
J
H
E
P
0
5
(
2
0
2
0
)
0
5
8

Published for SISSA by Springer

Received: March 17, 2020

Accepted: April 27, 2020

Published: May 12, 2020

Evidence for a non-supersymmetric 5d CFT from

deformations of 5d SU(2) SYM

Pietro Benetti Genolini,a Masazumi Honda,a Hee-Cheol Kim,b David Tonga

and Cumrun Vafac

aDepartment of Applied Mathematics and Theoretical Physics,

University of Cambridge, Cambridge, CB3 OWA, U.K.
bDepartment of Physics, POSTECH,

Pohang 790–784, Korea
cDepartment of Physics, Harvard University,

Cambridge, MA 02138, U.S.A.

E-mail: Pietro.BenettiGenolini@damtp.cam.ac.uk,

masazumi.honda@yukawa.kyoto-u.ac.jp, heecheol@postech.ac.kr,

d.tong@damtp.cam.ac.uk, vafa@g.harvard.edu

Abstract: We study supersymmetry breaking deformations of the N = 1 5d fixed point

known as E1, the UV completion of SU(2) super-Yang-Mills. The phases of the non-

supersymmetric theory can be characterized by Chern-Simons terms involving background

U(1) gauge fields, allowing us to identify a phase transition at strong coupling. We propose

that this may signify the emergence of a non-trivial, non-supersymmetric CFT in d =

4 + 1 dimensions.

Keywords: Anomalies in Field and String Theories, Field Theories in Higher Dimensions,

Nonperturbative Effects

ArXiv ePrint: 2001.00023

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2020)058

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/427320833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Pietro.BenettiGenolini@damtp.cam.ac.uk
mailto:masazumi.honda@yukawa.kyoto-u.ac.jp
mailto:heecheol@postech.ac.kr
mailto:d.tong@damtp.cam.ac.uk
mailto:vafa@g.harvard.edu
https://arxiv.org/abs/2001.00023
https://doi.org/10.1007/JHEP05(2020)058


J
H
E
P
0
5
(
2
0
2
0
)
0
5
8

Contents

1 Introduction 1

2 The E1 critical point 2

3 Breaking supersymmetry 4

3.1 Topological phases 5

A Majorana spinors and zero modes 10

B An alternative non-supersymmetric deformation 14

1 Introduction

As the dimension of spacetime increases, Gaussian fixed points have fewer relevant op-

erators. This makes it increasingly difficult to start with a free theory and drive it to

strong coupling in the infra-red. By the time we hit d = 4 + 1 dimensions, we are out of

options and we must take a more creative route if we are to discover interacting strongly

coupled behaviour.

One possibility, first mooted in [1], is to study Yang-Mills theory in the d = 4 + ε

expansion. It is straightforward to see that the theory exhibits UV fixed point for small ε,

but it is unclear if it remains trustworthy at ε = 1. (A lucid discussion of the results and

pitfalls of this approach can be found in [2].) More recently, a 6 − ε expansion has been

employed to give evidence for a O(N) fixed point in five dimensions for sufficiently high

N [3]. This putative fixed point was subsequently explored using bootstrap methods [4–7].

Nonetheless, it remains true that the best understood fixed points in five spacetime

dimensions have supersymmetry. These were first found using string theory arguments [8]

and have been explored in great detail in the intervening years [9–14].

The existence of interacting supersymmetric fixed points suggests a very natural way to

explore the landscape of 5d field theories: we start from a supersymmetric theory in the UV

and deform by a relevant operator. Of course, if we wish to break supersymmetry — and we

do — then we necessarily relinquish some control, and since our starting point is strongly

coupled, the suspicion is that it will be difficult to say anything about where we land up.

Nonetheless, in recent years there has been some success at breaking supersymmetry in

lower dimensions to derive dualities for strongly coupled, non-supersymmetric field theories,

albeit dualities that were known previously [15–17]. In particular, the authors of [15, 16]

used information about the topological phases of gapped theories to argue that certain

flows from a supersymmetric fixed point should land on non-supersymmetric fixed points.

Related topological arguments have also been used to explore the phase structure of 4d

gauge theories by adding soft supersymmetry breaking terms to both N = 1 and N = 2

super-Yang-Mills [18–21].
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In this short note, we apply similar arguments to explore the phase structure of RG

flows that emanate from the five dimensional E1 critical point, better known as the UV

completion of SU(2) N = 1 supersymmetric Yang-Mills [8]. We deform the theory by

relevant operators that, at weak coupling, gap out both the scalar and the fermion, leaving

behind only the SU(2) gauge field. Nonetheless, we argue that (given certain assumptions

described more fully below), at strong coupling, certain non-perturbative states remain

gapless. We propose that these may point to the existence of a non-supersymmetric,

interacting fixed point in 4+1 dimensions.

