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Abstract

The overarching problem under consideration is to determine the structure of the
subspace on which a distribution is supported, given only a finite noisy sample
thereof. The special case in which the subspace is an embedded manifold is given
particular attention owing to its conceptual elegance, and asymptotic bounds are
obtained on the admissible level of noise such that the manifold can be recovered up
to homotopy equivalence.

Attention is turned on how to accomplish this in practice. Following ideas from
topological data analysis, simplicial complexes are used as discrete analogues of
spaces suitable for computation. By utilising the prior assumption that the data
lie on a manifold, topologically inspired techniques are proposed for refining the
simplicial complex to better approximate this manifold. This is applied to the
problem of nonlinear dimensionality reduction and found to improve accuracy of
reconstructing several synthetic and real-world datasets.

The second chapter focuses on extending this work to the case where the ambient
space is non-Euclidean. The interfaces between topological data analysis, functional
data analysis, and shape analysis are thoroughly explored. Lipschitz bounds are
proved which relate several metrics on the space of positive semidefinite matrices;
they are then interpreted in the context of topological data analysis. This is applied
to diffusion tensor imaging and phonology.

The final chapter explores the case where the points are non-uniformly distributed
over the embedded subspace. In particular, a method is proposed to overcome the
shortcomings of witness complex construction when there are large deviations in
the density. The theory of multidimensional persistence is leveraged to provide a
succinct setting in which the structure of the data can be interpreted as a generalised
stratified space.
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‘Let no-one unversed in geometry enter here’

Plato’s Academy
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Chapter 1

Introduction

The statistical field of manifold learning is concerned with the problem where we
have some dataset X lying in a high-dimensional ambient space A, typically RD.
The data are assumed to be independent, identically distributed random variables
of the form Xi := Yi + εi, where Yi is sampled from an unknown lower-dimensional
smoothly embedded manifold M ( A and εi is a small error term. The problem is
to determine M .

The method of principal component analysis, first described in [11], works very
effectively when M is an affine subspace of A. The more difficult and interesting case
is when M is nonlinearly embedded in the ambient space. In [12], Genovese, Perone-
Pacifico, Verdinelli and Wasserman consider this problem where εi is Gaussian, with
the objective being to recover M as closely as possible by Hausdorff distance.

Nonlinear dimensionality reduction considers a similar problem of trying to find
a map θ : X → Rd with d < D, such that for x, y ∈ X, the distance between x

and y is small if and only if the distance between θ(x) and θ(y) is small. Popular
techniques include Isomap [14], t-SNE, and, more recently, UMAP.

If we knew the manifold M , then we could construct θ by composing the ‘or-
thogonal projection’ π : X → M (mapping each point to the closest point on the
manifold) with an embedding φ : M → Rd. If M is a smooth n-manifold, then such
an embedding is guaranteed to exist if d ≥ 2n by the Whitney embedding theorem
(and this is tight, as shown by taking M = RP2k) [19]. In the other direction, an
n-manifold can only be embedded into Rd provided d ≥ n (and this is also tight,
as shown by taking M = Rn). This poses an obstacle for the pursuit of nonlinear
dimensionality reduction: estimating the intrinsic dimensionality n of the manifold
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M is not sufficient to determine the optimal d for which we can hope to map X into
Rd; instead, it is dependent on the topology of M .

Consequently, we argue that determining M and its topology should be seen as
a fundamental precursor to performing dimensionality reduction, as it is necessary
even to find the optimal embedding dimension. Finding the topology of a space
given a finite sample is one of the questions of the relatively new field of topological
data analysis.

1.1 Overview

We begin with a literature review of topological data analysis and nonlinear dimen-
sionality reduction. This is followed by three substantive chapters (Chapters 3, 4,
and 5), the main results of which are summarised here.

1.1.1 Overview of Chapter 3

Chapter 3 introduces the problem of detecting the embedded submanifold M ⊆ A,
concentrating on the case where A = RD is Euclidean and each sampled point is
observed together with spherical Gaussian noise of variance σ2. Given a large finite
sample X of points obtained in this manner, we propose to eliminate the effect of the
noise by discarding ‘isolated points’; that is to say, we choose a density estimator f

and threshold δ, and restrict to the points {x ∈ X : f(x) ≥ δ}. We establish bounds
for the maximum value of σ2 in terms of the dimension and normal injectivity radius
of M such that some thickening of the above set admits a deformation retract onto
M . In particular, we obtain tight asymptotic bounds for the case where M is the
unit sphere:

Theorem. Let X := Y + ε be the sum of a random variable Y uniformly distributed
on the surface of a sphere Sn ⊆ RD and a Gaussian random variable ε with zero
mean and covariance matrix σ2I (where I is the D ×D identity matrix).

Then there exists a superlevel set of the probability density function of X admitting
a deformation retraction onto the support of Y if and only if the following inequality
holds:

e−τ
0F1

(
; 1 + n

2 ; τ 2
)

> 1

where τ = 1
2σ2 and 0F1 is the ‘confluent hypergeometric limit function’.
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We also determine an asymptotic version (as n → ∞) of the above inequality,
dispensing with the use of the non-elementary function:

Theorem. Let n be the dimension, and consider the critical value of σ such that the
centre and boundary of the sphere are equiprobable. Then the following asymptotic
holds for n→∞:

1
2σ2 = n− 1

4 z0 +
log(1 + z2

0)(1 +
√

1 + z2
0)

8z0 − 4(1 +
√

1 + z2
0)

+ o(1)

where z0 is the positive real root of the equation:

√
1 + z2 + log(2)− 1− log(1 +

√
1 + z2) = 1

2z

This result is then used to establish a more general result on arbitrary smoothly
embedded manifolds, and to provide conditions for which we can recover the manifold
from a finite noisy sample. In particular, the following is proved:

Theorem. Suppose we have a compact smoothly embedded n-manifold M ⊂ RD

which has a normal injectivity radius of h. Further, let P be a finite subset of
the r2-thickening of M . Then, provided that we have r2 < 1

2(2 −
√

2)h, and the
r1-thickening of P covers M (where r1 =

√
2(h − r2) − h), then the R-thickening

of P and the associated Čech complex are both homotopy equivalent to M where
R = 1√

2(h− r2).

To utilise this theorem, we find conditions under which P can be obtained by
sampling enough random points from X and restricting to a superlevel set of f :

Theorem. Let X := Y + ε be the sum of a random variable Y supported on an n-
manifold M ⊆ RD and a Gaussian random variable ε with zero mean and covariance
matrix σ2I (where I is the D ×D identity matrix).

Then f(x) ≥ βf(y) for all x ∈M and y /∈Mr2 provided the following inequality
holds:

h2

2σ2 ≥
n− 1

4 z0 +
1
4 log(1 + z2

0) + log(Kβ)− log(α)(
1 +

√
1 + z2

0

)−1
z0 −

(
1− r2

2
2h2

) + o(1)

where K, z0 > 0 are universal constants, Mr2 is the r2-thickening of M , h is the
normal injectivity radius of M , and α is the (appropriately normalised) minimum
density of the random variable Y on its support M .
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The remainder of the chapter examines the practicalities of performing manifold
learning in this way, especially for large datasets where a Čech complex is infeasible to
construct and an approximation such as a witness complex is required. Topologically-
inspired approaches for removing noise from the witness complex are proposed; they
are shown both to improve the efficacy of manifold learning and to remove the
majority of short-lived ‘noise’ bars from the persistent homology barcode. These
ideas are reëxamined in Chapter 5.

1.1.2 Overview of Chapter 4

Chapter 4 explores the situation where the ambient space A is non-Euclidean; we
demonstrate how to generalise the ideas from the previous chapter. Particular
attention is given to spaces of covariance operators, where new Lipschitz constants
are proved relating various important metrics on these spaces. In particular, we
prove the following:

Theorem. Let H1, H2 be d× d covariance matrices. Then we have:

dS(H1, H2) ≤ dH(H1, H2) ≤
√

2dS(H1, H2)

where dS denotes Procrustes distance and dH denotes square-root distance.

These have immediate corollaries in terms of the persistent homology of X with
respect to these metrics: changing from one metric to the other can only perturb the
coordinates of the points in the persistence diagram by a (multiplicative) factor of
at most

√
2. As an application, these ideas are applied to the analysis of diffusion

tensor imaging and (by extending the result from finite-dimensional matrices to
infinite-dimensional trace-class positive-semidefinite operators) to speech datasets.

We also define a continuum of metrics on the space of positive-definite matri-
ces, which interpolate between the log-Euclidean metric and the affine-invariant
Riemannian metric:

dp(A, B) :=
∥∥∥∥∥1

p
log(A−p/2BpA−p/2)

∥∥∥∥∥
2

The following is proved:

Theorem. The log-p distances interpolate between the log-Euclidean distance and
the affine-invariant Riemannian distance, in the sense that:
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• d0(A, B) = dL(A, B);

• d1(A, B) = dR(A, B).

Moreover, when A and B commute, all of the log-p distances coincide.

We proceed to show that dp(A, B) is a monotone-increasing function of p, and
therefore that the affine-invariant Riemannian distance is never smaller than the log-
Euclidean distance. Moreover, provided the condition numbers of the two matrices
are bounded, a Lipschitz constant in the other direction is established.

1.1.3 Overview of Chapter 5

Chapter 5 addresses the issue of the free parameter δ. Instead of choosing it
arbitrarily, we propose taking a filtration with respect to this density parameter.
This fits naturally in the framework of multidimensional persistence, and so we
generalise our ideas to this setting. Experiments are performed firstly on a synthetic
dataset, where we demonstrate the efficacy of the approach even in the presence of
heavy-tailed Cauchy noise; we then turn our attention to larger real-world datasets.

The chapter substantially deals with practical considerations involving building
witness complexes when the ambient density is highly variable. A ‘conformal’ variant
of the sequential maxmin procedure for choosing landmark points is proposed. This
is formulated as taking a ‘sequential maxmin sequence’ (or SMMS) with respect to a
semi-metric (metric without the triangle inequality) d⋆, and proved to asymptotically
fill the space with the same density as the original distribution:

Theorem. Let M be a compact n-manifold endowed with a Riemannian metric g

which induces the path metric d : M×M → R≥0. Let f : M → R be a density function
with uniformly continuous logarithm, and furthermore suppose f is normalised such
that:

∫
M

f(x) dµg = 1

where µg is the standard Riemannian measure. This allows us to define a
probability measure on the Borel subsets of M :

λ(A) :=
∫

A
f(x) dµg

Setting ℓ(x) := f(x)−1/n, we define the semimetric as before:
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d⋆(x, y) := d(x, y)√
ℓ(x)ℓ(y)

Then there exist constants 0 < c, C <∞ such that, for any Jordan measurable
subset A ⊆M and any SMMS x1, x2, . . . chosen with respect to (X, d⋆), there exists
m0 ∈ N such that for all m ≥ m0 we have:

cλ(A) ≤ 1
m

m∑
i=1

[xi ∈ A] ≤ Cλ(A)

where the Iverson bracket [xi ∈ A] is defined to be 1 if xi ∈ A and 0 otherwise.

The Jordan measurability criterion is shown to be largely necessary (in particular,
weaker conditions such as ‘Borel measurable’ or even ‘open’ does not suffice).

Also, the constants c, C cannot be eliminated, even when the density function f is
constant: a one-dimensional space is exhibited where C/c cannot be taken to be less
than 2, and similarly a four-dimensional space is exhibited where the ratio cannot be
taken to be less than 4. It remains open if there is a dimension-independent choice
of C, c which work universally for all manifolds.

The chapter concludes by experimentation on various synthetic and real-world
datasets.



Chapter 2

Background

2.1 Topological data analysis

2.1.1 Simplicial complexes and homology

Homology was introduced by Henri Poincaré in [5]; a more modern exposition is given
in Chapter 2 of Hatcher’s [6]. Most relevant to this thesis is simplicial homology,
which associates a sequence of modules to an object known as a simplicial complex.

Definition 2.1.1. A simplicial complex is a set K ⊆ P(V ) of simplices identified
with non-empty subsets of some finite vertex set V , satisfying the following properties:

• If ∅ ≠ τ ⊆ σ ∈ K, then τ ∈ K.

• The singleton set {v} is an element of K for all v ∈ V .

Beyond this combinatorial structure, a simplicial complex K gives rise to a
(compact, Hausdorff, and metrisable) topological space |K|.

Definition 2.1.2. The polyhedron of a simplicial complex K is the subspace |K| ⊆
[0, 1]V containing all points x ∈ [0, 1]V satisfying both of the following conditions:

• ∑
v∈V xv = 1;

• The support {v ∈ V : xv > 0} is an element of the set K of simplices.

|K| inherits the subspace topology from the (compact, Hausdorff, and metrisable)
space [0, 1]V .
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Whenever a statement is made about the topology of one or more simplicial
complexes, such as describing a simplicial complex as ‘connected’ or asserting that
two simplicial complexes are ‘homeomorphic’, this is to be regarded as a statement
about the topology of the corresponding polyhedra.

Definition 2.1.3. Fix a commutative ring R, assumed to be Z unless otherwise
specified, and let K be a simplicial complex. For a nonnegative integer n, an n-chain
is a formal R-linear combination of n-simplices in K. The R-module of all n-chains
is denoted Cn.

As V is a finite set, we can identify it with an initial segment of the positive integers,
endowed with the usual total order. For each n, the boundary map ∂n : Cn → Cn−1

is defined as the linear map which acts on the basis elements as such:

{v0, v1, . . . , vn} 7→
n∑

i=0
(−1)i ({v0, v1, . . . , vn} \ {vi})

where v0 < v1 < · · · < vn by assumption.

Lemma 2.1.4. The boundary maps satisfy ∂n ◦ ∂n+1 = 0 for all n ≥ 1.

Proof. It suffices to show that every simplex in Cn+1 is in the kernel of ∂n ◦ ∂n+1; the
result would follow by linearity. Composing the definitions of the boundary maps,
we get:

{v0, v1, . . . , vn+1} 7→
n+1∑
i=0

(−1)i
n+1∑
j=0

[i ̸= j](−1)j−[j>i] ({v0, v1, . . . , vn} \ {vi, vj})

where [φ] is the Iverson bracket (defined to be 1 if φ is true, and 0 if φ is false).
Rearranging, we get:

∑
i ̸=j

(−1)i+j−[j>i] ({v0, v1, . . . , vn} \ {vi, vj})

The terms with i < j cancel out exactly with the corresponding terms with j < i,
so the entire sum evaluates to zero.

Definition 2.1.5. The space of n-cycles is defined to be the kernel of ∂n, and the
space of n-boundaries is defined to be the image of ∂n+1. It follows from the previous
assertion that the latter is contained within the former, enabling one to define the
nth simplicial homology group to be the quotient R-module.
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Homology is a topological invariant, in that any two homeomorphic simplicial
complexes have an identical (up to isomorphism) sequence of homology groups.
More generally, it is a homotopy invariant: any two homotopy-equivalent simplicial
complexes have isomorphic homology. This is proved by showing that simplicial
homology is isomorphic to another definition of homology, singular homology, for
which homotopy invariance follows immediately from the definition.

2.1.2 Simplicial complexes associated with point cloud data

A point cloud dataset is a discrete metric space X, so it is not entirely obvious how
to impose a meaningfully interesting topology on such a dataset. In [10], Vietoris
introduced the Vietoris-Rips complex: a simplicial complex Rr which contains a
vertex for each point x ∈ X and a simplex for each finite subset σ ⊆ X with diameter
at most r. Unlike the original point cloud, which just has a zeroth Betti number β0

equal to the number of connected components and no nontrivial homology beyond
that, the Vietoris-Rips complex can have an arbitrary finitely-supported sequence of
finite Betti numbers as demonstrated in [68].

The following table details salient properties of the different types of simplicial
complexes. The column labelled ‘arbitrary metric?’ specifies whether the complex
can be constructed from just knowing the distances between points and making no
assumptions on the metric space (such as it being RD, or a normed vector space,
or a Riemannian manifold). The remaining two columns pertain specifically to the
Euclidean case when X ⊆ RD: ‘k-simplices’ is an upper bound on the number of
k-dimensional simplices in the complex, and ‘faithful?’ specifies whether the complex
is necessarily homotopy-equivalent to some subset of the ambient space.

Complex k-simplices arbitrary metric? faithful?
Vietoris-Rips

(
n

k+1

)
Yes No

Čech
(

n
k+1

)
No Yes

Alpha O(n⌊D/2⌋) No Yes
Witness, W∞ N Yes Yes
Witness, Wr O(Nmax(1, k+1

r+1 )) Yes Asymptotically

Vietoris-Rips complexes

An equivalent formulation of the Vietoris-Rips complex is as the clique complex
of its 1-skeleton. In particular, we can construct a graph Gr by connecting points
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x, y ∈ X with an edge whenever d(x, y) ≤ r. This has the effect that the connected
components in Gr correspond to clusters in X.

Fig. 2.1 A graph obtained by connecting every pair of points in X within a particular
threshold distance r.

Unfortunately, this only captures information about the connected components
(or equivalently H0). To ascertain the higher homology groups, we need to somehow
upgrade Gr into a simplicial complex. The most straightforward way is to form the
clique complex of the graph:

Definition 2.1.6. Let G be a graph with vertex-set V and edge-set E. The clique
complex C is the abstract simplicial complex with vertex-set V , where a simplex
σ ⊆ V is included in C if and only if the subgraph of G induced by σ is a complete
graph.

That is to say, we begin with our graph G, and attach an n-simplex [v0, v1, . . . , vn]
whenever every pair (vi, vj) ∈ E. Note that, in particular, the vertices and edges of
C are precisely those of G, so we can recover G by taking the 1-skeleton of C. We
can equivalently define the clique complex as the unique largest simplicial complex
with 1-skeleton G.

In the case where the graph is obtained by connecting pairs of vertices within a
threshold distance of r, as in Figure 2.2, the clique complex is called a Vietoris-Rips
complex. This contains a simplex σ ⊆ V if and only if the diameter d(σ) ≤ r.

If we look closely at the hexagonal arrangement of vertices in Figure 2.2, there is
an edge for every non-antipodal pair of vertices. The clique complex corresponding
to this subgraph is an octahedron, which is homeomorphic to the sphere S2. Note
that this has a spuriously non-trivial second homology – given that our set X was
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Fig. 2.2 The clique complex of the graph in Figure 2.1

sampled from some distribution on the plane, we would want the second homology
to reflect that.

The phenomenon generalises: if we take the vertices of a regular 2n-gon of radius
1, then for all 2 cos( π

2n
) ≤ r < 2, the Vietoris-Rips complex Rr is homeomorphic to

Sn−1 and therefore has non-vanishing (n− 1)th homology.
Another unfortunate property of Vietoris-Rips complexes is that the number of

simplices can grow very large. In particular, when r exceeds the diameter of X,
the number of simplices grows to 2|X| − 1. Unless X is very small, computing the
homology of the Vietoris-Rips filtration is infeasible.

Čech complexes

One problem with Vietoris-Rips complexes is that they do not accurately convey
the topology of the underlying space: we remarked that a regular 2n-gon in the
plane has a Vietoris-Rips complex with non-trivial (n − 1)th homology, whereas
no subset of the plane has any homology groups beyond H1. We shall instead
consider a sublevel filtration, which we know has meaningful topology, and associate
a homotopy-equivalent filtration of simplicial complexes.

These spaces are unions of closed balls, rather than simplicial complexes. However,
it is possible to associate a natural simplicial complex to each of these spaces, which
we will see is homotopy-equivalent to the original space:

Definition 2.1.7. The Čech complex Cr(X) contains a simplex σ ⊆ X whenever
the closed r

2-balls centred on the vertices mutually overlap, i.e. ⋂x∈σ B(x, r
2) ̸= ∅.
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Note that the 1-skeleton (underlying graph) of Cr agrees with that of the Vietoris-
Rips complex Rr. However, the Čech complex has only a subset of the simplices
of Rr. Compare Figures 2.2 and 2.3, and note in particular that the octahedron is
replaced with an annulus.

Fig. 2.3 The Čech complex Cr for the same value of r as the Vietoris-Rips complex
in Figure 2.2

To show that Xr/2 is homotopy-equivalent to Cr(X) relies on a result called the
nerve theorem.

Definition 2.1.8. Let K be a paracompact space. A good cover of K is a collection
of (wlog non-empty) open sets {Uα : α ∈ I} such that:

• ⋃
α∈I

Uα = K;

• ⋂
α∈J

Uα is either empty or contractible for any finite J ⊆ I.

The nerve of a good cover is the abstract simplicial complex with vertex-set I and
a simplex for each finite set J ⊆ I such that ⋂

α∈J
Uα is non-empty (ergo contractible).

Subject to these conditions, the nerve theorem proved by Borsuk in [34] states
that the nerve of a good cover of K is homotopy-equivalent to K. We are usually
interested in the case where K is a metric space and the open sets are balls in this
metric:

Corollary 2.1.9. Let X ⊂ V be a finite subset of a finite-dimensional normed space
V . Then the r

2-thickening Xr/2 is homotopy-equivalent to the Čech complex Cr(X).
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Proof. Note that the claim involves closed balls, whereas the statement of the nerve
theorem involves a covering by open sets. To account for this, it suffices to choose
r′ slightly larger than r such that the associated nerves are equal. This can be
accomplished as long as r′ is less than min(∆ ∩ (r,∞)) where ∆ is the (finite) set of
diameters of minimal bounding spheres of finite subsets of X.

Now everything becomes straightforward: balls in V are necessarily convex
(therefore contractible), and intersections of convex sets are also convex. So taking K

to be Xr/2 and our good cover to be open balls of radius r′/2 centred on the vertices
of X, the result follows.

The case where Xr/2 covers all of M and deformation retracts onto M is of
interest, because the resulting Čech complex is therefore homotopy equivalent to M .
That is to say, it is possible to recover M (up to homotopy equivalence, at least)
from a sufficiently well-chosen finite set X sampled from the ambient space in which
M resides. This dissertation is largely an exploration of this idea, examining under
what conditions and how we can guarantee the existence of a suitable set X.

Whilst the Čech complex addresses the topological problems with the Vietoris-
Rips complex, it is still large and unwieldy. Indeed, we see in the next section that
Rr ⊆ Cr

√
2, so the Čech complex has the same asymptotic complexity as the Vietoris-

Rips complex. As such, both Čech and Vietoris-Rips complexes are interesting only
for their theoretical value; practical applications favour the smaller alpha complex
and witness complex.

Alpha complexes

Earlier, we mentioned that all 2|X| − 1 simplices will appear in the Čech filtration.
When |X| is even moderately large, the complex is intractably large to store or
manipulate. Alpha complexes are an alternative which are homotopic to Čech
complexes whilst being much smaller.

For each ball Br/2(v) in the r/2-thickening of X, consider its intersection Br/2(v)∩
Ωv with the closed Voronoi cell Ωv (set of points at least as close to v as to any other
point in X). The nerve of this covering was introduced by Edelsbrunner and Mücke
in [33].

Definition 2.1.10. The alpha complex Aα of a set X contains a simplex with
vertices σ ⊆ X whenever there is a ball Br with radius r ≤ α/2 such that σ lies on
the boundary of B and the interior of B contains no points in X.
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Note that this condition is equivalent to there being at least one point (the centre
of the ball Br) which lies in the intersection of the sets Bα/2(v) ∩ Ωv, so the alpha
complex is exactly the nerve of the ‘Voronoi covering’ described above.

Fig. 2.4 The alpha complex (left) and Čech complex (right) of the same finite set
X with the same radius parameter. The apparent overlaps between the Voronoi
regions are for visualisation purposes only; in reality, the regions overlap only at
their (measure-zero!) boundary.

Unlike in the Čech complex, where every non-empty finite subset σ ⊆ X de-
termines a simplex in Cr for sufficiently large r, the sets of points which can form
simplices in the alpha complex are very restricted. For example, when X is a set of
points in general position in RD, the dimensions of the simplices are no greater than
D. It immediately follows that the number of simplices in the Delaunay triangulation
(the limiting alpha complex when α → ∞, which is geometrically the dual of the
Voronoi partition) has a polynomial upper bound

(
|X|

D+1

)
+
(

|X|
D

)
+ · · ·+

(
|X|
1

)
.

It is possible to improve upon this bound. To do so, we ‘lift’ our set X ⊆ RD to
RD+1 by prepending an extra coordinate given by the sum of squares of the existing
coordinates:

(x1, x2, . . . , xD) 7→ (x2
1 + x2

2 + · · ·+ x2
D, x1, . . . , xD)

Then the Delaunay triangulation is obtained by projecting the lower convex hull of
these points back into RD by deleting the additional coordinate x0. Consequently, the
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number of k-simplices in the Delaunay triangulation is bounded above by the number
of k-simplices in a convex polytope in RD+1. This was established by McMullen in
[38], the celebrated Upper Bound Theorem.

