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Abstract

Stein’s method introduced by Charles Stein (1972) is a powerful tool in distributional

approximation, especially in classes of random variables that are stochastically de-

pendent. In recent years, researchers have concentrated more on adaptive designs.

For the response adaptive randomization procedures, the patient’s allocation depends

on the aggregated information that is acquired from the responses of the previously

treated patients. This design uses the information of patients’ responses to mod-

ify treatment allocation in order to assign more patients to a successful treatment,

thus introduce dependent structure in the data. In this thesis we investigate the

use of Stein’s method in statistical inference for response adaptive design. We have

acquired asymptotic normality of the maximum likelihood estimators for treatment

effects by deriving an upper bound for these estimators using Stein’s method. We

examine the performance of three types of response adaptive designs under various

success probabilities through simulation studies. Since adaptive designs generate a

dependent sequence of random variables that are not exchangeable, we present the

advantage of using bootstrap re-sampling in adaptive designs and the efficiency of

this method. We compare bootstrap confidence intervals with the asymptotic con-

fidence interval under different success rates of three allocation methods. Also, we

discuss the normal approximation based on the Wald’s statistic in the numerical

studies.
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Lay summary

Stein’s method introduced by Charles Stein (1972) is a powerful tool in proving well-

known Central Limit Theorems for complex dependent problems and distributional

approximation. The method later expanded to other targeted distributions, but was

first used on normal approximation.

In recent years, researchers have concentrated more on adaptive designs. For the

response adaptive randomization procedures, the patient’s allocation depends on

the aggregated information that is acquired from the responses of the previously

treated patients. This design uses the information of patients’ responses to modify

treatment allocation in order to assign more patients to a successful treatment, thus

introduce dependent structure in the data. In this thesis we investigate the use of

Stein’s method in statistical inference for response adaptive design. We have acquired

asymptotic normality of the maximum likelihood estimators for treatment effects by

deriving an upper bound for these estimators using Stein’s method.

There are various allocation procedures that can be used in adaptive design here,

so we investigate the performance for three allocations of response adaptive designs

under different success rates in our numerical studies for two treatments. Since

adaptive design generates a dependent sequence of random variables that are not

exchangeable, we present the advantage of using bootstrap re-sampling in adaptive

design and the efficiency of this method. We compare bootstrap versus asymptotic

design under different success rates for the three methods of allocations.
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Chapter 1

Introduction

In recent years, several authors and researchers investigated Response Adaptive De-

signs (RAD) for clinical trials because of the advantages over the other methods of

randomization. Such designs create a dependency structure on the collected data for

RAD because allocation operates on the previously treated assignments and their

success in responses. Designs of this type assign more patients to potentially better

treatment. This thesis seeks to find approximation for response adaptive design us-

ing Stein’s method. To understand the context motivating this objective, we start by

describing what a clinical trial is and why we need randomization in the procedure.

Subsequently, we describe adaptive design and response adaptive-design. Also, we

introduce the likelihood function to estimate the parameters. Moreover, we introduce

the aim of this study, which is using Stein’s method for the dependent data from

RAD. This distributional approximation method is applied to handle the difficulty

caused by the dependence structure and complexity of the adaptive design.



1.1. RESPONSE ADAPTIVE DESIGNS FOR RANDOMIZED CLINICAL
TRIAL 2

1.1 Response Adaptive Designs For Randomized

Clinical Trial

The advantages of using response adaptive designs in clinical trials are introduced

in this section. Clinical trials are the prospective comparison of two or more treat-

ments, one or more of which is a new innovation being tested, while the others are

controls based on Rosenberger and Lanchin (2002) [13]. There exist several stages

and phases for the approval of clinical trials. From Rosenberger and Lanchin (2002)

[13], we learn that in a Phase III clinical trial, the treatment tests on many patients,

for treatment approval. A randomized clinical trial is a clinical trial in which pa-

tients are randomly allocated to groups with different treatments. There are two

critical properties for randomization. The first property is the comparability among

the study groups. This comparability can only be used to mediate studies in which

the covariates are observable and adjustable, however, there are no guarantees or

assurances regarding other covariates. Also, randomization develops a high prob-

ability of comparability for unknown covariates. The second property is that the

process causes a probabilistic basis for inference if considering all possible results.

Overall, the purpose of randomization is to achieve comparability without guarantee

and to prevent bias in allocating subjects to a treatment group or avoid predictabil-

ity. Therefore, it is necessary to use randomization to prevent bias and covariate

imbalances.

Randomization in RAD applies on the best allocation procedures based on the

previously treated assignments and their success in responses. Hu and Rosenberger

(2006)[8] studied asymptotic properties of allocation proportions and introduced

five types of randomization for adaptive design processes: complete randomiza-

tion, restricted randomization, response-adaptive randomization, covariate-adaptive

randomization and CARA or covariate-adjusted response-adaptive randomization.

There are two primary objectives, one is maximizing the power, and the other is min-

imizing the number of failure of treatments allocations. From Hu and Rosenberger
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(2006) [8] “ the response adaptive randomization procedures have three defining char-

acteristics: (1) they are myopic (2) They are fully randomized (3) They require a

fixed sample”. Although the dependency structure exists in adaptive design and the

traditional methods are used for independent data more frequently, it is not possible

to apply them without modification. Moreover, response adaptive design was devel-

oped to assign more patients to a better treatment. Also, they should be viewed in

context of sequential analysis; such randomization causes the dependent samples.

1.2 The Estimation for Response Adaptive De-

signs

The maximum likelihood estimator properties following a RAD presented and dis-

cussed in this section. Generally, if the allocation proportion converges to a constant

when n → ∞, the maximum likelihood estimator has asymptotic properties similar

to those in i.i.d sequences. Hu and Rosenberger(2006) [8] introduced in a general the-

orem on the asymptotic properties of ML estimators. This theorem was first proved

by Rosenberger, Flrounoy, and Durham (1997)[14] for K treatments, but their con-

ditions were more restrictive and can not be applied to the different types of response

adaptive randomization. However, the theory in Hu and Rosenberger(2006) [8] only

requires that the allocation proportion converges to a constant. The Taylor expan-

sion is one of the standard ways of proving the ML estimators’ asymptotic normality.

Yi and Wang(2007)[21] obtained the likelihood function for K > 2 using the transi-

tion probability of the stochastic process and applied the strong law of large numbers

for the Martingale. They used the Taylor expansion to show how under some the

regularity conditions, the ML estimators are strongly consistent and asymptotically

normally distributed. Melfi et al. (2001)[12] worked on the same properties, but their

allocation limitation was only limited by the target allocation proportion. However,

the allocation rule provided by Yi and Wang (2007) [21] considered a wide class of

adaptive designs such as randomized play the winner (RPW) and Melfi’s optimal
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design, the generalized Polya’s urn (GPU) model and finally doubly adaptive biased

coin design in Rosenberger et al. (2001) [16].

Suppose that patients arrive sequentially to the trials and receive only treatment

A or B. The patients responses X1l, X2l,.... from treatment l are independent and

identically distributed with probability distribution function fl(X,µl), where l =

A,B and µl ∈ Θ,and Θ is an open subset of IRk, for a positive integer k. Denote

µ = (µA, µB). Let Xj = (XjA1jA, XjB(1 − 1jA)) be the corresponding response for

the patient j. Now, 1jA = 1 means that the jth patient receives treatment A, and

i.e.

1jA =

{
1 if treatment A

0 if treatment B
(1.1)

For each observed sequence {(11A, X1), ..., (1(j−1)A, X(j−1))} under π = {πj, j =

1, 2, ..}, the allocation probability πj for jth patient in a response adaptive design

depends on the previously treated patients responses X1, X2, ..., Xj−1, where πj =

P (1jA|Fj−1) for j ≥ 2; Fj−1 is the σ-algebra generated by the observed sequence;

and π1 = P (11A = 1) is 1/2 for the first two patients. From Hu and Rosenberger

(2006) [8] and Yi and Wang (2007) [21], the likelihood function can be formed by,

L(µ) =
n∏
j=1

π
1jA
j (1− πj)(1−1jA)

n∏
j=1

fA(XjA, µA)1jAfB(XjB, µB)(1−1jA), (1.2)

The number of patients who are allocated to treatment A or B is NA(n) and

NB(n) = n−NA(n), respectively, and their randomization depends on the adaption

process of treatment allocation. Assume that NA(n)
n
→ ρ(µ)(a.s) and ρ(µ) ∈ (0, 1).

Let l(µ) = lnL(µ) and µ̂l(n) be the solution of ∂l
∂µl

= 0, when n patients are allocated

by the adaptive design. Assume the regular condition for fl(X,µl), l = A,B and the

eighth moments of responses from treatment A and B and the second moment of

the likelihood function to exist and be finite. Rosenberger and Lachin (2002)[13],

Reseberger and Hu (2006)[8] and, Yi and Wang (2007)[21] studied consistency and
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asymptotic normality of the ML estimators. Yi and Li (2018) [20] obtained the rate

of convergence error probability of the confidence interval, and they proved that,

when the density function is normal, the convergence error and type I error rate is

at the order of n−1.

