
333
IEEE Transactions on Semiconductor Manufacturing, vol.17, no.3. pp.333-344, 2004.

Copyright c© 2003 IEEE (DOI 10.1109/TSM.2004.831524).

Cluster Tools with Chamber Revisiting – Modeling and Analysis Using
Timed Petri Nets

W.M. Zuberek

Department of Computer Science, Memorial University
St.John’s, NL, Canada A1B 3X5

Abstract—Timed Petri nets are formal models of discrete

concurrent systems. Since the durations of all activities are

included in the model descriptions, many performance char-

acteristics can be derived from such models. In the case

of cluster tools, net models represent the flow of wafers

through the chambers of the tool as well as consecutive ac-

tions performed by the robotic transporter. Steady–state

performance of cluster tools with chamber revisiting is inves-

tigated in this paper. A systematic development of detailed

tool schedules, based on a general behavioral description of

the tool, is proposed and is used to derive the correspond-

ing Petri net models. Symbolic performance characteristics

of the modeled tools are obtained by using place invariants,

without exhaustive reachability analysis. Simple examples

presented in the paper can be easily extended in many ways.

Keywords—Cluster tools, chamber revisiting, steady–state

behavior, timed Petri nets, net invariants, performance

analysis.

I. Introduction

ACLUSTER tool is an integrated manufacturing system
consisting of process, transport, and cassette modules,

mechanically linked together [4]. The use of cluster tools
has been stimulated in recent years by a number of fac-
tors which include higher yield [28], shorter cycle time (or
higher throughput) [23], [28], [38], tighter process control
[23] [38], better utilization of the cleanroom floor space
[4], [38], reduced human intervention [11], [38], reduced
working capital tied up in work–in–progress [25], and lower
capital costs [11], [38]. The advantages of cluster tools
are closely related to the trend of moving from processing
batches of wafers to single–wafer processing – as the wafer
size increases, maintaining the required process uniformity
for the whole batch of wafers becomes increasingly difficult
[11]. Basic concepts of cluster tools and their advantages
over conventional fabs are discussed in [4], [11], [10], [23],
[28], [38].
Performance comparisons of cluster–based fabs with con-

ventional ones usually concentrate on two aspects, the
throughputs and the costs. Results of such comparisons,
obtained by computer simulation of fabrication processes
[43], [44], indicate that cluster–based fabs can operate
at considerably reduced throughput times for a relatively
small increase in production cost per wafer. However, these
results are sensitive to configurations and scheduling of
cluster tools, so further research in these areas is needed.
Moreover, simulation does nor reveal the relationships be-
tween tool characteristics and tool performance; simulation
predicts how a tool performs, but does not explain why the
tool performs in this way; analytical models are needed to
provide more insight into such relationships.
Simple, intuitive models of the cycle time, throughput,

and wafer cost of integrated single–wafer tools have been
proposed in [41]. The models use two measurable parame-
ters that aggregate tool operations: the incremental cycle

time, which is the average increase in cycle time resulting
from a lot size increment of one wafer, and the fixed cycle
time, which is the portion of the cycle time that is inde-
pendent of lot size. Analytical models of the incremental
and fixed cycle times are used in [41] to study the effects
of tool configuration on its performance.
Simple models of manufacturing processes are also used

in [42] to analyze the effects of integrated single–wafer pro-
cessing on fab cost and cycle time. Simulation results sug-
gest that integrated single–wafer processing can reduce the
cycle time of conventional fabrication by about 50 percent
without having a significant effect of wafer production cost.
However, tool integration and single–wafer processing must
be used together to achieve these performance improve-
ments.
Optimization of the throughput in cluster tools with

different designs of the robotic transporter is discussed
in [12]. Using simulation methods, the paper compares
the throughputs of tools with single–blade (or single–pan)
and two types of dual–blade robots, with same–side and
opposite–side blades. The analysis of the throughput also
takes into account the process times of modules; significant
improvements of the throughput can be obtained by split-
ting the operation of a single module (which is a bottleneck)
into two consecutive operations (the additional module per-
forms a “preheat” operation in this particular case).
Throughputs and cycle times of systems of cluster tools

with the same sequences of process steps and the same
total numbers of modules, but in which the modules are
grouped in different ways, are studied in [20]. The two
extreme module configurations are called serial and par-
allel configurations. In serial configurations, each wafer
visits each module in a cluster, but different process steps
are performed concurrently on different wafers (in differ-
ent modules). In parallel configurations, each cluster is
composed of identical modules performing identical opera-
tions (on different wafers), so each wafer visits one of the
modules in each cluster. Hybrid configurations are differ-
ent combinations of parallel and serial configurations, e.g.,
each wafer is processed in several modules of several cluster
tools. From reliability point of view, parallel configurations
are better [21] (in a serial configuration, a failure of any one
of the tool’s modules makes the tool unavailable for further
processing, while in a parallel configuration, a tool with a
faulty module can continue its operation, although with
reduced throughput); serial configurations, however, pro-
vide better throughputs, especially when the transport of
wafers between the cluster tools is taken into account, and
equipment downtimes are relatively infrequent. [21] con-
cludes that the fabs will gradually migrate from parallel to
serial configurations as cluster tools become more reliable
and the cycle time becomes more important.
Because the manufacture of semiconductor devices is a

highly complex and expensive process, it is often important
to predict the operating characteristics of the fabrication

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/427320162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


334

facility even before it is constructed. An open queueing
network model for rapid performance analysis of semicon-
ductor fabs is described in [7]. While the use of queueing
models for performance evaluation of manufacturing sys-
tems is not new, the approach presented in [7] differs from
others in the detailed models in which different tool groups
are represented and in the way in which the effects of wafer
rework and scrap are characterized. The solution follows
the decomposition–based approximation approach, so each
of dozens of nodes in the network is analyzed separately,
with a set of renewal input processes capturing the inter-
dependence among the nodes. Although [7] reports good
conformance of obtained estimates with the results of sim-
ulation studies, the development of the queueing network
model relied heavily on an existing simulation model devel-
oped earlier by IBM, and extensively validated and tested
against actual IBM semiconductor lines. [7] concludes that
a combination of queueing network models and simulation
techniques is a more promising approach to performance
prediction of semiconductor fabs. A general overview of
application of queueing network models to modeling and
performance prediction of wafer fabs, with some directions
for future research, is given in [19].
More detailed representation of the behavior of cluster

tools and analysis of their performances can follow the crit-
ical path approach, or an activity–oriented approach. The
critical path approach is based on detailed timing diagrams,
similar to Gantt charts, which represent one typical se-
quence of events in a cluster tool, and which derives the
performance formulas from a critical path in the analyzed
sequence. [29], [30] and [40] are good examples of this ap-
proach. The derived results are symbolic, so they capture
the influence of different parameters on the performance of
the tool, but the formulas are valid for only one, analyzed
sequence of events, and the feasible values of parameters
are restricted to this analyzed sequence of events. Any
change of the sequence of events (which may be caused by
a change of some parameters) requires a new analysis of
the tool’s behavior.
Activity–oriented approach considers cluster tools as

