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Abstract. In this paper, thermo-elastic stress analysis of rotating variable thickness annular disk 
made of polar orthotropic functionally graded material (FGM) is presented. Elasticity modulus, 
density and thick-ness of the disk are assumed to vary radially according to a power law function. 
The material of the disk is assumed to be temperature dependent and different temperature 
distributions are assumed for variation of the temperature in radial direction. Radial stress and 
radial deformation of the disk with Clamped- Free (C-F) and Free-Free (F-F) boundary conditions 
are obtained using the numerical finite difference (FD) method. It is concluded that, by increasing 
the temperature variation, the radial stress and displacement increase. It is also observed that the 
radial stress in the rotating FG disk is more than the radial stress in rotating homogeneous disk 
and by increasing the FG index, the location of maximum stress in the disk shifts toward the outer 
surface. Also, the effects of temperature variation along the radius and orthotropy of the material 
on the radial stress and deformation are evaluated and concluded that their effect are significant. 
The results are compared with the available results in the literature and the good agreement 
between the present results and results in the literature shows the accuracy of FD method in 
thermo-elastic analysis of rotating FG orthotropic disk of variable thickness. 
Keywords: annular plate, functionally graded material, finite difference method, 
thermomechanical loading, stress analysis, orthotropic. 

1. Introduction 

Functionally graded materials (FGMs) are a type of composite materials that attracted 
considerable attention in recent years due to their thermo-mechanical properties. The concept of 
FGM was first considered in Japan in 1984 during a space plane project, where a combination of 
materials used would serve the purpose of a thermal barrier capable of withstanding a surface 
temperature of 2000 K and a temperature gradient of 1000 k across a 10 mm section [1]. FG 
material are being used in different engineering applications such in aerospace, medicine, defense, 
energy and opto-electronics [2]. 

Rotating functionally graded disks find their application in marine structures, aerospace 
structures, flywheels and internal combustion engines. In many of these applications, the structure 
is under thermal and mechanical loading at the same time and the material should be capable of 
operating under such severe loading [3, 4]. 

The mechanical strength of the reinforced and anisotropic disks is much higher than that of the 
isotropic steel disks of the same geometry; in addition, the weight of the former is several times 
lower [5]. Also, the literature review indicates that even though the elastic stress analysis of 
rotating isotropic disk has been carried out by many researchers in different problems, the disk 
made of anisotropic material has not been studied in such detail.  

Asghari et al. [6] presented a 3D semi-analytical solution for obtaining elasticity response of 
the rotating FG disks. They investigated effect of various parameters on the stresses and radial 
deformation. Bayat et al. [7] analyzed the elastic response of rotating annular and solid FG disks 
with variable thickness. They solved the equation of motion for annular disk using both a 
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semi-analytical method and analytical method. They assumed two mechanical properties 
gradation for the disks and investigated effect of various mechanical and geometric properties on 
the stresses and radial displacement of the rotating FG disk. Zafarmand et al. [8] presented the 
solution of rotating FG circular thick disks with variable thickness. They investigated the 
displacements and stresses for four different thickness profiles. They assumed that the elasticity 
modulus and density vary radially by a power-law function. Peng et al. [9] analyzed the elastic 
stress in rotating sandwich solid FG disk with three-layer composites. They investigated effect of 
FG index and rotational speed on the stresses and displacement. Eraslan et al. [10] presented a 
closed-form solution for rotating homogeneous annular disks having nonlinear parabolic thickness 
profiles. They used Tresca yield criteria with the assumption of linear hardening material for 
elastic-plastic analysis. Callioglu et al. [11] studied elastic-plastic response of rotating isotropic 
FG disks. They computed the stresses in the disks developing an analytical solution and compared 
the results to those of FEM. They considered yielding behavior of the material to be non-work 
hardening. Callioglu et al. [12] analyzed the stress of rotating FG disks, numerically and 
analytically. They used Ansys software to analyze the stress using finite element method and 
solved the equations by exact method. They investigated the effects of the graded index on the 
stresses and displacements. Gutzwiller et al. [13, 14] developed a computer software for 
automated design optimization of rotating bladed disks of variable thickness. They used finite 
difference method to find the stresses and displacements. Shahriari et al. [15] applied differential 
quadrature method to investigate the vibration of rotating bladed disk used in gas turbine engines. 
They considered the disk to be flexible with the same material as the real gas turbine disk and the 
blades of the bladed disks to be rigid.  

