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Abstract
The controlled manipulation of quantum states of single trapped atomic
ions forms the basis of some of the most precise measurements pre-
formed to date with proven applications in fundamental physics, time
keeping and quantum computing. In this thesis, we extend the toolbox
of coherent manipulation of single trapped ions to molecular ions with
potential applications including measuring a possible time variation of
the proton-to-electron mass ratio, mp/me, the implementation of new
frequency standards in the mid-infrared regime and the realization of
noise-insensitive qubits. We describe in detail the theoretical modeling
of molecular energy levels, systematic shifts and transition strengths for
the identification of molecular transitions which are useful as a new clock
standard and as a molecular qubit. The homonuclear diatomic molecule
N+

2 is found to form a noise-insensitive system with clock transitions
suitable for precision measurements over a wide range of frequencies. We
further describe the experimental implementation of a single-molecule
trapped-ion experiment for precision measurements including the design,
manufacturing and characterization of a new ion trap and the electronic
circuits required for stable operation. We describe several techniques used
for laser stabilization and present the techniques developed for cooling the
molecular ion from an initial temperature of over 1000 K to the motional
ground state of the trap below 10 µK. A new state readout technique
is presented which relies on phase-sensitive forces to non-destructively
read out and prepare the internal state of the molecule from a large
number of possible states. The demonstration of state readout and state
preparation of a single ground-state-cooled N+

2 ion signifies the successful
implementation of all necessary prerequisites for precision measurements
and coherent manipulations of single molecular ions.
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Introduction 1
„If you’re teaching today what you were

teaching five years ago, either the field is
dead or you are.

— Noam Chomsky
about the field of linguistics

At the heart of the scientific endeavour lies the search for scientific truths
about the nature of our universe. In the natural sciences these truths
take the form of mathematical models which can be used to describe
and predict measurable natural phenomena. As what is measurable is
constantly advancing, so are the scientific models and hence the truths
which are deduced from them. The extension of measurements into
new frontiers of the natural world is therefore a pursuit that can both
strengthen, expand and overturn existing models. Scientific truth, as
defined by an empiricist epistemic view, is therefore the models which
currently best describe observations about the natural world, reflecting
a humility toward our understanding which does not impose upon the
universe an absolute, unchanging truth.

The physical laws of our universe, just like our understanding thereof,
may themselves be subject to change, over vast distances or time spans,
between the microscopic and the macroscopic [1]. A great effort is there-
fore undertaken in several branches of physics to establish the universality
of our physical laws and the fundamental constants which quantify them.
In the field of astrophysics, the time and space variation of physical law
can be tested under vastly different conditions, varying several billion
years in time and billions of light years in space, as the radiation reaching
us now from the (metaphorical) corners of the universe reflect the condi-
tions of the early universe and the present, all at once. As an alternative
approach, the extension of measurements into new frontiers of physics
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may be preformed in a laboratory environment, under well controlled
conditions, free from external interference [2]. This approach benefits
from an increased precision in the measurement, although within a more
constrained region of time and space.

The four, currently well established, fundamental forces of the universe
are, the ’electromagnetic interaction’ which enables light and holds to-
gether atoms and molecules, the ’weak interaction’ which is responsible
for radioactive decay of atomic nuclei, the ’strong interaction’ which binds
together quarks to form nucleons and also binds nucleons to form atomic
nuclei and ’gravity’ which makes it difficult to get out of bed in the morn-
ing. As our everyday domain of the universe is well described by these
four forces, to reach into new frontiers of physics requires increasingly
extreme conditions. Dark matter is observed at galactic scales, supersym-
metry is probed at energies comparable to the young universe fractions
of a second after the big bang and drifting fundamental constants are
sought in the high precision measurements that can only be reached with
temperatures close to absolute zero [2, 3].

Of the four fundamental forces, the electromagnetic force is the most read-
ily controllable. Our understanding of the remaining three fundamental
forces is intimately linked to the interaction of matter with electromag-
netic fields, whether it is the detection of gravitational waves by the
enormous laser interferometer, LIGO [4], or the discovery of the Higgs
particle in the calorimeters of the Large Hadron Collider (LHC) at CERN
[5, 6]. Spectroscopy, i.e. the study of the interaction between matter and
electromagnetic radiation, has provided us a window into the inner work-
ings of the universe, in fields ranging from astronomy and atmospheric
science to biology and medicine.

A major milestone is reached in the field of spectroscopy when we are
able to isolate single atoms, molecules or subatomic particles and manip-
ulate them with a high level of control. Such a system allows for long
interrogation times and is free from collisions and ensemble interactions.
It is also more easily cooled to temperatures close to absolute zero to fur-
ther reduce uncertainties associated with the motion of particles. Single
trapped atomic ions have been utilized with tremendous success in the
past 20 years, for a vast array of experiments in fundamental and applied
physics.
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Currently, the precision of spectroscopic experiments on single trapped
atomic ions have reached a relative uncertainty of 10−19 in the transition
frequency between two energy levels [7, 8], corresponding to a number
with 18 significant digits after the decimal point. In comparison, 18
decimals in the number π, i.e. π ≈ 3.141592653589793238, would allow
determination of the circumference of a sphere the size of earth to an error
smaller than the size of a single hydrogen atom. With such a precision,
these systems are suitable for putting new limits on the existence of higher
dimensions, fifth fundamental forces as well as searches for dark matter
and drifting fundamental constants [9, 10, 11]. This well-controlled
model system may also serve as a stable time reference [12] to which
other experiments are compared and may therefore aid in the discovery
of new phenomena in other fields of science.

Measuring time requires a stable oscillating process1, relatively insensitive
to outside interference, which can be counted and thus forms a clock.
The natural oscillation frequencies of a quantum particle, such as the
frequency difference between two energy levels in an atom, can therefore
be used as a stable time reference. Used as a clock, the atomic system
mentioned above shows an error of less than 1 second every 30 billion
years, twice the current estimate of the age of the universe. Historically,
there exists a close relationship between scientific discoveries in physics
and advances in time keeping whereby many discoveries can be attributed
to improvements in clocks [13]. The technique of very-long-baseline
interferometry (VLBI), which was recently employed to photograph a
black hole [14], relies on extremely precise clocks to function.

The precise control of single quantum particles is also one of the most
successful platforms for quantum computers [15, 16, 17], a new infor-
mation processor which utilizes quantum effects, such as entanglement
and superposition, to speed up certain calculations that are beyond the
abilities of classical computers [18]. Such a device is also suitable for
simulating large quantum systems such as molecules in what is typically
termed a quantum simulator [19]. The folding of proteins into their
lowest energy configuration has been a long standing problem in the field
of biochemistry, which is not easily predicted on a classical computer, and
would greatly benefit from quantum simulation [20]. The basic building

1Non-oscillatory processes such as the decay of radioactive particles may also be used as a
measure of time, as e.g. in carbon dating.
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block of the quantum computer is the qubit, a quantum mechanical ana-
logue of the classical bit. These building blocks benefit from the increased
control and precise manipulation of single isolated particles in a well
controlled environment.

It is no surprise then that single trapped atomic ions constitute one of
the most promising platforms for pushing the boundaries of fundamental
and applied physics. The essential building blocks of such an experiment
are,

• State initialization: The production of the single trapped particle
into a specific internal state which is a suitable starting point for the
experiment.

• Cooling: The reduction of the kinetic energy of the particle to reduce
Doppler broadening and other systematic shifts in the measurement.

• State manipulation: The manipulation of internal states of the
particle using a a well defined electromagnetic field produced by a
stable oscillator. Alternatively, as in the case of a chemical reaction
experiment, state changes can be induced by collisions.

• State detection: The readout of the internal state of the trapped
particle to determine the success or failure of the state manipulation
pulse.

By extending the field of molecular spectroscopy into the domain of single
trapped molecular ions, similar advances are expected as those achieved
by single-atom experiments [21, 22, 23, 24, 25]. The most precise spec-
troscopy on molecular ions is currently behind their atomic counterparts
by several orders of magnitude [26]. This reflects the challenge posed by
the complex system of energies, which includes vibrations and rotations
and makes all the building blocks listed above, except perhaps the state
manipulation, more challenging in the molecule than in the atom. Many
widely spaced energy levels can be populated and thus, apart from a
few special cases [27, 28, 29], the laser cooling of molecular ions is not
feasible. Molecular state detection and initialization into a specific state is
also challenging for the same reason. Nevertheless, these experimental
challenges may be overcome and the potential benefits of using molecular
ions as probes of fundamental physics, qubits and clocks are many [30,
31].
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The molecular energies are more sensitive than their atomic counterparts
to certain fundamental physical constants and can therefore be used to
measure these constants to a better precision given a similar spectroscopic
uncertainty [32, 33]. One such constant is the ratio of masses between
the proton and the electron µm = mp/me ≈ 1836. The mass of the proton
originates mainly from the binding energy of the quarks and therefore,
according to extensions of the standard model and general relativity, this
mass ratio may change over time [2]. The atomic energies show a low
sensitivity to the masses of the subatomic particles as the electromagnetic
interaction between charges dominate the energy splitting in these sys-
tems [13]. The molecular rotational and vibrational energies, however,
depend on the molecular moments of inertia and vibrational frequencies,
respectively, which depend on the mass of the nuclei and therefore the
transition frequencies are several orders of magnitude more sensitive to
µm than atomic transitions [32, 34, 33, 35, 36].

The time variation of the proton-to-electron mass ratio has been con-
strained by comparing several lines with different sensitivity to µm in
the absorption spectra of methanol from distant quasars, with a look-
back time of ∼ 7.5 billion years. This study did not find a significant
temporal variation of µm up to µ̇m/µm < 10−17 per year2 [37]. By com-
paring the frequency ratio of two transitions in Yb+ ions in the laboratory,
the time variation was limited to µ̇m/µm < 10−16 yr−1 using a single
trapped atomic ion [9]. The current limit from laboratory measurements
of trapped molecules comes from comparing the frequencies of a SF6
molecular clock to an atomic clock with a resulting temporal constraint of
µ̇m/µm < 10−14 yr−1 [38].

The complexity of molecular energies means that suitable transitions can
be found in a broad range of frequencies ranging from 1 MHz to 100’s of
THz which are extra insensitive to experimental noise. These transitions,
termed clock transitions after their suitability for time keeping, have
therefore been proposed as new frequency standards [39, 40, 21] and as
stable qubit states [41].

The goal of this thesis is therefore the determination of the usefulness
of a single molecular ion for the purposes detailed above. We wish to

2Assuming a linear time variation.
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determine the utility of the molecular energy levels for precision mea-
surements, with the purpose of finding drifting fundamental constants,
as a clock standard and as a molecular qubit. We also wish to establish
the difficulty in the implementation of such an experiment in order to
assess whether such an experiment is feasible and worthwhile. All of
the necessary building blocks will be implemented in order to establish,
experimentally, which part of the system needs to be improved in order to
reach the ultimate goal of an experiment with full control over a single
molecule.

The thesis is structured as follows. In Chapter 2, we shall treat the full
complexity of the molecule theoretically, to the best of our abilities, not
as a hindrance but an opportunity to implement a stable and versatile
experiment for precision measurements. After briefly reviewing the molec-
ular Hamiltonian and the approximations which enable its calculation,
we proceed to define the effective Hamiltonian for our model system, N+

2 .
Several terms of the Hamiltonian are derived explicitly, particularly for
describing the interaction of the molecule with external magnetic fields.
By solving this Hamiltonian numerically we obtain the energies of the of
the molecular levels. We shall also treat the theory of transitions between
these levels in the same formalism that was used to obtain the energies.
Armed with this theory, we can then proceed to explore the landscape
of transitions in the molecule and present the benefits and drawbacks of
each class of transitions, rotational, vibrational, hyperfine and Zeeman
transitions, for precision measurements and as qubit states. Finally we
consider additional systematic and statistical uncertainties in the molecule
which may limit the attainable precision under realistic experimental con-
ditions. We shall see that the homonuclear diatomic molecule serves as a
stable and versatile system suitable for precision measurements and as
qubit states with a relatively modest experimental overhead.

In Chapter 3, we describe the implementation of such an experiment
for a single N+

2 ion co-trapped with a single laser cooled Ca+ ion for
sympathetic cooling of its kinetic energy and detection of its internal state.
We begin with the description of the ion trap and the design of a new trap
focusing on a low heating rate to allow long probe times. The electronics
that were built for stable trap operation are then described. We proceed
to describe some techniques that may be used for stabilizing a molecular
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probe laser for precision measurements. This chapter ends with a short
description of additional parts of the experiment.

The first results from the implementation of the single Ca+- N+
2 experi-

ment are presented in Chapter 4, where we describe the techniques for
cooling the initial energy of the molecule from 1000 K to close to absolute
zero near 10 µK in several stages. The initial cooling from ionization
temperatures to a few mK is achieved through sympathetic cooling using
several laser cooled co-trapped Ca+. The technique that was developed
for reducing the number of Ca+ to a single one is then presented. Finally
we describe the resolved sideband cooling of the motional mode of both
ions to the ground state of the trap and characterize the heating rates and
coherence times of the system.

In Chapter 5 we describe the state readout technique that was developed
to determine the internal state of the molecule without losing the state.
This technique relies on entanglement of the internal molecular state with
the motional modes of the Ca+- N+

2 string. Although such schemes have
been previously proposed and implemented, we describe and implement
a version of this scheme which is especially suitable for the detection
of quantum states in the complex landscape of molecular energy levels.
We first theoretically determine the ac-Stark shift that both atomic and
molecular ions are subjected to from the state-readout laser. We then
simulate the effect of this shift on the motional modes of the two-ion string
by a classical numerical simulation as well as a quantum simulation using
N2H+. Finally we present the results of several experiments preformed
on a single N+

2 ion. We determine the initial rovibrational states after
ionization, preform nondestructive spectroscopy on a dipole allowed
transition and present a simplified method to determine the internal state
of a molecule with a limited knowledge of the transition strengths.

Some concluding remarks and a future outlook are presented in Chapter
6.
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Qubits and Clock
Transitions in a
Homonuclear Diatomic
Molecule

2

„It’s not rocket science. Well, it is rocket
science but you’ll get the hang of it.

— Stefan Willitsch
first meeting with a new PhD student

In this chapter we develop the theory of energy levels, transition strengths
and systematic shifts of a diatomic molecule in the presence of a magnetic
field. We are interested in the behaviour of a single, trapped molecule in a
vacuum environment, practically free from collisions. The state dynamics
are thus only due to interactions with electromagnetic fields. We shall
estimate the limiting uncertainties of the molecular transition frequencies
and assess the usefulness of these transitions for testing fundamental
physics and as a molecular clock. We shall also consider the stability of
these transitions as noise-insensitive qubit states.

There is extensive literature on the subject of energy states and transitions
in diatomic molecules. The theoretical foundation of this chapter is based
on Brown & Carrington [42] with complementary works on the theory
of spherical tensor algebra by R. Zare [43] and the theory of forbidden
transitions by D. Papousek [44]. Other great works include Refs. [45,
46, 47]. The contribution of this chapter to the well-established theory
is therefore only to combine the tools for treating molecular energies,
forbidden transitions and systematic shifts in a single, consistent frame-
work. This chapter may also serve as a guide to show, in detail, how to

9



use the formalism of spherical tensor algebra in combination with bra-ket
notation to gain deep insights into the subject of molecular lines and
forbidden transitions.

We start the analysis by briefly describing the method of constructing a
Hamiltonian and a basis set suitable for our system. We then construct
an ’effective’ Hamiltonian starting with the internal interactions between
the electrons and the nuclei. To this we add interactions with external,
static fields and finally we add time-varying fields in the form of elec-
tromagnetic radiation to predict state dynamics. By means of several
example derivations, we will show how to derive matrix expressions for
the Hamiltonian interactions in a suitable basis.

We then present the results of our calculations for the N+
2 molecule in

its electronic ground state, X2Σ+
g . The results show that often neglected

elements in the Hamiltonian lead to significant changes in the measured
spectrum by inducing transitions that would otherwise be forbidden.
Such terms also enable ’magic’ transitions that are particularly insensitive
to experimental noise. We present different classes of transitions from
Zeeman transitions of ∼ 1 MHz to rovibrational transitions of ∼ 100 THz,
and explore their susceptibility to magnetic fields. Finally we assess the
suitability of the N+

2 molecular transitions as clock and qubit states by
estimating other sources of systematic shifts and uncertainties.
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2.1 Energy levels of a diatomic molecule

The purpose of this section is to provide a short background on the
molecular Hamiltonian and to introduce the techniques that can be used
to solve it, such as wavefunction separation, perturbation theory and the
’effective’ Hamiltonian approach. We will then consider the hierarchy
of angular momentum couplings and determine the basis states that are
suitable for evaluating the Hamiltonian.

2.1.1 The molecular Hamiltonian

The Hamiltonian for a system of particles represents the total energy of
the system and can be written as the sum of the kinetic and potential
energies of each particle. A simplified molecular Hamiltonian, in the
absence of external fields, may take the form [42],

Htot =
∑
i

1
2mi

P2
i + 1

2
∑
α
Mα

∑
i,j

PiPj

+
∑
i<j

e2

4πε0Rij
+
∑
α,i

Zαe
2

4πε0Riα

+H(Si) +H(Iα)

+
∑
α

1
2Mα

P2
α +

∑
α<β

ZαZβe
2

4πε0Rαβ
. (2.1)

Here, the (i, j) and (α, β)-indices refer to the electrons and the nuclei,
respectively. The momentum operator, Pi, then represents the momentum
of electron i. The masses of electrons and nuclei are denoted mi and Mα,
respectively, and e and Zα denote their respective charges. Rαβ is the
spatial coordinate between two particles and ε0 is the vacuum permittivity.
The first two terms therefore describe the kinetic energy of the electrons.
The next two terms describe the Coulomb potential between different
electrons and between the electrons and nuclei. The next two terms,
which are not written explicitly1, represent the interaction between the
electron and nuclear spins and the system as a whole. The last two terms

1If these two terms were written out explicitly this expression would be very lengthy.
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in this Hamiltonian represent the kinetic energy of the nuclei and the
Coulomb energy between different nuclei.

By solving the Schrödinger wave equation with appropriate boundary
conditions, we can find the wavefunctions, Ψevrs, that fully describe the
system, with energies, Eevrs, given by,

HtotΨevrs = EevrsΨevrs. (2.2)

The subscript evrs suggests that this wavefunction is a combined function
of the electronic, vibrational, rotational and spin coordinates. By solving
the time-dependent wave equation we obtain the time evolution of our
wavefunctions under, e.g., the influence of an electromagnetic field,

Htot(t)Ψevrs(t) = i~
∂

∂t
Ψevrs(t), (2.3)

where, Htot(t) now includes a term corresponding to the interaction with
an external field.

Exact solutions to Eq. (2.2), using the Hamiltonian of Eq. (2.1), are
beyond the capabilities of even the most powerful classical computers
today. Even the simplest molecule, H+

2 , consisting of two protons and one
electron, can only be solved for after making certain assumptions [45].
The most common starting point is the Born-Oppenheimer approximation
which treats the electronic and nuclear wavefunctions as separable, i.e.,

Ψevrs = ψeφvrs, . (2.4)

Each part can then be solved individually as,

Heψe = Eeψe, (2.5)

and analogously for Hvrs. In the Hamiltonian, this separation into an
electronic and a nuclear part, Htot = He + Hvrs, is imposed by the
approximation that the electronic wavefunctions are independent of the
nuclear momenta and thus follow the motion of the nuclei adiabatically.
The nuclear coordinate, Rαβ , is then reduced to a parameter in the
electronic Hamiltonian He. The electronic Schrödinger equation can then
be solved exactly for H+

2 and approximately for other diatomic molecules.
The solutions are commonly presented as Born-Oppenheimer potentials
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for each electronic state describing the effective potential experienced by
the nuclei.

Such a separation of the total wavefunction most of the time involves
the approximation that the Hamiltonian acting on one part of the sep-
arated wavefunction does not significantly influence the other part. By
perturbation theory, the interaction between the two subsystems that
was neglected in the separation can be added as correction terms in the
Hamiltonian up to any desired accuracy. As an example of an exact sepa-
ration, in the absence of external fields, the translational motion of the
molecule can be rigorously and exactly separated from the spin-rovibronic
wavefunction by transforming the Hamiltonian, Eq. (2.2), to a reference
frame co-moving with the molecule. In the presence of an external field
this separation is no longer exact.

The separation of the vibrational and rotational motion of the nuclei
can be achieved, in a similar manner as the separation of electronic
and nuclear motion, by separating the wavefunction, Ψvr, in a radial
(vibrational) part, χ(R), and an angular (rotational) part, Θ(θ). The wave
equation for the radial wavefunction is then,

~2

2µ
1
R2

d

dR
R2 dχ(R)

dR
+ [Eevr − V −B(R)J(J + 1)]χ(R) = 0. (2.6)

Here, µ represents the reduced mass of the two nuclei and J is the
quantum number associated with rotations. The potential, V , includes the
Born-Oppenheimer potential for the nuclei in a given electronic state. By
assuming a harmonic potential experienced by the nuclei and neglecting
the angular part, J(J + 1), the vibrational wave equation can be solved
and describes harmonic oscillator states with associated quantum number
v.

Anharmonic corrections to the potential are then introduced as pertur-
bations to these first-order Harmonic oscillator solutions. One general
potential function that includes anharmonic corrections, up to any desired
order, was introduced by Dunham [48],

V (ξ) = a0ξ
2 [1 + a1ξ + a2ξ

2 + . . .
]
, (2.7)
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where ξ = (R − Re)/Re is a dimensionless coordinate describing the
excursions of the internuclear distance, R, from the equilibrium bond
length, Re. Here, a0 = hωe/4Be is given in terms of the oscillator fre-
quency, ωe, and the equilibrium rotational constant, Be, where h is the
Planck constant. The first term, corresponding to the Harmonic oscillator
potential, is solved in the wave equation and higher order constants, an 6=0,
assumed to be small compared to a0, are added as perturbations2.

The neglected angular part of the Hamiltonian, B(R)J(J + 1), can also
be added as a perturbation to the zero-order Hamiltonian by expressing
the rotational constant in terms of its series expansion in ξ,

B(R) = ~
2µR2 = ~

2µR2
e

[
1 + c1ξ + c2ξ

2 + . . .
]
, (2.8)

where cn = (−1)n(n+ 1). By perturbation theory, it can then be shown
that the energies of the vibrating rotor, thus described, are given by
an infinite series in increasing orders of the vibrational and rotational
quantum numbers,

Ev,J =
∑
kl

Ykl(v + 1/2)k(J(J + 1))l. (2.9)

The values of the Ykl coefficients can be derived explicitly in terms of the
molecular constants. Physically, the first term including Y00, which has
no rotational or vibrational dependence, represents only a correction to
the energy of the electronic state. The Y10 = ωe term is the Harmonic
oscillator energy and the Y01 = Be term represents the energy of a
rigid rotor. Cross terms also appear, which couple the rotations and
vibrations such as the Y11(v + 1/2)(J(J + 1)) term which represents the
change in the rotational moment of inertia upon vibrational excitation.
The Y02 = 4B3

e/ω
2
e term is the first order correction to the rigid-rotor

energies with E02 ∝ J2(J+1)2, and therefore corresponds to a centrifugal
distortion correction.

2Another commonly used potential is the Morse potential which in some cases better
reproduces the B.O. potentials, especially in the limit of R→∞. The potential function
is, V = D(1 − e−β(R−Re))2, where D is the dissociation energy and β is a constant.
The solutions of the vibrational wave equation are then equivalent to the anharmonic
potential in Eq. (2.7) up to second order, but does not include higher order terms.
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To reiterate, we have seen how a separation of wavefunctions can help
us to find solutions to the molecular Hamiltonian and that the neglected
interactions can be added as perturbations to these zero-order solutions.
Another useful technique for solving the Hamiltonian presents itself natu-
rally from a series expansion like the one in Eq. (2.9). Often we are only
interested in the energies of a particular sub-manifold of the molecular
states such as the vibrational states of a single electronic state or the
rotational states of a single vibrational state. The electronic, vibrational
and rotational wave equations are then unnecessary to solve for every
state and we may instead transform to an ’effective’ Hamiltonian which
only acts within a particular sub-space of the molecular wavefunction. An
example is given below.

We have seen that rovibrational coupling terms, in the expansion of Eq.
(2.9), connect together the vibrational and rotational basis states, |v, J〉,
by perturbing the zero-order solutions to the separated wave equation.
We note that the rotational state dependence of all energy contributions
with coefficients Yn,0 for n = 0, 1, . . . scale the same way, as J(J + 1).
The opportunity then presents itself to change the rotational constant, Be,
into an ’effective’ rotational parameter, which depends on the vibrational
state, in order to absorb all the terms that scale as J(J + 1) into a single
parameter, Bv. Thus, for example, the Y11 contribution which couples
the rotational and vibrational states is added to the rotational constant
Bv = Be + Y11(v + 1/2) + . . . .

The Hamiltonian expressed in this manner will have the same eigenvalues
as the ’real’ Hamiltonian but is simplified to only act on the separated
basis functions, |v〉|J〉, with a different effective rotational constant for
each vibrational state. The effective rotational Hamiltonian then only
has diagonal values in v, i.e. it does not couple different vibrational
states, but nonetheless gives the correct energy eigenvalues including
the off-diagonal contributions. This Hamiltonian can then act on the
separated basis states, |J〉, without considering vibrational states and
will give the correct rotational splitting. It can be proven rigorously by
perturbation theory [42] or through a contact transformation [49] that
the eigenvalues, thus produced, are equivalent to the eigenvalues of the
real Hamiltonian.
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Since we have separated the basis states |v〉|J〉 and absorbed all terms
that couple them together in effective constants, v and J cease to be good
quantum numbers of the real Hamiltonian. A better approximation to our
real wavefunction can then be expressed as a linear combination of the
zero-order separated basis states,

|ψk〉p =
∑
i

cki |φi〉. (2.10)

The subscript p suggests that these wavefunctions are perturbed by terms
which mix the zero-order basis states, |φi〉, with mixing amplitudes, cki .
The perturbed wavefunctions, as they are no longer eigenfunctions of the
real Hamiltonian, are therefore not necessarily mutually orthogonal.

The effective Hamiltonian is also a good meeting point between experi-
ment and theory since a spectrum typically provides only frequencies and
transition strengths. Thus, e.g., all the terms that scale as J(J + 1) are
naturally grouped together and each individual contribution is hard to
separate in a spectroscopic experiment. In this case, a comparison of dif-
ferent isotopes of the same molecule can help separate the contributions
to each parameter, as different contributions often have different mass
dependence.

The molecular basis we choose decides which zero-order solutions are
considered for our wavefunction, and thus also which quantum numbers
are useful to represent our interactions. The closer our quantum numbers
are to ’good’ quantum numbers, i.e. to operators that commute with the
real Hamiltonian, the better is our approximation of the energy states.
It is important to keep in mind that in the end, only the observables are
physical and every label we put on the orbital, vibrational, rotational
and spin coordinates are essentially for bookkeeping and for gaining
intuition about the physical mechanisms. Symmetries and conservation
laws concern the real wavefunction Ψevrs and not the near quantum
numbers which we use to describe it. We must therefore keep an eye on
the breakdown of these approximations and not treat them as inviolable.

We use |ηΛ〉 as the Born-Oppenheimer electronic basis states where Λ
is the projection of the electronic angular momentum of an electronic
state, 2S+1Λ±u/g, on the internuclear axis and η denotes any other quan-
tum numbers necessary to describe the electronic state. The vibrational
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basis states are denoted |v〉 where v is the harmonic oscillator quantum
number. For better approximations to our combined orbital, rotational
and spin-angular-momentum wavefunctions, we treat them in a coupled
representation and not as separable. We use common angular-momentum-
coupling hierarchies called ’Hund’s cases’. The Hund’s cases represent the
order of coupling strengths between orbital angular momentum, Λ, rota-
tional angular momentum, N , electron spin angular momentum, S, and
nuclear spin angular momentum, I, for a few limiting cases. The order of
the coupling then determines which intermediate quantum numbers are
useful for describing our system.

The molecular nitrogen ion, N+
2 , in the electronic ground state, X2Σ+

g ,
can be described reasonably well within Hund’s case (bβJ

) [50] where the
rotational and electron spin angular momentum are weakly coupled to
the molecular axis. The coupling order is given by,

N + S = J, (2.11)

J + I = F. (2.12)

Here, J is the ’fine-structure’ angular momentum3 resulting from the
coupling between the electron spin and the rotation, and F is the total
’hyperfine-structure’ angular momentum including the nuclear spin I. The
coupling to the nuclear spin determines the subscript of the notation
that describes the Hund’s cases, e.g. (bα) or (bβJ

), where α and β imply
that the nuclear spin is strongly or weakly coupled to the molecular axis
respectively. The additional subscript in case (bβJ

) then gives the angular
momentum vector to which the nuclear spin couples, in this case J .

The set of quantum numbers that label the Hund’s case (bβJ
) basis is then,

|φi〉 = |η,Λ, v,N, S, J, I, F,MF 〉. (2.13)

Here, MF , is the projection of the total angular momentum, F, on the
quantization axis and i is a compound index for all the quantum numbers.
Due to the approximation of our wavefunction as this zero-order basis,
only MF remains a strictly good quantum number. The remaining six
quantum numbers are used here as ’near’ quantum numbers to label the

3Note that we have changed rotational quantum number from J to N when moving to the
Hund’s case (b) basis.
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states. The bra-ket notation and spherical tensor algebra, used throughout
this thesis, are so well established that we shall not have to deal with any
explicit functional forms of the wavefunctions throughout the length of
this thesis.

As an effective Hamiltonian for N+
2 , we shall construct here the spin-

rovibrational energies in the X2Σ+
g -state without considering other elec-

tronic states. We construct the following Hamiltonian for the electronic
ground state [51, 23],

H = Hvib +Hrot +Hfs +Hhfs +Hz, (2.14)

as the sum of a vibrational, rotational, fine-structure, hyperfine-structure
and Zeeman Hamiltonian. These terms are given explicitly in the next sec-
tion. The parameters in our Hamiltonian are effective parameters for the
specific vibronic state obtained through comparison with experiment or
numerical simulations. Figure 2.1 shows the spin-rovibrational structure
of 14N+

2 in the electronic ground state schematically.

2.1.2 The effective Hamiltonian

The vibrational Hamiltonian

We have seen in Section 2.1.1 that the rovibrational energies of a diatomic
molecule can be obtained by assuming harmonic oscillator wavefunctions
with anharmonic and rotational terms introduced as perturbations, as
described by Eq. (2.9). Neglecting the rotations, the vibrational energies,
in units of frequency, are to second order [42],

G(v) = ωe(v + 1/2) + ωexe(v + 1/2)2 + ωeye(v + 1/2)3. (2.15)

In the effective Hamiltonian approximation of Eq. (2.15), the off-diagonal
terms in the Hamiltonian have been transformed away and the transition
frequencies may be written as ∆Evib = G(v′) − G(v). These constants
are given in Table 2.2 and Table 2.3 for 14N+

2 and 15N+
2 , respectively. As

the constants are obtained from experiments, they are effective constants
which include corrections due to breakdown of the Born-Oppenheimer
approximation.
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Fig. 2.9

Fig. 2.3

Fig. 2.1. A simplified energy-level diagram (not to scale) of 14N+
2 in the electronic

ground state, X2Σ+
g , including two rotational states, N = 0, 2, of the v = 0, 1

vibrational states. Both nuclear-spin states, I = 0, 2 are shown. The Zeeman
structure is not included. The dotted boxes refer to the levels included in Figures
2.3 and 2.9 where the Zeeman-structure is presented. The color code of these
levels matches the one used in said figures.
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The rotational Hamiltonian

The effective rotational Hamiltonian, Hrot, associated with the quantum
number N , is added as a perturbation to the vibrational energies, as
described by Eq. (2.9). The Hamiltonian operator is,

Hrot = B(R) · N̂2, (2.16)

with diagonal matrix elements in the effective Hamiltonian (to second
order) given by [42],

〈φi|Hrot|φi〉 = BvN(N + 1)−Dv(N(N + 1))2. (2.17)

The first term represents the energy of a quantum-mechanical rigid rotor
while the second term represents first order corrections to the rigid-rotor
approximation. The rotational constant Bv, as obtained through experi-
ments, is then an effective parameter that combines the effect of rotational
angular momentum of both nuclei and electrons. The centrifugal distor-
tion constant, Dv, includes the effects of the rovibrational coupling, as
will be shown in Section 2.1.2.

The values of Bv and Dv are readily found in the literature but as we
are also interested in the off-diagonal elements that mix rovibrational
levels, this effective, diagonalized form of the Hamiltonian is not sufficient.
In order to estimate the mixing amplitudes, the off-diagonal first order
correction to Hrot, which we will denote Hrovib, is treated separately in
the next section. 4

The rovibrational interaction

We have seen in Eq. (2.9), that the first order correction to the rigid-rotor
energies, ∝ Y02, gives rise to the first-order contribution to the centrifugal-
distortion constant Dv. This interaction is also responsible for the first
rovibrational mixing term which couples different vibrational states. The

4Since the transformed effective Hamiltonian already includes the contribution to the
energies of the rovibrational interaction in the effective parameter,Dv , the reintroduction
of this term might seem odd at first. We shall, however, see in the next section that the
energy contribution to Dv is mainly due to the first order rovibrational correction and
the centrifugal-distortion term can be replaced with Hrovib in the effective Hamiltonian.
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mixing coefficients between rovibrational levels can be estimated as in
Ref. [52].

As we have seen in Section 2.1.1, an operator that depends on the in-
ternuclear distance, R, can be expanded in a Taylor series around the
equilibrium bond length Re. Further, if we assume that the amplitude of
vibrational motion is small compared to Re, i.e. ξ � 1, we can neglect
the higher order terms in the expansion. The rotational constant B(R)
expanded to second order around (R−Re) takes the form,

B(R) = Be+ dB

dR

∣∣∣
(R=Re)

(R−Re) + d2B

dR2

∣∣∣
(R=Re)

(R−Re)2 + . . . . (2.18)

Be = B(R)|(R=Re) is the equilibrium rotational constant which in the low
vibrational states may be approximated by Be ≈ Bv. The Be term corre-
sponds to the rigid rotor whereas the linear term inR causes the first-order
rovibrational correction to the rotational energies and can be reintroduced
as a perturbation to the diagonalized effective Hamiltonian.

We can find the value of dB/dR by first noting that B(R) ∝ R−2 and the
deviation of B(R) from the equilibrium bond length can be written,

B(R) = Be

(
Re
R

)2
. (2.19)

Taking the derivative with respect to R yields,

dB

dR

∣∣∣
(R=Re)

= −2Be
R2
e

R3

∣∣∣
(R=Re)

= −2Be
Re

. (2.20)

In order to evaluate the effect of the operator (R−Re), from Eq. (2.18), on
our basis states of Eq. (2.13), we first make some assumptions. We note
that the spin-rotational basis states are independent of the internuclear
distance R and therefore not impacted by this operator, i.e. we assume,

〈v′, N ′, S′, J ′, I ′, F ′,M ′F |R|v,N, S, J, I, F,MF 〉
≈ 〈v′|R|v〉〈N ′, S′, J ′, I ′, F ′,M ′F |N,S, J, I, F,MF 〉. (2.21)

The validity of this approximation can be seen by observing the vibrational
dependence of the effective spin-rotational and hyperfine constants in
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Table 2.2. The difference between v = 0 and v = 1 in the constant γv are
in the order of ∼ 1% and this approximation is therefore justified.

Further, we approximate the vibrational wavefunctions, |v〉, as harmonic
oscillator states. Like this, we can recognize the operator (R−Re) = x̂ as
the normal-coordinate operator which is readily expressed in terms of the
creation and annihilation operators, a† and a, as,

x̂ =

√
~

2µωe
(a† + a). (2.22)

Here µ refers to the reduced mass of the system and ωe is the oscillation
frequency. When acting on the Harmonic oscillator functions this operator
gives,

〈v′|(R−Re)|v〉 =

√
~

2µωe
(√
v + 1δv(v′+1) +

√
vδv(v′−1)

)
. (2.23)

We can express the effective mass µ in the equilibrium constants
µ = ~/(2R2

eBe) and thus using Equations (2.20) and (2.23) we obtain,

dB

dR
〈v′|(R−Re)|v〉 = −2

√
B3
e

ωe

(√
v + 1δv(v′+1) +

√
vδv(v′−1)

)
. (2.24)

By the Kronecker delta expressions, δ, we see that this first-order rovi-
brational interaction mixes vibrational states of ∆v = ±1. The second
order contribution in Eq. (2.18) ∝ R2 will induce mixing of vibrational
states ∆v = ±2 and so on5. The rovibrational interaction Hamiltonian,
B(R)·N̂2, has diagonal eigenvalues B(R)·N(N+1), and we therefore ob-

5As we saw in Section 2.1.1, we may expand the rotational constant, B(R), in terms of the
Dunham operator, ξ̂ = (R̂−Re)/Re, which takes a dimensionless form. The analogue
of Eq. (2.18) then takes the same form as in Eq. (2.8),

B(R) = Be [1− 2ξ + . . . ] .
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tain the following Hamiltonian expression for the first order rovibrational
interaction,

〈v′N ′|Hrovib|vN〉 = −2Be
√
Be
ωe
δNN ′

×N(N + 1)
(√
v + 1δv,(v′+1) +

√
vδv,(v′−1)

)
. (2.25)

Using the values Be ≈ B0 = 1.93 cm−1 and ωe ≈ 2140 cm−1 from Table
2.2, we find that

√
Be/ωe ≈ 0.03.

A simple analytical expression exists for the correction to the basis states,
to first order in perturbation theory,

|a〉p ≈ |a0〉+ 〈a
0|H|b0〉

Eb − Ea
|b0〉 = caa|a0〉+ cab |b0〉. (2.26)

Here we have introduced the mixing coefficients from Eq. (2.10), cai ,
which represent the mixing amplitude between the perturbed state |ψa〉p
and the zero-order basis functions |φi〉, normalized such that

∑
i(cai )2 = 1.

By inserting our mixing Hamiltonian from Eq. (2.25), we obtain the
vibrational mixing coefficients between v = 0 and v = 1,

|v = 0〉p ≈
(
|v = 0〉+ 2

(
Be
ωe

) 3
2

N(N + 1)|v = 1〉
)
, (2.27)

|v = 1〉p ≈
(
|v = 1〉 − 2

(
Be
ωe

) 3
2

N(N + 1)|v = 0〉
)
.

In this approximation the mixing coefficients c01 and c10 are equal in mag-
nitude but opposite in sign.

To obtain the mixing coefficients to all orders, we diagonalize the Hamil-
tonian numerically, Htot = ∆G01 + Be · N(N + 1) + Hrovib. In Table
2.1 we present the calculated mixing coefficients between v = (0, 1, 2)
in N = (0, 2). First, we note that the rotational ground state, N = 0,
prohibits rovibrational mixing as expected in the absence of rotations.
Mixing coefficients between v = 0 and v = 1 is of order 10−4 in N = 2
and shifts the energy levels by ∼ 6 MHz in N = 2, or (N(N + 1))2 · 0.177
MHz, compared to the unmixed levels. This is also what we get from
the centrifugal distortion constant D0 ≈ 0.179 MHz, from Table 2.2. We
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v = 0 v = 0 v = 1 v = 1 v = 2 v = 2
N = 0 N = 2 N = 0 N = 2 N = 0 N = 2

v = 0, N = 0 1 0 0 0 0 0
v = 0, N = 2 0 0.999 0 3.15 · 10−4 0 −6.93 · 10−8

v = 1, N = 0 0 0 1 0 0 0
v = 1, N = 2 0 3.11 · 10−4 0 -0.999 0 4.39 · 10−4

v = 2, N = 0 0 0 0 0 1 0
v = 2, N = 2 0 6.72 · 10−8 0 −4.33 · 10−4 0 -0.990

Tab. 2.1. Mixing of vibrational states due to the first-order rovibrational inter-
action. Columns represent the perturbed rovibrationally mixed functions |v,N〉p
and the rows represent the orthogonal zero-order basis states |v〉|N〉 A basis set
of N = 0, 2, . . . , 100 and v = 0, 1, 2 was used to ensure convergence.

therefore find that the main contribution to the effective centrifugal dis-
tortion constant, Dv, comes from this first-order rovibrational interaction
and that the other contributions to Yn2 for n 6= 0, are small6.