Theorem 2.1.11 (Upper Bound Theorem). A convex polytope with n vertices in
RD+1 has no more k-dimensional faces than does the cyclic polytope ∆(D + 1, n),
namely:

fk(∆(D + 1, n)) =
D+1∑
r=0

(
r

D − k

)(
n− 1−max(r, D + 1− r)

min(r, D + 1− r)

)

When k < ⌈D
2 ⌉, every set of k + 1 vertices induces a k-simplex; hence, fk(∆(D +

1, n)) =
(

n
k+1

)
. When k is larger than this, we can derive an asymptotic estimate by

fixing D, allowing n to grow large, and discarding any non-dominant terms in the
summation:

fk(∆(D + 1, n)) = ak,D + o(1)
⌈D

2 ⌉!
n⌈ D

2 ⌉

where ak,D is a constant given by:

ak,D :=


(D+1

2
D−k

)
if D odd;( D

2
D−k

)
+
(D

2 +1
D−k

)
otherwise

In particular, the total number of simplices is asymptotically:

∑
k

fk(∆(D + 1, n)) = (2 + (−1)D + o(1))(2n)⌈ D
2 ⌉

⌈D
2 ⌉!

There are two immediate drawbacks to the alpha complex. Firstly, the number of
simplices in the Delaunay complex grows exponentially with the dimension. Secondly,
the existence and uniqueness of Delaunay triangulations depends on the ambient
space; whilst they are guaranteed for all finite sets of points in general position in
Euclidean space, A = RD, there are non-Euclidean Riemannian 3-manifolds in which
this is not the case [39].

2.1.3 Witness complexes

Witness complexes were introduced by Carlsson and de Silva in [31]. Instead of
taking the vertex-set to be the entirety of X, we carefully choose a much smaller



24 Background

subset L ⊆ X, termed landmark points, and use the remaining points as ‘witnesses’
to determine which subsets of the landmark points induce simplices.

Definition 2.1.12. A k-simplex with vertices σ ⊆ L is said to be (weakly) α-
witnessed if there exists some point w ∈ X (the witness) and radius r ≤ α such that
Br(w) ∩ L = σ. We say that the simplex is strongly α-witnessed if σ lies exactly on
the boundary of Br(w).

A simplex σ ⊆ L is included in the witness complex W∞
α if and only if every

non-empty face τ ⊆ σ is weakly α-witnessed.

Moreover, the following theorem gives a relation between weakly and strongly
witnessed points whenever X = Rd is the whole of Euclidean space:

Theorem 2.1.13. A simplex σ is strongly α-witnessed by some point in Rd if and
only if every non-empty face τ ⊆ σ is weakly α-witnessed by some point in Rd.

Consequently, when X = Rd, the witness complex W∞
α is precisely the alpha

complex Aα of the landmark set L. Whereas computing the alpha complex relies on
knowledge of the ambient space M , the witness complex can be computed from the
matrix of distances between L and X (recall that L ⊆ X ⊆M , where X is typically
finite and M is typically infinite).

Note that for each k, a particular witness point w ∈ X can witness at most one
k-simplex. This gives an upper bound of |X| simplices of each dimension k.

Choosing the landmark points

This leaves the question of how to choose an appropriate L ⊆ X. The two prevailing
approaches are random sampling (where any of the

(
|X|
|L|

)
subsets is chosen with equal

probability) or sequential maxmin (where points are chosen greedily to be maximally
distant from the closest existing landmark point).

When X is randomly sampled from a non-uniform distribution on its support,
sequential maxmin has a shortcoming: the landmark points L are uniformly spaced in
a way that we shall make precise in the final chapter, and therefore not representative
of the distribution of X. We proceed to introduce a modification of sequential
maxmin that overcomes this problem.

Completed witness complexes

If X is too small compared with L, there are often k-simplices in the alpha complex
of L which fail to be included in the witness complex. This problem grows with the
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dimension k: not only are k-simplices less likely to be witnessed, but also we require
all of their proper faces to similarly be witnessed.

In [31], this is circumvented by taking the r-skeleton of the witness complex and
‘completing’ it by including a face of dimension r + 1 or greater whenever all of its
proper faces are present. The resulting construction is deemed Wr. We shall now
proceed to bound the number of k-simplices by O(Nmax(1, k+1

r+1 )).
Recall that the r-skeleton of Wr agrees with W, so for each k ≤ r, there are at

most |X| k-simplices. We can use this to bound the number of simplices in higher
dimensions by appealing to the Kruskal-Katona theorem first proved independently
in [66] and [67]. To formalise this, we need to introduce a few definitions:

Definition 2.1.14. Let X(k) denote the collection of size-k subsets of the finite set
X := {1, 2, . . . , n}. The colexicographical order (or colex) on X(k) is obtained by
assigning, to each S ∈ Xk, a score of:

score(S) =
∑
i∈S

ωi

where ω is an arbitrary integer larger than n. This induces a total order on X(k)

where lower-scoring subsets appear before higher-scoring ones.

Definition 2.1.15. Let A ⊆ X(k) be a collection of k-subsets of X. Define the
lower shadow ∂A ⊆ X(k−1) to be the collection of (k − 1)-subsets of X which can be
obtained by deleting an element from a member of A.

Theorem 2.1.16 (Kruskal-Katona). Suppose |A| = |C| and C is an initial segment
of colexicographical order. Then |∂A| ≥ |∂C|.

Proof. We induct on n, the size of our ground set, proving the result uniformly for
all k. The idea is to massage A with a sequence of ‘compressions’, each of which
cannot increase the size of its lower shadow, until we have either C (in which case
we’re done) or something so close to C that we can compare them directly.

Let i ∈ X be fixed. We partition X(k) into two families, namely:

• +k
i = {S ∈ X(k) : i ∈ S}

• −k
i = {S ∈ X(k) : i /∈ S} = (X \ {i})(k)

As noted, −k
i is precisely (X \{i})(k). Similarly, +k

i is isomorphic to (X \{i})(k−1)

as a lattice; we can remove i from every element of +k
i to obtain the equivalence.
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Now, given an arbitrary A ⊆ X(k), we define its i-compression to be the collection
B ⊆ X(k) satisfying:

• |A ∩+k
i | = |B ∩+k

i | and the latter is an initial segment of colex restricted to
+k

i .

• |A ∩ −k
i | = |B ∩ −k

i | and the latter is an initial segment of colex restricted to
−k

i .

Note that we have the following, where di denotes the isomorphism from +k
i to

(X \ {i})(k−1) obtained by deleting i:

• (∂A) ∩+k−1
i = (∂(A ∩+k

i )) ∩+k−1
i

• (∂A) ∩ −k−1
i = di(A ∩+k

i ) ∪ ∂(A ∩ −k
i )

By the inductive hypothesis, we have |(∂A) ∩+k−1
i | ≥ |(∂B) ∩+k−1

i | and |∂(A ∩
−k

i )| ≥ |∂(B ∩ −k
i )|. Also, di(A ∩+k

i ) and di(B ∩+k
i ) are the same size. Finally, we

appeal to the fact that initial segments of colex are nested (a smaller initial segment
is a subset of a larger initial segment) to conclude that |(∂A)∩−k−1

i | ≤ |(∂B)∩−k−1
i |.

Consequently, B has a smaller lower shadow than A. Also, B is ‘closer to colex’
in that the sum of the positions in colex of the elements of B is at least as small as
that of A (with equality if and only if A = B). So we can repeatedly i-compress our
set A for different i ∈ X until it is i-compressed for every i ∈ X.

Hence, assume without loss of generality that A is i-compressed for every i.
If A is an initial segment of colex then we are done, so assume that there exist

x ∈ A and y ∈ X(k) \ A such that y precedes x. If either x or y share an element i,
then A is not i-compressed and we obtain a contradiction. Similarly, if either X \ x

or Y \ y share an element i, then again A is not i-compressed. Consequently, x and
y are complements (their disjoint union is X).

We now show that such a pair x, y must be unique. If there is another x′ ∈ A

colexicographically preceded by some y′ ∈ X(k) \ A, then we can assume without
loss of generality that y′ precedes y. Thence, we deduce that x, y′ is a third such
complementary pair, implying that x = x′ and y = y′ as desired.

Hence, A = (X \ {n})(k) \ {{1, . . . , n− 1}} ⊔ {{n}}. It is apparent that its lower
shadow is not smaller than that of (X \ {n})(k) (the corresponding initial segment of
colex).

This completes the induction step. The base case of n = 1 is trivial (every subset
of X is an initial segment of colexicographical order), so the result follows.
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The importance of Kruskal-Katona arises from the fact that in a simplicial
complex, the collection of (k−1)-simplices contains the lower shadow of the collection
of k-simplices. Consequently, we get a tight bound on the number of k-simplices as a
function of the number of (k − 1)-simplices; equality holds when the simplices form
an initial segment of colexicographical order.

Let nk−1 be the number of (k − 1)-simplices. By considering the general form of
an initial segment of colexicographical order, we see that the number of k-simplices
is therefore upper-bounded by:

nk ≤
∑
r∈R

(
r

k + 1

)

where the set R gives the unique way to write nk−1 as a sum of binomial coefficients(
r
k

)
:

nk−1 =:
∑
r∈R

(
r

k

)

In particular, nk
k ≤ nk+1

k−1. For an r-completed witness complex, we can show by
induction that nk ≤ N

k+1
r+1 , where N is the number of witness points (an upper bound

for nr).

2.1.4 Persistent homology

In 2002, Edelsbrunner, Letscher, and Zomorodian [25] introduced the notion of
persistence: instead of computing the Betti numbers of a single Čech complex, Cr,
one can instead compute how many homology generators present in Cr ‘persist’ in
some later Čech complex Cs (where s > r). More precisely, the authors defined
the kth persistent Betti number βr,s

k to be the rank of the linear map on the kth
homology induced by the inclusion map Cr ↪→ Cs. (Technically, the authors used a
different notation, where the second superscript was equal to s− r instead of s, but
we anachronistically adopt the more modern notation to ensure consistency.)

The first systematic treatment of persistent homology, one of the cornerstones of
topological data analysis, began in 2004 with Zomorodian and Carlsson’s seminal
paper, [21].

As homology associates a sequence of groups to a topological space, persistent
homology gives information about a filtration of nested spaces. The spaces are nested
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in the sense that we have inclusion maps ιr,s : Kr → Ks for each pair of reals r ≤ s,
where they compose in the obvious way: if r ≤ s ≤ t, we have ιr,t = ιs,t ◦ ιr,s.

One natural way in which a filtration can arise is as the sublevel sets of a function
f : A→ R defined on the ambient space. In particular, let Kr := {x ∈M : f(x) ≤ r}.
A familiar example is when X ⊆ A is a finite set and f : A → R is half of the
distance to the closest point in X; the sublevel sets are precisely the thickenings
Xr/2, which we know are homotopy-equivalent to the corresponding Čech complexes
Cr.

Definition 2.1.17. Let s ∈ R. If we can find ϵ > 0 such that for all r, t ∈ (s−ϵ, s+ϵ),
the inclusion map ιr,t induces an isomorphism between the homology of Kr and Kt,
we say that s is a homological regular value.

Otherwise, s is a homological singular value.

Less formally, the homological singular values can be thought of as times in the
filtration where the homology abruptly changes. In [40], this importance of this
notion is demonstrated by the critical value lemma.

Lemma 2.1.18. Suppose the interval [s, t] contains no homological singular values.
Then the inclusion map ιs,t induces an isomorphism of homology.

Proof. Suppose otherwise. Then, we can perform repeated interval bisection to find
a descending chain of nested closed intervals [si, ti] such that ιsi,ti

does not induce
an isomorphism. By compactness, these intersect at a common point p ∈ [s, t]. For
any open interval (p− ϵ, p + ϵ), we can find some i such that the interval [si, ti] has
length less than ϵ, and therefore lies entirely within (p− ϵ, p + ϵ). However, ιsi,ti

does
not induce an isomorphism, so p must be a homological singular value.

If a function f : A→ R has only finitely many homological critical values, and
the homology of each Ks is finite-dimensional, f is described as a tame function.
In that case, the homology only changes finitely many times, so we can henceforth
suppose that the spaces in our filtration are indexed by the naturals:

K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · ·

Given a field F, we can consider the chain complex of Ki. Following the notation
in Weibel [1], we denote this by Ci

•. The inclusion maps from each space to the next
induce chain maps between the corresponding chain complexes:
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C0
•

x0−→ C1
•

x1−→ C2
•

x2−→ C3
•

x3−→ · · ·

The persistence complex is the formal product C• = ∏∞
i=0 Ci

•. We combine all of
the xi into a shift map x : C• → C•.

By letting the monomial xn denote the n-fold composition of x, the persistence
complex is naturally a F[x]-module. It is also a chain complex, since we can define a
boundary map ∂ on C• which acts elementwise on each Ci

•.
We can compute the kth homology Hk(C) of the persistence complex, giving a

F[x]-module. With F being a field, it follows that the ring R = F[x] is a principal
ideal domain. The Structure Theorem states that every finitely generated module
M over a principal ideal domain R can be written as a direct sum:

M =
⊕

i

R/(pi)

where (pi) is a primary ideal (possibly the zero ideal). These direct summands in
the case of the polynomial ring come in one of two forms:

• Free elements xsF[x], where a homology generator first appears in Ks and is
present in all later complexes;

• Torsion elements xs(F[x]/⟨xt−s⟩), where a homology generator first appears in
Ks and subsequently first disappears in Kt.

We represent these elements as intervals [s,∞) or [s, t), whose endpoints are
the homological critical values at which the homology generator is created and
subsequently destroyed. For each k, the collection of these intervals is a barcode.

The number of bars in the Hk barcode which contain the point s gives the Betti
number βk of the space Ks. It is convenient to generalise this to the persistent Betti
number, βt

s, which counts the number of bars which fully contain the interval [s, t].
We can think of this as the number of homology generators which exist at ‘time’ s

(meaning present in the space Ks in the filtration) and continue to exist at time t.
More formally, it is the dimension of the image of Hk(Ks) under the homology map
induced by ιs,t.

Longer bars correspond to more persistent topological features, which are more
relevant to describing the global geometric structure of X. Shorter bars can be either
due to sampling noise (if, say, X is a random sample), or indicative of small-scale
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topological features. A large block of Emmental cheese would have no long bars,
since the large-scale structure is that of a cube, but would possess many short H2

bars corresponding to the spherical voids within the cheese.

2.1.5 Computing persistent homology

There are algorithms for computing the persistent homology over a field F of a
filtration K of simplicial complexes. In particular, let a chronological order on the
simplices be a total order 4 satisfying the following properties:

• If σ ∈ Ks and τ /∈ Ks for some s, then σ 4 τ ;

• If σ ⊆ τ , then σ 4 τ .

Then, beginning with the empty simplicial complex and adding the simplices in
this order, the introduction of a k-simplex increases the Euler characteristic by (−1)k.
Since the Euler characteristic is also the alternating sum of Betti numbers, it follows
that the introduction of this k-simplex either decrements βk−1 (if the boundary of the
simplex was in a nontrivial homology class prior to the introduction of the simplex)
or increments βk (otherwise). That is to say, each simplex corresponds uniquely to
an endpoint of a bar in the homology barcode.

Let D be the upper-triangular matrix specifying the boundary map ∂ in the basis
given by the simplices in chronological order. By applying column operations to
D (of the form ‘add a constant multiple of one column to a later column’), we can
reduce D to a matrix R with the property that the bottommost nonzero entries of
the nonzero columns all occupy distinct rows. Each of these bottommost nonzero
entries corresponds to a finite bar in the homology barcode: if it occupies row i and
column j, then it is generated by the ith simplex and killed by the jth. By the
previous argument, any unpaired simplices are generators of unbounded bars in the
homology barcode.

Optimisations

Note that if we partition the simplices according to their dimension, D has the
structure of a block matrix, and the reduction procedure can be applied to each of
the nonzero blocks independently.
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The application of the Structure Theorem was the only place where we needed F
to be a field, rather than a ring. As mentioned earlier, we often choose F2 for various
computational reasons:

• F2 is a field of characteristic 2, so the orientations of simplices can be safely
ignored. More precisely, permuting the vertices of a simplex does not change
the corresponding element of the chain complex.

• Gaussian elimination can be performed without involving division (since the
unique invertible element of F2 is 1).

• Each matrix entry can be stored in a single bit of memory.

• Provided the matrix is column-major (and the columns each occupy a contiguous
region of memory), we can subtract one column from another very efficiently
using ⌈n/w⌉ applications of the XOR machine instruction, where n is the number
of elements in each column and w is the number of bits processed by each
instruction. 1

• Moreover, an adaptation of the Method of Four Russians algorithm for Gaussian
elimination can be applied for the finite field Fq, giving a further speedup
proportional to logq(n). This speedup is greatest when the finite field is as
small as possible; the unique smallest field is F2.

Even after utilising all of the advantages of F2, reducing the matrix for the
boundary map (restricted to dimension-d simplices) takes memory O(mn) and time
Õ(nm2), where m is the number of dimension-d simplices and n is the number of
dimension-(d− 1) simplices. The paper [37] mentions that the same barcode can be
computed by using row operations (taking time Õ(mn2), which is smaller for typical
datasets as we tend to have many more dimension-d simplices than dimension-(d− 1)
simplices). The authors proceed to suggest computing persistent cohomology, which
yields the same barcode as persistent homology, as a more efficient alternative in
practice.

Another approach is to simplify the simplicial complex to have fewer simplices
whilst having the same homology. This can be done most effectively by working with
the more general collection of CW-complexes: whilst the minimal simplicial complex
homeomorphic to the torus has 7 vertices, 21 edges, and 14 triangles, the minimal

1A modern CPU with Advanced Vector Extensions has w = 256.
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CW-complex homeomorphic to the torus has merely 1 vertex, 2 edges (loops attached
at that vertex), and 1 square face. Given an initial simplicial complex, finding
a simpler homotopy-equivalent CW-complex can be accomplished using discrete
Morse theory [52]. This technique has been extended to the efficient computation
of persistent homology by Mischaikow and Nanda in [53] and implemented in the
software Perseus by the same authors.

Application to dataset of natural images

In [54], Mumford, Lee, and Pedersen explored the space of high-contrast 3×3 patches
taken from greyscale natural images. They started with van Hateren’s dataset of
4167 greyscale natural images, where the value of each pixel is given by the logarithm
of the light intensity. For each image, 5000 random 3 × 3 squares of pixels were
selected.

Each 3× 3 square of pixels is regarded as a vector in a 9-dimensional space. The
contrast, or D-norm, of the vector v is given by the square-root of the sum, over
all pairs i, j of adjacent pixels, of the squared difference |xi − xj|2 between their
values. Subtraction of the mean of the pixel values corresponds to projection onto
an 8-dimensional subspace on which the (squared) D-norm is a positive-definite
quadratic form. Consequently, one can proceed to recover an inner product on this
space:

⟨u, v⟩ := 1
4
(
∥u + v∥2

D − ∥u− v∥2
D

)
.

The authors took a particular orthonormal basis with respect to this inner product,
thereby identifying the space with R8. Of the 5000 random patches sampled from
each image, the 1000 of highest contrast were retained, and the remainder discarded.
Repeating across all the images, a dataset of 4167000 vectors in R8 were obtained;
these were projected onto the unit sphere S7 by normalising (dividing by the norm,
i.e. contrast).

It was observed in [54] that this datasetM is far from being a uniform distribution
over S7. In particular, the authors partitioned the sphere into 17520 Voronoi cells,
defined by the 17520 vectors of norm

√
8 in the E8 lattice (described in [69]); they

found that the distribution of points amongst these cells substantially differed from
what one would expect if the points were sampled from the uniform measure on S7.
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The non-uniformity was explained in [41], in which Carlsson, Ishkhanov, de Silva,
and Zomorodian explored the persistent homology of spaces obtained from M.

2.1.6 Persistence diagrams and stability

One of the more important aspects of persistent homology, versus other methods
for pattern recognition, is the idea of stability: small changes in the input result in
small changes in the output. This is made rigorous by defining metrics on the input
and output space, and showing that the map is Lipschitz (indeed, with Lipschitz
constant equal to 1):

• The input space is taken to be L∞(M), the space of bounded functions M → R,
endowed with the uniform norm d(f, g) = sup

x∈M
|f(x)− g(x)|.

• The output space is the space of persistence diagrams endowed with a suitable
metric (typically bottleneck distance, although we shall discuss other choices).

Definition 2.1.19. A persistence diagram D ∈ P is considered to be a multiset of
points in R2, where each point on the diagonal ∆ := {(x, x) : x ∈ R} appears with
infinite multiplicity and each bar [s, t] in the barcode gives rise to the off-diagonal
point (s, t).

Now we are ready to describe these metrics. The bottleneck distance is given by
minimising, over all bijections η : D ↔ D′, the maximum distance between a point
in D and its respective partner in D′:

dB(D, D′) = inf
η:D↔D′

sup
x∈D
∥x− η(x)∥∞

The p-Wasserstein distance is defined by:

dW (p)(D, D′) = inf
η:D↔D′

(∑
x∈D

∥x− η(x)∥p
∞

)1/p

Much as the uniform norm on Euclidean space is given by the limit of the p-norm
as p→∞, so the bottleneck distance is the limit of p-Wasserstein distances. The
stability of bottleneck distance is proved by Edelsbrunner, Harer, and Cohen-Steiner
in [40]:

Theorem 2.1.20 (Bottleneck stability). Let f, g : M → R be continuous tame
functions on a triangulable space M . Denote the persistence diagrams of the ith
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homology by Φi(f) and Φi(g), respectively. Then the bottleneck distance satisfies
dB(Φi(f), Φi(g)) ≤ ∥f − g∥∞.

Key in the proof is the following lemma which allows one to count the total
multiplicity of points which lie in a rectangular region of the persistence diagram.

Lemma 2.1.21 (Generalised k-triangle lemma). Let w < x < y < z be homological
regular values. Then the total multiplicity of points in the persistence diagram within
the box [w, x]× [y, z] is given by the alternating sum of persistent Betti numbers at
the vertices of this box:

|D ∩ ([w, x]× [y, z])| = βz
w − βz

x + βy
x − βy

w

Proof. Consider a bar [a, b] in the barcode. If its left endpoint a does not lie between
w and x, then its contributions to βz

w and βz
x will cancel out, as will its contributions

to βy
w and βy

x. By symmetry, if b does not lie between y and z, the contributions of
this bar to βy

x and βz
x will cancel out, as will the contributions to βy

w and βz
w.

Consequently, for [a, b] to contribute to the alternating sum of persistent Betti
numbers, we must have w < a < x < y < b < z. In that case, it is easy to see that
the bar is included in the count for βy

x but not for the other three Betti numbers,
and therefore contributes +1 to the alternating sum.

Summing over all bars, we obtain the above identity.

In [40], it is deduced from the special case where w = −∞ and z = ∞ (the
k-triangle lemma), but here we have instead proved it directly from the formulation
of a persistent Betti number as counting the number of bars which contain a given
interval.

This allows statements in terms of multiplicities of points in persistence diagrams
to be translated into statements about persistent Betti numbers, which ultimately
boils down to dimension-counting. In particular, instrumental in the proof of
bottleneck stability is the box lemma:

Lemma 2.1.22 (Box lemma, [40]). Let f, g be tame functions with persistence
diagrams Φd(f), Φd(g), and suppose ∥f − g∥∞ ≤ ϵ. Suppose a < b < c < d are
homological regular values of g, and a + ϵ < b − ϵ < c + ϵ < d − ϵ are homological
regular values of f . Let R = [a, b]× [c, d] and R′ = [a + ϵ, b− ϵ]× [c + ϵ, d− ϵ]. Then
the following bound holds:
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|Φd(f) ∩R′| ≤ |Φd(g) ∩R|

This establishes bottleneck stability in the ‘easy case’ where the shortest distance
between two distinct points in either Φd(f) or Φd(g) is greater than 2ϵ, since each
point has exactly one candidate within a distance of ϵ giving an obvious bijection
with distance ϵ. The authors extend this to a full proof of bottleneck stability by
linearly interpolating between f and g to obtain a sequence of intermediate functions
f = h0, h1, . . . , hk−1, hk = g where adjacent functions differ by a distance of ϵ

k
in the

uniform norm. Provided the distance between two distinct points in each Φd(hi) is at
most 2 ϵ

k
, and appealing to the triangle inequality for bottleneck distance, the result

follows.
In [30], a stability result is proved for p-Wasserstein distance. However, unlike

bottleneck distance, the Lipschitz constant is not 1; instead, it depends on properties
of the ambient space M .

2.1.7 Multidimensional persistence

Recall that a filtration on a simplicial complex K is a family of subcomplexes Kt

indexed by a parameter t ∈ I. The index set I is a totally-ordered set, typically R,
and Ks ⊆ Kt whenever s ≤ t.

A multifiltration generalises this by replacing I with a product space I :=
I1 × · · · × Ik of k totally-ordered sets. I has the partial order where s ≤ t if
each coordinate si ≤ ti. Hence, for a multifiltration, we have the condition that
Ks1,...,sk

⊆ Kt1,...,tk
whenever si ≤ ti for all 1 ≤ i ≤ k. The special case of k = 1

corresponds to a filtration, and the case of k = 2 is usually called a bifiltration.
A persistence module over I is a functor M from I to the category of vector

spaces over F; that is to say, it associates a vector space Ms to each point in s ∈ I

and provides maps ιs,t : Ms → Mt whenever s ≤ t which compose (ιr,t = ιr,s ◦ ιs,t

whenever r ≤ s ≤ t). When each Ii ⊆ N, the persistence module has the structure of
a graded module over F[x1, . . . , xk].