Nie et al. [16] investigated the thermomechanical response of rotating FG disks of variable 
thickness. They solved the ordinary differential equation analytically and numerically through the 
differential quadrature method. Tutunka et al. [17] investigated the effect of anisotropy of polar 
orthotropic rotating disks in presence of instability. They concluded that inclusion of the 
displacement in the centrifugal force results in instability at certain rotational speeds. Peng et al. 
[18] studied the elastic problem of rotating polar orthotropic FG disk. They investigated effect of 
orthotropy and FG gradient on the radial and hoop stress distribution. Callioglu et al. [19] analyzed 
elastic-plastic response of rotating curvilinearly orthotropic disks. They analytically obtained the 
elastic, plastic and residual stress components at different rotating speeds. Nie et al. [20] studied 
material tailoring in three types of composites, namely polar orthotropic material, fiber-reinforced 
composite with fibers in concentric circles and fiber-reinforced composite with fibers aligned 
along helices.  

In high temperature applications, the mechanical structure is under thermal loading in addition 
to the other mechanical loads. For such applications, FGMs can be used efficiently, due to their 
high strength under thermal loading [21, 22]. Carrera et al. [23] proposed a 1D FE method for 3D 
thermo- elastic analysis of rotating disk. They considered four types of temperature variation along 
the radius of the disk and validated their results through comparing them with those of finite 
difference method and analytical method. Kouchakzadeh et al. [24] and Entezari et al. [25] 
presented analytical solutions for the problem of generalized coupled thermo-elasticity in rotating 
disks subjected to mechanical and thermal shock loads. Callioglu et al. [26] introduced a 
closed--form solution for rotating orthotropic disc under thermal loading. They considered the 
temperature distribution to vary parabolically from inner surface to outer surface along the radial 
sections. They investigated the effect of functionally grading properties of the material of the 
performance of the cylinder as a sensor or actuator and concluded that a better performance can 
be achieved using FG material.  

Thermo-elastic analysis of rotating FG isotropic circular and annular disk was studied in 
[27-31]. Different numerical and analytical methods were employed in these papers but none of 
these references worked on elastic problem of anisotropic disks. Gong et al. [32] applied finite 
volume method to study the thermo-elastic problem of rotating three-dimensional FG disk.  

Reviewing the above literature review and the other possible available papers in the literature, 
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it is clear that the stress analysis of rotating FG orthotropic disk under thermal loading has not 
been investigated yet. In this paper, finite difference method is used for solving the equations of 
motion of rotating FG polar orthotropic annular plates with variable thickness under thermal 
loading. The thermal loading is defined by temperature distribution 𝑇 = 𝑇(𝑟)  and different 
temperature distributions along the radius are considered in the numerical analyses. The plane 
stress condition is assumed for the rotating disk and the variation of the Young’s modulus, density 
and thickness of the disk in the radial direction are assumed to be graded by power-law function. 
The boundary conditions of the disk are assumed to be Clamped-Free (C-F) and Free-Free (F-F). 
The effects of the graded index, temperature variation in the radial direction and orthotropy of the 
material on the radial stress and displacement are evaluated. After comparing the results with the 
results in the literature, the accuracy of the numerical analyses is confirmed. 

2. Governing equations  

An annular plate with outer radius 𝑎, inner radius 𝑏, thickness 𝑡 and outer surface thickness ℎ , which is rotating with angular velocity 𝜔 is shown in Fig. 1.  

 
Fig. 1. Rotating annular plate 

The thickness 𝑡  can be variable in the radial direction. Considering the variation of the 
thickness, the plane stress equilibrium equation in the radial direction is: 𝑑𝑑𝑟 (𝑡𝑟𝜎 ) − 𝑡𝜎 + 𝑡𝜌𝜔 𝑟 = 0, (1)

where 𝜎  is the radial stress, 𝜎  is the circumferential stress, 𝑡 is the thickness, 𝜔 is rotating speed 
of the plate and 𝜌 stands for the density. Considering the axisymmetric condition for the plate 
(∂ ∂𝜃⁄ = 0), the Kirshoff strain-displacement relations become [33]: 

𝜀 = 𝑑𝑢𝑑𝑟 ,    𝜀 = 𝑢𝑟 ,    𝛾 = 0, (2)

where 𝜀  is the radial strain, 𝜀  is the tangential strain and 𝛾  is the shear strain in the plane of 
the plate and 𝑢 is radial displacement. The stress tensor has both the mechanical and thermal 
components due to existence of the thermal loading in the problem: 

⎝⎜⎜
⎛𝜎𝜎𝜎𝜏𝜏𝜏 ⎠⎟⎟

⎞ =
⎝⎜
⎜⎛
𝜎𝜎𝜎𝜏𝜏𝜏 ⎠⎟

⎟⎞ +
⎝⎜
⎜⎜⎛
𝜎𝜎𝜎𝜏𝜏𝜏 ⎠⎟

⎟⎟⎞. (3)
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The elastic stiffness tensor relating the stresses to the strains in its most general form is shown 
below [13]: 

𝐶 =
⎝⎜
⎜⎛
𝐶 𝐶 𝐶 0 0 0𝐶 𝐶 𝐶 0 0 0𝐶 𝐶 𝐶 0 0 00 0 0 𝐶 0 00 0 0 0 𝐶 00 0 0 0 0 𝐶 ⎠⎟

⎟⎞. (4)