(discrete) concurrent systems, in which several activities
can be performed simultaneously, for example, different
wafers can be processed by different modules at the same
time, and also the robotic transporter can be moving to
a position required by a future step [26]. Activity–based
approach does not focus on any specific sequence of events;
it takes into account the whole spectrum of possible behav-
iors of the analyzed system, so it is more general than the
critical–path approach. Petri nets are formal models de-
veloped specifically for representation and analysis of con-
current activities [27], [34]. Since the use of Petri nets in
modeling and analysis of manufacturing systems has be-
come a “standard” approach [8], [9], [13], [31], [46], using
Petri nets for analysis of cluster tools seems to be a natural
consequence of their acceptance in other areas of manufac-
turing, robotics and systems automation. A broad survey
of issues related to modeling, analysis, simulation, schedul-
ing, and control of semiconductor manufacturing systems
using Petri nets is provided in [47].
Original Petri net models (sometimes also called

condition–event systems) represent events and the causal
relationships among them. In order to analyze the perfor-
mance of such models, the durations of all activities must
be included in the model description. Several types of nets
“with time” have been proposed by associating “time de-
lays” with places [36], or occurrence durations with transi-
tions [2], [32], [48] of net models. Also, the introduced tem-
poral properties can be deterministic [32], [33], [36], [48], or

can be random variables described by probability distribu-
tion functions (the negative exponential distribution being
the most popular choice) [2], [3], [48]. For analysis of tem-
poral constraints imposed on some events (e.g., a message
must be received within x time units from the moment of
sending), time intervals can be associated with places or
transitions of net models [1], [24].
Two basic approaches to analysis of “timed” net models

are known as reachability analysis and structural analysis.
Reachability analysis is based on the detailed behavior of
models, represented by the set of states and transitions
between the states. For complex models, the exhaustive
reachability analysis can easily become difficult because of
a very large number of states (the so called “state explosion
problem”). For some classes of net models, performance
properties can be derived from the structure of the net
models; this approach is called structural analysis. The
most popular example of this approach is analysis based
on place–invariants (or P–invariants) for models covered
by families of simple cyclic subnets (which are implied by
the P–invariants).
One of first in–depth applications of timed Petri nets

to analysis of cluster tools is [39]. Since the approach
proposed there is based on the exhaustive analysis of the
state space (i.e., reachability analysis), its applicability is
restricted to models with rather small state spaces. Struc-
tural analysis of timed net models is used in [49], which is a
comprehensive study of modeling and performance evalua-
tion of a variety of cluster tools that includes single–blade
and dual–blade tools, tools with redundant chambers (or
modules), multiple loadlocks, multiple robots, and so on. A
different temporal model, adopted from [5] and [16], is used
in [17]. Intervals of time are used in this model to specify
the lower and the upper bounds on the execution time of
each operation. The upper bounds are used as time con-
straints, which limit the waiting times of wafers in (dual–
arm or dual–blade) cluster tools. Schedulability (i.e., the
existence of a schedule which satisfies all time constraints)
for such models is determined by using linear program-
ming to find a solution describing the behavior of derived
net models. [17] also discusses a modification of the con-
ventional swap operation of the dual–arm robot in which a
wafer, that must wait for the availability of another module
but cannot remain in the current module because the pro-
longed exposure to heat and/or chemical agents can create
quality problems, is delayed on the robot’s arm rather than
in a module. A different approach to dealing with wait-
ing time constraints of wafers (or residency constraints) is
proposed in [35] where first an unconstrained schedule is
considered, and if this schedule violates any residency con-
straints, some heuristic methods are used to modify the
schedule (by increasing its cycle time).
Other applications of Petri nets to modeling and anal-

ysis of semiconductor manufacturing systems include [6],
[14] and [15]. [6] uses a combination of timed colored Petri
nets and genetic algorithms to optimize the performance of
wafer fabrication systems. A timed colored net models all
possible behaviors of the analyzed manufacturing system,
and the genetic algorithm explores this space of behaviors
with the objective of finding an optimal or near–optimal
schedule for the manufacturing system. A special class of
Petri nets, called RCN* merged nets, is used in [14] to
represent fabrication system’s degraded behavior, such as
reworks, failures and maintenance. Structural methods,
based on net siphons, are used to show the liveness (i.e.,
the absence of deadlocks and livelocks) and reversibility of
the net models. [15] uses a subclass of generalized stochas-
tic Petri nets (GSPNs) with priorities, called Markovian



335

timed Petri nets, to model semiconductor manufacturing
systems with process priorities, routing priorities, resource
re-entrance, and nonpreemptive operations. Lower and up-
per bounds on the performance of the analyzed system are
obtained by using linear programming techniques.
Modern semiconductor devices are composed of many

layers of different materials created in consecutive process-
ing steps. Steps which involve similar technological pro-
cesses can be performed in the same chambers of a cluster
tool; the chambers are then “revisited” by wafers. Cham-
ber revisiting can reduce potential inefficiencies of cluster
tools but it complicates the detailed scheduling of opera-
tions within the tool. Because of complexity of modern
cluster tools, a general approach is needed for systematic
derivation of such detailed schedules. This paper proposes
such a general approach.
The presented approach is an extension of previous work

on modeling and analysis of cluster tools without chamber
revisiting [49]. The paper shows that chamber revisiting
can be systematically described by a set of discrete config-
urations which can also be used to derive the net model of
the tool. This new approach can be applied to a large vari-
ety of tools, including single–blade and dual–blade ones,
tools with multiple loadlocks, redundant chambers and
multiple robots. Chamber revisiting, however, requires a
slightly different models of chambers (to capture the revis-
iting process properly). Therefore, the paper first discusses
how net models of cluster tools without chamber revisiting
can be derived from their general discrete descriptions, and
then extends this systematic approach to tools with cham-
ber revisiting. Although the presented models of cluster
tools are different than in [49], their performance analysis is
also based on place invariants and place–invariant–implied
subnets.
Section 2 recalls basic concepts of timed Petri nets; this

material is available elsewhere, but is included in order to
avoid misinterpretations due to subtle differences among
many existing variants of Petri nets and temporal prop-
erties associated with them. Section 3 introduces sim-
ple models of steady–state behavior of single–blade cluster
tools without chamber revisiting, and Section 4 presents
performance analysis based on place invariants, as in [49].
Section 5 proposes a formal description of cluster tools with
chamber revisiting. Systematic derivation of net models
from the schedules is described in Section 6, which also
illustrates the analysis of the derived model. Several con-
cluding remarks are given in Section 7.

II. Timed Petri Nets

Petri nets are known as a simple and convenient formal-
ism for modeling systems that exhibit parallel and con-
current activities [27], [34]. In Petri nets, these activities
are represented by the so called tokens which can move
within a (static) graph–like structure of the net. More
formally, a marked place/transition Petri net M is de-
fined as M = (N ,m0), where the structure N is a bi-
partite directed graph, N = (P, T,A), with a set of places
P , a set of transitions T , a set of directed arcs A con-
necting places with transitions and transitions with places,
A ⊆ T × P ∪ P × T , and an initial marking function m0

which assigns nonnegative numbers of tokens to places of
the net, m0 : P → {0, 1, ...}.
A place is shared if it is connected to more than one tran-

sition. A shared place p is free–choice if the sets of places
connected by directed arcs to all transitions sharing p are
identical. A net is free-choice if all its shared places are
free–choice. A net is structurally (or statically) conflict–
free if it does not contain shared places. A marked net is

dynamically conflict–free if for any marking reachable from
the initial marking, and for any shared place, at most one
of transitions sharing this place is enabled. The models
of cluster tools discussed in this paper are (statically and
dynamically) conflict–free nets.
In order to study performance aspects of Petri net mod-

els, the duration of activities must also be taken into ac-
count and included into model specifications. In timed nets
[48], occurrence times are associated with transitions, and
transition occurrences are real–time events, i.e., tokens are
removed from input places at the beginning of the occur-
rence period, and they are deposited to the output places
at the end of this period (sometimes this is also called a
three–phase firing mechanism as opposed to one–phase in-
stantaneous occurrences of transitions in stochastic nets [2],
[3] and time nets [24]). All occurrences of enabled transi-
tions are initiated in the same instants of time in which the
transitions become enabled (although some enabled tran-
sitions cannot initiate their occurrences). If, during the
occurrence period of a transition, the transition becomes
enabled again, a new, independent occurrence can be ini-
tiated, which will overlap with the other occurrence(s).
There is no limit on the number of simultaneous occur-
rences of the same transition (sometimes this is called in-
finite occurrence semantics). Similarly, if a transition is
enabled “several times” (i.e., it remains enabled after ini-
tiating an occurrence), it may start several independent
occurrences in the same time instant.
More formally, a conflict–free timed Petri net is a pair,

T = (M, f), where M is a marked net and f is a timing
function which assigns an (average) occurrence time to each
transition of the net, f : T → R+, where R+ is the set of
nonnegative real numbers.
The occurrence times of transitions can be either deter-

ministic or stochastic (i.e., described by some probability
distribution function); in the first case, the corresponding
timed nets are referred to as D–timed nets, in the second,
for the (negative) exponential distribution of firing times,
the nets are called M–timed nets (Markovian nets). In both
cases, the concepts of state and state transitions have been
formally defined and used in the derivation of different per-
formance characteristics of the model [48]. Only D–timed
Petri nets are used in this paper.