Note that when k ≥ 2 this is not a principal ideal domain, with the ideal ⟨x1, x2⟩
not generated by any one element. Consequently, the Structure Theorem does not
apply, and there is no convenient analogue of a barcode in the multi-parameter (or
multidimensional) case. Carlsson and Zomorodian further showed in [44] that there is
no complete discrete invariant for multidimensional persistence; that is to say, if the
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base field F is uncountable, then so is the set of isomorphism classes of persistence
modules. Contrast this with unidimensional persistence, in which there are only
countably many barcodes irrespective of the cardinality of the field F.

The authors also proposed a discrete invariant, the rank invariant, which is
equivalent to the barcode for unidimensional persistence; however, it is necessarily
an incomplete invariant for k ≥ 2 by the previous theorem. For a multifiltration
K and non-negative integer i, the rank invariant ρK,i(s, t) is defined to be the rank
of the map between the ith homology groups, Hi(Ks) and Hi(Kt), induced by the
inclusion map ιs,t.

Note that when k = 1, this is identical to the ith persistent Betti number, so (by
the aforementioned generalised k-triangle lemma) two filtrations have the same rank
invariants if and only if they have the same persistence diagrams or equivalently
homology barcodes.

Interleaving distance

In [45], Michael Lesnick takes an alternative approach: instead of attempting to find a
topological invariant (such as a barcode) for multidimensional persistence, the author
directly defines a pseudometric (the interleaving distance) between multidimensional
persistence modules.

The poset I is taken to be Rk. Given a persistence module M and ϵ ≥ 0, the
shift M(ϵ) has vector spaces M(ϵ)s := Ms+ϵ (where addition s + ϵ is interpreted
elementwise) and the map from M(ϵ)s to M(ϵ)t is defined to be the map from Ms+ϵ

to Mt+ϵ. The ϵ-transition morphism is defined as the map from M to M(ϵ) given by
ιs,s+ϵ for each Ms.

Modules M and N are described as ϵ-interleaved if there exist morphisms f :
M → N(ϵ) and g : N →M(ϵ) where the compositions g(ϵ) ◦ f and f(ϵ) ◦ g are equal
to the 2ϵ-transition morphisms M →M(2ϵ) and N → N(2ϵ), respectively. Clearly,
if δ ≥ ϵ then ϵ-interleaved modules are also δ-interleaved; this leads to the notion of
the interleaving distance dI(M, N) as the infimum ϵ such that the two modules are
ϵ-interleaved.

The author proves that when the base field F is either a prime finite field Fp

or the rationals Q, then dI has the same stability property as bottleneck distance
(which coincides with dI in the case k = 1). Moreover, the interleaving distance
has the universality property that if d is another stable pseudometric, we have
d(M, N) ≤ dI(M, N) for all pairs M, N of persistence modules.



2.2 Shape spaces 37

2.2 Shape spaces

So far, we have primarily concentrated on points in Euclidean space, X ⊆ Rd, whilst
alluding to the fact that certain data more naturally inhabit non-Euclidean spaces.
An example of this occurs when we study configurations of points modulo isometries.

Suppose we have k labelled points X ⊆ Rd, represented as a k × d matrix K.
The configuration space is dk-dimensional, but subtracting the mean corresponds
to projecting down to a d(k − 1)-dimensional subspace. This can be isometrically
identified with Rd(k−1). We make this explicit as follows.

Definition 2.2.1. Let k ≥ 2 be a positive integer. Then the demeaning matrix 2 Hk

is the orthogonal symmetric self-inverse k × k matrix:

Hk :=



c c c c · · · c c

c a b b · · · b b

c b a b · · · b b

c b b a b b
... ... ... . . . ...
c b b b a b

c b b b · · · b a


where c = 1√

k
, b = 1√

k−k
, and a = 1 + 1

1−
√

k
+ 1√

k
. The reduced demeaning matrix

H ′
k is the (k − 1)× k matrix obtained by deleting the first row from Hk.

Then, premultiplying the configuration by the reduced demeaning matrix yields
the pre-size-and-shape L = H ′

kK, which is a (k − 1)× d matrix. Two labelled point
sets X1 and X2 share the same pre-size-and-shape matrix L if and only if X1 is a
translate of X2.

Often we want to quotient further, by either rotations, reflections, scaling, or some
combination thereof. The pre-shape is obtained by normalising the pre-size-and-shape
to have unit Hilbert-Schmidt norm. The prefix ‘pre-’ indicates that we have yet to
quotient by SO(d), the resulting spaces being the shape space and size-and-shape
space. If we quotient by the full orthogonal group O(d) as opposed to merely SO(d),
we obtain the reflection shape space and reflection size-and-shape space, respectively.

The relationships are summarised in Figure 2.5.
2Based on the negative answer to http://mathoverflow.net/questions/262091/, it appears

that this matrix does not have a standard name. We introduce this terminology since the matrix
isolates the mean vector from the shape information.

http://mathoverflow.net/questions/262091/
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Translations

Scaling Rotations

Rotations Scaling Reflections

Reflections Scaling

original configuration space ℝkd

pre-size-and-shape space ℝ(k-1)d

pre-shape space S(k-1)d-1 size-and-shape space SΣd
k

shape space Σd
k reflection size-and-shape space RSΣd

k

reflection shape space RΣd
k

Fig. 2.5 Lattice of spaces corresponding to quotienting by different groups of isometries
and similarity transforms. A similar diagram occurs in [64].

The pre-size-and-shape space R(k−1)d and pre-shape space S(k−1)d−1 each come
equipped with natural metrics: the Euclidean distance in the case of the pre-size-
and-shape space, and the geodesic distance in the case of the pre-shape space. The
other four spaces each arise as the quotient of one of these spaces by the action of
an isometry group G (either O(d) or SO(d)).

Lemma 2.2.2. Let X be either the pre-size-and-shape space R(k−1)d or the pre-shape
space S(k−1)d−1 and let G be either O(d) or SO(d). Denote the aforementioned
natural metric on the space X by ℓ, and let π : X → X/G be the quotient map.

Consider any pair of points x, y ∈ X/G in the quotient space, and let x̃1, x̃2 be
arbitrary points in the fibre π−1(x). Define ỹ1, ỹ2 to be the points in the fibre π−1(y)
closest to x̃1 and x̃2, respectively.

Then ℓ(x̃1, ỹ1) = ℓ(x̃2, ỹ2), and therefore ℓ(x̃1, ỹ1) is dependent only on the points
x, y ∈ X/G and not in the particular choice of preimage x̃1.
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Proof. This follows from the fact that the group G of isometries acts transitively on
each fibre, so we can find an isometry g mapping x̃1 to x̃2. The image g(ỹ1) remains
on the fibre π−1(y), so it follows that:

ℓ(x̃2, g(ỹ1)) ≥ ℓ(x̃2, ỹ2)

by the defining property of ỹ2 being the closest point on π−1(y) to x̃2. The
left-hand-side of this inequality is equal to ℓ(x̃1, ỹ1) as g is an isometry.

ℓ(x̃1, ỹ1) ≥ ℓ(x̃2, ỹ2)

By symmetry, the inequality also holds in the other direction, and therefore the
two distances must be equal.

Consequently, the spaces Σk
d, SΣk

d, RΣk
d, and RSΣk

d are all endowed with the
structure of a metric space. Away from singularities (images of points where the
derivative of π is not full-rank), this is a Riemannian metric as demonstrated in [61].
The geodesics in the quotient space are the images (under π) of geodesics in the top
space.

2.2.1 Examples of shape spaces

When d = 1, SO(d) is the trivial group and therefore the shape space Σk
1 coincides

with the pre-shape space Sk−2. For the reflection shape space, we further quotient
by reflection, ergo RΣk

1 = RPk−2 is real projective space.
When d = 2, the pre-size-and-shape space can be viewed as (k − 1)-tuples of

complex numbers. Two such tuples represent the same shape if they can be related
by a scaling and rotation, or equivalently if they are equal up to multiplication
by a complex scalar. Consequently, Σk

2 = CPk−2, and the metric is exactly the
Fubini-Study metric. The reflection shape space is obtained by identifying tuples
which are complex conjugates of each other: so RΣk

2 = CPk−2/ ∼. This is smooth
except at the submanifold corresponding to RPk−2.

For d ≥ 3, the shape spaces have singularities and are no longer homogeneous;
this is discussed in [61].

As for the size-and-shape counterparts, they are cones on the shape spaces. The
distance from the apex of the cone is given by the Hilbert-Schmidt norm of the
pre-size-and-shape matrix L.
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2.2.2 Geodesics and Procrustes distances

Earlier, we mentioned that the geodesics in the shape spaces Σk
d, SΣk

d, RΣk
d, and

RSΣk
d are precisely the projections of the geodesics in the original space under π.

This means that given a pair of representatives (or icons) x, y of a pair of shapes,
the quotient distance in the appropriate shape space is given by:

ℓ′(π(x), π(y)) = min{ℓ(x, σ(y)) : σ ∈ G}

where G is the relevant isometry group (either SO(d) or O(d)), ℓ is the geodesic
distance in the top space, and ℓ′ is the corresponding distance in the quotient space as
described in Lemma 2.2.2. This particular choice of metric ℓ′ is called the Procrustes
distance.

For the aforementioned spaces, this can be computed effectively. In terms of
matrices L1, L2 in the pre-shape (or pre-size-and-shape) space, we want to find the
(optionally special) orthogonal matrix R which minimises the Hilbert-Schmidt norm
of the matrix L1 − L2R. In that case, we can compute the Procrustes distance as
either the straight-line or great-circle distance depending on whether the top space
is R(k−1)d or the pre-shape sphere S(k−1)d−1:

ℓ(x, y) =

∥L1 − L2R∥ for size-and-shape;

2 arcsin(1
2∥L1 − L2R∥) for shape.

So, how do we find the optimal matrix R ∈ G (where G is either SO(d) or O(d))?
This is called the orthogonal Procrustes problem. Somewhat remarkably, Schönemann
discovered an exact solution using singular value decomposition in [62].

Theorem 2.2.3 (Schönemann, 1966). Let UDV T be the singular value decomposition
of LT

2 L1, where D is diagonal matrix of singular values in descending order. Then,
the optimal R ∈ O(d) is given by R = UV T , and the optimal R ∈ SO(d) is given by
UJV T , where J = diag(1, 1, . . . , 1,±1) and the sign on the last term is chosen to
ensure R has determinant 1.

2.2.3 Generalised Procrustes analysis

In statistics, when we have a collection x1, x2, . . . , xn of points in Euclidean space,
we are often interested in the mean and covariance matrix. It is not inconceivable
that the same properties are interesting when we are operating in a shape space, but
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actually calculating the ‘mean shape’ is less easy: we are not in some vector space
where we can just calculate 1

n
(x1 + x2 + · · ·+ xn). Instead, we need to use a different

characterisation of mean which generalises to other Riemannian manifolds.

Definition 2.2.4. Given a set x1, x2, . . . , xn of points lying in a metric space (M, d),
a Fréchet mean is a point y ∈ M which minimises the sum of squared distances,

n∑
i=1

d(xi, y)2.

This coincides with our notion of mean in Euclidean space. The generalised
Procrustes algorithm attempts to locate this iteratively. At a point y ∈M , we have
a tangent space Ty and the exponential map expy : Ty →M defined by mapping the
tangent vector v to the endpoint of the geodesic which starts at y, runs parallel to v,
and has a length of |v|.

With this in place, we define Φ(y) to be the image (under the exponential map)
of the mean of the preimages of the points. That is to say:

Φ(y) := expy

(
1
n

n∑
i=1

exp−1
y (xi)

)

In [63], it is noted that the right-hand side is proportional to the gradient of the
function F (y) =

n∑
i=1

d(xi, y)2. Hence, as a Fréchet mean is a minimiser of F , we have
∇F = 0 and thus the Fréchet mean is a fixed point of Φ.

The generalised Procrustes algorithm iteratively applies Φ, starting from x1

without loss of generality, with the hope that the iteration converges to a Fréchet
mean. It is shown in [63] that if the points are bounded by a sufficiently small
ball, the map Φ is a contraction mapping and therefore the iteration converges to a
(unique) Fréchet mean. Certain positively-curved spaces, such as the sphere S2, do
not have a unique Fréchet mean in all cases; for example, the two-point set consisting
of two antipodal points has an infinite family of Fréchet means forming a great circle.
Note that S2 = CP1 = Σ3

2 is the size-and-shape space for configurations of three
points in R2.

It is informative to contextualise this by seeing how the generalised Procrustes
algorithm would apply to the shape spaces. If the points are represented by pre-shape
icons L1, L2, . . . , Ln, the Procrustes iteration is given by:

Φ(Y ) := 1
n

n∑
i=1

LiRi
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where Ri ∈ G is the solution to the orthogonal Procrustes problem of most
closely matching Li onto Y . As discussed, this can be solved using the singular value
decomposition, and does not involve explicitly applying the exponential map or its
inverse.

Tangent-space analysis and principal components

Once we have the Fréchet mean y, we can analyse the distribution of shapes
x1, x2, . . . , xn in terms of their preimages under expy. In particular, the tangent
space has an inner product (the Riemannian metric) so we can define the sample
covariance operator:

Σ(u, v) = 1
n− 1

n∑
i=1
⟨exp−1

y (xi), u⟩⟨exp−1
y (xi), v⟩

In [64], this covariance operator is decomposed in terms of its principal compo-
nents, which are vectors in the tangent space at y. They visualise this by applying
the exponential map to these vectors to obtain shapes characterising each principal
component.

The iterative algorithm for computing Fréchet means and the subsequent principal
component analysis both generalise to other Riemannian manifolds. The only place
where we utilised the special structure of shape spaces was in the closed-form
iteration involving singular value decomposition. For other manifolds we would need
to explicitly switch between the tangent spaces and the manifold itself by means of
the exponential map and its inverse.

2.3 Metrics on covariance matrices

In the previous section, we studied spaces of configurations of points up to some
group of isometries. We had a natural choice of metric on these spaces, namely the
Procrustes distance obtained by taking the quotient metric. We are not always so
fortunate in the existence of such a natural metric, and in many cases there are
multiple equally convincing candidates. It is therefore desirable to determine to
what extent the methods of topological data analysis are affected by the choice of
underlying metric.

The space of positive-semidefinite d × d matrices is particularly rich in terms
of candidate metrics. Covariance matrices and Riemannian metrics are examples
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of positive-semidefinite matrices (or equivalently quadratic forms), as are diffusion
tensors [65].

2.3.1 Flat metrics

We can firstly view this space as a convex cone lying in the space of symmetric
matrices. The apex of the cone is the zero matrix, and the axis is the ray of positive
scalar multiples of the identity matrix. The slices of the cone orthogonal to this axis
are spaces comprising matrices of constant trace.

The ambient space of symmetric matrices is endowed with the Hilbert-Schmidt
norm induced by the inner product ⟨A, B⟩ = tr(AT B). Following [65], we shall
refer to the metric induced by this norm as the Euclidean metric on the space of
positive-semidefinite matrices.

dE(A, B) = ∥A−B∥2

Whilst very natural, it is not geodesically complete; geodesics in this space stop
abruptly at the boundary (the singular matrices with determinant 0). In an attempt
to remedy this, it is tempting to take either the matrix logarithm (which sends
the boundary to infinity) or square-root (which causes the geodesics to smoothly
deflect away from the boundary like parabolic arcs). This defines the logarithmic
and square-root metrics:

dL(A, B) = ∥log(A)− log(B)∥2

dH(A, B) = ∥
√

A−
√

B∥2

Computationally, these metrics can be obtained by writing each matrix in the
form UDUT (where U is orthogonal and D is diagonal), and applying the respective
operation (logarithm or square-root) elementwise to D. In [65], Dryden et al also
consider the power-Euclidean metric where the eigenvalues are raised to some power
α ∈ (0, 1]. The Euclidean and square-root metrics are recovered by taking α to be 1
and 1

2 , respectively.
Yet another flat metric, which is computationally faster to compute, is the

Cholesky metric where each matrix A is mapped to its lower Cholesky factor L

satisfying LLT = A. An interesting caveat is that the Cholesky distance between
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two quadratic forms is dependent on our choice of orthonormal basis, so it would
not be appropriate for inherently isotropic data such as diffusion tensors.

2.3.2 Procrustes metric

In both the Cholesky and square-root metrics, we map each matrix A to some
particular L (either square-root or lower Cholesky factor) satisfying LLT = A. The
Procrustes distance dS(A1, A2) is defined to be the infimum distance ∥L1 − L2∥ over
all choices L1, L2 such that LiL

T
i = Ai. By definition, the Procrustes distance is no

greater than either the square-root or Cholesky distance, and in general is smaller.
Note that LLT = L′L′T if and only if L′ = LR for some orthogonal matrix R.

Consequently, dS(A1, A2) is the distance in RSΣd+1
d between the shapes represented by

pre-size-and-shape matrices L1, L2. Our choice of representatives L1, L2 is arbitrary;
we choose the Cholesky factor since it is computationally easier to compute than the
square-root.

Unlike the Cholesky distance, the Procrustes distance is again isotropic (indepen-
dent of the choice of orthogonal basis). As it is isometric to the size-and-shape space
RSΣd+1

d , rather than Euclidean space, all of the sectional curvatures are positive.
It is more difficult to compute Čech and alpha complexes (compared with the ‘flat’
metrics); even finding the minimum metric ball bounding a set of points is no longer
a convex optimisation problem.

2.3.3 Affine-invariant Riemannian metric

In [58], a negatively-curved metric is proposed on the space of positive-definite
matrices (the singular matrices being sent to infinity). It is the metric obtained
from giving the space an affine-invariant Riemannian metric; the space becomes a
geodesically-complete manifold without boundaries. In particular, given positive-
definite matrices A, B, the distance is defined as follows:

dR(A, B) = ∥log(A− 1
2 BA− 1

2 )∥2

As with the positively-curved Procrustes metric, we can use the generalised
Procrustes algorithm to compute Fréchet means, and perform tangent space analysis
to compute more sophisticated statistics. Due to the negative sectional curvature of
the space, the Fréchet mean is guaranteed to be unique.
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2.4 Nonlinear dimensionality reduction

2.4.1 Multidimensional scaling

Multidimensional scaling, or MDS, is a ‘global’ method of nonlinear dimensionality
reduction, which attempts to find an embedding φ : (X, d) → Rn that preserves
distances as closely as possible. More precisely, metric MDS seeks to minimise the
following loss function (known as stress):

∑
x,y∈X

(d(x, y)− ∥φ(x)− φ(y)∥2)2

In [13], de Leeuw proposed an iterative algorithm for optimising this loss function.
Note that this is not necessarily guaranteed to converge to a global optimum.

In the special case where X is a finite subset of a Euclidean space and d is the
Euclidean metric, MDS is actually equivalent to PCA as mentioned in [14]: the global
optimum of the stress function is attained by projecting onto the first n principal
components. As such, applying MDS directly to the matrix of Euclidean distances
cannot find a nonlinear embedding.

2.4.2 Isomap

Instead of using the subspace metric, Tenenbaum and de Silva proposed in [14] the
idea of applying metric MDS to an estimate of the intrinsic geodesic distances along
the submanifold of interest. The Isomap algorithm accomplishes this as follows:

• Connect each point to its k nearest neighbours to obtain a ‘neighbourhood
graph’. The edges are labelled with the corresponding distances (in the ambient,
usually Euclidean, metric space). It is assumed that k is sufficiently large as to
ensure the graph is connected.

• Perform Dijkstra’s algorithm to compute the pairwise path distances through
this graph.

• Apply metric MDS to the resulting matrix of pairwise path distances.

Isomap can be considered a generalisation of multidimensional scaling, degener-
ating into the latter when k = |X| − 1 and the neighbourhood graph is complete.
Unlike multidimensional scaling, however, Isomap is capable of finding nonlinear
embeddings.
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2.4.3 Locally linear embedding

Locally linear embedding, or LLE, was introduced in [15]. Suppose the ambient space
is Euclidean, so X ⊂ RD. Each vertex xi ∈ X is expressed as an affine combination
of its k nearest neighbours; that is to say, we find weights wij (which are zero unless
xj is in the k nearest neighbours of xi) minimising the loss function:

∥∥∥∥∥∥xi −
∑

xj∈X

wijxj

∥∥∥∥∥∥
2

2

subject to the condition that ∑xj∈X wij = 1. This is a least squares problem
solvable with linear algebra. If necessary, a ridge-like penalty term can be incorporated
into this quadratic form to aid regularisation.

Once these weights have been established, embedded vectors φ(xi) are constructed
by minimising the loss function:

∑
xi∈X

∥∥∥∥∥∥φ(xi)−
∑

xj∈X

wijφ(xj)
∥∥∥∥∥∥

2

2

To prevent the obvious degeneracy of φ being identically zero, the embedded
vectors are constrained to be normalised with identity covariance matrix. Moreover,
the translation invariance of the problem allows one to additionally impose the
simplifying constraint that the embedded vectors have zero mean without loss of
generality.

This can be generalised to non-Euclidean spaces. In particular, Appendix C of
[17] describes how the weights wij about each point xi can be determined from the
matrix of pairwise distances in the set {xi}∪Γ(xi) of the point and its neighbourhood.

2.4.4 Other approaches

The cornucopia of methods for nonlinear dimensionality reduction is rather too vast
to adequately cover in detail; however, it is worth noting some of the more novel
approaches.

In [7], Hinton and Salakhutdinov applied a deep neural network to the problem of
nonlinear dimensionality reduction. In particular, the authors took an autoencoder,
i.e. a neural network comprising an ‘encoder’ E : A→ Rn from the ambient space
to a latent space composed with a ‘decoder’ D : Rn → A. Using stochastic gradient
descent trained to reproduce the identity function on X ⊆ A, the network attempts
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to find a continuous map X → Rn which is approximately invertible. Equivalently,
it can be viewed as a (lossy) compression algorithm mapping vectors in the ambient
space to vectors in the much lower-dimensional latent space.

Another popular method is t-SNE, proposed by Hinton and van der Maaten in [8].
It is generally applied for embedding multidimensional data into two dimensions for
the purposes of visualisation. It does not perform as well when the ambient space is
of extremely high dimensionality, so it is recommended in [9] to use an autoencoder
to reduce to R32 before applying t-SNE on the latent embedding in order to visualise
the result.

2.5 Functional data

In classical statistics, our data are usually a collection of points in Euclidean space.
We discussed how for certain data, such as shapes and covariance matrices, it can
be more natural to think of these points as lying in a non-Euclidean manifold
(possibly with boundary). An independent generalisation is to consider data in
infinite-dimensional spaces; for instance, the ambient space Rn can be replaced with
an infinite-dimensional Hilbert space H.

One particular source of infinite-dimensional data is where each data point is a
function f , typically with assumptions about continuity or smoothness. The output
from a thermometer will be a (continuous) function of time giving the temperature
T (t) at time t. As with covariance matrices, there are often many distances used to
compare two functions: uniform norm and L2 norm being among the most common
metrics.

2.5.1 Core concepts

In [18], Horváth and Kokoszka review many of the concepts behind functional data
analysis. A few of these ideas are relevant here, so we shall discuss them briefly.

Function space

Up until now, our data have usually been a finite subset X ⊆ M of a finite-
dimensional metric space, such as Euclidean space, or a Riemannian manifold, or
subset thereof. In functional data analysis, we typically begin with the space Lp[K]
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of p-power-integrable functions on a compact measurable space K. Most commonly,
p ∈ {1, 2,∞} and K is an interval [a, b] ⊆ R.

Technically, Lp[K] is actually the metric space obtained by quotienting out the
pseudo-metric space Lp[K] of p-power-integrable functions, with distance function
d(f, g) = ∥f − g∥p.

The vast majority of functions in Lp[K] are insensibly wild. For example, returning
to the thermometer example, our function is assumed to be continuous. Making
assumptions on continuity or smoothness restricts us down to a more manageable
space M ( Lp[K].

The case p = 2 is particularly important, since L2[K] has an inner product
⟨f, g⟩ :=

∫
f(x)g(x): rather than being merely a Banach space, it is a Hilbert

space. This property turns out to be necessary for many statistical applications;
consequently, we henceforth operate in a space M ⊆ L2[K] unless otherwise specified.

In particular, it is mentioned in [18] that for a Hilbert space H, a symmetric
positive-definite Hilbert-Schmidt operator Ψ admits a decomposition as follows:

Ψ(f) =
∞∑

j=1
λj⟨f, vj⟩vj

where the λj are the eigenvalues and vj are orthonormal eigenfunctions: ⟨vi, vj⟩ =
δij.

Dimension reduction

Even though our space is infinite-dimensional, we can only manipulate finite amounts
of data. Usually, we represent a function f by its values sampled at some finite
subset S ⊆ K. If K is an interval, we typically choose the points in S to be equally
spaced; similarly, if K is a product of intervals, it is convenient to take S to be a
regular grid.