The stress-strain relation can be written as the following [34]: 𝜎 = 𝐶 𝜀 ,    𝜎 = 𝐶 𝛽 . (5)

Considering the plane stress assumption in the plate, the stress components in out of plane 
direction are equal to zero: 𝜎 = 𝜏 = 𝜏 = 0. (6)

Considering 𝜎 = 0, the expressions for the thermal and mechanical strain components in out 
of plane direction is obtained. The remaining non-zero strain components are as the following: 

𝜀𝜀𝜀 =
⎝⎜
⎜⎛

𝑑𝑢𝑑𝑟𝑢𝑟−𝐶𝐶 𝑑𝑢𝑑𝑟 − 𝐶𝐶 𝑢𝑟⎠⎟
⎟⎞ ,    𝛽𝛽𝛽 = 𝛼𝛼−𝐶𝐶 𝛼 − 𝐶𝐶 𝛼 , (7)

where 𝛽 , 𝛽  and 𝛽  are respectively radial, tangential and out of plane strains due to thermal 
loading. Combining Eqs. (4), (5) and (6), the stresses in the rotating disk in a general form is 
found as: 

𝜎 = 𝐴𝑑𝑢𝑑𝑟 + 𝐵 𝑢𝑟 − 𝐴𝛼 𝑇 − 𝐵𝛼 𝑇,    𝜎 = 𝐵 𝑑𝑢𝑑𝑟 + 𝐷 𝑢𝑟 − 𝐵𝛼 𝑇 − 𝐷𝛼 𝑇, (8)

where 𝐴, 𝐵, 𝐶 are the stiffness terms [13]: 

𝐴 = 𝐶 𝐶 − 𝐶𝐶 ,    𝐵 = 𝐶 𝐶 − 𝐶 𝐶𝐶 ,    𝐷 = 𝐶 𝐶 − 𝐶𝐶 . (9)

In orthotropic materials, the elasticity moduli in radial and tangential direction and the Poisson 
ratios are related to each other by the following Equation [18, 35]: 𝜐 (𝑟)𝐸 (𝑟) = 𝜐 (𝑟)𝐸 (𝑟) = 𝛼, (10)

where 𝐸  and 𝐸  are radial and tangential elasticity modulus, respectively. Considering the above 
Equation for 𝜐  and 𝜐  and the stress-strain elasticity tensor for transversely isotropic materials, 
the stiffness constants for the transversely isotropic material are [13]: 
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𝐶 = 𝐶 = 𝐸 (𝐸 − 𝐸 𝜐 )𝐸 − 2𝐸 𝜐 ,    𝐶 = 𝐸𝐸 − 2𝐸 𝜐 , 𝐶 = 𝐶 = 𝐸 𝐸 𝜐𝐸 − 2𝐸 𝜐 ,    𝐶 = 𝐸 𝜐𝐸 − 2𝐸 𝜐 . (11)

Substituting Eq. (8) into Eq. (1), the equilibrium equation is obtained in terms of radial 
displacement and the obtained equation should be solved considering the relevant boundary 
conditions. The following equations present the boundary equations of the problem. 

Clamped-Free (C-F): 𝑢 = 0,              𝑟 = 𝑏,𝜎 = 0,            𝑟 = 𝑎.  (12)

Free-Free (F-F): 𝜎 = 0,                 𝑟 = 𝑏,𝜎 = 0,                 𝑟 = 𝑎. (13)

3. Finite difference method  

In the finite difference method, the disk is discretized along (𝑁) radial stations. The method 
consists of developing an expression for the radial stress, employing three consecutive points [13]. 
At the end of the process, there are 𝑁 − 2 equations for the inner points and two known radial 
stress boundary equations for the inner and outer surface of the disk. The radial displacements are 
the unknown variables in the final 𝑁 × 𝑁 matrix Eq. (14). In this paper, the stiffness terms (𝐴, 𝐵, 𝐶, 𝐷), thickness (𝑡), stresses (𝜎) and displacement (𝑢) are the functions of the radius (𝑟). Fig. 2 
shows the numbering Scheme used in the method.  

