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A growing body of work on the dynamics of eukaryotic flagella has noted that their oscil-
lation frequencies are sufficiently high that the viscous penetration depth of unsteady Stokes
flow is comparable to the scales over which flagella synchronize. Incorporating these ef-
fects into theories of synchronization requires an understanding of the global unsteady flows
around oscillating bodies. Yet, there has been no precise experimental test on the microscale
of the most basic aspects of such unsteady Stokes flow: the orbits of passive tracers and
the position-dependent phase lag between the oscillating response of the fluid at a distant
point and that of the driving particle. Here, we report the first such direct Lagrangian mea-
surement of this unsteady flow. The method uses an array of 30 submicron tracer particles
positioned by a time-shared optical trap at a range of distances and angular positions with
respect to a larger, central particle, which is then driven by an oscillating optical trap at
frequencies up to 400 Hz. In this microscale regime, the tracer dynamics is considerably
simplified by the smallness of both inertial effects on particle motion and finite-frequency
corrections to the Stokes drag law. The tracers are found to display elliptical Lissajous
figures whose orientation and geometry are in agreement with a low-frequency expansion
of the underlying dynamics, and the experimental phase shift between motion parallel and
orthogonal to the oscillation axis exhibits a predicted scaling form in distance and angle.
Possible implications of these results for synchronization dynamics are discussed.

I. INTRODUCTION

In his landmark 1851 paper on viscous fluids [1], George Gabriel Stokes not only developed the
theoretical framework for understanding the competition between inertial and viscous forces, but
he also considered several physical situations in which that competition is particularly simple to
analyze. These include his celebrated problems I and II — viscous fluid in the half space adjacent to
a no-slip wall that is impulsively started into motion or oscillated from side to side at some frequency
ω — as well as the case of a sphere oscillated back and forth. From these oscillatory cases and
his newly identified ‘index of friction’ (what we now term the kinematic viscosity ν = η/ρf , η and
ρf being the dynamic viscosity and density of the fluid), he identified from the diffusion equation
ut = ν uxx, for a component u of the fluid velocity, the viscous penetration length

δ = (2ν/ω)1/2 (1)

as the distance over which oscillatory motions decay away from the driving surface. Furthermore,
the fluid oscillations at some distance r from the driving body are phase shifted relative to the
drive by an angle proportional to r/δ.
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There is, of course, no doubt of the validity of his analysis of these particular problems. Yet,
in the motivating biophysical context we consider here there has been longstanding uncertainty
about the relevance of unsteadiness to phenomena that are strongly in the Stokes regime, such as
the beating of eukaryotic flagella and the motion of tracer particles in flows driven by flagellated
organisms. For example, in models for ciliate propulsion [2], it has been recognized that around
large microorganisms covered in a dense cilia carpet, unsteady effects are significant within a region
near the organism surface of width ∼ δ, and outside the flow may be considered steady. Consider
for example the well-studied multicellular organism alga Volvox [3], a spheroid of radius ∼200µm,
covered with thousands of biflagellated somatic cells each 10µm in diameter, spaced some 20µm
apart, whose flagella of length ` ∼ 25µm beat at a frequency f ∼ 25 Hz. The viscous penetration
depth δ∼110µm is significantly less than the organism’s circumference, but it is intriguingly close
to the wavelength of metachronal waves that Volvox exhibits [4, 5]. These are long-wavelength
phase modulations of the beating in the form like that of a stadium wave which, in Volvox, have a
wavelength ∼100µm [5]. Thus, even nearest-neighbor somatic cells have a significant phase shift.
This is in contrast to the situation in Chlamydomonas, the unicellular relative of Volvox whose
size is comparable to Volvox somatic cell and whose two 10 − 12µm flagella are mounted just a
few microns apart and beat at ∼ 50 Hz; the phase shift between the flagella is indeed rather small.
Yet, nearly all models of flagellar synchronization and in particular of metachronal wave formation
[6–14] assume as a starting point the steady Stokes equation. It is only recently, in the context
of the dynamics of tracer particles in flows generated by the beating flagella of alga [15–18] that
unsteadiness has been identified as a potentially significant feature of biophysical flows.

With the goal of motivating further studies of these phenomena, we introduce an experimental
setup by which optical trapping methods [19, 20] are used to measure the motion induced by un-
steadiness over a broad angular sector around a central oscillated microsphere. This setup allows
for a precise test of the underlying microhydrodynamic theory, with results that are complementary
to recent experimental studies of oscillatory flows driven by the more complex beating of Chlamy-
domonas flagella, where the phase lag experienced by tracer particles was measured directly [16, 18].
As shown in earlier work on synchronization [21], the far-field flows due to eukaryotic flagella are
accurately represented by moving point forces. Thus, we expect the present results to inform future
analysis of flagellar interactions on the basis of simplified representations of their dynamics.