2 The E1 critical point

The E1 fixed point was first identified by Seiberg [8]. It can be thought of as the minimal

UV completion of SU(2) super-Yang-Mills, with no discrete theta angle.1 The fixed point

has symmetry

F = SU(2)I × SU(2)R

Here SU(2)R is the R-symmetry shared by all theories with eight supercharges while SU(2)I
is the global symmetry that gives the theory its enticing name. (This is the first in a

sequence of theories with En global symmetry, and E1 = SU(2).)

The conserved current Jaµ , with a = 1, 2, 3 the SU(2)I index, resides in a short con-

formal multiplet together with a number of other conformal primary operators. These

can be constructed by acting with the supercharge Q on the superconformal primary µia,

yielding [22–24]

µai
Q−→ ψamα

Q−→ Ma, Jaµ

Here i = 1, 2, 3 is an SU(2)R index. The fermionic operators ψ also carry an m = 1, 2

SU(2)R index, now in the fundamental, as well as the α spinor index. Both the current

and the scalar operator M are SU(2)R singlets. The operators µ, ψ and (M,J) have

dimension ∆ = 3, 3.5 and 4 respectively. In what follows we will make use of both the

relevant scalar operators µ and M to deform the theory.

The deformation by the the scalar operator Ma is well studied. We add

δL = haMa (2.1)

This can be thought of as weakly gauging the SU(2)I flavour symmetry and giving an

expectation value h to the real scalar in the vector multiplet. Importantly, this deformation

preserves supersymmetry, but breaks SU(2)I → U(1)I . The E1 fixed point then flows to

supersymmetric Yang-Mills with gauge group SU(2) and vanishing discrete theta angle.

The low-energy physics is given by

LYM =
1

g2
tr

(
−1

2
FµνF

µν −DµφDµφ− iλ̄γµDµλ+DiDi + iλ̄[φ, λ]

)
(2.2)

1In 5d theory with SU(2) gauge group, there are two choices of θ angle (θ = 0 or π) coming from the

fact π4(SU(2)) = Z2 [10].
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instanton

W-boson

W-boson

instanton

Figure 1. Brane configurations corresponding to the pure SU(2) gauge theory on the Coulomb

branch. Horizontal lines represent D5-branes and vertical lines NS5-branes. A fundamental string

stretched between D5-branes corresponds to a W-boson in the field theory on the left-diagram,

while it appears as an instanton of the dual ŜU(2) gauge theory on the right. The supersymmetric

CFT arises when the rectangle shrinks to a point.

Here λ is a symplectic Majorana spinor; we describe properties of this spinor in appendix A.

The scale of the IR gauge coupling is set by the relevant perturbation in the UV: |h| = 1/2g2

The surviving U(1)I ⊂ SU(2)I symmetry is identified as the topological current in the

low-energy theory,

J top =
1

8π2
∗ trF ∧ F (2.3)

The fact that this topological symmetry is enhanced to SU(2)I at the fixed point was first

noted in [8], and has since been verified through analysis of instanton zero modes [23], the

superconformal index [25], and the Nekrasov partition function [26]. Indeed, the existence

of such symmetry enhancement in the ultra-violet is a recurring theme in five dimensional

gauge theories [27–44].

The enhanced SU(2)I symmetry at the fixed point means that we flow to SU(2) super-

Yang-Mills regardless of the direction of the parameter ha in (2.1). In particular, if we

fix a direction — say ha = hδa3 — then for both h > 0 and h < 0 we flow to SU(2)

super-Yang-Mills and, ultimately, to the free theory.

If we move onto the Coulomb branch, then the transition between the theories at h > 0

and h < 0 proceeds smoothly. This is seen very clearly in the brane diagrams of [12, 13],

as shown in the figure 1. Viewed from the low-energy field theory, this is a transition

from a theory with 1/g2 > 0 into the regime that seemingly has 1/g2 < 0. The result

can be viewed as a kind of UV duality, where the theory with 1/g2 < 0 is again described

by super-Yang-Mills, but with a dual gauge group that we denote as ŜU(2). The gauge

couplings and scalar expectation values are related by

1

ĝ2
= − 1

g2
and φ̂ = φ+

1

2g2
(2.4)

The W-bosons in one regime morph smoothly into the instantons in the other.
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The supersymmetric conformal theory corresponds to the point where both φ, 1/g2 →
0. In this limit, the gluons and gluinos for both SU(2) and the dual ŜU(2) gauge group are

massless. The masses of the vector multiplets in SU(2) are proportional to the vertical side

of the rectangle in figure 1 and the masses of the vector multiplets in ŜU(2) are proportional

to the horizontal side of the rectangle. Moreover, when both gauge groups are massless

in addition we get tensionless strings (which, on the Coulomb branch, arise as solitonic

monopole strings). The tension of this string is proportional to the area of the rectangle

in figure 1. Note that when the SU(2) gauge groups become massless, there are massless

gluinos carrying SU(2)R charge. Similarly, when ŜU(2) is massless the vector multiplet

states carry SU(2)I charge. So, at the conformal point, we have massless modes carrying

both SU(2)R and SU(2)I charges.

