
RESIF 3.0: Toward a Flexible & Automated Management of User
Software Environment on HPC facility ∗

Sebastien Varrette
University of Luxembourg

Esch-sur-Alzette, Luxembourg
sebastien.varrette@uni.lu

Emmanuel Kieffer
University of Luxembourg

Esch-sur-Alzette, Luxembourg
Emmanuel.Kieffer@uni.lu

Frederic Pinel
University of Luxembourg

Esch-sur-Alzette, Luxembourg
Frederic.Pinel@uni.lu

Ezhilmathi Krishnasamy
University of Luxembourg

Esch-sur-Alzette, Luxembourg
ezhilmathi.krishnasamy@uni.lu

Sarah Peter
University of Luxembourg

Esch-sur-Alzette, Luxembourg
sarah.peter@uni.lu

Hyacinthe Cartiaux
University of Luxembourg

Esch-sur-Alzette, Luxembourg
hyacinthe.cartiaux@uni.lu

Xavier Besseron
University of Luxembourg

Esch-sur-Alzette, Luxembourg
Xavier.Besseron@uni.lu

ABSTRACT
High Performance Computing (HPC) is increasingly identified as
a strategic asset and enabler to accelerate the research and the
business performed in all areas requiring intensive computing and
large-scale Big Data analytic capabilities. The efficient exploitation
of heterogeneous computing resources featuring different processor
architectures and generations, coupled with the eventual presence
of GPU accelerators, remains a challenge. The University of Luxem-
bourg operates since 2007 a large academic HPC facility which re-
mains one of the reference implementation within the country and
offers a cutting-edge research infrastructure to Luxembourg public
research. The HPC support team invests a significant amount of
time (i.e., several months of effort per year) in providing a software
environment optimised for hundreds of users, but the complexity
of HPC software was quickly outpacing the capabilities of classi-
cal software management tools. Since 2014, our scientific software
stack is generated and deployed in an automated and consistent
way through the RESIF framework, a wrapper on top of Easybuild
and Lmod [5] meant to efficiently handle user software generation.
A large code refactoring was performed in 2017 to better handle
different software sets and roles across multiple clusters, all piloted
through a dedicated control repository. With the advent in 2020 of
a new supercomputer featuring a different CPU architecture, and to
mitigate the identified limitations of the existing framework, we re-
port in this state-of-practice article RESIF 3.0, the latest iteration of
our scientific software management suit now relying on streamline
Easybuild. It permitted to reduce by around 90% the number of cus-
tom configurations previously enforced by specific Slurm and MPI
settings, while sustaining optimised builds coexisting for different
∗Produces the permission block, and copyright information

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC ’21, July 18–22, 2021, Boston, MA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8292-2/21/07.
https://doi.org/10.1145/3437359.3465600

dimensions of CPU and GPU architectures. The workflow for con-
tributing back to the Easybuild community was also automated and
a current work in progress aims at drastically decrease the building
time of a complete software set generation. Overall, most design
choices for our wrapper have been motivated by several years of
experience in addressing in a flexible and convenient way the het-
erogeneous needs inherent to an academic environment aiming for
research excellence. As the code base is available publicly, and as
we wish to transparently report also the pitfalls and difficulties met,
this tool may thus help other HPC centres to consolidate their own
software management stack.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; Software infrastructure; • Computer systems or-
ganization → Parallel architectures; • Applied computing →

Computer-aided design.

ACM Reference Format:
Sebastien Varrette, Emmanuel Kieffer, Frederic Pinel, Ezhilmathi Krish-
nasamy, Sarah Peter, Hyacinthe Cartiaux, and Xavier Besseron. 2021. RESIF
3.0: Toward a Flexible & Automated Management of User Software Envi-
ronment on HPC facility . In Practice and Experience in Advanced Research
Computing (PEARC ’21), July 18–22, 2021, Boston, MA, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3437359.3465600