 
Fig. 2. Numbering scheme in radial direction 

The radial stress can be estimated over intervals [1-2] and [0-1] from Eq. (5): 𝜎 = 𝜎 + 𝜎2 = �̅� 𝑢 − 𝑢𝑟 − 𝑟 + 𝐵 𝑢�̅� − �̅� 𝛼 𝑇 − 𝐵 𝛼 𝑇 , (14)𝜎 = 𝜎 + 𝜎2 = �̅� 𝑢 − 𝑢𝑟 − 𝑟 + 𝐵 𝑢�̅� − �̅� 𝛼 𝑇 − 𝐵 𝛼 𝑇 , (15)

in which: 

�̅� = 𝐴 + 𝐴2 ,     𝐵 = 𝐵 + 𝐵2 ,    𝑢 = 𝑢 + 𝑢2 ,     �̅� = 𝑟 + 𝑟2 , (16)

where 𝑝 = 2, 1 and 𝑞 = 1, 0. Similar expressions can be written for 𝜎 . 
Integrating Eq. (1), and the second equation of Eq. (8) over intervals [1-2] and [0-1] and 

making use of the above expressions, we arrive at: 
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(𝑡𝑟𝜎 ) − (𝑡𝑟𝜎 ) = 𝑡̅  𝜎   (𝑟 − 𝑟 ) − 𝑡̅ �̅�  𝜔 𝑟 − 𝑟3 , (17)(𝑡𝑟𝜎 ) − (𝑡𝑟𝜎 ) = 𝑡̅  𝜎   (𝑟 − 𝑟 ) − 𝑡̅ �̅�  𝜔 𝑟 − 𝑟3 , (18)𝜎 (𝑟 − 𝑟 ) = 𝐵 (𝑢 − 𝑢 ) + �̅� 𝑢 ln 𝑟𝑟 , (19)𝜎 (𝑟 − 𝑟 ) = 𝐵 (𝑢 − 𝑢 ) + �̅� 𝑢 ln 𝑟𝑟 , (20)

where: 𝑡̅ = 𝑡 + 𝑡2 ,     �̅� = 𝜌 + 𝜌2 ,     𝑝 = 2,1,   𝑞 = 1,0. (21)

Now, expressions can be developed for 𝜎  in intervals [1-2] and [0-1]. Omitting 𝜎  from 
Eq. (14) and Eq. (17) and substituting Eq. (19) in the resulted equation, the following expression 
for 𝜎  in terms of known quantities in the interval [1-2] is derived: 

𝜎 = 2𝑡 𝑟𝑡 𝑟 + 𝑡 𝑟 �̅� 𝑢 − 𝑢𝑟 − 𝑟 + 𝐵 𝑢�̅�+ 𝑡̅𝑡 𝑟 + 𝑡 𝑟 −𝐵 (𝑢 − 𝑢 ) − �̅� 𝑢 ln 𝑟𝑟1 + �̅� 𝜔 𝑟 − 𝑟3 . (22)

Also, omitting 𝜎  from Eq. (15) and Eq. (18) and substituting Eq. (20), the following relation 
for 𝜎  in the interval [0-1] is found: 

𝜎 = 2  𝑡 𝑟𝑡 𝑟 + 𝑡 𝑟 �̅� 𝑢 − 𝑢𝑟 − 𝑟 + 𝐵 𝑢�̅�+ 𝑡̅𝑡 𝑟 + 𝑡 𝑟 𝐵 (𝑢 − 𝑢 ) + �̅� 𝑢 ln 𝑟𝑟 − �̅� 𝜔 𝑟 − 𝑟3 . (23)

Equating the right side of Eq. (22) and (23) and substituting 𝑢 , 𝑢 , 𝑢 , an equation with 
unknowns 𝑢 , 𝑢 , 𝑢  is obtained. The following equation leads to a system of (𝑁 − 2) 
equations. The two remaining equations come from the discretization of the boundary  
conditions [13]: 2𝑡 𝑟𝑡 𝑟 + 𝑡 𝑟 �̅�𝑟 − 𝑟 − 𝐵2�̅� + 𝑡̅𝑡 𝑟 + 𝑡 𝑟 𝐵 − �̅�2 ln 𝑟𝑟 𝑢  
      + 2𝑡 𝑟𝑡 𝑟 + 𝑡 𝑟 −�̅�𝑟 − 𝑟 + 𝐵2�̅� + 𝑡̅𝑡 𝑟 + 𝑡 𝑟 𝐵 − �̅�2 ln 𝑟𝑟  
      − 2𝑡 𝑟𝑡 𝑟 + 𝑡 𝑟 �̅�𝑟 − 𝑟 + 𝐵2�̅� − 𝑡̅𝑡 𝑟 + 𝑡 𝑟 𝐵 + �̅�2 ln 𝑟𝑟 𝑢  
      + 2𝑡 𝑟𝑡 𝑟 + 𝑡 𝑟 �̅�𝑟 − 𝑟 + 𝐵2�̅� − 𝑡̅𝑡 𝑟 + 𝑡 𝑟 𝐵 + �̅�2 ln 𝑟𝑟 𝑢  
      = 𝑡̅ �̅� 𝜔𝑡 𝑟 + 𝑡 𝑟 𝑟 − 𝑟3 − 𝑡̅ �̅� 𝜔𝑡 𝑟 + 𝑡 𝑟 𝑟 − 𝑟3 . 