We will soon break supersymmetry and, in doing so, lift the Coulomb branch. But

the parameter h which controls the coupling 1/g2 will continue to be important, as will

the enhanced SU(2)I symmetry at the UV fixed point. We will provide evidence that,

even after supersymmetry breaking, massless modes carrying both U(1)R ⊂ SU(2)R and

U(1)I ⊂ SU(2)I charges persist at infinite coupling.

3 Breaking supersymmetry

The superconformal current multiplet contains a second relevant scalar operator, µ, with

dimension ∆[µ] = 3. We can turn this on to flow away from the E1 fixed-point, but only at

the expense of breaking supersymmetry. This can be viewed as weakly gauging the SU(2)I
flavour symmetry and giving an expectation value to the D-term in the vector multiplet.

Our primary interest in this paper lies in the RG flows that result from turning on

both relevant operators at once,2

δL = haMa + daiµai with ha = hv̂a and dai = m̃iv̂a (3.1)

where v̂a is a unit 3-vector. These deformations preserve a U(1)I ⊂ SU(2)I as well as as

the subgroup U(1)R ⊂ SU(2)R. We will be interested in the phase structure of the theory

as we vary h and m̃.

When |m̃| � h2, we first flow to SU(2) super-Yang-Mills (2.2) and subsequently turn

on a further mass deformation that breaks supersymmetry. This mass deformation can

be easily identified since it corresponds, up to a proportionality factor, to a turning on a

D-term in a background U(1)I vector multiplet. The action (2.2) is deformed by

δL = mi tr

(
i

4
λ̄σiλ+ φDi

)
(3.2)

where the IR deformation mi is proportional to the UV deformation mi ∼ m̃i; we will

see below, and in the appendix, that this proportionality factor includes a sign, so that

mi = sign(h) m̃i. This gives a mass to φ, lifting the Coulomb branch, as well as to the

adjoint fermion λ. (The parameter mi has dimension 2; the physical mass of both the

2We discuss a different non-supersymmetric deformation in appendix B.

– 4 –



J
H
E
P
0
5
(
2
0
2
0
)
0
5
8

scalar and the fermion is g2m.) The result is that the theory now flows to pure SU(2)

Yang-Mills in the infra-red. We can, however, glean more information by studying the

topological phase of the fermions. As we will see, this will ultimately allow us to also say

something about the strongly coupled phase h2 � |m̃|.

3.1 Topological phases

To make progress, we first make a choice for the supersymmetry-breaking masses, say

m̃i = (0, 0, m̃) (3.3)

This picks a specific choice of unbroken U(1)R ⊂ SU(2)R. We then introduce background

gauge fields for our two global symmetries: AR for U(1)R ⊂ SU(2)R and AI for U(1)I ⊂
SU(2)I . After integrating out the gapped fermions, we wish to determine the effective

Chern-Simons term for these background fields

SCS =
∑
a=R,I

ka
24π2

∫
Aa ∧ dAa ∧ dAa (3.4)

There can also be mixed Chern-Simons terms which we will discuss later in this subsection.

Our goal is to determine the levels kR and kI in various parts of the phase diagram,

labelled by h and m̃. This phase diagram is shown in figure 2 and naturally splits into

quadrants, depending on the sign of h and m̃. At a generic point in the phase diagram,

the global symmetry of the theory is U(1)R × U(1)I ; this is enhanced to SU(2)R × U(1)I
along the h-axis, except at the origin where it is further enhanced to SU(2)R × SU(2)I .

Crucially, if we determine the Chern-Simons levels in one quadrant — say, h > 0 and

m̃ > 0 — then we can determine them in all regions. This follows from the existence of a

Z2 × Z2 symmetry acting on the moduli space of the theory, in which we act with SU(2)I
and SU(2)R to continuously rotate the vector v̂a and m̃i in (3.1) to their negative values.

Acting with SU(2)I results in the map

(h, m̃)→ (−h,−m̃); AI → −AI ; (kI , kR)→ (−kI , kR); (3.5)

Acting with SU(2)R gives

(h, m̃)→ (h,−m̃); AR → −AR; (kI , kR)→ (kI ,−kR); (3.6)

In particular, combining these two operations we learn that, for a fixed m̃, as we cross the

h axis from h > 0 to h < 0 both levels flip sign: (kI , kR) → (−kI ,−kR). Our task now is

to evaluate these Chern-Simons levels.