We begin in Sec. II with a description of the experimental setup, the frequency response of the
optical trap used to oscillate a microsphere surrounded by an array of tracers, and a discussion of
inertial corrections to the motion of the microspheres. The results presented in Sec. III comprise
the motion of tracer particles at varying distances and angular positions relative to the driven
microsphere. The theoretical analysis of their Lagrangian dynamics is done with the Eulerian flow
field of the classical solution for motion around an oscillating sphere. A low-frequency expansion,
valid when δ is large compared to distances from the central sphere, is used to obtain a geometrically
simple result for the tracer trajectories, which are elliptical Lissajous figures. As the tracers are
submicron, they exhibit substantial thermal fluctuations which compete with the deterministic
displacements from the oscillating flow, and this can be quantified by a suitable Péclet number that
varies with oscillation frequency and distance from the central particle. The phase shift between
motion along the two Cartesian directions, which is responsible for the shape of those orbits, is
calculated in the low-frequency limit and found to be in excellent agreement with the data. The
implications of the observed phase shift between the driven and tracer particles on synchronization
processes relevant to the biomechanics of cilia are discussed in the concluding Section IV.

II. EXPERIMENTAL SETUP

A. Optical trapping

A large silica microsphere (Bangs Laboratory, mean radius a0 ∼ 2.77 µm, coefficient of variation
∼ 10%, ρ0 = 2.65×103 kg m−3) is forced to oscillate horizontally along the x-axis with an amplitude



3

FIG. 1. Schematic of the experiment. (a) The large silica microsphere (grey) of radius a0 = 2.77µm is
oscillated at various frequencies by means of an optical trap. Previous to the actuation of the large particle,
passive microspheres (yellow, red, blue) with radius a1 = 0.505µm are placed at three different distances
R1 = 9.51µm, R2 = 15.85µm and R3 = 25.36µm from the center of the driving bead. They are held in
position via a multiple trap system, and released automatically upon actuation of the central sphere, whose
motion along the x-axis is shown by a double white arrow.

ξ0(t) = ξ0 exp(iωt) in water (density ρw = 103 kg m−3, viscosity η = 10−3 Pa s) by means of
optical tweezers. As we are dealing with linear problems in this paper, here and below it is the
real part of complex expression that corresponds to the physically observable quantities. Smaller
passive polystyrene microspheres (Polyscience, mean radius a1 = 0.505 µm, CV ∼ 5%, density
ρ1 = 1.05 × 103 kg m−3), also referred to as probes or tracers, are located in the horizontal (x, y)-
plane at three different distances Ri (R1 = 9.51 µm, R2 = 15.85 µm and R3 = 25.36 µm) from the
central sphere, and ten different angles θj (j = 1 · · · 10) equally spaced within the interval [0, π], as
shown in Fig. 1. The Lagrangian displacement of a polystyrene sphere located at (Ri, θj) due to
the flow generated by the central bead is denoted by ξij = (ξijx , ξ

ij
y ).

The particles used in each experimental run were extracted from dilute suspensions of micro-
spheres. The polystyrene and silica beads were sufficiently dilute that no particles other than those
used as oscillator or probes interfered with the laser beam during an experiment. The solution was
sealed between a microscope slide and a coverslip separated by a 150 µm gap and held together
by NOA 68 UV-cured glue. Microspheres were trapped at least 50 µm from the chamber walls to
minimize any wall-particle interactions.

The tweezers setup is as described elsewhere [14, 22, 23]. Briefly, the beam of a diode-pumped
solid-state laser (CrystaLaser IRCL-2W-1064, 1064 nm wavelength, 2 W maximum output power)
is deflected by a pair of acousto-optic deflectors (AA.DTS.XY-250@1064 nm, AA Opto-Electronic)
and directed to the back illumination port of a Nikon Ti-E inverted microscope, in which the beam
is reflected by a dichroic mirror and focused on the sample by a Nikon Plan Apo VC 60x objective
(NA = 1.20). The samples were viewed with brightfield illumination and the dynamical response
of the microspheres to the oscillating flow was recorded by high speed camera (Phantom V5.1) at
25,000 frames per second. The acousto-optic deflector allows for time-sharing of the laser beam so
that multiple traps located at prescribed positions can be created in the (x, y) focal plane. The
stiffness of the trap for the silica when it is trapped alone was determined to be k = 50±1 pN µm−1,
by measuring the standard deviation of the particle’s thermal fluctuations.