The spin-rotation Hamiltonian

Fine-structure terms in the effective Hamiltonian, Hfs, arise from coupling
between the electron spin magnetic moment with the magnetic moment
generated by the rotating molecule and the electron orbital motion.

The spin-rotation-coupling Hamiltonian, Hfs = γvN̂ · Ŝ, is diagonal in the
Hund’s case (b) basis with diagonal matrix elements given by [51],

〈φi|Hfs|φi〉 = γv,N (J(J + 1)−N(N + 1)− S(S + 1))/2. (2.28)

The coupling constant γv,N also includes a centrifugal distortion term,
γv,N = γv + γDvN(N + 1), which arises, as in the rotational Hamiltonian,
from the radial expansion of γ(R).

The spin-orbit interaction does not appear in our Hamiltonian as the
projection of the orbital angular momentum is zero in a pure Σ state.
Even so, a residual angular momentum appears due to mixing of electronic

6The centrifugal distortion energy is typically much smaller than the vibrational and ro-
tational spacing and the Dv term can be kept or removed from the estimation of the
vibrational mixing coefficients with no significant impact on the obtained mixing coeffi-
cients. However, in order to keep the treatment consistent we remove the centrifugal
distortion term from the diagonalization.
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states and is included in the effective coupling constant γv,N to second
order [42]. Due to the relative weakness of the rotational magnetic
moment, this second order contribution is often the dominant contribution
to γv,N [53]. We shall see in Section 2.1.3 how this contribution to γv,N
can be used to estimate the Zeeman shift due to unquenched orbital
angular momentum.

The hyperfine Hamiltonian

The ’hyperfine’ interaction refers to interactions between the spin-rotational
electric and magnetic moments and the magnetic dipole and electric
quadrupole moment of the nuclei. Due to the mass ratio between the
electrons and protons of ∼ 1800, the nuclear magnetic moment is three
orders of magnitude smaller than that of the electron spin and these terms
can be added to our spin-rotational Hamiltonian perturbatively.

Each 14N+
2 atom has a nuclear spin of 1. The total nuclear spin, I, can

then take the values I = 0, 1, 2. In N+
2 , even (odd) values of I allow

for only even (odd) rotational quantum numbers, N , due to the total
permutation symmetry of the molecular wavefunction. Here, we will only
consider the nuclear-spin species I = 0, 2 which are associated with the
rotational ground state. We will also consider the case of 15N+

2 as this
isotope is particularly useful for experimental reasons.

The effective hyperfine-interaction Hamiltonian has four contributions,

Hhfs = Ht +HbF
+HeqQ +HcI

. (2.29)

The matrix elements for these four terms have been derived elsewhere
[51], and here we shall simply give the results. In Section 2.1.3, we will
show how such matrix elements are derived.

Ht is the dipolar hyperfine interaction which represents a magnetic dipole-
dipole coupling between the electron and nuclear spins. The Hamiltonian
operator is given in spherical tensor notation asHt = −

√
10T 1(I)·T 1(S, C2)
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[54], where C2 represents a second rank spherical harmonic [54]. The
matrix elements are,

〈v′, N ′, S′, J ′, I ′, F ′,M ′F |Ht|v,N, S, J, I, F,MF 〉

= tv,Nδvv′δSS′δII′δFF ′δMFM ′F
(−1)J+I+F+N ′+1

×
√

30I(I + 1)(2I + 1)S(S + 1)(2S + 1)

×
√

(2J + 1)(2J ′ + 1)(2N + 1)(2N ′ + 1)

×
{
I J ′ F

J I 1

}
N ′ N 2
S S 1
J ′ J 1


(
N ′ 2 N

0 0 0

)
. (2.30)

The effective coupling constant also includes a centrifugal distortion
correction tv,N = tv + tNN(N + 1). Note that this Hamiltonian exhibits
nonzero off-diagonal matrix elements for states of different J and N

quantum numbers and we say that this expression ’mixes’ different J and
N quantum numbers.

HbF
is the Fermi-contact interaction which represents the coupling be-

tween the electron and nuclear spins at the position of the nuclei. The
Hamiltonian operator in spherical tensor notation is given by
HbF

= bFT
1(I) · T 1(S) [54]. This term is therefore only present for elec-

tronic states with some Σ character i.e. electronic states with a nonzero
probability density at the nucleus7. The matrix elements are given by,

〈v′, N ′, S′, J ′, I ′, F ′,M ′F |HbF
|v,N, S, J, I, F,MF 〉

= bF,vδvv′δNN ′δSS′δII′δFF ′δMFM ′F
(−1)F+I+J′+J+N+S+1

×
√
I(I + 1)(2I + 1)S(S + 1)(2S + 1)(2J + 1)(2J ′ + 1)

×
{
I J ′ F

J I 1

}{
S J ′ N

J S 1

}
. (2.31)

This term has off-diagonal elements in J .

HeqQ is the electric-quadrupole hyperfine interaction and represents a
shift of the energies due to interaction of the electrons with the electric-

7Inside the nucleus, the magnetic field from the nucleus takes on a different form than a
point magnetic dipole and the interaction can not be adequately described by Ht. [45]
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quadrupole charge distribution of the nuclei. The spherical tensor form of
the Hamiltonian operator is [51]

HeqQ = −e
∑
α

T 2(∇Eα) · T 2(Qα). (2.32)

This expression has off-diagonal matrix elements in N , J and I, where
I1 = 1 is the nuclear spin of a 14N atom. The matrix elements are given
by,

〈v′, N ′, S′, J ′, I ′, F ′,M ′F |HeqQ|v,N, S, J, I, F,MF 〉

= eqQv
2 δvv′δSS′δFF ′δMFM ′F

× (−1)I + (−1)I′

2 (−1)F+2J+I′+2I1+S+2N ′

×
√

(2I + 1)(2I ′ + 1)(2J + 1)(2J ′ + 1)(2N + 1)(2N ′ + 1)

×
{
I ′ 2 I

J F J ′

}{
1 2 1
I 1 I ′

}{
N ′ 2 N

J S J ′

}
×
(
N ′ 2 N

0 0 0

)(
I1 2 I1
−I1 0 I1

)−1

. (2.33)

Finally, HcI
is the nuclear-spin rotation interaction, analogous to the

electron-spin rotation coupling from Section 2.1.2, with operator form
HcI

= cIT
1(I) · T 1(N) [51]. This interaction Hamiltonian mixes different

J quantum numbers and takes the form,

〈v′, N ′, S′, J ′, I ′, F ′,M ′F |HcI
|v,N, S, J, I, F,MF 〉

=cIδvv′δNN ′δSS′δII′δFF ′δMFM ′F
(−1)F+I+J′+J+N+S+1

×
√
I(I + 1)(2I + 1)N(N + 1)(2N + 1)(2J + 1)(2J ′ + 1)

×
{
J 1 J ′

I F I

}{
N 1 N

J ′ S J

}
. (2.34)

All the effective coupling constants for 14N+
2 are given in Table 2.2.
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2.1.3 Interaction with external fields

In this section, we aim to illustrate the methods for deriving a Hamiltonian
expression by means of several examples. We will see how to derive matrix
elements in both Hund’s case (a) and case (b), in coupled and uncoupled
representations. The hope is that this section will serve as a short reference
for the different techniques and manipulations that are helpful in deriving
matrix elements. We employ the methods of spherical tensor algebra and
bra-ket notation which are rigorously derived and described in length by
Brown and Carrington [42] and R. Zare [43].

We shall derive matrix expressions for the interaction between the mag-
netic moments of our molecule and an external magnetic field. These
expressions are useful both in the evaluation of the Zeeman effect, in a
static magnetic field, and for calculating magnetic-dipole transition mo-
ments through interaction with an oscillating magnetic field. We therefore
derive expressions for the general case and take note of the one-to-one
correspondence between selection rules for magnetic dipole transitions
and the breakdown of the Hund’s case (bβJ

) approximation by the Zeeman
Hamiltonian.

The N+
2 molecule has four magnetic moments that should be considered

in the interaction with an external magnetic field. The effective Zeeman
Hamiltonian, Hz, therefore has four first-order contributions correspond-
ing to the interaction of a magnetic field, B, with the magnetic dipole
moment associated with electron spin, S, molecular rotation, N, nuclear
spins, I, and orbital angular momentum, L [42, 54]. The magnetic mo-
ment of the electronic orbital motion vanishes in a pure Σ-state but should
still be considered in the X2Σ+

g ground state due to a residual angular
momentum that might arise due to mixing of electronic states. Cross
terms and terms of higher order in the magnetic field (∝ B2) [55, 42]
also appear in the effective Hamiltonian, but will not be considered here.
A discussion of the neglected terms in the Zeeman Hamiltonian will follow
in Section 2.4.1.

We construct the following Hamiltonian,

Hz = −gSµBB · S− gNµBB ·N

−gIµNB · I− glµB
(
ŜxB̂x + ŜyB̂y

)
(2.35)
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Here, gS , gN and gI are the g-factors for the electron spin, rotation and
nuclear spin respectively and µB is the Bohr magneton. The final term,
expressed here as the anisotropic correction to the electron spin Zeeman
interaction, arises due to unquenched orbital magnetic moment and gl
is its corresponding g-factor. Bx and Sx refer to the x-axis contribution
from the magnetic field and electron spin in the molecule-fixed frame of
reference. Both the rotational and anisotropic spin g-factors, gN and gl,
show a significant dependence on the vibrational state. This shift is on the
order of 10−2 between v = 0 and v = 1 and we will show in Section 2.2.4
how this enables rovibrational transitions that are otherwise forbidden.

On the signs of the Zeeman interaction

In Eq. (2.35) we have chosen to adopt a convention where the Zeeman
terms are all given the same sign. The correct physical properties are
then obtained by imposing different signs in the corresponding g-factors
gS , gN , gI and gl. This convention is physically intuitive and allows us to
determine the signs of the interactions by a classical analogy [56].

As an example, we compare the magnetic dipole moment, µ̂, of a free
proton and a free electron in relation to their spin angular momentum
vector,

µ̂p = gpµB Î/~ (2.36)

µ̂s = −gSµBŜ/~ (2.37)

These relations follow from the Dirac equation for the electron and pro-
tons. We see that the magnetic moments of the proton and the electron
are aligned parallel and anti-parallel, respectively, to their spin vector.
This means that in a magnetic field, the proton spin will experience a
torque in the direction of the magnetic field and the electron spin will
experience a torque in the opposite direction. This is readily understood
by analogy with a classical current loop.

The classical current, defined as the movement of positive charges, will
produce a magnetic dipole pointing in the direction given by the right-
hand rule as shown in Figure 2.2a. The proton spin is analogous to
the rotation of a positive charge around it’s own axis. Although such a
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Fig. 2.2. The relationship between angular-momentum vectors (orange arrows)
to the induced magnetic dipole for a) a classical current loop, b) a proton c) the
rotation of a 14N+

2 molecule d) an electron e) a neutron f) rotation of the OH
molecule. The field direction (black arrows) is the same in all pictures while the
angular momentum vector is inverted for the lower three figures.
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rotation is nonphysical, the direction of its magnetic moment nevertheless
agrees with the classical picture. We can apply a similar reasoning to all
our Zeeman terms and adjust the sign of the g-factors accordingly.

The electron spin and orbital g-factors should be negative to reflect the
fact that a negative charge produces a magnetic field opposite to its
angular momentum vector. In the Hydrogen (1H) nucleus this reasoning
is also straightforward, but in any nuclei composed of several protons and
neutrons the situation is more complicated and has to be calculated. The
14N nucleus behaves more like the proton and the magnetic moment has
a value of µI ≈ 0.31µN . The 15N nucleus has an additional neutron and
behaves more like the free neutron with µI ≈ −0.43µN , where µN is the
nuclear magneton.

The rotational Zeeman term includes contributions from both the nuclei
and electrons and by the above analogy we see that the nuclear contribu-
tion will always be positive as it corresponds to moving positive charges,
given by [42],

g(nuc.)
N = m(Z1M

2
2 + Z2M

2
1 )

M1M2(M1 +M2) (2.38)

where Z1 and M1 are the charge and mass of the nucleus with index 1.
The electronic contribution will largely cancel this nuclear contribution.
An experiment or a numerical calculation can reveal whether gN should
be positive or negative depending on which contribution is larger. For
example, in 14N+

2 the contribution from the nuclei is larger than the
electronic contribution, while in the ground state of the OH molecule the
electronic contribution is larger [57].

The anisotropic correction term arises from a cross term in perturbation
theory between the orbital magnetic moment B · L and the spin-orbit
coupling L · S. The contribution to the spin-rotation constant, γN , from
the spin-orbit coupling arises due to a second order perturbation, where
the sign information is lost and a physical intuition is difficult to attain.
Instead, we rely on a numerical calculation by Bruna & Grein [58], where
the anisotropic term is given the opposite sign as the electron-spin term.
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The g-tensor

Just as we did with the sign of the Zeeman interaction, we may continue
our ’abuse’ of the effective g-factor to also include anisotropic effects. In
any anisotropic environment, such as a molecule or a crystal lattice, the
effective magnetic moment can be different along different directions
corresponding to the effective magnetic field experienced by, e.g., the
electron. Physically, the effect of magnetic shielding can be included
by imposing different g-factors along different directions. The effective
g-factor is then considered a tensor with 3× 3 components. In most cases,
the off-diagonal elements are ignored [54] and in the case of a diatomic
molecule, gxx = gyy due to the cylindrical symmetry. In our effective
Hamiltonian of Eq. (2.35), we have included the effect of this cylindrical
anisotropy through the additional gl term where gl = gxx = gyy. This
term then reflects the magnetic moment of the residual orbital magnetic
moment interacting with the electron spin.

The electron spin Zeeman interaction

We start by deriving a matrix expression for the interaction between the
magnetic moment of the electron spin and an external magnetic field.
Since N+

2 has an unpaired electron and no electronic angular momentum
in the X2Σ+

g -state, this term is expected to have the biggest contribution
to the Zeeman energies. The most basic representation of this Hamiltonian
is the scalar product [54],

HZ,S = −gSµBB · S, (2.39)

where gSµB represents the magnetic moment of the electron. The effec-
tive constant gS can differ from that of the free electron ge ≈ 2.0023 due
to relativistic corrections or shielding corrections like the one discussed in
the previous section.

The scalar product of two vectors B · S can be expressed in spherical
tensor notation as the product of two first-rank tensors

T 1(B) · T 1(S). (2.40)
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This is a shorthand notation for,∑
p

(−1)pT 1
p (B) · T 1

−p(S), (2.41)

where p specifies one of three tensor components related to the cartesian
(X,Y, Z) components as,

T 1
0 (S) = SZ (2.42)

T 1
1 (S) = − 1√

2
(SX + iSY ) (2.43)

T 1
−1(S) = 1√

2
(SX − iSY ) (2.44)

This definition ensures that the tensor components transform under rota-
tions as,

T kp =
∑
p′

= Dk
pp′T

k
p′ , (2.45)

where Dk
pp′ is an irreducible representation of the rotation group of rank

k or the so called ’rotation matrix’ [42].

The Cartesian components, Si, may refer to any orthonormal coordinate
system and is usually chosen as either the lab-fixed coordinate system
(subscript p), represented here by the uppercase Latin letters (X,Y, Z),
in which lasers and external fields are defined or the molecule-fixed
coordinate system (subscript q), represented by the lowercase letters
(x, y, z), which rotates in space with the molecule. The z-component
commonly refers to the principal molecular axis which, e.g., defines the
molecular electric dipole moment or symmetry axis. Both coordinate
systems have their origin at the center of mass of the molecule. Either
coordinate system can be used in principle and should lead to the same
matrix expressions as the other. The choice is often made to simplify the
derivation.

The external magnetic field is defined in the space-fixed coordinates and
in a Hund’s case (b) system, the coupling of the electron spin to the
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molecular axis is weak. Therefore this Hamiltonian is readily evaluated in
lab-fixed coordinates8.

Using the list of standard results from spherical tensor algebra in Ap-
pendix A, the derivation of the matrix expression for this interaction is
straightforward. The procedure is to successively decouple the matrix
element from the coupled Hund’s case (bβJ

) basis states |N,S, J, I, F,MF 〉
to the point where the operator T 1(S) can act on a pure spin basis |S〉,
for which the eigenvalues are known.

We begin by first applying the well known Wigner-Eckart (W.E.) theo-
rem, from Eq. (A.6) in Appendix A, to obtain a reduced matrix element
which no longer depends on the projection quantum number, MF , or the
magnetic field direction, p′.

〈N ′, S′, J ′, I ′, F ′,M ′F |B · S|N,S, J, I, F,MF 〉 = (2.46)

T 1
−p′(B)(−1)p

′
(−1)F

′−M ′F

(
F ′ 1 F

−M ′F p′ MF

)
×〈N ′, S′, J ′, I ′, F ′|T 1(S)|N,S, J, I, F 〉.

The quantity in parenthesis is a Wigner 3j symbol [43]. The operator
T 1
−p′(B) represents the field strength and direction of the magnetic field

and therefore does not impact our angular-momentum states other than
by defining the space-fixed projection of the spin operator, p′ 9. It can
therefore be moved outside the bra-ket. The reduced matrix element
no longer depends on the spatial coordinates, p, and we can drop the
subscript from the spherical tensor operator T 1(S).

In order to separate the electron-spin basis |S〉, we must first to decouple
it from the nuclear spin and then from rotations, i.e., from the total

8The Hamiltonian expressed in this coordinate system is also suitable for evaluation in the
Paschen-Back regime, where the external field is so strong that the magnetic moments
decouple from each other, although a different uncoupled basis set should be used. A
matrix element suitable for the Paschen-Back regime is derived for the rotational Zeeman
effect in Appendix B.3.

9In order to keep the derived expressions general for static fields and linear laser po-
larization as well as for circularly polarized light, we have picked out a single tensor
component from Eq. (2.41) and replaced the sum over p with an arbitrary component p′.
This poses no problems if the magnetic field is adequately described by a single tensor
component. If we wish to consider arbitrary polarizations of the incoming field, the sum
over p can be reintroduced without additional changes to the derived expression.
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angular momentum vectors F and J . This procedure corresponds to
separating the coupled wavefunction into its constituent uncoupled basis
functions and assumes that our spin operator does not act on the nuclear
or rotational wavefunctions.

First, we apply Eq. (A.9), from Appendix A, which takes care of decoupling
the nuclear spin, I, from the J angular momentum state. For a first rank
tensor operator that only acts on the first part of the coupled, F = J + I,
system, we have,

〈N ′, S′, J ′, I ′, F ′|T 1(S)|N,S, J, I, F 〉

=δII′(−1)F+J′+I′+1
√

(2F ′ + 1)(2F + 1)
{
J ′ F ′ I

F J 1

}
×〈N ′, S′, J ′|T 1(S)|N,S, J〉. (2.47)

The term in curly brackets is a Wigner 6j symbol [43]. In this equation, the
Kronecker delta appears as a result of the orthogonality of our zero-order
nuclear-spin basis. As we assume that the tensor operator does not act on
these functions, we have 〈I ′|I〉 = δI′I .

We further decouple the electron spin from the rotational angular mo-
mentum by applying a similar equation, Eq. (A.10), that takes care of
decoupling for the case of a tensor operator acting on the second part of
a coupled J = N + S system,

〈N ′, S′, J ′|T 1(S)|N,S, J〉

=δNN ′(−1)J
′+N+S+1

√
(2J ′ + 1)(2J + 1)

{
S J ′ N

J S 1

}
×〈S′|T 1(S)|S〉. (2.48)

Here, the Kronecker delta δN ′N appears for the same reason as for the
nuclear spin wavefunctions above, from the orthogonality of our zero-
order rotational basis states.

The fully decoupled and projection-reduced matrix element is now evalu-
ated through a standard result, Eq. (A.7) in Appendix A,

〈S′|T 1(S)|S〉 = δS′S
√
S(S + 1)(2S + 1). (2.49)
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Here, the quantum numbers S are not operators and can be moved out
of the bra-ket and the Kronecker delta condition δS′S results from the
orthogonality of our zero-order spin basis states.

Finally putting together Equations (2.46), (2.47), (2.48) and (2.49) we
find,

〈N ′, S′, J ′, I ′, F ′,M ′F |B · S|N,S, J, I, F,MF 〉

=T 1
−p′(B)δNN ′δSS′δII′(−1)p

′
(−1)F

′+F−M ′F +2J′+N+S+I

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)S(S + 1)(2S + 1)

×
(

F ′ 1 F

−M ′F p′ MF

){
J ′ F ′ I

F J 1

}{
S J ′ N

J S 1

}
. (2.50)

The off-diagonal terms of this expression that lead to mixing of basis states
can now be read from the delta conditions δNN ′δSS′δII′ and the triangle
conditions of the Wigner 3j and 6j symbols. For example, by the sum rule
m1 +m2 +m3 = 0 in the lower row of the 3j symbol we see that nonzero
∆MF = 0,±1 terms are obtained through the p′ = 0,±1 as expected
for π- and σ-polarized light, respectively. There are no conditions that
forbid F ′ 6= F or J ′ 6= J terms and this term therefore mixes states
with the same value of N,S, I,MF but different in the J and F quantum
numbers.

We have yet to specify the form of T 1
−p′(B) which could be static or

oscillating in any direction. If we define the magnetic field to be static
along the Z-direction of our lab-fixed coordinates, then T 1

0 (B) = BZ and
we obtain,

〈N ′, S′, J ′, I ′, F ′,M ′F |B · S|N,S, J, I, F,MF 〉

=BZδNN ′δSS′δII′(−1)F
′+F−M ′F +2J′+N+S+I

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)S(S + 1)(2S + 1)

×
(

F ′ 1 F

−M ′F 0 MF

){
J ′ F ′ I

F J 1

}{
S J ′ N

J S 1

}
. (2.51)

This expression is identical to the matrix element derived for N+
2 in Ref.

[23] and for a nonlinear symmetric top molecule in Ref. [54].
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In Appendix B.1, we have derived the matrix expression for this Hamilto-
nian in a Hund’s case (aβJ

) basis which is useful for evaluating the first
excited A2Πu-state of N+

2 . In Appendix B.2, we present another useful
technique by transforming the case (b) basis into superpositions of the
case (a) basis states. These expressions are useful in the intermediate
case between Hund’s case (a) and (b) or when an interaction is better
described in different quantum numbers. We then show the equivalence
of the expression derived in this way with Eq. (2.50) above.

The rotational Zeeman interaction

As the charges in the molecule rotate in space, a magnetic dipole moment
is induced which will interact with the external magnetic field. The
magnetic dipole induced by the nuclei are to a large degree cancelled by
the magnetic dipole induced by the electrons which closely follow the
nuclear rotation. The resulting magnetic dipole therefore depends on the
specific molecule and electronic state and the corresponding g-factor, gN ,
can take both positive and negative values as mentioned in Section 2.1.3.
The effective Hamiltonian expressed in spherical tensor notation reads
[42],

HZ,N = −gNµBT 1(B) · T 1(N), (2.52)

and is readily evaluated in space-fixed coordinates. Like before, we apply
the W.E. theorem to remove the dependence on the lab-fixed projection
and obtain the reduced matrix element,

〈N ′, S′, J ′, I ′, F ′,M ′F |B ·N|N,S, J, I, F,MF 〉

= T 1
−p′(B)(−1)p

′
(−1)F

′−M ′F

(
F ′ 1 F

−M ′F p′ MF

)
×〈N ′, S′, J ′, I ′, F ′|T 1(N)|N,S, J, I, F 〉 (2.53)
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We decouple the angular momenta F and J in two steps, first applying Eq.
(A.9) for a tensor operator that acts on the first part of a coupled scheme,
F = J + I,

〈N ′, S′, J ′, I ′, F ′|T 1(N)|N,S, J, I, F 〉

= δII′(−1)F+J′+I′+1
√

(2F ′ + 1)(2F + 1)

×
{
J ′ F ′ I

F J 1

}
〈N ′, S′, J ′|T 1(N)|N,S, J〉. (2.54)

We apply the same equation again to the remaining matrix element, this
time to decouple the rotational angular momentum from the electron
spin, J = N + S,

〈N ′, S′, J ′|T 1(N)|N,S, J〉

=δNN ′(−1)N
′+S′+J+1

√
(2J ′ + 1)(2J + 1)

×
{
N ′ J ′ S′

J N 1

}
〈N ′|T 1(N)|N〉 (2.55)

The fully decoupled matrix element is evaluated using Eq (A.7) as,

〈N ′|T 1(N)|N〉 = δN ′N
√
N(N + 1)(2N + 1), (2.56)

where once again the Kronecker delta implies orthogonality of the ro-
tational basis states 〈N ′|N〉. Putting together Equations (2.53),(2.54),
(2.55) and (2.56), we obtain the matrix element,

〈N ′, S′, J ′, I ′, F ′,M ′F |B ·N|N,S, J, I, F,MF 〉

= T 1
−p′(B)(−1)p

′
δNN ′δSS′δII′(−1)F

′+F−M ′F +J′+J+N ′+S′+I

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)N(N + 1)(2N + 1)

×
(

F ′ 1 F

−M ′F p′ MF

){
J ′ F ′ I

F J 1

}{
N J ′ S

J N 1

}
. (2.57)

This matrix expression has nonzero values for J ′ 6= J and F ′ 6= F . The
matrix expression for the rotational Zeeman effect was derived in Ref. [54]
for a symmetric top molecule, of which a diatomic molecule is a special
case. By inserting K = 0, i.e. a vanishing rotational angular-momentum
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projection on the molecular axis, and by defining the magnetic field
direction as T 1

0 (B) = BZ both expressions agree.

This matrix element was derived in Appendix B.3 in the uncoupled basis
to illustrate another useful technique and to show its equivalence with
Eq. (2.57). The uncoupled form is particularly useful when the coupling
operator includes projection quantum numbers that have been omitted
in the coupled representation, e.g. for evaluation in the Paschen-Back
regime.

The nuclear spin Zeeman interaction

Any unpaired spins in the atomic nuclei of the molecule have an associated
magnetic moment. In the low-field regime we can consider both nuclei
in a coupled representation, I1 + I2 = I, and consider the interaction
with the total nuclear spin as a single quantum number. Due to the mass
difference between the electron and nucleons, the nuclear magneton, µN ,
is ∼ 103 times weaker than the Bohr magneton, µB .

The interaction with the total spin, I, is written in spherical tensor form
as [54],

HZ,I = −gIµNT 1(B) · T 1(I). (2.58)

As the nuclear spins do not couple strongly to the molecular axis in
the subscript-β Hund’s cases, it is readily evaluated it in space-fixed
coordinates.

We apply the W.E. theorem to obtain the reduced matrix element which
no longer depends on the space projection, MF ,

〈N ′, S′, J ′, I ′, F ′,M ′F |B · I|N,S, J, I, F,MF 〉

=T 1
−p′(B)(−1)p

′
(−1)F

′−M ′F

(
F ′ 1 F

−M ′F p′ MF

)
×〈N ′, S′, J ′, I ′, F ′|T 1(I)|N,S, J, I, F 〉. (2.59)
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We need to decouple I from J in order to isolate the nuclear spin basis.
We therefore apply Eq. (A.10) for a tensor operator which acts on the
second part of a coupled scheme F = J + I,

〈N ′, S′, J ′, I ′, F ′|T 1(I)|N,S, J, I, F 〉

=δJJ ′(−1)F
′+J′+I+1

√
(2F ′ + 1)(2F + 1)

{
I F ′ J

F I 1

}
×〈N ′S′J ′|N,S, J〉〈I ′|T 1(I)|I〉. (2.60)

The eigenvalues of the fully decoupled matrix elements are given by,

〈I ′|T 1(I)|I〉 = δI′I
√
I(I + 1)(2I + 1) (2.61)

〈N ′S′J ′|N,S, J〉 = δN ′NδS′SδJ′J . (2.62)

Finally, putting together Equations (2.59), (2.60) and (2.61), we have,

〈N ′, S′, J ′, I ′, F ′,M ′F |B · I|N,S, J, I, F,MF 〉

= T 1
−p′(B)(−1)p

′
δJJ ′δNN ′δSS′δII′(−1)2F ′−M ′F +J′+I+1

×
√

(2F ′ + 1)(2F + 1)I(I + 1)(2I + 1)
(

F ′ 1 F

−M ′F p′ MF

){
I F ′ J

F I 1

}
.

(2.63)

We see that the interaction due to the nuclear spin mixes states of different
F quantum numbers. By inserting T 1

0 (B) = BZ , this matrix element
agrees with the one derived in Ref. [54].

The anisotropic electron spin Zeeman interaction

This term in the Zeeman Hamiltonian arises from the magnetic interaction
between orbital angular momentum and the electron spin. The orbital
angular momentum alters the effective B-field to which the electron
spin couples. This gives rise to an anisotropy which can be incorporated
in the electronic g-tensor [53, 59] or treated as a separate term in the
Hamiltonian, as we shall show here. In the X2Σ+

g ground state, such
orbital angular momentum arises only due to the spin-orbit mixing with
higher electronic states, mainly the A2Πu-state [58].
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The contribution along the principal molecular axis, gzz, can be incor-
porated in the electron orbital g-factor and is not considered here. The
perpendicular components, however, must be treated separately and the
Hamiltonian is given by [42],

HZ,aS = −glµB(BxSx +BySy) (2.64)

The effective g-factor, gl, then incorporates the mixing amplitude to other
electronic states as well as the spin-orbit coupling strength. Curl derived
an approximate relation between gl and the spin-rotation constant γN
[53]. As mentioned in section 2.1.2, the spin-rotation constant γv includes
higher order contributions from spin-orbit coupling. This is often the
dominant contribution since the magnetic moment due to rotations is
very weak, as can be seen from Table 2.2. In the limit where the spin-
rotation constant γN consists mainly of the contribution from spin-orbit
interaction, the strength of gl is related to γv by [53],

gl ≈ −
γv

2Be
. (2.65)

More precise values can be obtained by ab-initio calculations as reported
by Bruna & Grein [58] for the 14N+

2 molecule.

In order to simplify the derivation of the matrix expressions, we begin by
rewriting the Hamiltonian of Eq. (2.64) in spherical tensor form. Using
Equation (2.42) we can relate the operators to their spherical tensor form,

BxSx +BySy =
∑
q

T 1
−q(B)T 1

q (S)−BzSz (2.66)

The last term above is just the zeroth component T 1
0 (B)T 1

0 (S) and there-
fore,

BxSx +BySy =
∑
q=±1

T 1
−q(B)T 1

q (S). (2.67)

2.1 Energy levels of a diatomic molecule 41



As the magnetic field B is defined in our lab coordinates, we transform
the coordinate system using Eq. (2.45),∑

q=±1
T 1
−q(B)T 1

q (S) =
∑
q=±1

∑
p

D1
pq(ω)∗T 1

p (B)T 1
q (S)

= BZ
∑
q=±1

D1
0q(ω)∗T 1

q (S), (2.68)

where we have once again defined the magnetic field along the Z direction,
T 1
p=0(B) = BZ .

We may also rewrite this expression in the form,

BZ
∑
q=±1

D1
0q(ω)∗T 1

q (S) = BZ
∑
q

D1
0q(ω)T 1

q (S)−D1
00(ω)∗T 1

q=0(S)

= BZT
1
p (S)−D1

00(ω)∗T 1
q=0(S). (2.69)

This form of the Hamiltonian may simplify the derivation, as we have
already derived an expression for the first term in Section 2.1.3. We may
then simply add gl to the effective g-factor of the electron-spin Zeeman
Hamiltonian, as gS = ge + gl, and derive an expression for the second
term of Eq. (2.69) which now represents a single component, Sz, in the
molecule-fixed basis. In Appendix B.4 we derive the matrix expression
using the form of Eq. (2.69) by transforming our Hund’s case (b) basis
to the case (a) basis. This simplifies the derivation as the operator Sz
naturally lends itself to be evaluated using Hund’s case (a) quantum
numbers.

If we also aim to evaluate the electron-spin operator T 1
q (S) in the lab-fixed

coordinates, which is more suitable for a Hund’s case (b) system, we must
rotate into these coordinates using another Wigner rotation matrix from
Eq. (2.45),

BZ
∑
q=±1

D1
0q(ω)∗T 1

q (S) = BZ
∑
q=±1

∑
p′

D1
0q(ω)∗D1

p′q(ω)T 1
p (S) (2.70)
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Now, using the conjugation relation D1
0q(ω)∗ = (−1)−qD1

0,−q(ω) and by
expressing the two consecutive rotations as a single rotation, using Eq.
(A.4), we obtain,

D1
0,−q(ω)D1

p′q(ω) =
∑

k=0,1,2
(2k+1)

(
1 1 k

0 p′ −p′

)(
1 1 k

−q q 0

)
Dk
−p′,0(ω)∗.

(2.71)
The Hamiltonian then becomes,

HaS

−glµBBZ
=
∑
q=±1

(−1)q
2∑
k=0

(2k + 1)
(

1 1 k

−q q 0

)

×
∑
p′

(
1 1 k

0 p′ −p′

)
Dk
−p′,0(ω)∗T 1

p (S). (2.72)

By the definition from Eq. (A.2), the last sum over p′ in the equation
above is exactly a first order tensor product, −(3)−1/2W 1

0 (Dk, T 1), i.e.,

W 1
0 (Dk(ω), T 1(S)) =

∑
p′

Dk
p′0(ω)∗T 1

−p′(S)(−1)−k+1

×
√

3
(

1 1 k

0 p′ −p′

)
(−1)k+2, (2.73)

where the last phase factor comes from a permutation of the 3j symbol in
Eq. (A.2) to fit our Hamiltonian. Now, the Hamiltonian takes the form,

HaS

−glµBBZ
=
∑
q=±1

(−1)q+1
2∑
k=0

(2k+1)
(

1 1 k

−q q 0

)
1√
3
W 1

0 (Dk(ω), T 1(S)).

(2.74)
Because of the triangle conditions of the 3j symbol, the sum over k only
runs over k = 0, 2.

We shall now derive the matrix expressions for the anisotropic spin Hamil-
tonian using the Hamiltonian form in Equation (2.74), in a coupled Hund’s
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case (bβJ
) representation. We first apply the W.E. theorem to obtain the

space-reduced matrix element,

〈N ′Λ′, S′, J ′, I ′, F ′M ′F |HaS |NΛ, S, J, I, F,MF 〉/(−glµBBZ)

= 1√
3

∑
q

(−1)q+1
∑
k

(2k + 1)
(

1 1 k

−q q 0

)
(−1)F

′−M ′F

×
(

F ′ 1 F

−M ′F 0 MF

)
〈N ′Λ′, S′, J ′, I ′, F ′|W 1

0 (Dk, T 1)|NΛ, S, J, I, F 〉.

(2.75)

Next, we decouple the J and I quantum numbers using Eq. (A.9),

〈N ′Λ′, S′, J ′, I ′, F ′|W 1
0 (Dk, T 1)|NΛ, S, J, I, F 〉

= δI′I(1)F+J′+I′+1
√

(2F ′ + 1)(2F + 1)
{
J F I ′

F ′ J 1

}
× 〈N ′Λ′, S′, J ′|W 1

0 (Dk, T 1)|NΛ, S, J〉. (2.76)

We may now evaluate the reduced matrix element using Eq. (A.11) which
evaluates the reduced matrix elements of a tensor product in a coupled
scheme. This standard result takes care of decoupling and reduction of
the projection dependence of two separate coupled systems in a single
Wigner 9j symbol, and we obtain,

〈N ′Λ′, S′, J ′|W 1
0 (Dk, T 1)|NΛ, S, J〉

=
√

3
√

(2J ′ + 1)(2J + 1)


J ′ J 1
N ′ N k

S′ S 1


×〈N ′Λ′|Dk

.0(ω)∗|NΛ〉〈S′|T 1(S)|S〉. (2.77)
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We evaluate the two remaining matrix elements using the eigenvalue
relations from Eq. (A.7) and Eq. (A.5) and by combining the equations
above we arrive at,

〈N ′Λ′, S′, J ′, I ′, F ′,M ′F |HaS |NΛ, S, J, I, F,MF 〉

= −glµBBZδS′SδI′I(−1)F
′−M ′F +F+J′+I′+1+N ′−Λ′

(
F ′ 1 F

−M ′F 0 MF

)
×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)

×
√

(2N ′ + 1)(2N + 1)S(S + 1)(2S + 1)

×
∑
q

(−1)q
∑
k

(2k + 1)
(

1 1 k

−q q 0

)(
N ′ k N

−Λ′ 0 Λ

)

×
{
J F I ′

F ′ J 1

}
J ′ J 1
N ′ N k

S′ S 1

 . (2.78)

We also note that all terms containing q are invariant to q = ±1 and we
can drop the sum to obtain,

〈N ′Λ′, S′, J ′, I ′, F ′,M ′F |HaS |NΛ, S, J, I, F,MF 〉

= −glµBBZδS′SδI′I(−1)F
′−M ′F +F+J′+I′+N ′−Λ′

(
F ′ 1 F

−M ′F 0 MF

)
×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)

×
√

(2N ′ + 1)(2N + 1)S(S + 1)(2S + 1)

× 2
∑
k

(2k + 1)
(

1 1 k

−1 1 0

)(
N ′ k N

−Λ′ 0 Λ

)

×
{
J F I ′

F ′ J 1

}
J ′ J 1
N ′ N k

S′ S 1

 . (2.79)

This matrix expression mixes states of different N , J and F quantum
numbers. By evaluating the 3j symbol with (1, 1, k) in the upper row
analytically, we find that this matrix expression is equivalent to the one
derived in Ref. [54].
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2.1.4 Numerical evaluation of the effective
Hamiltonian

The complete Hamiltonian given in Eq. (2.14) was diagonalized numer-
ically to obtain the eigenvalues and eigenvectors, i.e. the energies and
mixing coefficients cki , of the molecular states. The numerical diagonaliza-
tion yields all-order solutions that are more suitable than a perturbation
approach for describing molecules which do not conform exactly to a
specific Hund’s case.

A basis set including 2 vibrational states (v = 0, 1), 3 rotational states
(N = 0, 2, 4), 2 nuclear configurations (I = 0, 2) and all resulting fine-
structure, hyperfine and Zeeman states was used for a total of 360 states.
The built in eig() function in MATLAB [60] was used for diagonalization
and takes ∼ 4 s to complete for a single magnetic field value on a desktop
computer 10. The computational time is reduced by adding the selection
rules and triangle conditions of the Wigner symbols as conditions before
computing the matrix elements in order to avoid calculating vanishing
elements. Another technique to improve the computational time is to
order the basis states according to selection rules, e.g. by value of MF

which remains a good quantum number, such that the final sparse Hamil-
tonian matrix becomes block diagonal. Using block-diagonal solvers, the
computational time is then greatly reduced [61]. Tables 2.2 and 2.3 show
the parameters used in the Hamiltonian.