The Chern-Simons term for AR can be determined by a simple perturbative calculation

in the weakly coupled regime h2 � |m|. We work in the regime h > 0. The symplectic

Majorana fermion λ decomposes into fermions which carry charge ±1 under U(1)R. Inte-

grating out these fermions3 induces the AR Chern-Simons term in (3.4) with

kR = −3

2
sign(m) (3.7)

3This result is the same as for a massive Dirac fermion charged under U(1). Details of the calculation

for a Dirac fermion can be found, for example, in [45]. The computation for a symplectic Majorana fermion

is broadly similar, differing only in minor points.
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h

m̃

E1

YM(−2,−3/2)

YM(+2,−3/2)

YM(+2,+3/2)

YM(−2,+3/2)

SYMSYM

?

?

Figure 2. Phase diagram for 5d SU(2) SYM; the subscripts denote the levels (kI , kR) of the

background Chern-Simons terms. The dark blue point at the origin is the strongly-coupled UV

fixed point with enhanced global symmetry. Turning on relevant deformations triggers RG flows

with different endpoints which, at weak coupling, coincide with pure Yang-Mills. (Strictly speaking,

the labels YM and SYM tell us about the physics close to the fixed point; the fixed point itself is

free.) The Z2 × Z2 symmetry of the diagram is due to the “UV duality.”

The familiar sign(m) term is consistent with the expectation (3.6) based on symmetry. The

factor of 3 arises because λ transforms in the adjoint of the SU(2) gauge group. The half-

integer value for kR reflects the fact that SU(2)R suffers a non-perturbative anomaly [11];

with SU(2)R broken to U(1)R, this non-perturbative Z2 anomaly manifests itself as the

familiar parity anomaly.

Next we turn to the background Chern-Simons terms for U(1)I . There are no pertur-

bative states carrying these quantum numbers so we learn nothing from simply integrating

out the massive gluino. Nonetheless, there is a simple argument that fixes the level kI . This

follows from the requirement that the supersymmetric prepotential F is invariant under

the UV duality (2.4), which sends

h→ −h and φ→ φ+ h (3.8)

This tells us that the prepotential (when m̃ = 0) takes the form4

6F = 12hφ2 + 8φ3 − 2h3

where the first term arises from the tree-level action, the second from a one-loop compu-

tation, and the final term is fixed by the duality. (The lack of an h2φ can be argued as

follows: any fermion charged under U(1)I must come with ± charges under U(1)gauge and

therefore contributes schematically as |h + φ| + |h − φ|. But, at weak coupling, h � φ,

4The prepotentials of rank 1 and rank 2 5d SCFTs with mass deformations are obtained in [46] by using

UV symmetries as we did here. The prepotential presented in (2.6) in [46] for the E1 theory agrees with

our prepotential after the replacement m0 → 4h.

– 6 –
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this implies there is no h2φ term. Moreover, there is no transition as the prepotential is

extended to h = 0.) The h3 term in the prepotential contains the information about the

U(1)I Chern-Simons term, which we learn is

kI = −2 sign(h) (3.9)

The fact that the level depends on the sign of h is consistent with (3.5).

Evidence for a non-supersymmetric CFT. As we pass from one quadrant to another

in the (h, m̃) plane, the background Chern-Simons levels jump. This ensures that something

interesting happens on each of the coordinate axes.

This “something interesting” could come in different flavours. Perhaps the least inter-

esting something is that a symmetry is spontaneously broken. For example, there could be

a phase at strong coupling in which the U(1)R and U(1)I symmetries are spontaneously

broken. Alternatively, the Z2 symmetry which maps h→ −h may be spontaneously broken

at h = 0, resulting in a first order phase transition. We cannot rule out such scenarios.

Nonetheless, under the assumption that the various global symmetries survive, the

jump in the Chern-Simons levels signifies the existence of new massless modes, charged

under the corresponding global symmetry. Such behaviour is seen if we fix h, and vary

m̃ > 0 to m̃ < 0, moving from the upper-right quadrant to the lower-right in figure 2. Here

the new light degrees of freedom are obvious: they are the massless scalar and gluino that

emerge at the m̃ = 0 supersymmetric axis. The fermions are charged under U(1)R and

neutral under U(1)I , and this is in evidence in jump of the Chern-Simons levels.

However, our analysis also shows that something interesting must happen on the h = 0

axis as we fix m̃ > 0 and vary h from positive to negative, transitioning from the upper-

right quadrant to the upper-left in figure 2. If the global symmetries are not spontaneously

broken then there must be massless modes. Since both kR and kI jump as we cross the

h = 0 axis, these modes must be charged under both symmetries. In particular, the fact

that these modes are charged under U(1)I means that non-perturbative states become

massless even after breaking supersymmetry.

This suggests that turning on the relevant, supersymmetry breaking operator µia, with

h = 0 in (3.1) results in a flow to fixed point with new massless degrees of freedom. If

so, the important question becomes: what is the nature of this fixed point? Is it free? Or

is it interacting? We note that in the supersymmetric theory, the existence of massless

modes carrying SU(2)R and SU(2)I charges is the hallmark of an interacting conformal

field theory. Relatedly, it is natural to conjecture that massless modes carrying both

U(1)R and U(1)I charges signify a non-supersymmetric interacting fixed point. It would

be very interesting to try to use bootstrap methods, along the lines of [4–6], to look for

evidence for the existence of such a non-supersymmetric CFT in 5d.