1 INTRODUCTION
The University of Luxembourg (UL) operates since 2007 a large
research computing facility which remains one of the reference
implementation within the country [10]. The ULHPC centre cur-
rently supports a wide user base ranging from University staff
and students to research partners and commercial users. This in-
cludes computer scientists, engineers, physicists, material science
researchers, biologists, economists and even historians, psycholo-
gists and social science researchers which are given the possibility
to run compute- and storage-intensive computations as part of
their research or training. The ULHPC facility currently offers two
different clusters featuring heterogeneous CPU architectures (Intel
and AMD) of different generations and 3 different types of nodes.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3437359.3465600
https://doi.org/10.1145/3437359.3465600

PEARC ’21, July 18–22, 2021, Boston, MA, USA S. Varrette et al.

To efficiently address the diverse applicative area needs, the ULHPC
team frequently builds, installs, and supports a wide variety of sci-
entific applications. Frequently, these applications must be rebuilt
to fix bugs and offer updated versions of these software, or sim-
ply to support new versions of the Operating System (OS), MPI
implementation, compiler, and other dependencies (for instance in
case of updated PMIx [2], Slurm or CUDA interfaces). This building
process, especially when it comes to tailor the software perfor-
mance with heterogeneous computing resources, is notoriously
complex. Luckily, novel software management frameworks such as
EasyBuild [5] or Spack [4] have arisen and permitted to simplify
the building process combined with the automatic generation of
Environment Modules (compliant with LMod [8] in our case).

Since 2014, our scientific software stack is generated and de-
ployed in an automated and consistent way through the RESIF
framework (Revolutionary EB-based Software Installation Frame-
work), a wrapper on top of Easybuild meant to pilot user software
generation. The main objectives of this project was to fully auto-
mate software builds and to supports all available toolchains and
software sets through a clean hierarchical modules layout to fa-
cilitate its usage and provide an intuitive interface to the users.
We favoured an intermediate layout (i.e., compared to the full hi-
erarchical view) where the software modules are prefixed by a
category level, taken out from one of the supported software cate-
gory or module class, thus leading to the following directory layout:
<category>/<app>/<version>-<toolchain><versionsuffix>. To that
end, the CategorizedModuleNamingScheme was proposed and is
now integrated as part of the available module naming schemes
of Easybuild. Furthermore, at the heart of RESIF remains the man-
agement of software sets for which different policies (configuration
sources etc.) and building roles (system administrator, end user etc.)
are supported. We also wanted to facilitate the reproducible and
self-contained deployment of the complete software stack, coupled
with a strong versioning policy between environments and (typi-
cally) yearly release cycles. A large code review was performed in
2017 with the arrival of the Iris cluster to bring a YAML-based [1]
description of the software sets, piloted through a dedicated control
repository hosted on a private Gitlab instance. It also defines the
roles and configuration sources organized by priority in a hierarchi-
cal way inspired from Puppet Hiera [9]. A second repository was
setup to host custom easyconfigs (i.e., Easybuild recipes for building
software) adapted to the ULHPC platform characteristics (Slurm and
MPI bindings, licences server details, etc.). While this second release
sustained the deployment of 3 generations of software sets until
2019, the workflow proved to be quite complex and hard to maintain.
Furthermore, the broken compliance with streamline EasyBuild de-
velopments led to an explosion of custom configurations. With the
advent of a new supercomputer (named Aion) featuring a different
CPU architecture (AMD Epyc instead of Intel Broadwell/Skylake),
and to mitigate the identified limitations, a complete code refac-
toring was initiated leading to the RESIF 3.0 framework presented
in this article. It shall bring the following benefits within an HPC
or research computing center using it depending on the profile of
the person interacting with this framework: site managers will see
a more consistent and distributed workflow within the building
operational team, improving the turn-around time as well as the
software ecosystem quality; system administrators will optimized

Default (HOME) environment

settings/default.sh

settings/<cluster>[-gpu].sh

Te
st

in
g

En
vi

ro
nm

en
t

Production environment

settings/prod/
<cluster>[-gpu].sh

2020a 2021a

2020a 2021a

Figure 1: RESIF 3.0 settings hierarchy organization

the time spent on the user software stack management in a robust
and systematic workflow tailored to meet the evolving user needs
and expectations with minimal efforts. Finally, end users will be
offered the possibility to easily extend the proposed software set
and contribute to the environment developments, typically when
it comes to test and bring to production an updated version of a
given application.