1.3 Stein’s Method

Stein’s method for normal approximation first appeared in Charles Stein (1972) [18].

In that paper, Stein came up with a new idea to prove the normal approximation

to the distribution of a sum of dependent random variables by bounding distance

between two random variables, W and Z, where Z follows a standard normal distri-

bution, even when the condition of independence does not hold. Subsequently, Chen

(1975) [1] established this characterization for Poisson distribution. Stein (1986)

[17] developed these approaches for exchangeable pairs using binomial and Poisson

distribution and other probability distributions additional to normal distribution.

Furthermore, these characterizations and ideas were later discussed in Chen, Gold-

stein, and Shao (2005) [3] and in their book (2010) [2].

Recently, Ley, Reinert, and Swan (2014)[10] worked on the canonical definition

of the Stein operator and Stein class of distributions, and they presented the com-

parison of several pairs of distribution. Ley, Reinert, and Swan (2017) [11] worked

on the same issue but with a new generalization on Stein’s method for univari-

ate distributions. They introduced a canonical definition of Stein’s operator of a

probability distribution based in a linear differential operator, and applied Stein’s

identity to both discrete and continuous distributions. They provided an application

to compare several pairs of distributions: normal vs. normal, sum of independent

Rademacher vs. normal, normal vs Student, and maximum of random variable vs.

exponential, Frechet and Gumbel for comparison of the mentioned univariate distri-

bution.
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Stein’s method can be formed in multivariate approximation using the chi-square

distribution characteristics. Gaunt and Reinert (2016) [6] obtained the upper bounds

for the rate of convergence of some asymptotical chi-square distributed statistics at

the order n−1 for the smooth test function. They estimated the bound to Friedman’s

statistic for comparison of statistical power. Gaunt, Pickett, and Reinert (2017)

[5] expanded their research for chi-square approximation by Stein’s method with

application to Pearson’s statistics. They derived the bound from the solution of the

gamma Stein equation. Furthermore, they worked on an approximation to estimate

the distance between Pearson’s statistics and limiting chi-square distribution for the

smooth test function.

1.4 My Thesis

The main objective of this thesis is to find the approximation for the RAD inference

using Stein’s method. For the response-adaptive randomization procedures, the pa-

tients’ allocation depends on the aggregated information that is acquired from the

responses of the previously treated patients. This design uses the information of pa-

tients’ responses to modify treatment allocation in order to assign more patients to a

successful treatment. Due to the dependent structure, such designs are more complex

and challenging. We describe Stein’s method and some of the practical applications

with this methodology, which is a useful tool in distributional approximation. In

Chapter 2 we introduce the K function method in Stein’s equation for independent

random variables. In Chapter 3, using Stein’s method, we show the asymptotic nor-

mality of the maximum likelihood estimators for the response adaptive design. In

Chapter 4, we conduct a simulation study.



Chapter 2

Detailed Illustration of Stein’s

Method

The goal of this chapter is to introduce Stein’s method. Here we begin with the

derivation of Stein’s identity and obtain the solutions to Stein’s equation. At the

end of this chapter, we discuss a typical application of this method using the K

function approach.

2.1 Fundamental of Stein’s Method

One of the most important theorems for large sample sizes is the Central Limit The-

orem (CLT). A classic form of the CLT states that a normal approximation applies

to the distribution of quantities that can be modeled as a sum of the many indepen-

dent contributions. However, in response adaptive design, we have dependency in

the collected data. Therefore, we need a method for dependent data. Stein’s method

helps us to obtain a limiting distribution for such data.
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2.1.1 Stein’s Method

The characterization of the normal distribution presented for the first time by Charles

Stein [18] was based on the fact that, Z ∼ N(0, σ2) if and only if,

E[Zf(Z)] = σ2E[f
′
(Z)] (2.1)

for all absolutely continuous functions f : IR → IR for which the expectation exists

with E|f ′(Z)| ≤ ∞.

To show a random variable W has a distribution close to a target distribution,

say that of random variable Z, we can compare the value of expectation on some

class function of W and Z. From Chen, Goldstein and Shao (2010) [2] the goal is

to estimate closeness of the distribution of W and Z given by the evaluation of the

difference between Eh(W ) and Eh(Z) over some collection of measurable function

of h. If the distribution of W is close to the distribution Z, then the difference

Eh(W )− Eh(Z) should be small for a collection of measurable function h.

As a special case when σ = 1 in (2.1), Z ∼ N(0, 1) if and only if

E[f
′
(Z)− Zf(Z)] = 0 (2.2)

for all absolutely continuous function f : IR → IR for which the expectation exist

E|f ′(Z)| ≤ ∞.

If the distribution of W is close to the distribution of Z, then evaluating the

left-hand side of (2.2), when Z is replaced by W , deduces something small. Hence,

putting these two differences together using the Stein’s characterization (2.2) we have

Stein’s equation given by,

f
′
(w)− wf(w) = h(w)− Eh(Z) (2.3)

where Z has a standard normal distribution.



2.1. FUNDAMENTAL OF STEIN’S METHOD 9

The results (2.1) and (2.3) were introduced and (2.2) proved in Lemma 2.1 from

Chen, Goldstein and Shao (2010) [2].

2.1.2 Solution to Stein’s Equation

Equation (2.3) is a general form of Stein’s equation. From Lemma 2.1 in Chen,

Goldstein and Shao (2010) [2], for fixed z ∈ R and Φ(x) = P (Z ≤ z), the unique

bounded solution f(w) := fz(w) of equation

f
′
(w)− wf(w) = 1{w≤z} − Φ(z) (2.4)

is given by

fz(w) =

{ √
2πe

w2

2 Φ(w)[1− Φ(z)] if w ≤ z
√

2πe
w2

2 Φ(z)[1− Φ(w)] if w > z.
(2.5)

The solution (2.5) to the equation (2.4) is a special case of Stein’s characterization

for h(w) = 1{w≤z}. By the same method of integrating, a general solution for (2.3)

is given by,

fh(w) = e
w2

2

∫ w

−∞
(h(x)−Nh)e

−x2
2 dx

= −e
w2

2

∫ +∞

w

(h(x)−Nh)e
−x2
2 dx.

(2.6)

where Nh = Eh(Z).

(2.5) and (2.6) are the special case and general solutions to the Stein’s equations

(2.4) and (2.3), respectively (Chen, Goldstein and Shao (2010) [2]).
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2.1.3 Boundary Conditions For the Solution of Stein’s Equa-

tion

We describe some of the results on boundaries for the solution (2.5) and (2.6) to the

Stein’s equation (2.4) and (2.3), respectively, in this section.

The following results are from Lemma 2.3 in Chen, Goldstein, and Shao (2010)

[2]. First, wfz(w) is an increasing function of w.

Moreover, for all real w , u and v,

|wfz(w)| ≤ 1, |wfz(w)− ufz(u)| ≤ 1 (2.7)

|f ′z(w)| ≤ 1, |f ′zw)− f ′z(u)| ≤ 1 (2.8)

0 ≤ fz(w) ≤ min

(√
2π

4
,

1

|z|

)
(2.9)

|(w + u)fz(w + u)− (w + u)fz(w + v)| ≤ min

(
|w|+

√
2π

4

)
|u|+ |v| (2.10)

In addition, from Lemma 2.4 in Chen, Goldstein, and Shao (2010) [2] for any real

valued function h on IR, if h is bounded, then

||fh|| ≤
√
π

2
||h(.)−Nh|| (2.11)

||fh′|| ≤ 2||h(.)−Nh|| (2.12)

||fh|| ≤ ||h
′|| (2.13)

||f ′h|| ≤
√

2

π
||h′|| (2.14)
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||f ′′ || ≤ 2||h′ || (2.15)

where,

||h|| = supx∈IR|h(x)|. (2.16)

For Lemma 2.4 in Chen, Goldstein, and Shao (2010) [2], the properties (2.13),

(2.14) and (2.15) holds if h is absolutely continuous.

2.2 Illustration of The Use of Stein’s Method

There are four different approaches presented for handling Stein’s equation in Chen,

Goldstein and Shao (2010)[2]. The first approach, which plays a key role in our study,

is the K function method when W is a sum of independent random variables. The

other well-known method called the exchangeable pair approach of Stein’s, while

W has a particular dependency structure. Additionally, they have discussed zero

bias distribution (the associated transformation for arbitrary mean zero with finite

variance), which is called the zero bias method. Finally, there is the size bias transfor-

mation. This method and zero bias transformations are close to each other, but size

bias is defined on the class of non-negative random variables x with finite non-zero

means.

As one of the ordinary applications of Stein’s method from Chen, Goldstein and

Shao (2010)[2] in the Section 2.3.1, the K function approach is to handle Stein’s

equation (2.3) for the sum of the independent random variables.

