protocols for the prediction of
ΔΔG between ligand pairs or series. The prepared structures
and input files for the LigandFEP module from Desmond are
available for download (S8).
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(54) Keran̈en, H.; Peŕez-Benito, L.; Ciordia, M.; Delgado, F.;
Steinbrecher, T. B.; Oehlrich, D.; van Vlijmen, H. W. T.; Trabanco,
A. A.; Tresadern, G. Acylguanidine Beta Secretase 1 Inhibitors: A
Combined Experimental and Free Energy Perturbation Study. J. Chem.
Theory Comput. 2017, 13, 1439−1453.
(55) Bruce Macdonald, H. E.; Cave-Ayland, C.; Ross, G. A.; Essex, J.
W. Ligand Binding Free Energies with AdaptiveWater Networks: Two-
Dimensional Grand Canonical Alchemical Perturbations. J. Chem.
Theory Comput. 2018, 14, 6586−6597.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00826
J. Chem. Inf. Model. 2019, 59, 754−765

765



2 Manuscripts 

 53 

 
2.3 “Incorporating Protein and Ligand Desolvation Effects into a 
Knowledge-Based Scoring Function” 
 
2.3.1 Summary 
 

A scoring function was developed that accounts for protein and ligand desolvation terms, 

combining water interaction energies that are discretized on a grid together with an approach 

developed by another group that facilitates fast solvation of ligand polar groups. This newly 

developed desolvation score was combined with terms from the OPLS_2005 force field (van 

der Waals, ligand strain) and the YETI force field (hydrogen bond, ligand-metal interactions). 

The coefficients for the various contributions were optimized to reproduce experimental 

binding affinities from the PDBbind refined set and validated against the core subset of the 

PDBbind. Furthermore, the ability of the scoring function to discriminate correct from wrong 

docking poses was evaluated by using the docking power test from the Comparative Assessment 

of Scoring Functions (CASF) benchmark.  

 
 
2.3.2 Author contributions 
 
J.W. designed, implemented and validated the scoring function, all under supervision and 

guidance of M.S.  

J.W. wrote the manuscript.  

 

2.3.3 Potential Impact on the Scientific Field 
 
Accurate description of desolvation terms is a necessity for correct pose prediction and affinity 

prediction in molecular docking. The developed scoring function can serve as a basis for further 

improvements and it already shows encouraging results in its current status in terms of scoring 

power.  
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Introduction  

Algorithms in molecular docking approaches typically rely on a scoring function that 

maps the three-dimensional (3D) coordinates of a protein-ligand complex to numerical 

value that serves as an estimate of the associated binding affinity 1–3. Ideally, a scoring 

function is able to predict the correct binding pose and the binding free energy. A binding 

pose is defined as the conformation, position and orientation of the ligand in the binding 

site. Moreover, in order to be of use in Virtual Screening (VS) applications, a scoring 

function should be able to correctly rank several binders towards a given receptor, as 

well as enrich chemical libraries by giving better ranks to known actives compared to a 

set of decoys 4–6.  

The performance of scoring functions can be measured in terms of scoring 

power (affinity prediction), docking power (pose prediction), ranking power (ranking 

ligands to same receptor) and screening power (discriminating actives from decoys) 7. A 

rigorous benchmark of several widely-used scoring functions in terms of the above 

measures revealed primarily weaknesses for scoring and ranking 7. The authors 

concluded that the major challenges in molecular docking lie in desolvation effects, polar 

interactions as well as non-additive contributions 7. Whereas efforts in all aspects are 

needed to improve the accuracy of scoring functions, we in the following focus on the 

treatment of desolvation effects.  
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A schematic depiction of the ligand-protein binding process is given in Figure 1. This 

process can be split into four steps: receptor desolvation, ligand desolvation, complex 

formation and complex resolvation. Accurate estimation of the desolvation costs for the 

ligand and receptor binding site is therefore expected to be essential in order to obtain 

valid predictions 8.   

Different types of scoring functions exist (physics-based, knowledge-based, 

empirical and machine learning) 9, and this leads to different ways on how solvation 

terms are incorporated. Physics-based (or force-field based) scoring functions rely on 

rigorous theoretical frameworks, and desolvation effects are usually incorporated by a 

solvation model such as Generalized-Born or Poisson-Boltzmann 10,11. In empirical 

scoring functions, the functional form is less restricted. Examples for desolvation terms 

in empirical scoring functions are the fractional desolvation based on Born radii in Dock 

12, the atom-based solvation parameters in combination with an assessment of the 

desolvation degree in AutoDock 13, a term based on incremental logP values of atoms 

types combined with the surface accessible area in HYDE 14, or the docking of explicit 

water molecules into the binding site to assess solvent accessibility in Glide 15.  

These methods all capture the general effects of solvation and desolvation. 

However, there are also specific water molecules in binding sites, that have well-defined 

positions and are important for the molecular recognition at the binding site 16,17. 

Figure 1. Thermodynamic cycle of ligand-protein binding. 
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Incorporating such water molecules into docking was shown to improve the accuracy of 

the pose prediction 18,19. Furthermore, such waters can be displaced by some ligands 

while being conserved for others 20, which requires a flexible treatment in docking 

algorithms.   