It is worth noting that |S|, the dimension of the space of interest, is often too
large to be manipulable. If f is (say) the temperature map of a human organ,
and we sample 100 points in each of the three dimensions, then |S| = 106. Whilst
storing a vector of d = 106 elements is straightforward on a modern machine, it is
impractical to perform linear algebra: matrices would have d2 = 1012 entries, and
even multiplying matrices takes d3 = 1018 operations. More sophisticated algorithms
can reduce this to O(d2.807) (Strassen) or even O(d2.375) (Coppersmith-Winograd),
but this is still too impractical for statistical applications.
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Computational efficiency is not the only reason why we may want to reduce
the dimensionality: representing f by its values sampled at points of S ignores
assumptions such as continuity. Stated another way, we are taking our basis functions
to be ‘peaks’ supported at individual points of S. In the limit as |S| → ∞, the
Lipschitz constants associated with the basis functions similarly increase without
bound. These are less sensible choices of function than (say) low-degree polynomials,
splines, and wavelets.

Consider the thermometer example. If we take temperature readings every 5
seconds as opposed to every 10 seconds, we do not expect to have twice as much
information: the gradual nature of temperature changes mean that we get diminishing
returns from increasing the sampling frequency. It stands to reason that we can
reduce the dimensionality without discarding much data.

Assuming continuity, one approach is to express our function (sampled at d points)
in the Fourier basis and retain only the first k ≪ d terms. In the thermometer
example, taking the first 80 Fourier coefficients of a day’s worth of 10-second samples
will reduce the dimension from 8640 to 80.

Often, it is desirable to reduce the dimension even further, by (for example)
projecting the dataset onto its first p ≪ k functional principal components. The
second projection is subtly different, because our basis depends on the data itself
rather than being a fixed (e.g. Fourier) basis.

Mean functions and covariance operators

Given a finite sample of functions, f1, . . . , fn, we can compute the sample mean
function µ = 1

n

n∑
i=1

fi. Similarly, as in the finite-dimensional case, one can compute

the sample covariance operator C(g) = 1
n

n∑
i=1
⟨fi−µ, g⟩(fi(x)−µ(x)). The (empirical)

functional principal components, which were alluded to above but not defined, are
the eigenfunctions of this operator.

When we project to the space spanned by the first p EFPCs, we need some
method of choosing p. Two common choices are below:

• Choose p to be a fixed number, such as 5;

• Choose p to be the minimum number to capture some proportion of the variance
(in [18], the authors recommend 85 percent). That is to say, we choose the
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minimal p satisfying
p∑

i=1
λi ≥ 0.85

∞∑
i=1

λi, where λi is the ith largest eigenvalue
of the covariance operator.

2.5.2 Speech spectrograms and frequency covariance matri-
ces

In [59], the authors examine a set of speech recordings of the words ‘one’ through
to ‘ten’ spoken in five different Romance languages: American Spanish, French,
Portuguese, Iberian Spanish, and Italian. There are 50 language/word ordered pairs,
each of which has at least one recording. The total number of recordings is 219, since
some ordered pairs are represented by more than one recording.

By applying a local Fourier transform, the recordings were converted into spec-
trograms (smooth functions of time and frequency, which lie in the Hilbert space
L2([0, F ] × [0, T ])). The spectrogram was modified by applying the following in
succession:

• Smoothing: the original sound samples are noisy, whereas a spectrogram
is ideally a smooth surface. The authors approach this by using smoothing
splines.

• Alignment: different speakers enunciate words at different speeds, so the data
are not directly comparable. To address this, each spectrogram is warped in
the time dimension by applying an order-preserving bijection to the time axis
(chosen to align the sounds optimally, subject to a penalty according to how
this warping departs from the identity function).

Whilst being continuous surfaces in theory, the spectrograms are represented as
8100-dimensional vectors (by sampling on a grid with 81 frequency divisions and 100
points in time).

For each of the 50 language/word ordered pairs, the authors computed the mean
and covariance matrix of the time-slices of the spectrograms (if there are n recordings,
this gives 100n time-slices, each of which is an 81-dimensional vector). This yields
a dataset X comprising 50 different 81 × 81 covariance matrices – one for each
language/word ordered pair.



Chapter 3

Topological approaches to
manifold learning

3.1 Detectability

Recall that we have some unknown subspace M ⊆ A of the ambient space, and each
Yi is an independent identically distributed random variable distributed according to
a measure µ on M . Moreover, the observations Xi := Yi + εi are afflicted by noise.

One problem when εi is unbounded is that, in the limit where we sample infinitely
many data points, X will be dense in the ambient space A. Following [41], we need
to remove these outliers before constructing a simplicial complex approximating M ,
by taking super-level sets with respect to some estimate of the probability density
function f of the random variables Xi.

In 2006, Niyogi, Smale, and Weinberger approached a similar problem in [2], but
with several key differences to the work in this chapter:

• In [2], the noise model εi has bounded support with radius no greater than
the normal injectivity radius of the manifold. On the other hand, this chapter
allows for noise with unbounded support, with particular interest in spherical
Gaussian noise.

• The paper [2] takes, as input, a finite set of points Xi. By contrast, this chapter
also requires a density estimate of the distribution at each point Xi. As such,
to use this methodology in practice, one would need to first use a density
estimating algorithm (such as the kernel density estimator by Parzen [42] and
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Rosenblatt [70]) to obtain a density estimate at each point Xi from the set of
points.

• In [2], the noise model is such that the manifold is guaranteed to be detectable
(to use the terminology introduced in this chapter), and the paper obtains a
result on the number n of points that must be sampled to correctly deduce the
homology of the original manifold with probability 1− δ. Instead, this chapter
somewhat complements this by instead examining under what conditions it
is possible to correctly deduce the homology at all, in the asymptotic regime
where the number of sampled points n→∞ and the density estimate converges
to the actual probability density function of Xi.

• In the simplest nontrivial case where M is the unit sphere and εi is spherial
Gaussian with variance σ2, the maximum value of σ2 such that the manifold
remains detectable is determined exactly in a closed form involving the confluent
hypergeometric limit function.

In 2011, Niyogi, Smale, and Weinberger published a sequel [3] which does include
a Gaussian noise model. However, it is not equivalent to the noise model studied in
this chapter. In particular, the noise vector εi in [3] is restricted to the normal space
at the point Yi on the manifold, whereas the noise in this chapter is isotropic and
(almost surely) has a tangential component as well as a normal component.

This makes a huge difference. For the unit sphere, the normal lines all ‘focus’ at
the origin. This causes a singularity under the ‘normal space noise’ model in [3], where
the probability density at the origin diverges to infinity. The authors circumvent
these isolated hotspots by ‘choosing with care the size of the neighborhoods for
cleaning the data’. By contrast, isotropic noise does not result in hotspots where the
density diverges, and indeed this is key to the particular formulation of manifold
detectability in this chapter.

In [12], Genovese, Perone-Pacifico, Verdinelli, and Wasserman consider the same
additive noise model as this chapter, but their objective is different: they are
interested in recovering the manifold to within a specified Hausdorff distance rather
than determining its topology up to homotopy equivalence. This is still relevant to
this chapter because we show that a particular subset P of our sampled points Xi is
contained within the r2-thickening Mr2 of the manifold, and similarly the manifold M

is contained within the r1-thickening of P ; the Hausdorff distance is upper-bounded
by the maximum of r1 and r2 by definition. We use this ‘asymmetric Hausdorff
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bound’ as a stepping-stone to finding a thickening of P which deformation-retracts
onto our manifold, and it is convenient to let r1 and r2 be different (as opposed to a
Hausdorff bound, where r1 = r2).

If we could estimate the probability density function f exactly, and then build a
Čech complex supported on the high-density points of X (those with f(Xi) ≥ δ for
some threshold δ), we could recover M up to homotopy equivalence provided the
following holds:

Definition 3.1.1. We say (M, µ) is detectable in the presence of noise ε if there
exists some δ and radius R > 0 such that S(δ)R (the R-thickening of the super-level
set S(δ)) both contains M as a subset and admits a deformation retraction to M .
This implies, in particular, that it is homotopy equivalent to M – and, by the nerve
theorem, so is the corresponding Čech complex.

It is worth justifying why we choose the stronger condition of S(δ)R admitting
a deformation retraction to M , rather than merely being homotopy equivalent to
M . Specifically, it avoids the situation in Figure 3.1 where the large annulus is only
‘accidentally’ homotopy equivalent to the small annulus.

Fig. 3.1 The larger annulus is a superset of the smaller annulus and is homotopy
equivalent to it; however, the large annulus does not admit a deformation retraction
to the smaller annulus.
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In particular, we examine under what constraints the unit n-sphere is detectable,
before moving on to the general case of arbitrary n-manifolds. It turns out that,
as n increases, we need the inverse variance τ := 1

2σ2 to increase linearly with n;
moreover, the gradient and offset of this linear function are determined exactly using
asymptotic analysis. The bounds for arbitrary n-manifolds are only a constant factor
poorer than those for the n-dimensional sphere.

3.1.1 When is the sphere detectable?

Suppose M is the unit sphere, Sn, embedded in RD as the intersection of SD−1 with
an (n + 1)-dimensional linear subspace. Let µ be the uniform measure on M . The
probability density function of the resulting distribution is given by the following
expression:

f(x0) =
∫

Sn
e− |x−x0|2

2σ2 µ(x)dx

where we have scaled µ to have an integral of 1.
In this section, we show that the super-level sets of f are homotopy equivalent

to either Sn or a point, and determine necessary and sufficient conditions in terms
of σ and n for this to be the case. Finally, we examine how the critical value of σ

changes asymptotically as we let the dimension n approach infinity.
Before we do that, however, it is necessary to establish various identities and a

lemma about the confluent hypergeometric limit function 0F1, which shows up when
we compute the integral necessary to evaluate the density function f .

Definition 3.1.2. The confluent hypergeometric limit function is a meromorphic
function 0F1 : C2 → C of two complex variables defined by the series:

0F1(; b; z) :=
∞∑

k=0

zk

(b)kk!

where (b)k = b(b + 1)(b + 2) . . . (b + k − 1) is the Pochhammer symbol.

It has a regularised version 0F̃1, where it is scaled by the reciprocal of Γ(b), which
is in turn related to the better-known modified Bessel function of the first kind. In
particular:

0F1(; ν + 1; z2

4 ) = Γ(ν + 1)0F̃1(; ν + 1; z2

4 ) = Γ(ν + 1)
(2

z

)ν

Iν(z)
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We now establish that 0F1 is logarithmically concave in the argument z. This is
important in constraining the shape of the super-level sets of the probability density
function f .

Lemma 3.1.3. 0F1(; ν + 1; z) is logarithmically concave as a function of z, where
we restrict to ν ≥ −1

2 and z > 0.

Proof. It suffices to evaluate the second derivative ∂2

∂z2 log(0F1(; ν + 1; z)) and show
that it is nowhere positive.

It is straightforward to show from the series definition that the first derivative is
given by the quotient:

0F̃1(; ν + 2; z)
0F̃1(; ν + 1; z)

and the second derivative is:

0F̃1(; ν + 1; z)0F̃1(; ν + 3; z)− 0F̃1(; ν + 2; z)2

0F̃1(; ν + 1; z)2

As the denominator is non-negative, it suffices to show that the numerator is
non-positive. Equivalently, we want to show that:

0F̃1(; ν + 1; z)0F̃1(; ν + 3; z) ≤ 0F̃1(; ν + 2; z)2

Since z is positive, we can express this in terms of modified Bessel functions:

Iν(2
√

z)Iν+2(2
√

z) ≤ Iν+1(2
√

z)2

This is known, and in particular is proved for all ν ≥ −2 in Theorem 7 of [48]. It
follows that 0F1 is logarithmically concave in the area of interest.

We are now ready to establish necessary and sufficient conditions for the sphere
to be detectable:

Theorem 3.1.4. The sphere is detectable if and only if f(0) is strictly less than
f(1), where 0 is the origin and 1 is an arbitrary point in M .

Proof. Let Π be the (n+1)-dimensional subspace containing M , and π be orthogonal
projection onto Π. The homotopy given by:

Ht(x) = tπ(x) + (1− t)x
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restricts to any super-level set of f , so every super-level set admits a deformation
retract onto its intersection with Π. Hence, we can assume without loss of generality
that D = n + 1. In that case, we have:

f(x0)
f(0) =

∫ 1
−1(1− x2)n/2−1 exp(−τ(1 + r2 − 2xr)) dx∫ 1

−1(1− x2)n/2−1 exp(−τ) dx
= e−τr2

0F1

(
; 1 + n

2 ; τ 2r2
)

where r = |x0|, τ = 1
2σ2 , and 0F1 is the confluent hypergeometric limit function.

Viewing this as a function in r2, we observe that it is a product of the logarith-
mically concave functions x 7→ e−τx and x 7→ 0F1(; 1+n

2 ; τ 2x), and therefore itself
logarithmically concave. Consequently, every super-level set of f must intersect every
ray from the origin in an interval, and therefore be either a ball or annulus.

We are particularly interested in the smallest super-level set which contains the
unit sphere M . This set is an annulus (and therefore deformation retracts onto M)
if and only if it does not contain the origin; otherwise, it is a ball and therefore has
the incorrect homotopy type. The result follows.

The proof actually gives us more information, namely an inequality expressing
exactly when the sphere is detectable:

e−τ
0F1

(
; 1 + n

2 ; τ 2
)

> 1

In the next section we will explore how the critical value of τ changes as n→∞.

Asymptotics for large n

Theorem 3.1.5. Let n be the dimension, and consider the critical value of σ such
that the centre and boundary of the sphere are equiprobable. Then the following
asymptotic holds for n→∞:

1
2σ2 = n− 1

4 z0 +
log(1 + z2

0)(1 +
√

1 + z2
0)

8z0 − 4(1 +
√

1 + z2
0)

+ o(1)

where z0 is the positive real root of the equation:

√
1 + z2 + log(2)− 1− log(1 +

√
1 + z2) = 1

2z
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Proof. The following asymptotic expansion for the modified Bessel function of the
first kind is given in [49]:

Iν(νz) ∼ eνη√
2πν
√

1 + z2

∞∑
k=0

Uk(p)
νk

where η :=
√

1 + z2 + log(z)− log(1 +
√

1 + z2) and p := 1√
1+z2 , and each Uk is

a degree-3k polynomial defined by a recurrence relation. Crucially, U0(p) = 1 so the
summation tends to 1 as ν →∞.

Using Stirling’s formula to asymptotically approximate the gamma function, we
can obtain an analogous asymptotic expansion for 0F1:

0F1

(
; ν + 1; (νz)2

4

)
∼ (1 + z2)− 1

4

(2
z

eη−1
)ν ∞∑

k=0

Uk(p)
νk

Taking logarithms, evaluating η and simplifying, we get:

log
(

0F1

(
; ν + 1; (νz)2

4

))
= −1

4 log(1 + z2)

+ ν
(√

1 + z2 + log(2)− 1− log(1 +
√

1 + z2)
)

+ o(1)

Our inequality for the detectability of the sphere then becomes:

√
1 + z2 + log(2)− 1− log(1 +

√
1 + z2)− z

2 ≥
1
ν

(1
4 log(1 + z2) + o(1)

)

where we have set ν = n−1
2 and z = 2τ

ν
. The right-hand-side of this equation

tends to zero, so we can solve for z for large values of ν and obtain the solution
z0 u 3.30479977 to the equation:

√
1 + z2 + log(2)− 1− log(1 +

√
1 + z2) = 1

2z

However, we can do slightly better than just the constant of proportionality. In
particular, set z = z0 + k

ν
and expand the original equation to order ν−1:

k

 z0

1 +
√

1 + z2
0

− 1
2

 = 1
4 log(1 + z2

0) + o(1)
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Solving for k establishes a stronger condition for detectability, where the difference
between the actual and asymptotic values for τ tends to zero:

τ = n− 1
4 z0 +

log(1 + z2
0)(1 +

√
1 + z2

0)

8z0 − 4(1 +
√

1 + z2
0)

+ o(1)

This is precisely the statement of the theorem.

As this involved a non-trivial amount of algebraic manipulation, partially man-
ual and partially using computer algebra software, it is worth verifying that the
approximation holds for large n:

Dimension n Actual τ Asymptotic τ Discrepancy
1 1.357170 1.279153 7.802× 10−2

10 8.725988 8.714952 1.104× 10−2

100 83.074071 83.072947 1.124× 10−3

1000 826.653009 826.652896 1.126× 10−4

10000 8262.452395 8262.452384 1.126× 10−5

This asymptotic approximation is surprisingly accurate even in the case n =
1. The discrepancy between the actual result and the approximation appears
experimentally to be improvable from o(1) to O(n−1).

3.1.2 Smoothly embedded compact manifolds

Suppose M ⊂ RD is now a smoothly embedded compact n-manifold. This is strictly
more general than the previous case of a unit n-sphere. Underpinning this is the
tubular neighbourhood theorem. The version we quote here, for smoothly embedded
compact manifolds, is proved in [50].

Definition 3.1.6. Let M ⊆ RD be a C2-embedded compact n-manifold. The normal
exponential map is the function exp⊥ : NM → RD from the normal bundle to the
ambient space given by:

exp⊥(x, v) := x + v

Theorem 3.1.7 (Tubular neighbourhood theorem). Let M ⊆ RD be a C2-embedded
compact n-manifold. Then there exists h > 0 such that exp⊥, when restricted to the
open tube {(x, v) : |v| < h}, is a diffeomorphism onto its image. h shall be deemed
the normal injectivity radius of M .
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Observe that the principal curvatures must be bounded above by h−1 in absolute
value. The tubular neighbourhood theorem is stronger, however, since it imposes
global constraints on the manifold: h also measures how far the manifold is from
self-intersecting.

Analogous to how there is the notion of ‘differentiability at point’, one can
similarly define what it means to have a normal injectivity radius of h at a point:

Definition 3.1.8. Let M ∈ RD be a C2-embedded compact n-manifold. Let P ∈M

be a point, TP be its n-dimensional tangent space, and UP be its (D−n)-dimensional
orthogonal complement. Then we say that M has normal injectivity radius h at P if,
for every point x ∈ UP with d(x, P ) = h, the open radius-h ball Bh(x) centred on x

is disjoint from the manifold M .

Lemma 3.1.9. If M is a C2-embedded compact manifold with a normal injectivity
radius of h, then it has a normal injectivity radius of h at every point P ∈M .

For every ε > 0, the (h − ε)-thickening of M admits a deformation retract
onto M . We are more interested in the case where we have a finite set P which
approximates M , and want to show that some R-thickening of P also necessarily
admits a deformation retract onto M .

Lemma 3.1.10. Suppose P is a finite set such that M ⊆ Pr1 and P ⊆Mr2. Then
PR admits a deformation retract onto M provided the following inequality holds:

h− r2 ≥
√

R2 + (h−R + r1)2

Proof. Firstly, note that this instantly implies that h−R ≥ r2, and therefore that
the right-hand-side strictly exceeds R; consequently, h−R > r2, which means that
PR is contained in the (h − ε)-thickening of M . By the tubular neighbourhood
theorem, this means that each point x ∈ PR has a closest point π(x) ∈M , and that
π is continuous.

We want to say that Ht(x) := tπ(x) + (1− t)x is a deformation retract onto M .
It is necessary, however, to show that the fibres of π are convex (or, at the very least,
are star-neighbourhoods around the 0-section). To accomplish this, we will use the
fact that the (R− r1)-thickening of M is contained within PR.

Recall that PR is a union of radius-R balls centred on the points x ∈ P . It
suffices to show, therefore, that Ht restricted to each BR(x)∪MR−r1 is a deformation
retract onto M . The fibres of π are the unions of two coplanar metric (D − n)-balls
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(one from intersecting BR(x) with the normal space; the other from intersecting
MR−r1 with the normal space). These are star-neighbourhoods around the 0-section
provided that the boundaries of these balls do not intersect at an acute angle. This
is demonstrated more clearly in Figure 3.2.

Fig. 3.2 In each of the first two diagrams, one disc completely contains the other so
the diagram can be linearly retracted to the centre of the green disc. In the third
diagram, they intersect transversely with an obtuse angle of incidence; as such, they
can still be linearly retracted to the origin. In the fourth diagram, the angle of
incidence is acute, and the grey lines escape the union of the two discs.

Equivalently, in terms of the total space rather than each fibre in isolation, it
suffices to show that the boundaries of MR−r1 and BR(x) do not intersect at an acute
angle.

Suppose otherwise. Then there is some point y where the boundary of MR−r1

intersects the boundary of BR(x) at an acute angle. The curvature constraint on M

implies that π(x) and π(y) lie on some (D− 1)-sphere of centre O and radius h′ ≥ h

tangent to M at π(x). The acute angle is extremised when y is coplanar with O and
x, thus we henceforth assume this without loss of generality.

We have that π(x) and π(y) are at a distance of h′ from O, whence it follows
that |O − x| ≥ h′ − r2 and |O − y| = h′ − R + r1. But then the acuteness of the
intersection of the surfaces gives the inequality:

|O − x|2 < |O − y|2 + |y − x|2

which immediately contradicts the inequality we assumed in our premise.

Analytic optimisation shows us that, provided r2 < 1
2(2 −

√
2)h, we can take

r1 =
√

2(h− r2)− h and R = 1√
2(h− r2). This gives the following corollary which is

applicable to topological data analysis:
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Corollary 3.1.11. Suppose we have a compact smoothly embedded n-manifold M ⊂
RD which has a normal injectivity radius of h. Further, let P be a finite subset
of the r2-thickening of M . Then, provided that we have r2 < 1

2(2−
√

2)h, and the
r1-thickening of P covers M (where r1 =

√
2(h − r2) − h), then the R-thickening

of P and the associated Čech complex are both homotopy equivalent to M where
R = 1√

2(h− r2).

In practice, r2 is the radius which depends on the Gaussian noise parameter σ,
and we can make r1 as small as we like by sampling sufficiently many points and
choosing the subset of high enough density to ensure all points lie within Mr2 with
some sufficiently high probability p. The rest of this section is concerned with finding
explicit bounds for how many points we need to sample as a function of M and p.

Explicit bounds for smoothly embedded manifolds

We have shown that, provided r2 < 1
2(2−

√
2)h and f(x) > f(y) for every x ∈M and

y /∈Mr2 , then after sampling arbitrarily many points, removing outliers appropriately,
and constructing a Čech complex, it will be homotopy equivalent to M .

It is natural to ask whether there are any natural sufficient conditions which
ensure that f(x) > f(y) for all x ∈M and y /∈Mr2 . We do this by bounding both
sides of the inequality:

• We know that f(y) = Exe−τd(x,y)2 ≤ e−τr2
2 , where we have omitted the normali-

sation factor for convenience. Unless most of the measure µ on the manifold
M is concentrated near the closest point to y, this bound is rather weak. In
particular, it can be improved considerably when µ is the uniform distribution
over M .

• We shall show that, provided n ≥ 2, f(x) ≥ K−1αe−2τh2
0F1(1+n

2 , τ 2h4), where
α is the ratio of the minimum density of µ on M divided by the density of the
uniform measure of the n-sphere of radius h. K > 0 is a universal constant
which may be taken to be 12.75.

To prove the latter, it suffices to show that the n-sphere is the ‘worst case scenario’
up to a constant factor (in a way we make precise below) amongst all manifolds
of uniform density and normal injectivity radius h. That is to say, the n-sphere
minimises the volume of intersection between M and a radius-r ball centred on a
point of the manifold, up to an absolute dimension-independent constant factor.
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Lemma 3.1.12. Let n ≥ 1 and consider a C1 embedded n-manifold M ⊂ RD (where
D > n), which passes through the origin with a normal injectivity radius of h at the
origin. Let r > 0 be a positive real. Then there exists a manifold M ′′ which satisfies
the same conditions as M , occupies an (n + 1)-dimensional linear subspace of RD, is
axisymmetric, and has a smaller area when restricted to the ball of radius r centred
on the origin:

|Br(0) ∩M ′′| ≤ |Br(0) ∩M |

where Br(0) is the radius-r ball centred on the origin, and | | denotes the n-
dimensional Lebesgue measure.

Proof. Let the tangent space of M at the origin be denoted T , and let U be its
(D − n)-dimensional orthogonal complement. We endow the space Sn−1 ⊂ T of unit
tangent vectors with a measure given by:

µ(X) := |Br(0) ∩M ∩ {u + ρt : u ∈ U, t ∈ X, ρ ∈ R≥0}|

Then |Br(0) ∩ M | is an integral over the space Sn−1, and we can let t̂ be a
minimiser of the integrand. It follows that we can replace M with the axisymmetric
M ′ without increasing its area:

M ′ := {u + ρt : t ∈ Sn−1, ρ ∈ R≥0, u ∈ U, u + ρt̂ ∈M}

Note that M ′ need not be smooth (as singularities may appear on U), but still
has a normal injectivity radius of h at the origin. If M ′ has multiple connected
components, discard the components other than the one that contains the origin.
Then, after parametrising the geodesics from the origin in terms of arc-length, s, we
get:

M ′ = {u(s) + ρ(s)t : t ∈ Sn−1, s ∈ [0, ℓ]}

where ℓ is the arc-length of the geodesic measured from the origin to either the
boundary of the radius-r ball or to the subspace U (whichever comes sooner), and
u : [0, ℓ]→ U and ρ : [0, ℓ]→ R≥0 are continuously differentiable functions.