2 RESIF 3.0 ARCHITECTURE-AT-A-GLANCE
RESIF developments are piloted from a single repository meant
to be hosted on a private Gitlab or Gitolite instance (yet publicly
available on Github1). It holds the configurations and setup tools,
the launcher scripts used to deploy, complete or test the software
stack, specialized software sources stored using the Git-LFS (Large
File Storage) extension to complete the global directory hosting
installation kits and source files, custom easyconfigs (of prime im-
portance the ULHPC bundles defining the software sets to be built
for a given release), documentation files managed by the MkDocs[7]
suit allowing for both a local offline rendering and a remote deploy-
ment, and finally various scripts piloting the interaction with the
Easybuild community developments discussed later.

The global path for RESIF-related generated files is identified
by the environment variable $RESIF_ROOT_DIR. This permits to
support three operation modes: (1) home builds for end-users, (2)
testing builds for a group of userswithin a shared project directory –
/work/projects/sw in the sequel and (3)production-ready builds
operated by a dedicated user resif having write rights within the
target /opt/sys/apps system directory.

To reflect these roles, configuration settings are embedded in the
specific files provided under the settings/ directory. Similarly to
Puppet Hiera or Ansible variable structures, these settings are orga-
nized in a hierarchical way depicted in Figure 1. On top of this hierar-
chy, the <version> settings match the target release of the ULHPC
software set which is aligned with the EasyBuild foss and intel
toolchains release (Ex: 2020a – see Table 3). Below the version layer
stands the architecture-dependent settings aggregated within clus-
ter settings, where the CPU architecture is automatically guessed.
For instance, the Intel Skylake micro-architecture is detected from
the availability of the AVX512 extension. For convenience, GPU
settings are explicitly separated. Finally, all settings inherit from
the default configuration used in particular for home-based deploy-
ments. All three deployment scenarios bring specialized Easybuild
configurations summarized in the Table 1.
1See https://github.com/ULHPC/sw

https://github.com/ULHPC/sw

RESIF 3.0: Toward a Flexible & Automated Management of User Software Environment on HPC facility PEARC ’21, July 18–22, 2021, Boston, MA, USA

Table 1: Deployment scenarios and associated configurations supported by RESIF 3.0

Operation Mode $RESIF_ROOT_DIR Activation (source
settings/[...])

Custom Configurations

Home builds $HOME/.easybuild/local default.sh

Testing builds (shared project) /work/projects/sw/resif [<version>/]<cluster>[-gpu].sh Group write permissions & group ID bit
Production builds (resif user) /opt/apps/resif prod/[<version>/]<cluster>[-gpu].sh

/opt/apps/resif/<cluster>/<version>/

default

<arch>: broadwell (CPU)

…
ULHPC-*

…
hwlocsystem

…
LLVM

…
GCCcompiler

foss inteltoolchain

…
GROMACS

…
OpenFOAMbio cae

…
NAMD chem …

HDF5data

…
GDB debugger …

CMakedevel

…
R

lang,
lib,

math,
numlib…

…
OpenMPImpi

Python
Java

…
VASP phys …

ParaView
…

ArmForgeperf,
tools,
vis…

<arch>: skylake (CPU)

…
ULHPC-*

…
hwlocsystem

…
LLVM

…
GCCcompiler

foss inteltoolchain

…
GROMACS

…
OpenFOAMbio cae

…
NAMD chem …

HDF5data

…
GDB debugger …

CMakedevel

…
R

lang,
lib,

math,
numlib…

…
OpenMPImpi

Python
Java

…
VASP phys …

ParaView
…

ArmForgeperf,
tools,
vis…

<arch>: epyc (CPU)