Such dynamical treatment of water molecules is incorporated in GOLD 21, where 

water molecules are allowed to switch on and off during pose generation. Furthermore, 

water orientations are optimized on the fly. Displacement of such water molecules is 

rewarded by a constant entropic penalty. Another philosophy in the way binding site 

water molecules are treated is the displaceable water force field in AutoDock 22, where 

the ligand is docked in a presolvated state and the water sites that are associated with the 

ligand can be either conserved or displaced. An energetic and entropic score is calculated 

for every water site.  

The most recent advances for the treatment of water molecules in molecular 

docking are methods that incorporate information about the distribution and 

thermodynamic properties of the solvent obtained from molecular simulations 23–25. 

WScore uses locations and thermodynamic quantities from hydration sites obtained by 

the WaterMap approach 26. For every docking pose, it is assessed if the hydration site is 

displaced by the ligand or conserved. Corresponding energetic and entropic penalties or 

rewards are thereby assigned. AutoDock-GIST 24 and a closely-related approach 25 use 

grid-based inhomogeneous fluid solvation theory (GIST) 27, where the binding site water 

properties are discretized on a grid. The underlying idea is that binding poses in which 

ligands overlap with regions with favorable solvation free energies receive an energetic 

penalty for the receptor desolvation. This approach was tested in a prospective 

application for compound prioritization and showed a promising hit rate 25. 

The disadvantage of such approaches is that an MD simulation needs to be set 

up for every receptor structure that is used as a query in a docking workflow. This 

requires the use of additional software and reduces the easiness of how the calculations 



2 Manuscripts 

 57 

can be set up. Furthermore, most docking programs prioritize a simple functional form 

for the scoring function that facilitates fast evaluation of various contributions to the 

estimated binding free energies. There is the possibility that treating the protein 

desolvation with a rigorous theoretical framework and other terms at a lower level of 

theory leads to an asymmetry in the various contributions.  

In this work we aimed to develop a simple, intuitive and computationally 

affordable scoring approach that assesses protein and ligand solvation/desolvation by 

combining water-affinity grids in the binding site with explicit water sites that solvate 

the polar groups of the ligand 28. Ligand hydration sites that lie in regions with high 

affinity for water molecues are kept, whereas others are regarded as displaced. Protein 

desolvation is assessed by evaluating the number of grid cells with high affinity for 

solvent that is displaced by the ligand heavy atoms. Finally, an empirical scoring 

function containing atom type-based desolvation scores together with other terms 

(protein-ligand interaction energy, hydrogen bond-score and ligand strain) is trained 

towards the PDBBind 29. We term our scoring function DESSCORE, emphasizing the 

explicit inclusion of protein and ligand desolvation. We also evaluated the influence of 

the desolvation term by training a scoring function that doesn’t account for desolvation, 

which we term as NODESSCORE. Finally, also a naïve scoring based on van der Waals 

interactions and a lipophilic score is trained and evaluated as a baseline model.  

 
Materials and Methods 

Desolvation Term  

 The simple underlying idea behind our desolvation score is to assess the 

accessibility of receptor and ligand atoms for solvent, both in the unbound and in the 

bound state. The degree of solvation for the receptor polar atoms is evaluated by 

sampling a water probe on a grid that spans the binding site. For every grid cell, 50 

random orientations and positions of a SPC 30 water molecule are generated and the 

respective interaction energies with the protein are calculated on pregenerated grids of 
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Coulomb and Lennard-Jones potentials 31. The lowest interaction energy out of these 50 

water positions/orientations is then assigned to the corresponding grid cell (E¤¥¦§¨©© (SPC)). 

For every protein oxygen and nitrogen atom, the number of grid cells within a specific 

radius (3.5 Å in our case) that possess an E¤¥¦§¨©© (SPC) value below a cutoff of -5.0 

kcal/mol are calculated (ncell,i). This gives an estimation of the initial degree of solvation 

for these atoms and we term this as SAunbound,i , the solvent accessibility of atom i in the 

unbound state. For the bound state, grid cells that are within a radius of 2.8 Å from any 

ligand atom heavy atom are regarded as being displaced. SAbound,,i, the solvent 

accessibility of atom i in the bound state, is obtained by subtracting the displaced grid 

cells from ncell,i.  

 For the ligand oxygen and nitrogen atoms, hydration sites are generated using 

WaterDock2.0 28. WaterDock2.0 generates hydration sites around the ligand by using 

solvent distributions around different atom types obtained by explicit solvent molecular 

dynamics simulations. The solvent accessibility of ligand atom i in the unbound state 

corresponds to the number of hydration sites within a radius of 3.5 Å of the ligand. 

Subtracting the number of hydration sites that are displaced by the protein heavy atoms 

in the docked pose yields the solvent accessibility for the bound state.   