Each place/transition net N = (P, T,A) can be conve-
niently represented by a connectivity (or incidence) matrix
C : P ×T → {−1, 0, 1} in which places correspond to rows,
transitions to columns, and the entries are defined as:

∀ p ∈ P ∀ t ∈ T : C[p, t] =























−1,
if (p, t) ∈ A ∧ (t, p) 6∈ A,

+1,
if (t, p) ∈ A ∧ (p, t) 6∈ A,

0, otherwise.

Connectivity matrices disregard selfloops, that is, pairs
of arcs (p, t) and (t, p). A pure net is defined as a net
without selfloops [34].
A P–invariant (place invariant, sometimes also called S–

invariant) of a net N is any nonnegative, nonzero integer
(column) vector I which is a solution of the matrix equation

CT × I = 0,

where CT denotes the transpose of matrix C. It follows
immediately from this definition that if I1 and I2 are P–
invariants of N , then any linear (positive) combination of



336

I1 and I2 is also a P–invariant of N . A basic P–invariant
of a net is defined as a P–invariant which does not contain
simpler invariants.
Similarly, a T–invariant (transition invariant) of a net

N is any nonnegative, nonzero integer (column) vector J
which is a solution of the matrix equation

C× J = 0,

and a basic T–invariant of a net is defined as a T–invariant
which does not contain simpler invariants.

Moreover, a net Ni = (Pi, Ti, Ai) is a Pi-implied subnet
of a net N = (P, T,A), Pi ⊂ P , if:

(1) Ai = A ∩ (Pi × T ∪ T × Pi);
(2) Ti = {t ∈ T | ∃ p ∈ Pi : (p, t) ∈ Ai ∨ (t, p) ∈ Ai}.

A subnet NI = (PI , TI , AI) implied by a P–invariant
I is obtained from a net N = (P, T,A) by selecting all
those places, for which the corresponding elements of I are
nonzero, PI = {p ∈ P | I(p) > 0} (PI is sometimes called
the support of the invariant I), and taking all arcs incident
with these places in net N (part (1) of the definition),
and then including all transitions which are associated with
the included arcs (part (2) of the definition). It should be
observed that all arcs incident with places in PI belong to
AI but some arcs incident with transitions in TI are usually
left out.
There are efficient algorithms for finding all basic invari-

ants of a net [18], [22].

Net invariants can be very useful in performance eval-
uation of net models. If a net is covered by a family of
conflict–free cyclic subnets (i.e., if each place and each tran-
sition of a net belongs to one of subnets), the cycle time
of the net, τ0, is equal to the maximum cycle time of the
covering subnets [32], [36]:

τ0 = max(τ1, τ2, ..., τk)

where k is the number of subnets covering the original net,
and each τi, i = 1, ..., k, is the cycle time of the subnet i,
equal to the sum of occurrence times associated with the
transitions divided by the total number of tokens assigned
to the subnet:

τi =

∑

t∈Ti
f(t)

∑

p∈Pi
m(p)

.

In many cases, the number of basic P–invariants can be
reduced by removing from the analyzed net all these ele-
ments which do not affect the performance of models [49].

III. Simple Cluster Tools

The cluster tools discussed in this section arem–chamber
cluster tools with one robotic transporter. Each of the
chambers performs a unique process, and there is a sin-
gle chamber for each process. The only explicit storage
facility is the loadlock. For single–blade tools, the robotic
transporter can carry only one wafer at a time. The model
assumes that all wafers have the same process sequence,
and that no chambers are revisited, as in [29], [49].
A sketch of a 4–chamber cluster tool (used as a running

example) is shown in Fig.1, where LL denotes the loadlock
to store cassettes of wafers; C1, C2, C3 and C4 are process
chambers which modify the properties of the wafers, and
R is a robotic transporter (or simply a robot) which moves

C1

C2 C3

R

C4

LL

Fig. 1. An outline of a 4–chamber cluster tool.

the wafers between the loadlock and the chambers as well
as from one chamber to another.
When a batch of wafers arrives at an empty cluster tool,

it is placed in the loadlock which is then typically pumped
down to vacuum. All the time required to get a batch into
the cluster and ready for processing is denoted as τload.
The robot, assumed to be idle at the loadlock, moves the
first wafer to the first chamber. For simplicity, it is as-
sumed that the chambers are numbered as they appear in
the process sequence. When the process in the first cham-
ber is finished, the wafer is moved to the second chamber,
after which the second wafer can be moved into the first
chamber. After a number of such wafer transports, the first
wafer arrives back at the loadlock. When all wafers have
been processed and returned to the loadlock, the loadlock
is raised to atmospheric pressure and the batch is removed
from the tool. The time interval between when the last
wafer arrives at the loadlock and when the batch is re-
moved is denoted as τunload.
In general, the time to process a batch consists of the

following [29]: τload, the time τinit to reach steady state,
the time spent in steady state τsteady, the time τend to
process final wafers, and τunload.

Since most of the batch processing time is spent in the
steady–state, the analysis of steady–state processing is usu-
ally the most interesting one. The initial and final transient
behaviors can be approximated reasonably well by the cy-
cle time of the steady–state behavior.
The behavior of a cluster tool, with a single–blade robot,

can be represented as a sequence of “configurations”, where
each configuration corresponds to a distribution of wafers
among the chambers of the tool (when the robot does not
carry a wafer); more specifically, for an m–chamber tool,
each configuration is described by an m–tuple of chamber
descriptions (it should be noted that loadlocks are excluded
from these descriptions in order to capture the cyclic be-
havior of the steady–state; from the steady–state point of
view, the loadlocks provide an infinite supply of wafers for
processing):

(k1, k2, ..., km)

where each chamber description ki is “1” if the chamber Ci

is loaded with a wafer in this configuration, and otherwise
is “0”. For example, the sequence of configurations for a
4–chamber tool with the maximally concurrent use of the
chambers is shown in Tab.1.
Each change of configurations corresponds to a wafer

moving from one chamber to another, from the loadlock



337

TABLE I

Sequence of configurations for the maximally concurrent

use of a 4–chamber tool.

configuration next operation

(0,1,1,1) next wafer is moved from LL to C1;
(1,1,1,1) the wafer from C4 is moved to LL;
(1,1,1,0) the wafer from C3 is moved to C4;
(1,1,0,1) the wafer from C2 is moved to C3;
(1,0,1,1) the wafer from C1 is moved to C2;
(0,1,1,1) this is the initial configuration.

to the first chamber, or from the last chamber back to the
loadlock. It is assumed that each cycle uniformly begins
by moving a (new) wafer from the loadlock to the first
chamber (so, in the first configuration, k1 = 0).

The changes of configurations correspond to the follow-
ing general rules:
• A configuration (k1, ..., ki−1, 1, 0, ..., km) allows moving a
wafer from chamber Ci to Ci+1, so it always derives the
configuration (k1, ..., ki−1, 0, 1, ...km), i = 1, ...,m− 1.
• A configuration (k1, k2, ..., 1) allows moving a wafer from
the last chamber to the loadlock, so it always derives the
configuration (k1, k2, ..., 0).
• It is assumed that each cycle begins by moving a
(new) wafer from the loadlock to chamber C1, so the
first step always changes a configuration (0, k2, ..., km) to
(1, k2, ..., km).
It can be easily verified that, for the case of maximally

concurrent use of chambers, there is only one sequence of
operations, as shown in Tab.1. However, if the concur-
rency is reduced, and only two chambers are performing
their operations when the next wafer is loaded into C1,
there are several possible sequences of operations, as shown
in Tab.2. For the initial configuration (0,1,1,0), these se-
quences are 1–2–3–4a–5a–1, 1–2–3–4a–5b–1, 1–2–3–4b–5b–
1. In general case, one of these sequences will provide a
better throughput than the others.