10CPU: Intel Core i7-8559U @ 2.70GHz, RAM 16 GB
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14N+
2 v = 0 v = 1

Gv −G0 (cm−1) 0 2174.746(1) [62]
Bv (cm−1) 1.9223897(53) [63] 1.90330(2) [64]
Dv (×106 cm−1) 5.9748(50) [63] 5.904(21) [64]
γv (MHz) 280.25(45) [65] 276.92253(13) [51]
γDv (kHz) 0 -0.39790(23) [51]
bFv (MHz) 102.4(1.1) [65] 100.6040(15) [51]
tv (MHz) 23.3(1.0) [65] 28.1946(13) [51]
tDv (Hz) 0 [65] -73.5(2.7) [51]
eqQv (MHz) – 0.7079(60) [51]
cIv (kHz) – 11.32(85) [51]
gsµB (MHz/G) -2.8025 [66, 67] -2.8025 [66, 67]
grµB (Hz/G) 50.107 [67] 49.547 [67]
gnµN (Hz/G) 307.92 [67] 307.92 [67]
glµB (Hz/G) 3793 [58] 3821 [58]
Q (ea2

0) 1.86 [58] 1.89*
Re (a0) 2.13 [58] 2.14*
dQ
dR (ea0) 2.63 [58] –

Tab. 2.2. Molecular parameters of 14N+
2 in v = 0 and v = 1 vibrational states of

the electronic ground state, X2Σ+
g , that was used to calculate the energy levels.

The numbers in parentheses are uncertainties given in the literature. * Values are
estimated from the vibrational variation of other constants as described in the text.

15N+
2 v = 0 v = 1

Gv −G0 (cm−1) – 2101.45 [67]
Bv (cm−1) – 1.777794 (16) [65]
Dv (×106 cm−1) – 5.299 (57) [65]
γv (MHz) – 258.55708 (26) [65]
γDv (×104) MHz) – -3.4640 (35) [65]
gSµB (MHz/G) -2.8025 [67] -2.8025 [67]
gNµB (Hz/G) 46.748 [67] 46.328 [67]
gIµB (Hz/G) 429.69 [67] 429.69 [67]

Tab. 2.3. Molecular parameters of 15N+
2 in v = 0 and v = 1 vibrational states of

the electronic ground state, X2Σ+
g , that was used to calculate the energy levels.

The numbers in parentheses are uncertainties given in the literature.
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2.1.5 Magic clock transitions and state mixing

In Table 2.4, we show the calculated mixing coefficients of three example
levels in the rovibrational ground state with an external magnetic field
value of B = 10 G. Vibrational mixing is omitted in these data for sim-
plicity. We note that even in the absence of hyperfine interaction, I = 0,
there is mixing of all quantum numbers except MF . This is a result of
our zero-order basis states that fail to perfectly describe our system. The
effect of mixing on the energy of the quantum states is relatively small,
typically below 5 kHz from N , J and F mixing with the exception of
rovibrational mixing which was found to be 6 MHz in v = 0, N = 2
and is included in the centrifugal distortion constant, Dv. The mixing,
however, proves important for the apparent breaking of selection rules
in the electric dipole forbidden molecular spectra presented in Section
2.2. Mixing also causes deviations from linearity with respect to magnetic
field of the Zeeman levels which allows for ’magic’ clock transitions as
described below.
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State |ψk〉p ci · |N, S, J, I, F, MF〉i
N = 0, I = 0 ∼ 1.0000 · |0, 1/2, 1/2, 0, 1/2, 1/2〉
F = 1/2,MF = 1/2 −1.12 · 10−6 · |2, 1/2, 5/2,2, 1/2, 1/2〉

−9.16 · 10−7 · |2, 1/2, 3/2,2, 1/2, 1/2〉
+2.59 · 10−8 · |2, 1/2, 3/2, 0, 3/2, 1/2〉

N = 0, I = 2 −0.9986 · |0, 1/2, 1/2, 2, 5/2, 1/2〉
F = 5/2,MF = 1/2 −0.052 · |0, 1/2, 1/2, 2, 3/2, 1/2〉

+1.26 · 10−4 · |2, 1/2, 3/2, 2, 5/2, 1/2〉
+5.26 · 10−6 · |2, 1/2, 3/2, 2, 3/2, 1/2〉

N = 2, I = 2 −0.9625 · |2, 1/2, 5/2, 2, 3/2, 1/2〉
J = 5/2, F = 3/2 −0.180 · |2, 1/2, 5/2, 2, 1/2, 1/2〉
MF = 1/2 −0.178 · |2, 1/2, 3/2, 2, 3/2, 1/2〉

+0.095 · |2, 1/2, 5/2, 2, 5/2, 1/2〉

Tab. 2.4. The four leading mixing coefficients, cki , for three states in the vibra-
tional ground state. The vibrational mixing is not included. The left column shows
the label for the state which dominates the mixing coefficients at B = 0 and the
right column shows the mixing coefficients at B = 10 G. Bold numbers show N
and I mixing. The coefficients are normalized such that

∑
i
(cki )2 = 1

The Zeeman energy splitting of the rovibronic ground states of I = 0 and
I = 2 are presented in figure 2.3a as a function of an external static mag-
netic field. The non-linearity is seen clearly for all but the ’stretched’ states,
MF = ±F , even at low magnetic field strengths. Here, the strongest mix-
ing arises due to the Fermi-contact hyperfine interaction.

Clock transitions are transitions between two states that are insensitive
to experimental noise, such as fluctuating electric and magnetic fields,
and can therefore be used for precision measurements and as stable qubit
states. From Figure 2.3b, we can identify several transitions where the
derivative with respect to magnetic field is the same in the upper and
lower levels for a given ’magic’ magnetic field. Such ’magic transitions’
are independent of magnetic field to first order and are therefore good
candidates for clock transitions. Magic transitions have been employed in
the hyperfine manifold of Ca+ [68] and Be+ [69] to reach qubit coherence
times of several minutes. Figure 2.3a shows four magic transitions below
70 Gauss in the ∆F = ±1 transitions between hyperfine components of
the rovibrational ground state around 250 MHz.
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Fig. 2.3. a) Energies of the rovibronic ground state (v = 0, N = 0) manifold
as a function of external magnetic field strength. The colors correspond to the
schematic from Figure 2.1 and numbers on the right show the projection quantum
number. b) The derivative of the energies in (a) with respect to the magnetic
field. The circles indicate positions of the ’magic’ magnetic field values at which
the transition energy between two levels is independent of the magnetic field to
first order. The corresponding transitions are indicated by the arrows in (a).
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-

-

Fig. 2.4. Avoided crossing between two energy levels originating from two
different nuclear spin states (I = 0, 2) in the X2Σ+

g (v=0, N=2) state. The dashed
lines show the mixing coefficients (c0

I=0)2 (dashed, orange) and (c0
I=2)2 (dashed,

blue) of the state that starts out in I = 0 at low magnetic fields (solid, orange).
Note that the sum of the squared mixing coefficients are different from unity due
to mixing with other states not shown in this figure.
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The mixing between the nuclear-spin states I = 0 and I = 2 through the
electric-quadrupole hyperfine interaction, HeqQ, allows a change in the
nuclear-spin state of the molecule on demand, either by direct excitation
or through a two-photon Raman process. This interaction also results in
avoided crossings of energy levels originating from different spin states
with the same value of hyperfine quantum number, F , and MF . As
an example, we show an avoided crossing in Figure 2.4 between the
|F = 3/2,MF = −3/2〉 states of the I = 0 (orange) and I = 2 (blue)
configurations at a magnetic field of ∼54 Gauss. The nuclear-spin states
are a 50-50 mixture of I = 0 and I = 2 at the point of avoided crossing.
The strength of transitions between the two nuclear configurations is thus
greatly enhanced near the avoided crossing as these transitions are only
allowed due to mixing in the magnetic dipole and electric quadrupole
selection rules, derived in the next section.
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2.2 The theory of dipole-forbidden
transitions

In a homonuclear diatomic molecule, transitions within the same Born-
Oppenheimer electronic state are electric-dipole (E1) forbidden. This
is because the electric dipole operator, µ̂E1, is an odd function of the
position operators and can therefore only couple states of opposite parity
with respect to coordinate inversion i.e. between + and − states in the
molecular term notation 2S+1Λ±. A homonuclear diatomic molecule has
only even or odd rotational states (of the same parity) for a given nuclear-
spin symmetry and therefore parity change in a Σ-state is only possible
through electronic transitions11. Furthermore, in the ground X2Σ+

g -state
of N+

2 there is no permanent electric dipole moment that can couple to an
electric field, other than a small contribution from mixing of electronic
states, and E1 transitions between vibrational levels are in a sense doubly
forbidden. We therefore consider only magnetic dipole (M1) and electric
quadrupole (E2) transitions. We will derive general matrix expressions
for these transitions and calculate their strengths.

2.2.1 Transition moments and Rabi frequencies

The line strength of a transition can be separated into an angular (A) and
a radial (R) part as the operators that act on the angular wavefunctions,
e.g. S,N, I, will not act upon the vibrational wavefunctions and vice
versa [44]. Consider, for example, the rotational Zeeman term derived
in Section 2.1.3 which can induce M1 transitions with ∆F = 0,±1. The
Hamiltonian for this interaction is, from Eq. (2.57),

HZ,N = −gN (R)µBB ·N. (2.80)

Here, we have made the dependence of the rotational g-factor on the
internuclear distance, R, explicit through the notation gN (R). In our
basis of Eq. (2.13), the operator N does not act upon the vibrational

11Different vibrational states are all of even parity.
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wavefunctions and in the Hund’s case (b) basis approximation, the spin-
rotational wavefunctions are independent of the internuclear distance R.
The evaluation of this Hamiltonian can therefore be separated into an
angular (A) and a radial (R) part as,√
Skl = −µB〈vk|gN (R)|vl〉〈N ′, S′, J ′, I ′, F ′,M ′F |B ·N|N,S, J, I, F,MF 〉.

(2.81)
Here we have introduced the line strength factor Skl between states k, l
as the square of the transition moment 12. For a better approximation to
the real transition moments we must also include the effects of mixing
between our zero-order basis states. We express the wavefunction |ψk〉p
as superpositions of the zero-order basis functions |φi〉 as defined in Eq.
(2.10),

|ψk〉p =
∑
i

cki |φi〉. (2.82)

We can therefore write the line strength factor between two states as,

Skl =
∑
p

|〈ψk|Tup (µ̂)|ψl〉|2

=
∑
p

|
∑
i,j

ck∗j c
l
i〈φj |Tup (µ̂)|φi〉|2 (2.83)

=
∑
p

|
∑
i,j

ck∗j c
l
iA(..., F ′j ,M ′F , Fi,MF , p)R(vj , vi)|2. (2.84)

Here, µ̂ is the electric dipole, magnetic dipole or electric quadrupole-
moment operator and Tup (µ̂) is the operator in spherical tensor notation.
The spherical tensor component p represents the polarization of the radia-
tion with respect to the quantization axis defined by the direction of the
external magnetic field.

As the line strength factor has different units for M1 and E2 transi-
tions, their relative strengths can be compared through the Einstein

12The line-strength factor in Eq. (2.83) is usually defined as the sum over all upper and
lower Zeeman components,M ′F andMF . As we are interested in comparing the strength
between specific Zeeman states we have omitted the sum over MF , looking instead at a
single component. Since we use this convention consistently throughout this thesis no
confusion should occur.
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A-coefficients, A21, or the Rabi frequencies. The Einstein coefficients
are given by [70],

AM1
21 = 16π3µ0

3hλ3 SM1
21 , (2.85)

for M1 transitions and,

AE2
21 = 16π5

15hε0λ5S
E2
21 (2.86)

for E2 transitions 13. Here, λ is the transition wavelength, µ0 is the
vacuum permeability, ε0 is the vacuum permittivity and h is the Planck
constant. Note the difference in functional dependence on λ between M1
and E2 transitions. This is because the magnetic dipole interacts with the
magnetic field amplitude of radiation whereas the electric quadrupole
moment of the molecule interacts with an electric field ’gradient’ of the
radiation field [47]. This implies that with comparable line strength
factors, Skl, M1 transitions are naturally several orders of magnitude
stronger than E2 transitions.

When interacting with a coherent source, the population transfer between
two levels can be represented by a Rabi frequency, Ωij . If the limiting
coherence time of the system is longer than the excitation rate, the system
will oscillate between the two levels and the oscillation frequency is
obtained from the transition moment by [71, 72],

ΩM1
ij = B0〈i|µ̂|j〉/~ (2.87)

ΩE2
ij = E0k〈i|µ̂|j〉/~, (2.88)

where k = 2π/λ is the laser k-vector. The field strengths, E0 and B0,
can be obtained from the source intensity I = ε0cE

2
0/2 or I = cB2

0/(2µ0)
in terms of the electric and magnetic field respectively. A laser beam
with a Gaussian beam profile has an intensity distribution given by

13The Einstein coefficient, A21, represents the time constant for spontaneous emmision of a
particular state. The conventional definition of A21 therefore involves a sum over all
the different decay channels through which this level can decay. As we are interested in
comparing the excitation rate between two states for different mechanisms, M1 and E2,
we will omit the sum over other decay channels. The strongest transitions we consider
have lifetimes on the order of A21 ≈ 10−8 Hz corresponding to a lifetime of several
years and spontaneous decay can therefore be neglected in this analysis.
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I(r) = 2P/(πr2
b )e−(2r2)/(r2

b ) where P is the source power, rb is the beam-
waist radius and r is the radial distance from the center of the beam. With
the molecule aligned to the center of the beam, r = 0, we can rewrite the
Rabi frequencies as,

Ω(M1)
ij = 2

ω

√
Pµ0

πc
〈i|µ̂|j〉/~, (2.89)

and

Ω(E2)
ij = 2

ω

√
P

πε0c
k〈i|µ̂|j〉/~. (2.90)

In order to estimate the Rabi frequencies, two different sources shall
be considered here. The first is a coherent continuous-wave (CW) laser
source at λ ≈ 4.6 µm with a beam waist of rb = 50 µm and 100 mW of
power, which is used to drive vibrational transitions. The field intensity is
thus 2.55 kW/cm2. Transitions within a vibrational state, e.g. hyperfine or
rotational transitions, are within the range of phase-locked-loop-stabilized
THz electronics [73]. The radiation source is therefore assumed to be
a direct Radio frequency (RF) or Microwave (MW) drive applied to one
electrode of the trap, as described in Section 3.1.3, with a peak voltage of
±10 V. The field intensity at the position of the molecule ∼ 2 mm away
from the electrode, is then 0.16 W/cm2 14.

2.2.2 Magnetic dipole transitions and matrix
elements

The interaction Hamiltonian for a magnetic dipole moment which couples
to the radiation to induce M1 transitions takes the same form as the
Zeeman Hamiltonian in Eq. (2.35). Indeed, they are treated in the same
way, as a perturbation to the zero-order basis states, albeit time dependent
with the substitution B → B(t). It comes as no surprise then that the
off-diagonal elements in the derived matrix expressions of the Zeeman

14While it is relatively easy to apply an RF field of < 1 GHz to a trap electrode, it may
be technically unfeasible to achieve an amplitude of ±10 V inside a vacuum chamber,
at 345 GHz (which corresponds to the N = 0 → 2 transition in N+

2 ). The intensity is
provided and the quoted Rabi frequency, Ωij , can be scaled by

√
I for any other source

of MW radiation.
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Hamiltonian, Equations (2.50) (2.57) (2.63) and (2.79), which couple
different zero-order basis states also determine the selection rules obeyed
by the M1 transitions of a given interaction mechanism. We will denote
transitions that are induced by interaction with the electron spin, rotation
and nuclear spin and residual angular momentum by M1S , M1N and M1I
and M1aS respectively. From the angular part of the transition moments,
we have the following selection rules in common for all M1 transitions,

∆MF = 0,±1, ∆F = 0,±1,
∆I = 0, ∆S = 0.

(2.91)

Specifically, for each coupling mechanism we have the additional selection
rules,

M1S : S 6= 0, ∆N = 0, (2.92)

M1N : N 6= 0, ∆N = 0, (2.93)

M1I : I 6= 0, ∆N = 0, ∆J = 0 (2.94)

M1aS : S 6= 0, ∆N = 0, 2. (2.95)

2.2.3 Electric quadrupole transitions and matrix
elements

For E2 transitions, the coupling operator in spherical tensor notation is
T 2
p (Q̂ηΛ) where Q̂ηΛ is the electric quadrupole moment operator in a

given electronic state |η,Λ〉.

The angular part of the line strength for E2 transitions within the X2Σ+
g

ground state is given by [74],

〈N ′, S′, J ′, I ′, F ′,M ′F |T 2
p (Q̂)|N,S, J, I, F,MF 〉

=δSS′δII′(−1)S+I+J+J′+F+F ′−M ′F

×
√

(2N + 1)(2N ′ + 1)(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×
(
N ′ 2 N

0 0 0

)(
F ′ 2 F

−M ′F p MF

){
N ′ J ′ S

J N 2

}{
J ′ F ′ I

F J 2

}
.

(2.96)
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From the angular part of the transition moment, the following selection
rules are obtained for E2 transitions,

∆MF = 0,±1,±2, ∆F = 0,±1,±2, ∆I = 0, ∆S = 0. (2.97)

Furthermore, N = 0→ 0 transitions are not allowed within a Σ-state by
the triangle condition of the first Wigner 3j symbol in Eq. (2.96).

2.2.4 Vibrational transition moments

We shall now investigate the different mechanisms that can induce vibra-
tional transitions in our molecule. The line strength can be treated in full,
according to Eq. (2.83), using the mixed rovibrational basis without the
following analysis. As, however, we want to understand the mechanisms
that lead to vibrational transitions we shall treat the vibrational transition
moments analytically.

As we have seen from Eq. (2.83), the transition moment may be expanded
in an angular part A(..., F ′j ,M ′F , Fi,MF , p) and a radial part given by,

R(v′, v) = 〈v′|Tu(µ̂)|v〉. (2.98)

This equation implies that if the operator µ is independent of the vibra-
tional coordinates, it may be rewritten,

R(v′, v) = Tu(µ̂)〈v′|v〉 = Tu(µ̂)δv′v.

Here we have assumed that the basis states are the zero-order harmonic
oscillator states and therefore mutually orthogonal. Vibrational transitions
between v′ 6= v due to a permanent magnetic or electric moment are
therefore suppressed to first order15.

The transitions between different vibrational levels are therefore due to
higher-order effects. We expand the radial part of the transition moment

15For transitions within a vibrational manifold, with v′ = v, the radial part of the line
strength is the expectation value of the effective magnetic dipole or electric quadrupole
moment in a particular vibronic state, e.g. R(v, v) = gvµB
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operator to first order around the equilibrium bond length (R−Re) [44]
as we have done with the rotational constant in Section 2.1.2,

µ̂ ≈ µp + dµ

dR
(R−Re) + d2µ

dR2 (R−Re)2 + . . . . (2.99)

Here, µp = µ(R)
∣∣∣
R=Re

is the permanent multipole moment and dµ/dR is

its derivative as a function of internuclear distance. Once again we assume
that the position operator R −Re does not operate on the electronic or
spin-rotational states. We then find that the radial part of the transition
moment is,

R(v′, v) ≈ µp〈φv′ |φv〉+
dµ

dR
〈φv′ |(R−Re)|φv〉+

d2µ

dR2 〈φv′ |(R−Re)
2|φv〉+. . . .

(2.100)
From the equation above, we see that vibrational transitions are allowed
either by the first (permanent moment) term, through an overlap between
wavefunctions, or by the second term though a change in the transition
moment with internuclear distance. Vibrational overtones ∆v = 2, 3 . . .
can also be induced due to the higher order terms in Eq. (2.100).

A non-vanishing overlap between the wavefunctions of Eq. (2.10) in the
first term of Eq. (2.100) may be caused by the rovibrational interaction
presented in Section 2.1.2 which mixes different zero-order basis func-
tions. The coupling between the ground and first excited vibrational states
was estimated is Section 2.1.2 to be,

|〈v′ = 1, N ′|Hrovib|v = 0, N〉|2 ≈ δNN ′(2N(N + 1))2
(
B3

0
ωe

)
. (2.101)

As we saw from Table 2.1, the opposite signs of the vibrational mixing
coefficients result in a strong degree of cancellation of the sub-transition
amplitudes in the line-strength formula of Eq. (2.83). In N = 2, the
difference between c(v=0)p

v=1 and c(v=1)p

v=0 is on the order of 5× 10−6µB and
the line strength S12 is therefore suppressed by ∼ 10−10 compared to pure
rotational transitions for the same value of the angular transition moment
A(..., F ′j ,M ′F , Fi,MF , p).
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The vibrational matrix element in the second term of Eq. (2.100) can be
approximated in the same way as derived in Eq. (2.18) as,

〈v′ = 1|R−Re|v = 0〉 ≈ Re
√
Be
ωe
. (2.102)

The derivative dµ/dR can either be calculated or obtained experimentally.
The rotational magnetic moment and the anisotropic-spin correction term
both change by ∼ 1% between v = 0 and v = 1 (See Table 2.2). The
difference in equilibrium bond lengths ∆Re between v = 0 and v = 1
can be estimated from the difference in the rotational constants, from Eq.
(2.8), by B1/B0 = R2

1/R
2
0 with R0 = 2.13 a0 [58] and Bv from Table 2.2.

Thus, for the rotational term we have ∆gN/∆Re ≈ 4 · 10−5 µB/a0 and
therefore R(v′, v) ≈ 2.6 · 10−6µB . For the anisotropic correction term, we
have ∆gl/∆Re ≈ 2 · 10−3 µB/a0 and therefore R(v′, v) ≈ 1.3 · 10−4µB.
The change in the electric quadrupole moment with the internuclear
distance was calculated by Bruna & Grein [58] as dQ/dR = 2.63 ea0 and
therefore R(v′, v) ≈ 0.17ea2

0.

A dimensionless quantity can be formed by ∆M1
µ = R(v′, v)/(gµB) and

∆E2
µ = R(v′, v)/(Qv) to describe the relative R-dependence of the three

mechanisms. We find ∆M1
µ ≈ 1/14 for the rotational term, ∆M1

µ ≈ 1/21
for the anisotropic correction term and ∆E2

µ ≈ 1/11 for the quadrupole
term. The nuclear magnetic moment, gI , will also change with vibrations
due to the magnetic shielding effects of the surrounding electrons. This
shift is expected to be ∼ 1 ppm [67] corresponding to ∆M1

µ ∼ 1/105.
This means that vibrational transitions due to the B · I-interaction are
induced predominantly through vibrational mixing. The vibrational line
strength for the M1S coupling mechanism is suppressed by ∼ 10−10 due
to vibrational mixing which makes it a factor ∼ 104 weaker than the
strength of M1aS due to its strong R-dependence.

In Figure 2.5, we compare the strength of vibrational transitions by
comparing the radial transition moment

∑
ij c

v′

i c
v
j |R(v′, v)|2 due to the

first and second term in Eq. (2.100) as a function of rotational state
N . As expected by Eq. (2.101), the vibrational mixing increases with
the rotational quantum number N and thus mixing-induced transitions
become stronger. Horizontal lines show the radial transition strength from
the second term in Eq. (2.100) for a few different values of ∆µ. From
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Fig. 2.5. Strength of the radial transition moment between different vibrational
states due to rovibrational mixing of basis states (blue curve) and due to the
vibrational state dependence of the coupling operator (horizontal lines) plotted
as a function of the rotational quantum number N . The rovibrational-mixing-
induced transition moment increases with N whereas the transition moment due
to vibrational dependence of the coupling operator is constant. The values of
∆µ for our coupling terms are ∆M1

µ = 1/14 for the rotational coupling, M1N ,
∆M1
µ = 1/21 for the anisotropic-spin coupling, M1aS , ∆E2

µ = 1/11 for electric
quadrupole coupling, E2, and ∆M1

µ = 1/105 for the nuclear spin coupling, M1I .

our analysis above, we have seen that gN , gl and eQ all have ∆µ ∼ 1/10
and therefore transitions due to vibrational mixing are not relevant below
N = 40. This figure does not take into account the angular part of the
transition moment which will introduce an additional rotational-state
dependence.

In Figure 2.6 we compare the rotational-state dependence of M1S , M1N ,
M1aS and E2 transitions, for the ∆N = 0, v = 0→ 1 transitions in I = 0
between the highest spin-rotation states J = N + 1/2. The E2 and M1N
transitions are zero in N = 0 as expected from the selection rules of Eq.
(2.92) and (2.97).
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Fig. 2.6. The angular matrix elements (unitless) for M1 and E2 transitions
(Equations (2.50), (2.57), (2.63), (2.79) and (2.96)) for the I = 0, ∆N = 0
transitions of the fundamental vibrational band as a function of rotational quantum
number N . The four curves represent M1S (green), M1N (red) and M1aS (purple)
as well as E2 couplings (blue).

2.3 Clock transitions and qubits in N+
2

In this section we have used the results of the energy levels from Section
2.1 together with the calculated transition strengths from section 2.2 to
find the dominating coupling mechanisms for each class of transitions
(Zeeman, hyperfine, fine-structure, rotational and vibrational). We there-
fore present the spectra and transitions that are of particular interest for
clock transitions and as qubit states.

2.3.1 Zeeman transitions, ∆MF = ±1

In Figure 2.3a, we presented the energies of Zeeman components of the
rovibronic ground state, X2Σ+

g (v = 0, N = 0), in N+
2 as a function of the

strength of an external applied magnetic field.
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Fig. 2.7. Line strengths of transitions between Zeeman levels within the hyperfine
manifolds of the rovibronic ground state, X2Σ+

g (v = 0, N = 0) of the I = 0
(green) and I = 2 (blue, red) species. The abscissa indicates the transition
frequencies at a magnetic field of B =5 G.

In the I = 0 species, there are only two states with F = 1/2 and
MF = ±1/2. The Zeeman splitting is similar to the ground states of
alkaline earth ions, e.g. 88Sr+, which have also been used as qubits [75].
All terms in the Hamiltonian are zero except for the electron-spin Zeeman
term and the anisotropic-spin Zeeman term. The Zeeman levels are thus
separated by ∼ (gS + 2/3gl)µB ≈ 2.8 MHz/G. Transitions between the
two Zeeman levels are allowed by M1S-interaction with the electron spin
which dominates the spectrum. The Zeeman spectrum is presented in
Figure 2.7. Measurement of these transitions are a measurement of gs+gl.
The relative contributions of gs, gl can however not be separated in this
measurement.

A magnetic field shift of 1 mG will induce a shift of 2.8 kHz in the
energies corresponding to a relative shift of the transition frequency of
∆f/f ≈ 10−3. As gs, gl have not previously been measured in N+

2 , this
level of precision will yield improved constants and a test of the ab-initio
theory of Bruna & Grein [58] which predicted gs ≈ 1.99 and gl ≈ 2710
ppm in the rovibrational ground state of X2Σ+

g . A deviation from the
free-electron value, ge ≈ 2.0023, is therefore on the 10−4 level and within
reach of such a measurement with minimal averaging of ∼ 100 repetitions,
under 1 mG of magnetic field fluctuations.
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In the I = 2 species, in addition to the two Zeeman terms mentioned
above, the Fermi-contact hyperfine interaction, HbF

from Eq. (2.31),
contributes and leads to a splitting into two hyperfine manifolds with a
total angular momentum of F = 3/2 and F = 5/2. The relatively low
splitting of ∼250 MHz, leads to a noticeable nonlinear Zeeman behavior
at low magnetic fields of few tens of Gauss. Therefore, these transitions
can be addressed individually which allows for optical pumping to any
desired state and state readout as also demonstrated with CaH+ molecules
[76].

In this species, gI will contribute to the Zeeman energies. A comparison
of Zeeman transitions in both the I = 0 and the I = 2 configurations will
allow the separation of contributions from gs + gl and gI . With 1 mG of
magnetic field noise a relative uncertainty of ∆f/f ≈ 10−3 is achieved
which is sufficiently low to measure the nuclear spin Zeeman interaction,
of ∼ 300 Hz [67], with minimal averaging.

2.3.2 Hyperfine transitions, ∆F = ±1

Transitions between the two hyperfine manifolds (F = 3/2→ F ′ = 5/2)
in the rovibrational ground state are allowed by M1S coupling. A simu-
lated spectrum is presented in Figure 2.8a. In section 2.1.5, we identified
transitions for which the magnetic-field dependence is equal in both the
lower and upper states for specific values of the magnetic field. Due to
the small hyperfine splittings in N+

2 , these magic magnetic fields occur at
small and easily accessible values. ’Magic transitions’ between hyperfine
levels have also been used as stable qubit states in atomic ions, such as
9Be+ [69] and 43Ca+ [68].

A second-order magnetic-field dependence persists due to the nonzero
second derivative around the magic field values. We find a second deriva-
tive of ∼ 16 mHz/mG2 for all four magic transitions below 70 G. Under
magnetic-field fluctuations of 1 mG, we then estimate a shift of 16 mHz
in the transition frequencies. These transitions are therefore suited for
encoding qubits with coherence times of up to 1/∆f ≈ 60 s [77] without
the need for magnetic-field stabilization or magnetic shielding. These
transitions are also suitable clock transitions with a relative (Zeeman-
limited) shift of ∆f/f ≈ 10−11. In addition to probing gs, gl and gI , such
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Fig. 2.8. a) Line strengths of hyperfine Zeeman transitions,
|F = 3/2〉 → |F ′ = 5/2〉, within in the rovibronic ground state, X2Σ+

g (v = 0,
N = 0) of the I = 2 species. The abscissa indicates the transition frequencies at
a magnetic field value of 70 Gauss. The Zeeman components, MF → M ′F , of
each transition is indicated. b) Dependence of the transition frequencies on the
magnetic field. Dashed lines indicate ‘magic‘ values of the magnetic field in which
the transition frequency is insensitive in first order to changes in the magnetic
field.

transitions are also sensitive to the bF hyperfine constant which has been
measured to a relative uncertainty of 10−2 and 10−5 in v = 0 and v = 1,
respectively (see Table 2.2).

2.3.3 Fine structure transitions, ∆J = ±1

The energies of Zeeman components of the N = 2 rotationally excited
state in the vibronic ground state, X2Σ+

g (v = 0, N = 2), are shown
in Figure 2.9. The spin rotation coupling, γv,N , splits the levels into a
J = 3/2 and a J = 5/2 manifold which are separated by ∼700 MHz.
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Fig. 2.9. Energies of the hyperfine Zeeman levels of the v = 0, N = 2 state as
function of magnetic field strength. The I = 0 configuration is shown in panels (a)
and (b) while the I = 2 configuration is shown in panels (c) and (d). Color code
for the different spin-rotation quantum numbers: F = 1/2 in purple, F = 3/2
in red, F = 5/2 in blue, F = 7/2 in green and F = 9/2 in light blue. Colors
correspond to the colors in the schematic of Figure 2.1.

In the I = 0 species, this coupling generates a spectrum which is similar
to the spectrum of the I = 2 species of N = 0, i.e. with a total angular
momentum of F = 3/2 and F = 5/2. However, because of the larger
spacing between the J = 3/2 and J = 5/2 manifolds, the deviation from
a linear Zeeman effect occurs at higher magnetic fields. Therefore, the
first magic transition, |F = 3/2,MF = −1/2〉 → |F ′ = 5/2,M ′F = −1/2〉
of 14N+

2 , appears at ∼ 49 Gauss compared to ∼ 18 Gauss in the N = 0
spectrum of the I = 2 species. In 15N+

2 , due to the different coefficients
(see Table 2.3) the first magic magnetic field appears for the same transi-
tion at 46.1 Gauss, as shown in Figure 2.10. Transitions between these
manifolds can be measured to ∆f/f ≈ 10−11 under 1 mG of magnetic
field noise with minimal averaging. The spin-rotation constant, γv,N , has
so far been measured to a relative uncertainty of 2× 10−3.
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different spin-rotation quantum numbers: F = 5/2 in blue, F = 3/2 in orange
and numbers on the right show the projection quantum number. The arrow shows
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In the I = 2 state of 14N+
2 , the spectrum further splits by the hyper-

fine interaction. Thus, the energy levels split into F = 9/2, ..., 1/2 and
F = 7/2, ..., 1/2 for the J = 5/2 and J = 3/2 spin-rotation manifolds (Fig-
ure 2.9c and Figure 2.9d, respectively). Out of the three allowed hyperfine
components, ∆F = ±1, 0, we find the ∆F = +1 are dominating as can
be seen in the simulated spectrum in Figure 2.11. This propensity may
be understood by the M1S coupling mechanism which flips the electron
spin to change ∆J = +1 and leads to ∆F = +1. Any other arrangements
of ∆F require additional internal rearrangements of angular momenta.
Magic transitions can be found in I = 2 at magnetic fields as low as few
Gauss such as the |F = 5/2,MF = +1/2〉 → |F ′ = 7/2,M ′F = −1/2〉
transition at ∼756.3 MHz and B = 1.55 G, with a susceptibility of ∼ 8
mHz/mG2. A partial list of magic transitions below 70 G is presented in
Appendix C.
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2.3.4 Rotational transitions, ∆N = ±2

We now consider transitions from the rotational ground state, N = 0, to
the second rotationally excited state, N ′ = 2, at approximately 6B0−36D0
≈ 345 GHz. Due to the direct dependence of B0 on the molecular bond
length, these transitions are candidates for testing a possible time variation
of the proton-to-electron mass ratio, as described in Section 2.4.4.

The M1S selection rules do not permit a change of rotational quantum
numbers, but this mechanism must still be considered due to mixing of
rotational states. The anisotropic spin term, M1aS , allows for ∆N = 2
transitions although with a smaller coupling constant gl/gs ≈ 10−3. The
rotational mixing coefficients are between 10−6 and 10−3 for different
levels (see Table 2.4) which makes the strongest, mixing-induced, M1S
transitions as strong as M1aS transitions. We also consider the E2 electric-
quadrupole transitions which also allow rotational transitions, according
to Eq. (2.97). E2 transitions also allow ∆MF = ±2 and ∆F = ±2
transitions which are magnetic dipole forbidden.

In Figure 2.12, we show the hyperfine rotational spectrum of the I = 2
state, |N = 0, J = 1/2, F = 5/2〉 → |N ′ = 2, J ′ = 5/2, F ′〉, and
|N = 0, J = 1/2, F = 3/2〉 → |N ′ = 2, J ′ = 5/2, F ′ = 1/2〉 due to
different M1 and E2 contributions. The strongest M1S lines are as strong
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Fig. 2.12. Spectrum of the rotational transition
|N = 0, J = 1/2, F = 5/2〉 → |N ′ = 2, J ′ = 5/2, F ′〉 of the
I = 2 state. Transitions due to M1S , M1aS and E2 are indicated
by purple squares, blue diamonds and red circles respectively. The
|N = 0, J = 1/2, F = 3/2〉 → |N ′ = 2, J ′ = 5/2, F ′ = 1/2〉 transitions
are also shown where indicated (rightmost points). These transitions are free
from the electric quadrupole shift, as detailed in Section 2.4.3. The magnetic field
was set to 5 Gauss.

as M1aS lines and two order of magnitude stronger than the E2 lines.
However, in some cases only E2 transitions are allowed due to quadrupole
selections rules such that one should consider all three mechanisms when
analyzing the molecular spectrum.

The rotational spectrum of the I = 2 state shows magic transitions with
susceptibilities as low as ∼ 3 mHz/mG2 corresponding to a Zeeman-
limited coherence time of 1/∆f ≈ 5 minutes and a relative shift of
∆f/f ≈ 10−14 under 1 mG of magnetic field noise.
The |N = 0, J = 1/2, F = 3/2〉 → |N ′ = 2, J ′ = 5/2, F ′ = 1/2〉 transi-
tions are free from electric quadrupole shift, as detailed in Section 2.4.3.
The Rabi frequency was estimated for the strongest M1 transitions, due
to a coherent drive of 10 V on the trap electrode, and gives Ω ≈ 0.5 kHz.
The appearance of M1S transitions in Figure 2.12 is additional proof
that off-diagonal terms in the Hamiltonian, here N ′ 6= N , should not be
neglected.
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Fig. 2.13. The relative coupling strength of E2 and M1aS transitions in terms of
the Einstein coefficient in the O(N), Q(N) and S(N) branches of the fundamental
vibrational transition |v = 0, N = 0, 2, 4〉 → |v′ = 1, N ′ = 0, 2, 4〉. The bottom
figure is zoomed in on the Q(N) transitions. Only the E2 and M1aS contributions
are shown as all other mechanisms are weaker.

2.3.5 Vibrational transitions, ∆v = 1

As the vibrational frequencies are also sensitive to the molecular bond
length, vibrational transitions are promising candidates for testing a
possible variation in the proton-to-electron mass ratio. They benefit
from higher transition frequencies than rotational lines and thus al-
low for a better relative precision [35]. Figure 2.13 shows the O(N),
Q(N) and S(N) branches of the fundamental vibrational spectrum, i.e.
|v = 0, N = 0, 2, 4〉 → |v′ = 1, N ′ = 0, 2, 4〉 of both the I = 0 and I = 2
configurations.
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E2 selection rules forbid ∆N = 0 transitions fromN = 0. Q(0) transitions,
i.e., |v = 0, N = 0〉 → |v′ = 1, N ′ = 0〉, are therefore E2 forbidden. The
transitions induced by the anisotropic-spin Zeeman Hamiltonian, however,
allow N = 0 → N ′ = 0 transitions, according to Eq. (2.92). This term
shows a considerable change with the internuclear distance and therefore
induces vibrational transitions, as described in Section 2.2.4. This leads
to the appearance of Q(0) lines in the spectrum, although much weaker
than the Q(2) and S(0) transitions that are E2 allowed.

Figure 2.14 shows the Q(0) fundamental vibrational spectrum, i.e.
|v = 0, N = 0, J = 1/2〉 → |v′ = 1, N ′ = 0, J ′ = 1/2〉 of both I = 0
and I = 2 configurations. Transitions between the stretched states, i.e
|J = 1/2,MF = ±1/2〉 → |J ′ = 1/2,M ′F = ±1/2〉 and
|F = 5/2,MF = ±5/2〉 → |F ′ = 5/2,M ′F = ±5/2〉 show a very small
linear Zeeman dependence of ∆gl/3 ≈ 9.3 mHz/mG2 for all magnetic
fields. In the I = 2 species, the Q(0) spectrum also exhibits magic
transitions (indicated by black squares in Figure 2.14). The second-order
Zeeman susceptibility of these transitions is ∼ 16 mHz/mG2. Assuming a
laser power of P = 100 mW with a 50 µm beam radius the Rabi frequency
of these M1 transitions are estimated Ω ≈ 5 kHz for the strongest Q(0)
transitions.

The S(0) and Q(2) transitions, i.e. |v = 0, N = 0〉 → |v′ = 1, N ′ = 2〉 and
|v = 0, N = 2〉 → |v′ = 1, N ′ = 2〉, are predicted to be∼ 30 times stronger
than the Q(0) spectrum, as shown in Figure 2.13, due to the allowed E2
transitions. The second largest contribution to the S(0) spectrum is due
to M1aS coupling. All other coupling mechanisms were found to be more
than 5 orders of magnitude smaller.

The S(0) spectrum shows magic transitions at low magnetic fields of a few
Gauss with second-order Zeeman susceptibilities as low as ∼ 1 mHz/mG2.
With magnetic field fluctuations on the order of ∼ 1 mG, they can be used
for encoding vibrational qubits with coherence times of up to 1/∆f ≈ 15
minutes. This corresponds to a relative Zeeman shift of ∆f/f ≈ 1×10−17

without active or passive magnetic field stabilization. Assuming a laser
power of P = 100 mW and a 50 µm beam radius, these transitions can be
driven with Rabi frequencies of Ω ≈ 60 kHz. In Appendix C, we present a
list of the strongest magic transitions below 70 G.
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Fig. 2.14. Coupling strength (a) and line position as function of magnetic
field strength (b) of the Q(0) branch of the fundamental vibrational transition
|v = 0, N = 0〉 → |v′ = 1, N ′ = 0〉. Only contributions from M1aS coupling are
shown. Black squares and dotted lines indicate positions of ’magic’ magnetic field
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2.4 Systematic shifts and uncertainties

So far, we have considered the benefits of using N+
2 transitions as qubit

states and clock transitions in terms of the first order Zeeman interac-
tions. In order to find good clock candidates, we must also consider
other systematic shifts and uncertainties. In this section, we consider
neglected Zeeman terms as well as the ac-Stark shifts induced by the ion
trap, black-body radiation and the probe laser. We shall also estimate the
electric quadrupole shift from the trap which affects states with an electric
quadrupole moment. Finally, we will estimate the attainable statistical
precision of clock candidates and explore their use for measuring a pos-
sible time variation of the proton-to-electron mass ratio. The relativistic
Doppler shift is treated in Section 3.1.1 and found to be negligible for a
trapped ion near the motional ground state of the trap.