Mixed Chern-Simons terms. We can glean further information about the possible

massless states that appear as we vary m and h by evaluating various mixed Chern-Simons

terms. The simplest such terms arise for the U(1)R×U(1)I symmetries that we considered

– 7 –
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previously. In general, the Chern-Simons terms take the form,

Smixed =
∑

a,b,c=R,I

kabc
24π2

∫
Aa ∧ dAb ∧ dAc

In this notation kRRR = kR and kIII = kI ; these were computed in (3.7) and (3.9) re-

spectively. The mixed terms cannot be determined by a direct perturbative calculation

because each involves the U(1)I , under which only non-perturbative states are charged.

Nonetheless, these too can be fixed by using the UV duality, as we now explain.

First, the term with kRII vanishes when m̃ = 0. This is because this term is linear

in AR, but the full SU(2)R is unbroken when m̃ = 0. When we turn on small m̃, so that

h2 � |m| and the theory is weakly coupled, the masses of fermions charged under U(1)I are

determined by the sign of h. Such fermions sit in weakly broken SU(2)R representations,

and integrating them out cannot generate a mixed U(1)R−U(1)2I Chern-Simons term. This

ensures that kRII = 0 at weak coupling h2 � |m|.
To compute the level kRRI we again employ the duality on the Chern-Simons terms

in the supersymmetric theory. When m̃ = 0 and φ 6= 0, so we sit on the Coulomb branch,

the low-energy theory will have a mixed U(1)gauge × SU(2)2R Chern-Simons term

SRRg =
q

8π2

∫
Ag ∧ tr(FR ∧ FR) with q = 2 sign(φ) (3.10)

The supersymmetry relates this to an additional coupling of the form 2φ(FR)2 up to a

numerical factor. Then the duality implies that the low-energy theory should involve

another term h(FR)2 so that the linear couplings in φ and h remain invariant under the

duality map (3.8). Supersymmetry then relates this to the mixed U(1)I × SU(2)2R Chern-

Simons level. After subsequently turning on m̃, so that SU(2)R is broken to U(1)R, we have

kRRI = sign(h) (3.11)

Once again, this Chern-Simons level holds in the weak coupling regime h2 � |m|, where

there instanton states are all heavy. Note that, once again, this Chern-Simons level distin-

guishes the h > 0 and h < 0 phases.

Finally, there are also mixed U(1)-gravitational Chern-Simons terms. These take

the form

Sgrav =
∑

a=g,R,I

κa
192π2

∫
Aa ∧ Tr (R ∧R)

where the sum is now over U(1)gauge, U(1)R, and U(1)I symmetries, the former holding

only on the Coulomb branch with φ 6= 0. The first two of these follow from standard

perturbative calculations,

κg = 2 sign(φ) and κR = −3

2
sign(m)

We can then compute the mixed U(1)I -gravitational Chern-Simons term by relating it to

κg, using the same kind of argument involving supersymmetry and the UV duality that we

invoked to determine kRRI . This time, we have

κI = sign(h)

– 8 –
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String defects. The different topological phases can also be seen in the behaviour of

string defects. As we now explain, such string defects necessarily carry chiral fermions,

where the chirality is determined by the sign of the Chern-Simons terms.

When such string defects are aligned along the x1 direction, the background field

strengths Fa = dAa, with a = R, I, have a profile which obeys the modified Bianchi

identity

dFa = 2πqa

4∏
i=2

δ(xi)dxi (3.12)

where qa labels the magnetic charge of the string. In the presence of such a string defect, a

general, mixed Chern-Simons term transforms under the gauge transformation δAa = dΛa
as [47]

δScs =
kabc
8π2

∫
d(Λa) ∧ Fb ∧ Fc = −kabc

2π
qa

∫
R2

ΛbFc (3.13)

This means that there exists anomaly inflow toward the 2d worldsheet of the string defect.

The usual anomaly inflow argument means that this anomaly is cancelled by chiral

modes on the defect. Typically, this happens if the chiral modes realise a U(1)R × U(1)I
current algebra with level |kab|, where

kab = −kabcqc

This means that the ’t Hooft anomalies can be computed from chiral modes living on the

string defect. We refer the reader to [48] and references therein for more details about the

anomaly inflow in 5d gauge theory.

For the U(1)I string defect, the chirality of the zero modes on the string is dictated by

the sign of the corresponding Chern-Simons term: kI = 2 sign(h). This means that there is

a jump in the chirality of the zero modes as we cross from h > 0 to h < 0, again signalling

the presence of a phase transition.