TABLE II

Alternative sequences of configurations for a 4–chamber

tool.

configuration next operation

1 : (0,1,1,0) next wafer is moved from LL to C1;
2 : (1,1,1,0) the wafer from C3 is moved to C4;
3 : (1,1,0,1) the wafer from C2 can be moved to

C3 (step 4a), or
the wafer from C4 can be moved to
the loadlock (step 4b);

4a : (1,0,1,1) the wafer from C1 can be moved to
C2 (step 5a), or
the wafer from C4 can be moved to
the loadlock (step 5b);

5a : (0,1,1,1) the wafer from C4 is moved to LL;
1 : (0,1,1,0) the initial configuration;
4b : (1,1,0,0) the wafer from C2 is moved to C3;
5b : (1,0,1,0) the wafer from C1 is moved to C2;
1 : (0,1,1,0) the initial configuration.

The sequences of configurations for the initial configura-

tions (0,1,0,1) and (0,0,1,1) are derived in a very similar
way; these sequences share some configurations with the
sequences shown in Tab.2.

IV. Models of Simple Cluster Tools

The description of a cluster tool introduced in the pre-
vious section can easily be converted into a timed Petri
net model of this tool. In this model, each chamber Ci

is represented by a simple subnet shown in Fig.2. Place
pi is marked if the chamber is empty. Transition tia rep-
resents the operation of loading the chamber, and place
pia – the condition “wafer is loaded into chamber”, so the
chamber operation can begin; transition ti represents the
operation performed by the chamber with the occurrence
time equal to the duration of this operation. Place pib rep-
resents the condition “chamber operation is completed”, so
the unloading can be performed (transition tib).

ti

piatia pib tib

pi

Fig. 2. Petri net model of a chamber.

The (cyclic) sequence of operations performed by the
robotic transporter is derived from the sequence of config-
urations of the cluster tool. For example, the sequence of
configurations corresponding to the maximally concurrent
operation of a 4–chamber cluster tool implies the follow-
ing sequence of steps of a single–blade robot (starting with
moving the next wafer from loadlock LL to chamber C1):

LL ⇒ C1 → C4 ⇒ LL → C3 ⇒ C4 →
C2 ⇒ C3 → C1 ⇒ C2 → LL

where X ⇒ Y represents a move of the robot carrying a
wafer from X to Y, and X → Y, a move without carrying
a wafer. The model of this sequence is a simple cyclic
net composed of transitions representing the steps and the
intermediate places.
The models of chambers and the robotic transporter can

be combined into a complete model of the tool shown in
Fig.3. The four chambers are represented (in the upper
part of Fig.3) by subnets with transitions t1, t2, t3 and t4;
the initial markings of chambers C2, C3 and C4 correspond
to the maximum concurrency assumption – when a new
wafer is picked from the loadlock, all chambers except C1
are loaded and perform their operations. The operations
represented by the remaining transitions are described in
Tab.3.

The initial marking indicates that the robot begins its
(cyclic) sequence of operations by picking a wafer from the
loadlock and moving to C1 (transition t01), then the wafer
is loaded in C1 (transition t1a), and so on.
In order to obtain the effect of steady–state behavior,

the loadlock is assumed to have an infinite capacity and
is represented by place p0 which is used as “input” and
“output” of the cluster tool. When processing a wafer is
finished, a token is deposited in p0, and the same token is
used as the next wafer a moment later. The initial marking
of p0 is irrelevant as long as it is nonzero; the behavior of
the model is exactly the same if more than one token is
assigned initially to p0. Moreover, it can be observed that



338

t1

p1

t1bt1a

p4

t4t4a t4b

t23t12 t34
t31 t42

t14

t20

t01

t53

t45

p3p2

p0

t2t2a t2b t3a t3 t3b

Fig. 3. Petri net model of a 4–chamber tool with a single–blade robot.

TABLE III

Operations represented by transitions in Fig.3.

transition operation

t01 pick next wafer from LL and
move to C1;

t1a load the wafer into C1;
t1b unload C1;
t2a load the wafer into C2;
t2b unload C2;
t3a load the wafer into C3;
t3b unload C3;
t4a load the wafer into C4;
t4b unload C4;
t12 move from C1 to C2;
t14 move from C1 to C4;
t20 move from C2 to LL;
t23 move from C2 to C3;
t31 move from C3 to C1;
t34 move from C3 to C4;
t42 move from C4 to C2;
t45 move to LL and drop the wafer;
t53 move from LL to C3.

p0 creates a parallel path between t01 and t45, so it has no
effect on the performance of the model, and can be removed
(with the two arcs connected to it) [49]. Similarly, places
p1, p2, p3 and p4 can also be removed (with their incident
arcs) without any effect on the performance of the model as
they all create parallel paths (in [37] such places are called
“implicit places”).
All transitions are timed transitions, and the occurrence

times associated with them represent the times of the cor-
responding operations.
The net shown in Fig.3 has five basic P–invariants (after

removal of places p0, p1, p2, p3 and p4); the sets of tran-
sitions of subnets implied by these P–invariants are shown
in Tab.4.

Because the cycle time of the model is equal to the max-
imum cycle time of subnets implied by P–invariants, the
cycle time τ0 is:

TABLE IV

Sets of transitions of P–invariant–implied subnets in Fig.3.

invariant set of transitions

1 t1, t1a, t1b, t2a, t01, t12, t20
2 t2, t1b, t2a, t2b, t3a, t12, t23, t31
3 t3, t2b, t3a, t3b, t4a, t23, t34, t42
4 t4, t3b, t4a, t4b, t34, t45, t53
5 t01, t12, t23, t34, t45, t14, t20, t31, t42, t53,

t1a, t1b, t2a, t2b, t3a, t3b, t4a, t4b

τ0 = max(τ1, τ2, τ3, τ4, τ5)

where τi denotes the cycle time of the subnet i, so, τ1 =
f(t1) + f(t1a) + f(t1b) + f(t2a) + f(t01) + f(t12) + f(t20),
τ2 = f(t2) + f(t1b) + f(t2a) + f(t2b) + f(t3a) + f(t12) +
f(t23)+f(t31), and so on (each P–invariant–implied subnet
contains exactly one token).
If τ0 is equal to one (or more) of the first four terms, the

model is called “process bound” because the duration of
the process performed by one of the chambers determines
the cycle time (and the throughput) of the tool; if the cy-
cle time is equal to the last term, τ5, the model is called
“transport bound” [40].
The temporal characteristics associated with the transi-

tions of the model can be determined by representing each
step as a sum of some elementary actions such as picking
a wafer from a loadlock, loading a wafer into a chamber
or unloading it. Each of these actions has its execution
time, and it is assumed, for simplicity, that the execution
times of the same actions for different chambers are equal
(it is a minor modification to make them different). The
elementary actions and their execution times are shown in
Tab.5.
The execution time of any operation is assumed to be

the sum of execution times of actions constituting the op-
eration. For the operations represented by transitions in
Fig.3, these execution times are shown in Tab.6.
The cycle times of the subnets are obtained by adding

the execution times (Tab.6) corresponding to transitions of
the subnets:



339

TABLE V

Elementary actions and their execution times.

exec time action

v pick a wafer from the loadlock;
x load a wafer into a chamber;
y unload a wafer from a chamber;
w drop a wafer in the loadlock;
z move the robot between two adjacent

chambers, or between the loadlock and
the first chamber, or between the last
chamber and the loadlock (for simplicity
all these times are assumed equal).