The other simplification that we can apply without increasing the area is to
make u(s) monotonic. Specifically, let v′(s) = |u′(s)| be the Euclidean norm of the
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derivative of u(s), and let v : [0, ℓ]→ R≥0 be the antiderivative of v′(s). Let û ∈ U

be an arbitrary unit vector, and define:

M ′′ = {v(s)û + ρ(s)t : t ∈ Sn−1, s ∈ [0, ℓ]}

We have |Br(0) ∩M ′′| ≤ |Br(0) ∩M ′| ≤ |Br(0) ∩M |. Also, v(s) is a monotone-
increasing function, and M ′′ ⊆ V ⊕ ⟨û⟩ now lies in a (n + 1)-dimensional subspace
of RD. Consequently, we can henceforth assume that D = n + 1 without loss of
generality.

The condition of having normal injectivity radius of h implies that M ′′ does not
intersect the open ball of radius h tangent to M ′′ at the origin. Recall that the
manifold is either closed (and may be non-C1 at the second intersection with the
axis of symmetry U) or has a boundary on the surface of Br(0). In the former case,
it follows that M ′′ encloses the ball of radius h, so has area at least as equal to the
radius-h sphere, and we are done. Otherwise, M ′′ is already everywhere C1, and we
are also done.

Theorem 3.1.13. There exists a universal constant K such that for all D > n ≥ 1
and r, h > 0, for every compact C1-embedded n-manifold M ⊂ RD which passes
through the origin with a normal injectivity radius of h at the origin, we have:

|Br(0) ∩ Sn(h)| ≤ K|Br(0) ∩M |

where Sn(h) denotes an n-sphere of radius h tangent to M at the origin.

Proof. By the previous lemma, we can assume without loss of generality that D = n+1
and M is axisymmetric, parametrised as:

M = {v(s)û + ρ(s)t : t ∈ Sn−1, s ∈ [0, ℓ]}

where v(s) is a monotone-increasing function of arc-length s along the geodesic.
The following conditions hold:

• v(s), ρ(s) ≥ 0 with equality if and only if s = 0;

• v(s)2 + ρ(s)2 ≤ r2 with equality if and only if s = ℓ;

• v′(s) ≥ 0 (monotonicity);

• v′(s)2 + ρ′(s)2 = 1 (unit speed);
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• (v(s)− h)2 + ρ(s)2 ≥ h2 (normal injectivity radius).

The area |Br(0) ∩M | can now be expressed as an integral, where the scaling
factor in front of the integral is the area of the unit sphere Sn−1:

|Br(0) ∩M | = 2πn/2

Γ(n/2)

∫ ℓ

0
ρ(s)n−1 ds

To complete the proof, we use a tripartite case-bash, considering the cases of
r ≤ h, h ≤ r ≤

√
2h, and

√
2h ≤ r, which together cover the positive real axis. The

corresponding bounds on K obtained from these cases are 2, 1 + π/(2−
√

3), and
2 + 2π/(2−

√
2), respectively.

Let S = Sn(h) be the radius-h sphere tangent to M at the origin, such that M

and S lie on the same side of the common tangent space; this is well defined from
the monotonicity property. The condition of having a normal injectivity radius of h

at the origin means that M is disjoint from the open ball whose boundary is S. For
ease of exposition, we shall henceforth use vertical to mean ‘parallel to the common
tangent space T of M, S’ and horizontal to mean ‘perpendicular to the common
tangent space T ’. The horizontal coordinate of a point P in the ambient space is the
signed perpendicular distance from P to T , where we adopt the convention that all
points on M and S have nonnegative horizontal coordinate. We say Q is left (resp.
right) of P if its horizontal coordinate is less than (resp. greater than) that of P .

• r ≤ h: The axis-parallel projection from M to S can increase areas by at most
a factor of 2. This can be seen by observing that the integrand ρ(s)n−1 is
unaffected, but the Jacobian of the projection map picks up a factor of at
most sec(θ) ≤ 2, where θ ≤ π

3 is the angle between the normal of S and the
horizontal.

• h ≤ r ≤
√

2h: We split Br(0) ∩ S into two portions: the spherical cap to the
left of the coordinate v(ℓ), and the annular region to the right. The area of M is
an upper bound for that of the spherical cap (because normal projection onto S

cannot increase area). Moreover, let ρ0 be the maximum distance of any point
on Br(0) ∩ S from the horizontal axis through the origin, and let a = ρ(ℓ)− ρ0

be the amount by which M exceeds that. On the interval s ∈ [ℓ−a, ℓ], we have
ℓ(s) ≥ ρ0. This defines an annular region of M which is at least (2−

√
3)/π

times the area of the aforementioned annular region of Br(0) ∩ S. This gives
an overall value of K = 1 + π/(2−

√
3) for this case.
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•
√

2h ≤ r: This case proceeds identically to the previous case, except we only
consider the left-hand hemisphere of S instead of the whole of Br(0)∩S. By the
same logic, we can show that this hemisphere has area at most 1 + π/(2−

√
2)

times the area of Br(0) ∩M ; doubling this to cover the whole sphere yields
the bound of K = 2 + 2π/(2−

√
2).

The result follows. For concreteness, note that K = 12.75 is sufficient for all three
cases, and only slightly larger than both 2 + 2π/(2−

√
2) and 1 + π/(2−

√
3).

We obtain the following corollary:

Corollary 3.1.14. The ratio f(x)/f(y), where x ∈ M and y /∈ Mr2, is bounded
below by:

K−1αeτ(r2
2−2h2)

0F1

(1 + n

2 , τ 2h4
)

where α is the ratio of the minimum density of µ on M , divided by the density
of the uniform measure of the n-sphere of radius h (in other words, scaled so that
α = 1 in the case of Sn(h). K is the absolute constant from the previous theorem.

At this point, we are ready to prove the detectability result for arbitrary smoothly
embedded compact manifolds (generalising, at the expense of worse bounds, the
result proved for the unit sphere).

Theorem 3.1.15. Let X := Y + ε be the sum of a random variable Y supported
on an n-manifold M ⊆ RD and a Gaussian random variable ε with zero mean and
covariance matrix σ2I (where I is the D ×D identity matrix).

Then f(x) ≥ βf(y) for all x ∈M and y /∈Mr2 provided the following inequality
holds:

h2

2σ2 ≥
n− 1

4 z0 +
1
4 log(1 + z2

0) + log(Kβ)− log(α)(
1 +

√
1 + z2

0

)−1
z0 −

(
1− r2

2
2h2

) + o(1)

where z0 is a universal constant, h is the normal injectivity radius of M , and α

is the (appropriately normalised) minimum density of the random variable Y on its
support M .

Proof. We proceed as before: in order for the expression in Corollary 3.1.14 to exceed
β > 1, we want the logarithm to be positive. Set ν = n−1

2 and z = 2τ
ν

h2, and apply
the asymptotic formula for 0F1, recovering the following inequality:
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√
1 + z2 + log(2)− 1− log(1 +

√
1 + z2)− z

(
1− r2

2
2h2

)
≥

1
ν

(1
4 log(1 + z2) + log(Kβ)− log(α) + o(1)

)

The bugbear is that we require r2 < 1
2(2−

√
2)h, so the solution z0 is correspond-

ingly larger than in the case of the sphere. Indeed, for this value of r2 we get a
threshold of z0 u 118.591 which translates to a bound on σ which is six times worse
than the case of the sphere.

It is, thankfully, only a constant factor worse, so we still get a concrete result that
our sampling methodology will necessarily work assuming the following conditions
(which holds asymptotically for large n, as well as in practice for small n):

h2

2σ2 ≥
n− 1

4 z0 +
1
4 log(1 + z2

0) + log(Kβ)− log(α)(
1 +

√
1 + z2

0

)−1
z0 −

(
1− r2

2
2h2

) + o(1)

For a concrete example of α for an n-manifold that is not the unit sphere, take the
torus T n embedded in R2n as the Cartesian product of n unit circles. The torus has
a measure of (2π)n whereas the n-sphere has a measure of 2

√
π

n+1

Γ((n+1)/2) , so a uniform
distribution over the torus would have an associated α of:

α =
(

Γ((n + 1)/2)
√

4π
n−1

)−1

In this case, − log(α) grows superlinearly as a function of n owing to the presence
of the gamma function. Specifically, the second term in the expression for the lower
bound on 1

2σ2 grows at a rate of Θ(n log n) and therefore eventually dominates the
linear term.

3.2 Witness complexes and modifications thereof

The previous analysis uses the Čech complex. For large datasets, it is infeasible to
explicitly compute a full Čech complex. As mentioned in the previous chapter, when
2r is greater than the diameter of the set X, the Čech complex includes a simplex
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for every non-empty subset of X; even for a relatively small dataset with |X| = 30,
there are already more than one billion simplices.

As such, it is preferable to use a more computationally tractable alternative, such
as the witness complexes described in [31]. Unfortunately, whilst they are convenient
for computation, they are often not homotopy equivalent to the r-thickening of X

(or equivalently to the Čech complex Cr) because omission of simplices from the
original Čech complex often creates ‘holes’ which introduce additional features in
the homology. To address this, we propose a pair of methods to ‘fill in’ these holes.

One sources of holes is as follows: if four vertices of L form a planar cyclic
quadrilateral, the set of points that could witness either of the diagonals is of
measure zero; consequently, quadruples of landmark points which are close to being
concyclic tend to yield quadrilateral ‘holes’ in the witness complex where neither
diagonal is witnessed. These holes, visible in Figure 3.3, are problematic because
they yield spurious infinite bars in the H1 homology.

3.2.1 Squared witness complex

We depart from [31] by considering the squared graph G2 of the 1-skeleton G of the
witness complex. That is to say, two landmark vertices x, y ∈ L are adjacent in G2

if there is either a point witnessing the edge xy or a ‘common neighbour’ z ∈ L such
that each of the edges xz and yz are witnessed. This addresses the problem of the
near-cyclic quadrilaterals at the minor expense of increasing the number of edges.

Proceeding as before, one can take the clique complex K of G2, including a
simplex for every clique (complete subgraph) in G2. As in a Vietoris-Rips complex, a
filtration {Kr : r ≥ 0} can be naturally defined on K by including only the simplices
whose underlying vertex-sets have diameter not exceeding r.

The motivation for squared witness complexes is similar to the motivation for
bounded Kan filling introduced in the next section. The salient difference is that
squared witness complexes remove infinite bars in the homology barcode, whereas
bounded Kan filling removes finite bars. These two approaches are complementary,
as is seen in the analysis of the final dataset (natural images).

3.2.2 Bounded Kan filling

As the points in X are typically sampled randomly from the manifold we are trying to
detect, the number of points in a region of the manifold follows a Poisson distribution.
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Fig. 3.3 Near-cyclic quadrilaterals fail to be witnessed, causing spurious features in
the first homology.

This means that often there are relatively large regions of the manifold devoid of
points, causing holes to appear as in the left-hand complex in Figure 3.4.

Not only are they damaging for topological data analysis, but also they are
slightly detrimental to Isomap: the estimate of geodesic distances across the manifold
is distorted since the shortest path must traverse around the hole instead of passing
through it. This theoretical argument is confirmed by the experimental results later
in this chapter.

Increasing the length scale further would eventually lead to additional edges
bridging the inner and outer layers of the Swiss roll, which would compromise Isomap
much more severely by making distant points on the manifold appear adjacent. In
topological data analysis, this is remedied by observing features which persist over a
range of length scales; there is no obvious way to apply this idea to Isomap.
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Fig. 3.4 Witness complexes of the Swiss roll dataset, constructed with and without
bounded Kan filling.

Instead, using another technique similar to the squared witness complex, bounded
Kan filling connects points which are close in both the intrinsic geometry of the
graph and in the ambient geometry, resulting in the hole-free right-hand image. It
operates on the filtration as follows:

• If a simplex σ appears at time t – that is to say, t is the infimum t := inf{s :
σ ∈ Ks} – and its codimension-1 faces appear at times t0, . . . , tn−1, tn (in
chronological order), then we ‘bring forward’ both the simplex and its most
recent codimension-1 face to appear at time tn−1. This is performed iteratively.

• We impose that, for each simplex σ, the new time t′ is constrained to be at least
ct, where t is the original time and 0 < c < 1 is a universal constant. In practice,
c = 1

2(
√

5− 1) works very well; in the following section, we demonstrate that it
is necessary and sufficient to ensure, for Vietoris-Rips, Čech, alpha, and squared
witness complexes in RD, that all cycles of length 4 and 5 in the original graph
are triangulated.

By judiciously choosing the order of simplices to be updated, and using appropriate
data structures, this can be implemented as an algorithm with running time O(nd2 +
n log n) (in the random-access model), where n is the number of vertices and d is the
maximum dimension of any simplex. Details of this algorithm are described later.
This is dominated by the time complexity of the linear algebra involved in Isomap,
so bounded Kan filling has negligible overhead for large datasets.

The adjective ‘bounded’ refers to the presence of the constant c. If K is the
original filtration and K′ is the filtration after bounded Kan filling, one obtains a
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Lipschitz result entirely analogous to the relationship between Vietoris-Rips and
Čech complexes:

Kch(X) ⊆ K′
h(X) ⊆ Kh(X)

Consequently, bounded Kan filling can only perturb the (logarithmic) persistence
diagram by a bottleneck distance of at most log(c−1); this implies that persistent
features in the homology barcode will remain after bounded Kan filling. Conversely,
experimental results confirm that, in practice, it causes the majority of short ‘noise’
bars to disappear, thereby ‘cleaning’ the barcode such that the topology can be
inferred from the homology of a single simplicial complex, rather than by needing to
compute persistent homology. This is reflected in the plots of the Betti numbers of
the Swiss roll before and after bounded Kan filling:

At the end of this chapter, we apply this idea to manifold learning, where we
need a single neighbourhood graph. Another feasible application is multidimensional
persistence, where the simplicial complexes Kr,p are described by a 2-parameter filtra-
tion (for instance, witness complexes with length-scale r, restricted to a proportion p

of the ‘highest-density’ points as in [41]); one could apply bounded Kan filling with
respect to r followed by persistent homology with respect to p. This is explored in
the final chapter of the dissertation.

Choice of constant c

We mentioned that c = 1
2(
√

5 − 1) works well in practice. Here we shall prove
that, if there are any 5-cycles in a Čech or Vietoris-Rips complex, then they are
null-homotopic in the corresponding Kan-filled complex. It is easy to see that the
claim is equivalent to the following:
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Theorem 3.2.1. Let P be a pentagon in Rn, and suppose that every edge has length
at most 1. Then we can triangulate P by adding two diagonals of length at most
φ := 1

2(
√

5 + 1)

Proof. It is shown in [28] that the sum of external angles of any closed (not necessarily
planar) polygon is at least 2π, by induction on the number of vertices. This implies
that one of those angles is at least 2π

5 , and the corresponding internal angle ̂Vi−1ViVi+1

is at most 3π
5 . By the cosine rule, it follows that the diagonal Vi−1Vi+1 has length

bounded above by φ.
What remains to show is that one of the diagonals of the quadrilateral Vi−2Vi−1Vi+1Vi+2

has length at most φ. This is a consequence of Ptolemy’s inequality, which states
that:

|Vi−2Vi+1||Vi−1Vi+2| ≤ |Vi−1Vi+1||Vi−2Vi+2|+ |Vi−2Vi−1||Vi+1Vi+2|

with equality if and only if the quadrilateral is a planar cyclic quadrilateral. The
right-hand-side of the inequality is bounded above by φ + 1, which implies that at
least one of the diagonals is no greater than

√
φ + 1 = φ.

3.2.3 Computational complexity

Here we show that it is possible to perform the bounded Kan filling algorithm in
time O(nd2), where n is the number of simplices and d is the maximum dimension
of any simplex, assuming the simplices are already sorted in order of appearance.
(Otherwise, the preprocessing step will take time O(n log n), which may dominate if
d2 = o(log n).)

Preprocessing

The preprocessing step prepares the data structure on which the algorithm will
operate. It takes time O(nd) if the simplices are initially sorted, or O(n log n)
otherwise.

1. If necessary, sort the list of simplices into ascending order according to the point
t at which each simplex appears in the filtration. This takes time O(n log n) in
the worst case using mergesort.

2. Walk through the list of simplices and produce an ordered list T of unique
arrival times. This takes time O(n).
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3. Define T ′ := T ∪ cT , where cT := {ct : t ∈ T}. The ordered set T ′ can be
produced in time O(n) by interleaving T and cT with the procedure used in a
single iteration of mergesort.

4. Let the elements of T ′ be labelled {t1, t2, t3, . . . , tm}, where m ≤ 2n. We
construct an array of initially empty doubly-linked lists, {L1, L2, . . . , Lm}.

5. Populate the doubly-linked lists with the simplices such that if a simplex
appears at time ti, it is appended to list Li. This can be accomplished in
time O(n) by simultaneously walking through the list of simplices and array of
doubly-linked lists; we never backtrack.

6. Annotate each simplex σ with its list of children (codimension-1 faces) and
parents (simplices which contain σ as a codimension-1 face).

7. Also annotate each simplex with two indices: a mutable index i such that Li

is the list which contains σ, and an immutable index j such that tj = cti ab
initio. The purpose of j is to provide a lower bound for i. (To make it clear as
to the simplex to which we are referring in the description of the algorithm, i

and j will henceforth be subscripted with the simplex name σ.)

Iterative procedure

We define two operations on simplices:

• Update: we take a simplex σ and let ρ, π be the children with largest and
second-largest index i, respectively. Now we update iσ ← max(jσ, iπ), and
update iρ ← min(iρ, iσ). Move these simplices into the appropriate linked lists.

• Signal: we take a simplex σ and update each of its parents. Then move σ out
of its linked list and place it in the ‘finished pile’ L0.

Clearly, an update step takes time O(d), and a signal step takes amortized time
O(d2). To conduct the algorithm, we walk along the array of linked lists, repeatedly
applying the signal step to the topmost element until the list is fully consumed before
moving on to the next linked list in the array. The total time is O(nd2) as claimed.

The algorithm works because, whenever we place a simplex σ on the finished pile,
we are assured that no simplex τ will subsequently ever receive an index iτ < iσ. This
can be proved by strong induction on the index i. After completing the procedure,
we obtain a new filtration where the simplex σ appears at time tiσ .
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3.3 Application to manifold learning

The efficacy of bounded Kan filling is demonstrated by improving the reconstruction
accuracy of two methods of nonlinear dimensionality reduction: Isomap and LLE.
We measure reconstruction accuracy in terms of the Procrustes distance between the
ground truth and the low-dimensional embedding.

3.3.1 Tenenbaum’s faces

Tenenbaum prepared a dataset of 698 monochrome 64× 64 synthetic images of faces.
Each image has three independent uniformly-distributed parameters: the vertical
pose, horizontal pose, and lighting direction. This dataset is embedded naturally in
R4096, and by projecting it onto the first 160 principal components this is reduced to
a linear subspace R160.

For each k ∈ N, we created the k-nearest neighbour graph Gk by including an
edge between x, y ∈ X if and only if either x is in the k nearest neighbours of y, or
y is in the k nearest neighbours of x, or both. This is the identical to the graph used
in Isomap and its conformal counterpart, but differs from the digraph used in LLE
in that it is symmetrised.

Gk can be viewed as the 1-skeleton of its clique complex Rk. Analogously, we let
G′

k be the 1-skeleton of the simplicial complex obtained from applying bounded Kan
filling to the filtration of Rk.

We experimented with the Isomap [14], C-Isomap [16], and LLE [15] on both
Gk and G′

k for various positive real values of k. We also include a modification of
LLE in which the weights are constrained to be positive, as briefly alluded to in [15],
which shall be abbreviated as PLLE. This is slower to compute as it requires convex
optimisation (typically an iterative method) as opposed to direct linear algebra, but
we shall see that the reconstruction error is consistently lower than unconstrained
LLE.

Note that the graph Gk only depends on the integer part of k, whereas G′
k depends

on the integer parts of both k and c−1k, where c = 1
2(
√

5− 1) is the parameter used
for bounded Kan filling. We sample 125 geometrically uniformly spaced values of
k ∈ [1, 16].

For each combination of graph and method of nonlinear dimensionality reduction,
we obtain an embedding from R160 to R3. This is then whitened (affinely transformed
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to have zero mean vector and identity covariance matrix) and compared with the
(also whitened) three-dimensional ‘ground truth’ using Procrustes distance:

This is consistent with the results in [14], which found that LLE gave a very
distorted embedding of the dataset of faces. Our results further show that this is
only marginally improved by constraining the weights to be positive, and bounded
Kan filling offers no further improvement. On the other hand, bounded Kan filling
marginally improves the performance of both the original and conformal variants of
Isomap in the trough in which reconstruction is most accurate.

The best reconstruction is with conformal Isomap after bounded Kan filling; the
original and reconstructed datasets are visualised below and superimposed as to
minimise the mean squared error:
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3.3.2 Swiss roll

The noiseless Swiss roll described in [20] is generated by sampling a set S of 1600
points (x, y) from a Gaussian mixture model of four equiprobable unit-variance
normal distributions centred on the points {15

2 , 25
2 } × {

15
2 , 25

2 }. This is embedded in
R3 using a parametrisation of an Archimedean spiral:

• 3D embedding: Z := {(x cos x, y, x sin x) : (x, y) ∈ S}

If this were to be isometrically ‘unravelled’ into R2, one would obtain the following
embedding:

• 2D embedding: Y := {(1
2

(
x
√

1 + x2 + log(x +
√

1 + x2)
)

, y) : (x, y) ∈ S}

This two-dimensional embedding is the target ‘ground truth’, and the accuracy
of nonlinear dimensionality reduction can be assessed by comparing the output of
Isomap with this target embedding; the error is the Procrustes distance between
them.

Our objective, given a set of points in the embedding in R3 (optionally with
added noise), is to find the isometric map into the lower-dimensional space R2. Below
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is a random 3D embedding Z, together with a noisy variant X obtained by adding
an independent spherical Gaussian N(0, σ2I) with σ := 0.3 to every point in the
dataset Z.

151050510

468101214

10

5

0

5

10

Without Gaussian noise

151050510

468101214

10

5

0

5

10

With Gaussian noise

The results that follow are performed on the noisy embedding X, as it is a more
realistic problem. We use sequential maxmin to sample a set of 600 landmark points,
compute an alpha complex on those landmark points, and then embed it. The
remaining 1000 (non-landmark) points are embedded by using PLLE to interpolate
between the k = 10 nearest landmark points.

We observe results that are qualitatively similar to the other dataset: bounded
Kan filling substantially improves the performance of both the original and conformal
variants of Isomap in the k ∈ (3, 4) interval in which reconstruction is most accurate:
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The above experiments have used the k-nearest neighbours graph, for consistency
with [14], [16], and, to the greatest extent possible whilst ensuring that the graph
is symmetric, [15]. An alternative is to use the Euclidean metric for defining our
filtration; we find that the results are similar, with Isomap performing very well in
the optimal interval, and the Kan-filled variant outperforming it slightly further:
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In all of these plots, there are occasional upward ‘spikes’ in the reconstruction
error, especially for Isomap and its variants. These errors are caused by a topological
defect, where poor connectivity near the middle of the manifold can cause one end of
the embedding to be flipped relative to the other end. Figure 3.5 shows the bijection
between the original points and the reconstructed points, where the upper-right end
is correctly oriented and the lower-left end is flipped.

Fig. 3.5 Optimal matching between the ground truth and a defective ‘twisted’
reconstruction. The lower-left end is flipped relative to the upper-right end.

A sufficient condition for this problem to occur can be formulated in terms of
the connectivity, or rather lack thereof, of the neighbourhood graph used by Isomap.
In particular, let φ : X → Rd be the ground truth embedding and suppose that
the neighbourhood graph (supported on X) fails to be d-vertex-connected. As such,
X can be written as the union X1 ∪X2, where the intersection X1 ∩X2 contains
at most d − 1 points and there are no edges between X1 \ X2 and X2 \ X1. Let
Π ∈ Rd be an arbitrary hyperplane containing the intersection X1∩X2, the involution
ρΠ : Rd → Rd be reflection in Π, and define a twisted embedding φ′ : X → Rd as
follows:

φ′(x) =

φ(x) if x ∈ X1;

ρΠ(φ(x)) otherwise.
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Observe that the shortest-path metrics induced by φ and φ′ are identical, so
Isomap is incapable of distinguishing between them. The situation in Figure 3.5 is
an example of this phenomenon in the case where d = 2.





Chapter 4

Non-Euclidean and functional data

4.1 Statistics on non-Euclidean manifolds

The previous chapter considered a model in which points are sampled from an
unknown subspace M ⊆ A of the ambient space, with each Yi being an independent
identically distributed random variable distributed according to a measure µ on M .
We introduced noise by taking Xi := Yi +εi, where each εi is independently identically
distributed according to some noise distribution (typically Gaussian, although we
consider other distributions in the next chapter).

We proceed to generalise this idea to when A is a non-Euclidean space. For
concreteness, let us suppose A is a smooth Riemannian manifold. One obstacle to
immediately generalising this to an arbitrary ambient space A is that it need not
carry the structure of a vector space, so we cannot directly add the random variables
Yi and εi or equivalently convolve their distributions. The closest analogue is to take
εi ∈ TYi

to be in the tangent space of A at the point Yi, and then define:

Xi := expYi
(εi)

where expYi
: TYi

→ A is the exponential map introduced in the background
material.

