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Abstract—This paper studies hybrid precoding (HP) for
mmWave multi-user OFDMA systems with sub-carrier al-
location (SA) consideration. Constrained by a computation
limit on the total number of data streams that can be
processed, we aim to jointly optimize the SA and HP
design to maximize the system sum-rate. This optimization
is first formulated as a computation sparsity-constrained
HP design problem, which is non-convex and challenging
to solve. We then propose two-stage solution approach
to tackle the problem. In stage one, we optimize the
fully digital precoding (FDP) considering the computation
sparsity constraint. In the second stage, we exploit an
alternating MMSE minimization algorithm to reconstruct
the HP’s based on the achieved FDP. A novel analog precod-
ing design, namely “Projected-Gradient-Descent based”, is
then proposed to optimize the analog part of the HP’s.

I. INTRODUCTION

The demand for high capacity in the future wire-

less cellular networks drives the search for new radio

spectrum resources in the millimeter wave (mmWave)

spectrum (between 30 GHz and 300 GHz) [1]. Thanks

to the band’s short wavelength, a large number of an-

tenna elements in a sizable space can be employed for

mmWave systems. Hence, multiple data streams can be

transmitted for multiple users via the spatial multiplexing

which results in significant improvement in spectral

efficiency [2]. However, a large number of antennas will

require the prohibitively high cost and power consump-

tion for multi-user precoding implementation. Therefore,

the tranditional MIMO transceiver architecture is not

suitable for the mmWave hardware technologies [2].

Recently, HP has been considered as a practical alter-

native for mmWave systems. This proposed transceiver

architecture reduces the number of RF chains by ac-

complishing a digital precoder and an analog precoder

[2], [3]. While research on HP for mmWave system is

plentiful [3], a few existing papers have studied resource

allocation problems for MU-OFDMA HB systems. The

work in [4] has proposed a HP architecture for single-

stream MIMO-OFDM to maximize either the signal

strength or the sum-rate (SR) over different sub-carriers

(SCs). [5] considered the time-slot allocation for the

time division multiple access mmWave WPANs and [6]

investigated the user scheduling problem for downlink

multi-user HP massive MIMO systems.
To the best of our knowledge, downlink MU-OFDMA

HB design with considerations on the limited total num-

ber of transmitted data streams has not been studied in

existing literature. This paper aims to fill this gap where

the joint SA and HP design for mmWave MU-OFDMA

system is studied to maximize the system SR under a

constraint on the number of data streams. Unfortunately,

the constraint presents a major obstacle in solving the

optimization since it is composed of integer variables. In

this paper, we present two-stage based solution approach

to this difficult non-convex mixed-integer optimization

problem. This solution is based on the premise that

near-optimal HP can be designed by approximating

an optimal fully digital design [2]. To deal with the

sparsity constraint, we develop a general ℓ1-norm re-

weighted solution by regularizing the sparsity function

into an approximated linear form and iteratively solving

the approximated problem. In addition, an alternative

method is employed for designing HP in stage two. For

performance evaluation purpose, we also present a joint

SA and HP algorithm as referencing benchmark.

II. SYSTEM MODEL

Consider the downlink mmWave MU-OFDMA HB

system as illustrated in Fig. 1 where a base station (BS)

equipped with NT antennas and NRF RF chains serves

K single-antenna users over S SCs. Let K and S be the

sets of all users and SCs. If SC s is assigned to user k,

a digital precoding (DP) vector wk,s ∈ CNRF is applied

to the data symbol xk,s ∈ C, intended for user k at this

very SC (|xk,s| = 1). Denote ak,s as a binary indicator

where ak,s = 1 or 0 if user k is assigned SC s or not.
Utilizing the HP, the BS first applies all DP vector

wk,s’s to the corresponding symbol sequences xk,s’s

before employing an NT×NRF AP matrix A to map the

RF signals from the NRF RF chains to the NT antennas.

In this work, we consider the fully-connected RF chains978-1-5386-3531-5/17/$31.00 c© 2017 IEEE
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Fig. 1. Diagram of a mmWave OFDMA multi-user system with hybrid analog/digital precoding.

to antennas structure for the AP matrix in which A is

implemented using unit-modulus analog phase shifter,

i.e,
∣

∣(A)i,j
∣

∣ = 1 ∀(i, j). Assuming coherent detection

at the users, the signal-to-interference-plus-noise ratio

(SINR) at user k over SC s is given by [4].