Initially, the silica bead is trapped at the origin of the coordinate system while the ten
polystyrene particles are held at locations (Ri, θj), one Ri at a time. The central particle is
driven by moving its optical trap along the x-axis by sampling the path as Np points which
are cyclically visited by the acousto-optic deflector. Once the polystyrene particles are released,
the entire laser power is reassigned to the oscillating trap and the trajectories of the silica and
polystyrene particles are recorded. The corresponding tracks in the (x, y)-plane are extracted using
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TABLE I. Physical quantities for experiments in water, in a convenient system of units.

Symbol Definition Quantity Value

ν η/ρw kinematic viscosity of water 106 µm2 s−1

δ (2ν/ω)1/2 viscous penetration depth 28-80 µm

a0 radius of driven microsphere 2.77 µm

a1 radius of tracer microspheres 0.505 µm

D1 kBT/6πηa1 diffusion constant tracer microspheres 0.43 µm2 s−1

ρ0 density of driven microsphere 2.65× 103 kg m−3

ρ1 density of tracer microspheres 1.05× 103 kg m−3

Ri i = 1, 2, 3 unperturbed radial distances of tracers 9.5, 15.8, 25.4µm

θj (j − 1)π/9 unperturbed angular position of tracers j = 1, . . . , 10

k optical trap stiffness 50 pN µm−1

ω 2πf oscillation frequency of driven microsphere 2π× (50− 400 Hz)

ζtrap oscillation amplitude of optical trap 2.15µm

ξ0(ω) |ζ0(ω)| oscillation amplitude of driven microsphere (0.4− 1)×ξtrap
ξij Lagrangian displacement of sphere at (Ri,θj) < 0.4× ξ0
χij max(ξijx /ξ0) scaled maximum Lagrangian x-displacement of sphere at (Ri,θj) < 0.4

φ φy − φx relative phase lag of x- and y-components of tracers . π/2

a bespoke image segmentation tracking algorithm. To suppress the effect of thermal fluctuations
of the tracers on single oscillations, all the cycles were averaged into a composite, cyclic x, y path
for each tracer. Each is obtained by computing the average x- and y-oscillations as a histogram
with 2πfs/ω bins where fs is the sampling frequency; these data are accumulated in the bins using
the time t mod (2π/ω). The system was optimized to reach driving frequencies up to 400 Hz for a
trap oscillation amplitude of 2.15µm. The oscillation frequency and amplitude are limited by the
dynamics of the particle (see below) and the finite size of the optical potential well. Once they are
optimized, the maximal Np for path sampling is obtained from the highest target frequency and
a time-sharing frequency of 20 kHz set by the bespoke electronics that control the acousto-optic
deflector; Np = 50 in experiments reported here. Under such conditions, the drive bead follows a
sinusoidal pattern, even when it does not remain close to the trap center.

B. Microsphere motion

The dynamics of a microsphere forced by an optical trap whose position is laterally oscillated
is a well-studied problem [24]. When, as is the case here, the displacement of the driven particle
is sufficiently small that the optical force exerted on the sphere is linearly proportional to the
distance from the axis of the beam, and the trap and particle positions oscillate as ζ0e

iωt and
ζtrapeiωt (where ζ0 is complex, reflecting the phase shift of the particle relative to the trap), then
momentum conservation in the x-direction takes the form(

−ρ0V0ω
2 + 6πηa0 Ω0 iω

)
ζ0 = −k (ζ0 − ζtrap) , (2)

where the left hand side represents the inertia of the particle itself (whose volume is V0 = 4πa30/3)
and the drag force, while the right hand side is the trap force. The drag force, found in the original
derivation by Stokes in 1851 [1] and in more modern treatments [25, 26] has a factor Ω0 that
corrects the familiar zero Reynolds number Stokes drag for fluid inertia,

Ω0 = 1 + α0 +
α2

0

9
with α0 = (1 + i)

a0

δ
. (3)
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FIG. 2. Oscillations of the driven microsphere. (a) Amplitude of oscillations relative to trap oscillation
amplitude as a function of frequency. The theoretical prediction (9) with τd = 0 (solid line) matches well
the experimental data (open circles). Dashed line indicates small correction obtain by including finite τd
corrections. (b) Measured x-position of the bead as a function of the time (thick gray lines), fitted with a
sinusoidal function (colored lines) at three frequencies. For clarity of presentation, the origin of time has
been shifted to align the different curves. The good match between the experimental profiles and the fitting
functions validates the linear approach used to derive (9).