…
ULHPC-*

…
hwlocsystem

…
LLVM

…
GCCcompiler

foss inteltoolchain

…
GROMACS

…
OpenFOAMbio cae

…
NAMD chem …

HDF5data

…
GDB debugger …

CMakedevel

…
R

lang,
lib,

math,
numlib…

…
OpenMPImpi

Python
Java

…
VASP phys …

ParaView
…

ArmForgeperf,
tools,
vis…

<arch>: gpu (CUDA-opt imized)

…
ULHPC-gpu

…
CUDAsystem

…
LLVM

…
GCCcompiler

fosscuda intelcudatoolchain

…
GROMACS

…
NAMDbio chem

…
HDF5 data …

PyTorchdevel

…
OpenMPImpi

…
Theano

lang,
lib,

math,
numlib

…

TensorFlow
pyCUDA

…
VMD

…
Horovodperf,

tools,
vis…

Keras
cuDNN

Aion cluster

Default Dual-CPU Compute Nodes

Iris cluster

GPU Compute Node GPU (x4)Default Dual-CPU Compute Nodes (broadwell)

Default Dual-CPU (broadwell, skylake) / Quad-CPU Bigmem Compute Nodes (skylake)

MODULEPATH=/opt/apps/resif/aion/<version>/epyc/modules/all MODULEPATH=/opt/apps/resif/iris/<version>/<arch>/modules/all MODULEPATH=\
 /opt/apps/resif/iris/<version>/gpu/modules/all:
 /opt/apps/resif/iris/<version>/skylake/modules/all

Figure 2: ULHPC software modules organization

From these settings, ULHPC modules and their associated soft-
ware are kept organised through the categorized naming scheme.
They are thus hosted within dedicated directories reflecting the clus-
ter and the architecture the applications were compiled against for
optimised builds, i.e., $RESIF_ROOT_DIR/<cluster>/<version>/<arch>/.
In particular, the production-ready modules and software are orga-
nized as depicted in Figure 2 where the MODULEPATH environment
variable is set to hold only one of these directories, and a default
environment is defined as a symbolic link targeting the commonly
supported CPU architecture for a given cluster (Ex: broadwell
for our Intel-based Iris cluster). This ensures the most compliant
default environment. A notable exception concerns the GPU com-
puting nodes for which the accelerated CUDA-optimised scientific
applications are kept as first searched modules, but completed by
CPU-optimised builds (skylake in our case) to offer the most flex-
ible environment. Then software sets are no longer defined as
YAML files. Instead we now rely on native EasyBuild Bundles asso-
ciated with a given toolchain version and organized by software
category as reported in Table 2. This permits to fix for a given re-
lease the major software dependency components abstracted as
local_<name>ver variables in the bundles which facilitates the
porting of a given bundle definition from one version to another.
Table 3 summarizes the components version set for the current
software set releases.
Building from scratch a complete software set takes quite a long
time: around 184h for the 2019b release on the skylake CPU archi-
tecture. Easybuild supports the Slurm Scheduler to submit separate
jobs and set dependencies between them to ensure they are run
in the order dictated by the software dependency graph(s). Our
experience with this natively supported feature was not demon-
strating an expected reduction of the build time as it seems that
the job dependencies are resolved in a linear fashion bringing little

benefit to the parallel submission. For this reason, we are currently
experimenting the reshaping of the bundles software dependency
graph under the form of a dominance tree [3] structure where the
nodes hold the software within the dependency graph of the bundle,
and edges reflect a build dependency. This permits to quickly iden-
tify intermediate dominating software which can be built within
concurrent jobs. Experience from the past software set builds can
be used to assign weights to each node reflecting the expected built
time. A static scheduling allows to set the job dependencies in Slurm
to minimize the completion time of the full building process. Per-
formance evaluations are in progress and demonstrate the interest
of the approach – they will be reported in an expanded version of
this article.