SINRk,s =
ak,s

∣

∣hH
k,sAwk,s

∣

∣

2

∑

j 6=k aj,s
∣

∣hH
k,sAwj,s

∣

∣

2
+ σ2

. (1)

where σ2 is the power of additive Gaussian noise and

hk,s ∈ CNT is the frequency channel for SC s from the

BS to user k, ∀(k, s), which can be modelled as in [3].
Considering the limitations on the system computa-

tion efforts, we are interested in jointly optimizing SA

and HP design to maximize the system SR under the

constraint on the maximum number of transmitted data

streams. This optimization problem is stated as

max
{ak,s},{wk,s},A

∑

∀(k,s)

log (1 + SINRk,s) (2a)

s. t.
∣

∣(A)i,j
∣

∣ = 1, ∀(i, j) (2b)
∑

∀(k,s)

wH
k,sA

HAwk,s ≤ P (2c)

∑

∀(k,s)

ak,s ≤ D̄, (2d)

where P is BS’s transmit power budget and D̄ is the

maximum number of transmitted data streams.

III. TWO-STAGE BASED SOLUTION FRAMEWORKS

Let pk,s = wH
k,swk,s. Certainly, pk,s = 0 implies

that ak,s = 0 and pk,s > 0 means that ak,s = 1.

Therefore, the total number of transmitted data streams

can be written mathematically as ‖p‖0 where p =
[p1,s, ..., pk,s, ..., pK,S ] is the vector representing the

power of all DP vectors. Thus the inequality (2d) can

be transformed into a norm ℓ0 constraint as

‖p‖0 ≤ D̄. (3)

Specifically, problem (2) can be rewritten as follows.

max
{wk,s},A

∑

∀(k,s)

log (1 + SINRk,s) s. t. (2b), (2c), (3). (4)

Based on the solution framework in [2], [3], we propose

two-stage solution approach in which we aim to optimize

the sparse FDP with constraint (3) being imposed, then

reconstruct a near-optimal HP in the stage two.

A. Stage One – Sparse FDP Optimization

Let uk,s = Awk,s and pFk,s = uH
k,suk,s. Clearly, (3)

equivalents to ‖pF‖0 ≤ D̄. Then, we approximate the

ℓ0-norm of pF as ‖pF‖0 ≈ ∑

∀(k,s) f
(k,s)
apx (pFk,s) where

f
(k,s)
apx (pFk,s) is the concave function that approximates

the step function of pFk,s. Then, the sparse optimization

problem can be expressed as

max
{Fs}

∑

∀(k,s)

log

(

1 +

∣

∣hH
k,suk,s

∣

∣

2

∑

j 6=k

∣

∣hH
k,suj,s

∣

∣

2
+ σ2

)

(5a)

s. t.
∑

∀(k,s)

uH
k,suk,s ≤ P (5b)

∑

∀(k,s)

f (k,s)
apx (pFk,s) ≤ D̄. (5c)

To solve this problem, we first tackle the latter obstacle

by transforming the constraint (5c) into a linear form

using the duality function [9]. Specifically, let f
(k,s)
cnj (z)

be the conjugate function of f
(k,s)
apx (w), we can describe

f
(k,s)
apx (pFk,s) as ẑk,sp

F
k,s − f

(k,s)
cnj (ẑk,s) where ẑk,s is

expressed as [10], [11]

ẑk,s = ∇f (k,s)
apx (w)|w=pF

k,s
. (6)

Hence, for given ẑk,s’s, problem (5) is approximated to

max
{uk,s}

∑

∀(k,s)

log

(

1 +

∣

∣hH
k,suk,s

∣

∣

2

∑

j 6=k

∣

∣hH
k,suj,s

∣

∣

2
+ σ2

)

(7a)

s. t. (5b) and
∑

∀(k,s)

ẑk,su
H
k,suk,s ≤ Z, (7b)

where Z = D̄ +
∑

∀(k,s) f
(k,s)
cnj (ẑk,s). Interestingly, we

can address the non-convex problem (7) by relating it to

a weighted sum-mean square error (MSE) minimization

problem as mentioned in the following proposition.