2.4.1 Residual Zeeman shift

The magnetic susceptibility of the molecular-clock candidates that were
presented in Section 2.2, are due to the linear Zeeman terms presented
in Section 2.1.3. A residual intrinsic shift remains even for the magic
transitions as the second derivative of the transition frequency with respect
to magnetic field does not vanish. The residual shifts are presented in
Appendix C.

Near magic transitions, Zeeman terms that were neglected will be effec-
tively absorbed by the strong quadratic magnetic-field dependence around
the magic magnetic field. Terms that are linear in B will only shift the
magic B-field value without altering the residual magnetic susceptibility.
Terms of higher order, ∝ B2, will shift the magic field value and also alter
the residual susceptibility. To test the effect of neglected terms in the
Zeeman Hamiltonian, we add an additional linear Zeeman term, ∝ B,
with the interaction strength of the nuclear-spin term of µ ≈ 300 Hz/G, to
the Zeeman Hamiltonian in Eq. (2.35) 16. The magic magnetic field value
of the hyperfine |N = 0, I = 2, F = 3/2,MF = −1/2〉 →
16This value is chosen somewhat arbitrarily as a relatively small Zeeman contribution for

illustrative purposes.
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|N ′ = 0, I ′ = 2, F ′ = 5/2,M ′F = −1/2〉 transition at 18.286 G is then
shifted by 1 mG without altering the residual shift of 16 mHz/mG2. An
interaction of the same strength but quadratic in the magnetic field ∝ B2

will shift the magic field value by 35 mG and change the residual sus-
ceptibility to 20 mHz/mG2. This effective ’absorption’ of smaller terms
works irrespective of the vibrational dependence of the coupling operator,
g(R). We therefore find that the magic magnetic field transitions are
robust against neglected terms in the theoretical estimate of the Zeeman
Hamiltonian.

For the stretched-state transitions, presented in Sections 2.3.4 and 2.3.5,
any neglected terms will add or subtract to the total magnetic susceptibility.
An additional linear term that does not equally contribute to the lower
and upper state of the transition, i.e. with a vibrational or rotational state
dependence, will change the total susceptibility. For example, a neglected
Zeeman term of µ ≈ 300 Hz/G with a vibrational state dependence of
∆gv/g ≈ 3% between v = 0 and v = 1 will double the susceptibility of
the stretched state Q(0) transitions presented in Section 2.3.5. These
transitions are therefore less forgiving of neglected interactions in the
theory than magic transitions.

2.4.2 Ac-Stark shifts

The ac-Stark shift of transitions within an electronic state are suppressed
as there is no transition dipole moment which couples different levels
within the ground-state manifold. A higher order shift is induced by far
off-resonant interaction with other electronic states. This shift may be
caused by the trap RF drive, by black-body radiation (BBR) or by the
probe laser.

The ac-Stark shift, ∆Ej , of the level j can be estimated from the dy-
namic polarizability of the molecule, αj(ω), due to interaction with higher
electronic states as [35],

∆Ej = −1
2αj(ω)E2

0 . (2.103)
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Here, E0 is the electric-field amplitude of the ac electric field with fre-
quency ω. The polarizability is a sum over all states k to which the state j
can couple, given by [35],

αj(ω) =
∑
k

|〈k|µ|j〉|2

~
ωjk

ω2 − ω2
jk

. (2.104)

The differential shift of the transition frequency between levels j and i
is then ∆fAC = ∆Ej −∆Ei. The transition dipole moments,〈k|µ|j〉, and
frequencies ωjk between vibrational states of different electronic states of
14N+

2 are given in Ref. [35].

The ac-Stark shift from the trap RF drive with frequencies of ω ≈ 2π·20 MHz
can be estimated in the limit where ω → 0 in Eq. (2.104). For vi-
brational transitions with f ≈ 65.2 THz, we find a relative shift of
∆f/(fE2

0) = 7 · 10−24 (m/V)2. The field vanishes along the trap axis,
but will cause a relative shift of 1.26 · 10−18 at a field amplitude of 300
V/m. This electric field amplitude corresponds to an excessive radial
distance of 100 nm away from the RF-null line of an 14N+

2 ion in an ion
trap with secular frequencies of ωr = 2π · 1 MHz, as described in Section
3.1. For transitions within a vibrational state, the shift becomes smaller
as the spacing between the two levels decreases and the differential shift
between both levels cancels to a greater extent.

BBR shifts can also be estimated in the limit of ω → 0 since the spectral-
density maximum of a 300 K black-body radiator occurs at 31 THz, which
is small compared to the frequencies of electronic transitions from the
vibrational ground state. The time-averaged value of the quadratic electric
field from a 300 K radiator is 〈E2

0〉 ≈ 831.9 (V/m)2 [78] and we obtain a
relative shift of ∆f/f = 1.0 · 10−17 for the vibrational transitions. Transi-
tions within a vibrational state will have smaller shifts due to cancellation
between the upper and lower states. The N+

2 molecular clock is therefore
suitable for operation in a room-temperature environment.

Ac-Stark shifts from the probe laser can be eliminated by using the Hyper-
Ramsey method of spectroscopy or through a balanced Raman scheme
[35]. In a conventional Rabi- or Ramsey-type clock experiment, the
laser power is reduced in order to minimize power broadening. In or-
der to obtain a Rabi π-time of ∼ 1 Hz on the strongest S(0) vibrational
transitions, as presented in Section 2.3.5, we need 1 nW of laser power
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focused to a beam radius of 50 µm. The intensity is thus I = 0.26 W/m2

corresponding to an electric field of 13.9 V/m. The ac-Stark shift ob-
tained from Equations (2.103) and (2.104) is then ∆f/f = 8.9 · 10−22.
With a laser power more suitable for driving qubits of ∼ 100 mW, the
intensity is I = 2.55 · 107 W/m2 and we obtain a stark shift of 5.8 Hz or
∆f/f = 8.9 · 10−14. This stark shift can be taken into account by calibrat-
ing the transition frequency for different laser intensities and stabilizing
the laser power.

2.4.3 Electric quadrupole shifts

Electric quadrupole shifts were estimated for rovibrational transitions
in N+

2 in Ref. [35, 67]. Here, we will extend the analysis to transitions
within a vibrational state. The electric quadrupole shift is significant for
molecular ions with an electric quadrupole moment interacting with the
confining quadrupole field from a trap [79, 80]. The shift is proportional
to the electric quadrupole moment QvΛ of level v and the electric field E0
as [81] 17,

∆ν ∝ dE0

dZ
QvΛ

(
3M2

F − F (F + 1)
)
, (2.105)

where the field is assumed along the lab-fixed Z-direction. The differential
shift is then ∆Eeq = ∆νi −∆νj .

We see that the quadrupole shift vanishes for states with F = 0, 1/2. Eq.
(2.105) also implies that for states with ∆N = ∆J = ∆F = ∆MF = 0,
the shift is the same in both upper and lower states and the differential
shift is given by the difference between the molecular quadrupole moment
between the upper and lower states, ∆Q = Qv′Λ − QvΛ. This vanishes
in the case, ∆v = 0, and was estimated to be of order ∆Q/Q ≈ 1% for
transitions between v = 0 and v = 1. We shall now treat this shift in more
detail.

17The factor
(
3M2

F − F (F + 1)
)

results from the Wigner-Eckart theorem for the zeroth
component of a second rank spherical tensor operator, such as the electric quadrupole
moment, T (2)

0 (Q).
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In Section 2.2.3, we presented the matrix expression for the electric-
quadrupole moment operator evaluated in a Hund’s case (bβJ

) basis. This
was derived in Ref. [39] for estimating the coupling of the molecular
quadrupole moment with electromagnetic radiation, which induces E2
transitions. The same interaction Hamiltonian, HQ = T 2(∇E) · T 2(Q), is
responsible for the electric quadrupole shift from the trap. This time, the
molecular quadrupole moment is interacting with a static field gradient,
E0(t) → E0, assumed to be along the (p = 0) Z-direction. To find
the energy shift of a specific level, this Hamiltonian can be added to
the total Hamiltonian and diagonalized with the other terms, or treated
as a perturbation to the energies. The first-order energy correction in
perturbation theory is the matrix element of the operator between the
zero order basis functions, given by [81],

∆Ej = −1
2
dE

dz
〈φj |T (2)(Q̂ηΛ)|φj〉. (2.106)

We recall the matrix element of the quadrupole operator from Eq. (2.96),

〈v,N ′, S′, J ′, I ′, F ′,M ′F |T 2
p (Q̂ηΛ)|v,N, S, J, I, F,MF 〉

=δSS′δII′(−1)S+I+J+J′+F+F ′−M ′F

×
√

(2N + 1)(2N ′ + 1)(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×
(
N ′ 2 N

0 0 0

)(
F ′ 2 F

−M ′F 0 MF

){
N ′ J ′ S

J N 2

}{
J ′ F ′ I

F J 2

}
R(v, v),

(2.107)

to which we have added the radial part of the matrix element R(0, 0) ≈
1.86 ea2

0 for v = 0 and R(1, 1) ≈ 1.89 ea2
0 for v = 1 [58], with p = 0 to

describe a static field along the Z-direction 18.

The selection rules for E2 transitions now give the non-vanishing elements
of the electric quadrupole shift, with the modification that only ∆MF = 0
is allowed for a static field gradient along p = 0. By the first Wigner 3j
symbol in the equation above, we find that the shift is exactly zero for
all transitions within the N = 0 state of the electronic ground state. By
the sum rule of the second Wigner 3j symbol in Eq. (2.107) we also find

18Here, we have used the definition of the electric quadrupole moment
T

(2)
0 (Q) = −e

∑
j
(3z2

j − r
2
j ) from Ref. [81].
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that the shift vanishes for F = 0, 1/2 states, as we have seen from Eq.
(2.105).

For other states in v = 0, 1 with N = 0, 2, 4, the matrix element ranges be-
tween 10−3 − 10−1R(v, v). The electric field gradient in a trap with
secular frequencies of ωz ∼ 2π · 1 MHz, can be estimated by [82]
dE0/dz = ω2

zm/e where m is the mass of the ion and e the elementary
charge. We then estimate a field gradient of ∼ 107 V/m2 for 14N+

2 and a
quadrupole shift (absolute value) between 0.21− 14.4 Hz in the different
levels. The difference between Q0 and Q1 is ∼ 1.4% and the differential
quadrupole shifts are between 10− 660 mHz for vibrational transitions
with ∆N = ∆J = ∆F = ∆MF = 0.

All the Zeeman and hyperfine transitions in the rotational ground state are
therefore immune to the electric quadrupole shift. Rotational N = 0→
(N ′ = 2, F ′ = 1/2) transitions, where we have identified several magic
transitions, are also free from the shift. Likewise, Q(0) vibrational tran-
sitions are free from the quadrupole shift. The Q(0) transitions with
I = 0, presented in Section 2.3.5, are therefore especially suitable for
clock operation as they are free from the quadrupole shift and allow the
use of stretched-state transitions which have a low susceptibility for all
values of the applied magnetic field. The Q(2) transitions can also be
chosen with F = F ′ = 1/2 such that the shift cancels. For S(0) transitions,
the shift vanishes in the lower states S(0) and the upper state can be
chosen as F ′ = 1/2.

The differential shift of the fine-structure transitions with ∆J = 1 in the
N = 2 manifold was calculated in first order perturbation theory for the
magic transitions listed in Appendix C. The differential shift ∆Eeq ranges
between 1.13 − 5.65 Hz for the magic transitions with the exception of
the |J = 3/2, I = 2, F = 7/2,MF = −1/2〉 →
|J ′ = 5/2, I ′ = 2, F ′ = 9/2,M ′F = −3/2〉 magic transition where an
accidental cancellation leads to a vanishing shift. We therefore find
clock transitions with low magnetic field susceptibility and vanishing
quadrupole shifts in every class of transitions.
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2.4.4 Statistical uncertainty

For testing a possible time variation of the proton-to-electron mass ratio,
µm = mp/me, we are interested in the center frequency of a transition
and the precision with which it can be determined. Through repeated
measurements, the center of a clock transition can be determined to a
precision of several orders of magnitude better than the spectroscopic
linewidth.

The uncertainty in determining the line center in a spectroscopic measure-
ment is given by [83],

∆ν = Γ√
M(S/δS)

, (2.108)

where Γ is the spectroscopic linewidth, M is the number of measurements
preformed and S/δS is the signal-to-noise ratio. In a Ramsey-type coher-
ent spectroscopic measurement, the noise can be reduced to the quantum
projection noise S/δS =

√
N [84], where N = 1 is the number of ions

probed at the same time. Thus for a spectroscopic linewidth of Γ = 1 kHz
and an interrogation time dominated by the probe pulse, of 100 ms, the
uncertainty in the line center is ∆ν ≈ 1 Hz after 1 hour of continuous
repeated measurements.

The variation of the proton-to-electron mass ratio that can be deduced
from an experiment depends on the functional dependence of the transi-
tion frequency on µm. The relative precision of the mass ratio is given by
[85],

∆µm
µm

= 1
µm

∂µm
∂ν

∆ν (2.109)

= ∂(logµm)
∂ν

∆ν = κ−1∆ν,

where κ is called the sensitivity coefficient. For rotational and vibrational
transitions, they are κ ≈ 1 and κ ≈ 1/2 respectively.

As an example, consider the magic transitions mentioned in Section
2.3.5 on rovibrational transitions. With a laser-linewidth-limited spectral
linewidth on the v = 0→ 1 transition of Γ = 10 Hz and an interrogation
time of 100 ms, we attain a precision of ∆ν = 0.01 Hz and a relative
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uncertainty ∆ν/ν ≈ 1.5× 10−16 in 24 hours of measurements. Therefore
∆µm/µm ≈ 3× 10−16.

In comparison, a rotational transition with a spectral linewidth of Γ = 2π·1 Hz
limited by a phase-locked-loop THz source with an interrogation time of 1
s can achieve ∆ν = 3 mHz and a relative uncertainty of ∆ν/ν ≈ 1×10−14

and therefore ∆µm/µm ≈ 1× 10−14 in 24 hours of averaging.

2.5 Summary
We have explored the ground state manifold of N+

2 to find suitable molec-
ular clock and qubit transitions. We have also shown that the theory of
energy levels, transition strengths and systematic shifts in a molecule
can be treated in a single, consistent framework. By considering the
breakdown of our approximations for the basis states, we have seen that
off-diagonal terms in the effective Hamiltonian should not be neglected
and will give rise to ’magic’ transitions and even invalidate certain selec-
tion rules in an observed spectrum.

In Table 2.5 we have compiled a summary of the results from each class
of transitions. Transitions were found, spanning 6 orders of magnitude
in frequency, that are suitable as molecular qubits with expected coher-
ence times of up to 10’s of minutes without the need for a cryogenic
environment or magnetic field stabilization. Clock transitions were iden-
tified which can be measured to a relative uncertainty of 10−17, free
from electric-quadrupole shifts, in a room temperature environment.
The picture is thus painted of the homonuclear diatomic molecule as a
versatile and stable system for encoding quantum information and for
high-precision measurements. While this analysis focuses on N+

2 many of
the desirable features that are presented here are expected to extend to
other homonuclear diatomic species.
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Transition type Frequency f Zeeman shift ∆f/f ,a ∆Eeq ,b Ω0,c

[kHz]
Zeeman
∆MF = ±1
N = 0, I = 0 1− 100 MHz 2.8 kHz/mG 10−3 0 800
N = 0, I = 2 1− 100 MHz 1 kHz/mG 10−3 0 800
Hyperfine
∆F = ±1
N = 0, I = 2 200− 300 MHz 16 mHz/mG 10−11 0 700
Fine-structure
∆J = ±1
N = 2 600− 900 MHz 6 mHz/mG 10−11 0-6 Hz 700
Rotational
∆N = ±2
M1S 345 GHz 10 mHz/mG 10−14 0-15 Hz 0.5
M1aS 345 GHz 10 mHz/mG 10−14 0-15 Hz 0.5
E2 ∆F = ±2 345 GHz 10 mHz/mG 10−14 0-15 Hz 0.1
Rovibrational
∆v = ±1
M1aS Q(0) 64.9 THz 10 mHz/mG 10−17 0 5
E2 Q(N) N 6= 0 64.9 THz 5 mHz/mG 10−17 0-15 Hz 60
E2 S(0) 65.2 THz 5 mHz/mG 10−17 0-15 Hz 60

Tab. 2.5. A summary of the results from Section 2.3 and 2.4. The columns shows
(from left to right) the different classes of transitions and their coupling mecha-
nisms, transition frequencies f , residual Zeeman shifts for the least susceptible
transitions, the relative uncertainty due to the residual Zeeman susceptibility
∆f/f under 1 mG of field fluctuations, the electric quadrupole shift ∆Eeq and
finally the Rabi frequencies Ω0. aThe Zeeman-limited relative line shift with 1 mG of
magnetic field noise. b The electric quadrupole shift as described in Section 2.4.3 c Two
radiation sources were assumed as described in Section 2.2.4
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Building a Molecular
Clock Experiment for
N+

2

3

„Inexplicably working is barely better than
inexplicably not working.

— Georg Holderied

In this chapter we present the experimental implementation of a high-
precision single-molecule experiment for N+

2 with particular emphasis
on the design of the ion trap, laser stabilization and the electronics
required for stable operation. Another important part of the experimental
apparatus is the molecular-beam machine and accompanying laser systems
that are used to produce rovibrationally selected molecular N+

2 ions. This
setup was described in Ref. [86, 87]. For the experiments presented in
this thesis, the probe laser for vibrational transitions in N+

2 , at 4.6 µm,
was not used and is therefore only briefly mentioned in the context of
stabilization schemes. Complementary details on the experimental setup
may be found in Ref. [88, 47].

We begin, in Section 3.1, by briefly reviewing the physics of ion traps and
then proceed to describe the design and manufacturing of a new trap
for single molecule operation. In Section 3.2, we describe the electronic
circuits that were built to drive the trap and in Section 3.3, we describe
several methods for laser stabilization, including a Pound-Drever-Hall lock
to a cavity and a lock to a spectroscopic reference. We end this chapter, in
Section 3.4, by describing some specifics of the experimental apparatus
such as the control electronics and the magnetic-field coils.
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3.1 A new trap for single molecule
manipulations

A molecular-clock experiment for a trapped homonuclear diatomic molecule
has different requirements from many other trapped-ion experiments. We
have seen in Chapter 2 that the molecular qubits and clock states encoded
in the electronic ground state of N+

2 are extremely long-lived, even at
ambient temperatures, and possess a low sensitivity to stray electromag-
netic fields. There is, therefore, no need for a cryogenic setup or active
field compensation. In order to reach the frequency precision of state-
of-the-art clock experiments, long probe times, ∝ 1/∆f , are required
in order to avoid broadening of the line profile [77]. The experimental
duty cycle is then dominated by this probe time and a low heating rate
takes priority over the fast cooling and short gate times that are sought
in quantum-information experiments [89]. A miniaturized trap, with
ion-electrode distances of r0 ≈ 100 µm, is therefore not required and
we may instead implement a millimeter-scale trap which will reduce the
anomalous heating rate of the ion motion [90], simplify manufacturing
and increase access to the trap center by the molecular beam and lasers.
We begin by briefly reviewing the motional dynamics of an ion in a linear
Paul trap.

Fig. 3.1. A linear Paul trap in the ’single-phase’ configuration with two solid RF
electrodes and two segmented DC electrodes.
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3.1.1 The linear Paul trap

A linear Paul trap is shown schematically in Figure 3.1. It consists of four
cylindrical rods, two of which are segmented. We apply a radio-frequency
(RF) potential on the two solid electrodes to generate a trapping potential
along the radial (x, y) axes. On the segmented rods, the central segments
are held at ground potential. The remaining four ’endcap’ segments have
applied static (DC) potentials to produce confinement along the ’axial’
z-direction. The trapping conditions and motional dynamics of ions in
a linear Paul-trap have been extensively described in Ref. [91, 92, 93,
94]. Here we will use these results for designing and characterizing a new
trap.

The secular motion

In the absence of stray electric fields and assuming that the RF and endcap
electrodes produce harmonic potentials, the equations of motion for an
ion in such a trap takes the form of Mathieu equations,

d2u

dτ2 + [au − 2qu cos(2τ)]u = 0, (3.1)

with u = x, y, z describing the coordinates. The trap parameters au and
qu and τ are defined by,

τ = ΩRF t
2 , qx = −qy = 2 eVRF

mr2
0Ω2

RF

, ax = ay = −1
2az = −κ 4eVDC

mz2
0Ω2

RF

,

(3.2)

where e and m is the charge and mass of the trapped ion. The radial
distance from the symmetry axis of the trap to the RF electrodes is denoted
r0 and the axial distance between the endcap electrodes is 2z0. ΩRF is
the frequency of the RF drive with amplitude VRF . The voltage on the
endcap electrodes is VDC and κ is a geometric factor which depends on the
specific trap design and can be simulated or measured experimentally.

In the limit of |a|, |q| << 1, the solutions to Eq. (3.1) describe two
superimposed ion trajectories separated into a ’secular’ harmonic oscillator
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motion with frequency ωr and a faster superimposed ’micromotion’ at the
drive frequency ΩRF ,

u(t) = u0

[
1− qu

2 cos(ΩRF t)
]

cosωrt. (3.3)

The secular harmonic frequency for a single ion is given by,

ωu ≈
ΩRF

2

√
q2
u

2 + au. (3.4)

The axial confinement is due to the static field only, with qz = 0, and the
axial secular frequency is therefore,

ωz ≈
ΩRF

2
√
az. (3.5)

By the mass dependence of the au and qu parameters, we note that a
lighter ion will experience a deeper potential in the trap.

A two-ion string along the trap axis has two motional modes in the trap,
given by [95],

ω2
∓ = ωz

m1

(
1 + 1

M12
∓

√
1 + 1

M2
12
− 1
M12

)
, (3.6)

where ωz is the axial frequency of the ion with higher mass, m1, and
M12 = m1/m2 is the mass ratio of the two ions. The slower frequency ω−
is an in-phase motion resembling the center-of-mass (COM) motion of
two ions with equal masses. This mode will be be denoted ωCOM . The
faster frequency ω+ is an out-of-phase motion resembling a stretch (STR)
mode and will be denoted ωSTR.

The micromotion

The properties of micromotion in a linear Paul trap have been extensively
described in Ref. [96, 97]. In an ideal trap free from misalignment,
stray electric fields and a phase mismatch between the RF electrodes,
the micromotion vanishes on a line along the trap axis, the ‘RF null line‘.
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Close to the trap axis, the kinetic energy of the ion motion in the radial
directions is dominated by the micromotion energy, given by,

Ek = 1
2mω

2
rx

2. (3.7)

The effective electric field amplitude at a radial distance x away from this
axis is then,

EMM
0 = mω2

rx

e
. (3.8)

Under the influence of this RF field, the micromotion of the ion will
produce spectral sidebands at integer multiples of the drive frequency,
ΩRF . In the limit of low modulation the strength of these micromotion
sidebands are given by the ratio of two Bessel functions of the first kind,
Ji [96],

IMM

ICar.
≈
(
J1(β)
J0(β)

)2
. (3.9)

Here, IMM and ICar. represent the line intensities on the first micromotion
sideband and carrier transition respectively. For a low modulation index,
β, we have,

J1(β)
J0(β) ≈ β/2. (3.10)

In the absence of a phase mismatch in the RF potentials, β is related to
the radial distance, x, and laser wave-vector, k, by,

β ≈ 1
2kqx. (3.11)

A small, unavoidable micromotion component appears on the trap axis
due to the finite extent of the ion wavefunction. The extent of an ion
wavefunction in the motional ground state of a harmonic potential is
given by,

x0 =
√

~
2mωr

. (3.12)
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The quantity η = kx0 is called the Lamb-Dicke parameter and represents
the ratio between the wavelength of incoming radiation, k = 2π/λ, and
the extent of the wavefunction of the ion in the secular ground state of
the trap, n = 0. With a radial secular frequency of ωr ≈ 2π × 1 MHz and
the mass of a 14N+

2 ion, we find that in the trap ground state the ion has a
spatial extent of x0 ≈ 13 nm. According to Eq. (3.8), the ion therefore
experiences a maximum RF field of EMM

0 ≈ 0.15 V/m.

In the Lamb-Dicke regime, defined as η2(2n̄+1) << 1, where n̄ represents
the average motional quantum number in the trap, the first-order Doppler
shift vanishes and the ion spectrum shows sidebands at multiples of the
trapping frequency rather than broadening. A second-order Doppler shift
is induced by the relativistic time dilation of the ion with a relative shift
of [96],

∆ν
ν

= − Ek
mc2

. (3.13)

In the limit of q << 1, the kinetic energy, Ek, is dominated by the kinetic
energy due to micromotion. Thus, according to Eq. (3.7), the relativistic
Doppler shift of the N+

2 ion due to the finite extent of the wavefunction
in n = 0 is then ∆ν/ν ≈ 1 × 10−20. The modulation index measured
with a laser of k = 2π/729 nm is β = 0.006 corresponding to a sideband-
to-carrier intensity ratio of 1 × 10−5. A clock transition in a properly
compensated N+

2 -ion near the trap ground state is therefore not limited
by the first or second order Doppler shifts.

3.1.2 Axial RF gradients

The ion trap described in Ref. [98] was implemented in several molecular
ion experiments [87, 99, 39] by using a string of molecular N+

2 ions
embedded in a Coulomb crystal of Ca+ for sympathetic cooling. Such
crystals reached a temperature of ∼ 20 mK, with a corresponding Doppler
linewidth of ∼ 1 MHz [47]. The Doppler cooling limit on the (4s)2S1/2 →
(3d)2P1/2 transition in Ca+ is 0.5 mK [100]. The discrepancy is because
away from the RF null line, the ions experience significant micromotion
which causes heating of the crystal. We therefore consider using a string
of ions along the trap axis rather than a 3D Coulomb crystal.
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In order to reduce the Doppler shift, we shall aim for the Lamb-Dicke
regime, η2(2n̄+1) << 1, where the first-order Doppler shift vanishes [91].
A secular frequency of ωz ≈ 2π ·0.64 MHz and a temperature after Doppler
cooling of 0.5 mK corresponds to an average motional state of n̄ ≈ 16 and
η2(2n̄+ 1) = 0.41. We must therefore cool the ion motion to near the trap
ground state, n = 0, in order to properly fulfill the Lamb-Dicke condition
and remove the first-order Doppler shift.

Different segments of the trap have different capacitance to ground which
may cause a phase shift or amplitude shift between the RF potentials. The
old trap [98] had all four rods segmented. In order to reduce unwanted
pickup or phase mismatch, the RF potential was only applied to the middle
segments of two opposing rods while the other segments were capacitively
grounded. In this configuration, however, an additional RF field appears
along the z-direction due to the short middle segment of the trap, as
shown in Figure 3.2a.

The small r0/z0 ratio of this trap, r0/z0 ≈ 0.8, introduces a steep RF-
quadrupole potential in the z-direction which causes micromotion along
the trap axis1. Figure 3.2b shows the measured intensity ratio between
the first micromotion sideband and the carrier transition, IMM/ICar., as a
function of the ion position along the axial z-direction. This was measured
by electron-shelving spectroscopy [91] on the (4s)2S1/2(mJ = −1/2)→
(3d)2D5/2(mJ = −5/2) transition2 of a single 40Ca+.

The micromotion amplitude is low, β ≈ 0.01, near the axial center, z = 0,
and as strong as the carrier, β ≈ 2, only 1 µm away. The RF null line is thus
only an RF null point. In a single-ion experiment, this axial micromotion
can be compensated, as with radial micromotion [96], by placing the
ion in the center of the RF potential using static compensation fields.
For a two-ion string along the axis this is no longer possible. In this
case only one ion can be compensated. The lighter ion will experience a
deeper potential (see Eq. (3.4)) and is therefore more likely to take the
compensated center position.

1This axial potential could in principle be used to confine ions axially without an applied
endcap voltage.

2The lowest energy states in Ca+, e.g. (4s)2S1/2, (3d)2D5/2 and (4p)2P3/2 will henceforth
be denoted simply by the shorthand notation S1/2, D5/2 and P3/2.
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2z0
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Fig. 3.2. a) The simulated potential from an old version of the RF trap with
r0/z0 = 0.786 with RF potentials applied to the central segments showing the
axial RF potential when the DC electrodes are held at ground potential. The colors
show the potential (arb. u.) and white arrows show the direction of the electric-
field. b) The measured intensity ratio between the first micromotion sideband
and the carrier transition, IMM/ICar., as a function of the ion position along the
axial z-direction. Electron-shelving was preformed on the S1/2(mJ = −1/2)→
D5/2(mJ = −5/2) transition of a 40Ca+ ion and the ion position was moved
using static voltages on the endcap electrodes. Error bars represent 1σ statistical
uncertainties. In the limit of low modulation, we expect a quadratic dependence
on the ion position (orange line), as described in the text. c) The simulated
electric field strength along the z-axis for three different r0/z0-ratios with 1 V
applied to the central segments. All simulations were preformed in COMSOL
[101].
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Figure 3.2c shows the electric field amplitude along the trap axis with 1 V
applied to the central segments, simulated by a finite-element method in
in COMSOL [101]. With a two-ion distance of 10 µm and an RF amplitude
of 1000 V, the ions experience a field of up to 600 V/m in the lowest ratio
z0/r0 = 0.79. A r0/z0-ratio of at least 2.5 is necessary in order to obtain
a negligible RF potential along the axis below 15 V/m for both ions. A
more conventional solution is to use long, unsegmented RF electrodes,
like those shown in Figure 3.1. In this configuration, the DC electrodes
can be segmented with any value of z0 without introducing an axial RF
potential 3.

3.1.3 Trap design

A new trap was designed to achieve radial frequencies of ωr ≈ 2π · 1 MHz
for Ca+ and a low q ≈ 0.1, without axial RF potentials and with a low
heating rate. First we consider the effect of changing the electrode radius,
re, on the trapping fields and the geometric access to the trap center.

Electrode radius

Anharmonic RF trapping potentials will couple different motional degrees
of freedom and may therefore cause heating of a ground-state-cooled
axial mode by the radial modes [102]. The ratio of the ion-electrode
distance, r0, to electrode radius, re, that produces the most harmonic
potential is r0/re ≈ 1 [103]. This ratio, however, limits access to the trap
center by a molecular beam and reduces the effective numerical aperture.
The simulations presented in Figure 3.3 show the effect of reducing the
electrode radius, re, while keeping the ion-electrode distance fixed to
r0 = 1.75 mm.

The gain in numerical aperture between re = 2 mm and re = 0.25 mm
is nearly a factor of 2. Figure 3.3b shows the simulated RF potential
along the radial x-axis for four different electrode radii. We find that
the trap electrodes can be reduced to thin wires without introducing any

3The endcap electrodes will then require voltages a factor of 2 higher than if all rods were
segmented.
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Fig. 3.3. a-d) Four traps with different electrode radii, re = 2, 1, 0.5, 0.25 mm,
simulated in COMSOL [101] with r0 = 1.75 mm. The radial distance between
electrodes is denoted rA e) The simulated potential along the radial x-direction
for the different configurations shown in (a-d). A quadratic fit to the curve of
re = 0.25 mm near x = 0 (black curve) shows a deviation of 1% from harmonicity
at x = 750 µm from the trap center.
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significant anharmonicity close to the trap axis. The thinnest configuration,
re = 0.25 mm, shows a 1% deviation from harmonicity above ∼ 750 µm
from the trap center. This distance corresponds to a secular temperature of
above 104 K and will not be accessible to the ions. The thinner electrodes
also reduce the effective solid angle covered by the trap electrodes as seen
by the ion. This leads to a lower heating by black-body radiation (BBR)
from the electrodes, which are typically hotter than their environment.

In a segmented design, re ≈ 1.5 mm is the lower practical limit to build
a mechanically robust and self-supporting segmented electrode. One
could instead use a pair of ring electrodes or additional rods as endcap
electrodes in a wire trap to achieve the same effect.

Compensation electrodes

Next, we consider the addition of compensation electrodes outside the
trap in order to apply auxiliary fields to the trapping region. These will be
useful for compensation of micromotion [96] and for coherent motional
excitation of the motional modes [104]. The field strength that can
be applied to the ions from a trap electrode is shown in Figure 3.4a.
The value of the electric field on the trap axis is E0 = 20 V/m in the
y-direction (the plane of the DC electrodes) for a potential of 1 V applied
on the middle segment. Such an offset field can not be applied in the
x-direction without a mixing of RF and DC voltages on the RF electrodes
which may introduce additional noise in the trapping potentials. Instead,
we investigate the effect of adding compensation electrodes to the outside
of the trap as shown in Figure 3.4b.

Due to the electric shielding from the trap electrodes, the field from
one compensation electrode is a factor of 10−2 smaller than from a trap
electrode with the same applied voltage. By adding the compensation
electrodes in the horizontal plane of the chamber, we avoid restricting
the numerical aperture in the vertical direction which is used for photon
counting and imaging. The placement of these electrodes in the horizontal
plane also serves to shield the trap electrodes from being coated by the
Ca-oven or molecular beam, while also blocking stray light from the lasers
from directly hitting the trap electrodes.
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Fig. 3.4. a-b) The radial potential (arb. u.) induced by applying (a) 1 V on a
trap electrode and (b) a compensation electrode, simulated in COMSOL [101]. c)
The electric-field amplitude as a function of radial distance along the x-direction.
To reach the same amplitude in the trap center as 1 V on the trap electrode (blue
curve), a potential of ∼ 60 V must be applied to the compensation electrode
(orange curve).
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3.1.4 Trap manufacturing

The millimeter-sized trap design presented here allows the trap to be
manufactured through CNC machining, without the special manufacturing
techniques or electrode coatings used for miniaturized traps [105]. The
size and shape allows for stainless steel rods to act as trap electrodes.
These can be polished to remove surface roughness and coating the
electrodes with, e.g., gold will not be necessary as the ion-electrode
distance is large. We have seen in Chapter 2 that the lack of a dipole
moment in N+

2 means that the heating of electrodes will not limit the
lifetime of the rovibrational states. Heat dissipation is therefore not as
important as in traps made for polar species, or for cryogenic setups.

Figure 3.5a-c shows the trap assembly including a stainless steel holder.
We chose a segmented, self-supporting electrode design and we therefore
need a mechanically robust insulator to act as a spacer and to hold the
middle segments in place. Between the commercial machinable ceramics,
Shapal Hi-M Soft has a bending strength 3 times that of Macor (300 MPa
vs. 96 MPa) and better heat conductivity (90 W/(m K) vs.
1.46 W/(m K))4.

Figure 3.5d shows a cross section of the trap assembly and in-vacuum
lens system. A 2-inch lens assembly below the trap is used for collecting
fluorescence photons from the ions on a PMT outside the chamber for
detection of the Ca+ state5. Two 1 inch lenses placed 80 mm from
either side of the trap center are used to achieve a narrow focus of the
lasers along the trap axis. The finished trap assembly mounted inside the
vacuum chamber is shown in Figure 3.6.

4Precision Ceramics, Shapal Hi-M Soft
5The lens assembly was designed by Z. Meir
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Fig. 3.5. The final trap design with r0 = 1.75 mm, re = 1.5 mm z0 = 2.5 mm
and four compensation electrodes outside the trap. Two 1 inch lenses are placed
along the axis 80 mm from the trap center and a 2 inch lens system is placed
below the trap to capture fluorescence from Ca+ and focus it on a photomultiplier
tube outside of the trap chamber.
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Fig. 3.6. The assembled trap in the center of the vacuum chamber. Picture by
P. Eberle

3.2 Trap electronics

In this section, we describe the electronics that were built to drive the trap
with stable RF and DC voltages. A schematic overview of the trap circuit
is shown in Figure 3.7. This includes a helical-resonator circuit for the RF
potentials, a voltage supply for the endcap and compensation voltages as
well as filters to stabilize the DC voltages. We have also added an auxiliary
RF source6 on one compensation electrode for coherent excitation of
the motional modes [104]. These circuits are described in more detail
below.

6StemLab 125-14 ’Red Pitaya’
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Fig. 3.7. A simplified equivalent circuit for a stable trap drive. The circuit includes
(from left to right) the RF source and amplifier, marked ’5W RF’, a −20 dB direc-
tional coupler and the helical resonator connected to the trap. An additional RF
source is connected to a compensation electrode for coherent motional excitation
(CME) [104]. Input filters are placed on the DC vacuum feedthrough with a
variable capacitor on one endcap channel for axial micromotion compensation.
Input/Output filters are also placed at the output of the voltage supply, here
marked ’0-200 V DAC’.

3.2.1 Helical resonator design and
characterisation

The preferred method for achieving a stable and high-voltage RF potential
on the trap is through a helical resonator circuit. The helical resonator acts
as a resonant amplifier with an inductive coupling between the trap and
the RF source. The design and characterization of the helical resonator
has been extensively described in Ref. [106]. This circuit achieves a
higher output voltage compared to a direct drive for the same values of
input power, as it allows precise impedance matching of the amplifier
to the trap. The resonator also acts as a narrow notch filter to remove
unwanted frequency components coming from the RF synthesizer or
amplifier. Finally, the ground connection to which the RF potentials are
referenced can be decoupled from the source and amplifier grounds which
may be noisy and may cause ground loops.

We treat the resonator circuit, theoretically, as a series LCR oscillating
circuit with resonance frequency ω0, where L is the total inductance, R
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the total resistance and C the total capacitance of the circuit. The peak
voltage on the trap can be estimated by [106],

Vp = κ
√

2PQ. (3.14)

Here κ is a function of the inductance and capacitance of the combined
resonator and trap circuit with κ = (L/C)1/4, P is the forward power
and Q is the quality factor of the resonator circuit describing the energy
stored in the circuit, or equivalently, the time constant for damping of the
oscillations, with,

Q = 1
R

√
L

C
. (3.15)

In terms of the resonance frequency, ω0 = 1/
√
LC, we can rewrite the

above eqution as,

Q = 1
ω0RC

. (3.16)

A high quality factor is therefore dependent on having a low RF resistance
from the coil to the trap. A low resistance is achieved by using highly
conductive materials (copper, silver) with large diameter and well sol-
dered connections between the coil, the vacuum feedthrough and the trap.
We also note that the Q factor scales with the inverse of the frequency
and capacitance. It is therefore easier to achieve a high-Q circuit with
lower trap frequencies and a low capacitance to ground in the resonator,
vacuum feedthrough and on the trap. This circuit is therefore not useful
for traps with high capacitance to ground where a direct drive may be
necessary.

In our trap design, we aim for radial frequencies of ωr ≈ 2π · 1 MHz, axial
frequencies of ωz > 2π · 0.5 MHz and q ≈ 0.1 for a Ca+ ion. By inserting
q = 0.1 and r0 = 1.75 mm and a maximum practical voltage level of
VRF = 1000 V into Eq. (3.4), we find that we need ΩRF ≈ 2π · 20 MHz in
order to achieve the desired radial frequencies.

The capacitance to ground of the trap and feedthrough was measured as
∼ 15 pF each, for a total of 30 pF. The RF resistance between the helical
coil and the trap is frequency dependent and can not be measured without
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a network analyzer. Assuming that the leads are thick and the connections
are well soldered, we expect Rt < 1 Ω. From Eq. (3.16), we therefore
find that we can achieve Q ≈ 265 at ΩRF ≈ 2π · 20 MHz. According to
Eq. (3.15) we need a coil inductance of L ≈ 2.1 µH and we can reach our
desired peak voltage with 3.6 W of RF power.