(24)
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In order to obtain the two remaining equations, the boundary conditions should be discretized. 
For the clamped boundary condition in inner or outer surfaces, the radial displacement in boundary 
surfaces should be zero and for the free boundary condition, the radial stress should be zero.  

Applying the displacements of nodal points (𝑁 − 2), (𝑁 − 1), (𝑁) and the displacements of 
nodal points 1, 2, 3 to Eq. (8), the discrete form of the boundary equations are as follows: 

Clamped-Free (C-F): 𝑟 = 𝑏,      𝑢 = 0, (25)𝑟 = 𝑎,      𝜎 = 𝐴 3𝑢 − 4𝑢 + 𝑢𝑟 − 𝑟 + 𝐵 𝑢𝑟 = 0       ⇒ 𝐴𝑟 − 𝑟 𝑢 + −4𝐴𝑟 − 𝑟 𝑢 + 𝐵𝑟 + 3𝐴𝑟 − 𝑟 𝑢 = 0. (26)

Free-Free (F-F): 𝑟 = 𝑏,      𝜎 = 𝐴 4𝑢 − 𝑢 − 3𝑢𝑟 − 𝑟 + 𝐵 𝑢𝑟 = 0        ⇒ 𝐵𝑟 − 3𝐴𝑟 − 𝑟 𝑢 + 4𝐴𝑟 − 𝑟 𝑢 + −𝐴𝑟 − 𝑟 𝑢 = 0, (27)

𝑟 = 𝑎,     𝐴𝑟 − 𝑟 𝑢 + −4𝐴𝑟 − 𝑟 𝑢 + 𝐵𝑟 + 3𝐴𝑟 − 𝑟 𝑢 = 0. (28)

The discussed discretization leads to system of 𝑁 linear equations with the radial displacement 
(𝑢) as the unknown variable. Once the radial displacement in nodal points is calculated, the radial 
stress can be found using Eq. (22) or Eq. (23). 

4. FGM properties and thickness profile 

For the numerical analyses, the disk is made of FG material that is pure ceramic in the inner 
surface and pure metal in the outer surface of the disk. The mechanical properties of the disk are 
assumed to vary by the following Equations in the radial direction: 

𝜌(𝑟) = 𝜌 + 𝑟 − 𝑏𝑎 − 𝑏 (𝜌 − 𝜌 ), (29)𝐸 (𝑟) = 𝐸 + 𝑟 − 𝑏𝑎 − 𝑏 (𝐸 − 𝐸 ), (30)𝛼 (𝑟) = 𝛼 + 𝑟 − 𝑏𝑎 − 𝑏 (𝛼 − 𝛼 ), (31)

where 𝜌 , 𝐸  and 𝛼  are the density of the ceramic (outer surface), radial elasticity modulus of 
the ceramic and thermal expansion in radial direction of the ceramic, respectively and 𝜌 , 𝐸  
and 𝛼  are the corresponding material properties of metal and 𝑛 is FG graded index. Considering 
the orthotropy of the material, the mechanical properties in the radial and tangential directions are 
not equal and are related to each other by the following Equation [18, 35]: 𝐸 = 𝛼𝐸 , (32)𝛼 = 𝛽𝛼 . (33)

The thickness of the disk is assumed to vary by a power-law function along the radial direction: 𝑡 = ℎ 𝑟𝑎 , (34)
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where 𝑡 is the thickness, ℎ  is thickness in the outer radius and 𝑚  is thickness power index. 

4.1. Thermal properties and thermal loading 

The mechanical properties of ceramic and metal in the surfaces of the disc are considered 
temperature dependent. Temperature dependency of the material of the outer and inner surfaces is 
governed by Eq. (35) [36]: 𝑃 = 𝑋 (𝑋 𝑇 + 𝑋 𝑇 + 𝑋 𝑇 + 𝑋 𝑇 + 1), (35)

where 𝑋 , 𝑋 , 𝑋 , 𝑋  and 𝑋  are tabulated in Table 1 [36] and 𝑃 can be elastic modulus, density 
and thermal expansion. The material properties of the ceramic and metal depend on the 
temperature by Eq. (35) and the disc is subjected to thermal load featuring a steady state 
temperature distribution 𝑇 = 𝑇(𝑟) along it’s radius expressed by Eq. (36): 

𝑇(𝑟) = 𝑇 + 𝑟 − 𝑏𝑎 − 𝑏 (Δ𝑇), (36)

where 𝑇  is temperature of the ceramic, Δ𝑇 is the temperature change from the inner surface to the 
outer surface and 𝑚  is temperature variation power index. Different temperature distributions are 
considered in the analyses by changing the parameter 𝑚 . 