Let W be the sum of the independent random variables ξ1, ..., ξn, where E(ξi) = 0,

V ar(ξi) = 1
n
, and E|ξi|3 <∞ for i = 1, ..., n.
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Define,

Ki(t) = Eξi{1{0≤t≤ξi} − 1{ξi≤t<0}} (2.17)

From Chen, Goldstein and Shao (2010)[2], in the Section 2.3.1 (page 19), since

Ki(t) ≥ 0 for all real t it can be shown that,∫ +∞

−∞
Ki(t)dt = Eξ2i and

∫ +∞

−∞
|t|Ki(t)dt =

1

2
E|ξi|3. (2.18)

Let h be a measurable function with E|h(Z)| < ∞, and f = fh be the corre-

sponding solution of the Stein’s equation (2.3). The goal is to estimate the left-hand

side of the following equation,

E[f
′
(W )−Wf(W )] = Eh(W )−Nh. (2.19)

This means if we consider the right-hand side of (2.19) for some large class of function

h, the expectations differences should be small if the distribution of W approximates

to that of Z. Since the right-hand side of (2.19) contains two random variables and

working with this side is not easy to proceed, working with the left-hand side of the

equation is recommended.

To use the K function (2.17) in Stein’s method, first of all, estimate E[Wf(W )].

Considering the definition of W we have,

E[Wf(W )] =
n∑
i=1

E
[ ∫ +∞

−∞
f
′
(W (i) + t) ξi(1{0≤t≤ξi} − 1{ξi≤t<0})dt

]
=

n∑
i=1

∫ +∞

−∞
E
[
f
′
(W (i) + t)

]
Ki(t)dt.

(2.20)

Since,
n∑
i=1

∫ +∞

−∞
Ki(t)dt =

n∑
i=1

Eξ2i = 1 (2.21)
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it follows that

Ef
′
(W ) =

n∑
i=1

∫ +∞

−∞
E
[
f
′
(W )

]
Ki(t)dt. (2.22)

Therefore,

E
[
f
′
(W )−Wf(W )

]
=

n∑
i=1

∫ +∞

−∞
E
[
f
′
(W )− f ′(W (i) + t)

]
Ki(t)dt. (2.23)

Equations (2.20), (2.23) play a vital role in finding the corresponding upper bound

to prove normal approximation. Also, (2.20), (2.23) hold for all bounded absolutely

continuous function f . The normal approximation can be obtained from the bounds

on the solution f in Lemma 2.4 in Chen, Goldstein, and Shao (2010) [2], and using

mean value theorem, it can be proven

lim
n→∞

E|f ′(W )−Wf(W )| → 0. (2.24)

As well as the right-hand side of (2.19),

lim
n→∞

E|h(W )− h(Z)| → 0. (2.25)

This leads us to deduce that W
d−→ Z by the Kolmogrov distance properties,

||L(X)− L(Y )||H = sup
h∈H
|Eh(X)− h(Y )|. (2.26)

where,

H = {1(x≤z), z ∈ IR}.



Chapter 3

Normal Approximation Using

Stein’s Method In Response

Adaptive Designs

In this chapter, we apply Stein’s method using the K function approach in the

inference of RAD and discuss the asymptotic normality of the maximum likelihood

estimators. In Section 3.1, we introduce the notation and in Sections 3.2 and 3.3 we

thoroughly discuss the application of the K function approach in Stein’s method for

the RAD inference.

3.1 The Maximum Likelihood Estimator for RAD

In this section, we introduce the MLE for RAD. We assume similar assumptions as

those in Yi and Li(2018) [20] and Rosenberger et al.(2001) [16]:

1. The parameter space Θ is an open subset of IRk and k is a positive integer for

treatment A and treatment B.

2. The distribution of fl(X,µl), l = A,B belongs to exponential family.
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3. For limiting allocation ρ(µ) ∈ (0, 1), NA
n
→ρ(µ) almost surely (a.s), where 0 <

ρ(µ) < 1.

4. The moments of responses from treatment A and B at the order of one to three

and the second moment of the likelihood function exist and are finite.

For the response adaptive randomization procedures, the patients’ allocation de-

pends on the aggregated information that is acquired from the responses of the

previously treated patients. This design uses the information of patients’ responses

to modify treatment allocation, in order to assign more patients to a successful treat-

ment. Such design creates dependency in the collected data for RAD.

From Hu and Rosenberger (2006) [8], Rosenberger et al.(1997) [14], Yi and Wang

(2007) [21] the likelihood estimators for the mean responses for treatment A and B

are given by,

µ̂A =

∑n
j=1 1jAXjA∑n
j=1 1jA

(3.1)

µ̂B =

∑n
j=1(1− 1jA)XjB∑n
j=1(1− 1jA)

. (3.2)

Define,

WA =
n∑
j=1

1jAξjA, (3.3)

where ξjA =
(XjA−µA)√

nρσA
, j = 1, ..., n. It is clear that EξjA = 0 and V ar(ξjA) = Eξ2jA =

1
nρ

.

Similarly, define

WB =
n∑
j=1

(1− 1jA)ξjB, (3.4)

where ξjB =
(XjB−µB)√
n(1−ρ)σB

, j = 1, ..., n. Therefore, EξjB = 0 and V ar(ξjB) = Eξ2jB =
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1
n(1−ρ) .

In the next section, we apply the Stein’s method to obtain normal approximation

for WA and WB.

3.2 Normal Approximation of MLE for RAD

In this section, we use Stein’s method to prove the asymptotic normality of MLE for

RAD. We establish the asymptotic properties for WA and WB first.

3.2.1 Setup For the K Function Method

We define the K functions as follows:

KiA(t) = E[ξiA{1{0≤t≤ξiA} − 1{ξiA≤t<0}}]. (3.5)

Following the same steps as those in Chen, Goldstein and Shao (2010)[2] (page 19),

it can be proven that, KiA(t) ≥ 0 for all real t and∫ +∞

−∞
KiA(t)dt = Eξ2iA and

∫ +∞

−∞
|t|KiA(t)dt =

1

2
E|ξiA|3. (3.6)

Define the corresponding K function for WB as

KiB(t) = E[ξiB{1{0≤t≤ξiB} − 1{ξiB≤t<0}}]. (3.7)

We have that KiB(t) ≥ 0 for all real t as well as∫ +∞

−∞
KiB(t)dt = Eξ2iB and

∫ +∞

−∞
|t|KiB(t)dt =

1

2
E|ξiB|3. (3.8)
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3.2.2 Normal Approximation Using Stein’s Method for WA

Here, we prove asymptotic normality of the maximum likelihood estimators using

Stein’s method. Throughout the process, we assume the listed regularity conditions

are satisfied; First, we obtain normal approximation for WA using Stein’s method.

Lemma 1. WA has mean zero and variance σ2
WA

= V ar(WA) = E[NA
nρ

].

Similarly,

Lemma 2. WB has mean zero and variance σ2
WB

= V ar(WB) = E
[

NB
n(1−ρ)

]
.

The details of the proofs of the Lemma 1 and Lemma 2 can be found in the

Appendix A.

From the Lemma 1 we can state the following theorem.

Theorem 3. Let h be a measurable function with ||h′ || < ∞, and NA
n
→ ρ a.s. as

n→∞. If E|ξiA|3 <∞ for i = 1, ..., n, then

(1) E|h(WA)− h(Z)| ≤
√

2

π
||h′ ||E|1− NA

nρ
|+ 3||h′||E

[ n∑
i=1

1iAE|ξiA|3
]
;

(2) WA
d−→ Z, as n→∞, where Z has a standard normal distribution.

The normal approximation in Theorem 3 can be obtained by verifying the fol-

lowing steps. First, we use the K function approach in Stein’s equation by defining

the leave-one-out in the summation of the random variables. Second, we estimate

the left-hand side of (2.19). Then, we derive an upper bound for the estimation we

get in left-hand side of (2.19), and the result is valid for the right-hand side of the

equation. Finally, we show that the upper bound converge to zero as n → ∞ and

WA
d−→ Z. The details of the proof of the Theorem 3 can be found in the Appendix

A.
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Since,

nρ WA

NA

=
nρ
∑n

j=1 1jA(XjA − µA)

NA
√
nρσA

=

√
n
∑n

j=1 1jA(XjA − µA)

NA

√
ρ−1σA

=

√
n(µ̂A − µA)√
ρ−1σA

,

(3.9)

and NA
n
→ ρ a.s as n→∞, we have the following using the Slutsky’s theorem.

Theorem 4. Under regularity conditions 1-3,
√
n(µ̂A − µA)→ N(0, ρ−1σ2

A).

Similarly, we have the following results for WB and µ̂B.

Corollary 5. Let h be a measurable function with ||h′ || <∞, and NB
n
→ (1− ρ) a.s.

as n→∞. If E|ξiB|3 <∞ for i = 1, ..., n, then

(1) E|h(WB)− h(Z)| ≤
√

2

π
||h′ ||E|1− NB

n(1− ρ)
|+ 3||h′||E

[ n∑
i=1

(1− 1iA)E|ξiB|3
]
;

(2) WB
d−→ Z as n→∞, where Z has a standard normal distribution.

Corollary 6. If NB
n
→ (1 − ρ) a.s. as n → ∞ then,

√
n(µ̂B − µB) → N(0, (1 −

ρ)−1σ2
B).