The resonator was therefore built for a frequency of ΩRF ≈ 2π · 20 MHz
and an inductance of LC ≈ 2.1 µH. A copper tube with outer diameter
of 100 mm and a wall thickness of 3 mm was cut to a height of 150
mm to form the outer shield of the resonator. The resonator coil was
made by winding a copper wire 9 turns with a winding pitch of 6 mm
around a cylinder of diameter 50 mm. The diameter of the coil wire is
3 mm. The coil height is then 54 mm. One end of the coil was attached
to the resonator shield and the other end was connected to the vacuum
feedthrough via copper wire, 2 mm in diameter. The antenna coil was
made from 1 mm-diameter silver-coated copper wires and is held in place
above the main coil by a copper cap that was fitted to the outer shield.
The antenna coil was not grounded to the resonator shield in order to
decouple the grounds between the electrical mains and the resonator
which was grounded to the trap chamber.

With the RF source7 and helical resonator in place, using a −20 dB
directional coupler8, we measure a resonance frequency of 16.86 MHz and
by measuring the width of the resonance a Q-factor of 300 was inferred.
This corresponds to a coil inductance of LC = 3.0 µH. We can therefore
reach ∼ 1000 V on the trap with 2.6 W of power9 and q ≈ 0.14. These
moderate power levels are not expected to lead to significant heating of
the trap electrodes.

3.2.2 Trap voltage supply

The static voltages required for obtaining axial radial frequencies of
ωz > 2π · 0.5 MHz on a single 40Ca+ were estimated, using Eq. (3.4),

7Keithley 3390 Arbitrary Waveform Generator
8MiniCircuits ZFBDC20-61HP+
9By improving the connections or by using thicker-gauge wire to reduce the resistance to
Rt = 0.5 Ohm the Q-factor would increase to Q = 600 and we would reach the same
voltage on the trap with half the power.
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to be below 200 V. We therefore base the source of static DC voltages
around the AD5535B evaluation board10,11. A stable 5 V input reference
allows 32 individually tunable voltages in the range 0-200 V with a 14 bit
resolution. These outputs were filtered using two cascaded first order RC
input-output filters to produce a second-order filter to the outputs and to
protect the board from spurious voltages picked up near the trap. Using
R = 15 kΩ and C = 10 µF, these filters have a −3 dB corner frequency
of 0.6 Hz and a steep 40 dB/decade slope thus effectively filtering any
50 Hz noise components with −83 dB suppression.

Shielded cables carry the voltages to a filtering box placed as close as
possible to the vacuum feedthrough where the voltages are once again
filtered to remove any noise picked up along the way. With R = 20 kΩ
and C = 10 µF, these first-order RC filters have a corner frequency of 0.8
Hz. The capacitors in this filter box also serve to ground the DC electrodes
from RF potentials picked up on the trap. Such a capacitive grounding
is best preformed inside the chamber close to the trap in order to reduce
the amount of residual RF voltage pick-up on the endcap electrodes.
Due to the varying capacitance between different trap electrodes, some
spurious RF field along the trap axis is, nonetheless, expected and can
be compensated by the method presented in the next section. For this
method it is beneficial not to ground all electrodes in vacuum to allow
tuning of the RF pickup on some electrodes.

3.2.3 Axial micromotion compensation circuit

Axial micromotion, as a result of trap misalignment or RF pick-up on
endcap electrodes, can not be compensated using DC fields [96]. There
are several methods for active micromotion compensation, e.g. by driving
an additional RF potential on an auxiliary electrode out of phase with the
trapping field to cancel the axial field component [107]. Another method
is the modulation of the laser frequency in phase with the RF drive as
shown in Ref. [108]. Here, we employ a passive method of compensation
which relies on tuning the RF pickup on the endcap electrodes selectively
by changing the capacitors in the filter box. This ensures that the phase,

10Analog Devices EVAL-AD5535BSDZ
11The voltage supply was designed and built by G. Hegi
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Fig. 3.8. The S1/2(mJ = −1/2) → D5/2(mJ = −5/2) carrier transition in
Ca+ and its first micromotion sideband (MM), measured by electron-shelving
spectroscopy, before and after axial micromotion compensation. Each carrier is
accompanied by motional sidebands at multiples of the secular frequency ωz.
Small contributions from the S1/2(mJ = +1/2)→ D5/2(mJ = −3/2) transition
also appear in the spectrum due to imperfect state preparation. The frequency
axis shows the measured AOM frequency which is −2× the real frequency shift
and is added to the transition frequency of f0 ≈ 411.042 THz.

frequency and voltage of the RF compensation field always matches the
RF drive.

A single capacitor in the filter box was replaced with a variable capacitor,
with CMM = 0− 100 pF, on one endcap channel, as shown schematically
in Figure 3.7. By reducing the capacitance of this electrode successively,
the RF pickup is increased until it cancels the spurious field. The filtering
properties of the low-pass filter can be restored by changing the resistor
on this channel.

Figure 3.8 shows the S1/2(mJ = −1/2)→ D5/2(mJ = −5/2) carrier tran-
sition in Ca+ and its first micromotion sideband, measured by electron
shelving, before and after axial micromotion compensation. The measured
modulation was reduced from β ≈ 2 to β ≈ 0.1. The measured modula-
tion index does not change significantly over a distance of ±100 µm along
the trap axis. A more precise compensation can be achieved by using an
additional variable capacitor with a finer tuning.
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3.3 Laser stabilisation for precision
spectroscopy

In this section, we will give an overview of a few different techniques used
for laser stabilization. We begin with the Pound-Drever-Hall technique
for locking a laser to a high-finesse cavity and present a method for
estimating the linewidth of the locked laser. We then present three
additional methods for stabilizing a laser for molecular spectroscopy.

The energy levels and lasers involved in the Ca+ - N+
2 experiment are

presented schematically in Figure 3.9. Two continuous wave (CW) ex-
ternal cavity diode lasers (ECDL), at 423 nm and 387 nm, are used for
isotope-selective ionization of Ca+ [109]. Another two pulsed dye-lasers,
at 202 nm and 375 nm, are used for rovibrationally selective ionization
of N+

2 in the electronic ground state from a molecular beam of neutral
N2 [86]. The Doppler cooling of Ca+ requires two lasers, 397 nm and
866 nm, one for fast repeated excitation on the S1/2 → P1/2 transition
and the other to repump any population trapped in the D3/2 state back to
the P1/2 state [98].

Sympathetic sideband-cooling [110, 111] of the shared motional modes
of the Ca+- N+

2 string proceeds on the narrow electric quadrupole S1/2 →
D5/2 line at ∼ 729 nm or ∼ 411.042 THz. A laser at 854 nm is used for
repumping the population from the D5/2 state to the P3/2 state which
subsequently decays back to S1/2. All coherent manipulations in Ca+ such
as state preparation, shelving spectroscopy and sideband thermometry
[92] are preformed using the 729 nm laser. This laser therefore has
high requirements in terms of absolute frequency stability and narrow
linewidth. We will show how this stability can be achieved using a Pound-
Drever-Hall lock to a high-finesse cavity in Section 3.3.1.

In addition, a state-readout laser is added close to a resonance with the
molecular X2Σ+

g (v = 0)→ A2Πu(v = 2) transition at ∼ 789 nm to map
the internal state of the molecule onto the shared motional modes of the
Ca+- N+

2 string. This mapping relies on the state-dependent force exerted
on the N+

2 by the near-resonant 789 nm laser through the optical dipole-
force. This readout scheme is described in Chapter 5. The entanglement of
the internal state of the molecule with the motional modes of the Ca+ can
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also be preformed with the probe-laser by driving motional sidebands
of a transition in a quantum-logic type scheme [112]. As the strength
of motional sidebands scale with the Lamb-Dicke parameter, η = kx0,
the Rabi frequency on the sidebands are 2 orders of magnitude weaker
than the carrier transitions at 4.6 µm, with η ≈ 0.02, and even weaker for
microwave (MW) probes. In order to increase the Lamb-Dicke parameter,
a scheme to lower the trap frequency adiabatically was implemented in
Ref. [113].

The mid-IR or or MW source that is used to probe the molecular states has
even higher requirements in order to reach the precision of state-of-the-art
clock experiments. A mid-IR laser, e.g. a quantum cascade laser (QCL) at
∼ 4.6 µm, can be used to probe the Q(0) and S(0) clock transitions, as
described in Chapter 2. This type of laser has been stabilized with a ∼ Hz
linewidth (1s integration time) by locking it to a frequency-comb or ULE-
cavity in Refs. [114, 115]. To provide an overview of additional techniques
for stabilizing a probe laser, we describe three possible methods in Sections
3.3.3, 3.3.4 and 3.3.5, based on a lock to a frequency comb, a lock to a
spectroscopic reference or through single-laser Raman excitation.
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Fig. 3.9. A simplified energy-level diagram of the relevant levels in Ca+ and N+
2

(not to scale). The arrows represent the lasers that are used to manipulate the
states. The ionization steps from the neutral species are presented at the bottom
of the figure. The wavelengths are approximate.

3.3 Laser stabilisation for precision spectroscopy 105



3.3.1 Pound-Drever-Hall locking to a cavity

A high-finesse optical cavity provides short-term optical stability through
rejection of frequencies outside of a narrow frequency band of typically
∆f ∼ 10 kHz. A stable error signal can be obtained from the high-finesse
cavity by using a Pound-Drever-Hall locking-scheme [116], as presented
schematically in Figure 3.10. Here we employ this technique for the
stabilization of the 729 nm laser used for coherent state manipulations of
Ca+ on the S1/2 → D5/2 transition.

The Pound-Drever-Hall technique relies on a fast modulation of the laser
frequency to extract the sign of frequency excursions around the top of
the cavity resonance profile. The error signal is obtained by interfering the
reflected power from the cavity with the incoming beam and demodulating
the signal. In this way, the laser can be locked to the derivative of
the reflected intensity at the top of the cavity resonance 12. This error
signal is therefore, to first order, independent of fluctuations in the laser
intensity.

The quality factor of an optical cavity can be characterized by its finesse
F which is analogous to the Q-factor of the helical resonator presented in
Section 3.2.1. It is related to the decay time τ and cavity length L by,

F = τ
cπ

L
= 2π · τ · νFSR. (3.17)

Here νFSR = c/L is the free spectral range of the cavity and represents the
frequency spacing between the fundamental spectral modes of the cavity.
The finesse can be measured through a ring-down measurement which
measures the lifetime, τ , of the laser power stored in the cavity. The light
leaking out of the cavity is recorded on a fast photodiode as a function of
time when the incoming light is blocked. Figure 3.11a shows the results of
such a measurement on the 729 nm cavity 13. To ensure that the measured
decay constant is not limited by the decay time of the photodiode, the
reverse-bias voltage of the photodiode was successively increased until no
reduction in the ringdown time was observed. The decay constant was

12A Toptical PDD110 module provides the error signal and a Toptica FALC110 is used for a
fast servo lock.

13ATF-6020-4, L = 100 mm notched ULE plano-convex Fabry-Perot cavity. AR coated for
745 nm.
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Fig. 3.10. A simplified schematic of the experimental setup for Pound-Drever-Hall
locking of a 729 nm diode laser to a high-finesse Cavity as described in the text.
AOM and EOM denotes an acousto-optic modulator and electro-optic modulator
respectively. λ/2 and λ/4 refers to laser phase shifters in the form of a half-wave
and quarter-wave plates, respectively.

measured to be τ = 29.6 µs corresponding to a finesse of F ≈ 270000.
The linewidth of the cavity is therefore νFSR/F = 8 kHz.

In order to stabilize the cavity length, it is mounted on a block of ultra-low
expansion (ULE) glass which has a vanishing first-order thermal expansion
coefficient at some zero-crossing temperature, T0. By monitoring the laser
frequency of the locked laser as a function of the cavity temperature on
a stable reference, the zero-crossing temperature can be measured. We
monitor the beat-note frequency between the locked 729 nm laser and a
frequency comb, as described in Section 3.3.3, to record the frequency of
the laser while changing the cavity temperature. The results are shown in
Fig 3.11b. A quadratic fit to the data shows a zero-crossing temperature
of T0 = 26.83 oC.

The cavity ULE block is placed on a Zerodur spacer14 inside a vacuum can
in order to reduce thermal fluctuations and acoustic noise. A small ion

14Stable-Laser-Systems HC-6020-1-mntz1
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pump15 is mounted on the can and reaches a pressure of < 3×10−6 mBar.
The ULE block has no contact with the vacuum can and is placed on the
Zerodur spacer on four small Viton pads. Therefore, heat exchange pro-
ceeds predominantly through radiation and a temperature change takes
up to 10 hours to settle near the final values. This is a desirable feature
which decreases the susceptibility of the cavity to temperature fluctuations
in the environment. The temperature is maintained at the zero-crossing
temperature using resistive heaters placed around the vacuum can. Unlike
Peltier elements, which can be used to heat or cool, these resistive heaters
do not permit cooling. Therefore, an ordinary Proportional-Integral (PI)
servo loop will cause temperature oscillations as shown in Figure 3.11c.
By operating the PI-controller16 without an integrator and with a slightly
too low P-setting, a steady state can be reached where the heater is always
on. The temperature will stabilize, although with an offset, to a set value.
Using this trick, we achieve an acceptable temperature stability of a few
mK over the course of a day.

The PDH setup was placed on a passive vibrational-damping breadboard
resting on an airpad17. This platform has a low resonance frequency,
of ∼ 1 Hz, and therefore effectively dampens vibrations from the laser
table and floors. Acoustic, electric-field and optical noise can also enter
the setup through free space and a box was built to minimize outside
interference. Figure 3.11d shows the displacements of the breadboard
measured by an accelerometer with and without a simple cardboard box
on top of the setup. The root-mean-squared displacements reduce by
nearly a factor 2 with the box. A heavy isolation box was therefore built
using 10 mm thick MDF board for a low resonance frequency. A layer of
30 mm thick sound-isolation foam padded the complete inside of the box.
The box was also painted with electrically conducting paint which forms a
Faraday cage when grounded in order to minimize stray electromagnetic
fields which may interfere with the signals. Extra care was also taken to
avoid ground loops in the stabilization circuit [117].

15Agilent 2 l/s Ion Pump
16Thorlabs TED200C
17Newport BenchTop vibration isolation system
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Fig. 3.11. a) A cavity ring-down experiment measured by a photodiode placed
behind the cavity when the lock is turned off. An exponential fit to the data reveals
a time constant of τ = 29.6 µs corresponding to a cavity finesse of ∼ 270000. b)
The beat-note frequency between a frequency comb and the PDH-locked 729 nm
laser, measured on a stable counter, as a function of cavity temperature (blue
dots). The zero-crossing temperature is found by a quadratic fit to the data (blue
curve) as T0 = 26.83oC. c) The temperature stability of the vacuum can that
houses the cavity as a function of time with two different PI-servo settings, as
described in the text. d) The measured displacements of an accelerometer placed
on the vibrational damping pad as a function of time with (red) and without
(blue) an ordinary cardboard box on top of the setup.
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3.3.2 Linewidth characterisation using the
in-loop error signal

The in-loop PDH error signal can be used to optimize the lock. It can also
be used to estimate the laser linewidth using the method described in Ref.
[118]. The relation between the measured frequency-noise spectrum and
the Lorentzian linewidth is not exact but is nevertheless useful when there
is no auxiliary narrow reference with which to compare the locked laser.
A self-heterodyne measurement of a laser with a 1 kHz linewidth would
require a delay line of ∼ 100 km in order to lose coherence between the
two beam paths [77].

A PDH error signal, obtained while scanning the laser frequency over the
cavity resonance, is shown in Figure 3.12a. The modulation sidebands
from the EOM18 have a frequency spacing of 20 MHz and a transfer
function of 0.114 µV/Hz is inferred from the slope of the error signal (see
inset). This function is used to relate the voltage fluctuations in the error
signal of the locked laser to the real frequency fluctuations of the laser
and hence to the laser linewidth.

The power spectral density (PSD) was obtained by recording the in-loop
error signal for 1 s on a fast oscilloscope19 and taking its Fourier transform.
In Figure 3.12b we show the PSD of the in-loop error signal with Fourier-
frequency components up to 1.5 MHz. A large servo bump at 1.1 MHz
represents the electronic bandwidth of the lock. The power spectrum
(in dBm) was converted to a linear scale (W) and multiplied by the
measurement impedance to obtain the units of V2. This is normalized to
the resolution bandwidth of the measurement to obtain the Power Spectral
Density in units of V2/Hz. Using the transfer function, 1.14 · 10−7 V/Hz,
the PSD is converted to a noise spectral density (NSD) by dividing the
PSD by the square of the transfer function to obtain the units of Hz2/Hz.
Figure 3.12c shows the noise spectral density (NSD) of the in-loop error
signal of the PDH-locked 729 nm laser.

Two different regimes can be identified separated by the β-separation line
given by β = 8(ln 2)f/π2. Frequency components above the β-line will
contribute to the linewidth of the laser whereas frequency components

18Thorlabs EO-PM Phase Modulator EO-PM-NR-C1
19Teledyne Lecroy Wavesurfer 104MXs-B
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Fig. 3.12. a) The Pound-Drever-Hall error signal measured while scanning the
laser frequency over the cavity resonance (red). The error signal is scaled and
offset from the real value for visibility. The transmitted power behind the cavity
is shown in blue. The inset shows the error signal as a function of frequency. A
transfer function of 1.14 · 10−7 V/Hz is inferred. b)The power spectral density of
the in-loop error signal of the locked laser, obtained through a Fourier transform
of the error signal measured on a fast oscilloscope for 1 s. The largest peak
corresponds to the bandwidth of the lock at ∼ 1.1 MHz while smaller peaks are
due to the servo bandwidth of individual integrators. c) The noise spectral
density describing the real in-loop frequency fluctuations of the laser. The line
shows the β-separation line and the point where the two curves meet, around
150 Hz, is the separation frequency. The area under the curve between 1 Hz and
150 Hz determines the laser linewidth.
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below the line are too small as compared to their frequency to significantly
contribute to the linewidth20. The latter may instead add to the ’wings’
of the spectral profile. Individual peaks that appear above the separation
line at higher frequencies are then likely to cause sidebands in the line
profile. The Lorentzian linewidth ∆ν is estimated from the area under
the curve, A, by ∆ν ≈

√
8(ln 2)A. We integrated from 1 Hz to 500 Hz 21,

and a (1 s integration) linewidth of 1 kHz was inferred. A more precise
estimate of the laser line shape can be obtained by an in-depth analysis of
the NSD, taking into account all the peaks that cross the β-line at higher
frequencies using the method in Ref. [119].

With the above analysis, the laser lock can be optimized while monitor-
ing the noise spectrum of the in-loop error signal. The most important
noise contributions are those below the β-separation frequency and sacri-
fices can be made in higher frequencies in order to obtain a lower laser
linewidth. The analysis presented in Ref. [118], and used here, is only
valid as long as the laser frequency is the dominant source of voltage
fluctuations of the error signal. This is usually the case with a PDH error
signal, which is insensitive to power fluctuations to first order [116].
If there are large fluctuations in the cavity modes, e.g by thermal or
pressure effects, then the measured NSD does not describe the absolute
laser linewidth but will nevertheless serve as a useful measure of the
performance of the lock.

3.3.3 The frequency comb

While the PDH lock provides a narrow linewidth, the cavity will slowly de-
form over time and does not serve as a stable absolute frequency reference.
A frequency comb can transfer the stability of an RF or MW clock into
the optical domain by referencing its repetition rate and carrier envelope
offset (CEO) to this clock. We can therefore utilize the stability of a com-
mercial atomic clock22 to allow an absolute frequency determination on

20As apparent to by the notation, β is analogous to the modulation index of micromotion
and also the Lamb-Dicke parameter η. They describe the separation into regions where
modulations either cause broadening or sidebands on the spectral profile.

21As can be seen in Fig 3.12c, many peaks appear in the region between 100 Hz and 1.5 kHz
and the choice of integrating up to 500 Hz is somewhat arbitrary.

22Stanford Research FS725m Rubidium frequency standard
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the 10−11 level (100 s integration time). The clock can also be disciplined
to GPS time which provides one order of magnitude better long-term sta-
bility. To achieve a better stability, a laser can be referenced to a primary
or secondary frequency standard by interfering the two sources in a beat
note, or by using a frequency comb as a mediator, as described below. The
S1/2 → D5/2 transition in Ca+ has been measured to a relative accuracy
of 10−15 in an ion trap [120] and could potentially be used as a stable
reference frequency within the same experimental setup.

We measured the frequency of the PDH-locked 729 nm laser through an
optical beat note with a commercial frequency comb 23. By overlapping
both sources with matching polarization and spatial modes on a fast pho-
todiode, the optical interference between the 729 nm laser and the closest
comb tooth produces an interference signal at the difference frequency of
the two lasers. The repetition rate of the comb, Rr ≈ 250 MHz, and higher
frequency components are filtered out from the signal. After amplification,
the difference frequency is sent to a counter which is referenced to the
atomic clock.

Figure 3.13a shows a beat-note signal at 60 MHz measured by the counter
over several hours. The observed drift is 65 mHz/s or 234 Hz/hour. This
drift was also measured on the S1/2 → D5/2 transition in Ca+ as shown
in Figure 3.13b. The measurements were taken two years apart and a
discrepancy in the absolute value between the two measured drifts are
expected. As the stability of the comb teeth and the counter are both
derived from the clock, and better than 10−11 for 100s integration time,
the observed drift in the beat-note frequency of 10−7/(100s) is due to the
CW laser and reflects a drift of the cavity modes 24.

The short-term frequency fluctuations of the comb teeth are proportional
to the comb tooth number N by ∆ν ≈ N ·∆Re, such that the small fluc-
tuations of the fundamental repetition rate of ∆Re ≈ 0.02 Hz translates
into a linewidth of 300 kHz at 411.042 THz, with N ≈ 1644000. In order
to narrow the comb teeth further, the repetition rate of the comb can be
locked to the beat note with the 729 nm laser to transfer its short term
stability to the comb, while monitoring the long-term drifts using the

23Menlo Systems GmbH, M-Comb FC1500-250-WG, Carrier wavelength: 1560 nm.
24By design, the counter can not measure the drift of the repetition rate as they are

both referenced to the same clock. We therefore rely on the values specified from the
manufacturer.
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Fig. 3.13. a) The measured frequency of an optical beat note between the
PDH-locked 729 nm laser and the frequency comb referenced to the atomic clock.
A linear fit to the data (red line) shows a drift of 65 mHz/s or ∼ 230 Hz/hour. The
sign of the drift measured by the beat note depends on the detuning of the closest
comb tooth and does not necessarily correspond to the real sign of the drift. b) A
frequency drift was measured spectroscopically on the Ca+ S1/2(mJ = −1/2)→
D5/2(mJ = −5/2) transition over the course of several days. Assuming the
experimental conditions were stable this reflects a drift in the cavity. A linear fit
(red line) shows a drift of 42 mHz/s.

clock-referenced counter. The measured cavity drift can be compensated,
e.g., on the AOM leading to the cavity and any laser that is subsequently
referenced to the comb will therefore inherit the narrow linewidth of
the PDH-lock and the long-term stability of the atomic clock. Figure
3.14 shows a proposed setup for transferring the short-term stability of
a high-finesse cavity and the long-term frequency stability of an atomic
clock to a probe laser at 4.6 µm using a frequency comb.
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Fig. 3.14. A simplified schematic diagram of a proposed setup for transferring
the short-term frequency stability of a high-finesse cavity and long-term stability
of an atomic clock to the molecular probe laser at 4.6 µm. The cavity narrows the
linewidth of the 729 nm laser that is used for state manipulation in Ca+ which in
turn narrows the linewidth of the comb by locking the comb to an optical beat-
note frequency. The comb derives its long-term stability from the optical clock
and the slow drift of the cavity will be measured by the counter and compensated
on the AOM leading to the cavity. Any laser that is subsequently locked to the
comb, e.g. by sum-frequency generation (SFG), will inherit the narrow linewidth
and long-term stability of the comb.
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3.3.4 Locking and characterising a QCL using a
gas cell

Just like the atomic clock, the molecular probe laser can also be referenced
directly to a spectral line that serves as a stable frequency reference. The
slope of an absorption feature may serve as an error signal to achieve
linewidth reduction as well as long term stability. A suitable medium can
be found for many optical and mid-IR wavelengths. Figure 3.15a shows a
test setup that was used for narrowing and stabilizing a 7.9 µm QCL25 to
a gas cell of N2O.

The rovibrational lines in N2O, specifically the rotational components
fundamental branch of the symmetric stretch mode v = 0 → v′ = 1,
provide absorption features with a linewidth of ∼ 11 MHz at a pressure
of 2 mBar [121]. The FWHM point of maximum slope of a line shows a
nearly linear transfer function of 3.9× 10−9 V/Hz for locking, as shown in
Figure 3.15b. At the slope of a spectral feature, intensity fluctuations in
the laser are indistinguishable from frequency fluctuations and the laser
will be locked to both of these sources of noise.

The intensity fluctuations can be measured on a flat region of the spectrum,
away from the spectral feature, where frequency fluctuations do not cause
voltage fluctuations on the photodiode. In order to compare the measured
intensity fluctuations with the frequency fluctuations, the laser power
should be adjusted to a similar voltage level on the photodiode in both
measurements. If the PSD of the intensity noise is low compared to the
frequency noise, the linewidth can once again be estimated using the
method in Ref. [118].

In the test setup presented schematically in Figure 3.15a, two photodi-
odes26 were used in a differential measurement between two beam paths
in order to cancel the influence of intensity fluctuations on the error signal.
One beam passes through the gas cell and another is measured directly
from the source. The intensity noise therefore does not contribute to the
quality of the lock and we achieve an in-loop NSD lower than the intensity

25Alpes Lasers 7.9 µm DFB QCL
26Vigo PVI-4TE-08
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Fig. 3.15. a) The test setup for stabilizing of a quantum cascade laser to a
gas cell. Two photodiodes were used in a differential measurement in order to
cancel the influence from intensity fluctuations of the laser. The gas cell of length
100 mm contains N2O with a pressure of 2 mBar. b) The measured absorption
features in a gas cell of N2O as a function of the QCL frequency. The strongest line
has a nearly linear frequency dependence close to 0.1 V. This was used for locking
the QCL and estimating the linewidth. c) The noise spectral density (NSD) of
the locked and unlocked QCL. The power spectral density was measured by a
spectrum analyzer and converted to NSD using the transfer function obtained in
(b). A locked linewidth of 40 kHz was inferred.
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noise. The side-of-fringe error signal was sent to a PI servo and fed back
to the current controller27 of the laser.

The linewidth was again estimated by using the measured transfer func-
tion from Figure 3.15b to relate the PSD measured by spectrum analyzer28

to the Noise Spectral Density (NSD) of the in-loop error signal. Integrating
from 4 Hz to the β-crossing at 10 kHz, we obtain a (250 ms integration
time) linewidth of 40 kHz. For a narrower linewidth, a better transfer
function can be obtained through Doppler-free spectroscopy e.g. using a
saturated-absorption-spectroscopy technique [123].

3.3.5 Single-laser Raman transitions

Near-resonant Raman transitions use the proximity of an auxiliary state to
drive transitions at the difference frequency of two laser beams [124]. For
driving sub-THz transitions, such as the Zeeman, hyperfine or rotational
transitions presented in Chapter 2, these two beams can be derived from
the same source. A difference frequency is then obtained by modulating
one or both beams in an AOM or EOM as shown in Figure 3.16a. If
the laser lines are shorter than the coherence length of the laser source,
the two beams maintain phase coherence. This resembles a homodyne
interference, where common-mode frequency and phase noise cancels and
a high spectroscopic resolution can be obtained without active linewidth
stabilization. This technique has been used for sideband cooling in Ref.
[125].

Figure 3.16b shows the Zeeman transition D5/2(mJ = −3/2)→
D5/2(mJ = −5/2) in Ca+ at ∼ 7.7 MHz driven by two Raman beams
derived from our optical lattice beams at 789 nm and shifted by 8 MHz
from one another by AOMs 29. The ECDL has an intrinsic linewidth of
∼ 1 MHz (1s integration time) yet the obtained spectroscopic linewidth
is 12 kHz. Rabi flopping between the two states was preformed with a
coherence time of 250 µs (see inset). The coherence length of a laser with
a linewidth of 1 MHz and a Lorentzian line profile is L = c/(π∆f) or close
to 100 m. The limit to the measured coherence time is then most likely

27The current controller and the QCL are described in detail in Ref. [122]
28Stanford Research System SR770
29This optical setup was designed and built by G. Hegi and Z. Meir
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power fluctuations which were not stabilized in this setup. This method
therefore allows coherent state manipulations and a narrow linewidth to
be achieved without a narrow frequency reference such as a high-finesse
cavity or frequency comb.

Vibrational or electronic transitions are difficult to drive with a single laser
source as the frequency difference is typically too large for EOMs and
AOMs. A frequency comb could instead be used, as it has a wide spectrum
of different frequencies that maintain some level of phase coherence
[82].
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Fig. 3.16. a) A simplified schematic overview of the optical lattice setup for
our 789 nm state-readout laser. Two beam paths derived from the same laser
source are shifted in frequency from one another by acousto-optic modulators
(AOMs). The two beams are overlapped with the ions in the trap center, with
matching polarizations, where they interfere to form an optical lattice. The two
beam paths maintain phase coherence and can therefore also be used to measure
narrow spectral features via Raman transitions without the need for a narrow laser
linewidth. b) The measured Raman spectrum of Ca+ in the Zeeman transition
D5/2(mJ = −3/2) → D5/2(mJ = −5/2) driven by two Raman beams derived
from our optical lattice laser at 789 nm and shifted by 8 MHz from one another
by AOM’s. The obtained spectroscopic linewidth is 12 kHz. The inset shows Rabi
oscillations on the Raman transition with a coherence time of 250 µs.
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3.4 Experiment peripherals

3.4.1 Control electronics

The experiment requires fast and reproducible∼ µs pulses of several lasers
in order to preform robust, coherent manipulations on both Ca+ and N+

2 .
The 729 nm, 397 nm, 789 nm and the molecular-probe lasers all require
fast frequency switching between the pulses with precise ∼Hz frequency
control. Figure 3.17 shows a schematic overview of the pulse electronics
that is used to run a spectroscopy experiment on Ca+ with a repetition
rate of up to 1 kHz, limited by the state detection time for a single Ca+ ion
of ∼ 1 ms.

A Pulseblaster30 serves as the main pulse sequencer. It also drives two
acousto-optic modulators (AOMs), the 729 nm and 397 nm laser controls,
which have the highest requirements for fast frequency switching. An
FPGA board from National Instruments31 is used switch the AOMs that
drive the 854 nm re-pump laser and the 789 nm lattice laser on and off
based on a real-time 4-bit TTL instruction from the Pulseblaster. The
789 nm laser is driven by a home made DDS driver32 with built in am-
plitude and frequency registers. A mechanical shutter is used for extra
protection against stray light leaking through the AOM of the 789 nm
laser. The 866 nm laser remains on for most applications.

The FPGA board also acts as a counter for the short (∼ 4 ns) photon
signals from the PMT. The state detection on the S1/2 and D5/2 levels in
Ca+ takes ∼ 1 ms to discriminate between the states with a low error
rate. The power of the 729 nm laser is actively stabilized by measuring its
power during the Doppler-cooling pulse (∼ 1 ms) on a photodiode. The
photodiode signal is averaged by the FPGA which adjusts the RF power of
the 729 nm control AOM in a feed-forward servo loop.

An auxiliary pulse sequencer 33 handles pulse timings for the molecular
beam and ionization lasers for N+

2 ionization. The Ca+ ionization lasers

30PulseBlaster DDS-II-300-AWG, 50 MHz sub-ppm temperature stabilized oscillator. Mini-
mum pulse duration: 67 ns. Pulse resolution: 13 ns. Frequency resolution: 0.3 Hz

31National Instruments, PXI Multifunction I/O module, PXI-7846R
32Based on Analog Devices AD9959 chip. Built by G. Hegi.
33Quantum Composers Pulse Generator 9520
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Fig. 3.17. A block diagram over the control electronics that is used to produce
short pulses of the lasers, to drive the trap electronics and to capture the ion signals.
The blue lines refer to signals that are continually sent during an experiment
whereas the grey lines are instructions that are typically sent once in the beginning
of an experiment.

have lower timing requirements and are controlled directly from the
PC by Arduino-driven, mechanical shutters. The PC also monitors the
wavemeters34 and records the camera image from the CCD35. All the
instructions for an experiment are sent using GUI programs written in
LABVIEW 36.

3.4.2 Chamber layout

Figure 3.18 shows the layout of the trap chamber and the direction of
the lasers that pass through the trap center. All lasers are operated with
linear polarizations. The lasers are overlapped using dichroic mirrors.
The 729 nm laser is introduced along several axes for measuring the
micromotion in the radial directions.
34HighFinesse WS6-200
35Andor Luca R EMCCD
36LABVIEW National Instruments
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Fig. 3.18. A schematic layout of the vacuum chamber and the directions of the
lasers that are used in the experiment.

3.4.3 Magnetic field coils

An applied magnetic field is required in order to achieve a closed cycle
in the transitions used for sideband cooling. Two Helmholtz coils were
made with 50-pin ribbon cables with the connectors shifted by 1 pin to
form a coil. A laboratory power supply with a specified root-mean-square
jitter of < 1 mV drives the two coils 37. The resistance of each coil is 25 Ω
and the current jitter is thus expected to be below < 40 µA. A current of
0.8 A runs through each coil to produce a field of 4.6 G at the position of
the ions. The transfer function is therefore ∼ 2.9 mG/mA.

Figure 3.19 shows the frequency jitter of two transitions in Ca+ with equal
magnitude but opposite signs of magnetic susceptibility, ±2.8 kHz/mG,
measured as a function of time. Each data point takes several seconds
to obtain and higher frequency noise will therefore not contribute to
the measured fluctuations. The observed frequency fluctuations are anti-
correlated which suggests that the jitter is caused by fluctuations in
the magnetic field. The standard deviation of ∼ 2 kHz corresponds to

37Aim-TTi EL302RT
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transitions in Ca+ with opposite susceptibility to magnetic field±2.8 kHz/mG. The
anti-correlated fluctuations with a standard deviation of 2 kHz suggest magnetic
field fluctuations on the ∼ 1 mG level.

magnetic-field fluctuations of ∼ 1 mG. To produce the observed magnetic
field noise, the equivalent current noise is ∼ 0.3 mA and therefore sig-
nificantly above the specifications of the power supply. The measured
magnetic field noise may therefore be caused by stray fields in the trap
chamber rather than by the output of the power supply. As we have seen
in Chapter 2, this noise level of ∼ 1 mG will not limit the spectroscopic
resolution of clock transitions in N+

2 .

3.5 Summary

In this chapter we have presented an experimental apparatus for the
implementation of a molecular clock experiment for a single homonuclear
diatomic molecule. This implementation results in a significant experi-
mental overhead in terms of stable laser sources, i.e., many lasers are

124 Chapter 3

Building a Molecular Clock Experiment for N+
2



required as the molecule can not be cooled directly and the molecular
state can not be read out by fluorescence methods. On the other hand,
due to the beneficial field-insensitive properties of the rovibrational molec-
ular levels, the requirements for a suitable ion trap and accompanying
electronic circuits are significantly reduced as we do not require cryogenic
cooling or compensation of stray fields in the chamber. The experimental
procedure and a characterization of the new ion trap is presented in the
next chapter.
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Motional State
Dynamics of N+

2 in an
Ion Trap

4

„The nitrogen in our DNA, the calcium in
our teeth, the iron in our blood, the carbon
in our apple pies were made in the
interiors of collapsing stars. We are made
of starstuff.

— Carl Sagan

In this chapter, we describe the techniques that are used for cooling the
translational motion of N+

2 from temperatures of ∼ 1000 K to the motional
ground state of the trap with a temperature of ∼ 10 µK, a temperature
reduction spanning 8 orders of magnitude. The N+

2 ion cannot be laser
cooled without a great effort as it lacks anything resembling a closed
cycling transition [22]. We must instead use an auxiliary ion, such as Ca+,
as a coolant ion which interacts with N+

2 in the trap through the Coulomb
interaction.

The initial cooling from the temperature at ionization to the Doppler-
cooling limit of ∼ 0.5 mK using a crystal of Ca+ ions is described in
Section 4.1. A technique was developed to subsequently reduce the
number of Ca+ ions in the trap to a single ion and is described in Section
4.2. The sympathetic sideband cooling of the two ion Ca+- N+

2 string
to the motional ground state of the trap is described in Section 4.3. In
this section, we shall also present the heating rates of the ground-state-
cooled modes (Section 4.3.3) and the limits to the coherence time for
state manipulation (in Section 4.3.4).
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4.1 From ionization to the Doppler limit

The N+
2 ions are produced from a molecular beam of neutral N2 by

a [2 + 1′], three photon, resonantly enhanced multi-photon ionization
scheme (REMPI) as described in Ref. [86]. The molecular beam pro-
duces a packet of internally cold neutral N2, with rotational temperature
Trot ∼ 10 K, through a supersonic expansion into vacuum from a pulsed
valve with a backing pressure of 2 bar. After expansion into vacuum, the
molecules reach a final velocity of ∼ 780 m/s [99] corresponding to a
kinetic energy of 1300 K. This kinetic energy must be removed within
minutes of ionization for experiments to be feasible as the lifetime of N+

2 is
on the order of 5 minutes in a vacuum of 10−11 mbar. This initial cooling
step can be avoided in experiments where the molecule is produced in
the trap [22]. If the N2 is not ionized in the trap center it also acquires an
additional kinetic energy from the trap potential.

The ionization lasers and the molecular beam both overlap in the trap
center. The lasers, at 202 nm and 375 nm, are co-propagating and focused
to a diameter of ∼ 100 µm from the outside of the trap chamber. The
Rayleigh length, l = πr2

b/λ [77], therefore spans tens of millimeters and
ionization can occur with a high probability at any position in the trap
within the molecular beam. The diameter of the molecular beam at the
center of the trap is measured to be ∼ 0.6 mm, as expected by the aperture
of the last skimmer, of 0.5 mm. Therefore, there is an uncertainty in the
ionization position of up to 0.3 mm. The N+

2 loading is preformed at
the lowest possible trap frequencies, where the Ca+ ions are stable, in
order to reduce the energy that N+

2 acquires from ionizing off-axis. With a
radial frequency of ωr = 2π · 100 kHz, using Eq. 3.8, we find that loading
off-center by 300 µm radially imparts the N+

2 ion with an additional 100 K
of kinetic energy. This is small compared to the initial kinetic energy of
the molecular beam.

In order to reach the Lamb-Dicke regime, we use a string consisting of a
single Ca+ and a single N+

2 along the trap axis and cool their motional
modes to the ground state of the trap, as described in Section 4.3. Cooling
an N+

2 ion from a temperature of over 1000 K to the mK-range, where the
ion crystallizes [126], using a single Ca+ ion takes an exceedingly long
time. The trajectory of a translationally hot N+

2 ion does not necessarily
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cross the trap center to interact with the Ca+ ion and sympathetic cooling
times of up to 1 hour were observed in our setup, longer than the lifetime
of N+

2 .

In order to overcome this limitation, we start the initial cooling of N+
2 with

a crystal of 10-30 Ca+ ions in a string or a 3D Coulomb crystal. This
reduces the initial cooling time down to, typically, between 10 s and 2
minutes before the N+

2 appears in the crystal as a dark ion as seen by
the microscope image. An example is shown in Figure 4.1b. The time
constant for this initial cooling step decreases linearly with the number of
Ca+ ions in the crystal [127], at the cost of an increased uncertainty in
the number of ionized N+

2 ions. In a string of Ca+, the dark ion appears
as a hole in the string and can be detected with negligible uncertainty.
In a 3D crystal, however, the dark ion may be outside the camera plane
and is therefore hard to discern and an uncertainty is associated with
the number of ionized N+

2 ions. Once the N+
2 appears in the crystal we

successively reduce the number of Ca+ ions in the trap, until only a single
Ca+ ion remains. The technique that was developed for reduction of
Ca+ ions in the trap is described in the following section.