In the current version of the scoring function, only nitrogen and oxygen atoms 

of the binding site and the ligand contribute to the desolvation penalty. The desolvation 

penalty of atom i is defined as (Equation 1): 

E­¨®¯©°,¥ = 	 |q¥	|	∗ D¥ ∗ 𝑏$			(𝟏)   

Where qi is the atomic partial charge on atom i, Di is the degree of desolvation of atom i 

and bi is the buriedness. The degree of desolvation is given by the following relationship 

(Equation 2 and Equation 3): 

D¥ =
SA·¦¸¯¦­,¥
SA¤¹º,¥

		
SA·¦¸¯¦­,¥ − SA¸¯·¦­,¥

SA·¦¸¯·¦­,¥
					(𝟐) 

=
SA·¦¸¯¦­,¥ − SA¸¯·¦­,¥

SA¤¹º,¥
		(𝟑) 
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SAmax is the maximal solvent accessibility observed for this atom type in the set of 

protein-ligand complexes that was used to train the scoring function.   

An illustration of the underlying principle is given in Figure 2. The ligand amide 

oxygen (I) and the ring nitrogen atoms (II) are well solvated, whereas the tertiary amine 

nitrogen (III) only possesses one hydration site because of the low solvent accessibility 

(Figure 2 left). The contour plot of the water probe interaction energies at the receptor 

binding site (Figure 2 middle) indicate that two charged amino groups of the lysine (A 

and B) and the carboxylate of the glutamate residue are accessible for solvent and are 

expected to be well hydrated in the unbound state. Upon ligand binding (Figure 2 right), 

heavy atoms of the bound ligand overlap with the region C around the carboxylate, 

causing a desolvation penalty.  

 

 

Figure 2. Generated hydration sites for ligand polar atoms (left), contour plot of water probe 
interaction energy (-10 kcal/mol) at the receptor binding site (middle) and combined ligand and 
protein hydration for the binding pose (right). 

 

The buriedness was added to Equation 1 since fully solvent-exposed ligand atoms in 

the bound state should not receive a desolvation penalty. If a polar ligand atom is fully 

solvated in the unbound state and located at the surface of the protein in the bound state, 

it overlaps with a region in the binding site where no strong solute-solvent interactions 

are present, corresponding to values close to zero in the water grid. In this case, the 
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ligand atom would receive a desolvation penalty. To prevent this, atoms with low 

buriedness values don’t receive high desolvation penalties.  

The buriedness is adapted from the concept of the receptor density 32. The receptor 

density of an atom is defined as the number of receptor heavy atoms within a radius of 

8.0 Å. Atoms with a receptor density of less than 30 have a buriedness score of 0, 

whereas atoms with a receptor density of higher than 120 receive a buriedness score of 

1. In between, the buriedness score is scaled linearly.  

 

Scoring Function 

The DESSCORE function for the estimation of binding affinities consists of a Coulomb 

term, a van der Waals term, a directional hydrogen bond term, a term for ligand strain, 

a metal term and the desolvation terms for oxygen and nitrogen ligand and receptor 

atoms (Equation 3 and Equation 4):  

 

∆𝐺 = 𝐸$%GIH +		𝐶-$»,𝐸-$», + 𝐶+GH4$%𝐸+GH4$% + 𝐶&I+,¼ 9 |q¥|	D¥								(𝟑)
$	∈	4G,j.I-I	¼,¿
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Partial charges and Lennard-Jones parameters are taken from the OPLS_2005 

force field 33. The ligand strain is estimated by optimizing the bound conformation 

of the ligand and taking the difference in the energy. The lipophilic term was 
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directly adapted from the ChemScore function 34. The hydrogen bond term is taken 

from the YETI force field 35,36, accounting for the linearity (angle between the donor 

heavy atom, donor hydrogen atom and the acceptor atom) and for the directionality 

(angle between the donor hydrogen, acceptor atom and the neighboring atom of the 

acceptor) by means of two cosine functions (Equation 4) 37. The hydrogen bond 

term penalizes deviations from optimal linearity (𝜃:) and directionality  (𝜔:). 

Metal-ligand interactions are included in the Coulombic term, but are also treated 

by a special term based on a 10-12 potential, which we term as the covalent metal 

term. The functional form of this term was adapted from the YETI force field 35. 

Therefore, both the electrostatic and covalent character of bonds to metals are 

present in the scoring function 38.  

Both the hydrogen bond term and the metal term of the YETI force field are 

very sensitive to the distance between donor and acceptor or metal and ligand atom 

respectively, since the constants C, D, E and F all depend on the well-depth Emin and 

the equilibrium distance ro. Minimizations performed with the OPLS_2005 force 

field can lead to distances that are shorter than the equilibrium distances of these 

YETI terms. Therefore, the repulsive parts of the hydrogen bond and metal terms 

were cut, and the maximum contribution was given for distances smaller than r0.  

 

Preparation of the Training and Test Sets  

The PDBbind refined set v.2016 29 was used as the training set for optimizing the 

coefficients of the DESSCORE function. All complexes from the training set were 

subjected to the Protein Preparation Wizard 39 and the protein and ligand protonation 

states were assigned at a pH of 7.4. This was followed by an optimization of the 

hydrogen bond network. Since our scoring function considers the hydrogen atoms 

explicitly and has a directional hydrogen bond term, proper assignment and optimization 

of the hydrogen positions is a necessary step.  
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OPLS_2005 force field parameters were assigned to the protein and the ligand 

atoms using the system builder from the Desmond simulation package 40. All complexes 

that contained ligands which could not be identified by their three-letter code were 

omitted, since this was a necessary condition in our workflow. Furthermore, all 

structures that are also part of the PDBbind core set were removed, since they served as 

the test set for the validation.  