There, however, is a subtlety for the U(1)R string defect with qR odd. This arises

because U(1)R symmetry suffers a parity anomaly, manifested by the half-integer Chern-

Simons level (3.7). It is not possible to realise a chiral current algebra on the defect

worldsheet carrying such a half-integer level. This means that the anomaly inflow argument

cannot work for string defects with qR odd. Instead, the string defect provides a situation

in which the U(1)R symmetry is not conserved. In appendix A, we exhibit a realisation of

the string defect for the U(1)R symmetry and show that its worldsheet houses Majorana-

Weyl fermions, which are neutral under U(1)R. We will show that these Majorana-Weyl

fermions again flip chirality as we vary h > 0 to h < 0.

Note that there is no such issue for qR even, where the chiral fermions are now ex-

pected to furnish a representation of the current algebra. Alternatively, one could consider

doubling the theory, and introducing a string defect for the diagonal U(1)R symmetry. The

Majorana-Weyl fermions that we describe the in appendix now come in pairs and again

give a representation of the current algebra.

– 9 –
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A Majorana spinors and zero modes

The spinor representation of Spin(1, 4) is pseudo-real. This does not allow us to impose a

Majorana condition on a single fermion. However, if we take two Dirac fermions and ask

that they transform in a doublet of an SU(2) global symmetry, then this too is a pseudo-

real representation. This means that we can impose a reality condition on a pair of Dirac

fermions. The result is the symplectic Majorana spinor. It has the same number of degrees

of freedom as a Dirac spinor, but with a manifest SU(2) symmetry which, in the context

of our supersymmetric theory, is identified with SU(2)R.

We will need to understand the properties of these symplectic Majorana fermions in

some detail. We work in signature (−+ + + +) with gamma matrices

γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
, γ2 =

(
σ1 0

0 −σ1

)
,

γ3 =

(
σ3 0

0 −σ3

)
, γ4 =

(
−σ2 0

0 σ2

)

with σa the usual Pauli matrices.

We take parity to act as x1 7→ −x1. Under parity and (anti-unitary) time reversal, a

Dirac fermion ψ transforms as

P : ψ 7→ iγ1ψ and T : ψ 7→ −iγ0γ4ψ (A.1)

These obey P2 = T 2 = (PT )2 = (−1)F ; these generate the quaternionic group Q8. Under

charge conjugation, a Dirac spinor transforms as

C : ψ 7→ ψC = γ4ψ? (A.2)

As anticipated above, it is not consistent to set ψ = ψC . Instead, we introduce to a pair

of Dirac spinors, ψm, m = 1, 2, and impose the symplectic Majorana condition

ψm = εmn(ψn)C (A.3)

(Strictly speaking, this should be called a pseudo-symplectic Majorana condition.) For

such a Majorana fermion there is no charge conjugation because SU(2)R is pseudoreal.

(Indeed, the transformation (A.2) now coincides with a rotation by π/2 in SU(2)R.)

Adding the supersymmetry breaking deformation breaks this global symmetry group

G. The naive, SU(2)R-invariant mass term ψ̄ψ vanishes for a symplectic Majorana spinor.

Instead, we have mass terms transforming as a triplet of SU(2)R,

Lm = imi(ψ̄mσimnψ
n) (A.4)

These are the form of the mass terms that arise in our supersymmetry breaking deformation

(3.2). For any choice of mi, the SU(2)R symmetry is broken to U(1)R.
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The mass deformation preserves a choice of time reversal5 T ′ with (T ′)2 = (−1)F .

In contrast, the mass terms break parity P. Since we now have a U(1)R symmetry, it

is possible to define a new charge conjugation symmetry C′, although one can check that

this too is broken by the mass terms. However, the combination C′P survives and obeys

(C′P)2 = (−1)F and C′PT ′ = (−1)FT ′C′P; together these generate the group D8.

There is a simple argument that a massive spinor in 5d must break C′ and P. The little

group in 5d is SO(4) = SU(2)l × SU(2)r. Quantising a minimal spinor in 5d (either Dirac

or symplectic Majorana) gives rise to 4 states with vanishing momentum and these sit in

the (2, 0)+ ⊕ (0, 2)− representations of SO(4) × U(1)R. This spectrum is invariant under

neither parity (which flips SU(2)l and SU(2)r), nor under charge conjugation (which flips

+ and −). But the spectrum is invariant under the combination C′P. These symmetries

also tally with the induced Chern-Simons term (3.4) which, in 5d, is odd under charge

conjugation (which maps AR → −AR) and parity, but even under time reversal (which

maps F0i → F0i and Fij → −Fij).