As tempting as this definition is, it no longer makes sense to speak of the εi as
being ‘identically distributed’, as the domain of the distribution is the tangent space
TYi

which depends on Yi. Instead, therefore, we shall let each εi be independently and
identically distributed according to a noise distribution on a vector space V = Rdim A,
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and define (for each x ∈ A) an isometric isomorphism fx : V → Tx. Then our
previous definition becomes:

Xi := expYi
(fYi

(εi))

How do we define the isometric isomorphisms fx? If the distribution of εi is
spherically symmetric, then the distribution of fx(εi) is independent of the choice of
fx, so we may choose the isomorphism arbitrarily.

More generally, the Levi-Civita connection gives us the notion of parallel transport:
given a choice of path γ ∈ A with endpoints x and y, we obtain an identification
between the tangent spaces Tx and Ty. As such, we can choose fx0 arbitrarily for
some basepoint x0 ∈ A and obtain fx by composing with the parallel transport map
along an arbitrary curve γx with endpoints x0 and x. Provided the distribution of εi

is invariant under a group of isometries known as the holonomy group of A, then the
distribution of fx(εi) is independent of the choice of the path γx. In the Euclidean
case, the holonomy group is trivial so there are no constraints on the distribution of
εi and thus this is indeed a generalisation of the scenario in the previous chapter.

4.2 Metrics on spaces of positive-definite matrices

In this section, we shall establish inequalities relating the various metrics (described
in the background material and in [65]) on the space of positive-definite matrices. To
recap, given positive-definite matrices A1 and A2, the following distances are defined:

• Euclidean: dE(A1, A2) := ∥A1 − A2∥2;

• Square-root: dH(A1, A2) := ∥
√

A1 −
√

A2∥2;

• Log-Euclidean: dL(A1, A2) := ∥log(A1)− log(A2)∥2;

• Procrustes: dS(A1, A2) := inf∥L1−L2∥2 where the infimum is over all choices
L1, L2 such that LiL

T
i = Ai;

• Affine-invariant Riemannian: dR(A1, A2) := ∥log(A−1/2
1 A2A

−1/2
1 )∥2.

In particular, we establish absolute Lipschitz bounds relating the square-root and
Procrustes distances, as well as conditional Lipschitz bounds (depending on condition
number) relating the log-Euclidean and affine-invariant Riemannian metrics. We
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also introduce a continuously-parametrised family of metrics intermediate between
the log-Euclidean and affine-invariant Riemannian metrics.

4.2.1 Square-root and Procrustes metrics

In both the Cholesky and square-root metrics, we map each matrix A to some
particular L (either square-root or lower Cholesky factor) satisfying LLT = A. The
Procrustes distance dS(A1, A2), as mentioned in [65], is defined to be the infimum
distance ∥L1 − L2∥ over all choices L1, L2 such that LiL

T
i = Ai. By definition, the

Procrustes distance is no greater than either the square-root or Cholesky distance,
and in general is smaller.

Note that LLT = L′L′T if and only if L′ = LR for some orthogonal matrix R.
Consequently, dS(A1, A2) is the distance in RSΣd+1

d between the shapes represented by
pre-size-and-shape matrices L1, L2. Our choice of representatives L1, L2 is arbitrary;
we choose the Cholesky factor since it is computationally easier to compute than the
square-root.

Unlike the Cholesky distance, the Procrustes distance is again isotropic (indepen-
dent of the choice of orthogonal basis). As it is isometric to the size-and-shape space
RSΣd+1

d , rather than Euclidean space, all of the sectional curvatures are positive.
For this reason, it is more difficult to compute Čech and alpha complexes.

Nonetheless, we can find Lipschitz constants which bound the ratio between the
square-root and Procrustes distance.

Theorem 4.2.1. Let H1, H2 be d× d covariance matrices. Then we have:

dS(H1, H2) ≤ dH(H1, H2) ≤
√

2dS(H1, H2)

where dS denotes Procrustes distance and dH denotes square-root distance.

Proof. The first of these inequalities follows immediately from the definitions.
For the second inequality, it suffices to show that for all ϵ > 0, we have

dH(H1, H2) ≤
√

2
1−ϵ

dS(H1, H2). Let δ > 0 be small, possibly dependent on ϵ.
If dS(H1, H2) is larger than δ, we can draw the Procrustes geodesic between H1 and
H2 and consider the k − 1 intermediate points spaced at regular intervals:

H1 =: J0, J1, J2, . . . , Jk := H2
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Provided k is sufficiently large, we have dS(Ji, Ji+1) < δ. Now, if we can prove that
dH(Ji, Ji+1) ≤

√
2

1−ϵ
dS(Ji, Ji+1) for each i, the triangle inequality for the square-root

metric will imply the desired result.
Consequently, we may assume without loss of generality that dS(H1, H2) ≤ δ.

Since δ can be chosen to be arbitrarily small, much smaller than ϵ, we will be able
to do a tangent-space approximation and linearise.

Let X1 and X2 be the positive-semidefinite square-roots of H1 and H2, respectively.
Suppose that R is the orthogonal matrix which minimises the distance between X1R

and X2. Let Y = 1
2(X1R + RT X1) be the orthogonal projection of X1R onto the

space of symmetric matrices, and let Z be the orthogonal projection of X1R onto
the line ℓ through X1 and X2.

Since ℓ is an affine subspace of the space of symmetric matrices, we necessarily
have the following:

∥X1R− Y ∥ ≤ ∥X1R− Z∥

by the property that the orthogonal projection Q of P onto a space is the closest
point on that space to the original point P .

If we let θ be the angle at X1 between the line ℓ and the line segment between
X1 and X1R, then the following result holds:

∥X2 −X1R∥
∥X2 −X1∥

≥ cos(θ) = ∥X1R− Z∥
∥X1R−X1∥

Now, if we could prove that ∥X1R−Y ∥2 ≥ 1−ϵ
2 ∥X1R−X1∥2, then we could chain

this with the previous inequalities to show that ∥X2 − X1R∥2 ≥ 1−ϵ
2 ∥X2 − X1∥2,

which is exactly the result we want to prove.
By Pythagoras’ theorem, ∥X1R−X2∥2 = ∥X1R−Y ∥2+∥Y −X2∥2, so equivalently

we need to show that ∥Y −X1∥2 ≤ 1+ϵ
2 ∥X1R−X1∥2. We will show that this holds

for any sufficiently small rotation R (we know that R must be small since H1, H2

are close by assumption).
Since X1 is symmetric, this is just the assertion that X1(R− I) is shrinked by a

factor of at least
√

2
1+ϵ

when projected onto the space of symmetric matrices. Firstly,
we will take advantage of the ϵ of slack to absorb all but the leading-order terms,
and linearise. Hence, it suffices to show that for any positive-definite matrix X1 and
antisymmetric matrix A (approximating R− I), we have:
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∥X1A∥ ≥
√

2∥π(X1A)∥

where π is the projection onto the space of symmetric matrices. By an orthogonal
change of basis, we may assume without loss of generality that X1 is a diagonal
matrix with non-negative entries. It is straightforward to see that the diagonal of
X1A is identically zero, and for each pair of entries (X1A)ij, (X1A)ji, precisely one
is positive (or zero) and the other is negative (or zero).

Let {a,−b} be one such pair of entries. When we project onto the space of
symmetric matrices, X1A maps to 1

2(X1A − AX1), which has entries of {1
2(a −

b), 1
2(a− b)} in the corresponding positions. Since a2 + b2 ≥ (a− b)2, we can conclude

that:

a2 + b2 ≥ 2
(a− b

2

)2

+
(

a− b

2

)2


Summing over all
(

n
2

)
such pairs, one for each pair of off-diagonal entries, we

get ∥1
2(X1A − AX1)∥2 ≤ 1

2∥X1A∥2 or equivalently ∥π(X1A)∥ ≤ 1√
2∥X1A∥. This is

precisely what we needed to prove; the result therefore follows.

There are a couple of repercussions worth mentioning. Firstly, bottleneck stability
means that the logarithmic persistence diagrams of a set X of positive-semidefinite
matrices, with respect to the square-root and Procrustes metrics, differ by a bottleneck
distance of at most 1

2 log 2. In the same way that the Vietoris-Rips complex can be
used as a lazier, more easily-computable approximation to a Čech complex, we can
use the square-root metric as an approximation to the Procrustes metric. As well as
being able to compute pairwise distances much more quickly, we can also compute
bounding balls (and therefore Delaunay complexes) exactly.

Secondly, since the bound is independent of the dimension d, it naturally extends
to the infinite-dimensional case: the square-root distance between two trace-class
covariance operators is at most

√
2 times larger than the corresponding Procrustes

distance. We shall later discuss covariance operators in greater detail.
It is also tempting to ask whether the bound is tight, or whether it can be improved.

It transpires that we can get pairs of matrices with distance ratio arbitrarily close to
√

2, namely the following pair of idempotent positive-semidefinite matrices:
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M0 :=
1 0

0 0

 , Mε :=
 1− ε

√
ε− ε2

√
ε− ε2 ϵ


4.2.2 Log-Euclidean, Riemannian, and intermediate metrics

When the matrices A and B commute (that is to say, they are simultaneously
diagonalisable), we have log(A− 1

2 BA− 1
2 ) = log(B) − log(A) and therefore the log-

Euclidean distance (the Hilbert-Schmidt norm of the right-hand side) coincides
exactly with the distance in the affine-invariant Riemannian metric (the Hilbert-
Schmidt norm of the left-hand side). This suggests that it may be possible to obtain
Lipschitz constants bounding the ratio dL(A, B)/dR(A, B), analogous to the bounds
we obtained for dS(A, B)/dH(A, B).

These distances are the Hilbert-Schmidt norms of, respectively, the matrices
log(B) − log(A) and log(A−1/2BA−1/2). If we let A = exp(X) and B = exp(Y ),
where X and Y are symmetric matrices, then these are the norms of the matrix
logarithms of exp(Y −X) and exp(−X/2) exp(Y ) exp(−X/2), respectively. This is
reminiscent of the celebrated Golden-Thompson inequality [56], which states that the
trace of exp(Y −X) is no greater than the trace of exp(−X/2) exp(Y ) exp(−X/2).
Unfortunately, it does not immediately prove anything about the norms of the matrix
logarithms, so a different approach is required.

Firstly, we propose a common generalisation of both metrics, providing a method
of smoothly interpolating between them. In particular, we define the log-p distance
(where p ∈ (0, 1]) to be:

dp(A, B) :=
∥∥∥∥∥1

p
log(A−p/2BpA−p/2)

∥∥∥∥∥
2

This can be seen to be a metric, as dp(A, B) = p−1dR(Ap, Bp) and we already
know that dR is a metric.

The definition can be extended to the entirety of the closed interval by defining
d0(A, B) to be the limit limp→0 dp(A, B), whose existence is demonstrated by showing
that it is equal to the log-Euclidean distance dL(A, B):

Theorem 4.2.2. The log-p distances interpolate between the log-Euclidean distance
and the affine-invariant Riemannian distance, in the sense that:

• d0(A, B) = dL(A, B);
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• d1(A, B) = dR(A, B).

Moreover, when A and B commute, all of the log-p distances coincide.

Proof. As A and B are positive-definite symmetric matrices, we can express them
in the form A = exp(X) and B = exp(Y ). Then the formula for the log-p distance
becomes:

dp(A, B) :=
∥∥∥∥∥1

p
log

(
exp

(
−p

2X
)

exp(pY ) exp
(
−p

2X
))∥∥∥∥∥

2

When A and B commute, so do X and Y (as they are all simultaneously diag-
onalisable), so the distance simplifies to the following expression which does not
depend on p:

dp(A, B) := ∥Y −X∥2

When A and B do not commute, the situation is more complicated, but the
Lie product formula in [4] implies that this still holds in the limit as p → 0, so
d0(A, B) = dL(A, B) as claimed. The other fact, that d1(A, B) = dR(A, B), holds by
definition.

We shall also prove that dp(A, B) is a monotone-increasing function of p, and
therefore that the affine-invariant Riemannian distance is never smaller than the
log-Euclidean distance. This depends on the Araki-Lieb-Thirring inequality proved
in [57]:

Theorem 4.2.3 (Araki-Lieb-Thirring inequality). Let A, B be positive semi-definite
n × n matrices, and suppose that k ≥ 0 and r ≥ 1 are reals. Then the following
inequality holds:

tr[(A1/2BA1/2)rk] ≤ tr[(Ar/2BrAr/2)k]

If A and B are moreover invertible (and therefore positive definite), then the
Araki-Lieb-Thirring inequality can be strengthened. Firstly, by a change of variables
A 7→ A−1, r = t

s
, q = rk, we can restate the inequality in a more symmetrical form:

Corollary 4.2.4. Let A, B be positive definite n × n matrices, and suppose that
q ≥ 0 and 0 < s ≤ t are reals. Then the following inequality holds:

tr[(A−s/2BsA−s/2)q/s] ≤ tr[(A−t/2BtA−t/2)q/t]
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Secondly, the condition q ≥ 0 can actually be dispensed. In particular, if we let
X = A−s/2Bs/2, then the left-hand-side is just the sum of the (q/s)th eigenvalues of
XXT . Both XXT and XT X share the same eigenvalues (these being the squares of
the singular values of X), so we can rewrite the inequality as follows:

tr[(Bs/2A−sBs/2)q/s] ≤ tr[(Bt/2A−tBt/2)q/t]

Using the fact that (CD)−1 = D−1C−1, this can be rewritten as:

tr[(B−s/2AsB−s/2)−q/s] ≤ tr[(B−t/2AtB−t/2)−q/t]

Interchanging the rôles of the matrices A and B establishes Corollary 4.2.4 with
q replaced with −q; consequently, the result holds for all q ∈ R. For convenience, let
us restate this strengthened version:

Lemma 4.2.5 (Bidirectional Araki-Lieb-Thirring inequality). Let A, B be positive
definite n× n matrices, and suppose that q ∈ R and 0 < s ≤ t are reals. Then the
following inequality holds:

tr[(A−s/2BsA−s/2)q/s] ≤ tr[(A−t/2BtA−t/2)q/t]

This is almost, but not quite, what we need to prove that the log-p metrics are
monotone-increasing as a function of p. Specifically, this inequality relates the traces
of the qth powers of the matrices (A−s/2BsA−s/2)1/s and (A−t/2BtA−t/2)1/t, whereas
we would like the same relation between the Hilbert-Schmidt norms of the logarithms
of the matrices. Equivalently, we would like to prove the following:

Theorem 4.2.6. Let A, B be positive definite n×n matrices, and suppose that s ≤ t

are positive reals. Then ds(A, B) ≤ dt(A, B), which is to say that:

tr[log((A−s/2BsA−s/2)1/s)2] ≤ tr[log((A−t/2BtA−t/2)1/t)2]

Proof. We utilise the fact that log(λ)2 = limq→0 q−2(λq + λ−q − 2) for all reals λ > 0.
The same expression also holds for Λ being a positive definite matrix, by choosing a
diagonal basis and applying this equation elementwise. As such, it suffices to prove
the following and obtain the desired result by allowing q → 0:
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tr[q−2((A−s/2BsA−s/2)q/s + (A−s/2BsA−s/2)−q/s − 2I)]
≤ tr[q−2((A−t/2BtA−t/2)q/t + (A−t/2BtA−t/2)−q/t − 2I)]

By linearity of trace, this follows from invoking Lemma 4.2.5 twice, with exponents
of q and −q.

Fixing t and taking the limit as s→ 0 extends this result to the case where s, t are
nonnegative (rather than strictly positive) reals. As a special case, the log-Euclidean
distance is upper-bounded by the distance in the affine-invariant Riemannian metric:

tr[(log(B)− log(A))2] ≤ tr[log(A−1/2BA−1/2)2]

What about the other direction? Are the metrics Lipschitz-equivalent?

Obstruction to Lipschitz equivalence

In the pursuit of a potential counterexample, observe that the metrics are identical
when A and B commute, so we would like to find examples of matrices which are ‘as
far away as possible’ from commuting. Given that the centre of GL(n,R) consists
exactly of the scalar multiples of the identity, or equivalently the matrices whose
condition number h (ratio between largest and smallest eigenvalues) is 1, a potentially
fruitful fountain of counterexamples is amongst matrices with very large condition
numbers.

Moreover, if we can find a pair of matrices A, B with a large ratio dR(A,B)
dL(A,B) ≥ K,

then we can find matrices A′, B′ within any prescribed distance of each other which
similarly satisfy dR(A′,B′)

dL(A′,B′) ≥ K; this follows from taking a geodesic (with respect to
dL) between A and B, dissecting it into N ≫ 1 intervals of equal length (again, with
respect to dL), and letting A′, B′ be the endpoints of the interval with the largest
separation (with respect to dR).

Given that, it makes sense to consider the 2 × 2 matrices A and B = UAUT ,
where A is the diagonal matrix with entries h and 1 and U is a rotation matrix
extremely close to the identity:

U := 1
1 + ε2

1− ε2 2ε

−2ε 1− ε2


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In this regime with ε→ 0, we can approximate the log-p distance as:

dp(A, B) =
∥∥∥∥∥1

p
(A−p/2BpA−p/2 − I)

∥∥∥∥∥
2

(1 + O(ε))

The lack of logarithm makes this expression more convenient for manipulation.
Using computer algebra software, the squared Hilbert-Schmidt norm inside the above
expression can be shown to be 8ε2(hp + h−p − 2)(1 + O(ε)); consequently, we have:

dp(A, B) = 1
p

√
8ε(hp/2 − h−p/2)(1 + O(ε))

The ratio between dt(A, B) and ds(A, B) is therefore given by:

dt(A, B)
ds(A, B) = t−1(ht/2 − h−t/2)

s−1(hs/2 − h−s/2)(1 + O(ε))

which can be made arbitrarily large (whenever t > s) by taking h to be large.
That is to say, no pair of these metrics are Lipschitz equivalent.

In the absence of a universal Lipschitz constant, perhaps it is still possible to
bound the ratio dt(A,B)

ds(A,B) by some function of the condition numbers of the matrices
involved.

Dependence on condition number

It transpires that the matrices A, B in the previous section, in the limit as ε→ 0,
maximise the ratio dt(A, B)

ds(A, B) for a given condition number h. More precisely, the
following theorem holds:

Theorem 4.2.7. If A, B are any pair of positive definite n× n matrices, each with
condition number upper-bounded by h, then we have:

1 ≤ dt(A, B)
ds(A, B) ≤

t−1(ht/2 − h−t/2)
s−1(hs/2 − h−s/2)

Recall that the lower bound has already been established. To establish the upper
bound, it suffices to prove it pointwise; that is to say, at every point Σ in the space of
positive-definite matrices and every tangent vector W ∈ TΣ, the ratio of the norms
of W in the inner products on TΣ induced by the Riemannian metrics has this upper
bound.
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Lemma 4.2.8. Suppose V is a vector space endowed with two inner products, and
let {x1, . . . , xD} be a basis of orthogonal vectors with respect to both inner products.
Then the ratio:

⟨v, v⟩1
⟨v, v⟩2

attains its maximum at one of the basis vectors xi.

Proof. Suppose v = a1x1 + · · ·+ aDxD. Then, by orthogonality of the basis vectors,
we have:

⟨v, v⟩1
⟨v, v⟩2

= a2
1⟨x1, x1⟩1 + a2

2⟨x2, x2⟩1 + · · ·+ a2
D⟨xD, xD⟩1

a2
1⟨x1, x1⟩2 + a2

2⟨x2, x2⟩2 + · · ·+ a2
D⟨xD, xD⟩2

Now let xi be the basis vector which maximises the ratio K2 := ⟨xi, xi⟩1/⟨xi, xi⟩2.
Each term in the numerator can be verified to be at most K2 times the corresponding
term in the denominator, and therefore the ratio is bounded above by K2. Since
v = xi itself attains that bound, the result follows.

The utility of this lemma arises from taking V = TΣ to be the tangent space,
⟨u, v⟩1 to be the inner product on V induced by the Riemannian metric dt, and
⟨u, v⟩2 to be the inner product induced by ds. By exhibiting a computationally
convenient set of D = 1

2n(n + 1) basis vectors which are simultaneously orthogonal
with respect to every log-p metric, it suffices to show that:

√√√√⟨xi, xi⟩1
⟨xi, xi⟩2

≤ t−1(ht/2 − h−t/2)
s−1(hs/2 − h−s/2)

for each of the 1
2n(n + 1) basis vectors xi.

Firstly, we shall construct a set of 1
2n(n+1) mutually orthogonal geodesics emanat-

ing from the point Σ. In particular, assume Σ is the diagonal matrix diag(λ1, . . . , λn),
and consider the following 1

2n(n + 1) matrices:

• For each 1 ≤ i ≤ n, the matrix A whose entries are all zero with the exception
of the diagonal entry Aii = 1;

• For each 1 ≤ i < j ≤ n, the matrix A whose entries are all zero with the
exception of Aij = 1 and Aji = −1.

Then, as mentioned in [58], each curve of the form ΓA(t) = exp(tA)Σ exp(tA)T is
a geodesic with respect to the affine-invariant Riemannian metric, with corresponding
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tangent vector W = AΣ + ΣAT . The inner product ⟨W1, W2⟩ on the tangent space
is defined to be equal to the matrix inner product ⟨Σ−1/2W1Σ−1/2, Σ−1/2W2Σ−1/2⟩.
However, since Σ is a diagonal matrix, the support (set of nonzero entries) of each
of Σ−1/2WΣ−1/2 coincides exactly with the support of A; the orthogonality of these
geodesics therefore follows from the fact that each of the matrices described above
has disjoint support.

The result follows for the other log-p distances, as the map Σ → Σp induces
an isometry between the space of positive-definite matrices endowed with dp to
the same space endowed with the metric p−1dR, and this isometry preserves (up
to reparametrisation) the geodesics described above. As isometries are conformal,
the geodesics remain orthogonal under the change of metric. The tangent vectors
parallel to these geodesics are therefore an orthogonal basis with respect to every
log-p distance.

Along one of the ‘radial geodesics’ ΓA(t), where A is a diagonal matrix with one
nonzero entry, every point on the geodesic commutes with every other point, so all
log-p distances coincide. Hence, we can restrict attention to the ‘circular geodesics’
ΓA(t), where A is an antisymmetric matrix with two nonzero entries: Aij = 1 and
Aji = −1. The ratio of the lengths of the tangent vector with respect to each of the
metrics is given by the limiting ratio:

lim
t→0

dt(Σ, exp(tA)Σ exp(tA)T )
ds(Σ, exp(tA)Σ exp(tA)T )

Conveniently, this is what we already computed in order to demonstrate the
nonexistence of a universal Lipschitz constant. In particular, the matrix exp(tA) is
a unitary matrix that differs from the identity only on a 2-dimensional subspace,
where it induces a small rotation. As such, the previous computation still holds:

dt(Σ, exp(tA)Σ exp(tA)T )
ds(Σ, exp(tA)Σ exp(tA)T ) = t−1(kt/2 − k−t/2)

s−1(ks/2 − k−s/2)(1 + O(ε))

Here, k ≥ 1 is the ratio between the eigenvalues λi and λj corresponding to the
two coordinates where exp(tA) differs from the identity. Across all choices of i, j, the
value k (and therefore the expression) is maximised when λi and λj are the largest
and smallest eigenvalues, respectively; in this case, k = h is the condition number of
Σ. The result follows.

Note that this proof has shown that:
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1 ≤ dt(A, B)
ds(A, B) ≤

t−1(ht/2 − h−t/2)
s−1(hs/2 − h−s/2)

where h is the maximum of the condition numbers of the two matrices. Given
the fact that the ratio is identically 1 whenever either A or B is the identity (i.e.
the minimum of the condition numbers is 1), it suggests that it may be possible to
strengthen the theorem to provide a bound that depends on the minimum of the
two condition numbers.

4.3 Infinite-dimensional trace-class operators

In [60], the authors generalise the Euclidean, square-root, and Procrustes distances
to the trace-class operators on any Hilbert space. By contrast, it is mentioned
that the log-Euclidean and affine-invariant Riemannian metrics do not generalise to
trace-class operators on infinite-dimensional Hilbert spaces: the eigenvalues of such
an operator tends to zero, so their logarithms must approach −∞ without bound.
We note that the same argument extends to the log-p distances for all p ∈ [0, 1].

The result dS(H1, H2) ≤ dH(H1, H2) ≤
√

2dS(H1, H2) proved for finite-dimensional
positive-semidefinite matrices can be seen to generalise to infinite-dimensional trace-
class operators.

Theorem 4.3.1. Suppose that H1 and H2 are infinite-dimensional trace-class op-
erators. Then dS(H1, H2) ≤ dH(H1, H2) ≤

√
2dS(H1, H2), where dS and dH are the

Procrustes and square-root distances, respectively.

Proof. The first side of the inequality follows immediately from the definitions of dS

and dH , as with the finite-dimensional case. We therefore concentrate on the second
side of the inequality.

Let e1, e2, . . . be an eigenbasis for H1 with decreasing eigenvalues, and e′
1, e′

2, . . .

be an analogous eigenbasis for H2. Let Vn be the finite-dimensional vector space
spanned by the first n vectors in the interleaved sequence e1, e′

1, e2, e′
2, . . . .