3.3 Normal Approximation Using the Stein’s method

for (µ̂A − µ̂B)

In the previous section, we prove the asymptotic normality of the MLE for RAD,

using the K function approach in Stein’s method. Here we discuss the same process

for WA −WB and obtain the asymptotic properties for µ̂A − µ̂B.
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Define,

Wrad = WA −WB

=
n∑
j=1

1jAξjA −
n∑
j=1

(1− 1jA)ξjB

=
n∑
j=1

{
1jAξjA − (1− 1jA)ξjB}.

(3.10)

Lemma 7. Wrad has mean zero and variance σ2
Wrad

= V ar(Wrad) = E[NA
nρ

] +

E[ NB
n(1−ρ) ].

The details of the proof of the Lemma 7 can be found in the Appendix A.

Now to discuss the normal approximation for Wrad using the following theorem,
NB
n
→ (1 − ρ) a.s. as n → ∞. If E|ξiB|3 < ∞ for i = 1, ..., n, then, we have the

following theorem.

Theorem 8. Let h be a measurable function with ||h′ || < ∞, and NA
n
→ ρ a.s. as

n→∞. If E|ξiA|3 <∞ and E|ξiB|3 <∞ for i = 1, ..., n, then

(1) E|h(Wrad)− h(Z)| ≤
√

2

π
||h′||E|1− NA

nρ
|+ 3||h′||E

[ n∑
i=1

1iA E|ξiA|3
]

+

√
2

π
||h′||E|1− NB

n(1− ρ)
|+ 3||h′||E

[ n∑
i=1

(1− 1iA) E|ξiB|3
]
;

(2) Wrad
d−→ Z as n→∞, where Z has a standard normal distribution.

The approximation in Theorem 8 can be proved by verifying the similar steps

as of WA in the previous subsection. Hence, we first use the K function approach

in Stein’s method by defining the leave-one-out in the summation of the random

variables. Second, we estimate equation (2.19) using the left-hand side. Third, we

achieve an upper bound for estimation we get for the left-hand side of (2.19). The

same result is valid for the right-hand side of the equation. Ultimately, we show that
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the upper bound converges to zero as n → ∞ and Wrad
d−→ Z. The details of the

proof of the Theorem 8 can be found in the Appendix A.

Similar to the Theorem 4 we have,

Corollary 9. If NA
n
→ ρ a.s. as n → ∞, then

√
n((µ̂A − µ̂B) − (µA − µB)) →

N(0, ρ−1σ2
A + (1− ρ)−1σ2

B).



Chapter 4

Simulation Study

Throughout this chapter, we conduct an extensive numerical study to examine the

normal approximation of MLE for RAD. To do so, we considered three adaptive allo-

cation procedures with various success rates. Furthermore, to attain a comprehensive

measure of the obtained estimates’ accuracy, we utilized Bootstrap sampling under

different allocation methods and success probabilities. This chapter is structured in

the following order. In Section 4.1, we first explain three different target allocation

techniques, and then we outline the simulation setup for capturing the distribution of
NA
n

. In Section 4.2, we carry out another simulation study to find confidence intervals

for the success rates under each of the introduced allocation procedures using the

Bootstrap re-sampling method. Finally, in Section 4.3, the results and comparisons

of the different techniques are discussed.

4.1 The Adaptive Allocation Methods

In this section, we introduce three adaptive allocation methods for RAD. We begin

by introducing the essentials for these allocations. Then we discuss the normal

approximation for the RAD inference by using numerical methods.
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4.1.1 Randomized Play the Winner Allocation (RPW)

Randomized Play the Winner (RPW) was introduced by Wei and Durham (1978)

[19]. Suppose there is a two-treatment clinical trial, and an urn includes one “A”

ball and one “B” ball for the first patient. Thus, the first patient is equally likely

to receive either of the two treatments A or B. Suppose this patient is assigned

to treatment A through randomization. Then, if the treatment is successful, the

original “A” ball is placed back to and an additional “A” ball is added to the urn.

Otherwise, if the patient fails on treatment A, we put the original “A” ball and a

“B” ball in the urn. Thus, the second patient has a probability of 2/3 or 1/3 of

receiving treatment A, depending on whether treatment A was a success or a failure

for the first patient. We continue this process for the total number of patients in the

trial. Due to this allocation, it is possible that a higher proportion of patients will be

assigned to the more successful treatment. Hence, we can formulate the probability

of assigning patients to treatment A in each step of this allocation process by,

ρ(A) =
Aball

Aball +Bball

. (4.1)

It is straightforward to see that the probability of patients being assigned to treat-

ment B can be obtained by ρ(B) = 1− ρ(A).

4.1.2 RSIHR Allocation

The optimal allocation proposed by Rosenberger, Stallard, Ivanova, Harper, and

Ricks (RSIHR) (2001) [7] aims to minimize the expected number of treatment failures

concerning the conditional variance of the Wald test statistic at a fixed level. The

RSIHR method derives an optimal allocation proportion for binary responses that

is independent of the test’s power. Following this technique, the target allocation

proportion of patients allocated to treatment A is given by,

ρ(A) =

√
pA√

pA +
√
pB
, (4.2)
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where pA is success probability on treatment A, and pB is success probability on

treatment B.

4.1.3 YW Allocation

In [22], Yi and Wang (2009), proposed a RAD with enhanced ethical benefits to

patients. Such design considers both of the average number of patients allocated to

better treatments as well as the power of the statistical test. The target allocation

for YW is given by,

ρ(A) =
qB + ε min{qA, qB}sign(qB − qA)

qA + qB
, (4.3)

where ql = 1− pl, l = A,B.

4.1.4 Doubly Biased Coin Design (DBCD)

From Hu and Zhang (2004)[9], when the allocation proportions are unknown for

treatments A and B, a biased coin design (e.g., general Eisele biased coin design

(1994) [4]) can be used. Here, the allocation function g(x, ρ) plays a dominant role,

and is given by,

g(x, ρ) =
ρ(ρ/x)γ

ρ(ρ/x)γ + (1− ρ)((1− ρ)/(1− x))γ
, (4.4)

where γ > 0. It is straightforward to see that, if x > ρ, then g(x, ρ) < ρ.

Due to the results we obtained in Chapter 3, also from Yi and Li (2018) [20], a

(1− α)100% confidence interval for (µA − µB) is given by,

(µ̂A − µ̂B)± z(1−α
2
)

√
σ̂2
A

NA

+
σ̂2
B

NB

, (4.5)

where α is the nominal coverage error probability and z(1−α
2
) is the critical value for
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the standard normal distribution.

4.1.5 Simulation Setup

In this subsection, we outline the setup for our numerical study under the three

allocation procedures and various success rates. Our goal is to monitor the goodness

of the normal approximation discussed in Chapter 3 for different success rates in

RAD.

• The adaptive allocation considered are the RPW (1978) [19] and the optimal

allocation proportion RSIHR (2001) [16], and the YW (2009) [22] allocation.

• We use the Doubly Biased Coin Design (DBCD) Hu and Rosenberger (2006)[8]

with the allocation function g(x, ρ) to target ρ(A) where γ = 100 is fixed as sug-

gested in Hu, Rosenberger and Zhang (2006) [23] in RSHIR and YW allocation

methods.

• We generate data from a uniform distribution X ∼ Unif(0, 1) for allocation

purposes.

• Here, we consider three different success rates from the set {0.5, 0.7, 0.9} as the

true value for pA and the values of pB are determined such that, 0 ≤ |pA−pB| ≤
0.3.

• The total number of patients is fixed at n ∈ {100, 200, 300} and we generate

r = 10, 000 replications for each of the RADs.

• The first two patients are allocated to the treatments A and B, respectively.

Then, the next patients assign to each of the treatments by following one of

the three RAD procedures.

• In all the numerical studies, we fix epsilon at ε = 1/4 for YW adaptive design

and, the type I error rate is fixed to the nominal level of α = 0.05.
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4.2 Bootstrap Resampling for Response Adaptive

Design

Bootstrap is a powerful statistical tool that can be used to quantify the uncertainty

associated with a given estimator. It resamples from a set of data to create many

simulated samples. This type of resampling allows us to estimate standard errors and

find the simulated confidence intervals, and apply the hypothesis testing for various

test statistics. This methodology can be considered as an alternative approach to

traditional estimation; however, we must note some fundamental differences. There

are advantages to applying bootstrap resampling since it does not make any assump-

tions about the distribution of the data and use a wider variety of distributions.

Additionally, it is very beneficial to draw inference when the size of the data is not

adequately large.

Moreover, the confidence interval deduced by bootstrap is asymptotically consis-

tent. From Rosenberger and Hu (1999) [15], the sequence of responses inferred from

adaptive designs is dependent, and it cannot be modified during the process. In their

paper, they used bootstrap resampling to obtain confidence intervals. This process

uses the output of an adaptive experiment as the input of the bootstrap resampling

procedure. It can be utilized for any sample size due to the complex covariance

structure on the data in adaptive design.