Proposition 1. The problem (7) is equivalent to the

following weighted sum-MSE minimization problem

min
{uk,s,δk,s,ωk,s}

∑

∀(k,s)

(

ωk,sE

[

∣

∣xk,s−δk,syk,s
∣

∣

2
]

−logωk,s

)

s.t. constraints (5b) and (7b). (8)

where ωk,s and δk,s denote the MSE weight and the

receive coefficient for user k over SC s, respectively.
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Algorithm 1 ITERATIVE SPARSE FDP DESIGN

1: Initialize by setting u
(0)
k,s = θ1NT×1 for all (k, s) ∈

K×S, where θ (> 0) is small enough to satisfy the

constraint (5c), and set lo = li = 0.

2: repeat

3: Calculate
{

z
(lo)
k,s

}

as in (6) and B(lo).

4: repeat

5: Calculate
{

δ
(li)
k,s

}

and
{

ω
(li)
k,s

}

as in (9)–(10).

6: Solve (11) to obtain
{

u
(lo)
k,s

}

and set li = li+1.

7: until Convergence or a stopping criterion trigger.

8: Update lo = lo + 1.

9: until Convergence.

We omit the proof for brevity because it is similar

to that in [12] for the case of a single sum-power con-

straint. It is possible to solve problem (8) by alternately

optimizing over one set of variables while keeping the

other two fixed.

For given FDP uk,s’s and ωk,s’s, the receive coeffi-

cient δ⋆k,s to minimize the MSE for user k over SC s is

the Weiner filter, i.e., MMSE receiver [12], [13]

δ⋆k,s =

(

∑

j∈K

∣

∣hH
k,suj,s

∣

∣

2
+ σ2

k,s

)−1

uH
k,shk,s. (9)

Then, fixing uk,s’s and δk,s’s, the MSE weights ω⋆
k,s’s

can be determined as follows [12], [13].

ω⋆
k,s = e−1

k,s =

∑

j∈K

∣

∣hH
k,suj,s

∣

∣

2
+ σ2

k,s
∑

j∈K/k

∣

∣hH
k,suj,s

∣

∣

2
+ σ2

k,s

, (10)

where ek,s = E

[

∣

∣xk,s − δk,syk,s
∣

∣

2
]

. Finally, for given

δk,s’s and ωk,s’s, the optimal FDP uk,s’s can be obtained

by solving the following QCQP problem.

min
{uk,s}

∑

∀(k,s)

uH
k,s

(

∑

j∈K

ωj,s|δj,s|2hj,sh
H
j,s

)

uk,s

s.t. constraints (5b), (7b). (11)

This problem can be solved easily by employing standard

optimization tools such as CVX solver [14]. By itera-

tively updating {uk,s, δk,s, ωk,s}’s, and zk,s’s, the sparse

FDP can be achieved as summarized in Algorithm 1.

B. Stage Two: Hybrid Precoding Design

In this stage, we exploit an iterative algorithm to

reconstruct the HP from the achieved FDP.

1) Digital Precoding Vectors Design: For a given A,

the MMSE-based HP design problem can be restated as

min
{wk,s}

∑

∀(k,s)

∥

∥u
Spar
k,s −Awk,s

∥

∥

2

2
s.t. (2c). (12)

When the power constraint (2c) is temporarily removed,

the well-known least squares solution can be achieved

as ŵk,s = A†u
Spar
k,s . Then, in order to satisfy the power

constraint, the digital precoder can be normalized as

wk,s =
√
P (
∑

∀(k,s)

∥

∥Aŵk,s

∥

∥

2

2
)−1/2ŵk,s. (13)

2) Analog Precoding Matrix Design: While fixing

{wk,s}’s, A can be optimized by solving

min
A

∑

∀(k,s)

∥

∥u
Spar
k,s −Awk,s

∥

∥

2

2
s. t.|(A)i,j |=1 ∀(i, j).(14)

This problem is classified as a Unit-modulus Least

Square type, which is non-convex and NP-hard due to

the unit modulus constraints. To this end, we propose a

new solution framework for this complex problem which

is summarized in the Algorithm 2.