 

Training of the Scoring Function  

 Various scoring functions were trained on the PDBbind refined set or subsets of 

it. The coefficients of the X-Score function were optimized using the PDBbind core set 

29,41. The input structures were directly taken as the experimental crystal structures and 

the coefficients were fitted by multilinear regression (MLR) to the associated 

experimental binding affinities. AutoDock Vina is another example of a scoring function 

that was trained using the PDBbind set, yet the details on how the coefficients were 

optimized are not provided 42. Other examples include the Vinardo scoring function 43 

and different implementations of scoring functions using machine learning 44,45.  

 The approach of using linear regression and experimental binding affinities to 

optimize the coefficients of the various terms results in a scoring function that is 

primarily trained for scoring power 43. This implies that upon receiving a valid protein-

ligand complex as an input, the scoring function is able to give a good estimate of the 

associated binding affinity. This task is fundamentally different from the task of picking 

the correct binding pose from a pool of different poses, which is termed as the docking 

power.  

An interesting showcase is the correlation between the ligand buried solvent 

accessible surface area upon binding (DSAS), which shows good correlation with the 

binding affinities in the PDBbind core set 7. Since the complexes in the PDBbind all 

contain real binders, all ligand poses are expected to be fairly complementary to the 
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binding site, meaning that polar atoms of the protein and the ligand interact via hydrogen 

bonds or electrostatic interactions, whereas non-polar atoms are forming hydrophobic 

contacts. Since the desolvation costs of the polar protein and ligand atoms are then 

compensated by the favorable electrostatic interactions, the shape complementarity can 

give a good estimate about the binding affinity. However, the DSAS shows a very bad 

performance in the docking power test 7.  

 On the other hand, if a scoring function is composed of terms that accurately 

capture the various contributions towards the thermodynamics of protein-ligand binding, 

then the ability of distinguishing correct from incorrect binding poses should be learned 

implicitly, even when the scoring function is just trained towards reproducing binding 

affinities. To verify this, we trained the DESSCORE function for scoring power and 

evaluated the performance for the docking power in a second step. 

 In our case, the coefficients of the scoring function were optimized by multiple 

linear regression against a training set of 2540 protein-ligand complexes from the 

PDBbind.  

 

 

Training  

The workflows for the training and the evaluation of the DESSCORE function were 

implemented in Python 2.7 using the Python API of the Schrödinger Small-Molecule 

Drug Disocvery Suite 39 

 

Results and Discussion  

Training  

The correlation plot between experimental and estimated binding affinities by our 

DESSCORE function for the training set is shown in Figure 3.  
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The model reached a pearson correlation coefficient of r = 0.60 while 76.9 % of 

all compounds were predicted within an accuracy of 2 log(Kd) units. With an intercept 

from the MLR of +3.54, DESRES shows the same weakness as most scoring functions, 

namely an overestimation of the binding affinity for weak binders and an overestimation 

for strong binders. 7,41 The coefficients obtained by the MLR are shown in Table 1. 

 

Table 1. Weights for the individual scoring terms obtained from MLR towards the 

training set. The DESSCORE model includes the desolvation term, whereas 

NODESSCORE was fitted without taking desolvation explicitly into account. 

 DESSCORE NODESSCORE LipoVdwSCORE 

Ccoul -2.74E-3 -1.33E-3 0.00 

Clipo 6.53E-3 7.81E-3 9.41E-3 

CvdW -3.41E-2 -2.26E-2 -5.09E-3 

Chbond -2.07E-2 -2.82E-3 0.00 

Figure 3.  Correlation between experimental binding affinities and binding affinities predicted by DESSCORE 
for the training set (pKd = -logKd). The dashed lines mark the boundaries where the predictions are within an 
absolute error of 2.0  kcal/mol. 
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Cstrain -6.12E-2 -6.99E-3 0.00 

Cdesolv -2.77E-1 0.00 0.00 

Cmetal -5.11E-2 -4.63E-2 0.00 

Pearson’s r 0.60 [0.57, 0,62] 0.60 [0.57, 0,62] 0.55 [0.52, 0.58] 

SD 1.63 1.64 1.71 

MedAEP 1.10 1.12 1.22 

MedAEPCV 1.12 1.13 1.22 

 

 

 The robustness of the models was evaluated by applying cross-validation based 

on the Monte Carlo cross-validation (MCCV) 46 scheme. The procedure was as follows: 

for 10’000 iterations, the whole training set (sample size n) was randomly split into an 

internal calibration set with a sample size nc and an internal validation set with sample 

size nv. The ratio was chosen to be nc/n=0.5 47. For every iteration, the median value of 

the absolute error of the prediction (MedAEP) for the validation set was calculated, as 

described elsewhere 47. The mean value of the MedAEP for the 10’000 iterations was 

then taken as the MedAEPcv, the median value of the absolute error for the cross-

validation. The MedAEPcv can be interpreted as the cross-validated predictive power of 

the model. This was compared to the MedAEP of the MLR on the full calibration site. 