Finally, one of the most annoying limitations in the previous
workflow was the explosion to custom easyconfigs, initially moti-
vated by the necessity to tailor the default build process proposed
by the community to the ULHPC computing node characteristics
and specific Slurm and MPI bindings. Yet after only 3 software set
generations (2017 to 2019), 565 "custom" easyconfigs were managed,
and very quickly the divergence with the streamline EasyBuild de-
velopments led to a dead-end. This error-prone workflow was not
repeated in RESIF 3.0. Taking advantage of the Github integration
where the different EasyBuild repositories are located, specialized
scripts were defined allowing to: (1) create new Pull-Requests (PR)
for custom easyconfigs after checking the code style, and storing in
the control repository the information related to the pending pull-
request in easyconfigs/pull-requests/<ID>. Additional scripts
permits to quickly complement a given pull-request with test re-
ports executed on the HPC facility; (2) update local easyconfigs from
PR commits that might be proposed by reviewers to correct the sub-
mitted easyconfigs. The full process is automated from authorized
queries to the GitHub REST API; (3) closing a merged Pull Request

https://easybuild.readthedocs.io/en/latest/version-specific/generic_easyblocks.html#bundle

PEARC ’21, July 18–22, 2021, Boston, MA, USA S. Varrette et al.

Table 2: ULHPC Bundles Overview

Bundle Name Description Featured applications

ULHPC-<version> Default global bundle for ’regular’ nodes ULHPC-*-<version> (root bundle)
ULHPC-toolchains-<version> Toolchains, compilers, debuggers, programming lan-

guages, MPI suits, Development tools and libraries
GCCcore, foss, intel, LLVM, OpenMPI, CMake, Go, Java, Julia,
Python, Spack...

ULHPC-bd-<version> Big Data Apache Spark, Flink, Hadoop...
ULHPC-bio-<version> Bioinformatics, biology and biomedical GROMACS, Bowtie2, TopHat, Trinity...
ULHPC-cs-<version> Computational science, incl. CAE, CFD, Chemistry,

Earth Sciences, Physics and Materials Science
ANSYS, OpenFOAM, ABAQUS, NAMD, GDAL, QuantumExpresso,
VASP...

ULHPC-dl-<version> AI / Deep Learning / Machine Learning TensorFlow, PyTorch, Horovod...
ULHPC-math-<version> High-level mathematical software and Optimizers R, MATLAB, CPLEX, GEOS, GMP, Gurobi...
ULHPC-perf-<version> Performance evaluation / Benchmarks ArmForge, PAPI, HPL, IOR, Graph500...
ULHPC-tools-<version> General purpose tools DMTC, Singularity, gocryptfs...
ULHPC-visu-<version> Visualization, plotting, documentation & typesetting OpenCV, ParaView...

ULHPC-gpu-<version> Specific GPU/CUDA-accelerated software {foss,intel}cuda, cuDNN, TensorFlow, PyTorch, GROMACS...

which permits to cleanup the control repository from the custom
easyconfigs no longer needed as they are now part of the streamline
developments. Again, the same API is used to automate this opera-
tion. In addition, to prevent any future divergence from streamline
developments, most of the customization is outsourced through
special hooks which are in fact python callback functions that can
be called during the different execution steps of Easybuilds. We
selected the parse_hook function to inject on the fly extras param-
eters in the loaded easyconfig before their processing to simulate
changes embedded in the original easyconfigs files. It permits to
handle transparently installation keys and license definitions within
the generated modules, when those settings are inherently specific
to our site and are not meant to be exposed. These combined ap-
proaches (Github integration and generic hooks) allowed for more
active contributions to the worldwide EasyBuild community while
confining the custom configurations to the strict minimum i.e.,
mainly optimised MPI suits or some commercial/internal software
recipes. In practice, we have reduced by around 90% the number of
custom easyconfigs in the RESIF control repository.