From (2) and (3), we identify three characteristic times scales associated with the experiment, the
shortest of which is that for fluid momentum to diffuse on the scale of particle,

τd =
a20
ν
∼ 8× 10−6s . (4)

Next is that for inertial oscillations of the sphere in the trap,

τi =

(
ρ0V0

k

)1/2

∼ 7× 10−5s , (5)

and finally the time scale over which a particle viscously relaxes to the trap center,

τr =
6πηa0

k
∼ 10−3s . (6)

With these definitions, we have

ζ0 =
ζtrap

1 + iωτrΩ0 − (ωτi)
2 . (7)

At the highest frequencies probed (400 Hz) ωτi ∼ 0.18; since this quantity only enters through
its square [(ωτi)

2 ∼ 0.03], particle inertia contributes only a few percent to the response of micro-
spheres and may be neglected in the denominator of (7). The dependence of Ω0 on frequency in

(2) is through the factor α0 = ((1 + i)/
√

2) (ωτd)
1/2. The maximum contribution of momentum

diffusion has ωτd ∼ 0.02, so |α0| ∼ 0.14, yielding a modest correction to the force amplitude Ω0, and
higher-order contributions are negligible. By the quadratic scaling of τd with sphere radius, this
simplification is due to the use of microspheres. Thus neglecting particle inertia (setting τi = 0)
and quadratic terms in α0 in Ω0, we have

ζ0 '
ζtrap

1− (ωτr) (ωτd/2)1/2 + iωτr

(
1 + (ωτd/2)1/2

) . (8)
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The complex structure of (8) implies that there is a phase shift between the trap and the driven
particle, but as we are interested in the response of the tracers relative to the driven microsphere,
we ignore that phase shift and use the motion of the driven bead as the time reference in the
following and define ξ0(ω) = |ζ0|. If we adopt a time origin such that the driven particle’s position
is ξ0 cos(ωt) then

ξ0(ω) ' ζtrap
[(

1− (ωτr)(ωτd/2)1/2
)2

+ (ωτr)
2
(

1 + (ωτd/2)1/2
)2]−1/2

, (9)

which represents only minor deviations from the Lorentzian form [1 + (ωτr)
2]−1/2 that holds when

τd = 0 (and then Ω0 = 1). This ratio and its Lorentzian approximation are plotted in Fig. 2 a as a
function of the rescaled frequency ωτr. With no free parameters the agreement between the pre-
diction of (9) and experiment is excellent. Figure 2b shows the accurately sinusoidal displacement
of the oscillated particle.

III. RESULTS AND INTERPRETATION

A. Tracer dynamics

Raw trajectories of the probes during a single period of oscillation are shown in Figs. 3 a-d, where
for clarity, the probe displacements are magnified by a factor of 4, while their mean positions are
to scale [27]. It is clear that the probe trajectories have a degree of stochasticity superimposed on
their background motion. A magnified view of trajectories at f = 100 Hz that have been averaged
by the spectral method described earlier is shown in Fig. 3 i, from which it is apparent that each
of the trajectories is an elliptical Lissajous figure whose major and minor axes vary systematically
with angular position θ and distance R from the driven bead.

A quantitative treatment of the probe trajectories and an assessment of the importance of
Brownian motion begin with the unsteady velocity field u(r, t) due to a sphere oscillating with
velocity v0 eiωt x̂. That velocity field satisfies the full Navier-Stokes equations which, if made
dimensionless by the time 1/ω, a length L and velocity U has two Reynolds numbers [25],

L2ω

ν
u′t′ +

UL

ν
u′ ·∇′u′ = ∇′ · σ′, (10)

where σ′ is the non-dimensional hydrodynamic stress. If L is on the scale of the sphere radius
a0, then U ∼ a0ω and L2ω/ν and UL/ν are both ∼ a20ω/ν = |α0|2, and both the time derivative
and nonlinear terms must be considered, but at larger length scales the time derivative dominates
the nonlinear term. At the distance R1 of the closest tracers, the nonlinear term is already only
∼ 10% of the inertial term and can be ignored. We have confirmed this by noting the absence of
components at frequencies of 2ω in the power spectrum of the tracer displacements. To find the
motion of the tracers we thus examine the solution of the unsteady Stokes equation ρfut = ∇ ·σ,
together with the continuity equation and boundary conditions (a) u = v0 eiωt x̂ at r = a0 (particle
surface), and u0 → 0 as r → ∞. The solution, first derived by Stokes [1], can be written as
u = u0e

iωt, where

u0(r) = v0 [A(r)I +B(r) r̂r̂] · x̂, (11)

where r̂ and x̂ are the unit vector along the radial direction and x-axis respectively, and

A(r) =
3α0

2ρ3

[
(1 + ρ+ ρ2)eα0−ρ − 1− α0 −

α2
0

3

]
, (12a)