The MedAEP is the fitting ability of the model on the calibration set. 47 We obtained 

values of 1.12 for MedAEPcv and 1.10 for MedAEP, showing that our chosen model has 

a robust predictive power statistic. The confidence interval for the obtained correlation 

coefficient r was calculated by applying a Fisher transformation 48. The 95% confidence 

interval is r=[0.57,0.62] (Table 1).  

 In order to evaluate the influence of our developed desolvation term on the 

estimation of the affinities, we trained a MLR model while setting Cdesolv to 0.0 

(NODESSCORE). The model reached pearson’s correlation coefficient of r = 0.60. We 
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again applied cross-validation and obtained values of 1.13 for MedAEPcv and 1.12 for 

MedAEP, again indicating a robust model. Therefore, for the prediction of affinities, 

including the desolvation term doesn’t seem to result in a better fit of the model.  

 Inspired by the good correlation between the DSAS and the binding affinity in 

the CASF benchmark 7, we also trained a model that was solely based on the LipoScore 

and on the van der Waals terms. The obtained Pearson’s r equaled to 0.55, showing a 

good correlation (Table 1). Again, the values of 1.22 for MedAEPcv and 1.22 for 

MedAEP indicated a robust model. The 95% confidence interval for Pearson’s r is 

[0.52,0.58]. Since the confidence interval marginally overlaps with the one obtained for 

the full DESSCORE function and with the one of the NODESCORE function, the 

performance of the simple LipoVdw scoring function is not significantly worse on the 

provided training set.   

 

CASF2013 Scoring Power Test 

To evaluate the performance of the trained scoring function models in 

comparison with other published methods, we assessed the scoring power using the 

CASF2013 benchmark 7. In the scoring test of this benchmark, the calculated affinities 

are compared with the experimental values on the PDBbind core set, which is a high 

quality subset of the PBBbind refined set 49. The original core set contains 195 structures, 

divided into 65 clusters. Each cluster contains 3 ligands, classified into a “best”, a 

“median” and a “poorest” binder, whereas the best binder should at least bind 100 times 

strong as the poorest binder in terms of the dissociation constant Kd 7.  

  In our workflow, 176 structures of the core set were successfully processed, and 

55 clusters were present with all 3 member structures processed. Therefore, the results 

of our benchmarks using the PDBbind core set are based on these 176 substructures.  

 Our DESSCORE function reached a Pearson’s r of 0.59, showing the same 

performance as for the training set. The standard deviation was 1.85 and 70.5% of all 
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predictions were within 2.0 logKD values. With these values, DESSCORE ranks in the 

top 5 of the scoring functions tested in the CASF2013, both in terms of Pearson’s r and 

standard deviation. The experimental affinities are plotted versus the predicted values in 

Figure 4. Again, NODESSCORE reached the same performance as DESSCORE (r = 

0.60, SD = 1.85). Interestingly, whereas LipoVdwSCORE performed worse than the two 

other models for the training set, it reached the same correlation coefficient in the test 

set ( r = 0.60, SD = 1.88). A comparison of the performance metrics of the three models 

is provided in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Performance of the three scoring function models on the scoring test (PDBbind 

core set) 

 DESSCORE NODESSCORE LipoVdwSCORE 

Pearson’s r 0.60  0.60  0.60 

Figure 4. Correlation plot between experimental binding affinities and binding affinities predicted by 
DESSCORE for the test set. The dashed lines give the region where the predictions are within an absolute 
error of 2.0 kcal/mol. 
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SD 1.85 1.85 1.88 

 

 

 

Figure 5. Examples from the CASF2013 scoring power test conducted with DESSCORE that 
showed large deviations from the experimental values. The examples from the upper row were 
all predicted too strong, the ones in the lower row were predicted too weak. The deviation was 
in all cases more than two orders of magnitudes in terms of Kd. 

 

The binding poses of some examples that exhibited predicted scores that differed by 

more than two logKd from the experimental values are shown in Figure 5. The shown 

examples with underestimated affinities display cooperative hydrogen bond networks.  

 

CASF2013 Ranking Power Test 

The CASF-2013 ranking power test is also performed on the PDBbind core set. In this 

test, the ability of the scoring function to accurately rank the poorest, the median and the 

best binder within a cluster. The authors of the original benchmark study thereby 

distinguished between high-level success (correct ranking of all three binders) and low-

level success (correct identification of the best binder) 7.  

 For our three models, the ranking power was evaluated for 55 complexes of the 

core set. DESSCORE reached a high-level success rate of 49.0%, which places it in the 
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middle section of the evaluated scoring functions from the CASF2013 (the best scoring 

function – X-SCORE – reached 58.5%). Interestingly, with a low-level success rate of 

74.5%, DESSCORE is the second best scoring function in this regard 

(GoldScore@GOLD reached 76.9%). This high gap between high-level success and 

low-level success means that in a considerable number of cases, the scoring function 

cannot correctly distinguish poor binders from median binders. This can be a drawback 

in virtual screening studies, where distinguishing non-binders from potential hits is 

necessary 7, since these hits are usually in the medium-level affinity of the target. 

NODESSCORE reached a high-level success rate of 47.1% and a low-level success rate 

of 68.6%. LipoVdwScore reached a high-level success rate of 49.0%, whereas the low-

level success rate was 66.7 % (Table 3).  