For each n ∈ N, we define the operator H
(n)
1 (u, v) to be H1(πn(u), πn(v)) where

πn is the orthogonal projection onto the subspace Vn. The operators H
(n)
2 are

defined analogously. Note that H
(2n)
1 (u, v) is upper-bounded by H1(u, v) and is lower-

bounded by the restriction of H1(u, v) to the first n terms in its spectral decomposition.
Consequently, the sequence converges in the square-root metric; for any ε > 0 we can
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find n such that dH(H(n)
1 , H1) ≤ ε and analogously dH(H(n)

2 , H2) ≤ ε. Since we have
already established that Procrustes distance dS is upper-bounded by square-root
distance, the same follows for dS. By the triangle inequality, it follows that:

dH(H1, H2) ≤ dH(H(n)
1 , H

(n)
2 ) + 2ε

and similarly:

dS(H(n)
1 , H

(n)
2 ) ≤ dS(H1, H2) + 2ε

As Vn is a finite-dimensional vector space, we have:

dH(H(n)
1 , H

(n)
2 ) ≤

√
2dS(H(n)

1 , H
(n)
2 )

which immediately implies:

dH(H1, H2)− 2ε ≤
√

2(dS(H1, H2) + 2ε)

As this is true for all ε > 0, it must also hold in the limit when ε = 0, thereby
establishing the desired result.

In the final section of this chapter, this is applied to the dataset of speech
spectrogram frequency covariance operators from [59].

4.3.1 Topological data analysis of speech data

We analyse the set of frequency covariance matrices from [59]. Since X is so small
(|X| = 50), we build a Vietoris-Rips complex instead of a witness complex. More
specifically, we compute the 3-skeleton of the Vietoris-Rips complex, and ignore
any higher-dimensional simplices. This way, our simplicial complex only contains(

50
1

)
+
(

50
2

)
+
(

50
3

)
+
(

50
4

)
= 251175 simplices, as opposed to the 250 simplices present

in the full Vietoris-Rips complex. This is adequate for accurately determining the
persistent homology groups H0, H1, and H2, but not any higher.

After computing the skeleton of the Vietoris-Rips complex, we determine its
persistent homology over F2 by column reduction of the boundary map matrices.
Also, we keep track of the simplices responsible for creating and destroying each
homology generator, rather than just the times at which the generator is created
and destroyed. Keeping track of this information is helpful for visualising clusters.
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In particular, we can plot the results as a decorated dendrogram. This is similar
to a barcode, but where the H0 bars are replaced with a dendrogram and the higher
homology bars are drawn along the branches of the dendrogram corresponding to
the connected components in which they are formed. Figure 4.1 shows the decorated
dendrograms for both the square-root and Procrustes distance.

Fig. 4.1 Decorated dendrograms showing the persistent homology of the Čech filtration
associated with a dataset of 50 covariance matrices. The red and green bars represent
H1 and H2 homology generators, respectively. The label Dn corresponds to the word
n mod 10 spoken in the language ⌊n/10⌋.

Observe that (up to irrelevant reordering of the leaves) the dendrograms are very
similar. There are many transient H1 bars in addition to a couple of H2 bars which
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form after all of the connected components are merged. We attribute this structural
similarity to the Lipschitz result we established earlier: the square-root distance is
at least as long as, and no more than

√
2 times longer than, the Procrustes distance.

Also to note is that there is some apparent affinity for words from the same
language to have covariance matrices which cluster together (in the figure, words
are coloured according to the language). On the other hand, there does not appear
to be an analogous clustering of the same word across different languages. These
observations agree with the analysis in [59].



Chapter 5

Datasets of variable density

The approach thus far has been to choose a density threshold δ and restrict to the
subset of X where some density estimator exceeds δ. This, however, suffers from
much the same drawbacks as choosing an arbitrary length scale r when building a
Čech complex; we obtain far more information by considering a filtration of simplicial
complexes as a function of r.

This naturally gives rise to a bifiltration, indexed by the distance parameter r

and density parameter δ. The density Čech complex Kr,δ contains a simplex σ if and
only if the diameter of σ is not larger than r and every vertex x ∈ σ has density
estimator ≥ δ. This bifiltration has a property called separability which we shall
proceed to introduce.

5.1 Multifiltrations

Given k filtrations (K1,K2, . . . ,Kk) of the same simplicial complex K, respectively
on index sets I1, . . . , Ik, we can define a multifiltration by:

Ks1,...,sk
:=

k⋂
i=1
Ki

si

We shall describe multifiltrations obtained in this way as separable. Separable
multifiltrations are convenient from a computational perspective, as each simplex
can be described by a k-tuple of arrival times. This is not possible in a general
multifiltration where the indices for which the simplex is present may form an
arbitrary upward-closed set in the poset I1 × · · · × Ik.



98 Datasets of variable density

Equivalently, a separable multifiltration of a simplicial complex K can be charac-
terised by a function γ : K → I1 × · · · × Ik by taking the sublevel sets:

Ks := {σ ∈ K : γ(σ) ≤ s}

where I1 × · · · × Ik is endowed with the partial order such that (s1, . . . , sk) ≤
(t1, . . . , tk) if and only if si ≤ ti for each coordinate i. The required condition on γ is
that γ(τ) ≤ γ(σ) whenever the simplex τ is a face of the simplex σ. Equivalently, if
we impose a partial order on the simplicial complex K by ordering the simplices by
inclusion, then this is precisely the statement that γ is a functor from the poset K
to the poset P := I1 × · · · × Ik.

Bounded Kan filling can be interpreted in this setting. Firstly, we introduce an
operator on a nested pair Y ⊆ X of simplicial complexes which yields an intermediate
simplicial complex Z; secondly, this is used to generalise the bounded Kan filling
construction from the first chapter to apply to arbitrary posets (and therefore
multifiltrations).

Definition 5.1.1. Let X be a simplicial complex, and Y ⊆ X be a subcomplex. Then
the bounded Kan filling, Y ◃ X, is the smallest simplicial complex Z satisfying:

• Y ⊆ Z;

• If σ ∈ X is an n-simplex with n ≥ 2 and at most one of its proper faces τ < σ

is not in Z, then σ ∈ Z.

Equivalently, Y ◃ X can be seen as the eventual fixed point of an iterative process.
We begin with Z0 := Y and define the successor Zα+1 to be Zα ∪ σ where σ is an
arbitrary simplex in X \ Zα such that at most one proper face τ < σ is not in Zα.
(If there is no such σ, then Zα+1 = Zα is the fixed point.) If α is a limit ordinal, we
define Zα to be the union of Zβ for all β < α.

In the case where X is a finite simplicial complex, this process terminates after
finitely many steps: Y = Z0 < Z1 < · · · < Zn = Y ◃X. It should be stressed that the
reverse of this sequence, Zn, Zn−1, . . . , Z1, Z0, is not quite the same as a simplicial
collapse, owing to the use of ‘at most one’ instead of ‘exactly one’ [proper face] in the
above definition. This is an important distinction, as the following theorem holds for
bounded Kan filling but not for (the reverse of) simplicial collapse; a counterexample
is obtained by taking the simplicial 3-ball B18,124 mentioned in [55].
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Theorem 5.1.2. Let X be a finite simplicial complex homeomorphic to a n-dimensional
ball, where n ≤ 2. Let Y ⊆ X be a subcomplex, and let Z ⊆ X be the result of
bounded Kan filling Y within X. Then Z = X if and only if Y is both connected and
contains all vertices of X.

Proof. One direction is immediate: bounded Kan filling cannot change the number
of vertices or connected components, so Z is connected and contains all vertices only
if Y does.

The other direction is more involved. Separate arguments are necessary for n = 1
and n = 2. By induction on the number of simplices in X \ Y (which is a set of
simplices, but not necessarily a simplicial complex), we can assume that Y has
already been Kan-filled (and is therefore equal to Z by definition); it remains to
show that X \ Y must be empty.

For n = 1, X must be a subdivision of an interval, so the only connected subset
which contains all vertices is X itself; as such, the result holds vacuously.

For n = 2, let H be the planar dual of the 1-skeleton of X. The graph H contains
a vertex r corresponding to the ‘face at infinity’, together with a vertex for every
triangle in X. Let G ⊆ H be the subgraph corresponding to X \ Y : each vertex
(other than r) corresponds to a triangle not in Y , and two vertices are connected by
an edge if and only if the corresponding faces share an edge in X but not in Y .

We claim that G is acyclic. In particular, if G contains a minimal cycle C, then by
the Jordan curve theorem it would partition the vertex-set of X into two components
(the inside and outside), violating the assumption that Y is connected and contains
every vertex.

As such, G is a forest. If it contains no vertices other than r, then Y contains
every triangle in X and therefore they are equal. If v ̸= r is an isolated point, then
the corresponding triangle in X has three edges in Y and therefore Y is not already
Kan-filled. Hence, we can assume that at least one of the connected components of
G is a tree with at least two vertices. Such a tree must have at least two leaves, one
of which is therefore not r. This leaf l corresponds to a triangle in X with two edges
in Y , so Y is again not Kan-filled.

The result follows.

One may hope that this holds for all n, but unfortunately there is a counterexample
for n = 3: a simplicial ball X with 120 vertices, 720 edges, 1200 triangles, and 599
tetrahedra, where Y is a Hamiltonian path (linear spanning tree) and Y = Z. It is
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necessary and sufficient that no two edges in Y are incident with the same triangle
in X.

In particular, let D be the regular four-dimensional convex polytope with 120
vertices of the following form, where φ = 1

2(
√

5 + 1):

• 8 vertices of the shape (1, 0, 0, 0);

• 16 vertices of the shape 1
2(1, 0, 0, 0);

• 96 vertices of the shape 1
2(φ, φ−1, 0, 1);

where we take even permutations and arbitrary sign changes of the coordinates.
The boundary ∂D is homeomorphic to the 3-sphere S3, and removing any one of
the 600 tetrahedra from ∂D results in a simplicial 3-ball; let X be a simplicial 3-ball
obtained in this manner.

The 2-skeleton of X is the same as the 2-skeleton of D. We shall find an
enumeration v0, v1, . . . , v119 of the vertices of D such that:

• vi and vi+1 share a common edge (for all 0 ≤ i ≤ 118);

• vi and vi+2 do not share a common edge (for all 0 ≤ i ≤ 117).

If Y is the 1-dimensional simplicial complex with the vertices vi and edges
{vi, vi+1}, then the first condition implies that it is contained in D (and therefore
contained in X, because their 2-skeleta agree) and the second condition implies that
no two edges in Y are contained within the same triangle in D (and similarly in X).
As such, Kan filling has no effect on Y , despite Y being connected and containing
every vertex in X.

It remains to exhibit such a Hamiltonian path v0, v1, . . . , v119. We identify each
vertex (w, x, y, z) with the quaternion w + xi + yj + zk, which endows the vertex-set
of D with the structure of a group. The group is the order-120 binary icosahedral
group with an order-2 centre ±1, modulo which it is isomorphic to the order-60
simple group A5. The vertices p and q are connected by an edge if and only if p−1q

has real part 1
2φ.

Consider the following 119-symbol word:

a9ba9ba9ba9ca9da9da9da9ea9ca9ea9ea9
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Let the vertex vi (0 ≤ i ≤ 119) be the quaternion obtained by evaluating the
length-i initial segment of this word, where the symbols correspond to the following
quaternions:

• a = 1
2(φ, φ−1, 0, 1);

• b = 1
2(φ,−φ−1, 0, 1);

• c = 1
2(φ, 0, 1, φ−1);

• d = 1
2(φ, 0,−1, φ−1);

• e = 1
2(φ, 1, φ−1, 0).

Then it can be verified that the vi are all distinct elements of the binary icosahedral
group (and therefore every element is visited exactly once). Moreover, vi is adjacent
to vi+1 because v−1

i vi+1 is either a, b, c, d, or e, all of which have real part 1
2φ. Finally,

vi is never adjacent to vi+2 because v−1
i vi+2 belongs to the set:

{a2, ab, ba, ac, ca, ad, da, ae, ea}

and none of these quaternions have real part 1
2φ.

Counterexamples similarly exist for all higher dimensions n. In particular, given
the counterexample X, Y in dimension n = 3, we obtain an analogous counterexample
X ′, Y ′ in dimension n = 4 by adjoining a new vertex w and letting X ′ be the cone
with apex w and base X, and similarly letting Y ′ be the cone with apex w and base
Y . Iterating this, we obtain a counterexample for every n ≥ 3.

Definition 5.1.3. Suppose K is a simplicial complex endowed with a functor γ :
K → P into a poset P ; this induces a filtration {Ks : s ∈ P} of sublevel sets. Let
θ : P → P be a function which is both (weakly) increasing and satisfies θ(x) ≥ x

(∀x ∈ P ).
Then the bounded Kan filling of the filtration is given by Kθ

s := Ks ◃Kθ(s).

The familiar case of bounded Kan filling from the previous chapter corresponds
to when P = (R+,≤) and θ(x) = cx for some c > 1.

It is immediate from the definition that Ks ⊆ Kθ
s ⊆ Kθ(s). In particular, this

means that the filtrations {Ks : s ∈ P} and {Kθ
s : s ∈ P} are θ-interleaved.
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5.1.1 Bifiltered witness complexes

Suppose we have a set X with a distinguished set L ⊆ X of landmark points.
Then, given some function f : X → R (such as the distance to the kth nearest
neighbour of the point), we can induce a second filtration on the simplices as
f(σ) := inf{f(x) : x witnesses of σ}. A separable bifiltration is then obtained as the
intersection of this with the usual distance filtration.

If X is of non-uniform density – an example being Carlsson’s Klein bottle
[41] with the high-density ‘three-circle space’ embedded inside it – then landmark
sampling by sequential maxmin samples disproportionately many points from regions
of comparatively low density. At this point, it is worth exploring exactly why this
happens and what can be done to circumvent it, so that we can proceed with our
endeavour to analyse the persistent homology of a bifiltered witness complex.

5.2 Landmark sampling, revisited

When sampling the subset L ⊆ X to form the landmark points of a witness complex,
there are two commonly-used alternatives: random sampling and sequential maxmin.

The drawback of random sampling is that it often produces triangles in the De-
launay triangulation which are difficult to witness, consequently leading to unwanted
gaps in the complex. Sequential maxmin, on the other hand, necessarily produces
Delaunay triangles with angles bounded away from 0 and π, and we shall establish
this soon in a generalised setting.

One instance where sequential maxmin is less than ideal is when the set X is
distributed with non-uniform density. In these cases, the procedure selects dispro-
portionately many points from large regions of low density, and very few from small
regions of high density. Indeed, when a set of |X| = 833400 witness points was
subsampled by sequential maxmin to obtain |L| = 4167 landmark points, only 91 of
those were in the upper half of the original points in terms of density (calculated
by distance to kth nearest neighbour); the remaining 4076 landmark points were
sampled from regions of below-median density.

This situation is particularly undesirable in the case of a bifiltered witness
complex, where we have a persistence parameter corresponding to density: the
dearth of landmark points in high-density regions severely limits the accuracy with



5.2 Landmark sampling, revisited 103

which the witness complex can approximate the geometry of those high-density
regions.

5.2.1 Conformal sequential maxmin

One way to overcome the shortcomings of sequential maxmin in cases where density
is variable is to perform sequential maxmin with respect to a different metric – one
with respect to which X has uniform density. If we had a Riemannian metric on
the ambient n-manifold M , we could define a new Riemannian metric (conformally
equivalent to the old one) by scaling the inner product at each point:

⟨u, v⟩⋆x := ℓ(x)−2⟨u, v⟩x

where f(x) = ℓ(x)−n is the probability density function from which X has been
sampled.

Whilst conceptually elegant, this is awkward in practice for several reasons:

• The ambient space may not be a Riemannian manifold;

• We only have access to a finite sample X, not the probability distribution, so
this would involve density estimation anyway;

• Reconstructing a distance metric from a Riemannian metric involves finding the
minimum integral over all paths between two points, which may be intractable
to compute exactly.

Instead, we simplify this by omitting the involvement of Riemannian metrics and
density estimation, and instead replace it with a direct definition of pseudo-distance
between two points:

d⋆(x, y) := d(x, y)√
ℓ(x)ℓ(y)

where d(x, y) is the original (typically Euclidean) distance between x and y, and
ℓ : X → (0,∞) is the ‘typical length scale’. Note that this is the same definition as
is used in the conformal variant of Isomap introduced in [16].

In the case where X = M is an n-manifold with a known density function
f : M → R, we can take ℓ(x) = f(x)−1/n. In the case where X is a finite set, we
can take ℓ(x) to be the distance between x and its kth nearest neighbour in X. The
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sequential maxmin procedure can then be repeated with d⋆ instead of d, which yields
a more density-uniform selection of landmark points as elucidated in Figure 5.1.

Fig. 5.1 The left panel shows random sampling, which reflects the density of the
original distribution but often causes subsampled points to occur very close together
(as a result of the birthday paradox) as well as large unoccupied voids. The middle
panel is sequential maxmin, which gives a more uniform distribution of sampled
points but completely ignores the density of the original distribution. The right
panel is the conformal variant we propose, which has both desirable properties.

It is worth noting that d⋆ does not necessarily satisfy the triangle inequality.
As such, it is necessary to formulate the theory of sequential maxmin in this more
general setting:

Definition 5.2.1. A semimetric space is a pair (X, d) comprising a set X endowed
with a function d : X ×X → R≥0 satisfying:

• d(x, y) = d(y, x) > 0 (∀x, y ∈ X with x ̸= y)

• d(x, x) = 0 (∀x ∈ X)

Definition 5.2.2. Let (X, d) be a semimetric space. Then a sequential maxmin
sequence, henceforth abbreviated to SMMS, is a (finite or infinite) sequence of points
in X:

x1, x2, x3, . . .

such that each point xj is ‘as far as possible from the previous points’ in the sense
that:

min
i<j

d(xi, xj) = sup
y∈X

min
i<j

d(xi, y)
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Observe that if X is compact with respect to some topology, and d is continuous
with respect to the same topology, then the supremum on the right-hand side of the
above definition is always attained by at least one point; as such, an infinite SMMS
can be constructed iteratively. 1

Lemma 5.2.3. Let f : R≥0 → R≥0 be a strictly increasing function satisfying
f(0) = 0. Then (X, f ◦ d) is also a semimetric space, and x1, x2, . . . is an SMMS
for (X, d) if and only if it is an SMMS for (X, f ◦ d).

Proof. By the property that f(0) = 0 combined with the strictly increasing nature
of the function, we have f(d(x, y)) > 0 if and only if d(x, y) > 0; as (X, d) is a
semimetric space, this is equivalent to x ̸= y as required. Moreover, d(x, y) = d(y, x)
implies that f(d(x, y)) = f(d(y, x)), so (X, f ◦ d) satisfies both properties needed to
be a semimetric space.

Observe that f is an isomorphism between the image of d and the image of f ◦ d,
considered as totally-ordered sets. The definition of SMMS depends only on the
order relationship between the distances, thereby establishing the lemma.

The utility of this lemma is that when proving results about sequential maxmin
sequences on the unit sphere Sn, it is immaterial whether we use the subspace metric
(where antipodal points are a distance of 2 apart) or the path metric (where they
are a distance of π apart).

5.2.2 Uniform density of conformal sequential maxmin

Let M be a compact n-manifold endowed with a Riemannian metric g which induces
the path metric d : M ×M → R≥0. Let f : M → R be a density function with
uniformly continuous logarithm, and furthermore suppose f is normalised such that:

∫
M

f(x) dµg = 1

where µg is the standard Riemannian measure. This allows us to define a
probability measure on the Borel subsets of M :

λ(A) :=
∫

A
f(x) dµg

1As the choice of xj may be non-unique, in that the supremum could be attained by more than
one point, this construction technically relies on the axiom of dependent choice.
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Setting ℓ(x) := f(x)−1/n, we define the semimetric as before:

d⋆(x, y) := d(x, y)√
ℓ(x)ℓ(y)

We are now in a position to prove the following statement, which justifies the
choice of semimetric d⋆ for the purposes of conformal sequential maxmin.

Theorem 5.2.4. There exist constants 0 < c, C < ∞ such that, for any Jordan
measurable subset A ⊆M and any SMMS x1, x2, . . . chosen with respect to (M, d⋆),
there exists m0 ∈ N such that for all m ≥ m0 we have:

cλ(A) ≤ 1
m

m∑
i=1

[xi ∈ A] ≤ Cλ(A)

where the Iverson bracket [xi ∈ A] is defined to be 1 if xi ∈ A and 0 otherwise.

Proof. Fix some arbitrary κ > 1.
Define an h-cube to be the image of [0, h]n under a continuous map φ : [0, h]n →M

which is a diffeomorphism onto its image (viewed as a Riemannian manifold) and
obeys the following Lipschitz condition with respect to the semimetric d⋆:

κ−1d⋆(φ(x), φ(y)) < ∥x− y∥ < κd⋆(φ(x), φ(y))

The Jordan-measurability of A means that, for all ϵ > 0, we can find some h > 0
and a finite collection of disjoint h-cubes, each a subset of A, with total measure at
least λ(A)− ϵ. Likewise, we can find a finite collection of h-cubes which cover A and
have total measure at most λ(A) + ϵ.

Consequently, to establish the result in general, it suffices to prove it for the special
case where A is a single h-cube. Suppose we have a finite SMMS, x1, x2, . . . , xm−1, xm,
where m has been chosen sufficiently large such that the d⋆ distance between xm−1

and xm is r ≤ h
4κ

.
It follows that, for every pair xi, xj of points in the SMMS, we have:

κ−1r < ∥φ−1(xi)− φ−1(xj)∥

Similarly, for every point y ∈ A, we can guarantee that there exists some xi such
that:

∥φ−1(xi)− φ−1(y)∥ ≤ κr
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The first inequality implies that every subcube of [0, h]n of sidelength r
κ

√
n

contains
at most one preimage of a point in the SMMS (because the diameter of the subcube
is κ−1r). The second inequality implies that every subcube of sidelength 2κr contains
at least one preimage of a point in the SMMS (because the subcube contains a ball
of radius κr).

Consequently, the h-cube must contain between ⌊ h
2κr
⌋n and ⌈ h

√
d

κ−1r
⌉n points from

the SMMS. As the expressions inside the floor and ceiling functions are each at least
2, the application of the floor and ceiling functions can only perturb them by a factor
of at most 2. As such, the ratio between the upper and lower bounds on the number
of points in the h-cube is bounded above by (8κ2

√
d)n, which is independent of the

value of r.
It remains to calculate λ(φ([0, h]n)). Let ℓ+ and ℓ− be upper and lower bounds,

respectively, for the function ℓ restricted to this h-cube. Each eigenvalue of the
Jacobian of the diffeomorphism φ is bounded above by κ ℓ+

ℓ− and below by its reciprocal,
κ−1 ℓ−

ℓ+ . It follows that the determinant is bounded above and below by the nth power
of these, and therefore we have:

(
hκ−1 ℓ−

ℓ+

)n

< λ(φ([0, h]n)) <

(
hκ

ℓ+

ℓ−

)n

The uniform continuity of log ℓ implies that these bounds differ by a constant factor(
κ ℓ+

ℓ−

)2
which can be made arbitrarily close to κ2 (by reducing h and concomitantly

reducing r) and therefore arbitrarily close to 1 (by initially choosing κ close to 1).
Combining this with the bounds on the number of SMMS points inside the h-cube,
the result follows.

Note that it was not particularly efficient to partition [0, h]n into cubes when the
dimension n is large: the ratio of the diameter of the cube to its inradius is 2

√
n.

We can instead partition [0, h]n by taking the Voronoi partition with respect to an
arbitrary lattice; the quantity 2

√
n can then be replaced by twice the packing-covering

ratio of the lattice. Rogers proved in [51] that, irrespective of the dimension, this
can be made as low as 3; this results in absolute dimension-independent bounds on
the quantities c1/n and C1/n in the above theorem.
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5.2.3 Necessity of conditions

One may then ask whether these constant factors are necessary at all. In this section,
we provide an explicit construction of a smooth 1-manifold whereby the ratio between
C and c cannot be reduced below

√
2. This example has a uniform density function f ,

so the distinction between ordinary sequential maxmin and its conformal counterpart
is irrelevant.

We also show in passing that the ‘Jordan measurable’ criterion cannot be relaxed
to ‘Lebesgue measurable’ or even ‘open’.

Definition 5.2.5. A segmentation of a semimetric space (X, d) is a function σ :
X → I (where I is an arbitrary, typically finite, index set) such that:

((σ(x) = σ(y)) ∧ (σ(x) ̸= σ(z))) =⇒ (d(x, y) < d(x, z))

Lemma 5.2.6. Let (X, d) be a semimetric space and x1, x2, x3, . . . be a SMMS.
Then, for any segmentation σ : X → I and α ∈ I, the restriction of x1, x2, x3, . . . to
the fibre Fα := σ−1({α}) is an SMMS in (Fα, d).

Proof. Suppose otherwise. Then there exists n ∈ N such that:

min
i<n,xi∈Fα

d(xi, xn) ̸= sup
y∈Fα

min
i<n,xi∈Fα

d(xi, y)

so we can find y ∈ Fα such that:

min
i<n,xi∈Fα

d(xi, xn) < min
i<n,xi∈Fα

d(xi, y)

However, as σ is a segmentation of X, it follows that both sides of the inequality
remain unchanged when we drop the xi ∈ Fα condition (as every point in Fα is closer
to xn than every point outside Fα; the same is true of y). That is to say:

min
i<n

d(xi, xn) < min
i<n

d(xi, y)

ergo x1, x2, x3, . . . cannot be an SMMS in the original space (X, d). Contradiction.