Domain walls. In section 3, we characterised the topological phase of the fermions by

the level of the Chern-Simons term for a background U(1)R gauge field. It is also simple to

see effect of this topological classification by considering a spatially dependent mass m(x4),

which interpolates between m < 0 at x4 → −∞ and m > 0 at x4 → +∞. We take the

mass to be aligned as in (3.3),

mi = (0, 0,m(x4))

In the presence of such an interface, the Dirac equation becomes

/∂ψm −m(x4) (σ3)
mnψn = 0 ⇒ /∂ψ −m(x4)ψ = 0

where, in the second equation, we have imposed the symplectic Majorana condition (A.4)

and written ψ1 ≡ ψ. It is simple to check that the zero mode of this Dirac equation is a

Weyl fermion in d = 3 + 1 dimensions. This zero mode is protected by the time reversal

symmetry T ′ (and, for a single Dirac fermion, by the U(1)R symmetry) and cannot be lifted.

String defects. We now describe another manifestation of the phase transition as we

vary h from positive to negative values. In particular, we show that the gapless modes

on a string defect flip chirality as we cross the h = 0 line. This follows from the general

arguments involving string defects and anomaly inflow presented in section 3; here we flesh

this out with more detailed calculations.

We again consider turning on supersymmetry breaking mass deformations in the UV,

but this time we turn on a spatially dependent mass profile mi(x). Such mass profiles were

employed long ago as a signal of topological phases (see, for example, [49]) and revisited

more recently in the context of higher form symmetries [50].

Specifically, we allow the mass to wind in the spatial R3 parameterised by (x2, x3, x4),

m̃i(x) =
m(r)

r
yi with yi = (x2, x3, x4) (A.5)

5For the choice of mass m1 or m3, T ′ coincides with T . For m2 6= 0, T is broken but we can twist with

a broken element of SU(2)R to define a new T ′.
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with m(r) a profile function that depends on r2 = (x2)2 +(x3)2 +(x4)2 such that m(r)→ 0

as r → 0 and m(r)→ m as r →∞. This defines a defect in which the mass mi has winding

+1 in R3. The origin of the defect is R1,1 parameterised by xa with a = 0, 1. In other

words, this corresponds to a string defect. Note that the SU(2)R symmetry is twisted with

the normal bundle from the SU(2)rot rotation symmetry. We can then further include a

monopole profile (3.12) for the background U(1)R gauge field AR, so that we have a ’t

Hooft-Polyakov monopole. However, for the zero mode counting of interest, we need only

the winding (A.5).

We again study this system in the weakly coupled regime h > 0 with h2 � m, where

the physics is captured by mass-deformed super-Yang-Mills. We decompose the 5d spinor as

ψ(x, y) = χ(x)⊗ λ(y)

Accordingly, we split Cliff(1, 4) ∼= Cliff(1, 1)⊗Cliff(3). Our choice of gamma matrices γµ

decompose as

γa =ρa ⊗ 12 with ρ0 = iσ2 , ρ1 = σ1 , ρ? = ρ0ρ1 = σ3

γi+1 =ρ? ⊗ τ i with τ1 = σ1 , τ2 = σ3 , τ3 = −σ2

The Dirac equation then becomes

1

g2
(ρa∂aχ)⊗ λ+

1

g2
(ρ?χ)⊗ τ i∂iλ− χC2 ⊗ [(m̃1 − im̃2)σ2λ

?]− m̃3 χ⊗ λ = 0

We seek solutions with χ a two-dimensional Majorana-Weyl zero mode, obeying

ρa∂aχ = 0 , ρ?χ = ±χ , χ = χC2 ≡ σ3χ?

The resulting equation for the 3d spinor becomes

1

g2
τ i∂iλ± ∓

[
(m̃1 − im̃2)σ2λ

?
± + m̃3λ±

]
= 0

For the mass defect (A.5) with winding +1, there is no normalisable solution for λ−. There

is, however, a single normalisable solution for λ+,

λ+ = exp

(
−g2

∫ r

0
dt m(t)

)(
1− i
1 + i

)
(A.6)

This corresponds to a right-moving Majorana-Weyl zero mode, ρ?χ = +χ propagating

along the defect. In contrast, if we take a mass defect with winding −1, we get a left-moving

zero mode, obeying ρ?χ = −χ. These are closely related to the zero modes discussed in [51].

In the context of super-Yang-Mills, the 5d fermion λ transforms in the adjoint of the

SU(2) gauge group. Correspondingly, the Majorana-Weyl fermion zero mode on the defect

also transforms in the adjoint of the bulk SU(2) gauge group.

As we noted in the main text, the fermi zero modes are not charged under U(1)R,

reflecting the Z2 parity anomaly in this symmetry. In contrast, we would expect to find
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the fermions on the charge qR = 2 string to carry U(1)R charge. Relatedly, if we were

to instead double the theory and introduce a string for the combined U(1)R symmetry,

this too would house 6 Majorana-Weyl fermions, or 3 Weyl fermions, which carry a U(1)R
current algebra at level 3/2 + 3/2 = 3.