4.2.1 Simulation Setup for Bootstrap

In Subsection 4.1.5, we describe the simulation setup to compute coverage probabil-

ities and obtain confidence intervals based on asymptotic normal distribution. Here,

we outline the setup for the simulating of bootstrap samples in the setting of RAD.

• The bootstrap method is applied to the three allocation methods of RPW,

RSIHR, and YW for the total sample size fixed at n = 200.



4.2. BOOTSTRAP RESAMPLING FOR RESPONSE ADAPTIVE
DESIGN 26

• We consider various settings of true values for the success rates pA = (0.9, 0.7, 0.5)

vs. pB = (0.7, 0.5, 0.3) such that, |pA − pB| = 0.2.

• We then find the observed success probabilities and the sample size for p̂ =

(p̂A, p̂B) and Nl = (NA, NB), l = A,B under the three allocation methods.

• Using the adaptive allocation rules, we replicate a total of T sequences of

treatment allocations and their corresponding responses.

• We estimate p̂∗1, ..., p̂
∗
T and N∗1 , ..., N

∗
T as bootstrap estimates of the response

probabilities and sample sizes respectively.

• Ultimately, we order p̂∗1l , ..., p̂
∗T
l , l = A,B, as p̂

∗(1)
l , ..., p̂

∗(T )
l to compute the

desired quantiles.

Using the outlined steps, we then simply attain the bootstrap confidence intervals

with 100(1− α)% confidence level for pl, l = A,B as follows,

(p̂l
∗(Tα/2), p̂l

∗(T (1−α)/2)). (4.6)

Rosenberger and Hu (1999) [15] introduced two other approximations for confi-

dence interval. In the first method, they considered the measure p̂l
∗ − p̂l where p̂∗l

is an individual bootstrap estimate for l = A,B. Accordingly, a second confidence

interval can be approximated by,

(2p̂l − p̂l∗(Tα/2), 2p̂l − p̂l∗(T (1−α)/2)), (4.7)

where l = A,B.

Finally, the third confidence interval approximation method that they introduce

is defined by,

(p̂l − Ẑl
∗(Tα/2)

, p̂l − Ẑl
∗(T (1−α)/2)

), (4.8)

where Z∗l =
√(N∗l p̂lq̂l

Nlp̂
∗
l q̂
∗
l

)
(p̂∗l − p̂l) and Ẑl

∗(Tα/2)
is the estimates Z∗1l , ..., Z

∗T
l in an

increasing order to obtain 100(1− α) per cent bootstrap confidence interval for pl.
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Rosenberger and Hu’s (1999) [15] paper shows that the simplest confidence in-

terval method given by (4.6) outperforms its two competitors. Hence, we use this

approximation for the bootstrap confidence intervals in our simulation study.

The computation code in R programming can be found in the Appendix B for

the allocation RPW, RSHIR and YW using RAD from Yi and Li(2018) [20] and the

steps for bootstrap method in RAD from Hu and Rosenberger (1999) [15].

For any of the allocation techniques, we generate one pass of data, and p̂ for

these two treatments is calculated. Then, concerning the bootstrap process, T =

500 replications of the success rate estimates is obtained for each of the allocation

procedures. To estimate the coverage probabilities and confidence intervals using

the simplest bootstrap method, we use a total of 5,000 repetitions and calculate the

number of times that the constructed confidence interval captures the true success

rate. We should also note that the DBCD adjustment is employed in the allocation

process.

4.3 Results

In this section, we compare the obtained results for the three allocation methods and

under different population configurations.

We consider |pA − pB| = 0.3, |pA − pB| = 0.2, |pA − pB| = 0.1 and |pA − pB| = 0

for different range of pA and pB to better monitor the power of the test under various

scenarios. Simulated power is computed for two-sided hypothesis testing using Wald’s

statistic from Yi and Li (2018) and consequently the confidence interval from (4.5).

Table 4.1, Table 4.2 and Table 4.3 demonstrate the results for n = 100, n = 200

and n = 300 respectively. The entries regarding the expected value of NA
n

, Standard

Deviation (SD), Coverage Probability (CP), and statistical power are rounded to two

decimal places. We also assumed that treatment A has a higher survival rate relative

to treatment B.

Overall, for all the three adaptive designs, the results are in accordance with the
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superiority of the assigned treatment for the majority of patients. Also , there is a

positive association between the statistical power and the magnitude of (pA-pB) and

its slope is considerably large. Generally, for a fixed sample size, all three methods

have relatively the same simulated statistical powers, but as the sample sizes increase,

we observe higher values for statistical power.

Additionally, when n = 300, statistical power converges to one for the more

considerable difference between the two success rates. From the results, we can

observe that the standard deviation corresponding to the allocation proportion of

RPW is substantially higher than its counterparts, and its value culminates at

(pA, pB) = (0.9, 0.7).

In Figure.4.1, Figure.4.2 and Figure.4.3, we can see the distribution of NA
n

. The

distributions of YW has a significant shift to the right under ε = 1/4. The results

show that under |pA− pB| > 0.1, we reach the demanded power and accuracy of the

coverage probabilities using an adaptive clinical trial.

Considering the bootstrap results in Table 4.4, we notice that for both the boot-

strap and observed data, the coverage probabilities are close to the nominal level.

The advantage of the simplest bootstrap confidence interval based on repeated copies

of the simulated data is more striking in clinical trials. Also, the bootstrap techniques

consider mechanisms during the process that can be combined in the data analysis of

the desired timateses’ sampling distribution. This table presents the simulated cover-

age probabilities (CP) and the average length of the intervals (L) for RPW, RSHIR,

and YW for different true values of pA = (0.9, 0.7, 0.5) and pB = (0.7, 0.5, 0.3) for

observed data and bootstrap re-sampling from RAD respectively for a total sample

size n = 200. As we can see under each of these target allocations, the difference

between success probabilities pA, and pB is set to be 0.2. Table 4.4 shows that when

n = 200, bootstrap re-sampling and observed data work approximately the same in

both coverage probabilities and the confidence interval that shows bootstrap estima-

tion is appropriate in this study as well. Moreover, n = 200 is a sufficient sample

size to use the asymptotic confidence interval obtained from theoretical results using

bootstrap method in RAD.
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Additionally, the normal approximation for (pA − pB) under RPW, RSHIR, and

YW is shown in Figure 4.4 by setting the total size at n = 200. Consider the

true values for success rates pA = (0.9, 0.7, 0.5) and pB = (0.7, 0.5, 0.3) such that

|pA − pB| = 0.2, it is obvious from the results that the estimates are normally

distributed but a relatively small number of data points in normally distributed data

fall in the few highest and few lowest quantiles, when (pA, pB) = (0.9, 0.7) in RPW

and YW. Clearly, the figures show that the quantile points lie on the theoretical

normal line. We use the histograms in Figure 4.5, to show the frequency of (p̂A− p̂B)

under RPW, RSHIR, and YW for n = 200 for the same success rates as in Figure

4.4.
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Table 4.4: Simulation of coverage probabilities (CP) and Length of intervals (L) for |pA−pB | = 0.2
from bootstrapping for n=200, r=5,000

(PA, PB)
RPW RSIHR YW

CP L CPboot Lboot CP L CPboot Lboot CP L CPboot Lboot

(0.9,0.7) 0.95 0.27 0.94 0.27 0.96 0.22 0.95 0.21 0.95 0.31 0.94 0.31

(0.7,0.5) 0.95 0.28 0.95 0.27 0.95 0.27 0.95 0.26 0.95 0.30 0.95 0.29

(0.5,0.3) 0.95 0.27 0.95 0.26 0.95 0.26 0.95 0.26 0.95 0.28 0.95 0.27
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Figure 4.1: Distribution of NA/n allocated to treatment A under RPW(solid line) and
RSIHR(dashed line) and YW(dotted line) for n=100, r=10,000
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Figure 4.2: Distribution of NA/n allocated to treatment A under RPW(solid line) and
RSIHR(dashed line) and YW(dotted line) for n=200, r=10,000
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Figure 4.3: Distribution of NA/n allocated to treatment A under RPW(solid line) and
RSIHR(dashed line) and YW(dotted line) for n=300, r=10,000
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Figure 4.4: Normal Approximation of (p̂A − p̂B) for RPW, RSIHR and YW, for n=200, r=5,000
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Figure 4.5: Histogram of (p̂A − p̂B) for RPW, RSIHR and YW, for n=200, r=5,000
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Chapter 5

Conclusion

5.1 Summary of Achievements

In this thesis, we study the asymptotic normality of MLE for response adaptive design

(RAD). From the response adaptive randomization procedure, the patients’ alloca-

tion depends on the aggregated information acquired from the previously treated

patients’ response, which creates the dependency structure in the data. Due to the

dependency structure, we use Stein’s method to obtain asymptotic normality of the

ML estimators in various allocation procedures.