TABLE VI

Execution times associated with transitions in Fig.3

transition exec time transition exec time

t01 v + z t12 z
t1a x t14 2z
t1b y t20 2z
t2a x t23 z
t2b y t31 2z
t3a x t34 z
t3b y t42 2z
t4a x t45 w + z
t4b y t53 2z

τ1 = o1 + v + 2x+ y + 4z,
τ2 = o2 + 2x+ 2y + 4z,
τ3 = o3 + 2x+ 2y + 4z,
τ4 = o4 + w + x+ 2y + 4z,
τ5 = v + w + 4x+ 4y + 15z,

where oi denotes the duration of the operation performed
by chamber Ci (or the occurrence time associated with
transition ti).
Similarly, the sequence of configurations 1–2–3–4a–5a–1

(Tab.2) corresponds to the following sequence of robot’s
moves:

LL ⇒ C1 → C3 ⇒ C4 → C2 ⇒ C3 →
C1 ⇒ C2 → C4 ⇒ LL.

The net model derived from this sequence of operations
is shown in Fig.4.
After removing p0 with the two incident arcs, and also

p1, p2, p3 and p4 with their arcs (as they all create parallel
paths), the net has 6 basic P–invariants, and the sets of
transitions implied by these invariants are:
The formulas describing the cycle times of this model

can be derived similarly as for the model shown in Fig.3.

V. Chamber Revisiting

In cluster tools with chamber revisiting, wafers pass
through some chambers more than once. Coordinating the
flow of wafers is more complicated in this case than for
processing without chamber revisiting.
In steady–state, the cyclic behavior of a cluster tool can

be described by a sequence of tool configurations where
each configuration characterizes the distributions of wafers
in the chambers of the tool. If chambers are not revisited

TABLE VII

Sets of transitions of P–invariant–implied subnets in Fig.4.

invariant set of transitions

1 t1, t2, t3, t4, t1a, t1b, t2a, t2b, t3a, t3b,
t4a, t4b, t01, t12, t23, t34, t45

2 t1, t1a, t1b, t2a, t4b, t01, t12, t24, t45
3 t2, t1b, t2a, t2b, t3a, t12, t23, t31
4 t3, t2b, t3a, t3b, t4a, t23, t34, t42
5 t4, t1a, t3b, t4a, t4b, t01, t13, t34, t45
6 t01, t12, t23, t34, t45, t13, t24, t31, t42,

t1a, t1b, t2a, t2b, t3a, t3b, t4a, t4b

(Section 3), each configuration is a vector of m variables,
with variable i describing the “status” (empty or not) of
chamber Ci. For chamber revisiting, an extended descrip-
tion is needed, with components corresponding to all steps
of the processing cycle, including the revisiting of (some)
chambers. For example, if the sequence of processing steps
is 1–2–3–4–2–3, which means that each wafer first visits
C1, then C2, then C3 and C4, then revisits C2 and finally
revisits C3, the configurations are described by 6 variables,
but some variables are “coupled” as they refer to the same
chamber. Each change to any one of such variables implies
a change of all other variables which are coupled with it.
For the sequence 1–2–3–4–2–3, variables 2 and 5 as well as
3 and 6 are coupled because they correspond to the first
and second visits to chambers C2 and C3, respectively. If
any one of the coupled variable becomes non-zero, the cor-
responding chamber becomes unavailable, so all other vari-
ables coupled with the changing variable become marked
by “x”. For an implementation of the process 1–2–3–4–2–3
with maximum concurrency, an initial configuration (i.e., a
configuration just before loading a new wafer into the first
chamber) can be (0,1,x,1,x,1) or (0,x,x,1,1,1); (0,1,1,1,x,x)
is yet another initial configuration but it is of little interest
because, after loading chamber C1, no further continuation
is possible (the tool is “deadlocked”).
The possible changes of extended configurations are de-

scribed by the following rules:

• A configuration (k1, ..., ki−1, 1, 0, ..., km) always derives
configuration (k1, ..., ki−1, 0, 1, ..., km); all variables coupled
with variable i+1 become marked by “x”, and all variables
coupled with variable i become 0.
• A configuration (k1, ..., km−1, 1) always derives configu-
ration (k1, ..., km−1, 0); all variables coupled with variable
m become 0. This change of configurations corresponds to
unloading the wafer (after the last operation) and returning
it to the loadlock.
• It is assumed that each cycle begins with loading new
wafer into the first chamber; the starting configuration is
thus (0, k2, ..., km), and this configuration always derives
(1, k2, ..., km); all variables coupled with the first variable
become marked by “x”.

For the 4–chamber tool with process 1–2–3–4–2–3, the
maximally concurrent sequence of configurations is shown
in Tab.8.
For some configurations there may be more than one

possible next operation, which leads to several different
schedules with possibly different performances. It is also
possible that a configuration cannot be (further) changed,
which indicates that the corresponding initial configura-
tion leads to a deadlock. For example, for the previously
discussed processing sequence 1–2–3–4–2–3, the initial con-



340

t1

p1

t1bt1a

p4

t4t4a t4b

t23t12 t34
t31 t42

t01
t45

p3p2

p0

t13 t24

t2 t3t2bt2a t3a t3b

Fig. 4. Alternative Petri net model of a 4–chamber tool.

TABLE VIII

Sequence of configurations for process 1-2-3-4-2-3.

configuration next operation

(0,1,x,1,x,1) pick new wafer and load into C1
(1,1,x,1,x,1) unload C3 and return wafer to LL
(1,1,0,1,x,0) unload C2, move and load into C3
(1,0,1,1,0,x) unload C4, move and load into C2
(1,x,1,0,1,x) unload C3, move and load into C4
(1,x,0,1,1,0) unload C2, move and load into C3
(1,0,x,1,0,1) unload C1, move and load into C2
(0,1,x,1,x,1) the initial configuration.

figuration (0,0,1,1,0,x) can lead to a deadlock, as shown in
Tab.9.

TABLE IX

Deadlocked sequence of configurations for process

1-2-3-4-2-3.

configuration next operation

(0,0,1,1,0,x) pick new wafer and load into C1
(1,0,1,1,0,x) unload C1, move and load into C2
(0,1,1,1,x,x) pick new wafer and load into C1
(1,1,1,1,x,x) deadlock.

If, however, in configuration (1,0,1,1,0,x), a wafer is
moved from chamber C4 to C2 (for the second visit), the
sequence can be continued, as shown in Tab.10.
All sequences of operations leading to deadlocks are eas-

ily identified at the level of changes of configurations and
are eliminated from further considerations. Consequently,
only deadlock–free sequences are analyzed with respect to
their performance and the “best” sequence, i.e., the se-
quence with the maximum throughput, is chosen.
Some configurations are acyclic, i.e., they cannot be de-

rived from itself. Obviously, such acyclic configurations
cannot be used as starting configuration for the description
of steady–state behavior. For example, the initial configu-
ration (0,x,x,1,1,1) cannot be repeated in the sequence of

TABLE X

Alternative sequence of configurations for process

1-2-3-4-2-3.

configuration next operation

(0,0,1,1,0,x) pick new wafer and load into C1
(1,0,1,1,0,x) unload C4, move and load into C2
(1,x,1,0,1,x) unload C3, move and load into C4
(1,x,0,1,1,0) unload C2, move and load into C3
(1,0,x,1,0,1) unload C1, move and load into C2
(0,1,x,1,x,1) unload C3 and return the wafer to LL
(0,0,1,1,0,x) the initial configuration.

derived configurations, as shown in Tab.11.

TABLE XI

Alternative sequence of configurations for process

1-2-3-4-2-3.

configuration next operation

(0,x,x,1,1,1) pick new wafer and load into C1
(1,x,x,1,1,1) unload C3 and return wafer to LL
(1,x,0,1,1,0) unload C2, move and load into C3
(1,0,x,1,0,1) unload C1, move and load into C2
(0,1,x,1,x,1) the initial configuration of Tab.8.

It should be noted that each cyclic sequence of config-
urations implies to a deterministic schedule of the robotic
transporter. This schedule is obtained by “implementing”
the consecutive changes of configurations and moving the
robot from one chamber to another, as required by (con-
secutive) changes of configurations.

VI. Net Models and Their Analysis

As in Section 4, the general Petri net model of a cluster
tool is composed of models of all chambers and the model
of robot’s schedule. Each chamber which is not revisited,
is represented by a subnet shown in Fig.2. Models of revis-
ited chambers are slightly more complex because they must
provide different temporal characterizations for each visit.