Table 1. Temperature coefficients of material properties [36] 
Material Properties 𝑋  𝑋  𝑋  𝑋  𝑋  

SUS304 
𝐸 (Pa) 2.0104e+11 0 0.000308 –6.53e-07 0 𝛼  (K-1) 1.23e-05 0 0.000809 0 0 𝜌 (kg/m3) 8166 0 0 0 0 

Si3N4 

𝐸 (Pa) 3.4843e+11 0 -0.00031 2.16e-07 –8.95e-11 𝛼  (K-1) 5.87e-06 0 0.00091 0 0 𝜌 (kg/m3) 2370 0 0 0 0 

5. Validation 

Prior to presentation of numerical results for thermo-elastic analysis of rotating FG orthotropic 
disk, the accuracy of the method should be verified. Two case studies are considered here for 
validation of the results. In Case (a), the stress analysis results for rotating FG isotropic disk are 
compared with those reported in [12]. The material properties of the disk are considered the same 
as the material and geometric properties of the disk in [12]. In Case (b), the results of the stress 
analysis of rotating FG polar orthotropic disk are compared with data in [18]. The material and 
geometric properties also in this case are considered the same as material and geometric properties 
considered in [18]. In both these cases, the thickness of the disk is taken to be uniform and the 
material gradation functions are power-law functions as the following. It should be mentioned that 
the material gradation functions for validation are different from the functions used in numerical 
analyses (Section 4): 𝐸 = 𝐸 𝑟𝑎 ,    𝐸 = 𝐸 𝑟𝑎 ,    𝜌 = 𝜌 𝑟𝑎 , (37)

where 𝑛 is graded index and 𝑎 is the outer radius. In case (a), the material is considered to be 
isotropic, therefore, 𝐸  and 𝐸  are equal to each other in case (a). 
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5.1. Case (a) validation 

In this case, the disk is isotropic, and the radial and tangential elasticity modulus are equal. 
The disk is not under thermal loading and the material parameters are temperature independent. 
The material for the outer surface of the disc is aluminum alloy (7075-T6) with Young modulus 
of 𝐸 = 𝐸 = 𝐸 = 72 GPa (in Eq. (37)) and the mass density of 𝜌 = 2800 kg/m3 and the 
thickness of the disk is uniform. The Young modulus and density of the disc vary in the radial 
direction in accordance with Eq. (37). The rotating speed of the disk is 15000 rpm and the 
boundary conditions of the disk is Free-Free (F-F). The number of points in the grid in FD method 
for all the analyses is 100 points. The results of the displacement and stresses do not change 
considerably when the number of grid points increases to more than this number of points and 
convergence of the results are guaranteed. The radial stress and radial displacement of the disk are 
obtained using FD method and the results are compared with the results in [12]. Figs. 3 shows the 
comparison of the results for the radial stress and radial displacement. Fig. 3(a) shows the variation 
of radial stress (𝜎 ) in the radial direction with (F-F) boundary conditions for 𝑛 = 0, 𝑛 = 0.5,  𝑛 = 1. As it is observed from Fig. 3, there is a good agreement between the present results and 
those of [12], in which the solution is obtained by numerical and analytical methods. 

 
Fig. 3. Comparison of radial a) stress b) displacement variation 

5.2. Case (b) validation 

In this case, the dimensionless radial stress and displacement of the rotating FG polar 
orthotropic disc with uniform thickness and with F-F boundary conditions are obtained using FD 
method and the results are compared with the results reported in [18]. The material properties 
considered in this case are presented in Table 2 [18]. 
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Table 2. Material properties of the disk for comparison case (b) 
  An injection molded Nylon 

[37] (outer surface) 
A glass-fiber/ Epoxy prepreg  

[26] (inner surface) 

Elasticity modulus (GPa) 𝐸   12 21.8 𝐸   20 26.95 
Poisson ratio 𝜐   0.35 0.15 

Density (kg/m3)  𝜌  1600 2030 

The dimensionless radial stress and radial displacement are defined as the following in this 
case: 𝜎 = 𝜎𝜌 𝜔 𝑎 , (38)𝑢 = 𝐸 𝑢𝜌 𝜔 𝑎 , (39)

where 𝐸  is the tangential elasticity modulus in the outer surface, 𝜎  is dimensionless radial stress 
and 𝑢  is dimensionless radial displacement. The dimensionless radial stress and displacement are 
obtained using FD method in this paper and the results are compared with the numerical and exact 
results [18] in Table 3. As one may observe, there is a very good agreement between the results 
which shows the accuracy of the present method. 