4.2 Reduction of Ca+ from the trap

Figure 4.1a shows the stability diagram for N+
2 and Ca+ in terms of their

a and q parameters, calculated according to Eq. 3.2. 14N+
2 has a lighter

mass than 40Ca+ and, therefore, experiences a deeper potential from the
ion trap. We may therefore reduce the trap depth to the edge of the
stability region for Ca+ with no risk of losing the N+

2 ion. At the edge of
stability, the ion trajectories are semi-stable such that loss of Ca+ from the
trap proceeds slowly and reproducibly with the time constant for the rate
of loss, Γ, within experimentally accessible values, of ∼ 1 Hz. To reach
the edge of stability, we may either lower the RF potentials to decrease
q or increase the DC potentials to increase a. All the experimental data
shown in this section was obtained using the latter method. We utilize
this effect to reduce the number of Ca+ from 10− 30 ions to a single Ca+,
as shown in Figure 4.1b.
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Fig. 4.1. a) Single-ion stability diagram. Red dots and blue diamonds represent
Ca+ and 14N+

2 respectively. The starting position corresponds to the a and q
parameters that are used for loading of Ca+ and N+

2 into the trap. By lowering
the RF amplitude or increasing the endcap voltages the Ca+ can be shifted to the
edge of the stability region (blue shaded area) while the N+

2 is well confined. b)
Fluorescence images obtained from the CCD camera showing (from top to bottom)
the initial loading of six Ca+-ions cooled to the Doppler-cooling limit, the loading
and initial cooling of a single N+

2 as apparent by the appearance of a dark ion in
the string (red circle), the reduction of the number of Ca+ achieved by increasing
the endcap voltage in two steps until a single Ca+ and a single N+

2 ion remains.
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The Ca+ ions are lost from the trap while formally inside the single-ion
stability region, i.e. the radial trap frequencies are positive and the trap
depth is larger than the initial kinetic energy of the ions. The trap depth
for 40Ca+ at a radial frequency of ωr = 2π · 100 kHz at the edge of
stability, where ion loss is observed, is > 2000 K. The physical mechanism
for ion loss is then either nonlinear resonances for Ca+ that are not
adequately described by the first-order pseudo-potential approximation
[94] or through RF heating of the ion motion to kinetic energies above
the trap depth in an evaporation process [128]. We shall characterize the
loss of ions in order to determine the loss mechanism.

4.2.1 Characterizing ion decay

The ions are moved to the edge of stability for a short time t = tred + t0,
where t0 is the time it takes to change the trap potentials and tred is
the effective time spent at the edge of stability. The potentials are then
returned to a stable region of a and q and the number of ions lost in
the reduction step is recorded by the microscope image. The ion loss
is well described by an exponential decay PN = P0e

−Γ·t where Γ is the
decay constant. Figure 4.2a shows the measured ion decay as a function
of reduction time, t, in terms of the quantity Γ · t = log(Nf/Ni) where
Ni and Nf are the number of ions before and after the reduction pulse.
Γ · t is linear in time and the ion number therefore closely resembles
an exponential decay for any duration t. In this experiment, the edge
of stability was reached by increasing the axial potentials and the large
t0 ≈ 7 s comes from the low-pass filtering properties of the DC circuit as
described in Chapter 3.

We now measure the width of this semi-stability region. Figure 4.2b
shows the measured decay rate constant, Γ, as a function of the radial
trap frequency, and thus the proximity to the edge of stability, for a fixed
reduction time constant, t. As the axial potential is increased, the radial
trap depth decreases and the decay rate, Γ, increases smoothly. This
suggests that the mechanism for loss is not nonlinear resonances which
occur for specific values of a and q with widths of ∆a/a,∆q/q ≈ 10−3

[94]. For careful Ca+ reduction we adjust the radial confinement to keep
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Fig. 4.2. a) The measured decay ratio Γ · t (unitless) of Ca+ ions from the
trap as a function of time. t0 is the time it takes to reach the final DC potentials
due to the low pass filters. The dashed line shows the linear behaviour of the
ratio with time as expected by an exponential decay, with a decay constant of
Γ = 0.21 Hz. b) The decay constant, Γ, measured as a function of the radial
confinement which is lowered by increasing the endcap voltages. The endcap
voltages that were used for the radial deconfinement were (from left to right)
VDC = 92, 91, 90, 89, 88 V. The purple line shows a quadratic fit to the data. c)
The loss ratio Nf/Ni as a function of the number of Ca+ in the trap (orange
points). The variance is proportional to the number of probed ions Ni and the
number of averaged experiments Nexp and thus the product Ni×Nexp represents
the statistical power of each measurement (blue bars). All error bars represent
the 1σ binomial uncertainties.
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the probability of loss below 0.5 in each reduction step in order to reduce
the risk of losing all the Ca+ in the reduction step.

Instabilities or heating of the ion trajectories may be dependent on the
number of ions in the trap as the Coulomb potential between ions modify
the effective potentials and hence the trajectories of the ions. We therefore
measure the decay rate, Γ, as a function of the number of ions, Ni, in the
trap. The results are presented in Figure 4.2c. The decay is independent
of the number of ions up to N = 12 and ion-ion interactions are therefore
not significantly contributing to the decay mechanism.

4.2.2 Heating mechanism

We now consider different mechanisms that can lead to motional heating
and evaporation from the trap. The observed exponential decay and high
decay rate, ∼ 1 Hz, suggests that ion loss is not due to collisions with
background gas. With a trap depth of ∼ 2000 K, collisions with a back-
ground gas of 300 K are unlikely to cause the observed evaporation as the
tail of the Boltzmann distribution is small at the trap-depth temperature.
The time between Langevin collisions in a vacuum pressure of 10−11 mBar
is expected to be ∼ 1 minute [129] and the observed time constants for
ion decay are too high to be caused by collisions. The purely exponential
decay also rules out several subsequent collisions as the source of heating
as, in this case, the temperature is expected to increase linearly with the
number of collisions and thus with time. Figure 4.3(a-d) shows the result
of four experiments preformed to test the decay rate as a function of
collisions and initial ion temperature.

Figure 4.3a shows the decay rate with the Doppler-cooling lasers, at
397 nm and 866 nm, turned on or off during the reduction step. The
decay rate is significantly slower when the cooling lasers remain on during
the reduction step. In Figure 4.3b we displace the ions from the trap center
to impart them with an initial kinetic energy between 10− 1000 K due to
micromotion. The decay rate Γ increases with the initial ion temperature.
These results suggests that the decay mechanism is indeed evaporation
from the trap due to heating.
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We test the influence of collisions on the evaporation by measuring the
decay rate with the Ca oven and molecular beam passing through the trap
center. The results are presented in Figures 4.3(c-d). The influence of
collisions with the molecular beam of ∼ 1300 K or the neutral Ca from
the oven with ∼ 600 K is not significant on the measured decay rate. This
could be either due to the low densities from both of these sources or
that the collisional heating is insignificant compared to another source of
heating.

We therefore conclude that the most likely decay mechanism at the edge of
stability is evaporation from the trap due to heating of the ions. The most
likely heating mechanism is then RF heating through the micromotion. In
order to test this hypothesis an experiment can be preformed to compare
the decay rate using different values of the RF potentials but with the same
trap depth. The radial frequencies, ωr, and thus the trap depth depend on
both the RF voltage and DC voltage and can be kept constant by increasing
both the RF potential and DC potentials to achieve a similar trap depth but
with a higher RF drive. The micromotion heating is thus separated from
other heating mechanisms and the decay rate measurement, as shown
in Figure 4.2b, will thus prove or exclude micromotion as the dominant
source of heating.
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Fig. 4.3. Four evaporation experiments preformed to test the influence of ion
temperature and collisions on the measured decay rate. a) The decay rate
constant measured with and without the Doppler-cooling lasers active during
Ca+ reduction. b) The decay rate constant measured as a function of the initial
ion energy. The energy was adjusted by shifting the ion away from the trap axis
radially into a region of high micromotion. c) The measured decay rate constant
with and without the Ca-oven (∼ 600 K) passing through the trap center during
the reduction. d) The decay rate constant with and without the molecular beam
(10 Hz repetition rate) passing through the trap center during Ca+ reduction. All
error bars represent 1σ binomial uncertainties.
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4.3 Sympathetic sideband cooling
For efficient sympathetic cooling, the molecule and the coolant ion should
be of similar masses [100]. The 40Ca+ ion serves as a suitable coolant for
14N+

2 . Here we describe the experimental implementation of sympathetic
sideband cooling from Doppler-cooling temperatures of ∼ 0.5 mK to the
ground state of the trap.

4.3.1 The N+
2 motional modes

The motional modes along the axis of a two-ion string were presented
in Section 3.1.1. Two motional modes appear along the trap axis which
are denoted the center-of-mass mode (COM) and the stretch mode (STR).
The sideband spectrum of the axial motional modes after Doppler cooling
of a two-ion Ca+- N+

2 string is presented in Figure 4.4.

The obtained frequencies are ωCOM = 725 kHz and ωSTR = 1215 kHz
for the COM and STR modes using VRF = 1000 V and VDC = 190 V in
the trap described in the previous chapter. The motional Lamb-Dicke
parameter for these modes are 0.113 and 0.088 respectively. The mean
motional occupation for the two modes are therefore n̄ = 16 and n̄ = 10
after Doppler cooling, assuming a thermal distribution.
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4.3.2 Sideband-cooling sequence

Sideband cooling can be preformed in a continuous or a pulsed mode, i.e.,
either with alternating red sideband and repump pulses (pulsed mode) or
with both lasers on at the same time (continuous mode). A combination
of both methods are typically used as the continuous cooling is faster and
avoids population trapping whereas the pulsed method can be fine-tuned
in the last stages of cooling to reduce off-resonant scattering and thus
reach a higher ground state occupation probability [130, 110]. As we
lack full control over the frequency and power of the 854 nm laser, the
pulsed method was employed. Several sideband-cooling sequences were
simulated in order to avoid population trapping, as described in Appendix
D.

A typical pulse sequence after Doppler cooling is presented in Table 4.1.
Each pulse consist of a 729 nm pulse on a red sideband followed by a short
re-pump pulse of the 854 nm laser of 5 µs. By incrementally changing the
pulse length in several steps, we avoid population trapping, as discussed
in Appendix D. The laser power is lowered in the last stages of cooling to
reduce off-resonant scattering on the carrier transition and blue sidebands.
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Step Transition Amplitude Pulse length Repetitions
No. type [Arb. units] [µs]
1 OP 0.7 16 11
2 −2ωz 0.7 20 30
3 OP 0.7 15 5
4 −2ωz 0.7 30 30
5 OP 0.7 15 5
6 −2ωz 0.7 45 30
7 OP 0.7 15 5
8 −ωz 0.7 20 30
9 OP 0.5 22 5
10 −ωz 0.5 45 30
11 OP 0.5 22 5
12 −ωz 0.5 70 30
13 OP 0.5 22 5

Tab. 4.1. A typical sequence for sideband cooling of a single axial mode of a
Ca+ or a two-ion Ca+- N+

2 string. The pulse length and amplitude are controlled
by the 729 nm control-AOM with a maximum amplitude of 1.0 corresponding
to 2W of RF power. Each pulse is followed by pulse of the 854 nm laser of 5 µs
to pump the population back to the S1/2 state via the P3/2-state. OP refers to
the optical pumping transition S1/2(mJ = +1/2) → D5/2(mJ = −3/2) which
is used to collect the population in the S1/2(mJ = −1/2) state and −ωz and
−2ωz refer to the first and second red sideband of the S1/2(mJ = −1/2) →
D5/2(mJ = −5/2) transition, respectively.

The complete sequence takes ∼ 9 ms. Shorter pulse sequences of ∼ 5 ms
have also been employed with an equally good ground-state occupation
probability but were found to be more susceptible to imperfections in
the Doppler cooling due to drifts in the frequency and power of the
Doppler-cooling lasers over the course of a day.

In the lowest motional states, the average motional occupation, n̄, can be
estimated by [91],

n̄ = pRSB
pBSB − pRSB

, (4.1)

where pRSB and pBSB are the measured intensities on the first red and
blue sidebands, respectively. This method of establishing the temperature
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Fig. 4.5. The first blue and red sidebands measured directly after sideband
cooling of (top to bottom) a single Ca+ ion, a two-ion Ca+- Ca+ string and a Ca+-
N+

2 string. The error bars represent 1σ statistical uncertainties. The blue and
red lines are fits to the experimental data fitted with Rabi sinc-functions [131].
Inset numbers are the Lamb-Dicke parameter, η, and the ground-state occupation
probability according to the estimate in Eq. (4.1). The equivalent temperatures of
the residual kinetic energies range from 8− 15 µK.

is denoted ’sideband thermometry’ in the following1. Figure 4.5 shows the
measured intensity on the red and blue sidebands after sideband cooling
of a single Ca+-ion, a two-ion Ca+- Ca+ string and a Ca+- N+

2 string.

The sympathetic sideband cooling of N+
2 proceeds with the same sequence

as the single-Ca+-ion cooling sequence, as shown in Table 4.1. The dif-
ference in the frequencies, ωCOM and ωSTR, means that the frequencies
have to be adjusted. We typically reach a ground-state occupation prob-
ability of 97 ± 2% in a mode using the sequence described above. The

1Not to be confused with Rabi sideband thermometry which uses measured Rabi oscillations
on a sideband to obtain the motional state distributions.
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kinetic energy of the ions immediately after sideband cooling is then,
Ek ≈ 1/2kBT or ∼ 10 µK. Cooling of both the COM and STR modes takes
twice as long as cooling of a single mode. However, as we shall see in the
next section, for many applications the cooling of a single axial mode is
sufficient.

4.3.3 Heating rates

The heating rate of the motional modes after sideband cooling may limit
the achievable contrast in a state detection scheme which relies on mo-
tional excitation, such as quantum-logic readout [92, 132]. The increase
in temperature may also cause thermal decoherence which limits the
number of coherent operations that can be preformed on the molecule.
Figure 4.6 shows the average motional occupation, n̄, measured through
sideband thermometry with a variable delay inserted between sideband
cooling and the temperature determination.

On the COM mode of the Ca+- N+
2 string, with an axial frequency of

725 kHz, a heating rate of 4 n/s is measured corresponding to an average
increase of 1 phonon every 250 ms. The STR mode at 1215 kHz heats
up more slowly, by 3 n/s, as expected from the approximate ω−1 scaling
law for anomalous heating [133]. This heating rate is among the lowest
absolute rates reported [134] and approximately conforms to the expected
(r0)4 scaling when compared to two mm-scale traps from Refs. [135] and
[136]. Thus, a single quantum of motional excitation may be detected
with a good contrast in a quantum-logic detection using a probe time of
100 ms, corresponding to a Fourier-limited linewidth of 10 Hz.

4.3.4 Coherence times

The decoherence of the ground-state-cooled system can be measured
by observing the population inversion or ’Rabi oscillations’ between two
states under the influence of a narrow laser source. Figure 4.7a shows
the coherent population transfer as a function of pulse length on the
S1/2(mJ = −1/2)→ D5/2(mJ = −5/2) transition in Ca+. The measured
coherence time in the single-Ca+ experiment is 1.5 ms. This coherence
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Fig. 4.6. The heating rate of the motional modes measured using sideband
thermometry with a variable delay after sideband cooling on (top to bottom) a
single Ca+-ion, a two-ion Ca+- Ca+string, a Ca+- N+

2 string. The blue data points
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rates are (top to bottom) for a single Ca+-ion, COM: 6.4 n/s, for a two-ion Ca+-
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2 string, COM: 4.0 n/s STR:
3.1 n/s.
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time is therefore not limited by the motional decoherence due to heating2.
The limit to the coherence is then either due to the magnetic-field fluc-
tuations described in Section 3.4.3 or the coherence of the laser source
as described in Section 3.3.2. Figure 4.7b shows the coherent population
transfer on the S1/2(mJ = −1/2)→ D5/2(mJ = −5/2) transition in Ca+,
in a Ca+- N+

2 string with only the COM-mode cooled to the ground state.
The measured coherence time, of ∼ 0.25 ms, is not limited by heating but
due to the initial temperature of the STR-mode. By assuming a thermal
distribution of motional states, each with a Rabi frequency given by Eq.
(D.2) in Appendix D, we find an effective ion temperature of ∼ 90 µK.

The measured coherence time is long compared to the Rabi frequencies
of rovibrational qubits, estimated as > 1 kHz in Chapter 1. Therefore
a sequence of coherent manipulations can be preformed with only the
COM mode cooled to the ground state. For precision measurements, the
observed decoherence limits the (coherent) probe time to < 0.1 ms corre-
sponding to a Fourier-limited linewidth of 10 kHz. A longer coherence
time, similar to the one shown above for a single Ca+, is obtained by
cooling both axial modes to the ground state.

2Coupling between the axial and radial modes would also manifest as a heating of the
axial modes and can therefore be ruled out as the observed source of decoherence.
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a

b

Fig. 4.7. Coherent population transfer on the S1/2(mJ = −1/2) →
D5/2(mJ = −5/2) transition in Ca+ as a function of the pulse length of the
729 nm laser. a) A single Ca+ mode at ω = 680 kHz, and η = 0.117, cooled
to the motional ground state. Blue points are experimental data and the error
bars are 1σ statistical uncertainties. The red line is a fitted sinusoid convoluted
with an exponential decay with a time constant of 1.5 ms. b) The COM mode
of a Ca+- N+

2 string with frequency ω = 725 kHz, and η = 0.113, cooled to the
motional ground state. Blue dots are the measured data and the error bars are
1σ statistical uncertainties. The red line is fitted with a thermal distribution of
convoluted Rabi frequencies for each motional state (Eq. (D.2)) with an effective
temperature 89 µK. The equivalent decay constant is 0.25 ms. Note that figures
a) and b) were measured at different laser powers.
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4.4 Summary
In this chapter we have described the trapping and sympathetic cooling of
N+

2 to the ground state of the trap. The initial cooling of the kinetic energy,
acquired from supersonic expansion in the molecular beam machine, adds
a significant amount of time to the experimental duty-cycle. To reduce the
sympathetic cooling time it is reasonable to consider mixing the neutral
N2 with a heavier seed gas in the beam machine in order to reduce its
initial kinetic energy. Alternatively, a suitable stopping field can be applied
to the trap electrodes at the time of ionization in order to decelerate the
kinetic energy of the ionized molecule using an electric field. These
improvements may eliminate the need for multiple Ca+ for sympathetic
cooling and the subsequent Ca+-evaporation sequence.

The trap described in Chapter 3 and characterized in this chapter shows
a low heating rate and a good coherence time. The sympathetic ground-
state cooling of the N+

2 is straightforward once the Doppler cooling and
sideband cooling of a single Ca+ is optimized. In the next chapter, Chapter
5, we will present a new method for the readout of the molecular state of
N+

2 .
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Non-destructive
Molecular State
Detection

5

„Stability can only be attained by inactive
matter.

— Marie Curie
nobel lecture

The methods for detecting the internal state of molecules have typically
relied on destructive action-spectroscopic techniques such as dissociation
[137, 138, 139] or chemical reactions [140, 86, 141]. Such methods are
not suitable for a single-molecule clock experiment as it would require
a constant supply of new molecules. This would slow down the experi-
mental repetition rate and therefore reduce the statistical precision of the
experiment. In this chapter, we present a new method for quantum-non-
demolition detection [142] of the molecular state. The internal state is
conserved after the measurement and the experiment can be repeated in
fast succession for an enhanced statistical precision compared to previous
destructive readout techniques [143, 100].

Non-destructive readout schemes typically rely on entanglement between
the internal molecular state and the motional state of the crystal [24,
25], e.g. by applying a state-dependent force to the molecule [144, 145].
By modulating this force at the secular frequency of the trap, motion is
excited which can subsequently be read out with high sensitivity on the
atomic ion. This type of readout has been demonstrated experimentally
with MgH+ in Ref. [144] and with CaH+ in Ref. [76]

Even in the simplest molecules, the force induced on the molecule may
be of similar strength for several internal states such that they cannot be
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distinguished from the measured motional excitation amplitude. This is
especially the case when considering hyperfine or Zeeman structure in
which the non-degenerate states couple differently to the force-generating
field. For more complex molecules, a prior knowledge of transitions
strengths may not be available and a prediction of the expected force is
therefore not possible.

The method presented in this chapter relies on the interference between
the state-dependent force on the molecule and a reference force on the
atomic ion to extract additional information about the molecular state.
In addition to the amplitude of the force exerted on the molecule, we
also obtain the phase or ’direction’ of the force, i.e. whether the internal
molecular state is low- or high-field seeking.

Using this method, we have demonstrated a number of single-molecule
experiments on N+

2 . We will show the unambiguous identification of
specific spin-rotational states in different rotational states of the molecule.
As the internal states are conserved in the measurement, this identification
also constitutes a probabilistic state preparation. We will also show the
ability to track changes in the state during chemical or scattering processes.
Further, we show a partial state readout that can be used to exclude a
large subset of states in a molecule even when the transition strengths are
unknown.

We begin, in Section 5.1, by describing the optical lattice setup which
is used for state detection. In Section 5.2, we derive and estimate the
ac-Stark shift on both the molecular and atomic ions induced by the
optical lattice. In Section 5.3, we describe the numerical and quantum
simulations of the expected N+

2 signal and present the method that is used
for phase-sensitive state detection. Finally, in Section 5.4 we present the
results of several single-molecule experiments implemented in N+

2 .
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5.1 The optical lattice
The optical lattice setup was presented schematically in Figure 3.16a in
the context of laser-stabilization methods, where the two lattice beams
were used to drive Raman transitions in Ca+. Here, we will present the
optical lattice as a useful tool for molecular quantum non-demolition
spectroscopy and state detection.

The optical lattice consists of two counter-propagating Gaussian laser
beams of wavelength λ = 789 nm, along the trap axis, each with ∼ 10 mW
of laser power and a 25 µm beam-waist radius. The two beam paths
have matching polarizations, parallel to the magnetic field. The beams
therefore form a 1D optical lattice with an intensity-modulated pattern
with a period of λ/2.

The optical lattice induces an ac-Stark shift in both the N+
2 and Ca+ ions

which exerts a force on the ions depending on their internal states. Figure
5.1 shows two vibronic components of the X2Σ+

g→A2Πu, ’Meinel’ band
of N+

2 as a function of rotational quantum number of the lower state, N .
The wavelength of the lattice beams, λ = 789 nm, is closely detuned from
the X 2Σ+

g (v = 0) → A2Π+
u (v = 2) transition of N+

2 and can therefore
be used to non-destructively detect its internal state by inducing a state-
dependent optical dipole force (ODF) on both the molecular and atomic
ions.

The resulting ODF is modulated at the trap frequency, ωz, by applying a
frequency difference, ∆f = ωz, between the two lattice beams to form
a running-wave lattice. The modulated ODF will then excite coherent
motion, |α〉, in a motional mode of the two ion string [146]. After the
ODF pulse, the internal state of the molecule is entangled with the motion
of the ions and can be read out with a high sensitivity on the atomic ion
through Rabi sideband thermometry [91].

To detect the motional excitation, Rabi oscillations are excited on a side-
band of the S1/2(mJ = −1/2)→ D5/2(mJ = −5/2) transition in Ca+ us-
ing the 729 nm laser. The frequency and contrast of the observed signal
depends on the motional-state distribution through Eq. (D.3) in Appendix
D. If no motion is excited, the ions remain in the motional ground state
and no Rabi oscillations are observed on a red sideband transition.
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Fig. 5.1. a) Wavelengths of the X2Σ+
g → A2Πu, (v = 0) → (v′ = 2) (labeled

XA(20)) and (v = 1)→ (v′ = 3) (labeled XA(31)) bands in N+
2 originating from

the rotational levels N = 0, 2, 4, 6 and 8. Several transitions are overlapping as
indicated in the legend. The dashed gray line shows the approximate position
of the lattice laser at ∼ 789 nm. b) Simplified energy-level diagram (not to
scale) of the XA(20) band of N+

2 . Solid arrows indicate the possible transitions
from a single rotational level (split into two spin-rotation components) of the
ground vibronic state. Red (blue) arrows indicates red (blue) detuning of the
lattice frequency (dashed green) with respect to the relevant transitions.
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5.2 The ac-Stark shift
The amplitude of motional excitation, |α〉, after the ODF pulse depends
on the sign and amplitude of the ac-Stark shift on both ions. The force
on the atomic ion can be adjusted by changing its internal electronic and
Zeeman state, as shown in Figure 5.2. For some applications, such as the
force-amplitude-spectroscopy presented in Section 5.4.3, a negligible ac-
Stark shift, ±|∆Ea|, is desirable on the atomic ion. This can be achieved
by shelving the Ca+ to the D5/2(mJ = −5/2) state, which has a low Stark
shift for a linear polarization parallel to the magnetic field. As we will
show in Section 5.4.1, for molecular-state determination in a complex
region of the spectrum, a weak but significant force on the atom proves
helpful for resolving the molecular states.

In the molecular ion, the sign and amplitude of the ac-Stark shift depends
on the specific rovibronic, hyperfine and Zeeman state, as shown in Figure
5.1b, and can therefore be used to distinguish between different internal
states. The sign of the shift, ±|∆Em|, also depends on the detuning from
the dominant resonance. In Figure 5.2, we show the ac-Stark shift of the
N = 0 state of the I = 0 species of the vibronic ground state near 787 nm.
As we cross the resonance with the lattice wavelength, the sign of the
induced ac-Stark shift changes and the molecule changes from low-field
seeking (red detuned) to high-field seeking (blue detuned). The force on
the Ca+ ion, derived in the next section, stays constant over this range of
wavelengths and the interference between the two forces can be used to
extract the sign of the Stark shift in N+

2 . In the following two sections, we
will estimate the shifts induced in the N+

2 and Ca+ theoretically.

5.2.1 Ac-Stark shift of N+
2

The ac-Stark shift of the molecular energies was presented in Section
2.4.2 where it was used to estimate the systematic energy shift of clock
transitions due to the trapping potentials, from blackbody radiation and
from a Mid-IR probe laser. In these estimates, the oscillating fields were
far detuned from any dipole-allowed molecular transitions. Therefore a
simplified ’rotationless’ transition moment was used in the calculation
which neglects the spin-rotational, hyperfine and Zeeman structure of
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constant in this wavelength range as there is no resonance in Ca+ nearby.
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the transitions. As the lattice laser is close to resonance with dipole-
allowed electronic transitions, we now include rotational, fine-structure
and hyperfine-structure effects in the dynamic polarizability that is used
to estimate the ac-Stark shift.

We recall the ac-Stark shift formula from Section 2.4.2,

∆Ej = −1
2αj(ω)E2

0 , (5.1)

where E0 is the electric-field amplitude of the ac electric field with fre-
quency ω and αj(ω) is the dynamic polarizability of the molecule given
by,

αj(ω) =
∑
k

|〈k|µ|j〉|2

~
ωjk

ω2 − ω2
jk

. (5.2)

The sum runs over all states, k, to which the state j can couple. In the
literature, the line strength for vibronic lines is often cited in terms of
the vibronic Einstein Ajk coefficients. The Einstein A coefficients for an
electric dipole allowed transition is [70],

AE1
jk =

ω3
jk

3πε0~c3
SE1
jk . (5.3)

The dynamic polarizability can therefore be rewritten as,

αj(ω) =
∑
k

3πε0c
3

ω2
jk(ω2 − ω2

jk)cjkA
vib.
jk . (5.4)

Here, we have once again separated the transition strength, SE1
jk , into a

’radial’ rotationless moment, Avib.
jk , and an angular ’Hönl-London’ factor,

cjk, as shown in Section 2.2. For the radial part of the transition moment
we use the rotationless Einstein coefficients for vibronic transitions in the
Meinel-band from Ref. [147]. The angular transition frequencies, ωjk,
are taken from Ref. [63]. The angular matrix elements, cjk, are derived
in Appendix B.5 by treating the lower X2Σ+

g state in a Hund’s case (bβJ
)
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basis and the upper state, A2Πu, in a Hund’s case (aβJ
) basis. The derived

matrix elements are given by Eq. (B.37) as,

cjk = (2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)(2N + 1)

×
(

F ′ 1 F

−M ′F 0 MF

)2{
J F I

F ′ J 1

}2(
J ′ 1 J

−Ω′ 1 Ω

)2

×
[(
J 1/2 N

Ω 1/2 0

)
+
(
J 1/2 N

Ω −1/2 0

)]2

. (5.5)

An additional off-resonant contribution to the ac-Stark shift comes from
the core electrons in N+

2 . The core polarizability is nearly the same for both
upper and lower states and therefore cancels in the measured transition
frequency. It will, however, add to the ac-Stark shift induced by the lattice
lasers on the molecule and must therefore be included in the calculation.
This contribution was estimated by P. Straňák using Gaussian 09 [148],
as the polarizability of the doubly charged species N2+

2 . The calculated
polarizability was found to be αN+

2 ,core ≈ αN2+
2 = 7.23 a.u. corresponding

to an ac-Stark shift of -390 Hz with our optical lattice parameters.

Figure 5.3 shows the calculated ac-Stark shift of rotational states,
N = 0, 2, 4, 6, 8, in the vibrational ground state of the X2Σ+

g -state near
789 nm. The thicker lines show the components of the I = 0 state and
the thinner lines of the I = 2 state. With this figure, we wish to show that
even in a relatively simple diatomic molecule such as N+

2 , the presence
of vibrational, rotational, fine-structure, hyperfine-structure and Zeeman
terms in the Hamiltonian give rise to a beautiful complexity in the ac-Stark
shift spectrum which makes distinguishing different rotational states using
the ODF a challenging task.
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Fig. 5.3. Theoretically determined ac-Stark shift of N+
2 on the XA(20) band in
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Q(J), P(J) and R(J) transitions are indicated above each resonance. Bold lines
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hyperfine structure. The magnetic field is here assumed small but finite such that
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of the resonances.

5.2.2 Ac-Stark shift of Ca+

The ac-Stark shift in Ca+ is estimated in the same manner as in N+
2 , by

summing over all levels, k, to which the level j couples using Equations
(5.1) and (5.2). The radial transition moments are once again obtained
as the ’reduced’ matrix elements from the Einstein coefficients Ajk. The
polarizability, αj(ω), is then,

αj(ω) = −
∑
k

3πε0c
3

ω2
jk(ω2

jk − ω2)Ajkcjk. (5.6)

The angular factor, cjk, is given by the Wigner-Eckart theorem as [93],

cjk = (2Jk + 1)

∣∣∣∣∣
1∑

p=−1

(
Jk 1 Jj
−mk p mj

)
c̄(q)ε̄

∣∣∣∣∣
2

. (5.7)

Here, we have included the degeneracy of the state k as gk = (2Jk + 1) in
the angular factor. The coefficients c̄(q) are the normalized basis functions
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of a first order spherical tensor defined in Eq. (2.45). The laser polar-
ization vector, ε̄, is defined in the space-fixed frame of reference where
ε̄ = (0, 0, 1) corresponds to the p = 0 component of the polarization and
couples ∆m = 0 states.

We use the transition frequencies and oscillator strengths from Ref. [149].
By the above equation, we find that the (4s) 2S1/2 state of Ca+ has
αS(ω) = 97.5 a.u. for a lattice with linear polarization, parallel to the
magnetic field, at ∼ 789.0 nm. This corresponds to a shift of −5.4 kHz
with our lattice parameters.

With linear polarization parallel to the magnetic field, theD5/2(mJ = −5/2)
state of Ca+ does not interact with the P3/2 states since ∆m = 0 transi-
tions are not possible. This state therefore only interacts with higher-lying
electronic states. We sum up the contributions from higher-lying states,
(nf), up to n = 10 to obtain ∆Ea = −0.2 kHz, −2.8 kHz, and −3.0 kHz in
the D5/2(mJ = −5/2), D5/2(mJ = −3/2) and D5/2(mJ = −1/2) levels
respectively, as shown in Figure 5.2.

The core contribution of Ca+ is nearly the same in both electronic states,
S1/2 and D5/2, and does not contribute to the spectroscopically measured
shift. It does, however, add to the ODF from the lattice and can not be
neglected when compared to the small shift in the D5/2(mJ = −5/2)
state. The core polarization is αS,core = 3.134 a.u. [149] corresponding to
−405 Hz for our lattice parameters.

The ac-Stark shift induced by the lattice lasers are readily measured on the
Ca+ spectroscopically as exemplified in Figure 5.4a. We employ electron-
shelving spectroscopy with and without a single lattice beam on during
the shelving pulse. From these measurements, the intensity of the lattice
laser is calibrated.

The polarization dependence of the ac-Stark shift can also be measured
experimentally. In Figure 5.4b, we compare the ratio of ac-Stark shifts,
∆Ei/∆Ej , between several transition frequencies in the S1/2 → D5/2
manifold for different lattice polarizations. The ratio of two ac-Stark
shifts is free from the influence of the laser power. We see that the states
involving D5/2(mJ = −5/2) show a discrepancy with the theoretical
predictions of up to 15% while the other states agree well with the theory.
This discrepancy may be due to spurious polarization of the lattice beams.
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For the internal state detection of N+
2 , we preform calibration experiments

in the S1/2(mJ = −1/2)-state and measure the shifts on Ca+ directly. The
observed discrepancy therefore does not impact the N+

2 state detection.
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Fig. 5.4. a) The ac-Stark shift of Ca+ measured by electron-shelving spec-
troscopy under the influence of the lattice lasers on the S1/2(m = −1/2) →
D5/2(m = −5/2)(SH1, yellow and green) and S1/2(m = 1/2)→D5/2(m = 5/2)
(SH1, blue and red) transitions. The measured shift was obtained with both lattice
beams at full power, ∼ 15 mW per beam, and corresponds to the combined shift in
both the lower and upper states of the transition. b) The ratio of the ac-Stark shift
between three transitions in Ca+ (dots, see legend) compared to the theoretical
prediction (lines) as a function of linear lattice polarization, θ. The polarization
θ = 0 corresponds to linear polarization parallel to the magnetic field. The error
bars represent the 1σ statistical uncertainties.
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5.3 Motional excitation by the optical
lattice

We now consider the effect of the ac-Stark shifts, modulated on resonance
with one of the motional modes, on the motional excitation amplitude of
the two-ion Ca+- N+

2 -string. A two-ion crystal exhibits two normal modes
along the trap axis, as described in Section 3.1.1. Here we will consider
the influence of the ODF modulated on resonance with the ground-state
cooled COM mode, with frequency ωz.

The running-wave optical lattice leads to a modulated ac-Stark shift on
each ion given by [150],

∆Ei = 2∆E0
i

(
1 + cos(2kqi −∆ωt+ φ0

i )
)
, (5.8)

where ∆E0
i is the ac-Stark shift induced by a single lattice beam on the

ion with index i. ∆ω is the angular modulation frequency of the lattice
and k = 2π/λ is the lattice-laser wavenumber. The phase, φ0

i = 2kx0
i ,

depends on both the equilibrium positions of the ions and the sign of the
ac-Stark shift, ±|∆E0

i |. The sign of the ac-Stark shift, in turn, depends on
the detuning of the lattice-laser frequency from the dominant resonance
at the lattice-laser wavelength, λ ≈ 789 nm.

The relative phase of the lattice intensity gradient experienced by the
two ions can be tuned continuously by changing the two-ion equilibrium
distance, d, in the trap. If the distance between the ions corresponds to an
integer number of lattice sites, d = nλ/2, the phase between the two ions,
φ0

2−φ0
1 = 2πn, is such that the intensity gradient has the same phase (SP)

for both ions. If the two-ion distance corresponds to d = nλ/2 + λ/4 then
the particles experience opposite phases (OP) of the intensity gradient of
the lattice.

We can estimate the force acting on both the atomic and molecular ions
by expanding Eq. 5.8 in a Taylor series around the equilibrium positions,
q, and taking the gradient of the ac-Stark shift potential,

d∆Ei
dqi

= Fi ≈ −4k∆E0
i sin(∆ωt− φ0

i ). (5.9)
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In this approximation, the lattice exerts an oscillating spatially homoge-
neous force with an amplitude Fi = 4k∆E0

i on ion i. In the case of a
single ion, this force will cause coherent excitation of motion in the trap.
The impact of such a force applied to both ions will be simulated in the
next section.

5.3.1 Numerical simulation of the motional
excitation

In order to estimate the motional excitation amplitude of the two-ion
crystal due to the modulated ODF, including higher-order effects which
couple different motional modes, we preform a classical simulation of
the two-ion system in 1D1. We solve the equations of motion for the two
ions under the influence of a harmonic trapping potential, their mutual
Coulomb repulsion and the ODF on each ion.

The trap potential is approximated as a harmonic potential with a ’spring
constant’ k0 = ω2

imi which is readily measured on a single ion. By mea-
suring the the axial frequency of a single Ca+ ion we find ωi =

√
k0/mi

≈ 642 kHz and thus k0 ≈ 1× 10−12 N/m. The mutual Coulomb repulsion
between two singly charged ions is Fc = −e2/(4πε0r

2
12), where r12 is

the instantaneous distance between the two ions and e is the elementary
charge. The force due to the optical lattice is given by Eq. (5.9).

The equations of motion to be solved for two ions are then given by four
ordinary differential equations,

ẋi = vi

miv̇i = −k0xi + (−1)i e2

4πε0r2
12
− 4k∆Ei sin(ωit+ φ). (5.10)

These equations are solved using the numerical RK4 method [151] with
a time step of ∼ 1 ns. The ions start near their equilibrium positions,
x0
i = ±

(
e2/(4πε0k04)

)1/3
, in the trap ground state, v0

i = 0, with the
trapping potentials obtained on a single Ca+ ion from the experiment

1The simulation was implemented in MATLAB [60] by Ziv Meir.
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Fig. 5.5. The simulated motional energy of a two-ion Ca+- N+
2 -string after a 3 ms

long ODF pulse modulated at the COM (circles) and STR (squares) frequencies
as a function of the single Ca+ ion trap frequency. Green and orange points
correspond to an ac-Stark shift of +1 kHz on both ions and blue and purple points
represent the case where the ions have opposite signs of the stark shift ±1 kHz.
The excitation energy (in mK) depends on the two-ion distance in the trap as well
as their relative sign of the ac-Stark shift. The SP and OP frequencies (indicated
by the dashed grey lines) represent the limiting cases where the forces on both
ions are in phase and π-shifted respectively.

of ωz = 641 kHz. The initial phase, φ, is randomized in the beginning
of each simulation. We record the total ion energies as a function of
time for a total ODF pulse of t = 3 ms. In Figure 5.5, we present the
simulated energy of the COM and STR modes as a function of axial trap
frequency and hence of the two-ion separation. Stark shifts of equal
magnitude, ±1 kHz, are applied to both ions with both equal (orange and
green points) and opposite signs (blue and purple points) with a lattice
frequency difference matching the COM mode, ∆f = ωCOM (circles),
and the STR mode, ∆f = ωSTR (squares).