341

The model is in the form of a free–choice structure with
the number of choices representing the number of visits of
the same wafer to this particular chamber (this number can
be different for each chamber). Fig.5 shows a model of a
chamber Ci for two visits; for each additional visit there is
another cycle on place pi.

ti’

ti’’

pi

tib’tia’

tia’’ tib’’

pia’ pib’

pib’’pia’’

Fig. 5. Petri net model of a chamber with two visits.

In Fig.5, t′ia and t′′ia represent chamber loading for the
first and second visits, respectively, t′i and t′′i represent
chamber operations for the first and second visits, respec-
tively, and t′ib and t′′ib – chamber unloading for the first and
second visits, respectively.
The model of the sequence of robot operations is de-

rived from the sequence of configuration changes. For the
sequence shown in Tab.8, the robot follows the cycle:

LL ⇒ C1 → C3 ⇒ LL → C2 ⇒ C3 → C4 ⇒ C2 →
C3 ⇒ C4 → C2 ⇒ C3 → C1 ⇒ C2 → LL.

The complete model is shown in Fig.6. The 4 cham-
bers are represented by (cyclic) subnets associated with
places p1, p2, p3 and p4. The subnets for C2 and C3 are
free–choice structures (as in Fig.5) with the upper branches
representing the first visits and the lower branches repre-
senting the second visits of wafers. The initial marking
indicates that, when a new wafer is picked from the load-
lock to be loaded into C1 (say wafer k), C2 is visited for the
first time (by the previous wafer, k − 1), and C3 is visited
for the second time (by wafer k−3); C4 is also loaded (with
wafer k − 2). This is the initial configuration (0,1,x,1,x,1)
from the previous section (Tab.8).
The “flow” of consecutive wafers, denoted “a”, “b”, “c”,

“d” and “e”, through the chambers of the cluster tool can
be represented by the following table in which the visits to
the same chambers are indicated by subscripts:

C1 C2 C3 C4

– c1 a2 b
d c1 a2 b
d c1 – b
d – c1 b
d b2 c1 –
d b2 – c
d – b2 c
– d1 b2 c
e d1 b2 c
... ... ... ...

The same flow of wafers is outlined in Fig.7 in a form of
Gantt chart (with quite arbitrary durations of operations).

The subnet representing the robot seems to be convo-
luted but it is rather straightforward to see its correspon-
dence to the sequence of operations given above; t0 models
picking a (new) wafer from the loadlock and carrying it to
C1; t1a represents loading the wafer into C1, after which

time

C1

C2

C3

C4

d e

c1

c1

b2

b2

d1

d1

cb

a2

Fig. 7. A sketch of chamber occupancy times.

the robot moves to C3 (transition t13) to unload the wafer
(transition t3d) and carry it to the loadlock, drop it there
and move to C2 (all represented by transition t32), then
unload C2 (transition t2b), and so on.
The operations represented by transitions in Fig.6, and

their execution times (composed of a few elementary op-
erations, as in Section 4), are shown in Tab.12 (for cham-
bers with no revisiting, the chamber operation times are
denoted by oi where i is the chamber number; for cham-
bers with revisiting they are denoted by oij , where i is the
chamber number and j is the visit number).

In Fig.6, places p1 and p4 can be removed without any
effect on the performance of the model. After removal of
these two places, the net has 14 basic place invariants. Sub-
nets implied by these invariants have the sets of transitions
shown in Tab.13.
The cycle time is thus

τ0 = max(τ1, τ2, ..., τ14)

where the cycle times of the implied subnets are obtained
by adding the execution times associated with the transi-
tions and dividing this sum by the total count of tokens in
the subnet (if it is greater than one):

τ1 = v + w + 6x+ 6y + 21z;
τ2 = o32 + w + 4x+ 5y + 13z;
τ3 = o21 + 5x+ 5y + 12z;
τ4 = o22 + v + w + 5x+ 5y + 17z;
τ5 = o22 + o32 + w + 3x+ 4y + 9z;
τ6 = o21 + o22 + 4x+ 4y + 8z;
τ7 = (o22 + o31 + o4 + v + w + 6x+ 6y + 16z)/2;
τ8 = (o22 + o31 + o32 + o4 + w + 4x+ 5y + 9z)/2;
τ9 = (o21 + o22 + o31 + o4 + 5x+ 5y + 8z)/2;
τ10 = o4 + 2x+ 2y + 4z;
τ11 = o31 + v + w + 5x+ 5y + 16z;
τ12 = o31 + o32 + 3x+ 4y + 6z;
τ13 = o21 + o31 + 4x+ 4y + 8z;
τ14 = o1 + v + 2x+ y + 4z.

The cycle time τ1 corresponds to the robot’s submodel,
so if τ0 is equal to τ1, the model is “transport bound” and a
different schedule should be considered to reduce the robot
operations, otherwise the model is “process bound” and
one of the chambers limits the performance of the tool.

VII. Concluding Remarks

Realistic cluster tools are much more complicated than
the one presented in this paper. Modern semiconductor
devices are composed of many layers of different materials,
with complex technological processes creating these lay-
ers in consecutive processing steps. Consequently, there
are tens of processing steps, and the scheduling problems
for such tools are correspondingly complex. The approach



342

p2

t1

p1
p3

t3’’

t3’
t2’

t2’’

t12

t1b t2c t2d t3c t3d

t3a t3b
t2a t2b

t0 t1a

t20

t31

t13

t42’

t42’’

p4

t4t4a t4b

t23’

t23’’

t34’’

t34’

t23

t32

Fig. 6. Petri net model of a single–blade 4–chamber cluster tool for process 1-2-3-4-2-3.

described in this paper can be used for such complex clus-
ter tools as it can easily be automated. The general rules
describing the possible changes of configurations can be
implemented as computer programs, deriving deadlock–
free sequences of configurations and their Petri net models.
Model simplifications, based on elimination of simple paral-
lel paths (or implicit places) are also rather straightforward
to implement. Finding basic place invariants is a standard
feature supported by many tools for analysis of Petri nets
[50]. Consequently, all these elements can be integrated
into a single tool for modeling and performance analysis of
a large class of cluster tools.
The solution discussed in this paper is derived with the

assumption that maximum concurrency of chamber opera-
tions is required. The obtained results are relevant to the
“process bound” case in which the operation times of the
chambers are comparable (for chambers which are revis-
ited, the total time for all visits is used), as outlined in
Fig.7. If this is not the case, the most heavily used cham-
bers could be duplicated to improve the performance of the
whole tool. Chamber duplication can easily be taken into
account in Petri net models [49].
The performance characteristics for steady–state behav-

ior are derived in symbolic form, which provides a very
efficient analysis of specific schedules, described by sets of
numerical parameters. The steady–state model can be used
for the estimation of the initial and final transient behav-
iors with only minor changes [49].
Only single–blade robots were discussed in this pa-

per. For dual–blade robots, a slightly different approach
is needed because the transportation of wafers from one
chamber to another is done in a different way (the robot
swaps the carried wafer with the wafer in a chamber). A
net model of a 4–chamber cluster tool with a dual–blade
robot is shown in Fig.8. After removing places p1, p2, p3
and p4, this net model has 5 place invariants, one for each
chamber, and one for the robot. It should be observed that
the times of operations associated with transitions in Fig.8
are different than for tools with a single–blade robot (a
more detailed comparison of single–blade and dual–blade
tools is given in [49]).
Chamber revisiting discussed is Sections 5 and 6 for clus-

ter tools with single–blade robots applies as well to tools
with dual–blade robots. The only difference is in the mod-

eling of the robot which, in dual–blade tools, has a slightly
different schedule (as shown in Fig.8).
Only static scheduling of robot operations has been con-

sidered in this paper. Dynamic scheduling, i.e., scheduling
during the operation of a cluster tool [45], can also use
a high–level characterization of the tool’s behavior in the
form of tool configurations. For example, the dynamically
scheduled cluster tool can maintain the current tool con-
figuration and use a preselected “best” scheduling choices
stored as a finite–state automaton (or just its transition
function) within the tool. Deadlock avoidance, one of im-
portant aspects of dynamic scheduling, would be easily pro-
vided in such a case.