Table 3. Comparison of the stress and displacement in comparison case (b)  𝑛 𝑟 𝑎⁄  
0.4 0.5 0.6 0.7 0.8 0.9 1.0 

–1 

𝜎  
Exact [18] 0 0.1780 0.2100 0.1852 0.1346 0.0709 0 

Numerical [18] 0 0.1781 0.2099 0.1856 0.1349 0.0711 0 
Present 0 0.1778 0.2100 0.1852 0.1346 0.0709 0 𝑢  

Exact [18] 0.2678 0.2553 0.2561 0.2622 0.2685 0.2708 0.2661 
Numerical [18] 0.2678 0.2554 0.2563 0.2625 0.2686 0.2709 0.2661 

Present 0.2679 0.2553 0.2562 0.2623 0.2685 0.2709 0.2661 

0 

𝜎  
Exact [18] 0 0.1066 0.1409 0.1369 0.1084 0.0617 0 

Numerical [18] 0 0.1067 0.1409 0.1367 0.1086 0.0618 0 
Present 0 0.1064 0.1408 0.1369 0.1084 0.0616 0 𝑢  

Exact [18] 0.3295 0.3141 0.3138 0.3186 0.3228 0.3228 0.3160 
Numerical [18] 0.3295 0.3142 0.3141 0.3189 0.3229 0.3229 0.3160 

Present 0.3297 0.3142 0.3139 0.3187 0.3229 0.3229 0.3160 

1 

𝜎  
Exact [18] 0 0.0619 0.0916 0.0984 0.0852 0.0525 0 

Numerical [18] 0 0.0620 0.0917 0.0984 0.0853 0.0526 0 
Present 0 0.0618 0.0916 0.0984 0.0852 0.0525 0 𝑢  

Exact [18] 0.4015 0.3824 0.3802 0.3827 0.3840 0.3811 0.3718 
Numerical [18] 0.4015 0.3826 0.3805 0.3828 0.3841 0.3812 0.3718 

Present 0.4016 0.3825 0.3803 0.3827 0.3841 0.3812 0.3719 

2 

𝜎  
Exact [18] 0 0.0347 0.0577 0.0687 0.0654 0.0440 0 

Numerical [18] 0 0.0348 0.0578 0.0687 0.0654 0.0441 0 
Present 0 0.0347 0.0577 0.0687 0.0653 0.0440 0 𝑢  

Exact [18] 0.4794 0.4562 0.4512 0.4504 0.4483 0.4421 0.4303 
Numerical [18] 0.4794 0.4561 0.4514 0.4506 0.4484 0.4422 0.4302 

Present 0.4795 0.4563 0.4513 0.4505 0.4483 0.4421 0.4303 

6. Numerical results and discussion 

For the numerical analysis, Eqs. (29)-(31) are used for mechanical properties variation along 
the radius of the disk and Eqs. (32)-(33) are used for orthotropic properties of the disk. Eq. (34) is 
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also used for considering the thickness variation of the disk. Fig. 4 shows temperature distributions 
along the radius with different thermal parameters 𝑚  based on Eq. (36). It should be mentioned 
that the inner surface is pure ceramic and outer surface is pure metal.  

 
Fig. 4. Temperature variation along the radius  

The dimensionless radial stress and radial displacement are defined: 𝜎 = 𝜎𝜌 𝜔 𝑎 , (40)𝑢 = 𝐸 𝑢𝜌 𝜔 𝑎 , (41)

where 𝜌  is density of the metal (outer surface) and 𝐸  is tangential elasticity modulus of the 
metal. The dimensionless radial stress and displacement are obtained using the FD method and 
the effects of different thermo-mechanical properties on the stress and displacement are evaluated. 

The rotating speed of the disk is 1000 rad/s and the inner/outer radius ratio 𝑏 𝑎⁄  is 0.4 in all 
the numerical analyses. Fig. 5 shows the variation of dimensionless radial stress and radial 
displacement (Eq. (40) and (41)) for the rotating polar orthotropic FG disk with variable thickness 
for different values of temperature variation between the inner and outer surfaces (Δ𝑇 in Eq. (36)). 
The boundary conditions are C-F, the thickness variation and the temperature variation in the 
radial direction are linear (𝑚 = 1, 𝑚 = 1). Fig 6 shows the same figure but for F-F boundary 
conditions. The temperature of ceramic in the inner surface is 𝑇 =  300 K and the metal 
temperature depends on the value of temperature change between the inner and outer surfaces. As 
shown in Figs. 5-6, increasing the temperature variation, the radial stress and displacement start 
to grow. Also, it can be observed from Fig. 6 that at higher temperature variations in F-F disk, the 
location of maximum radial stress in the disk shifts toward the inner surface. It is concluded that 
the variation of the temperature along the radius can cause an increase in the radial stress and 
displacement in both the C-F and F-F boundary conditions. 