 

Table 3: Performance of the three scoring function models on the ranking test 

 DESSCORE NODESSCORE LipoVdwSCORE 

high-level 

success 

49.0% 47.1%  49.0% 

low-level 

success 

74.5% 68.6% 66.7% 

 

 

Original CASF2013 Docking Power Test  

In the CASF docking power test, decoy poses are provided for every complex of the core 

set of the PDBbind. These decoy poses were created by the GOLD, Surflex and the MOE 

docking programs 7. This decoy poses exhibit a wide range of RMSD values (up to 10.0 

Å) in reference to the native pose. A successful docking prediction is achieved by a given 

scoring function if the best-scored pose is within 2.0 Å from the native pose (Top1 

success). If such a pose is within the best two scored poses, it is called a Top2 success, 
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and within the best three it is a Top3 success. Contrary to the scoring power and ranking 

power test, we conducted this benchmark on the original structures from the PDBbind 

core set, as it was done for the CASF2013 challenge. If we would take our prepared core 

set with the improved hydrogen assignment, this would bias the docking scores towards 

the native ligand, since its tautomer state was assigned in order to optimize the hydrogen 

bond network.  

From this original core set, various structures couldn’t be processed by the 

System builder from Desmond. The results are therefore obtained for a subset (n=120) 

of the core set.  

 

Table 4: Performance of the three scoring function models on the original docking 

power test 

 DESSCORE NODESSCORE LipoVdwSCORE 

Top1 success 81.7% 80.0%  75.0% 

Top2 success 87.5% 87.5% 84.2%  

Top3 success 90.8% 91.7% 87.5% 

 

There is no clear difference between the DESSCORE and the NODESSCORE 

models in terms of success rates on any of the three levels, while they both outperform 

the LipoVdwSCORE model. Still, the surprisingly good docking power of the naïve 

model in the LipoVdwSCORE raises questions on how well-suited the chosen decoys 

are to really challenge the docking power of the scoring functions.  

 

Conclusion  

We developed an empirical scoring function (DESSCORE) that incorporates a 

simple model for assessing protein and ligand desolvation. We trained the coefficients 

of this scoring function by MLR using complexes and binding affinities from the refined 
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set of the PBDbind. A robust model was obtained that exhibited a Pearson’s correlation 

coefficient of r = 0.60 on the training set. In order to assess the influence of the 

desolvation term, a model was trained that neglected this contribution (NODESSCORE), 

together with a naïve model that only incorporated the van der Waals and lipophilic 

terms. Whereas DESSCORE and NODESSCORE showed a superior scoring power for 

the training set compared to LipoVdwSCORE, they all exhibited the same scoring power 

on the test set taken from the CASF2013 benchmark.  

 In the ranking test, all three models were mediocre in the task of accurately 

ranking the poorest, the median and the strongest binder of a cluster. However, 

DESSCORE with the added desolvation term was clearly superior in selectively 

determining the strongest binder in a cluster. The added desolvation term has however 

no beneficial effect in distinguishing weak from mediocre binders.  

 Our simple approach for the desolvation comes with various approximations: A 

linear scaling between the change in accessibility for solvent upon binding and the 

amount of desolvation seems a crude approximation. If only a small space around the 

atom is available for solvent, but strong hydrogen bonds to water molecules are still 

possible, then the magnitude of the true desolvation cost is expected to be limited. 

Furthermore, our model so far neglects the effect of bridging water molecules between 

the protein and ligand. In principle, such an approach can be easily incorporated into our 

workflow. Hydration sites that solvate the ligand polar atoms and overlap with favorable 

regions from the water grid are potential bridging water molecules. Orientational and 

translational sampling could then be performed to assess the exact geometric 

configuration and energetics of these bridging water molecules. Such water molecules 

can then be assigned special scores.  

 In the docking power test, the DESSCORE and NODESSCORE models both 

outperformed the naïve model, even though the latter performed surprisingly well, 
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especially considering the Top3 success rate. There was however no difference between 

the DESCCORE and the NODESSCORE model in the docking power test.  

 In general, there doesn’t seem to be a real benefit in terms of scoring or docking 

power for the incorporation of the desolvation term presented in this study. The only 

benefit seems to be in a better discrimination between medium and high-affinity binders. 

Future improvements should aim for a better response in the low- and medium-affinity 

range, which would also improve the perspectives for potential virtual screening 

applications.  

 An important lesson from this study was to always critically check the 

performance of a trained model by comparing it with a simple baseline model, even 

when the values look promising first. This provides an assessment of the real value of 

the newly added features of a model.  
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2.4 “Endocrine Disruption at the Androgen Receptor: Employing 
Molecular Dynamics and Docking for Improved Virtual Screening 
and Toxicity Prediction”		
Wahl, J; Smieško, M. Endocrine Disruption at the Androgen Receptor: 
Employing Molecular Dynamics and Docking for Improved Virtual Screening and 
Toxicity Prediction. Int. J. Mol. Sci., 2018, 19, 1784. 