When the two ions have equal detuning and magnitude of the ac-Stark
shift, −|∆Ea| = −|∆Em|, there is a cancellation of the forces at 620 kHz
corresponding to the two-ion distance where the ions experience opposite
phases (OP) of the optical lattice. In this configuration, the STR-mode
is instead excited. At 645 kHz, the ions experience the same phase (SP)
of the optical lattice and the forces interfere constructively to enhance
the excitation of the COM mode. The opposite is true in the case of
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Fig. 5.6. Four possible configurations (SPR/B, OPR/B) of the lattice containing
the atomic ion (AI, blue circle) and the molecular ion (MI, orange circles). The
direction of the force on the MI (AI) (Fm(a)) depends on the frequency detuning
±|∆m(a)| of the lattice laser beams from resonance and the relative positions of
the particles in the lattice field. The AI and the MI have either the same signs of
detuning (top) or opposite signs (bottom). For a MI at positions SPR and SPB in
the lattice, the distance between the two ions is such that they experience the
same phase (SP), while at positions OPR and OPB the ions experience opposite
phases (OP) of the lattice intensity gradient.

opposite detuning, −|∆Ea| = +|∆Em|, where the heating of the COM
mode is enhanced in the OP configuration and nearly cancels in the SP
configuration. These four scenarios are illustrated schematically in Figure
5.6. We therefore find constructive or destructive interference between
the forces on both ions to form an effective force which depends on
the detuning with respect to the dominant resonance of the ions and
their axial distance. By measuring both SP and OP configurations, we
may therefore obtain both the amplitude and phase of the force on the
molecular ion if the force on the atomic ion is known.
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In this simulation, by assuming harmonic trapping potentials and perfect
ground-state occupation of both motional modes, the resulting motional-
state distribution after the ODF resembles a coherent state. However, due
to experimental imperfections, such as imperfect ground-state cooling,
spurious lattice polarizations or anharmonic potentials, the shape of the
motional-state distribution is not assumed in the data analysis and we
instead calibrate the forces directly in a ’quantum simulation’ experiment
described in the next section.

5.3.2 ’Quantum simulation’ using N2H+

The state detection of N+
2 relies on the accurate determination of the

final motional ’Fock state’ distribution by Rabi sideband thermometry on
a red sideband of the S1/2 (mJ = −1/2) →D5/2 (mJ = −5/2) transition
in Ca+, or equivalently, when preforming the experiment in the D5/2
state, on a blue sideband of the D5/2 (mJ = −5/2) → S1/2 (mJ = −1/2)
transition. As we have seen in Appendix D, the sideband transitions are
sensitive to the motional state distribution of the crystal. If no excitation
occurred during the ODF pulse, the COM mode remains in the motional
ground state and no Rabi oscillations are observed on a red sideband
transition. In order to relate the observed Rabi-oscillations to the ac-Stark
shift experienced by the molecular ion, we simulate the expected signal
on a two-ion Ca+ - N2H+ string with a well defined ac-Stark shift applied
on the Ca+ ion. In this manner, we may associate an oscillation signal
with a well-determined shift which includes contributions from many
experimental imperfections which are not captured by the numerical
simulation presented in the previous section.

The ac-Stark shift is determined experimentally by electron-shelving spec-
troscopy on the S1/2 (mJ = −1/2)→ D5/2 (mJ = −5/2) transition, as de-
scribed in Section 5.2.2, and the shift is varied by changing the power of
the lattice laser. As the simulations are preformed in the S1/2 (mJ = −1/2)
state, the contribution to the measured shift from the D5/2 (mJ = −5/2)
state is subtracted. For example, with a lattice power of ∼ 10 mW
per beam, the measured Stark shift from a single lattice beam on the
S1/2 (mJ = −1/2)→ D5/2 (mJ = −5/2) transition is ∼ 5 kHz. The theo-
retical contribution from the D5/2 (mJ = −5/2) state amounts to a shift
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of −405 Hz (see Figure 5.2) and we find the shift of the S1/2 (mJ = −1/2)
state to be −5.4 kHz.

Lattice-excitation simulations were performed with six different laser
powers, corresponding to ac-Stark shifts between 0.8− 4.6 kHz, in which
the ODF was applied for 3 ms and a Rabi-oscillation signal was obtained
for each ac-Stark shift as presented in Figure 5.7. To fit an arbitrary shift
between these simulated points, a fitting-function was impemented to
interpolate between the calibration points.

First, the Rabi-oscillations are each fitted with three parameters in the
Rabi-oscillation formula from Eq. (D.4) assuming a coherent distribution
of motional states, Pn(α), with an additional source of decoherence. The
three fit parameters correspond to the average motional occupation of a
coherent state, 〈n〉, the detuning from resonance, δ, and an additional de-
coherence mechanism characterized by the time constant T2. While these
parameters have physical meaning, we treat them phenomenologically as
a way to interpolate between the measured calibration points.

A global fitting-function was constructed to interpolate between the fit-
ted values of these three parameters for any Stark shift, ∆E, by fitting
linear (T2 and δ) and quadratic (〈n〉) functions to the calibrated points
as presented in Figure 5.8. An arbitrary Rabi-oscillation curve can then
be reconstructed using Eq. (D.4) for any value of ∆E by interpolating
between these three parameters.

An N2H+ was used in the calibration as it is far detuned from any reso-
nance at λ = 789 nm and therefore only experiences a small force from
the lattice. It also benefits from a longer lifetime in our trap of ∼ 1 hour
compared to ∼ 5 minutes for N+

2 . The residual contribution of N2H+

to the effective force was included through an iterative calibration as
described below. The mass difference of 1 u between N2H+ and N+

2 only
amounts to a small correction (< 2%) to the calibration compared to
other experimental errors

As the ac-Stark shift on N2H+, ∆EN2H+ is expected to be small compared
to the shift on Ca+ in the S1/2(m = −1/2) state, it was neglected to first
order. This zero-order fit function, obtained from the calibration described
above, was used to measure the ac-Stark shift of N2H+ from an SP/OP
measurement as the difference between the SP and OP configurations
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Fig. 5.7. Calibration measurements: a) Rabi-oscillation data from a two-ion Ca+

- N2H+ string with six different ac-Stark shifts applied to Ca+. The Ca+ ion was
prepared in the S1/2(m = −1/2) state. The contribution of N2H+ to the excitation
signal is corrected iteratively (see text). The legend shows the second-iteration
results for the ac-Stark shift including the contribution from N2H+. Error bars
represent 1σ binomial uncertainties. b) The coherent state populations that were
fitted to the calibration data presented in a) as a function of motional state n. The
fitted motional state distributions are used to interpolate between the calibration
points.
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Fig. 5.8. Three parameters fitted to the calibration points from Figure 5.7 as
a function of the ac-Stark shifts applied to a two-ion Ca+- N2H+-string. These
functions are used to interpolate between the calibration points. a) The fitted
values of the average motional state occupation, 〈n〉, for a coherent state after
an ODF of 3 ms. A second order polynomial (blue line) was fitted to the data.
b) The fitted values of the decoherence time, T2, of an exponential decay. A first
order polynomial (orange line) was fitted to the data. c) The fitted values of the
detuning of the 729 nm laser from resonance, δ, on the first red sideband of the
S1/2 (m = −1/2)→D5/2 (m = −5/2) transition. A first-order polynomial (purple
line) was used to fit the data. All error bars represent 1σ confidence intervals of
the fits to the Rabi-oscillation data.

164 Chapter 5

Non-destructive Molecular State Detection



(see e.g. Figure 5.9). An approximate shift of ∆EN2H+ = −0.81 kHz was
obtained which corresponds to ∼ 15.8% of ∆ECa+ = 5.41 kHz for the
same laser power. As the SP configuration was observed to be stronger
than the OP configuration, the shift on the N2H+ is negative, like the shift
in Ca+, and the forces interfere constructively. This shift was then added
to the calibration data for a more realistic calibration which includes the
total shift from both Ca+ and N2H+ interfering constructively to excite
the COM mode.

This procedure was iterated for a first-order estimate of the ac-Stark shift
of N2H+. The first iteration changes the measured shift to ∆EN2H+

= −0.93 kHz corresponding to ∼ 18.1% of ∆ECa+ . The second iteration
yields ∆EN2H+ = −0.99 kHz corresponding to ∼ 18.5% of ∆ECa+ . Any
residual error in the fitting function after the second iteration was there-
fore neglected. In Figure 5.7a, we present the results of the calibration
experiments including the effect of N2H+ excitation. We also present the
coherent-state distributions that were fitted to these calibration data for
illustrative purposes in Figure 5.7b.

5.3.3 Example signal

For determination of the internal molecular state, the force on the atomic
ion is chosen such that it is small but not negligible. After sympathetic
ground-state cooling of the COM mode of the Ca+- N+

2 -string, the lat-
tice lasers are turned on for a pulse duration of 3 ms and the motional
excitation is subsequently read out on Ca+ as described in the previous
section. As the internal state of the molecule is undisturbed by the de-
tection scheme, the process of sideband cooling, ODF pulse and state
detection can be repeated until sufficient statistics are obtained so that
the Rabi oscillations can be fitted.

The measurement of a Rabi-oscillation signal does not by itself yield in-
formation about the sign of the detuning, since the ac-Stark shift varies
greatly between different states, as was shown in Figure 5.3, such that a
priori the strength of the signal cannot be predicted. In order to disentan-
gle the strength and sign of the ac-Stark shift, the Rabi-oscillation signal
is taken twice with two different two-ion distances. Once with an ion
distance of d = nλ/2 where n = 19 and λ ≈ 789 nm corresponding to the
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SP configuration (fSP
IP = 695 kHz) and once with the ion distance shifted

by ∆d = +λ/4 corresponding to the OP configuration (fOP
IP = 668 kHz).

The configuration is changed by adjusting the voltages on the ion trap
endcap electrodes between ∼ 180 V and ∼ 160 V for the SP and OP
configurations, respectively.

Figure 5.9 shows two different molecular states of N+
2 measured using this

method. The sideband pulse duration, t729, was scanned and averaged 20
times for each data point to retrieve two Rabi-oscillation signals in each
experiment, one for the SP (blue) and the other one for the OP (purple)
configurations.

In Figure 5.9a, the frequency and contrast of the Rabi signals are higher
for the SP configuration compared to the OP configuration implying that
the motional excitation, and thus the effective ODF, is stronger for the SP
configuration. This indicates that the detuning of the lattice frequency
from a molecular resonance is the same as in Ca+, i.e., red detuned.
The resulting Rabi oscillations were fitted to extract the amplitude of the
ac-Stark shift. By comparing the obtained ac-Stark shift and phase to the
theory presented in Section 5.2.1, the molecular state was unambiguously
identified as N = 6, J = 11/2.

In Figure 5.9b, the opposite situation occurred for the same settings of the
lattice-laser beams. Here, the observed frequency and contrast of the Rabi
signals are higher in the OP configuration. This implies that the lattice
frequency is oppositely detuned compared to the Ca+ from the closest
molecular resonance, i.e., blue detuned. In Section 5.4.5 we show how,
based on this observation, without knowledge of the ac-Stark shifts in the
molecule, all molecular states with N ≤ 4 can be excluded.
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Fig. 5.9. Rabi thermometry on a Ca+- N+
2 two-ion string. Rabi oscillation signals

for the SP (blue) and OP (purple) lattice configurations after an ODF pulse for
two different molecular states (panel (a) and panel (b)). Each data point is an
average of 20 ODF excitations. Error bars represent 1σ binomial uncertainties.
The solid curves represent fits to the data as described in Section 5.3.3 from which
the ac-Stark shifts were extracted. a) The stronger SP signal (larger frequency and
amplitude of the Rabi oscillation) suggest that the lattice laser (λ = 789.71 nm,
in both experiments) was red detuned from the closest molecular transition. By
comparing the measured amplitude and sign of the ac-Stark shift with theory,
the molecular state could unambiguously be be identified as N = 6, J = 11/2.
b) The stronger OP signal suggests that the lattice laser was blue detuned from
the closest molecular transition. Therefore, all rotational states N ≤ 4 can be
excluded as described in Section 5.4.5
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5.4 Single-molecule experiments

In this section, we present the results of several proof-of-principle exper-
iments with N+

2 using the detection method described in the previous
sections. We shall prove the usefulness of this method for determining
the internal state of the molecule out of hundreds of possible states, and
the ability to measure dipole-allowed transitions, both while preserving
the original state. We shall also show the ability to trace state-sensitive
reaction and scattering events in a single molecule. Finally we present a
scheme to simultaneously exclude hundreds of initial states in a partial
state-determination scheme.

5.4.1 Identifying molecular states

The phase-sensitive detection scheme, described in Section 5.3, is useful
for positively identifying molecular states out of several possible initial
states. The additional information that is gained by extracting the phase
of the ODF in addition to its magnitude allows us to distinguish between
states of the same magnitude, but opposite sign of the ac-Stark shift. This
scenario is typical for different rotational states where the ac-Stark shifts
of a given rotational state, N , show a broad range of values for different
hyperfine and Zeeman components whereas the detuning from a reso-
nance remains the same2. The different rotational states are then readily
distinguished using the sign of the shift instead of the magnitude.

This method was used to identify specific spin-rotation, hyperfine and
Zeeman levels in the electronic and vibrational ground state of N+

2 as
presented in Figure 5.10. In these experiments, the N+

2 ion was generated
primarily in rotational states with N ≤ 8 in the vibronic ground state by
a rotationally unselective photoionization scheme. In each experiment,
the molecule was therefore initialized in one of 540 possible hyperfine
Zeeman states.

2In order to keep the scattering rate from the lattice lasers low we typically work with
detunings > 10 GHz which is large compared to the typical hyperfine splitting of
∼ 100 MHz in N+

2 .
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Using the phase-sensitive detection method, the rotational and fine-
structure states of molecules after ionization were successfully identified.
A few illustrative data points are presented in Figure 5.10 overlaid with
the theoretical ac-Stark shift. Near 789 nm, the detection is sensitive to ini-
tial states in the N = 4, J = 7/2 spin-rotation manifold which experience
a significant ac-Stark shift through the Q12(7/2) transition at 788.624 nm.
In these states, the lattice laser is red detuned (higher wavelength) with
respect to the resonance. At the same wavelength, the detection is also
sensitive to initial states in the N = 6, J = 11/2 spin-rotation manifold.
These states experience a significant ac-Stark shift from the Q12(11/2)
transition at 789.1872 nm where the lattice laser is blue detuned (lower
wavelength) with respect to the resonance. At this lattice wavelength,
other rotational states, N = 0, 2, 8, are further detuned and therefore not
distinguishable.

For the experiments labelled 1-3 in Figure 5.10, the measured shift was
large enough to determine whether the molecule was in the N = 6,
J = 11/2 or the N = 4, J = 7/2 spin-rotational states. The additional
information gained by the sign of the ac-Stark shift enables us to distin-
guish between these two spin-rotation manifolds (blue and red triangles
respectively). The black square represents an experiment in which the
sign information is missing and, therefore, an unambiguous identification
of the molecular rotational state is not possible. In many experiments,
the signal was very low, indicating that the state of the molecule was
indistinguishable at this lattice-laser wavelength, as exemplified by the
red triangles in the bottom of Figure 5.10. The possible Zeeman and
Hyperfine components of the detected internal state in the experiments
labelled 1-4 are presented in Table 5.1.

5.4.2 State preparation

The initialization of the molecule into a specific internal state which
interacts with a probe laser is key to a useful clock experiment preformed
on a single ion. In the single-molecule experiments demonstrated on polar
molecules, this initialization was aided by a reshuffling of the internal
states due to coupling with black-body radiation (BBR) [152, 144, 76].
As we have seen in Section 2.4.2, in homonuclear diatomic molecules
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Fig. 5.10. Molecular state identification. Absolute magnitude of the ac-Stark
shifts (left ordinate) and the molecular dynamic polarizability (right ordinate)
for molecules in the N = 4, 6, 8 rotational states (red, blue and green lines) at a
lattice-laser wavelength around 789 nm. Thick lines correspond to the ac-Stark
shift of Zeeman components of the I = 0 nuclear-spin isomer without hyperfine
structure (labeled by their magnetic quantum numbers MJ on top of the figure)
while thin lines correspond to the hyperfine Zeeman components of the I = 2
state. Blue (red) triangles represent experiments in which the measured ac-Stark
shifts were stronger in the OP (SP) configuration corresponding to a lattice blue
(red) detuned from the transition. The black square represents an experiment
without the phase information. Error bars are the combined 1σ uncertainties of
the fit to the data and the uncertainty of the lattice laser power (∼ 10%). The
ac-Stark shifts originating from the N = 0, 2 rotational levels are lower than the
ones for the N = 8 state in this wavelength range and were omitted for clarity.
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Experiment No. Agreement N J I F MJ/F

1 < 1σ 4 7/2 0 ±7/2
2 11/2 ±11/2
2 9/2 ±9/2

< 2σ 2 11/2 ±9/2
2 7/2 ±7/2
2 3/2 ±3/2

2 < 1σ 6 11/2 2 13/2 ±13/2
2 11/2 ±11/2
2 7/2 ±7/2

< 2σ 0 ±11/2
2 15/2 ±15/2
2 9/2 ±9/2

3 < 1σ 6 11/2 2 15/2 ±11/2
2 9/2 ±7/2

< 2σ 2 11/2 ±9/2
4 < 1σ 4 7/2 2 11/2 ±9/2

2 9/2 ±7/2
2 7/2 ±7/2
2 5/2 ±5/2
2 3/2 ±3/2

8 17/2 0 ±17/2
2 21/2 ±21/2
2 19/2 ±19/2
2 17/2 ±17/2
2 15/2 ±15/2
0 13/2 ±13/2

Tab. 5.1. Molecular state identification. The numbers in the first column corre-
spond to the labels shown in Figure 5.10. The second column indicates the level
of agreement between experiment and theory for the given state (for experiment
4, only states within 1σ agreement are given; an additional 20×2 states within
2σ agreement are omitted). N , J , I, F and MJ/F stand for the rotational, spin-
rotational, nuclear-spin, hyperfine and magnetic quantum numbers of N+

2 in the
electronic and vibrational ground state.
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such as N+
2 the rovibrational states are largely unaffected by BBR and

alternative methods of state preparation are required [86].

The state determination presented in the previous section also constitutes
a probabilistic preparation of specific hyperfine and Zeeman levels. As the
internal state of the molecule is detected non-destructively, the molecule is
automatically initialized in the detected state. Any molecule which is not
in the desired state may then be discarded. Alternatively, the molecular
states can be reshuffled by additional Raman, RF or microwave fields to
mix different states in, e.g., the v = 0 manifold. The ODF detection will
then project the molecule into one of the coupled states and by repeating
the process of mixing and ODF detection, the desired state will be found
eventually and the molecule is initialized.

5.4.3 Molecular dipole-allowed spectroscopy

The strength of the ODF depends on the detuning of the lattice laser from
a resonance in the dipole-allowed spectrum, as shown in Figure 5.3. The
wavelength of the lattice laser can therefore be scanned while measuring
the strength of the Rabi-oscillation signal after the ODF pulse to measure
the spectral lines. As the molecular state is unperturbed by the lattice
laser, the signal can be obtained to the desired statistical precision limited
by the state or chemical lifetime of the molecule 3.

In Ref. [145], we used the ODF detection scheme without the sign infor-
mation to preform spectroscopy on the R11(1/2) line of the X2Σ+

g (v = 0)
→ A2Πu(v = 2) transition from the rotational ground state 4. The internal
state of the molecule was prepared by rotationally selective ionization in
the N = 0 state where the difference in the ac-Stark shift and detuning
between different Zeeman and Hyperfine states can be neglected. The
lattice detuning was chosen such that the N = 0 state could be detected
with > 99% fidelity. The wavelength was tuned across the resonance and
a center frequency of f0 = 380.7011(2) THz was inferred.

3Close to resonance the scattering lifetime due to the state-readout laser will be shorter
and may limit the achievable spectral resolution. An alternative spectroscopic signal
can then be obtained by measuring the average scattering lifetime as a function of the
wavelength of the lattice laser.

4The main authors of this work are Mudit Sinhal and Ziv Meir.
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5.4.4 Tracing reactions and inelastic scattering
events

Another useful application of the phase-sensitive state detection method is
to trace state-sensitive chemical reactions and scattering events on the sin-
gle molecule level. As we have seen in Section 5.4.1, the phase-detection
method can distinguish many initial states in a single measurement. A
reaction experiment can therefore be simultaneously sensitive to several
initial states at once. With a carefully chosen lattice wavelength, the final
states can also, in principle, be determined. This allows state-to-state
sensitive single-molecule reactions at ultra-cold temperatures.

As an example, we implement a reaction experiment to observe an
N+

2 molecule in a determined state react with H2 background gas to form
N2H+. The result of such an experiment is presented in Figure 5.11a-b.
An N+

2 molecule was identified in the N = 4, J = 7/2 spin-rotational
state. The molecule reacted with background gas and turned into N2H+.
The change of the Rabi-oscillation signal indicated a possible change of
the chemical composition of the molecule which was then verified by mass
spectrometry. In order to obtain the ac-Stark shift from the product, N2H+,
the frequency difference between the lattice beams, ∆f , was adjusted to
match the new COM frequency fSP

COM(N2H
+) = 690 kHz.

The energy-level structure of N2H+ is not sufficiently well known to
identify the molecular quantum state in the reaction product. However,
the phase information indicates that the lattice beams were red detuned
from the dominant resonance. This experiment exemplifies the possibility
to perform state-to-state chemical reaction experiments involving diatomic
and polyatomic species using this method5.

In a similar manner, inelastic scattering events, e.g. due to collisions or
photon scattering, can also be traced state-selectively in a single molecule.
Figure 5.11c-d shows the results of such an experiment. An N+

2 ion was
identified in the N = 6, J = 11/2 spin-rotational state. The molecule then
experienced a quantum jump to a different rotational state as is apparent
by the change in the amplitude and phase of the Rabi-oscillation signal.
The change of state could be caused either by an inelastic collision with a

5This experiment also represents, to the best of our knowledge, the first experiment on a
single trapped polyatomic molecule cooled to the ground state of an ion trap.
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Fig. 5.11. Tracing molecular states during inelastic processes. State dynamics of
two molecules (experiment No. “1” and “2” in Figure 5.10) probed by the present
SP/OP protocol under a chemical reaction (a→ b) and a quantum jump (c→ d).
a→ b): An N+

2 molecule in the N = 4, J = 7/2 state reacts with a background
gas H2 molecule and converts into N2H+. c → d) An N+

2 molecule in N = 6,
J = 11/2 changes its state due to an inelastic collision or photon scattering. Error
bars represent 1σ binomial uncertainties.
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background-gas molecule or by the scattering of a photon from the lattice
laser. The sign of the ac-Stark shift is flipped after the scattering which
suggests that the molecule underwent a rotational-state change.

In the experiments presented thus far, the sequence of cooling and detec-
tion took ∼ 15 ms, dominated by the sideband-cooling sequence, and was
typically scanned with 10 different Rabi-times, t729, and repeated 20 times
for statistics. The interrogation time for a high-fidelity state identification
is therefore on the order of a few seconds. In the homonuclear diatomic
molecule where all states in the electronic ground state are long-lived this
relatively long interrogation time poses no problem. This detection time
could, however, limit the usefulness of this method for polar molecules
where rovibrational states typically have shorter radiative lifetimes. This
can also pose a problem in a state-to-state sensitive reaction experiment in
which the product states are short lived or if interaction with black-body
radiation shuffles the state populations. The interrogation time can be
reduced by carefully choosing the lattice parameters to maximize the
signal and reduce the averaging time. The sideband-cooling sequence can
also be shortened, as described in Chapter 4. Moving the experiment to a
cryogenic environment would increase the interrogation time for systems
limited by BBR reshuffling.

5.4.5 Partial state readout

All the experiments presented thus far rely on a prior knowledge of the
strengths and positions of the molecular transitions to positively identify
specific states of a molecule by comparing the experimentally obtained
ac-Stark shift to theory. In some molecules, however, this information is
not available or sufficiently accurate for state determination. Here we
propose and demonstrate here an adaption of the detection method for a
partial state readout [153] for the common situation in which only the
frequencies of the transitions are known, e.g., from a prediction based
on known spectroscopic constants. We will show how this method can
be used to simultaneously exclude a large subset of molecular states
and provide a nondestructive spectroscopic signal, e.g., for vibrational
spectroscopy from a range of different rotational states.

5.4 Single-molecule experiments 175



An example of this method is given for N+
2 . In Figure 5.12 we show the

positions of all spectral lines which belong to the X2Σ+
g (v = 0)→ A2Πu

(v′ = 2) transitions up to N = 6. A lattice-laser wavelength larger than
789.4 nm (dashed line) is red detuned with respect to all transitions with
N ≤ 4. Therefore, detecting a blue detuning in the SP/OP experiment at
this wavelength excludes this entire manifold regardless of its substructure
or strengths. Figure 5.9b shows a demonstration this partial state readout.
Here, a lattice wavelength of 789.71 nm was used and a stronger OP than
SP signal was detected which implies that the lattice was blue detuned of
the molecular resonance. In this molecule we can therefore exclude all
states with rotational quantum number N ≤ 4.

This protocol can also be used as a non-destructive readout of spectro-
scopic excitations when exciting from a partially known initial state, e.g.,
N ≤ 4 (v = 0) to a long-lived excited state with a known detuning
with respect to the lattice such as the X2Σ+

g (v′ = 1) ground state. At
789.7 nm, with respect to the valence electron, the lattice laser is blue
detuned from the closest transitions in (v′ = 1) and one can detect a
successful spectroscopic excitation from any state N ≤ 4 as a change in
the detuning (i.e. the sign of the ac-Stark shift) even with no available
information about the hyperfine or Zeeman structure of either upper or
lower states or the transition strengths 6.

In this detection scheme only the sign information is used for state detec-
tion and therefore the amplitude information encoded in the frequency
and contrast of the Rabi-oscillation signal can be disregarded. Therefore,
by choosing a suitable pulse length for the Ca+ probe laser, t729, the
detection time can be reduced to a fraction of the detection time for the
state determination described in Section 5.4.1, as we need only find the
strongest of the SP and OP configurations. We typically use 10-20 different
probe times to obtain a full Rabi-oscillation signal and the state-detection
time, which is on the order of 1 s, can thus be reduced by an order of
magnitude.

6In this estimation, as a simplification to illustrate the method, we have neglected the core
polarizability of N+

2 which, when included, will shift the lattice laser wavelength which
distinguishes the lower and upper states. Including the core contribution, the lattice
laser wavelength which distinguishes the v = 0 and v = 1 occurs at around 804 nm.
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Fig. 5.12. Stick spectrum showing the positions of the allowed P, Q, and R
transitions of the X2Σ+

g (v = 0) → A2Πu(v′ = 2) band of N+
2 originating from

the rotational levels N = 0, 2, 4, 6. A subset of these states can be excluded
by determining the effective detuning at specific lattice wavelengths using an
SP/OP experiment. The dotted, dash-dotted and dashed lines show the lattice
wavelengths that enable the exclusion of rotational states N = 0, N ≤ 2 and
N ≤ 4 respectively. The detuning can be chosen either blue of the transitions
(782.6, 782.1 and 781.6 nm to exclude N = 0, N ≤ 2 and N ≤ 4 respectively)
or red (787.5, 788.2, and 789.4 nm to exclude N = 0, N ≤ 2 and N ≤ 4). By
choosing the detuning opposite to the detuning of an excited state of interest, the
initial and final states are easily distinguishable in an SP/OP test with no available
information about the hyperfine or Zeeman structure of either upper or lower
states or the specific transition strengths.
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5.5 Summary
In this chapter we have described a new method for detecting the state
of a single molecule in a long-lived internal state. The ac-Stark shift
induced on the atomic and molecular ions were estimated theoretically.
The shift on N+

2 shows great complexity and state determination based
on the amplitude of the induced coherent motion alone is unfeasible in
most cases. By using Ca+ as a reference, the phase of the force on the
molecule is obtained in an interferometric measurement.

This method was simulated numerically by solving the equations of mo-
tions and the optimum two-ion distance for phase determination was
determined. The optical dipole force was calibrated through a ’quan-
tum simulation’ in a two-ion Ca+-N2H+ experiment. We have verified
experimentally how this method can be used to distinguish between spin-
rotational levels in a complex region of the spectrum non-destructively.
We have also shown the usefulness of the present method for dipole-
allowed non-demolition spectroscopy and for tracing the states involved
in reactions and inelastic scattering events. Finally, we have presented a
method for ’partial state readout’, which can be used for detecting spec-
troscopic excitation, which relies only on the transition frequencies and
not on the strength of the induced force.
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Conclusions and
Outlook

6
„We came whirling out of nothingness

scattering stars like dust

— Rumi

In this thesis, we have described the theory and experimental imple-
mentation of a single-molecule experiment for a homonuclear diatomic
molecule, N+

2 . Theoretically, we found N+
2 to be a suitable system for

a test of a possible time variation of the proton-to-electron mass ratio,
for a noise-insensitive clock-standard in a wide range of frequencies and
for a stable qubit. The implementation of such experiments are in de-
velopment. In this thesis several new techniques were introduced to
reach these goals. The detection of the internal states of a ground-state-
cooled single N+

2 molecule in Chapter 5, indicates that all the prerequisites
listed in Chapter 1 for coherent control of a single molecule have been
accomplished. We will now briefly discuss each of these prerequisites.

• State initialization: We may initialize the molecule in a specific
hyperfine and Zeeman state through rotational state-selective ion-
ization in combination with the projective or probabilistic state
preparation described in Section 5.4.2. In practice, however, as the
loading, initial cooling of N+

2 and subsequent reduction of Ca+ from
the trap takes 1 minute or more, the probabilistic loading into a
specific Zeeman state is likely associated with a low duty cycle. The
interrogation time may be limited by inelastic collisions with back-
ground gas, chemical reactions or a leakage into an inaccessible state
by off-resonant scattering. Therefore, in order to reach the precision
of state-of-the-art clock experiments, a reduced chamber pressure
is desirable for a longer chemical and collisional lifetime. A faster
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initialization can be achieved by hyperfine and Zeeman-selective
ionization using narrow-linewidth ionization lasers. Alternatively,
in order to reduce the number of possible initial states, the 15N+

2 iso-
tope may be used as it is free from hyperfine structure.

• Cooling: The sympathetic ground-state cooling of a single N+
2 ion us-

ing a single Ca+ ion was shown, in Section 4.3, to be straightforward
once the ground-state cooling of a single Ca+ ion was implemented.
The length of the sideband-cooling sequence, while short in com-
parison with a probe pulse designed for precision measurements,
adds up to a significant amount of time after many repetitions of
cooling and ODF detection to obtain statistics. This time can be
reduced by an initial continuous sideband-cooling pulse or an ini-
tial sub-Doppler-cooling sequence, e.g. by sympathetic EIT cooling
[154]. Using the new mm-scale trap, we found a low heating rate
suitable for long probe times, as presented in Section 4.3.3.

• Probe laser: While the addition of a probe laser is no more challeng-
ing for the molecular ion than in the atomic case, the molecule may
scatter to many more states outside the bandwidth of this source.
The state-readout laser may be used to reshuffle, e.g., Zeeman and
hyperfine levels but not vibrational levels, as discussed in Section
3.3.5. The initialization of a new molecule adds significant time to
the duty cycle and should be avoided where possible. We therefore
find that the addition of two Raman beams derived from a fre-
quency comb, while adding significant experimental overhead, may
be worthwhile as it serves as a stable multi-purpose molecular drive
for both vibrations and rotations. Such a system can be used for a
controlled initialization, probe pulse and as an auxiliary detection
pulse in the molecular ion [82].

• State detection: The state-detection scheme, described in Chapter
5, is suitable for detecting states with a long lifetime such as the
rovibrational lines of a homonuclear diatomic molecule. We have
shown that the pulse time of this detection, which takes on the order
of seconds for the data presented in Section 5.4, can be reduced by
an order of magnitude by carefully choosing the pulse time of the
ODF pulse as well as the Rabi-thermometry pulse. The detection
time is then insignificant compared to the probe pulse.
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Thus we find that the remaining challenges in the present implementa-
tion of a single-molecule precision experiment are the duty cycle and
the leakage of the molecular state into dark states. With the increased
availability of stable frequency combs, these challenges are expected to be
overcome in the foreseeable future and the single-molecule experiments
may become an indispensable tool for fundamental and applied physics.

In the field of quantum computing, a good duty cycle and coherence time
has been shown with atomic ions with significantly less experimental
overhead than required by the present single-molecule experiment. It
is therefore likely that for most applications in quantum computing the
molecules will not play a prominent role with a possible exception for
certain quantum simulations which utilize the full complexity of the
rovibrational manifold.
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Standard Results from
Spherical Tensor
Algebra

A

In this appendix we list some of the useful results from spherical tensor
algebra from Brown & Carrington [42] and R. Zare[43]. We refer the
reader to these great texts for the derivation of these results and for
further details.

An irreducible spherical tensor of rank k is denoted, T kp (x), where p speci-
fies a specific tensor component −k ≤ p ≤ k. The spherical tensor can be
defined by its transformation properties under a generalized rotation,

T kp (x) =
∑
p

D
(k)
p′p(ω)T kp′(x), (A.1)

where D(k)
p′p(ω) is an irreducible representation of the rotation group or

’rotation matrix element’ of rank k. Here, ω represents the Euler angles
which in three dimensions are ω = (φ, θ, χ). This equation can therefore
be used to transform between the space-fixed (subscript index p) and
molecule fixed (subscript index q) coordinate systems when the origin of
both systems are at the center of mass of the molecule.

The tensor product of two such tensors T k1
p1

(x)× T k2
p2

(y) is defined as,

W k12
p12

(k1, k2) =
∑
p1

T k1
p1

(x)T k2
p12−p1

(y)(−1)−k1+k2−p12

× (2k12 + 1)1/2
(
k1 k2 k12
p1 p12 − p1 −p12

)
, (A.2)
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and produces another tensor of rank |k1 − k2| ≤ k12 ≤ |k1 + k2|. A scalar
quantity can be produced by two tensors of the same rank k1 = k2 by
choosing k12 = p12 = 0 in the tensor product,

T k1(x) · T k2(y) =
∑
p

(−1)pT k1
p (x)T k2

−p(y). (A.3)

The product of two first-rank rotation matrices may be written as a single
rotation by,

Dk1
p′1p1

(ω)Dk2
p′2p2

(ω) =∑
k12

(2k12 + 1)
(
k1 k2 k12
p′1 p′2 p′12

)(
k1 k2 k12
p1 p2 p12

)
Dk12
p′12,p12

(ω)∗. (A.4)

A rotation matrix operator acting on the reduced rotational basis states
|N,Λ〉 leads to,

〈N ′,Λ′|Dk
.q(ω)|N,Λ〉 = (A.5)

(−1)N
′−Λ′

(
N ′ k N

−Λ′ q Λ

)√
(2N ′ + 1)(2N + 1).

For the evaluation of spherical tensor operators acting upon a general
angular-momentum state |J,MJ〉 with quantum number J and projec-
tion MJ , we present here a list of useful standard results. The Wigner-
Eckart (W.E.) theorem allows us to reduce the dependence on projection
quantum-numbers,

〈J ′,M ′J |T kp (x)|J,MJ〉 = (A.6)

(−1)J
′−M ′J

(
J ′ k J

−M ′J p MJ

)
〈J ′|T k. |J〉.

Here, the subscript dot in T k. suggests that the tensor operator no longer
depends on the space projection, p.

A first rank spherical tensor operator associated with the eigenvalue J
acting on the pure basis states |J〉 gives,

〈J ′|T 1(J)|J〉 = δJ′J
√
J(J + 1)(2J + 1), (A.7)
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where the δJ′J appears due to the orthogonality of the zero-order basis-
states 〈J ′|J〉. When two angular momenta couple to form a total angular
momentum J1 + J2 = J the basis-states can be written in a coupled
representation given by,

|J,MJ〉 =
∑

M1,M2

(−1)M1−M2+MJ
√

2J + 1

×
(
J1 J2 J

M1 M2 −MJ

)
|J1,M1〉|J2,M2〉. (A.8)

A standard result allows us to evaluate a spherical tensor operator T 1(J1)
that only acts on the first part of a coupled scheme, J1 + J2 = J , with-
out manually decoupling them and reducing their projection quantum
numbers,

〈J ′1, J ′2, J ′||T k(J1)||J1, J2, J〉 = δJ′2J2(−1)J+J′1+J′2+k

×
√

(2J ′ + 1)(2J + 1)
{
J1 J J2
J ′ J ′1 k

}
〈J ′1||T k(J1)||J1〉. (A.9)

When the operator T 1(J2) is instead acting on the second part of the
coupled system J1 + J2 = J , we have,

〈J ′1, J ′2, J ′||T k(J2)||J1, J2, J〉 = δJ′1J1(−1)J
′+J′1+J2+k

×
√

(2J ′ + 1)(2J + 1)
{
J2 J J ′1
J ′ J ′2 k

}
〈J ′2||T k(J2)||J2〉. (A.10)

A tensor-product W k(k1, k2) = T k1 (J1)× T k2 (J2) that acts on both parts
of the coupled system produces,

〈J ′1, J ′2, J ′||W k(k1, k2)||J1, J2, J〉 =√
(2J ′ + 1)(2J + 1)(2k + 1)

×


J ′ J k

J ′1 J1 k1
J ′2 J2 k2

 〈J ′1||T k(J1)||J1〉〈J ′2||T k(J2)||J2〉. (A.11)
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It is sometimes useful to write the Hund’s case (b) basis-states as a super-
position of Hund’s case (a) bases using the relation,

|NΛ, S, J〉 =
Σ=+S∑
Σ=−S

(−1)N−S+Ω√2N + 1

×
(
J S N

Ω −Σ −Λ

)
|SΣ; JΩΛ〉. (A.12)

A Wigner 6j symbol can be written as a product of four Wigner 3j sym-
bols, {

a b e

d c f

}
=

∑
αβγδεφ

(−1)d+c+f+δ+γ+φ

×
(
a b e

α β ε

)(
a c f

α γ −φ

)(
d b f

−δ β φ

)(
d c e

δ −γ ε

)
. (A.13)

By multiplying the equation above by a Wigner 3j symbol on the left side
we obtain another useful relation,(

a b e

α β ε

){
a b e

d c f

}
=

∑
αβγδεφ

(−1)d+c+f+δ+γ+φ

×
(
a c f

α γ −φ

)(
d b f

−δ β φ

)(
d c e

δ −γ ε

)
. (A.14)
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Alternative Derivations
of Matrix Expressions

B

B.1 The spin-Zeeman interaction in
Hund’s case (a).

Here, we will derive the matrix element of the electron-spin Zeeman
interaction in a Hund’s case (aβJ

) basis which is a useful basis when
the electron spin couples strongly to the molecular axis, e.g., by spin-
orbit coupling as in the A2Πu state of 14N+

2 . The Hund’s case (aβJ
) basis

states are labelled |η,Λ, S,Σ, J,Ω, I, F,MF 〉. The electron spin S is now
coupled to the internuclear axis with projection quantum number Σ and
is therefore readily evaluated in the molecule-fixed coordinates.