B(r) =
3α0

2ρ3
[
3 + 3α0 + α2

0 − (3 + 3ρ+ ρ2)eα0−ρ] , (12b)
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FIG. 3. Oscillatory tracer dynamics, with tracer displacements magnified by a factor 4, while their equilib-
rium locations are to the axes scale. (a-d) Tracer trajectories over one period. Colors (yellow, red, blue)
indicate different radial distances, as in Fig. 1. The peak-to-peak displacement of the central silica bead is
indicated by the heavy black line. (e-h) Theoretical trajectories using approach given in text. (i,j) Enlarged
view of trajectories in the boxed region shown in (b,f). (i) shows average cycles from experiments while (j)
is simply a zoomed representation of (f). The flat elliptical trajectories, which arise from the phase shift
between the components ξij

x and ξij
y of the displacement, are accurately captured by the theory.

where ρ = (1 + i)r/δ. For comparison if the sphere were moving along the x-axis at a constant
speed v0 the ω → 0 limit of (11) has the coefficients appropriate to steady flow,

As =
3α0

4ρ
+
α3

0

4ρ3
, Bs =

3α0

4ρ
− 3α3

0

4ρ3
, (13)

where these expressions are purely real since α0/ρ = a0/r. Note that Stokes’ unsteady solution
(11) is only valid for small values of the ratios ξ0/a0 or a0/R. We consider here that the condition
a0/R� 1 is satisfied even for the first row of tracers, where a0/R ' 0.29.

We now seek the motion of a probe whose equilibrium position in the oscillating flow is r =
(R, θ). As we are not referring to any particular tracer, we drop the superscript ij. The approach
adopted here is a composite one, in which the Lagrangian inertial response of the tracer is computed
from the Eulerian flow generated by the central bead. This is valid provided velocity gradients at
the probe scale are small, as are the oscillation amplitude relative to the bead radius. Momentum
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balance for a tracer with velocity v1e
iωt in a fluid with velocity u0e

iωt takes the form [1, 26]

iωρ1V1v1 = 6πηa1(Λ1u0 − Ω1v1) , (14)

where V1 = (4/3)πa31 is the volume of the particle and

Λ1 = 1 + α1 +
α2

1

3
, Ω1 = 1 + α1 +

α2
1

9
, with α1 = (1 + i)

a1

δ
. (15)

In discussing the motion of the driven particle [c.f. (3)], we noted that the finite-frequency
corrections to the drag law were very small; they are even smaller for tracers, whose radii are smaller
by a factor of five. It follows that we may safely take Λ1 = Ω1 = 1, and thus iωτd1v1 ' (u0 − v1),
where in parallel with (4) we define τd1 = (2ρ1/9ρ)a21/ν ∼ 5 × 10−8 s. This relaxation time is so
short relative to the period of driven particle oscillations that we may assume the tracer particle
velocity relaxes to that of the fluid instantaneously, and thus the tracer particle velocity is simply

v1 = v0 [A(r)I +B(r) r̂r̂] · x̂ eiωt. (16)

Combining this result with the response of the driven microsphere, the equations of motion for the
tracer displacements, ξ̇ = v1, integrate to give the tracer motion at (R, θ),

ξx(t) = ξ0<
{[
A(R) +B(R) cos2 θ

]
eiωt
}

and ξy(t) = ξ0<
{
B(R) cos θ sin θ eiωt

}
. (17)

B. Low-frequency limit of Lissajous figures

The orbits defined by (17) are closed, a clear consequence of the linear equation of motion
underlying their derivation, and also the use of the Eulerian velocity field at a given coordinate
pair (R, θ) to evaluate the tracer motion. By analogy to the Stokes drift phenomenon in water
waves [28], it appears likely that the (small) difference between Eulerian and Lagrangian coordinates
during an oscillation cycle of the tracers would lead to (slightly) open orbits, but we defer that
analysis to later work. While in direct comparison with experiment we utilize the full expressions
in (17), it is heuristically useful to simplify these results in the regime of low frequencies, when the
distances Ri of the tracers from the drive sphere are small compared to the viscous penetration
depth δ. Thus expanding (12a) and (12b) for α0, ρ� 1 we find

A(R) ' As(R) + α0 (As(R)− 1) + · · · , (18a)

B(R) ' Bs(R) + α0Bs(R) + · · · . (18b)

Substituting into (17), assuming as above R/δ � 1, we observe that As(R) and Bs(R) are domi-
nated by their Stokeslet contributions 3a0/4R, and thus

ξx(t) ' γ
(
1 + cos2 θ

)
cos(ωt+ φx), ξy(t) ' γ sin θ cos θ cos(ωt+ φy), (19)

where γ(R) = (3a0/4R)ξ0, and assuming the phase shifts are small, we find

φy '
a0

δ
and φx ' φy −

4R

3δ

1

1 + cos2θ
. (20)