First, we consider the K function approach in Stein’s equation by defining the

leave-one-out in the summation of random variables. Then, we derive an upper

bound using Stein’s equation and obtain a normal approximation for WA and WB

under a few regularity conditions. Furthermore, upon obtaining asymptotic normal

distributions of WA and WB using the K function approach in Stein’s method, we

derive the MLE’s asymptotic normality of the parameters of mean responses for RAD

using the Slutsky’s theorem under the regularity conditions provided.

Next, we prove the asymptotic normality of MLE for the likelihood estimators

(µ̂A − µ̂B) for the difference in mean responses for treatment A and B in the RAD
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setting and under some regularity conditions. Our main contribution is that by using

Stein’s method, we obtain the asymptotic normality for RAD with the dependency

structure among the collected data, and accordingly, we have considerably more

relaxed steps to obtain the results compared to the other references.

Ultimately, we conduct a numerical study to investigate the normal approxi-

mation accuracy for RAD under three different adaptive allocation methods –RPW,

RSHIR, and YW– for various settings of success probabilities. Using different sample

sizes, we compare the coverage probabilities and the power of the utilized statistical

test. We also use the bootstrap method for the RAD in order to reduce the estima-

tion bias in situations where the covariance structure is more complicated. Overall,

the numerical results show that both estimators have a reasonable performance in

the coverage probabilities and confidence intervals, for sample size of 200 and 300.

5.2 Future Reseach

While our research is focused on the asymptotic normality of MLE for RAD using

Stein’s method for two treatments A and B, these results can be generalized to more

than two treatments. Therefore, in the future, we aim to utilize Stein’s method in

RAD’s inference to find the joint distribution of the difference in mean responses for

more than two treatments in the RAD setting.



Appendix A

Proofs

Proof of Lemma 1:

E[WA] = E
[
E
[ n∑
j=1

1jAξjA
∣∣1jA,j=1,2,...,n

]]
= E

[ n∑
j=1

E[1jAξjA|1jA,j=1,2,...,n]]

= E
[ n∑
j=1

1jAE[ξjA]]

= E[NAE[ξjA]] = 0 (from (3.3) EξjA = 0)

(A.1)
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V ar(WA) = E
[
V ar

( n∑
j=1

1jAξjA
∣∣1jA,j=1,2,...,n

)]
+ V ar

(
E
[ n∑
j=1

1jAξjA
∣∣1jA,j=1,2,...,n

])
= E

[
V ar

( n∑
j=1

1jAξjA
∣∣1jA,j=1,2,...,n

)]
(from (3.3) EξjA = 0)

= E[
n∑
j=1

V ar(1jAξjA|1jA,j=1,2,...,n)]

= E[
n∑
j=1

E(12
jAξ

2
jA|1jA,j=1,2,...,n)] (from (3.3) V ar(ξjA) = Eξ2jA)

= E[
n∑
j=1

E(1jAξ
2
jA|1jA,j=1,...,n)]

= E[
n∑
j=1

1jAE(ξ2jA)] (from (3.3) Eξ2jA =
1

nρ
)

= E[NA
1

nρ
] = E[

NA

nρ
].

(A.2)

Proof of Lemma 2:

E[WB] = E
[
E
[ n∑
j=1

(1− 1jA)ξjB
∣∣1jA,j=1,2,...,n

]]
= E[

n∑
j=1

E[(1− 1jA)ξjB|1jA,j=1,2,...,n]]

= E[
n∑
j=1

(1− 1jA)E[ξjB]]

= E[NBE[ξjB]] = 0 (from (3.4) EξjB = 0)

(A.3)
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V ar(WB) = E
[
V ar

( n∑
j=1

(1− 1jA)ξiB
∣∣1iA,i=1,2,...,n

)]
+ V ar(E[

n∑
j=1

(1− 1jA)ξjB
∣∣1jA,j=1,2,...,n

])
= E[V ar(

n∑
j=1

(1− 1jA)ξjB|1jA,j=1,2,...,n)] (from (3.4) EξjB = 0)

= E[
n∑
j=1

V ar((1− 1jA)ξjB|1jA,j=1,2,...,n)]

= E[
n∑
j=1

E((1− 1jA)2ξ2jB|1jA,j=1,2,...,n)] (from (3.4) V ar(ξjB) = Eξ2jB)

= E[
n∑
j=1

E((1− 1jA)ξ2jB|1jA,j=1,2,...,n)]

= E[
n∑
j=1

(1− 1jA)E(ξ2jB)] (from (3.4) Eξ2jB =
1

n(1− ρ)
)

= E[NB
1

n(1− ρ)
) = E(

NB

n(1− ρ)
].

(A.4)

Proof of Theorem 3: We first investigate the K function approach for WA

Define,

W
(i)
A = WA − ξiA1iA (A.5)

where WA from (3.3) and 1iA from (1.1).

We have,
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E[ξiAW
(i)
A |1jA, j = 1, ..., n] = E

[
ξiA(

n∑
j=1

ξjA1jA − ξiA1iA|1jA, j = 1, ..., n)
]

= E[ξiA

n∑
j=1
j 6=i

1jAξjA] + 1iAE[ξ2iA]− 1iAE[ξ2iA]

=
n∑
j=1
j 6=i

1jAE[ξiAξjA] = 0 (Since i 6= j E[ξiAξjA] = 0).

(A.6)

In the next step, we estimate the left-hand side of (2.19) and begin to calculate

E[WAf(WA)]. Let h be a measurable function with E|h(Z)| < ∞, and f = fh be

the corresponding solution to the Stein’s equation (2.3).

E[WAf(WA)|1jA, j = 1, ..., n] = E
[ n∑
i=1

ξiA1iAf(WA)|1jA, j = 1, ..., n
]

=
n∑
i=1

1iAE
[
ξiAf(WA)

∣∣1jA, j = 1, ..., n
]

=
n∑
i=1

1iAE
[
ξiA
(
f(WA)− f(W

(i)
A )
)∣∣1jA, j = 1, ..., n

]
.

(A.7)

From (A.6) and by rearranging the summation to the number of patients, we can

conclude that,

E[ξiAf(W
(i)
A )|1jA, j = 1, ..., n] = 0. (A.8)

Due to this conclusion, the last equity in (A.7) conditionally holds for all {1jA, j =
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1, ..., n}. Therefore,

E[WAf(WA)|1jA, j = 1, ..., n] =
n∑
i=1

1iAE
[
ξiA
(
f(WA)− f(W

(i)
A )
)∣∣1jA, j = 1, ..., n

]
=

n∑
i=1

1iAE
[
ξiA

∫ ξiA

0

f
′
(W

(i)
A + t)dt

∣∣1jA, j = 1, ..., n
]

=
n∑
i=1

1iAE
[ ∫ 0

−∞
{f ′(W (i)

A + t)ξiA(−1{ξiA≤t<0})dt|1jA, j = 1, ..., n}

+

∫ +∞

0

{f ′(W (i)
A + t)ξiA(1{0≤t≤ξiA})dt|1jA, j = 1, ..., n}

]
(Property 1 for Ki(t) (2.17)).

(A.9)

E[WAf(WA)|1jA, j = 1, ..., n] =

=
n∑
i=1

1iAE
[ ∫ +∞

−∞
{f ′(W (i)

A + t)ξiA(1{0≤t≤ξiA} − 1{ξiA≤t<0})dt|1jA, j = 1, ..., n}
]

=
n∑
i=1

1iA

∫ +∞

−∞
E
[
f
′
(W

(i)
A + t)|1jA, j = 1, ..., n]KiA(t)dt (Property 2 for Ki(t) (2.17)).

(A.10)

Moving froward to Ef
′
[WA], we consider that,

∫ +∞
−∞ KiA(t)dt = Eξ2iA = 1

nρ
, and∑n

i=1 1iA
∫ +∞
−∞ KiA(t)dt = NA

nρ
. Then we have,

Ef
′
(WA|1jA, j = 1, ..., n) =

nρ

NA nρ

n∑
i=1

1iAE
[
f
′
(WA)|1jA, j = 1, ..., n

]
=
nρ

NA

n∑
i=1

1iAE
[
f
′
(WA)|1jA, j = 1, ..., n

]
Eξ2iA

=
nρ

NA

n∑
i=1

1iA

∫ +∞

−∞
E
[
f
′
(WA)|1jA, j = 1, ..., n

]
KiA(t)dt.

(A.11)
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Denote the conditional variance of WA as σ2
{WA|1jA,j=1,...,n}, then,

σ2
{WA|1jA,j=1,...,n} = V ar(WA|1jA, j = 1, ..., n) =

NA

nρ
. (A.12)

Therefore, we have,

E
[(
σ2
{WA|1jA,j=1,...,n}f

′
(WA)−WAf(WA)

)
|1jA, j = 1, ..., n

]
= E

[(NA

nρ
f
′
(WA)−WAf(WA)

)
|1jA, j = 1, ..., n

]
=

n∑
i=1

1iA

∫ +∞

−∞
E
[ NAnρ
NA
nρ

f
′
(WA)|1jA, j = 1, ..., n

]
KiA(t)dt

−
n∑
i=1

1iA

∫ +∞

−∞
E
[
f
′
(W

(i)
A + t)|1jA, j = 1, ..., n]KiA(t)dt.