Acknowledgement

The Natural Sciences and Engineering Research Council
of Canada partially supported this research through grant
RGPIN-8222.

References

[1] W.M.P. van der Aalst, “Interval timed colored Petri nets and
their analysis”; in Application and Theory of Petri Nets 1993
(LNCS 691), pp.453-472, 1993.

[2] M. Ajmone Marsan, G. Conte, and G. Balbo, “A class of gen-
eralized stochastic Petri nets for the performance evaluation of
multiprocessor systems”; ACM Trans. on Computer Systems,
vol.2, no.2, pp.93-122, 1984.

[3] F. Bause and P.S. Kritzinger, Stochastic Petri nets – an intro-
duction to the theory (Academic Studies in Computer Science);
Vieweg Publ. 1996.

[4] P. Burggraaf, “Coping with the high cost of wafer fabs”; Semi-
conductor International, vol.18, no.3, pp.45-50, 1995.

[5] S. Calvez, P. Aygalinc, and W. Khansa, “P-time Petri nets for
manufacturing systems with staying time constraints”; Proc.
IFAC Conf. on Control of Industrial Systems, pp.1487-1492,
1997.

[6] J-H. Chen, L-C. Fu, M-H.Lin and A-C. Huang, “Petri net and
GA-based approach to modeling, scheduling, and performance
evaluation for wafer fabrication”; IEEE Trans. on Robotics and
Automation, vol.17, no.5, pp.619-636, 2001.

[7] D.P. Connors, G.E. Feigin, and D.D. Yao, “A quequeing net-
work model for semiconductor manufacturing”; IEEE Trans. on
Semiconductor Manufacturing, vol.9, no.3, pp.412-427, 1996.

[8] A.A. Desrochers and R.Y. Al-Jaar, Applications of Petri Nets
in Manufacturing Systems; IEEE Press 1995.



343

t1

p1

t1bt1a

p4

t4t4a t4b

t23t12 t34

t01

p3p2

p0

t2t2a t2b t3a t3 t3b

t11 t22 t33 t44

t40

Fig. 8. Petri net model of a 4-chamber cluster tool with a dual–blade robot.

[9] F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva, and F.B. Ver-
nadat, Practice of Petri Nets in Manufacturing; Chapman and
Hall 1993.

[10] B. Hansen, “Benefits of cluster tool architecture for implementa-
tion of evolutionary equipment improvements and applications”;
in SPIE Process Module Metrology, Control, and Clustering,
vol.1594, pp.83-91, 1991.

[11] J.R. Hauser and S.A. Rizvi, “Cluster tool technology”; in SPIE
Process Module Metrology, Control, and Clustering, vol.1594,
pp.45-54, 1991.

[12] R.A. Hendrickson, “Optimizing cluster tool throughput”; Solid
State Technology, vol.40, no.7, pp.217-222, 1997.

[13] M.D. Jeng and F. DiCesare, “A review of synthesis techniques for
Petri nets i with applications to automated manufacturing sys-
tems”; IEEE Trans. on Systems, Man, and Cybernetics, vol.23,
no.1, pp.301-312, 1993.

[14] M-D. Jeng and X.Xie, “Modeling and analysis of semiconductor
manufacturing systems with degraded behavior using Petri nets
and siphons”; IEEE Trans. on Robotics and Automation, vol.17,
no.5, pp.576-588, 2001.

[15] M-D. Jeng, X. Xie, and Y. Hung, “Markovian timed nets for
performance analysis of semiconductor manufacturing systems”;
IEEE Trans. on Systems, Man, and Cybernetics, pt.B: Cyber-
netics, vol.30, no.5, pp.757-771, 2000.

[16] W. Khansa, J-P. Denat, and S.D. Collart, “P-time Petri nets for
manufacturing systems”; Proc. IEEE Int. Workshop on Discrete
Event Systems, pp.94-102, 1996.

[17] J-H. Kim, T-E. Lee, H-Y. Lee, and D-B. Park, “Scheduling
analysis of time-constrained dual–armed cluster tools”; IEEE
Trans. on Semiconductor Manufacturing, vol.16, no.3, pp.521-
534, 2003.

[18] F. Krueckeberg and M. Jaxy, “Mathematical methods for calcu-
lating invariants in Petri nets”; in Advances in Petri Nets 1987
(Lecture Notes in Computer Science 266), pp.104–131, Springer–
Verlag 1987.

[19] S. Kumar and P.R. Kumar, “Queueing network models in the
design and analysis of semiconductor wafer fabs”; IEEE Trans.
on Robotics and Automation, vol.17, no.5, pp.548-561, 2001.

[20] M.J. Lopez and S.C. Wood, “Systems of multiple cluster tools:
configuration, and performance under perfect reliability”; IEEE
Trans. on Semiconductor Manufacturing, vol.11, no.3, pp.465-
474, 1998.

[21] M.J. Lopez and S.C. Wood, “Systems of multiple cluster tools:
configuration, reliability, and performance”; IEEE Trans. on
Semiconductor Manufacturing, vol.16, no.2, pp.170-178, 2003.

[22] J. Martinez and M. Silva, “Simple and fast algorithm to obtain
all invariants of a generalized Petri net”; in Applications and
Theory of Petri Nets (Informatik Fachberichte 52); pp.301–310,
Springer–Verlag 1982.

[23] T.K. McNab, “Cluster tools, pt.1: emerging processes”; Semi-
conductor International, vol.13, no.9, pp.58-63, 1990.

[24] P.M. Merlin and D.J. Farber, “Recoverability of communication
protocols – implications of a theoretical study”; IEEE Trans. on
Communications, vol.24, no.9, pp.1036–1049, 1976.

[25] D.J. Miller, “Simulation of a semiconductor manufacturing line”;

Communications of ACM, vol.33, no.10, pp.98-108, 1990.
[26] M.W. Moslehi, R.A. Chapman, M. Wong, A. Parandi, H.N.

Najm, J. Kuhne, R.L. Yeakley, and C.J. Davis, “Single–wafer
integrated semiconductor device processing”; IEEE Trans. on
Electronic Devices, vol.39, no.1, pp.4-32, 1992.

[27] T. Murata, “Petri nets: properties, analysis and applications”;
Proceedings of IEEE, vol.77, no.4, pp.541-580, 1989.

[28] B. Newboe, “Cluster tools: a process solution”; Semiconductor
International, vol.12, no.8, pp.82-88, 1990.

[29] T.L. Perkinson, P.K. MacLarty, R.S. Gyurcsik, and R.K. Cavin
III, “Single–wafer cluster tool performance: an analysis of
throughput”; IEEE Trans. on Semiconductor Manufacturing,
vol.7, no.3, pp.369-373, 1994.

[30] T.L. Perkinson, R.S. Gyurcsik, and P.K. MacLarty, “Single–
wafer cluster tool performance: an analysis of the effects of
redundant chambers and revisitations sequences on through-
put”; IEEE Trans. on Semiconductor Manufacturing, vol.9, no.3,
pp.384-400, 1996.

[31] J.M. Proth and X. Xie, Petri Nets; Wiley & Sons 1996.
[32] C.V. Ramamoorthy and G.S. Ho, “Performance evaluation of

asynchronous concurrent systems using Petri nets”; IEEE Trans.
on Software Engineering, vol.6, no.5, pp.440-449, 1980.

[33] R.R. Razouk and C.V. Phelphs, “Performance analysis using
timed Petri nets”; in Protocol Specification, Testing, and Ver-
ification IV (Proc. of the IFIP WG 6.1 Fourth Int. Workshop,
Skytop Lodge PA), pp.561-576, North-Holland 1985.

[34] W. Reisig, Petri nets – an introduction (EATCS Monographs
on Theoretical Computer Science 4); Springer-Verlag 1985.

[35] S. Rostami, B. Hamidzadeh, and D. Camporese, “An optimal
periodic scheduler for dual–arm robots in cluster tools with res-
idency constraints”; IEEE Trans. on Robotics and Automation,
vol.17, no.5, pp.609-628, 2001.