Once again, we ask: what happens to this system as we vary h from positive to

negative? This time we cannot rotate the vector v̂a in (3.3) since this would involve also

rotating the spatial plane R3. Instead, we can make use of the outer automorphism of

SU(2). From the brane-web picture, this operation is S-duality of IIB string theory; it

was also applied in the field theoretic context to study duality walls in [52]. The outer

automorphism has the same effect, mapping

(h, m̃i)→ (−h,−m̃i)

But the physics remains the same. If we start in the weakly coupled regime h� |m̃| with

a defect exhibiting, say, a right-moving fermion then, after the duality transform, we must

remain with a right-handed fermion. Yet the duality flips m̃i → −m̃i and hence flips the

winding number in the UV. Since the winding is correlated with the chirality of the zero

mode, the infra-red supersymmetry-breaking deformation mi must be related to the UV

deformation by mi ∼ sign(h) m̃i.

This means that if we fix the winding of m̃i in the UV, and vary the relevant defor-

mation h from positive to negative, then we will transition from mass-deformed SYM with

a right-moving zero mode, to mass-deformed SYM with a left-moving zero mode. Clearly

this cannot happen in a continuous fashion: there must be a phase transition.

At weak coupling, the only way in which chiral zero modes can be lifted is if they

become non-normalisable. This requires that the appropriate fermions become gapless in

the bulk. A simple example of this arises if we generalise our discussion slightly. We could

imagine a deformation which gives a mass to the fermion but, in contrast to (3.2), leaves

the scalar gapless, preserving (at least at the classical level) the Coulomb branch. The

Dirac equation for the adjoint fermion λ is then

γµDµλ− [φ, λ]− 1

4
g2miσiλ = 0

The fermion now receives a mass from both mi and the vacuum expectation value of the

adjoint scalar φ. It is simple to show that when these two are tuned so that g2|m| = 4|φ|,
gapless modes emerge; they carry charges (±1,∓1) under the unbroken U(1)gauge×U(1)R.

We can now examine what becomes of chiral zero modes when either mi or φ winds in some

way. For example, in the presence of a mass defect, the single chiral zero (A.6) persists

provided that |φ| < g2|m|/4. However, it becomes non-normalisable6 when the gapless

mode appears in the bulk, and the mass defect has no zero modes for |φ| > g2|m|/4.

6One can ask similar questions in the presence of a monopole string. When m = 0, the monopole string

houses two chiral zero modes, reflecting the fact that the worldsheet preserves N = (0, 4) supersymmetry.

These zero modes persist when a small mass is turned on. However, when we cross the threshold g2|m| >
4|φ|, the zero modes once again become non-normalisable. (See, for example, the appendix of [53] for an

index theory analysis of this phenomenon.).
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It is, of course, less clear what kind of transition we might have at strong coupling.

Once again, we cannot rule out a first order transition in which some higher energy state,

with zero modes propagating in the opposite direction, becomes the ground state. Suffice

to say that there is no remnant of such of an excited, chiral state at weak coupling.

However, a more tantalising possibility is that the flip of chirality in the defect can

be traced to the existence of tensionless strings, which themselves carry chiral fermionic

modes. Such tensionless strings are themselves a hallmark of 5d supersymmetric fixed

points. Clearly it would be interesting to understand if they also play a role in the putative

non-supersymmetric fixed point.

B An alternative non-supersymmetric deformation

We note that there is a slightly different way to deform the E1 fixed point which breaks

supersymmetry and also results in something interesting in the infra-red. This occurs if

we set h = 0 in (2.1) and turn on the deformation

δL = daiµai with dai = βδai (B.1)

This breaks SU(2)I × SU(2)R → SU(2)diag. For this deformation, we can use anomaly

matching arguments to get some understanding of where we’re likely to end up. First note

that SU(2)R has a discrete ’t Hooft anomaly. This anomaly is associated to Π5(SU(2)) =

Z2, as explained in [11]. (It is closely related to the Π4(SU(2)) = Z2 Witten anomaly in

four dimensions [54].) The anomaly can be seen in the super-Yang-Mills theory (2.2) where

there is a single symplectic Majorana fermion transforming in SU(2)R, and therefore also

exists at the fixed point. Meanwhile, there is no such anomaly for SU(2)I . This means that

SU(2)diag inherits the anomaly and it must be present at the end of the flow (B.1). We

learn that either SU(2)diag is spontaneously broken or there are gapless fermionic degrees

of freedom that remain. The end point of this flow is therefore a candidate for a fixed point

with SU(2)diag symmetry. (It may, of course, simply be a free fermion.) Again, it would

certainly be interesting to understand this further.

In addition, there are obvious generalisations of these ideas to other higher rank UV

fixed points that exhibit an enhanced SU(2)I symmetry. These include the UV completions

of SU(N) with Chern-Simons level |κ| = N and Sp(N) with an anti-symmetric hypermul-

tiplet. Indeed, given the classification proposal for 5d N = 1 supersymmetric theories [55]

(some of which have no gauge theory origin), we have a large list of possible starting points

for deformations leading to non-supersymmetric CFT’s in 5d.
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