3 CONCLUSION
The increased complexity of HPC software coupled with an en-
hanced diversity in the dimension of computing environments

Table 3: ULHPC software set releases characteristics, mostly
aligned with EasyBuild toolchains release. (*: projections)

Software set release <version>
Toolchain 2019a 2019b 2020a 2021a*
Component (deprecated) old prod devel

GCCCore 8.2.0 8.3.0 9.3.0 10.3.0
foss 2019a 2019b 2020a 2021a
intel 2019a 2019b 2020a 2021a
binutils 2.31.1 2.32 2.34 2.36
Python 3.7.2 3.7.4 3.8.2 3.9.2

(2.7.15) (2.7.16) (2.7.18)
LLVM 8.0.0 9.0.1 10.0.1 11.1.0
OpenMPI 3.1.4 3.1.4 4.0.3 4.1.1

RESIF version 2.0 (old) 3.0 3.0 3.1

#Modules: 229 <arch>: 269 <arch>: 274 <arch>: n/a
gpu: 135 gpu: 151 gpu: n/a

featuring different processor architectures and generations, or the
eventual presence of GPU accelerators remains a challenge. In this
paper, we report the latest developments around RESIF 3.0, our in-
ternal framework aiming at the flexible, automated and consistent
management of the scientific software sets deployed at our HPC
facility. Designed as a wrapper around EasyBuild and LMod [5],
the complete code refactoring effort mitigated previously identified
pitfalls and led to a more versatile tool facilitating reproducible and
self-contained deployment of the complete user software environ-
ment, coupled with a strong versioning policy favouring yearly
release cycles in line with streamline developments. The proposed
concepts are already demonstrating promising results and RESIF
3.0 is already increasing operational efficiency in production at the
University of Luxembourg. A regression testing framework based
on ReFrame [6], not reported in this article, is also rendering our
framework more robust. In all cases, the software management
techniques implemented in RESIF are applicable to a broad range of
HPC facilities and thus may help other HPC centres to consolidate
their own software management stack.

REFERENCES
[1] O. Ben-Kiki, C. Evans, and B. Ingerson. 2009. YAML Ain’t Markup Language.
[2] R. H. Castain, J. Hursey, A. Bouteiller, and D. Solt. 2018. PMIx: Process manage-

ment for exascale environments. Parallel Comput. 79 (2018), 9–29.
[3] R. Falke, R. Klein, R. Koschke, and J. Quante. 2005. The Dominance Tree in

Visualizing Software Dependencies. In 3rd IEEE Intl. W. on Visualizing Software
for Understanding and Analysis. IEEE, Budapest, Hungary, 1–6.

[4] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski,
and S. Futral. 2015. The Spack package manager: bringing order to HPC software
chaos. In SC ’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, Austin, TX, USA, 1–12.

[5] M. Geimer, K. Hoste, and R. McLay. 2014. Modern Scientific Software Manage-
ment Using EasyBuild and Lmod. In 2014 First International Workshop on HPC
User Support Tools. IEEE, New Orleans, LA, USA, 41–51. https://doi.org/10.1109/
HUST.2014.8

[6] S. Khuvis, Z-Q. You, H. Na, S. Brozell, E. Franz, T. Dockendorf, J. Gardiner, and K.
Tomko. 2019. A Continuous Integration-Based Framework for Software Man-
agement. In Proc. of the Practice and Experience in Advanced Research Computing
(PEARC’19). ACM, New York, NY, USA, 1–7.

[7] D. Matthews and W. Limberg. 2018. MkDocs: documentation with Markdown.
mkdocs.org.

[8] R. Mc.Lay. 2013. LMod: A New Environment Module System. https://lmod.rtfd.io.
[9] PuppetLabs. 2015. Puppet Hiera. https://puppet.com/docs/hiera/.
[10] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an

Academic HPC Cluster: The UL Experience. In Proc. of the 2014 Intl. Conf. on High
Performance Computing & Simulation (HPCS 2014). IEEE, Bologna, Italy, 959–967.

https://doi.org/10.1109/HUST.2014.8
https://doi.org/10.1109/HUST.2014.8
https://www.mkdocs.org/
https://lmod.rtfd.io
https://puppet.com/docs/hiera/

	Abstract
	1 Introduction
	2 RESIF 3.0 Architecture-at-a-glance
	3 Conclusion
	References