Interestingly, while φx varies with the polar angle, φy does not.
The Lissajous figures associated with (19) are conic sections [29], and can be rewritten as

sin2θ

(1 + cos2θ)2
ξ2x −

2 tan θ cosφ

1 + cos2θ
ξxξy +

1

cos2θ
ξ2y − γ2 sin2θ sin2φ = 0, (21)
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where the phase shift difference φ = φy − φx is

φ(R, θ) ' 4

3

R

δ

1

1 + cos2 θ
. (22)

We note parenthetically that the limit a0 → 0 in (11) would correspond formally to an oscillating
point force [25], known as an “oscillet” and used in recent work on the dynamics of beating flagella
[17]. The precise limiting procedure involves setting a0 → 0 inside the square brackets of (12a)
and (12b), while letting the prefactor velocity v0 →∞ such that the product 6πµa0v0 → F , where
F is the magnitude of the oscillating force. In that limit, the y-component phase shift φy in (20)
vanishes, but φx is otherwise unchanged, so the difference φ is still given by (22).

Returning to the Lissajous figures, we note that (21) is in the standard form Aξ2x+Bξxξy+Cξ2y+

F = 0 of conic sections, which are in this cases ellipses since D ≡ B2 − 4AC = −4[tan θ sinφ/(1 +
cos2θ)]2 < 0. A standard analysis shows that the major axis of the ellipse is tilted with respect to
the x-axis by an angle ψ satisfying tan 2ψ = B/(A− C). As ψ varies with cosφ, corrections to the
φ = 0 limit are O((R/δ)2), so ψ is well-approximated by the tilt angle of a steady stokeslet,

ψs = tan−1
(

sin θ cos θ

1 + cos2θ

)
. (23)

The fundamental signature of unsteadiness in the present experiment is the elliptical form of the
tracer orbits. From the general expression for the semimajor and semiminor axes of ellipses,

a2, b2 =
2F
D

{
A+ C ±

[
(A+ C)2 +D

]1/2}
, (24)

where the + (−) sign refers to a (b), we obtain the remarkably simple asymptotic results,

a

ξ0
=

3a0

4R

1 + cos2θ

cosψs
+ · · · , and

b

ξ0
=
a0

δ
| sinψs|+ · · · . (25)

The results in (25) are the heuristic relationships we sought. They show that to leading order at low
frequencies the semimajor axis a is given simply by the motion of the driven particle, projected
to its position via the stokeslet contribution, while the semiminor axis b is nonzero only to the
extent that the viscous penetration length itself is not infinite. The aspect ratios of the ellipses
simply reflect the phase shift; b/a = (φ/2)| sin 2ψs|, and in the steady limit the ellipses degenerate
into lines. For later reference we note if we include the leading unsteady corrections, then the
normalized x-component of the tracer displacements can be written as

χ ≡ max{ξx}
ξ0

= χs −
a0

δ
+ · · · , with χs =

3a0

4R

(
1 + cos2θ

)
. (26)

C. Role of thermal fluctuations

Before analyzing the tracer trajectories in detail, we use the particle trajectories to quantify
the competition between the deterministic forcing of the tracer particles and thermally-driven
Brownian motion. As in previous discussions of this issue [15], a useful metric with which to assess
these effects is the ratio of the maximum deterministic displacement due to the oscillating fluid
(the major axis of the ellipse) to the average Brownian displacement over half an oscillation period.
This is essentially the square root of a Péclet number,

√
Pe =

2a

(2πD1/ω)1/2
' 3

2
√
π

(a0

R

)(ξ0
δ

)√
ν

D1

1 + cos2θ

cosψs
. (27)
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FIG. 4. Significance of thermal fluctuations. (a)-(d) Contour plots of the
√
Pe (27) in physical space, with

the locations of the probe microspheres superimposed, at the four driving frequencies.

Here, D1 = kBT/6πηa1 ∼ 0.4µm2/s (Table 1) is the diffusion constant of the tracers, with kB

the Boltzmann constant and T = 298 K the absolute temperature. The last relation in (27) is
obtained using the asymptotic results above and displayed to emphasize it is the product of three
dimensionless ratios. The factor ν/D1 is a Schmidt number Sc for the tracer particles and is very

large (
√
Sc ' 1.6 × 103), but its contribution to Pe is attenuated by the two small factors a0/R

and ξ0/δ, each on the order of 0.1. The frequency dependence of
√
Pe is relatively weak by virtue

of the counteracting trends of ξ0 ∼ ω−1 and δ ∼ ω−1/2. Contour plots of (27) in the first quadrant
of physical space where the tracers reside are shown in Figure 4, in which the semimajor axis has
been computed with the full unsteady velocity field given in (11), (12a) and (12b). From these
results we see that advective contributions dominate diffusion (Pe > 1) at all frequencies for the
innermost spheres, while the two become comparable for the outermost spheres, consistent with
the qualitative appearance of the trajectories.