 
2.4.1 Summary 
 
The absence of an experimentally resolved 3D structure of the androgen receptor (AR) bound 

to an antagonist is a clear hurdle in SBDD approaches at this receptor. To facilitate more 

confident in silico predictions of AR antagonism, an approach based on 100 ns MD simulations 

of AR complexes (taking the agonist AR structure as the initial structure) bound to different 

antagonists was applied, with the goal to obtain binding site conformations that are able to 

accommodate AR antagonists. With the antagonist protein ensemble generated by this protocol, 

a docking approach could successfully discriminate AR antagonists from a set of decoys. 

However, the antagonist protein structures can also accommodate AR agonists with good 

docking scores. Therefore, molecular docking towards such an ensemble of AR antagonist 

structures cannot lead to a discrimination between agonist and antagonist ligands. 

 
2.4.2 Author contributions 
 
J.W. designed the study and run all calculations. All under the supervision of M.S. 

J.W. wrote the manuscript. M.S. proofread and improved the manuscript.  

 

2.4.3 Potential Impact on the Scientific Field 
 
The prediction of AR antagonism has a high relevance for the field of cancer therapy, but also 

for the prediction of endocrine disruption. Our study showed that MD simulations can help to 

obtain protein structures of functional states in the absence of experimental structures. This 

finding can possibly be extended to other systems.   

Finally, the findings from the study are expected to support future drug design and toxicology 

campaigns involving AR antagonism.  
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3. Implemented Scripts and Software Tools  
 
3.1 Technical Details 
 
All algorithms were implemented in Python 2.7. The Python API of the Schrödinger Small-

Molecule Drug Discovery Suite (Small-Molecule Drug Discovery Suite 2017-4, Schrödinger, 

LLC, New York, NY, 2017) was extensively used for processing and manipulating chemical 

structures and molecular trajectories. For numerical calculations, the NumPy package was 

mainly used, while SciPy and Scikit-learn were applied for data analysis and model training.  

Apart from the possibility to use computational chemistry modules provided by the 

Schrödinger suite, Python was chosen for its readability, widespread use in the community of 

CADD and the availability of a plethora of libraries for scientific computing.  

 

3.2 MDWatAnalyzer 
 
MDWatAnalyzer is a python tool that extracts locations and thermodynamic properties of 

hydration sites from a Desmond MD trajectory by using IFST.  

 

 
 
The general workflow is shown in Figure 12. The analysis starts by the construction of a 3D 

grid containing the region of interest where the solvent properties should be mapped. The 

positions of all waters that lie in this region are stored and submitted to the clustering procedure 

that identifies the hydration sites with a radius of 1.0 Å. For every water molecule, the number 

of neighboring water molecules within 1.0 Å is calculated. The grid-based approach facilitates a 

fast evaluation of the number of neighbors, since only water molecules occupying neighboring 

grid cells have to be considered. The water molecule with the highest number of neighbors is 

Figure 12. Workflow of MDWatAnalyzer 
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then taken as the center of the first hydration site. All water molecules that are contained in this 

hydration site are deleted from the grid and the clustering procedure is iteratively repeated until 

the occupancy of a hydration site is below a defined cutoff. The principle of the clustering 

algorithm is outlined in Figure 13. 

 

 

The interaction energies of all water-molecules with the rest of the system are calculated in the 

minimum image convention is calculated by means of the OPLS_2005 force field. The force 

field parameters are extracted from the simulation file (.cms). In addition, the first order solute-

water entropy is calculated for the hydration sites and the results are saved to a pdb file and can 

be used for visual inspection or further analysis.  

All distance calculations are performed in NumPy and formulated on the basis of n-

dimensional arrays, offering vast performance gains compared to a loop-based approach in 

native python.  

 

3.3 MDWatAnalyzerFEP 
 

The MDWatAnalyzer tool was extended for the application to trajectories from FEP 

calculations. MDWatAnalyzer requires a trajectory that was run with constraints applied to the 

solute heavy atoms, since structural rearrangements of the binding site during a flexible MD 

simulation blur out the solvent density, rendering the identification of hydration sites impossible. 

Since FEP calculations should be run without any constraints to yield meaningful results, the 

workflow needed to be adapted and improved.  

 

Figure 13. Workflow of the hydration site clustering algorithm 
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To achieve this, the trajectory frames are first clustered by means of the binding-site RMSD, 

again with a fixed cutoff. All frames are then aligned by a roto-translational fit to their cluster 

center. The hydration site analysis is then performed for every cluster (Figure 14). Since all 

trajectory frames that are member of the same cluster share similar binding site conformation, 

performing the hydration site calculations can be efficiently applied to this structural ensemble. 

The algorithm of the hydration site clustering and property calculation is the same as for the 

MDWatAnalyzer tool.  

 

3.4 DESSCORer  
 
DESSCORer is a tool that takes a protein-ligand complex as an input and estimates the binding 

affinity by means of the DESSCORE function, that was developed in the course of this thesis. 

First, grid potentials are constructed to facilitate the fast evaluation of van der Waals and 

Coulomb interactions, as described elsewhere (Meng et al., 1992). The force field parameters are 

again taken from the OPLS_2005 force field. A water probe is then sampled over these grid 

points and the interactions of this water probe with the receptor are calculated and stored in a 

grid, yielding a water grid that is used for the assessment of the protein and ligand desolvation 

costs. The ligand pose is solvated by an external tool (Sridhar et al., 2017), which places 

hydration sites at preferred locations around polar atoms.  