Fig. 7 shows the radial stress and displacement of the rotating orthotropic FG disk for different 
temperature variations along the radius with C-F and F-F boundary conditions. The temperature 
difference between the inner and outer surfaces are 200 K where the different temperature 
variations in radial direction are plotted in Fig. 4. As shown in Fig. 7, increasing the temperature 
variation power index (𝑚 ) in rotating C-F disk, the radial stress and displacement decrease. The 
stress in the inner surface and the displacement in the outer surface for larger values of 𝑚  are 
lower. It is also observed in Fig. 7 that the radial stress increases when the temperature is varied 
along the radius (𝑚 ≠ 0) compared to when the temperature is held constant in the radial 
direction (𝑚 = 0). In contrary, the radial displacement in F-F rotating disk decrease when the 
temperature is varied in the radial direction and by increasing 𝑚 , the radial displacement  
decrease.  
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Fig. 5. Dimensionless radial a) stress b) displacement for different values  

of the temperature variation C-F (𝛼 = 0.5, 𝛽 = 0.5, 𝑛 =1, 𝑚 = 1, 𝑚 = 1) 

 
Fig. 6. Dimensionless radial a) stress b) displacement for different values  
of temperature variation F-F (𝑚 = 1, 𝑚 = 1, 𝛼 = 0.5, 𝛽 = 0.5, 𝑛 = 1) 
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Fig. 7. Dimensionless radial: a) stress (C-F), b) displacement (C-F), c) stress (F-F) d) displacement (F-F)  

for different temperature variation profiles (different 𝑚 ’s according to Fig. 5)  
in radial direction C-F (𝑚 = 1, Δ𝑇 = 200 K, 𝛼 = 0.5, 𝛽 = 1, 𝑛 = 1) 

 

 
Fig. 9. Dimensionless radial a) stress b) displacement for different 𝛼 F-F  

(𝑚 = 1, Δ𝑇 = 200 K, 𝛽 = 0.5, 𝑚 = 1, 𝑛 = 1) 

The effect of FG index on the radial stress and displacement of the rotating FG orthotropic 
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uniform disk under thermal loading with F-F boundary conditions can be observed in Fig. 8. It is 
shown that the radial stress and radial displacement in the rotating FG disk is decreased by the 
increase in FG index. It is also observed that the rate of variation of the radial displacement from 
the inner surface to the outer surface decrease significantly by increasing the FG index. 

In order to investigate the effect of orthotropy on the stress and displacement of the rotating 
FG disk, the influence of parameters 𝛼  and 𝛽  on the results is evaluated. The material with  𝛼 = 𝛽 = 1 denotes an isotropic material. Fig. 9 shows the radial stress and displacement of the 
rotating FG orthotropic uniform disk under thermal loading with F-F boundary conditions for 
different values of orthotropic parameter 𝛼. The parameter 𝛽 is equal to 0.5, and the temperature 
variation in the disk is linear (𝑚 = 1). As observed from Fig. 9, for lower values of parameter 𝛼, 
the radial stress and displacement increase significantly. It should be mentioned that the same 
trend is observed for the disk with C-F boundary conditions, but the relevant results are not 
presented here for the sake of briefness. Fig. 10 shows the results similar to the results of Fig. 9, 
but for different values of orthotropic parameter 𝛽. The same trend is observed for the variation 
of 𝛽. It should be again mentioned that the same trend is observed for the C-F boundary condition 
but its results are not presented for the brevity. 

 
Fig. 10. Dimensionless radial a) stress b) displacement for different 𝛽 F-F 

(𝑚 = 1, Δ𝑇 = 200 K, 𝛼 = 0.5, 𝑚 =1, 𝑛 = 1) 

The effects of rotating speed on the stress in the rotating disk is also presented in Fig. 11. In 
Fig. 11, the variation of radial stress of a rotating FG disk for different values of rotating speed is 
shown. As it is expected, by increasing the rotating speed of the rotating FG disk, the stress in the 
disk is increased. It should be mentioned that in this figure, the material of the disk is considered 
isotropic but the result for orthotropic material was also obtained and the same trend was 
concluded. 
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Fig. 11. The radial stress versus radius with different rotating speeds  

(𝑚 = –1, Δ𝑇 = 0, 𝛼 = 𝛽 = 1, 𝑚 = 1, 𝑛 = 1) 

7. Conclusions 

In this paper, the numerical finite difference method was employed to analyze the thermo-
elastic stress and deformation of rotating FG polar orthotropic disk with variable thickness. The 
material of the disk was considered temperature dependent and different temperature variations 
along the radius of the disk were considered for the analyses. Radial stress and radial displacement 
of the rotating disk with C-F and F-F boundary conditions were calculated using the FD method. 
The effects of various mechanical properties on the radial stress and radial deflection were 
investigated. The following results are the summary of the most important results of the paper. 

1) It was concluded that the variation of the temperature along the radius can cause the increase 
in radial stress and displacement in rotating FG orthotropic disk. 

2) The radial stress increases when the temperature is varied along the radius (𝑚 ≠ 0) 
compared to when the temperature is kept constant in the radial direction (𝑚 = 0). 

3) The rate of variation of the radial displacement from the inner surface to the outer surface 
decrease significantly through increasing the FG index. 

4) The orthotropy of the material of the disk has a significant effect on the displacement and 
stress distribution of the disk. It is concluded that the desired stress and displacement in the 
rotating FG disk can be obtained with manufacturing orthotropic disks. 
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