D. Comparison with theory

A first test of the theoretical analysis of the trajectories involves plotting the ellipses from (21)
in the x, y plane. These are shown in Figs. 3(e-h), magnified by a factor 4 to be consistent with all
the plots of the figure. In addition, the boxed portion of Fig. 3(f) is expanded in (j). In comparison,
Fig. 3(i) displays the average oscillation of a few tracers at the same locations, from experiments,
showing a good match with the theory. Alternatively, Fig. 5 shows two basic geometrical features
of the elliptical tracer trajectories, their orientation and major axis, each expected to be dominated
by their steady contributions. The orientation angle in Fig. 5(a) agrees well with the steady angle
ψs in (25), and the semi-major axis (Fig. 5(a)) is likewise well described by the leading order
relation in (23).

Focusing on the displacements along the same (x) axis as the driven microsphere, Fig. 6
summarizes the results for the amplitudes and phase shifts of the tracers. In (a-d) we plot the
normalized component of the displacement as defined in (26),

χij =
max{ξijx }

ξ0
(28)

for experiments (symbols) and theory (lines). In the experiments, the relative amplitude and phase
compared to the driven bead are measured from the fast Fourier transform (FFT) of the x(t) data of
each tracer, by identifying the amplitude (respectively, the phase) from the peaks in the magnitude
(phase) plots of the FFT for the tracers and dividing by the magnitude (or subtracting the phase)
from the FFT of the driven bead. At any given frequency the agreement between the data and
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FIG. 5. Orientation and size of elliptical tracer trajectories. (a) Tilt angle of the major axis of elliptical
Lissajous figures as a function of mean angular position relative to driving axis. Gray symbols represent the
individual data points at the four experimental frequencies (f = 50, 100, 200, and 400 Hz) and three radii
(R = 9.5, 15.8, and 25.4 µm) at a given angular position θi. Open red circles denote the mean values of
each of those measurements at a given θ and their standard deviations. Dashed line is the steady tilt angle
(23). (b) As in (a), but for the semimajor axis of the ellipses. Dashed line is the low-frequency limit (25).

the steady theory (shown by dashed lines) is best for those tracers closest to the driven particle
and progressively decreases for more distant probes, while at any given radius the agreement with
the steady theory worsens at higher frequencies. For example, the deterministic component of the
displacement is overestimated by about 20% for f = 50 Hz, and up to 100% (for f = 400 Hz) for
the most remote ones - i.e at a distance R3 from the origin. Both of these trends are fully consistent
with the relevant measure of unsteadiness being R/δ. In Figs. 6e-h we show the the experimental
phase shift φij

x between the tracers and the active particle. The magnitude and angular dependence
are both accurately captured by the unsteady theory. At the very highest frequency used, the phase
shifts of the most distant probes located close to the y-axis —at (R3, θ5) and (R3, θ6)—are very
large; the probes are almost in quadrature with the forcing. We see from these results that despite
a large displacement of the central bead (which is of the same order as its radius) and a direct use of
the Eulerian form of the viscous unsteady flow u0, the agreement between theory and experiment
is very good, with a maximum relative error of 4% overall.

As a final test of the unsteady theory, we ask whether the data in Fig. 6 are consistent with
the predicted leading-order low-frequency limits in the sense of a data collapse. Focusing on the
same x-component of the phase shift and amplitude, the analysis in (20) and (22) can be written
the scaling forms for the phase and amplitude,

a0 − δφx
R

=
4

3

1

1 + cos2θ
, and

δ

a0

(χs − χ) = 1 + · · · . (29)

Figure 7 shows good agreement in both cases, especially for the phase shift. In the case of the
amplitude, the terms beyond leading order involve the same factor 1 + cos2 θ seen in the phase,
with an amplitude that is nonuniversal (i.e. one that depends on the radii Ri); this can be seen in
the small but systematic deviations from the limiting value of unity in Fig. 7(b).
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FIG. 6. Dynamics of the passive tracers. (a-d) Normalized maximum displacements (solid circles), and their
theoretical counterpart χ (solid lines). Dashed line show displacements calculated within steady Stokes
equation. (e-h) Phase shifts between responses of the probes and the harmonic motion of driving bead
(solid circles), and theoretical counterpart (solid lines). Colors (yellow, red,blue) indicate different radial
distances, as in Fig. 1.