Denote vr(A) = rowr(A)H , (vr(A) ∈ CNRF)

where rowr(A) is the r-th row of A. Then, the cost

function of problem (14) can be rewritten as

Φ(A)=

NT
∑

r=1

(

µr−2R(πH
r vr(A))+vr(A)HΠrvr(A)

)

,

where uSpar
k,s,r denotes the r-th element of vector u

Spar
k,s ,

µr =
∑

(k,s) u
Spar
k,s,ru

Spar′
k,s,r , πr =

∑

(k,s) u
Spar′
k,s,rwk,s,

and Πr =
∑

(k,s) wk,sw
H
k,s. Problem (14) then can be

decomposed into NT (Pr) sub-problems as

(Pr) min
v

vHΠrv−2R(πH
r v) s. t.|(v)i| = 1, ∀i. (15)

This problem can be solved by the projected gradient

descent-based method, where the updates of the variables

are performed with the unit modulus constraint being in-

tact. Specifically, details of this method are summarized

in Algorithm 2 Steps 5-13 where the derivative of the

objective function in (Pr) with respected to vr can be

calculated as 2 (πr −Πrvr), and αr’s are the step sizes.

In addition, the convergence issue due to the projection

onto a unit modulus constraint in Step 9 can be relieved

based on the following proposition.

Proposition 2. Let λmax
r (Πr) be the maximum eigen-

value of matrix Πr. For any step size satisfying αr ≤
1

4λmax
r (Πr)

, the process in Step 8–12 of Algorithm 2

converges to the KKT point of the non-convex and NP-

hard problem (Pr).

Proof: See Appendix A.

C. Heuristic Solution Approaches

For comparison purposes, we consider a heuristic

algorithm for solving (2). In this heuristic algorithm,

the SA (i.e., ak,s’s) is determined first. The HP for a

given SA is then designed by employing the Orthogonal

Matching Pursuit method (OMP) [2].

We start with a uniform power allocation, i.e.,

wH
k,swk,s = pnom = P/D̄, ∀(k, s). Then, the trans-

mission rate Rk,s can be upper-bounded as Rk,s ≤
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Algorithm 2 HYBRID PRECODER DESIGN

1: Initialize: Run Algorithm 1 to obtain u
Spar
k,s ’s.

2: Select any A(0) ∈ A, set l = 0
3: repeat

4: Fix A(l), update w
(l)
k,s = A(l)†u

Spar
k,s for all (k, s).

5: Fix w
(l)
k,s’s and set v

(0)
r = ej∠(Π†

rπr) ∀r.

6: for r = 1 to NT do

7: Set n = 0.

8: repeat

9: Calculate ξ(n+1)
r =v

(n)
r +2αr

(

πr−Πrv
(n)
r

)

.

10: Project v
(n+1)
r = ej∠(ξ(n+1)

r ).

11: Update n = n+ 1.

12: until Convergence, return vr(A) = v
(n)
r .

13: end for

14: Update l = l + 1.

15: until Convergence or a stopping criterion trigger.

16: Normalize w⋆
k,s’s as in (13).

log
(

1 +
∣

∣hH
k,sA

∣

∣

2
pnom/σ2

)

. For the OPM method,

columns of A are selected from a pre-determined set

of LOMP basis vectors, VOMP = {v1, . . . ,vLOMP}. Let

v⋆
k,s = arg max

v∈VOMP

∣

∣hH
k,sv

∣

∣

2
. Then, we have Rk,s ≤

R̄k,s = log
(

1 +NRF

∣

∣hH
k,sv

⋆
k,s

∣

∣

2
pnom/σ2

)

. Finally, we

set a⋆k,s’s corresponding to the D̄ largest values of R̄k,s’s

to ones while keep others as zeros. After having the SA,

we optimize the HP by solving the following problem.

max
{wk,s},A

R⋆
{a}({wk,s},A) s.t. constraints (2b), (2c),(16)

where R⋆
{a}({wk,s},A) =

∑

∀(k,s) log (1+

a⋆
k,s

∣

∣

h
H
k,sAwk,s

∣

∣

2

∑
j 6=k

a⋆
j,s

∣

∣

hH
k,s

Awj,s

∣

∣

2
+σ2

)

. This problem can be

solved by using the OMP-HP method [2].

IV. SIMULATION RESULTS

We consider a MISO system where the BS is equipped

with 8×8 UPA (M = 64). In this simulation, we utilize

the channel vector as in [3] where the channel to each

user contains of one cluster of 10 paths, all the channel

path gains are assumed to be i.i.d. Gaussian distribution,

and the azimuths are assumed to be uniformly distributed

in [0; 2π], and the AoA/AoD elevations are uniformly

distributed in [−π
2 ;

π
2 ]. The noise variance σ2 is set at

10−13. We also employ the 5G mmWave path loss model

for Austin (f = 38 GHz) as in [15] where the distances

from the users to BS are set randomly between 100 m
and 200 m. In addition, we set K = 16, NRF = 16,

D̄ = 100, P = 1.28 W , and S = 32.