We begin as we did before by writing the operator in spherical-tensor
notation B · S = T 1(B)T 1(S) and make use of the Wigner-Eckart theorem
of Eq. (A.6) to reduce the space-projection quantum number from the
matrix element,

〈η,Λ, S′,Σ′, J ′,Ω′, I ′, F ′,M ′F |B · S|η,Λ, S,Σ, J,Ω, I, F,MF 〉 =

T 1
−p′(B)(−1)−p

′
(−1)F

′−M ′F

(
F ′ 1 F

−M ′F p′ MF

)
〈η,Λ, S′,Σ′, J ′,Ω′, I ′, F ′|T 1

p′(S)|η,Λ, S,Σ, J,Ω, I, F 〉. (B.1)
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We need to decouple the wavefunction from the nuclear spin, i.e., from
the total angular momentum F using Eq. (A.9),

〈η,Λ, S′,Σ′, J ′,Ω′, I ′, F ′|T 1
p′(S)|η,Λ, S,Σ, J,Ω, I, F 〉 =

δII′(−1)F+J′+I′+1
√

(2F ′ + 1)(2F + 1)
{
J ′ F ′ I

F J 1

}
〈η,Λ, S′,Σ′, J ′,Ω′|T 1

. (S)|η,Λ, S,Σ, J,Ω〉. (B.2)

The rotation between our two coordinate systems depends on the physical
coordinates of the molecule and the Wigner rotation matrix D1

pq(ω) there-
fore acts on the rotational wavefunction of the molecule. It must therefore
be introduced before we can proceed. The transformation between the
space- and molecule-fixed coordinates in spherical tensor formalism is
straightforward and the transformation is simply given by Eq. (A.1),

T 1
. (S) =

∑
q

D1
.q(ω)T 1

q (S). (B.3)

Indeed, this is the very definition of a spherical tensor i.e. tensors with
these transformation properties under rotations. We can now apply the
rotation operator to our rotational basis functions using another standard
result from spherical tensor algebra. Using Eq. (A.5) we obtain,

〈η,Λ, S′,Σ′, J ′,Ω′|T 1
. (S)|η,Λ, S,Σ, J,Ω〉 =∑

q

(−1)J
′−Ω′

√
(2J ′ + 1)(2J + 1)

(
J ′ 1 J

−Ω′ q Ω

)
〈S′,Σ′|T 1

q (S)|S,Σ〉. (B.4)

We apply the Wigner-Eckart theorem once more to reduce the projection
quantum number Σ,

〈S′,Σ′|T 1
q (S)|S,Σ〉

= (−1)S
′−Σ′

(
S′ 1 S

−Σ′ q Σ

)
〈S′|T 1

. (S)|S〉. (B.5)
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Finally putting together Equations (B.1), (B.2), (B.4) and (B.5) with
p′ = 0 we obtain,

〈η,Λ, S′,Σ′, J ′,Ω′, I ′, F ′,M ′F |B · S|η,Λ, S,Σ, J,Ω, I, F,MF 〉 =

BZδSS′δII′(−1)F
′+F−M ′F +2J′+I−Ω′+S′−Σ′+1

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)S(S + 1)(2S + 1)

×
(

F ′ 1 F

−M ′F 0 MF

){
J ′ F ′ I

F J 1

}∑
q

(
J ′ 1 J

−Ω′ q Ω

)(
S′ 1 S

−Σ′ q Σ

)
(B.6)

This expression has nonzero elements for J ′ = J and F ′ = F and confirms
the expression derived in Ref. [42].

B.2 The spin-Zeeman interaction in a
case (b)→ (a) transformation

Sometimes, when an interaction is more naturally described in different
quantum numbers it can be useful to transform between Hund’s case (a)
and (b) bases for deriving the Hamiltonian matrix elements. This may be
the case for an electronic state best described in an intermediate Hund’s
case (a) and (b) basis. We now illustrate this technique by expressing
the Hund’s case (b) basis as a superposition of Hund’s case (a) bases and
re-derive the electron-spin Zeeman term and show that this is expression
is equivalent to the one derived in Section 2.1.3.

The transformation between a Hund’s case (a) and (b) basis is given by
Eq. (A.12) as,

|NΛ, S, J〉 =
Σ=+S∑
Σ=−S

(−1)N−S+Ω√2N + 1
(
J S N

Ω −Σ −Λ

)
|SΣ; ΛJΩ〉.

(B.7)
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By applying this transformation for both our bra and ket, we can write
the electron spin-Zeeman interaction as,

〈v′, N ′,S′, J ′, I ′, F ′,M ′F |B · S|v,N, S, J, I, F,MF 〉

= T 1
−p′(B)(−1)p

′
(−1)F

′−M ′F

(
F ′ 1 F

−M ′F p′ MF

)
× (−1)N+N ′−S−S′

√
(2N ′ + 1)(2N + 1)

×
+S′∑

Σ′=−S′

+S∑
Σ=−S

(−1)Ω+Ω′
(
J ′ S′ N ′

Ω′ −Σ′ −Λ′
)(

J S N

Ω −Σ −Λ

)
× 〈S′Σ′Λ′J ′Ω′I ′F ′|

∑
q

D1
.q(ω)∗T 1

q (S)|SΣΛJΩI ′F ′〉, (B.8)

Here, we have once again applied the W.E. theorem as apparent by the
subscript dot in D1

.q(ω) which suggests that the matrix element is reduced
with respect to the space projection p′. As before, we need to decouple
the nuclear spin quantum number I from the angular momentum J using
Eq. (A.9) and we obtain,

〈S′Σ′Λ′J ′Ω′I ′F ′|
∑
q

D1
.q(ω)∗T 1

q (S)|SΣΛJΩI ′F ′〉 =

δI′I(−1)F+J′+I′+1
{
J F I ′

F ′ J ′ 1

}
×
∑
q

〈Λ′J ′Ω′|D1
.q(ω)∗|ΛJΩ〉〈S′Σ′|T 1

q (S)|S,Σ〉 (B.9)

The uncoupled matrix elements above are given by,

〈J ′Ω′|D1
.q(ω)∗|JΩ〉 = (B.10)

(−1)J
′−Ω′

√
(2J ′ + 1)(2J + 1)

(
J ′ 1 J

−Ω′ q Ω

)
,

for the rotational part and the spin part is given as before by,

〈S′,Σ′|T 1
q (S)|S,Σ〉 = δSS′(−1)S−Σ′

(
S 1 S

−Σ′ q Σ

)√
S(S + 1)(2S + 1).

(B.11)
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We put together Equations (B.8), (B.2), (B.10) and (B.11) to form,

〈N ′, S′, J ′, I ′, F ′,M ′F |B · S|N,S, J, I, F,MF 〉

= T 1
−p′(B)δI′IδS′S(−1)p

′
(−1)F

′−M ′F +F+2J′+S′+I′+1

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)S(S + 1)(2S + 1)

×
(

F ′ 1 F

−M ′F p′ MF

){
J F I ′

F ′ J ′ 1

}

×
+S′∑

Σ′=−S′

+S∑
Σ=−S

(−1)N+N ′−S−S′+Ω+Ω′
√

(2N ′ + 1)(2N + 1)

×
(
J ′ S′ N ′

Ω′ −Σ′ −Λ′
)(

J S N

Ω −Σ −Λ

)(
J ′ 1 J

−Ω′ q Ω

)(
S 1 S

−Σ′ q Σ

)
(B.12)

This expression is different from Eq. (B.6) by the two Wigner 3j symbols
containing J, S,N . The equivalence with the expression derived in Hund’s
case (bβJ

) (Eq. (2.50)) can be shown by relating the four Wigner 3j
symbols to a Wigner 6j symbol using the relation from Eq. (A.13),

δN ′N

{
J ′ S′ N ′

S′ J 1

}

=
+S′∑

Σ′=−S′

+S∑
Σ=−S

(2N + 1)(−1)J
′+S′−N ′+S+J+1−Ω−Σ

×
(
J ′ S′ N ′

Ω′ −Σ′ −Λ′
)(

J S N

Ω Σ Λ

)(
J ′ 1 J

−Ω′ q Ω

)(
S′ 1 S

−Σ′ q Σ

)
.

(B.13)

The equivalence of the phase factors between Eq. (2.50) and Eq. (B.12) is
shown below by noting that (−1)2i = 1 for integer i and (−1)2i = (−1)−2i

for half integer i’s and thus we have,

(−1)J
′+S′−N ′+S+J+1−Ω−Σ = (−1)−Ω−Σ+J′−S′+J−S+2Λ+1

(−1)S
′−N ′+S = (−1)−S

′−S

(−1)2S−N ′ = (−1)−2S . (B.14)

B.2 The spin-Zeeman interaction in a case (b)→ (a)
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Thus we find the phase factor (−1)N which completes the equivalence
with Eq. (2.50). This exercise shall prove useful for evaluating the
anisotropic spin-Zeeman term which is more readily evaluated in a Hund’s
case (a) basis.

B.3 The rotational Zeeman interaction in
the uncoupled basis

Here, we shall derive the matrix expressions for the Hamiltonian describ-
ing the interaction of the rotational magnetic moment coupling to an
external magnetic field. To do so, we shall use the uncoupled basis sets
|N,MN 〉|S,MS〉 in which the projection quantum numbers of each inter-
action is separately defined. Such a form is useful in a strong magnetic
field where each magnetic moment aligns with the external field. We
recall the relation between the coupled and the uncoupled basis states
from Eq. (A.8),

|N,S, J, I, F,MF 〉 =∑
MJ ,MI

(−1)J−I+MF
√

2F + 1
(
J I F

MJ MI −MF

)
|N,S, J,MJ〉|I,MI〉

(B.15)

We can further decouple the angular momentum |J,MJ〉 in terms of its
components |N,MN 〉|S,MS〉,

|N,S, J,MJ〉 =
∑

MN ,MS

(−1)N−S+MJ
√

2J + 1
(
N S J

MN MS −MJ

)
×|N,MN 〉|S,MS〉. (B.16)
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Our Hamiltonian expression to evaluate is then,

〈N ′,S′, J ′, I ′, F ′,M ′F |B ·N|N,S, J, I, F,MF 〉

= BZ
∑

M ′
J
,M ′

I
,MJ ,MI

(−1)J
′+J−I′−I+M ′F +MF

√
(2F ′ + 1)(2F + 1)

×
(
J ′ I ′ F ′

M ′J M ′I −M ′F

)(
J I F

MJ MI −MF

)
× 〈N ′, S′, J ′,M ′J |T 1(N)|N,S, J,MJ〉〈I ′M ′I |IMI〉. (B.17)

The overlap of the nuclear-spin bases 〈I ′M ′I |IMI〉 lead to the conditions
δI′I and δM ′

I
,MI

. We proceed to write the angular momentum state |J,MJ〉
in terms of its components |N,MN 〉|S,MS〉 which produces,

〈N ′, S′, J ′,M ′J |T 1(N)|N,S, J,MJ〉

=
∑

M ′
N
,M ′

S
,MN ,MS

(−1)N
′+N−S′−S+M ′J +MJ

√
(2J ′ + 1)(2J + 1)

×
(
N ′ S′ J ′

M ′N M ′S −M ′J

)(
N S J

MN MS −MJ

)
× 〈N ′,M ′N |T 1

p (N)|N,MN 〉〈S′,M ′S |S,MS〉. (B.18)

The overlap of the spin bases 〈S′,M ′S |S,MS〉 lead to the selection rules
δS′SδM ′

S
,MS

and the rotational matrix element is evaluated using the
Wigner Eckart theorem of Eq. (A.6) and the eigenvalue relation of Eq.
(A.7) as,

〈N ′,M ′N |T 1
p (N)|N,MN 〉 = (−1)N

′−M ′N

(
N ′ 1 N

−M ′N 0 MN

)
×δN ′N

√
N(N + 1)(2N + 1). (B.19)
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Finally, putting together Equations (B.17), (B.18) and (B.19) we obtain,

〈N ′, S′, J ′, I ′, F ′,M ′F |B ·N|N,S, J, I, F,MF 〉

= BZδS′SδI′IδN ′N (−1)J
′+J−2I+N ′+N−2S+J+J′+N ′+N+1

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)N(N + 1)(2N + 1)

×
∑

M ′
J
,MJ ,M ′I ,MI

δMIM ′I
(−1)M

′
F +MF +M ′J +MJ

×
(
J ′ I ′ F ′

M ′J M ′I −M ′F

)(
J I F

MJ MI −MF

)
×

∑
M ′

N
,MS ,M ′N ,MS

δM ′
S
MS

(−1)M
′
N

×
(
N ′ S′ J ′

M ′N M ′S −M ′J

)(
N S J

MN MS −MN

)(
N ′ N 1
−M ′N MN 0

)
.

(B.20)

We show the equivalence of Eq. (B.20) with the expression derived in the
coupled basis (Eq. (2.57)) by using a relation between the Wigner 3j and
Wigner 6j symbols. First, we use the relation Eq. (A.14) to write the sum
over the last three 3j symbols as the product of a 3j and 6j symbol,∑

all MiM ′i

(−1)J
′+J+N ′+N−S′+S−M ′J−MN

×
(
N ′ S′ J ′

M ′N M ′S −M ′J

)(
N S J

MN MS −MN

)(
N ′ N 1
−M ′N MN 0

)
=
(

J ′ 1 J

−M ′J 0 MJ

){
J ′ N ′ S′

N J 1

}
. (B.21)
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Plugging this relation in to the matrix element of Eq. (B.20) gives,

〈N ′,S′, J ′, I ′, F ′,M ′F |B ·N|N,S, J, I, F,MF 〉 =

= BZδS′SδI′IδN ′N (−1)J
′+J−2I+N ′+N−2S+J+J′+N ′+N+1

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)N(N + 1)(2N + 1)

×
∑

M ′
J
,MJ ,M ′I ,MI

δMIM ′I
(−1)M

′
F +MF +M ′J +MJ

×
(
J ′ I ′ F ′

M ′J M ′I −M ′F

)(
J I F

MJ MI −MF

)
× (−1)M

′
N

(
J ′ 1 J

−M ′J 0 MJ

){
J ′ N ′ S′

N J 1

}
. (B.22)

We use the relation from Eq. (A.14) again to show that the remaining
three 3j symbols can also be written as the product of a 3j and a 6j symbol
using, ∑

all MiM ′i

(−1)F
′+F+J′+J−I′+I−M ′F−MJ

×
(
J ′ I ′ F ′

M ′J M ′I −M ′F

)(
J I F

MJ MI −MF

)(
J ′ J 1
−M ′J MJ 1

)
= (−1)J

′+J+1
(

F ′ 1 F

−M ′F 0 MF

){
F ′ J ′ I ′

J F 1

}
. (B.23)

Plugging the above relation into the equation from Eq. B.22 gives,

〈N ′,S′, J ′, I ′, F ′,M ′F |B ·N|N,S, J, I, F,MF 〉

= δS′SδI′IδN ′N (−1)J
′+J−2I+N ′+N−2S+J+J′+N ′+N+1

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)N(N + 1)(2N + 1)

× (−1)J
′+J+1

(
F ′ 1 F

−M ′F 0 MF

){
F ′ J ′ I ′

J F 1

}
.

{
J ′ N ′ S′

N J 1

}
.

(B.24)

The resulting expression is exactly Eq. (2.57).
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B.4 The anisotropic spin-Zeeman
Hamiltonian in Hund’s case (a)

Here, we shall use the Hamiltonian form of Eq. (2.69) to find the matrix
expression by transforming into a Hund’s case (a) basis. As this interaction
originates from unquenched electronic angular momentum, this term is
better suited for a basis where the projection of the electron spin along
the molecular axis, Σ, is defined. Using the Hamiltonian form Eq. (2.69),
we need only to derive half of the expression, D1

00(ω)∗T 1
q=0(S), with the

other half already derived in Eq. (2.50).

We begin by transforming into the Hund’s case (a) basis using Eq. (A.12),

〈N ′,S′, J ′, I ′, F,M ′F |D1
00(ω)∗T 1

q=0(S)|N,S, J, I, F,MF 〉

= (−1)F
′−M ′F

(
F ′ 1 F

−M ′F 0 MF

)
×
∑
q=±1

(−1)N+N ′−S−S′
√

(2N ′ + 1)(2N + 1)

×
+S′∑

Σ′=−S′

+S∑
Σ=−S

(−1)Ω+Ω′
(
J ′ S′ N ′

Ω′ −Σ′ −Λ′
)(

J S N

Ω −Σ −Λ

)
× 〈S′,Σ′; Λ′, J ′,Ω′, I ′, F ′|D1

.0(ω)∗T 1
0 (S)|S,Σ; Λ, J,Ω, I, F 〉. (B.25)

We apply Eq. (A.9) to decouple J from I,

〈S′,Σ′; Λ′, J ′,Ω′, I ′, F ′|D1
.0(ω)∗T 1

0 (S)|S,Σ; Λ, J,Ω, I, F 〉

= δI′I(−1)F+J′+I′+1
√

(2F ′ + 1)(2F + 1)
{
J F I ′

F ′ J 1

}
〈Λ′, J ′,Ω′|D1

.0(ω)∗|Λ, J,Ω〉〈S′,Σ′|T 1
0 (S)|S,Σ〉. (B.26)

The spin part is then evaluated using the eigenvalue relation, Sz|S,Σ〉 = Σ,

〈S′,Σ′|T 1
0 (S)|S,Σ〉 = 〈S′,Σ′|Sz|S,Σ〉 = δSS′δΣ′Σ,Σ, (B.27)
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and the rotational part is evaluated using Eq. (A.5)

〈J ′Ω′|D1
.0(ω)∗|J,Ω〉 =

(−1)J
′−Ω′

√
(2J ′ + 1)(2J + 1)

(
J ′ 1 J

−Ω′ 0 Ω

)
. (B.28)

By combining the equations (B.25), (B.26), (B.27) and (B.28) we ob-
tain,

〈N ′,S′, J ′, I ′, F,M ′F |D1
00(ω)∗T 1

q=0(S)|N,S, J, I, F,MF 〉

= δI′IδS′S(−1)F
′−M ′F +F+J′+I′+N+N ′−S−S′+1

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)(2N ′ + 1)(2N + 1)

×
(

F ′ 1 F

−M ′F 0 MF

){
J F I ′

F ′ J 1

}

×
+S∑

Σ=−S
δΣ′Σ(−1)Ω

(
J ′ S′ N ′

Ω′ −Σ′ −Λ′
)

×
(
J S N

Ω −Σ −Λ

)(
J ′ 1 J

−Ω′ 0 Ω

)
Σ. (B.29)

B.5 The E1 operator in a combined
Hund’s case (a) and (b) basis.

Here, we will derive the matrix expression for the electric dipole (E1)
operator between the X2Σ+

g and A2Πu states in N+
2

1. This expression
will prove useful for estimating the ac-Stark shift induced by the lattice
laser at 789 nm. We express the excited A2Πu state in Hund’s case (aβJ

)
basis-states and the ground X2Σ+

g state, as before, in a Hund’s case (bβJ
)

basis. The overlap is evaluated by expressing the Hund’s case (b) basis in
a superposition of Hund’s case (a) bases, as we have seen in Sections B.2
and B.4.

As before, we begin by expressing the electric-dipole operator in the
spherical-tensor notation, as T 1(µ(E1)). As the laser polarization is defined

1Here, we follow the derivation by Mudit Sinhal.

B.5 The E1 operator in a combined Hund’s case (a) and (b)
basis.
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in the space-fixed axis, the space-fixed operator (subscript p) must be
rotated into the molecular frame where the electric dipole moment of the
molecule (in the A2Πu state) is defined. The expression to evaluate is
then,

〈η′, v′,Λ′, S′,Σ′, J ′,Ω′, I ′, F ′,M ′F |T 1
p (µ)|η, v,Λ, N, S, J, I, F,MF 〉 =

(−1)F
′−M ′F

(
F ′ 1 F

−M ′F p MF

)
×〈η′, v′,Λ′, S′,Σ′, J ′,Ω′, I ′, F ′|T 1

. (µ)|η, v,Λ, N, S, J, I, F 〉. (B.30)

In this first step, we have applied the Wigner-Eckart theorem from Eq.
(A.6). The projection-reduced matrix element in the above equation is
further simplified by using Eq. (A.9) for a tensor operator acting on the
first part of a coupled system, J + I = F ,

〈η′, v′,Λ′, S′,Σ′, J ′,Ω′, I ′, F ′|T 1
. (µ)|η, v,Λ, N, S, J, I, F 〉 =

δI′I(−1)F+J′+I′+1
√

(2F ′ + 1)(2F + 1)
{
J F I

F ′ J ′ 1

}
×〈η′, v′,Λ′, S′,Σ′, J ′,Ω′|T 1

. (µ)|η, v,Λ, N, S, J〉. (B.31)

We now express the X2Σ+
g ground-state Hund’s case (b)-basis in Hund’s

case (a)-bases using Eq. (A.12) and we obtain,

〈η′, v′,Λ′, S′,Σ′, J ′,Ω′|T 1
. (µ)|η, v,Λ, N, S, J〉 =

Σ=+S∑
Σ=−S

(−1)J−S+Λ√2N + 1
(
J S N

Ω −Σ −Λ

)
×〈η′, v′,Λ′, S′,Σ′, J ′,Ω′|T 1

. (µ)|η, v,Λ, S,Σ, J,Ω〉 (B.32)

We may now rotate the tensor operator into the molecule-fixed reference-
frame by using,

T 1
. (µ) =

∑
q

D1
.q(ω)T 1

q (µ). (B.33)
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The remaining matrix expression from Eq. (B.32) is then separated into
its angular and radial parts as,

〈η′, v′,Λ′, S′,Σ′, J ′,Ω′|T 1
. (µ)|η, v,Λ, S,Σ, J,Ω〉 =∑

q

〈S′,Σ′|S,Σ〉〈Λ′, J ′,Ω′|D1
.q(ω)|Λ, J,Ω〉〈η′, v′|T 1

q (µ)|η, v〉. (B.34)

The overlap of the electron-spin basis functions leads to the Kronecker-
delta conditions δS′SδΣ′Σ and the Wigner rotation matrix is readily evalu-
ated using Eq. (A.5) as,

〈Λ′, J ′,Ω′|D1
.q(ω)|Λ, J,Ω〉

= (−1)J
′−Ω′

(
J ′ 1 J

−Ω′ q Ω

)√
(2J ′ + 1)(2J + 1). (B.35)

Finally, putting together Equations (B.30), (B.31), (B.32), (B.34) and
(B.35), we obtain,

〈η′, v′,Λ′, S′,Σ′, J ′,Ω′, I ′, F ′,M ′F |T 1
p (µ)|η, v,Λ, N, S, J, I, F,MF 〉

= δI′IδS′S(−1)F
′−M ′F +F+2J′+I′+1−S−J′

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)(2N + 1)

×
(

F ′ 1 F

−M ′F p MF

){
J F I

F ′ J ′ 1

}

×
Σ=+S∑
Σ=−S

δΣ′Σ
∑
q

(−1)Λ−Ω′
(
J S N

Ω −Σ −Λ

)(
J ′ 1 J

−Ω′ q Ω

)
× 〈η′, v′|T 1

q (µ)|η, v〉. (B.36)

The square of Eq. (B.36) (not including the radial part) appears in the
Einstein coefficients as the ’Hönl-London factor’ and is given by,

cjk = (2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)(2N + 1)

×
(

F ′ 1 F

−M ′F 0 MF

)2{
J F I

F ′ J 1

}2(
J ′ 1 J

−Ω′ 1 Ω

)2

×
[(
J 1/2 N

Ω 1/2 0

)
+
(
J 1/2 N

Ω −1/2 0

)]2

, (B.37)
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where we have used Λ = 0 and q = 1, S = S′ = 1/2 and Σ = ±1/2. The
phase factors cancel in the squared expression. We have also assumed a
linear polarization parallel with the magnetic field, p = 0.

In the N = 0 lower state, these expressions confirm the matrix-elements
derived in Ref. [155]. Mixing effects were neglected in this analysis which
leads to a discrepancy between the two expressions at higher rotational
states due to a breakdown of the Hund’s case approximations.
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Table of Magic
Transitions

C
Tab. C.1. Partial list of the strongest magic magnetic-field insensitive tran-
sitions of the hyperfine, fine, rotational and vibrational manifolds below 70
G. The quantum numbers, |v,N, S, J, I, F,MF 〉, that label the states are those
with the biggest overlap with the Hamiltonian eigenstate. For each transition
we state the ’magic’ magnetic field value, the Einstein A-coefficient, the tran-
sition frequency and the second-order Zeeman dependence of the transition,
a. The dominant coupling mechanism (M1S , M1aS or E2) is also listed for
each type of transition. The transition frequency is given with respect to the
zero-transition frequency, f0, which is defined as follows: f0 = 0 for hyperfine
transitions, f0 = B0 × 6−D0 × 62 ≈ 345′784.31 MHz for rotational transitions,
f0 = G1 − G0 ≈ 65′197′244.88 MHz for Q(0) rovibrational transitions, and
f0 = G1 −G0 + B1 × 6−D1 × 62 ≈ 65′539′595.50 MHz for S(0) rovibrational
transitions.

Hyperfine transitions: M1S |v = 0, N = 0〉 →
|v′ = 0, N′ = 0〉

B [G] A [s−1] f-f0
[MHz]

a [mHz/
mG2]

I = 2:
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 1/2, F = 5/2, m = −3/2〉 54.85 8.6×10−18 204.80 19.1
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 1/2, F = 5/2, m = −3/2〉 38.40 6.1×10−18 233.51 16.1
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 1/2, F = 5/2, m = −1/2〉 38.42 6.1×10−18 233.48 16.1
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 1/2, F = 5/2, m = −1/2〉 18.28 1.6×10−17 250.83 15.6

Fine-structure transitions: M1S |v = 0, N = 2〉 →
|v′ = 0, N′ = 2〉

B [G] A [s−1] f-f0
[MHz]

a [mHz/
mG2]

I = 0:
|J = 3/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 5/2, m = −1/2〉 49.20 3.1×10−16 686.52 8.9
I = 2:
|J = 3/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 5/2, m = −1/2〉 17.15 2.2×10−16 656.74 12.0
|J = 3/2, F = 3/2, m = +1/2〉 → |J = 5/2, F = 5/2, m = −1/2〉 3.81 1.0×10−16 660.16 10.5
|J = 3/2, F = 5/2, m = −1/2〉 → |J = 5/2, F = 7/2, m = −3/2〉 48.30 1.9×10−16 738.06 8.0
|J = 3/2, F = 5/2, m = −3/2〉 → |J = 5/2, F = 7/2, m = −1/2〉 48.72 1.6×10−16 739.40 7.0
|J = 3/2, F = 5/2, m = −1/2〉 → |J = 5/2, F = 7/2, m = −1/2〉 22.31 3.9×10−16 752.31 8.2
|J = 3/2, F = 5/2, m = +1/2〉 → |J = 5/2, F = 7/2, m = −1/2〉 1.55 1.9×10−16 756.33 7.9
|J = 3/2, F = 7/2, m = −1/2〉 → |J = 5/2, F = 9/2, m = −3/2〉 49.84 2.8×10−16 832.14 6.3
|J = 3/2, F = 7/2, m = −3/2〉 → |J = 5/2, F = 9/2, m = −1/2〉 49.39 2.7×10−16 832.67 6.2
|J = 3/2, F = 7/2, m = −1/2〉 → |J = 5/2, F = 9/2, m = −1/2〉 24.06 5.9×10−16 843.94 6.3
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Rotational transitions: M1aS |v = 0, N = 0〉 →
|v′ = 0, N′ = 2〉

B [G] A [s−1] f-f0
[MHz]

a [mHz/
mG2]

I = 2:
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 3/2, F = 1/2, m = −1/2〉 45.57 2.2×10−15 -244.08 9.4
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 1/2, m = −1/2〉 15.80 9.3×10−15 -225.74 12.3
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 1/2, m = +1/2〉 9.37 2.7×10−15 -223.57 9.3
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 3/2, F = 3/2, m = −3/2〉 29.85 9.8×10−15 -257.50 7.3
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 3/2, m = −1/2〉 36.99 1.2×10−15 -254.73 3.8
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 3/2, m = −1/2〉 38.86 1.4×10−15 -488.22 -12.1
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 3/2, m = −1/2〉 15.30 1.9×10−15 -504.42 -14.9
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 3/2, m = +1/2〉 48.51 7.4×10−15 -264.22 5.3
|J = 1/2, F = 3/2, m = +1/2〉 → |J = 3/2, F = 3/2, m = +3/2〉 17.64 5.9×10−15 -253.71 5.4
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 3/2, F = 5/2, m = −3/2〉 44.15 7.7×10−15 -297.86 5.9
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 5/2, m = −3/2〉 60.07 1.9×10−15 -501.62 -12.6
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 5/2, m = −3/2〉 35.38 5.4×10−15 -531.06 -10.9
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 5/2, m = −1/2〉 16.71 7.1×10−15 -289.93 3.4
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 5/2, m = −1/2〉 43.39 7.8×10−15 -521.55 -13.8
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 5/2, m = +1/2〉 60.74 6.2×10−15 -302.52 3.2
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 5/2, m = +1/2〉 4.82 6.8×10−15 -544.71 -11.7
|J = 1/2, F = 3/2, m = +1/2〉 → |J = 3/2, F = 5/2, m = +3/2〉 30.76 7.5×10−15 -292.22 3.0
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 7/2, m = −3/2〉 58.94 1.4×10−14 -539.71 -12.8
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 7/2, m = −3/2〉 33.79 9.0×10−15 -568.41 -10.6
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 7/2, m = −1/2〉 46.34 6.2×10−15 -556.10 -12.8
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 7/2, m = −1/2〉 19.49 1.4×10−14 -576.51 -11.1
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 7/2, m = +1/2〉 6.12 7.4×10−15 -580.31 -10.9

Rovibrational transitions: M1aS |v = 0, N = 0〉 →
|v′ = 1, N′ = 0〉

B [G] A [s−1] f-f0
[MHz]

a [mHz/
mG2]

I = 2:
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 1/2, F = 3/2, m = −3/2〉 54.37 4.4×10−10 -202.56 -19.3
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 1/2, F = 3/2, m = −3/2〉 38.05 2.1×10−10 -230.99 -16.3
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 1/2, F = 3/2, m = −1/2〉 38.10 2.1×10−10 -231.01 -16.2
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 1/2, F = 3/2, m = −1/2〉 18.12 4.4×10−10 -248.18 -15.8
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 1/2, F = 5/2, m = −3/2〉 54.37 4.4×10−10 203.45 19.3
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 1/2, F = 5/2, m = −3/2〉 38.03 2.1×10−10 231.91 16.3
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 1/2, F = 5/2, m = −1/2〉 38.12 2.1×10−10 231.88 16.2
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 1/2, F = 5/2, m = −1/2〉 18.12 4.4×10−10 249.07 15.8

Rovibrational transitions: E2 |v = 0, N = 0〉 →
|v′ = 1, N′ = 2〉

B [G] A [s−1] f-f0
[MHz]

a [mHz/
mG2]

I = 2:
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 1/2, m = −1/2〉 30.06 5.8×10−9 -480.97 -5.2
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 3/2, m = −3/2〉 47.64 8.5×10−9 -491.42 -8.0
|J = 1/2, F = 5/2, m = +1/2〉 → |J = 3/2, F = 3/2, m = −3/2〉 14.87 3.8×10−9 -508.36 -6.7
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 3/2, m = −1/2〉 36.60 1.8×10−9 -257.19 3.9
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 3/2, m = −1/2〉 39.07 6.7×10−9 -490.68 -11.5
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 3/2, m = +1/2〉 46.75 4.2×10−9 -265.99 5.6
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 3/2, m = +1/2〉 33.59 3.3×10−9 -498.86 -9.9
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 3/2, m = +1/2〉 4.28 5.6×10−9 -509.68 -13.1
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 3/2, m = +3/2〉 61.63 1.1×10−9 -275.92 4.3
|J = 1/2, F = 3/2, m = +1/2〉 → |J = 3/2, F = 3/2, m = +3/2〉 16.85 5.0×10−9 -255.67 5.6
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 5/2, m = −5/2〉 64.93 8.9×10−9 -506.02 -7.5
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 3/2, F = 5/2, m = −3/2〉 44.62 3.2×10−9 -294.67 6.0
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 5/2, m = −3/2〉 59.97 6.0×10−9 -498.49 -12.5
|J = 1/2, F = 5/2, m = +1/2〉 → |J = 3/2, F = 5/2, m = −3/2〉 10.74 5.4×10−9 -540.42 -10.3
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 5/2, m = −1/2〉 18.34 3.8×10−9 -537.47 -12.5
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 5/2, m = +1/2〉 31.36 6.0×10−9 -530.66 -11.9
|J = 1/2, F = 3/2, m = +1/2〉 → |J = 3/2, F = 5/2, m = +5/2〉 65.10 5.2×10−9 -300.92 2.3
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 3/2, F = 7/2, m = −5/2〉 14.88 1.5×10−8 -314.32 4.0
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 7/2, m = −5/2〉 51.30 3.5×10−9 -543.57 -9.2
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 3/2, F = 7/2, m = −3/2〉 48.10 1.3×10−8 -324.81 6.1
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 7/2, m = −3/2〉 33.18 2.0×10−9 -557.44 -10.9
|J = 1/2, F = 5/2, m = +1/2〉 → |J = 3/2, F = 7/2, m = −3/2〉 8.04 2.2×10−9 -568.88 -10.1
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|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 7/2, m = −1/2〉 16.21 1.3×10−8 -314.63 4.2
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 7/2, m = −1/2〉 45.32 1.8×10−9 -545.49 -13.1
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 3/2, F = 7/2, m = +1/2〉 54.89 1.4×10−8 -324.78 2.9
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 3/2, F = 7/2, m = +1/2〉 33.85 2.3×10−9 -557.16 -12.0
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 3/2, F = 7/2, m = +1/2〉 5.95 1.7×10−9 -569.15 -11.1
|J = 1/2, F = 3/2, m = +1/2〉 → |J = 3/2, F = 7/2, m = +3/2〉 22.93 1.5×10−8 -315.33 2.9
|J = 1/2, F = 3/2, m = +3/2〉 → |J = 3/2, F = 7/2, m = +7/2〉 41.67 2.7×10−8 -316.98 1.3
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 5/2, F = 3/2, m = −1/2〉 56.95 4.7×10−9 322.93 10.7
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 3/2, m = −1/2〉 25.65 8.1×10−9 348.66 9.7
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 5/2, F = 3/2, m = +1/2〉 16.17 1.1×10−8 352.02 15.4
|J = 1/2, F = 5/2, m = +1/2〉 → |J = 5/2, F = 3/2, m = +3/2〉 52.04 2.0×10−9 117.76 -4.6
|J = 1/2, F = 5/2, m = +3/2〉 → |J = 5/2, F = 3/2, m = +3/2〉 16.39 4.2×10−9 101.77 -5.8
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 5/2, m = −3/2〉 48.87 3.3×10−9 383.90 9.3
|J = 1/2, F = 3/2, m = +1/2〉 → |J = 5/2, F = 5/2, m = −3/2〉 23.68 5.3×10−9 403.02 8.8
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 5/2, F = 5/2, m = −1/2〉 44.96 8.3×10−9 382.72 13.3
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 5/2, F = 5/2, m = −1/2〉 6.98 4.1×10−9 152.46 -2.4
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 5/2, F = 5/2, m = +1/2〉 25.75 4.0×10−9 400.41 12.9
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 5/2, m = +1/2〉 1.26 4.8×10−9 408.33 12.7
|J = 1/2, F = 5/2, m = +3/2〉 → |J = 5/2, F = 5/2, m = +5/2〉 60.47 8.4×10−9 162.26 -1.8
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 7/2, m = −5/2〉 67.42 3.0×10−9 423.69 7.8
|J = 1/2, F = 3/2, m = −3/2〉 → |J = 5/2, F = 7/2, m = −3/2〉 63.13 2.9×10−9 416.02 12.8
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 7/2, m = −3/2〉 39.26 3.8×10−9 447.47 10.6
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 5/2, F = 7/2, m = −3/2〉 36.74 5.9×10−9 213.99 -5.3
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 7/2, m = −1/2〉 20.54 3.3×10−9 459.46 11.7
|J = 1/2, F = 3/2, m = −1/2〉 → |J = 5/2, F = 7/2, m = +1/2〉 3.88 2.1×10−9 464.18 11.3
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 5/2, F = 7/2, m = +1/2〉 67.69 4.6×10−9 222.96 -2.0
|J = 1/2, F = 5/2, m = +3/2〉 → |J = 5/2, F = 7/2, m = +5/2〉 31.84 1.5×10−9 210.01 -1.0
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 5/2, F = 9/2, m = −5/2〉 9.72 1.7×10−8 259.28 -3.7
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 5/2, F = 9/2, m = −3/2〉 43.36 1.3×10−8 268.40 -6.2
|J = 1/2, F = 5/2, m = −3/2〉 → |J = 5/2, F = 9/2, m = −1/2〉 68.91 7.8×10−9 286.49 -6.1
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 5/2, F = 9/2, m = −1/2〉 13.68 1.5×10−8 259.82 -4.7
|J = 1/2, F = 5/2, m = −1/2〉 → |J = 5/2, F = 9/2, m = +1/2〉 47.59 1.2×10−8 269.15 -3.9
|J = 1/2, F = 5/2, m = +1/2〉 → |J = 5/2, F = 9/2, m = +3/2〉 23.35 1.5×10−8 261.01 -3.3
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Sideband Cooling
Simulations

D
In order to optimize sideband cooling and avoid population trapping, the
sideband cooling from Doppler temperatures of ∼ 0.5 mK and n̄ ≈ 16 to
the trap ground state was simulated using the theory of Ref. [111] as
described in the Appendix of Ref. [156].

The population transferred by each pulse on resonance with a spectral
sideband is given by,

ye(t) = sin2
(

Ωn,n+st

2

)
, (D.1)

where t is the pulse length and Ωn,n+s is the Rabi frequency on the
sideband. s describes the sideband order, e.g. s = −1 for the first red
sideband and s = 1 for the first blue sideband. With a carrier Rabi
frequency Ω0, the sideband strength is given by,

Ωn,n+s = Ω0e
−η/2η|s|

√
n>!
n<!L

|s|
n<

(η2), (D.2)

where L
|s|
n<(η2) are generalized Laguerre polynomials and n< and n>

refer to the lesser and greater of n and n+ s respectively.

A general Rabi-oscillation signal on a motional sideband with a detuning,
δ, can be obtained from the convolution of the contributions from each
motional state as [92],

y(t729) =
∑
n,n+s

Pn
Ωn,n+s

Ωn,n+s + δ2 sin2
(√

Ω2
n,n+s + δ2 · t729/2

)
. (D.3)
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Other sources of decoherence can be added phenomenologically through
an additional exponential decay factor with time constant, T2. With this
contribution included, the Rabi-oscillation data is given by,

P↑(t729) = y(t729)e−t729/T2 + (1 + e−t729/T2)/2 (D.4)

We start the sideband cooling simulation by choosing an initial motional
state distribution P

(0)
n , such as a Boltzmann distribution at 0.5 mK. For

each pulse iteration we calculate the population that leaves the motional
state, n, i.e. the excitation probability pe(n), and the population that
enters the state from neighboring levels, pe(n− s), using Eq. (D.1). The
population in the new distribution after the first iteration is then,

P (1)
n = P (0)

n (1− pe(n) + pe(n− s)). (D.5)

An additional heating rate can be added to this equation to simulate
heating and off-resonant scattering on blue sidebands, but were not used
for the simulations presented below. We then iterate this procedure for
any number of pulses on any desired sideband.

Figure D.1a shows the results of a simulation using two different types
of pulses. First 200 pulses are applied on resonance with the second red
sideband with pulse length t = 6π/Ω0 followed by 200 pulses on the first
red sideband with t = 4π/Ω0. Here we used η ≈ 0.1. The excitation
probabilities as a function of motional state with these pulse lengths are
shown as the solid curves in Figure D.1. The simulation shows that with
only two different pulse lengths, a part of the distribution gets trapped as
the excitation probability vanishes for certain values of n.

Figure D.1b shows the excitation probability for different pulse lengths,
on the first red sideband, as a function of the motional state, n. With
the shortest pulses the excitation probability does not vanish for any
motional state. Therefore, if the pulse length is incrementally increased
in several steps, we can efficiently transfer the population to the ground
state without population trapping. This method was employed in the
experimental sideband-cooling sequence and the results are presented in
Section 4.3.
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Fig. D.1. a) Simulated motional state distribution after sideband cooling. The
simulation included 200 pulses on the second red sideband, with pulse length
t = 6π/Ω0, followed by 200 pulses on the first red sideband of length t = 4π/Ω0
(blue bars). The trapped state population (orange bars) are scaled up by a factor
10 for visibility. The sequence achieves 85 % ground-state occupation with no
heating or off-resonant scattering included in the simulation. The black and red
curves show the coupling strength on the first and second sideband, respectively,
as a function of the motional state n. The Lamb-Dicke parameter was set to
η = 0.1 b) The coupling strength for different pulse lengths on the first red
sideband as a function of motional state n.
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