Lemma 5.2.7. Let x1, x2, . . . be a SMMS of the unit circle S1 ⊆ C endowed with
either the path or subspace metric. Then the set {x1x

−1
1 , x2x

−1
1 , . . . , x2kx−1

1 } is the
set of 2kth roots of unity.
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Proof. The proof proceeds by induction on k. The base case k = 0 holds by definition;
x1x

−1
1 = 1 is indeed the unique 1st root of unity. As the isometric automorphisms of

S1 form a transitive group, we can assume without loss of generality that x1 = 1.
By the inductive hypothesis, the points x1, . . . , x2k−1 coincide with the 2k−1th roots
of unity. Then the remaining 2kth roots of unity are precisely the points maximally
distant from the first 2k−1 points. As such, an inner induction on i shows that the
points x2k−1 , x2k−1+1, . . . , x2k−1+i form a subset of the primitive 2kth roots of unity.
The result follows.

Corollary 5.2.8. The condition ‘Jordan measurable’ cannot be relaxed to ‘Lebesgue
measurable’ in the previous theorem.

Proof. Take M ⊆ R3 to be the disjoint union of the circles {z = 0}∩{(x−3)2+y2 = 1}
and {y = 0} ∩ {(x + 3)2 + z2 = 1}, endowed with the Euclidean metric inherited
from R3. This admits a segmentation into its two connected components, so every
SMMS on M must be some interleaving of an SMMS on each of the two connected
components.

Note that the point (−4, 0, 0) is maximally distant from every point on the first
circle, and the point (4, 0, 0) is maximally distant from every point on the second
circle. Consequently, it follows that the second point in any SMMS on M must be
(±4, 0, 0), and all subsequent points in that connected component will have algebraic
coordinates.

Consequently, the measure-0 set A := M ∩Q3 of algebraic points will capture at
least half of the points sampled by sequential maxmin, contradicting the property of
its measure being equal to the asymptotic proportion of sampled points in A.

We cannot even relax ‘Jordan measurable’ to ‘open’, as it is easy to find open
sets of arbitrarily small measure which contain A as a subset: fix an enumeration
of A, and place an open ball of measure ϵ2−n around the nth point; a union bound
shows that the total measure of the union of these balls cannot exceed ϵ.

Theorem 5.2.9. The set {(x, y) ∈ R2 : (x2 +y2−1)((x−6)2 +y2−2) = 0} endowed
with the subspace metric is a 1-manifold such that no SMMS has an asymptotic
uniform density.

Proof. This 1-manifold admits a segmentation into its two connected components,
which are disjoint circles (of radii 1 and

√
2). As with the previous two-circle space,
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any SMMS must be an interleaving of sequential maxmin sequences on the two
connected components.

It remains to determine how the sequences are interleaved. We claim that for
sufficiently large n ∈ N, the first 2n+1 points are partitioned equally between the two
circles; the result would follow immediately from this claim, since one of the circles
has a measure

√
2 times greater than the other.

To verify the claim, note that the pigeonhole principle implies that there is at
least one circle with at least 2n of those points. The introduction of a (2n +1)th point
would be a distance of at most

√
2π2−n from the nearest existing point, whereas

the spacing between the first 2n points on the other circle is at least (2− o(1))π2−n.
Consequently, both circles ‘fill up’ with 2n points before a (2n + 1)th point is added
to either circle.

Observe that the proof used circles of radii 1 and
√

2, but could equally work
with circles of radius 1 and 2− ϵ for arbitrarily small fixed positive ϵ > 0. (The value
of ‘sufficiently large’ n ∈ N in the details of the proof increases concomitantly.) As
such, the ratio C/c between the constants cannot be reduced below 2. This is tight
for 1-manifolds.

The circle S1 can be viewed as the quotient R/Z of the real line by the integer
lattice. An analogous construction for n-manifolds is to take the torus obtained by
quotienting Rn by a lattice Λ. This raises the question: what properties does Λ need
to have to ensure an analogue of Lemma 5.2.7 holds? Sufficient conditions are:

• Λ∪D is geometrically similar to Λ, where D is the set of deep holes maximally
distant from the nearest point in Λ;

• The minimum distance between two deep holes is at least as large as the
distance between a deep hole and the nearest lattice point.

In addition to Z, which gives the lower bound C/c ≥ 2 for 1-manifolds, there
are higher-dimensional lattices with these properties. The square lattice Z2 provides
a bound of C/c ≥ 2; the hexagonal lattice A2 provides a stronger lower bound
of C/c ≥ 3. For 4-manifolds, we can take the quotient of R4 with the D4 lattice
(described in [69]), Z4 ∪ (Z + 1

2)4, which establishes a lower bound of C/c ≥ 4. We
conjecture that there is no dimension-independent upper bound on C/c.
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5.3 Experimental results

We now apply the methods explored herein to suitably non-uniform datasets. The
space of natural images is a good choice, as it was shown in [41] to exhibit different
topologies at different density scales. To begin with, a more tractable synthetic
dataset is explored to assess how the presence of noise affects the accuracy of the
persistent homology barcode.

5.3.1 Synthetic data

A good test-case for these methods, which has the property of having a non-uniform
density, is the set {Yi : i ∈ {1, 2, . . . , N}} where each point Yi is independently
identically distributed according to the following distribution:

Yi = MiZi

∥MiZi∥2

where Zi ∼ N(0, I) is a standard trivariate Gaussian, and the matrix Mi is
distributed from a discrete set of idempotent diagonal matrices:

• The identity matrix, diag(1, 1, 1), with probability 5
8 ;

• The projection matrix diag(1, 1, 0) with probability 1
8 ;

• The projection matrix diag(1, 0, 1) with probability 1
8 ;

• The projection matrix diag(0, 1, 1) with probability 1
8 ;

In other words, each point Yi is chosen from a mixture distribution: it has a
probability of 5

8 of being sampled from the uniform measure on the unit sphere S2,
and a probability of 1

8 of being sampled from the uniform measure on each of the
three ‘equators’ obtained by intersecting a coordinate plane with the unit sphere.

It is instructive to add a small amount of noise: we shall apply our methods
to the dataset {Xi := Yi + εi : i ∈ {1, . . . , N}} where we have added an additional
‘noise term’ εi to each point in the dataset. Figure 5.2 is a plot where εi is taken
from a spherically-symmetric Cauchy distribution.

We use the distance to the kth nearest neighbour with k = 50 as the length scale
for applying conformal sequential maxmin, construct a witness complex, and then
take a filtration with respect to this same density estimator. There are seven long
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Fig. 5.2 The synthetic dataset, sampled with Cauchy noise. The points outside a
small bounding box are not shown – the Cauchy distribution is heavy-tailed and
many of the points are so distant from the origin that attempting to plot all of them
would result in the unit sphere occupying an imperceptibly tiny region of the plot.

persistent H1 bars in the barcode Figure 5.3 (which is precisely what we expect since
the union of the three circles has β1 = 7) which promptly disappear and are replaced
with a single H2 generator (the surface of the sphere). The only problem is a second
persistent H0 bar; this is caused by an isolated point in the heavy tails of the noise
distribution, and is an artefact of the conformal sequential maxmin procedure. Such
an artefact is easily removable by deleting any isolated points from the simplicial
complex.

5.3.2 Natural images

The space of natural images explored in [54] and [41] can be given the structure of a
trifiltered simplicial complex. Specifically, let Cr,k−1,s be the Čech complex obtained
by the union of radius-1

2r balls centred on the ‘high-density’ points Xk,s ⊆ X defined
as:

Xk,s := {x ∈ X such that |Bs(x) ∩X| > k}

Evidently, this is a trifiltration, as Cr,k−1,s is increasing as a function of each of
the three parameters r, k−1, and s. Note that this is not, in general, separable:
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Fig. 5.3 Persistent homology barcode of the density filtration of the synthetic dataset.

it is possible for a vertex to be present in both Xk1,s1 and Xk2,s2 , but absent from
Xmax(k1,k2),min(s1,s2). For the experiments that follow, we take the ‘slice’ at k = 100
and focus on the resulting (separable) bifiltration. We also truncate the bifiltration
and restrict attention to the densest 10% of points (so |X| = 416700).
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Fig. 5.4 Projections of the 8-dimensional Mumford dataset onto four pairs of coordi-
nate axes with respect to the Discrete Cosine Transform basis.

Plotted in Figure 5.4 are the joint distributions of each of the four pairs (x0, x1),
(x2, x3), (x4, x5), and (x6, x7) of coordinates (in the Discrete Cosine Transform basis
from [54]) of the points of X, revealing that the majority of the variability is supported
on the first four coordinates.

As discussed in [41], the points in M of highest density cluster around three
circles. The circles Sv and Sh are visible in each of the first two plots as a pair of
vibrant bands (one vertical and one horizontal); the third circle is visible around the
circumference of the first plot. These features should be detectable using persistent
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homology, and consequently this can be used to test the relative efficacy of different
choices of simplicial complex.

Owing to the large number of points, we consider both conventional and squared
witness complexes. We take |L| = 400 landmark points sampled from the full space
of |X| = 416700 witness points, so approximately 0.1% of the points are landmarks.

Figure 5.5 depicts the H1 barcodes for a conventional witness complex (left),
squared witness complex (middle), and its Kan-filled counterpart (right). The five
long bars present in the latter two cases are the homology generators of the ‘three-
circle space’ [41] consisting of two disjoint circles Sv and Sh joined by a third circle
Slin which intersects each of the other circles in exactly two points.

The conventional witness complex spuriously has a sixth long H1 generator
persisting to infinity, which conjecturally is caused by a nearly-cyclic quadrilateral.
In the squared witness complex, it has finite length, and in the Kan-filled counterpart
is considerably shorter (and would disappear entirely if a smaller value of c were
used).
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Fig. 5.5 First homology barcodes for a conventional witness complex, squared witness
complex, and Kan-filled squared witness complex.

Virtually all of the short-lived noise bars are completely eradicated by bounded
Kan filling, leaving the homology generators corresponding to genuine topological
features. Figure 5.6 shows both β1 (left) and β2 (right) for the two filtrations of the
squared witness complex, with the latter being empty for the Kan-filled complex.

This is highly desirable. If we take an arbitrary point in the Kan-filled filtration,
corresponding to a vertical line in Figure 5.5, it is likely to intersect none of the
short β1 bars and thereby exactly capture the homology of the three-circle space
without requiring the use of persistence. The same was true of the synthetic dataset
we explored beforehand.



5.3 Experimental results 115

0.0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

120

140

160

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

Fig. 5.6 Betti numbers β1 and β2 for the squared witness complex with (orange) and
without (blue) bounded Kan filling.

Being able to compute ordinary homology instead of persistent homology does not
seem immediately useful, since both are equally easy to compute by using elementary
row/column operations to convert the boundary map matrix into a suitably reduced
form. However, it is particularly useful for a multifiltration: we can apply this
approach to fix one of the parameters (and allow the other parameter to vary as
usual) so that one-dimensional persistence can be used instead of multidimensional
persistence.





Chapter 6

Potential for future research

Aside from general research directions, such as enhancing the manifold detection
methods introduced herein, there are several specific questions left open in this
dissertation:

6.1 Specific open questions

In Chapter 4, we introduced the log-p distances on the space of positive definite
matrices and proved that, for 0 ≤ s ≤ t ≤ 1, we have:

1 ≤ dt(A, B)
ds(A, B) ≤ fs,t(max(hA, hB))

where fs,t is some function depending on the maximum of the condition numbers
of the matrices A and B. We mentioned that it is plausible that the Lipschitz
constant can be strengthened to be a function of the minimum of the two condition
numbers:

1 ≤ dt(A, B)
ds(A, B) ≤ gs,t(min(hA, hB))

The proof does not immediately apply to the strengthened statement, however,
so this remains a conjecture.

In Chapter 5, the following was proved:

Theorem. Let M be a compact n-manifold endowed with a Riemannian metric g

which induces the path metric d : M×M → R≥0. Let f : M → R be a density function
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with uniformly continuous logarithm, and furthermore suppose f is normalised such
that:

∫
M

f(x) dµg = 1

where µg is the standard Riemannian measure.
Then there exist constants 0 < c, C <∞ such that, for any Jordan measurable

subset A ⊆M and any SMMS x1, x2, . . . chosen with respect to (M, d⋆), there exists
m0 ∈ N such that for all m ≥ m0 we have:

cλ(A) ≤ 1
m

m∑
i=1

[xi ∈ A] ≤ Cλ(A)

where the Iverson bracket [xi ∈ A] is defined to be 1 if xi ∈ A and 0 otherwise.

We remarked that a result of Rogers in [51] implies that there exists an absolute
dimension-independent bound on each of c1/n and C1/n. We conjectured that there
is not a dimension-independent bound on c and C, but this remains to be proved
one way or the other.

6.2 Further theory to be developed

Chapter 3 mentions that the manifold detection framework differs from [2] in several
aspects, including that it takes as input a density estimate evaluated at the sample
points. Given a particular choice of density estimator, such as a kernel density
estimator, it should be possible to determine asymptotically how many points need
to be sampled in order for the manifold to be determined up to homotopy equivalence.
This would make the research in Chapter 3 more directly comparable to [2] and its
sequel [3], extending the results by supporting an isotropic additive noise model by
contrast with the ‘normal-space noise’ in the latter paper.



References

[1] C. Weibel, An Introduction to Homological Algebra, Cambridge University Press,
1994.

[2] P. Niyogi, S. Smale, and S. Weinberger, Finding the Homology of Submanifolds
with High Confidence from Random Samples, Discrete Computational Geometry,
2008.

[3] P. Niyogi, S. Smale, and S. Weinberger, A topological view of unsupervised
learning from noisy data, SIAM Journal on Computing, 2011.

[4] S. Lie and F. Engel, Theorie der Transformationsgruppen I, Leipzig, 1888.

[5] H. Poincaré, Analysis Situs, Journal de l’École Polytechnique, 1895.

[6] A. Hatcher, Algebraic Topology,
http://pi.math.cornell.edu/~hatcher/AT/ATchapters.html, 2001.

[7] G. E. Hinton and R. R. Salakhutdinov, Reducing the Dimensionality of Data
with Neural Networks, Science (Vol 313, pp. 504–507), 2006.

[8] L. J. P. van der Maaten and G. E. Hinton, Visualizing Data Using t-SNE Journal
of Machine Learning Research (Vol 9, pp. 2579–2605), 2008.

[9] https://blog.keras.io/building-autoencoders-in-keras.html

[10] L. Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse
von zusammenhangstreuen Abbildungen, Mathematische Annalen, 1927.

[11] H. Hotelling, Analysis of a complex of statistical variables into principal compo-
nents, Journal of Educational Psychology, 1933.

http://pi.math.cornell.edu/~hatcher/AT/ATchapters.html
https://blog.keras.io/building-autoencoders-in-keras.html


120 References

[12] C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman, Manifold
estimation and singular deconvolution under Hausdorff loss, The Annals of
Statistics, 2012.

[13] J. de Leeuw, Applications of convex analysis to multidimensional scaling, Recent
Developments in Statistics, 1977.

[14] J. B. Tenenbaum, V. de Silva, and J. C. Langford, A Global Geometric Frame-
work for Nonlinear Dimensionality Reduction, Science (Vol 290, pp. 2319),
2000.

[15] S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally
Linear Embedding, Science (Vol 290, pp. 2323), 2000.

[16] V. de Silva and J. B. Tenenbaum, Global versus local methods in nonlinear
dimensionality reduction, Neural Information Processing Systems, 2002.

[17] L. K. Saul and S. T. Roweis, An Introduction to Locally Linear Embedding,
Journal of Machine Learning Research, 2001.

[18] L. Horváth and P. Kokoszka, Inference for Functional Data with Applications.
Springer Series in Statistics, 2012.

[19] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Annals
of Mathematics, 1944.

[20] D. Surendran, http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html,
2004.

[21] A. Zomorodian and G. Carlsson, Computing Persistent Homology, 20th ACM
Symposium on Computational Geometry, 2004.

[22] A. Talwalkar, S. Kumar, and H. Rowley, Large-Scale Manifold Learning, Com-
puter Vision and Pattern Recognition, 2008.

[23] K. Florek, J. Łukaszewicz, J. Perkal, Hugo Steinhaus, and S. Zubrzycki, Sur la
liaison et la division des points d’un ensemble fini. Colloquium Mathematicae
2.3-4, 1951.

[24] R. Sibson, SLINK: an optimally efficient algorithm for the single-link cluster
method. The Computer Journal, 1973.

http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html


References 121

[25] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and
simplification. Discrete Computational Geometry, 2002.

[26] S. Bhattacharya and R. Ghrist, Path Homotopy Invariants and their Application
to Optimal Trajectory Planning. Proceedings of IMA Conference on Mathematics
of Robotics, 2015.

[27] M. Gidea and Y. Katz, Topological Data Analysis of Financial Time Series:
Landscapes of Crashes. 2017.

[28] J. W. Milnor, On the total curvature of knots, Annals of Mathematics, 52(2),
pp. 248-257, 1950.

[29] S. Bhattacharya, R. Ghrist, and V. Kumar, Persistent Homology for Path
Planning in Uncertain Environments. IEEE Transactions on Robotics, 2015.

[30] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko, Lipschitz Func-
tions have Lp-stable Persistence. Foundations of Computational Mathematics,
2010.

[31] G. Carlsson and V. de Silva, Topological approximation by small simplicial
complexes. Computational Geometry, 2003.

[32] Vitaliy Kurlin, A fast persistence-based segmentation of noisy 2D clouds with
provable guarantees. Pattern Recognition Letters, 2015.

[33] H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes. ACM Trans-
actions on Graphics, 13:1, 43-72, 1994.

[34] K. Borsuk, On the imbedding of systems of compacta in simplicial complexes.
Fund. Math. 35, 217-234, 1948.

[35] R. Ghrist, Barcodes: the persistent topology of data. AMS Bulletin, 2008.

[36] V. de Silva and R. Ghrist, Coverage in sensor networks via persistent homology.
Alg. & Geom. Topology, 2006.

[37] V. de Silva, D. Morozov, and M. Vejdemo-Johansson, Dualities in persistent
(co)homology. Inverse Problems, Volume 7, Number 12, 2011.

[38] P. McMullen, The maximum numbers of faces of a convex polytope. Mathematika
17, 179-184, 1970.



122 References

[39] J. D. Boissonnat, R. Dyer, A. Ghosh, N. Martynchuk, An obstruction to Delau-
nay triangulations in Riemannian manifolds, https://arxiv.org/abs/1612.02905,
2016.

[40] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of Persistence Dia-
grams. Discrete and Computational Geometry, 2007.

[41] G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian, On the local behaviour
of spaces of natural images. International Journal of Computer Vision, 2008.

[42] E. Parzen, On the estimation of a probability density function and the mode.
Annals of Mathematical Statistics, 33:1065-1076, 1962.

[43] Y. P. Mack and M. Rosenblatt, Multivariate k-nearest neighbor density estimates.
Journal of Multivariate Analysis, 1979.

[44] G. Carlsson and A. Zomorodian, The Theory of Multidimensional Persistence.
Discrete and Computational Geometry, 2009.

[45] M. Lesnick, The Theory of the Interleaving Distance on Multidimensional
Persistence Modules, Foundations of Computational Mathematics, 2015.

[46] A. Criminisi, J. Shotton, and E. Konukoglu, Decision Forests for Classifica-
tion, Regression, Density Estimation, Manifold Learning and Semi-Supervised
Learning, Microsoft Research technical report, 2011.

[47] A. N. Gorban and A. Zinovyev, Principal Manifolds And Graphs In Practice:
From Molecular Biology To Dynamical Systems, International Journal of Neural
Systems, 2010.

[48] J. Segura, Bounds for ratios of modified Bessel functions and associated Turán-
type inequalities, Journal of Mathematical Analysis and Applications, 2010.

[49] F. W. J. Olver and L. C. Maximon, Digital Library of Mathematical Functions,
Section 10.41(ii).

[50] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics
(218. New York, Springer. xvii, 628 p), 2002.

[51] C. A. Rogers, A note on coverings and packings. Journal of the London Mathe-
matical Society, 1950.

https://arxiv.org/abs/1612.02905


References 123

[52] R. Forman, A user’s guide to discrete Morse theory. Séminaire Lotharingien de
Combinatoire, 2002.

[53] V. Nanda and K. Mischaikow, Morse Theory for Filtrations and Efficient
Computation of Persistent Homology. Discrete and Computational Geometry,
2013.

[54] D. Mumford, A. Lee, K. Pedersen, The nonlinear statistics of high-contrast
patches in natural images. International Journal of Computer Vision, 2003.

[55] B. Benedetti, F. H. Lutz, Knots in collapsible and non-collapsible balls. Electronic
Journal of Combinatorics, 2013.

[56] C. J. Thompson, Inequalities and partial orders on matrix spaces. Indiana
University Mathematics Journal, 1971.

[57] H. Araki, On an inequality of Lieb and Thirring. Letters in Mathematical
Physics, 1990.

[58] X. Pennec, P. Fillard, and N. Ayache, A Riemannian Framework for Tensor
Computing. International Journal of Computer Vision, 2006.

[59] Davide Pigoli, P. Z. Hadjipantelis, J. S. Coleman, and J. A. D. Aston, The
analysis of Acoustic Phonetic Data: exploring differences in the spoken Romance
languages. 2015.

[60] Davide Pigoli, J. A. D. Aston, I. L. Dryden, and P. Secchi, Distances and
inference for covariance operators. Biometrika, 2014.

[61] H. Le and D. Kendall, The Riemannian structure of Euclidean shape spaces: a
novel environment for statistics. The Annals of Statistics, 1993.

[62] P. H. Schönemann, A generalized solution of the orthogonal Procrustes problem.
Psychometrika, 1966.

[63] Huiling Le, Locating Fréchet Means with Application to Shape Spaces. Advances
in Applied Probability, 2001.

[64] I. L. Dryden and K. V. Mardia, Statistical Shape Analysis. Wiley, 1998.



124 References

[65] I. L. Dryden, A. Koloydenko, and D. Zhou, Non-Euclidean statistics for co-
variance matrices, with applications to diffusion tensor imaging. The Annals of
Applied Statistics, 2009.

[66] J. B. Kruskal, The number of simplices in a complex. Mathematical Optimization
Techniques, 1963.

[67] G. O. H. Katona, A theorem of finite sets. Theory of Graphs, 1968.

[68] Adam P. Goucher, https://mathoverflow.net/a/303065/39521. MathOverflow,
2018.

[69] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups.
Grundlehren der mathematischen Wissenschaften 290, 1988.

[70] M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Func-
tion. The Annals of Mathematical Statistics 27(3), 1956.

https://mathoverflow.net/a/303065/39521

	Table of contents
	1 Introduction
	1.1 Overview
	1.1.1 Overview of Chapter 3
	1.1.2 Overview of Chapter 4
	1.1.3 Overview of Chapter 5


	2 Background
	2.1 Topological data analysis
	2.1.1 Simplicial complexes and homology
	2.1.2 Simplicial complexes associated with point cloud data
	2.1.3 Witness complexes
	2.1.4 Persistent homology
	2.1.5 Computing persistent homology
	2.1.6 Persistence diagrams and stability
	2.1.7 Multidimensional persistence

	2.2 Shape spaces
	2.2.1 Examples of shape spaces
	2.2.2 Geodesics and Procrustes distances
	2.2.3 Generalised Procrustes analysis

	2.3 Metrics on covariance matrices
	2.3.1 Flat metrics
	2.3.2 Procrustes metric
	2.3.3 Affine-invariant Riemannian metric

	2.4 Nonlinear dimensionality reduction
	2.4.1 Multidimensional scaling
	2.4.2 Isomap
	2.4.3 Locally linear embedding
	2.4.4 Other approaches

	2.5 Functional data
	2.5.1 Core concepts
	2.5.2 Speech spectrograms and frequency covariance matrices


	3 Topological approaches to manifold learning
	3.1 Detectability
	3.1.1 When is the sphere detectable?
	3.1.2 Smoothly embedded compact manifolds

	3.2 Witness complexes and modifications thereof
	3.2.1 Squared witness complex
	3.2.2 Bounded Kan filling
	3.2.3 Computational complexity

	3.3 Application to manifold learning
	3.3.1 Tenenbaum's faces
	3.3.2 Swiss roll


	4 Non-Euclidean and functional data
	4.1 Statistics on non-Euclidean manifolds
	4.2 Metrics on spaces of positive-definite matrices
	4.2.1 Square-root and Procrustes metrics
	4.2.2 Log-Euclidean, Riemannian, and intermediate metrics

	4.3 Infinite-dimensional trace-class operators
	4.3.1 Topological data analysis of speech data


	5 Datasets of variable density
	5.1 Multifiltrations
	5.1.1 Bifiltered witness complexes

	5.2 Landmark sampling, revisited
	5.2.1 Conformal sequential maxmin
	5.2.2 Uniform density of conformal sequential maxmin
	5.2.3 Necessity of conditions

	5.3 Experimental results
	5.3.1 Synthetic data
	5.3.2 Natural images


	6 Potential for future research
	6.1 Specific open questions
	6.2 Further theory to be developed

	References