The program calculates various contributions towards the binding free energy (LipoScore from 

ChemScore (Eldridge et al., 1997), hydrogen bond and metal terms from YETI (Vedani, 1988) 

Coulomb and van der Waals interactions and the strain energy of the ligand). The estimated 

affinity is then given as the output. 

 

 

 

 

Figure 14. Workflow for the water analysis applied to FEP trajectories 
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4. Conclusion and Outlook  
 
Different aspects on the quantification of the thermodynamic contributions of water towards 

ligand-protein binding processes were elucidated. Considering lead-optimization, information 

about binding site solvent distribution and thermodynamics can guide decisions on ligand 

modifications that target the displacement of specific binding site water molecules. Extracting 

thermodynamic solvent properties from molecular simulations by using inhomogeneous fluid 

solvation theory can provide information about the desolvation costs that are associated with 

the displacement of a binding-site water molecule. We have shown that the thermodynamic 

properties of the water molecules have to be calculated for both states: ligand A in complex with 

the protein but also for ligand B that bears the added functional group that displaces the binding 

site water molecule. Only by simulating both states, the rearrangement energy of the remaining 

solvent is taken into account.  This rearrangement energy can be larger than 2 kcal/mol, 

especially if the displaced water molecule was directly interacting with other binding site solvent 

molecules.  

 The desolvation cost for the displacement of the binding site water molecules have to 

be compensated by either stronger interactions between the ligand and the protein or lowered 

ligand desolvation costs. Yet, we could also show that the difference in binding entropy can 

have a significant impact on the change in affinity. If a ligand binds much tighter with the protein 

after the displacement of the water molecule, the gained interaction energy is counteracted by 

an entropic cost, leading to an enthalpy/entropy compensation. This effect is difficult to predict, 

making quantitative predictions regarding solvent displacement challenging.  

 For more accurate predictions of the thermodynamic properties of binding site solvent, 

a framework that allows to apply IFST to simulation trajectories that were run without 

constraints would provide an improvement. A possible strategy could be to cluster the frames 

from the simulation and to apply IFST to all clusters.  

 The gold standard for estimating relative binding free energies between two congeneric 

ligands are alchemical binding free energy calculations such as free energy perturbation (FEP). 

In principle, these methods are physically rigorous and calculate the DDG values directly from 

the partition function. Contrary to end-state methods that estimate different contributions for 

the relative binding free energy and take the final values as the sum of the contributions, this is 

much less error prone. There are two limiting factors for the accuracy of such calculations: the 

evaluation of energies of the system and the sampling.  Whereas the former is associated with 

general shortcomings of classical molecular force fields, the latter can be overcome with 

increased computational power and more enhanced sampling techniques. Yet, we have shown 

that ligand modifications that lead to changes in the number of binding-site solvent molecules 

are inherently challenging, even with the long simulation times that are available nowadays and 
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despite enhanced sampling. The reason is the slow exchange of buried cavities with the bulk 

solvent.  

 This limits the applicability of FEP calculations to such systems. A possible solution is 

to add algorithms that enhanced the sampling of the binding site solvent, such as Grand 

Canonical Monte Carlo. We have shown that incorporating a GCMC/MD solvent equilibration 

step before the actual FEP simulation reduces the dependency of the simulation outcome on 

the initial solvent structure. Therefore, the combination of FEP with GCMC leads to more 

robust results for systems that involve a change in binding site solvent molecules upon ligand 

transformations.  

 The disadvantage of FEP calculations is that they don’t provide information about the 

different contributions towards the final change in binding affinity. It is inherently then not 

possible to attribute the exact influence of the solvent displacement on the final DDG. Yet, a 

newly published method that directly incorporates GCMC sampling into the FEP simulation 

stage allows to quantify the contribution of the binding site hydration to the total free energy 

change (Bruce Macdonald et al., 2018). Improved understanding about the various contributions 

towards a change in affinity has the advantage that such knowledge can be transferred to other 

projects in CADD, leading to the generation of some general knowledge that can help to 

successfully contribute to drug discovery projects. Furthermore, it helps to understand 

structure-activity relationships, allowing the extrapolation to the whole congeneric ligand series.   

 A general concern is the accuracy of current force fields, that clearly neglect important 

aspects such as polarization and charge anisotropy. It can be expected that all methods in CADD 

would profit from more accurate force fields.  

 We also aimed at developing a simple method for the estimation of desolvation costs 

in molecular docking. However, our scoring function model that incorporated this desolvation 

treatment was not shown to be superior in terms of affinity estimation or pose picking. Only an 

improved ranking for high-affinity complexes was observed. Further refinement and 

improvement of the method – for example taking into account bridging water molecules – is 

necessary to provide an efficient and robust scoring function. The fact that also a naïve scoring 

function model that solely relies on van der Waals energies and a lipophilic score exhibited good 

correlations with experimental affinity, should raise awareness about the actual value of a model. 

An improved scoring function should clearly outperform such a simple model in terms of 

affinity prediction, pose prediction, ranking and screening.  
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