[36] J. Sifakis, “Use of Petri nets for performance evaluation”; in
Measuring, modeling and evaluating computer systems, pp.75-
93, North-Holland 1977.

[37] M. Silva, E. Teruel, and J.M. Colom, “Linear algebraic and linear
programming techniques for the analysis of place/transition net
systems”; in Lectures on Petri Nets I: Basic Models (Lecture
Notes in Computer Science 1491), pp.309-373, Springer-Verlag
1998.

[38] P. Singer, “The driving forces in cluster tool development”;
Semiconductor International, vol.18, no.8, pp.113-118, 1995.

[39] R.S. Srinivasan, “Modeling and performance analysis of cluster
tools using Petri nets”; IEEE Trans. on Semiconductor Manu-
facturing, vol.11, no.3, pp.394-403, 1998.

[40] S. Venkatesh, R. Davenport, P. Foxhoven, and J. Nulman, “A
steady–state throughput analysis of cluster tools: dual–blade
versus single-blade robots”; IEEE Trans. on Semiconductor
Manufacturing, vol.10, no.4, pp.418-423, 1997.

[41] S.C. Wood, “Simple performance models for integrated pro-
cessing tools”; IEEE Trans. on Semiconductor Manufacturing,
vol.9, no.3, pp.320-328, 1996.

[42] S.C. Wood, “Cost and cycle time performance of fabs based on
integrated single–wafer processing”; IEEE Trans. on Semicon-
ductor Manufacturing, vol.10, no.1, pp.98-111, 1997.



344

TABLE XII

Execution times associated with transitions in Fig.6.

trans. operations exec time

t0 pick a wafer and move to C1 v + z
t1 perform C1 operation o1
t′2 perform first C2 operation o21
t′′2 perform second C2 operation o22
t′3 perform first C3 operation o31
t′′3 perform second C3 operation o32
t4 perform C4 operation o4
t1a load C1 x
t1b unload C1 y
t2a load C2 (first visit) x
t2b unload C2 (first visit) y
t2c load C2 (second visit) x
t2d unload C2 (second visit) y
t3a load C3 (first visit) x
t3b unload C3 (first visit) y
t3c load C3 (second visit) x
t3d unload C3 (second visit) y
t4a load C4 x
t4b unload C4 y
t12 move from C1 to C2 z
t13 move from C1 to C3 2z
t20 move from C2 to LL 2z
t23 move from C2 to C3 z
t′23 move from C2 to C3 z
t′′23 move from C2 to C3 z
t31 move from C3 to C1 2z
t32 move to LL, drop the wafer,

move to C2 w + 4z
t′34 move from C3 to C4 z
t′′34 move from C3 to C4 z
t′42 move from C4 to C2 2z
t′′42 move from C4 to C2 2z

[43] S.C. Wood and K.C. Saraswat, “The economic impact of sin-
gle wafer multiprocessors”; in SPIE Rapid Thermal and Related
Processing Technique, vol.1393, p.36, 1990.

[44] S.C. Wood and K.C. Saraswat, “Modeling the performance of
cluster–based fabs”; Proc. 1991 IEEE/SEMI Int. Semiconduc-
tor Manufacturing Science Symp., pp.8-14, 1991.

[45] N. Wu and M-C. Zhou, “Avoiding deadlock and reducing starva-
tion and blocking in automated manufacturing systems”; IEEE
Trans. on Robotics and Automation, vol.17, no.5, pp.658-669,
2001.

[46] M-C. Zhou, Petri Nets in Flexible and Agile Automation;
Kluwer Academic Publishers 1995.

[47] M-C. Zhou and M.D. Jeng, “Modeling, analysis, simulation,
scheduling, and control of semiconductor manufacturing sys-
tems: a Petri net approach”; IEEE Trans. on Semiconductor
Manufacturing, vol.11, no.3, pp.333-357, 1998.

[48] W.M. Zuberek, “Timed Petri nets – definitions, properties and
applications”; Microelectronics and Reliability (Special Issue on
Petri Nets and Related Graph Models), vol.31, no.4, pp.627-644,
1991.

[49] Zuberek, W.M., “Timed Petri net in modeling and analysis of
cluster tools”; IEEE Trans. on Robotics and Automation, vol.17,
no.5, pp.562-575, 2001.

[50] A database of tools for analysis of Petri net models is maintained
at DAIMI, Department of Computer Science, Aarhus University,
Denmark: http://www.daimi.au.dk/PetriNets.

TABLE XIII

Sets of transitions of P–invariant–implied subnets in Fig.6.

invariant transitions

1 t0, t1a, t1b, t2a, t2b, t2c, t2d, t3a, t3b, t3c, t3d,
t4a, t4b, t12, t13, t20, t23, t

′

23, t
′′

23, t31, t32, t
′

34,
t′′23, t

′

42, t
′′

42;
2 t′′3 , t2b, t2c, t2d, t3a, t3b, t3c, t3d, t4a, t4b, t23,

t′23, t
′′

23, t32, t
′

34, t
′′

34, t
′

42, t
′′

42;
3 t′2, t1b, t2a, t2b, t2c, t2d, t3a, t3b, t3c, t4a, t4b,

t12, t23, t
′

23, t
′′

23, t31, t
′

34, t
′′

34, t
′

42, t
′′

42;
4 t0, t

′′

2 , t1a, t1b, t2a, t2b, t2c, t2d, t3a, t3c, t3d,
t4b, t12, t13, t20, t

′

23, t
′′

23, t31, t32, t
′′

34, t
′′

42;
5 t′′2 , t

′′

3 , t2b, t2c, t2d, t3a, t3c, t3d, t4b, t
′

23, t
′′

23,
t32, t

′′

34, t
′′

42;
6 t′2, t

′′

2 , t1b, t2a, t2b, t2c, t2d, t3a, t3c, t4b, t12,
t′23, t

′′

23, t31, t
′′

34, t
′′

42;
7 t0, t

′′

2 , t
′

3, t4, t1a, t1b, t2a, t2b, t2c, t2d, t3a, t3b,
t3c, t3d, t4a, t4b, t12, t13, t20, t

′

23, t
′′

23, t31,
t32, t

′

34, t
′′

42;
8 t′′2 , t

′

3, t
′′

3 , t4, t2b, t2c, t2d, t3a, t3b, t3c, t3d, t4a,
t4b, t

′

23, t
′′

23, t32, t
′

34, t
′′

42;
9 t′2, t

′′

2 , t
′

3, t4, t1b, t2a, t2b, t2c, t2d, t3a, t3b, t3c,
t4a, t4b, t12, t

′

23, t
′′

23, t31, t
′

34, t
′′

42;
10 t4, t2c, t3b, t4a, t4b, t23, t

′

34, t
′′

42;
11 t0, t

′

3, t1a, t1b, t2a, t2b, t2d, t3a, t3b, t3c, t3d,
t4a, t12, t13, t20, t

′

23, t
′′

23, t31, t32, t
′

34, t
′

42;
12 t′3, t

′′

3 , t2b, t2d, t3a, t3b, t3c, t3d, t4a, t
′

23, t
′′

23,
t32, t

′

34, t
′

42;
13 t′2, t

′

3, t1b, t2a, t2b, t2d, t3a, t3b, t3c, t4a, t12,
t′23, t

′′

23, t31, t
′

34, t
′

42;
14 t0, t1, t1a, t1b, t2a, t12, t20.

Wlodek M. Zuberek received M.Sc. degree in Electronic En-
gineering, and Ph.D. and D.Sc. degrees in Computer Science, all
from Warsaw University of Technology. Currently he is a Professor
in the Department of Computer Science of Memorial University in
St.John’s, Canada. His research interests include modeling and per-
formance analysis of concurrent systems, and in particular applica-
tions of timed Petri nets, discrete–event simulation, and hierarchical
modeling, as well as the use of formal methods in analysis of complex
concurrent systems.

Dr. Zuberek is a member of ACM, IEEE CS, and GI FG 0.0.1.