(A.13)

Or equivalently,

E
[(
σ2
{WA|1jA,j=1,...,n}f

′
(WA)−WAf(WA)

)
|1jA, j = 1, ..., n

]
=

n∑
i=1

1iA

∫ +∞

−∞
E
[(
f
′
(WA)− f ′(W (i)

A + t)
)
|1jA, j = 1, ..., n]KiA(t)dt.

(A.14)

Now, we can write (A.14) such that,

E
[NA

nρ
f
′
(WA)−WAf(WA)

]
= E

[
E
[(
σ2
{WA|1jA,j=1,...,n}f

′
(WA)−WAf(WA)

)
|1jA, j = 1, ..., n

]]
= E

[ n∑
i=1

1iA

∫ +∞

−∞
E
[(
f
′
(WA)− f ′(W (i)

A + t)
)
|1jA, j = 1, ..., n]KiA(t)dt

]
.

(A.15)

The next step is to find the corresponding bound with respect to (2.16) to the

estimation obtained for Stein’s equation.

||h|| = sup
x∈Rp
|h(x)|.
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From the mean value theorem we can obtain for (A.15) that,

f
′′
(c) =

f
′
(W

(i)
A + ξiA)− f ′(W (i)

A + t)

(ξiA − t)
, (A.16)

and,

|f ′(W (i)
A + ξiA)− f ′(W (i)

A + t)| ≤ ||f ′′ |||ξiA − t| (from mean value theorem)

≤ ||f ′′||(|ξiA|+ |t|) (from Triangle inequality).

(A.17)

Therefore we have,

E|E
[NA

nρ
f
′
(WA)−WAf(WA)|1jA, j = 1, ..., n

]
| ≤

||f ′′ ||E
[ n∑
i=1

1iA

∫ +∞

−∞
E(|ξiA|+ |t|)KiA(t)dt

]
≤ ||f ′′ ||

n∑
i=1

E
[
1iA
( ∫ +∞

−∞
E|ξiA|KiA(t)dt

+

∫ +∞

−∞
|t|KiA(t)dt

)]
(using(3.6))

=||f ′′ ||
n∑
i=1

1iA
[
E|ξiA|Eξ2iA +

1

2
E|ξ3iA|

]
≤ ||f ′′ || 3

2
E
[ n∑
i=1

1iAE|ξ3iA|
]
. (from Hölder′s inequality)

(A.18)

Last inequality in (A.18) is valid from the following steps by the Hölder’s inequality

given by,

n∑
i=1

|ai bi| ≤
( n∑
i=1

|ai|p
) 1
p
( n∑
i=1

|bi|q
) 1
q (A.19)
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when 1
p

+ 1
q

= 1.

In the equality
∑n

i=1 1iAE|ξiAEξ2iA| from (A.18) consider p = 3 and q = 3
2

such that,

n∑
i=1

1iA|EξiAEξ2iA| ≤
( n∑
i=1

1iA|EξiA|3
) 1

3
( n∑
i=1

1iA|Eξ2iA|
3
2

) 2
3

≤
( n∑
i=1

1iA|EξiA|3
) 1

3
( n∑
i=1

1iA|EξiA|3
) 2

3 =
n∑
i=1

1iAE|ξ3iA|.
(A.20)

This proves the last inequality in (A.18).

Now from Chapter 2 we know that ||f ′′ || ≤ 2||h′ || (2.15). For a given function

h : IR→ IR, let f be the corresponding solution to the Stein’s equation (2.3). If h is

bounded, then we can rewrite (A.18) as,

E|E
[NA

nρ
f
′
(WA)−WAf(WA)|1jA, j = 1, ..., n

]
| ≤ 3||h′ || E

[ n∑
i=1

1iAE|ξiA|3
]
.

(A.21)

Now, from the definition of ξiA = XiA−µA√
nρσA

in (3.3), we have,

E|E
[NA

nρ
f
′
(WA)−WAf(WA)|1jA, j = 1, ..., n

]
| ≤ 3||h′||E

[ n∑
i=1

1iAE|
XiA − µA√

nρσA
|3
]
.

(A.22)

Since in RAD, the patients’ responses are i.i.d. Therefore, we have,

E|E
[NA

nρ
f
′
(WA)−WAf(WA)|1jA, j = 1, ..., n

]
| ≤ 3||h′ ||E

[ NA

n
√
nρ
√
ρ
E|X1A − µA

σA
|3
]
.

(A.23)
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From (2.19) we have,

E[h(WA)− h(Z)] =E[f
′
(WA)−WAf(WA)]

=E[f
′
(WA)− NA

nρ
f
′
(WA)] + E[

NA

nρ
f
′
(WA)−WAf(WA)].

(A.24)

From (2.14) we know that ||f ′|| ≤
√

2
π
||h′|| . Therefore, from (A.23) and (A.24) we

have,

|E(h(WA)− h(Z))| ≤ ||f ′||E|1− NA

nρ
|+ 3||h′||E

[ NA

n
√
nρ
√
ρ
E|X1A − µA

σA
|3
]

≤
√

2

π
||h′ ||E|1− NA

nρ
|+ 3||h′||E

[ NA

n
√
nρ
√
ρ
E|X1A − µA

σA
|3
]
.

(A.25)

Using Slutsky’s theorem, proof of the theorem is completed because NA
n
→ ρ almost

surely(a.s) as n→∞.

Therefore, we have,

lim
n→∞

E|h(WA)− h(Z))| → 0. (A.26)

Since Z follows a standard standard normal distribution, and WA =
∑n

j=1 1jAξjA

where ξjA, j = 1, ...n are conditionally independent random variables on all {1jA, j =

1, ..., n}. From (2.26) and (A.26) we have,

WA
d−→ Z as n→∞. (A.27)

�
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Proof of Lemma 7:

E[Wrad] = E[E[Wrad|1jA,j=1,...,n]]

= E[E[WA −WB|1jA,j=1,...,n]]

= E[E[
n∑
i=1

1iAξiA −
n∑
i=1

(1− 1iA)ξiB|1jA,j=1,...,n]]

= E[
n∑
i=1

1iAE(ξiA)−
n∑
i=1

(1− 1iA)E(ξiB]]

= E[NA E[ξiA]−NB E[ξiB]] = 0

(A.28)

For the variance we only need to obtain the correlation between these two pa-

rameters, using Lemma 1 and Lemma 2.

V ar(Wrad) = E
[
V ar

(
Wrad

∣∣1jA, j = 1, ..., n
)]

+ V ar(E[Wrad|1jA, j = 1, ..., n
])

E
[
V ar

(
{

n∑
i=1

1iAξiA −
n∑
i=1

(1− 1iA)ξiB}|1jA, j = 1, ..., n
)]

+ V ar(E[{
n∑
i=1

1iAξiA −
n∑
i=1

(1− 1iA)ξiB}
∣∣1jA, j = 1, ..., n

])
(A.29)

The second term of equality is zero because mean of Wrad is zero from (A.28).
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V ar(Wrad) = E[V ar({
n∑
i=1

1iAξiA −
n∑
i=1

(1− 1iA)ξiB}|1jA, j = 1, ..., n)]

= E[
n∑
i=1

V ar(1iAξiA|1jA, j = 1, ..., n) +
n∑
i=1

V ar((1− 1iA)ξiB|1jA, j = 1, ..., n)

− 2
n∑
i=1

Cov((1iAξiA, (1− 1iA)ξiB)|1jA, j = 1, ..., n)]

= E[
n∑
i=1

E[12
iAξ

2
iA|1jA, j = 1, ..., n] +

n∑
i=1

E[(1− 1iA)2ξ2iB|1jA, j = 1, ..., n]

− 2
n∑
i=1

{E[(1iAξiA(1− 1iA)ξiB)|1jA, j = 1, ..., n]

− E[1iAξiA|1jA, j = 1, ..., n)E((1− 1iA)ξiB|1jA, j = 1, ..., n]}]

= E(
n∑
i=1

E[1iAξ
2
iA|1jA, j = 1, ..., n] +

n∑
i=1

E[(1− 1iA)ξ2iB|1jA, j = 1, ..., n]

− 2
n∑
i=1

{E[(1iAξiA(1− 1iA)ξiB)|1jA, j = 1, ..., n]

− 1iAE[ξiA](1− 1iA)E[ξiB]}) (from (3.3), (3.4) EξiA = 0 and EξiB = 0)

= E[
n∑
i=1

1iAE(ξ2iA) +
n∑
i=1

(1− 1iA)E(ξ2iB)

− 2
n∑
i=1

{(1iA(1− 1iA)E(ξiAξiB))}] (from (1.1) and E[ξiAξiB] = 0)

= E[NA Eξ
2
iA +NB Eξ2iB]

= E[NA
1

nρ
+NB

1

n(1− ρ)
]

= E[
NA

nρ
] + E[

NB

n(1− ρ)
].

(A.30)
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Proof of Theorem 8: We first apply the K function approach to Wrad. Define,

W
(i)
rad = Wrad − (ξiA1iA + ξiB(1− 1iA)) (A.31)

where Wrad from (3.10).