We illustrate the convergence of our proposed algo-

rithm in Fig. 2 where the variations of total achievable

rates achieved by the FDP in stage one and the HP

in stage two over the iterations are shown. As can
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Fig. 2. Total achievable rate versus the iteration index.
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Fig. 3. Total achievable rate versus the transmission power.

be seen, the system rate in each stage increases over

the iterations before reaching its the maximum value.

Specifically, the convergence value of the stage one is the

total achievable rates achieved by the FDP, whereas the

stage two corresponds on total achievable rates achieved

by the designed HP.

Fig.s 3, 4, and 5 present the total achievable rates

versus the total transmission power of the base station

(Pmax), the limited number of data streams (D̄), and

the number RF chains (NRF), respectively. For OMP

designs, perfect angle of arrival (AoA) and angle of

departure (AoD) codebooks are assumed. As can be seen,

the achievable rates achieved by our proposed algorithm

are much higher than that achieved by the heuristic

one in all schemes. In addition, the SRs achieved by

all algorithms increase as the transmission power, the

limited number of data streams, or the number RF chains

increase. Interestingly, in the high regime of D̄, the

achievable rate of all schemes will saturate as D̄ becomes

sufficiently large because of the limitation of the freedom

for designing the digital precoder as illustrated in Fig. 4.

Interestingly, Fig. 5 shows that our proposed algorithms

can achieve the rate near to the upper bound at the high

regime of RF chains which again confirms the superior

performance of our proposed designs.

V. CONCLUSION

This paper has proposed a new joint SA and HP

design for multi-user OFDMA mmWave systems under

limited number of data streams. We have proposed a
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Fig. 4. Total achievable rate versus the limited number of data streams.
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Fig. 5. Total achievable rate versus the number of RF chains.

novel two-stage solution to determined the sparse HP

which aims to maximize the total achievable rate of

the network. Numerical results have illustrated that our

proposed algorithms outperform the reference joint SA

and HP design algorithms and confirmed the efficiency

of our proposed algorithms. We have also studied the

impacts of various parameters on the system SR.

APPENDIX A

PROOF OF PROPOSITION 2

Recall, the gradient of Φr(v) can be expressed as

∇Φr(v) = 2Πrv − 2πr, which yields

‖∇Φr(v) −∇Φr(t)‖22 ≤ 4‖Πr‖22‖v − t‖22
(a)
= 4λmax

r (Πr)‖v − t‖22.
Therefore, if we select the step size satisfying αr ≤
1/4λmax

r (Πr), we can achieve ‖∇Φr(v)−∇Φr(t)‖22 ≤
1

αr
‖v − t‖22. Hence, ∇Φr(v) is (1/αr)–Lipschitz con-

tinuous. Let us introduce the new function of Φr(v) as

Υr(v, t)=Φr(t)+∇Φr(t)
H(v−t)+

1

2αr
‖v−t‖22 (17)

We have Υr(v, t) ≥ Φr(v) and the equality holds if and

only if t = v. We then can rewrite problem (Pr) as

min
v,t

Υr(v, t) s. t. |(v)i| = 1 ∀i. (18)

The iterative method can be employed to solve this

problem where we first optimize with respect to t as

t(n+1) = argmin
t

Υr(v
(n), t) = v(n). (19)

Then, we optimize with respect to v as

v(n+1)=arg min
|(v)i|=1

∇Φr(v
(n))Hv +

1

2αr
‖v − v(n)‖22

= arg min
|(v)i|=1

‖v− v(n) + αr∇Φr(v
(n))‖22,

which is exactly the same as the way we update v
(n+1)
r

in Step 9 - 10 of Algorithm 2. In addition, we have

Υr(v
(n), t(n))≥Υr(v

(n), t(n+1))≥Υr(v
(n+1), t(n+1)).

(20)

Hence, this updating process will converge to a fixed

point (v⋆, t⋆). In addition, it is easy to see that

Υr(v, t
⋆) ≥ Υr(v

⋆, t⋆) and Υr(v
⋆, t) ≥ Υr(v

⋆, t⋆),
which yields that v⋆ and t⋆ are block-wise minimums.

Hence, the process in Step 8–12 of Algorithm 2 con-

verges to v⋆ which is also a KKT point of the nonconvex

and NP-hard problem (Pr).
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