IV. DISCUSSION

We have shown here how optical trapping and particle-tracking techniques allow for a precise
microscale test of the theory of unsteady Stokes flows. At the scale of colloidal particles, and with
oscillation frequencies in the range found in biological systems, the simplifications arising from lack
of inertial effects on particle motion and corrections to the Stokes drag law allow for a simple and
compact picture of the particle orbits. The regime of sizes and frequencies explored is also such
that Brownian motion makes only a modest contribution to the tracer dynamics, with an effective
Péclet number generally exceeding unity. Our experimental results show that tracer particles move
on simple elliptical orbits even in a regime with very large phase shifts, in quantitative accord
with a low-frequency analysis. These experimental observations would be difficult to reproduce by
conventional particle imaging techniques which are based on obtaining an Eulerian velocity map
from correlation functions of small tracer displacements.

As outlined in the introduction, one clear motivation for the present study is provided by the
evidence that unsteady effects are present during the collective beating of eukaryotic cilia and
flagella. It is an open question as to whether these effects actually control synchronization. Two
features of the present work will likely bear on this issue; the angular dependence of the phase
shift and the elliptical orbits themselves. The former dictates the strength of the lateral coupling
between cilia along a tissue, while the latter represents vorticity created by the driven particle that
may be relevant to wave propagation. It is important to note that in the many cases in which
metachronal waves occur there is a nearby underlying no-slip surface —the cell wall of a ciliate, or
the tissue surface of an ciliated epithelium —whose presence can not be ignored. Indeed, a recent
study of synchronization in arrays of “colloidal oscillators” [14], microspheres moved along periodic
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FIG. 7. Test of the low-frequency scaling. (a) Rescaled phase shift as a function of angle, using same symbol
motif as in Fig. 5. Dashed line is the scaling result (29). (b) As in (a), but for the oscillation amplitude,
with dashed line from (29) to leading order. There are no adjustable parameters in (a) or (b).

orbits by optical traps, show that surface proximity can profoundly affect the collective dynamics
that they exhibit. Thus, a natural next step is the study of model unsteady flows near no-slip
surfaces [30].

V. ACKNOWLEDGEMENTS

This work was supported in part by ERC Consolidator grant 682754 (EL), ERC PoC grant
CellsBox (PC and JK), Wellcome Trust Investigator Award 207510/Z/17/Z, Established Career
Fellowship EP/M017982/1 from the Engineering and Physical Sciences Research Council, and the
Marine Microbiology Initiative of the Gordon and Betty Moore Foundation, Grant 7523 (REG).

[1] G.G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Trans.
Cambridge Philos. Soc. 9, 8 (1851).

[2] C. Brennen, An oscillating boundary-layer theory for ciliary propulsion, J. Fluid Mech. 65, 799 (1974).
[3] R.E. Goldstein, Green Algae as Model Organisms for Biological Fluid Dynamics, Annu. Rev. Fluid

Mech. 47, 343 (2015).
[4] D.R. Brumley, M. Polin, T.J. Pedley, and R.E. Goldstein, Hydrodynamic Synchronization and

Metachronal Waves on the Surface of the Colonial Alga Volvox carteri, Phys. Rev. Lett. 109, 268102
(2012).

[5] D.R. Brumley, M. Polin, T.J. Pedley, and R.E. Goldstein, Metachronal Waves in the Flagellar Beating
of Volvox and Their Hydrodynamic Origin, J, Roy. Soc. Interface 12, 20141358 (2015).

[6] S. Gueron, K. Levit-Gurevich, N. Liron, and J.J. Blum, Cilia internal mechanism and metachronal
coordination as the result of hydrodynamical coupling, Proc. Natl. Acad. Sci. USA 94, 6001 (1997);
S. Gueron and K. Levit-Gurevich Energetic considerations of ciliary beating and the advantage of
metachronal coordination. Proc. Natl. Acad. Sci. USA 96, 12,240 (1999).

https://doi.org/10.1017/S0022112074001662
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1103/PhysRevLett.109.268102
https://doi.org/10.1103/PhysRevLett.109.268102
https://doi.org/10.1098/rsif.2014.1358
https://doi.org/10.1073/pnas.94.12.6001
https://doi.org/10.1073/pnas.96.22.12240


14

[7] J. Elgeti and G. Gompper, Emergence of metachronal waves in cilia arrays, Proc. Natl. Acad Sci. USA
110, 4470 (2013).

[8] B. Qian, H. Jiang, D.A. Gagnon, K.S. Breuer and T.R. Powers, Minimal model for synchronization
induced by hydrodynamic interactions, Phys. Rev. E 80, 061919 (2009).

[9] M.C. Lagomarsino, P. Jona and B. Bassetti, Metachronal waves for deterministic switching twostate
oscillators with hydrodynamic interaction, Phys. Rev. E 68, 021908. (2003).

[10] C. Wollin and H. Stark, Metachronal waves in a chain of rowers with hydrodynamic interactions, Eur.
Phys. J. E 34, 42 (2011).
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