We have,

E[W
(i)
radξiA1iA|1jA,j=1,...,n] + E[W

(i)
radξiB(1− 1iA)|1jA, j = 1, ..., n] = 0. (A.32)

Also,

E[f(W
(i)
rad)ξiA1iA|1jA,j=1,...,n] + E[f(W

(i)
rad)ξiB(1− 1iA)|1jA, j = 1, ..., n] = 0. (A.33)

Afterwards, we estimate the left-hand side of (2.19), and begin to calculateE[Wradf(Wrad)].

Let h is a measurable function with E|h(Z)| < ∞. Also, let f = fh be the corre-

sponding solution to the Stein’s equation (2.3).

E[Wradf(Wrad)|1jA, j = 1, ..., n] = E [
n∑
i=1

(
1iAξiA − (1− 1iA)ξiB

)
f(Wrad)|1jA, j = 1, ..., n]

=
n∑
i=1

E
[
(1iAξiA − (1− 1iA)ξiB

)
f(Wrad)

∣∣1jA, j = 1, ..., n
]

=
n∑
i=1

(
1iAE

[
ξiAf(Wrad) |1jA, j = 1, ..., n

]
− (1− 1iA)E

[
ξiBf(Wrad)|1jA, j = 1, ..., n

])
=

n∑
i=1

1iAE[ξiA(f(Wrad)− f(W
(i)
rad))

∣∣1jA, j = 1, ..., n]

−
n∑
i=1

(1− 1iA)E
[
ξiB(f(Wrad)− f(W

(i)
rad))

∣∣1jA, j = 1, ..., n].

(A.34)



53

Due to conclusion in (A.32) and (A.33) the last equality of (A.34) conditionally holds

on all {1jA, j = 1, ..., n}. Therefore,

E[Wradf(Wrad)|1jA, j = 1, ..., n] =
n∑
i=1

1iAE
[
ξiA
(
f(Wrad)− f(W

(i)
rad)
)∣∣1jA, j = 1, ..., n

]
−

n∑
i=1

(1− 1iA)E
[
ξiB
(
f(Wrad)− f(W

(i)
rad)
)∣∣1jA, j = 1, ..., n

]
}

=
n∑
i=1

1iAE
[
ξiA

∫ ξiA

0

f
′
(W

(i)
rad + t)dt|1jA, j = 1, ..., n]

−
n∑
i=1

(1− 1iA)E
[
ξiB

∫ ξiB

0

f
′
(W

(i)
rad + t)dt|1jA, j = 1, ..., n

]
=

n∑
i=1

1iAE
[ ∫ 0

−∞
(f
′
(W

(i)
rad + t)ξiA(−1{ξiA≤t<0})dt |1jA, j = 1, ...n)

+

∫ +∞

0

(f
′
(W

(i)
rad + t)ξiA(1{0≤t≤ξiA})dt |1jA, j = 1, ...n)

]
−

n∑
i=1

(1− 1iA)E[

∫ 0

−∞
(f
′
(W

(i)
rad + t)ξiB(−1{ξiB≤t<0})dt |1jA, j = 1, ...n)

+

∫ +∞

0

(f
′
(W

(i)
rad + t)ξiB(1{0≤t≤ξiB})dt |1jA, j = 1, ...n)

]
} (Property 1 for Ki(t) (2.17)).

(A.35)
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E[Wradf(Wrad)|1jA, j = 1, ..., n] =
n∑
i=1

1iAE
[ ∫ +∞

−∞
(f
′
(W

(i)
rad + t)ξiA(1{0≤t≤ξiA} − 1{ξiA≤t<0}) dt|1jA, j = 1, ...n)

]
−

n∑
i=1

(1− 1iA)E
[ ∫ +∞

−∞
(f
′
(W

(i)
rad + t)(ξiB(1{0≤t≤ξiB} − 1{ξiB≤t<0}))dt|1jA, j = 1, ..., n)

]
=

n∑
i=1

1iA

∫ +∞

−∞
E
[
f
′
(W

(i)
rad + t) |1jA, j = 1, ..., n

]
KiA(t)dt

−
n∑
i=1

(1− 1iA)

∫ +∞

−∞
E
[
f
′
(W

(i)
rad + t)|1jA, j = 1, ..., n

]
KiB(t)dt (Property 2 for Ki(t) (2.17)).

(A.36)

Moving froward to Ef
′
[Wrad] considering that

∫ +∞
−∞ KiA(t)dt = Eξ2iA = 1

nρ
also,∫ +∞

−∞ KiB(t)dt = Eξ2iB = 1
n(1−ρ) . Then, we have,

Ef
′
[Wrad|1jA, j = 1, ..., n] = E[f

′
(Wrad)|1jA, j = 1, ..., n]

= E[
(NA
nρ

+ NB
n(1−ρ))

(NA
nρ

+ NB
n(1−ρ))

f
′
(Wrad)|1jA, j = 1, ..., n]

=
1

(NA
nρ

+ NB
n(1−ρ))

n∑
i=1

1iAE[f
′
(Wrad)|1jA, j = 1, ..., n]Eξ2iA

+
1

(NA
nρ

+ NB
n(1−ρ))

n∑
i=1

(1− 1iA)E[f
′
(Wrad)|1jA, j = 1, ..., n]Eξ2iB

=
1

(NA
nρ

+ NB
n(1−ρ))

n∑
i=1

1iA

∫ +∞

−∞
E[f

′
(Wrad)|1jA, j = 1, ..., n]KiA(t)dt

+
1

(NA
nρ

+ NB
n(1−ρ))

n∑
i=1

(1− 1iA)

∫ +∞

−∞
E[f

′
(Wrad)|1jA, j = 1, ..., n]KiB(t)dt.

(A.37)

Denote conditional variance of Wrad as σ2
{Wrad|1jA,j=1,...,n}, then,

σ2
{Wrad|1jA,j=1,...,n} = V ar(Wrad|1jA, j = 1, ..., n) =

NA

nρ
+

NB

n(1− ρ)
. (A.38)
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Therefore we have,

E
[(
σ2
{Wrad|1jA,j=1,...,nf

′
(Wrad)−Wradf(Wrad)

)
|1jA, j = 1, ..., n

]
= E

[
(
NA

nρ
+

NB

n(1− ρ)
)f
′
(Wrad)−Wradf(Wrad)|1jA, j = 1, ..., n

]
=

n∑
i=1

1iA

∫ +∞

−∞
E[f

′
(Wrad)|1jA, j = 1, ..., n]KiA(t)dt

+
n∑
i=1

(1− 1iA)

∫ +∞

−∞
E[f

′
(Wrad)|1jA, j = 1, ..., n]KiB(t)dt

−
n∑
i=1

1iA

∫ +∞

−∞
E
[
f
′
(W

(i)
rad + t) |1jA, j = 1, ...n

]
KiA(t)dt

−
n∑
i=1

(1− 1iA)

∫ +∞

−∞
E
[
f
′
(W

(i)
rad + t)|1jA, j = 1, 2, ..., n

]
KiB(t)dt.

(A.39)

Equivalently, we can write,

E
[(
σ2
{Wrad|1jA,j=1,...,n}f

′
(Wrad)−Wradf(Wrad)

)
|1jA, j = 1, ..., n

]
= E

[(
(
NA

nρ
+

NB

n(1− ρ)
)f
′
(Wrad)−Wradf(Wrad)

)
|1jA, j = 1, ..., n

]
=

n∑
i=1

1iA

∫ +∞

−∞
E[f

′
(Wrad)− f

′
(W

(i)
rad + t)|1jA, j = 1, ..., n]KiA(t)dt

+
n∑
i=1

(1− 1iA)

∫ +∞

−∞
E[f

′
(Wrad)− f

′
(W

(i)
rad + t)|1jA, j = 1, ..., n]KiB(t)dt.

(A.40)
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Now, we can write (A.40) such that,

E
[NA

nρ
+

NB

n(1− ρ)
f
′
(Wrad)−Wradf(Wrad)

]
= E

[
E
[
σ2
{Wrad|1jA,j=1,...,n}f

′
(Wrad)−Wradf(Wrad)|1jA, j = 1, ..., n

]]
= E

[ n∑
i=1

1iA

∫ +∞

−∞
E[f

′
(Wrad)− f

′
(W

(i)
rad + t)|1jA, j = 1, ..., n]KiA(t)dt

+
n∑
i=1

(1− 1iA)

∫ +∞

−∞
E[f

′
(Wrad)− f

′
(W

(i)
rad + t)|1jA, j = 1, ..., n]KiB(t)dt

]
.

(A.41)

The next step is to acquire the corresponding bound from (A.42). Note that the

bound that we obtain for the left-hand side of (2.19) is valid for the right-hand side

of the equation as well.

We can simplify (A.42) by using the mean value theorem, Triangle inequality,

and Hölder’s inequality. Then,

f
′′
(c
′
) =

f
′
(W

(i)
rad + ξiA1iA + ξiB(1− 1iA))− f ′(W (i)

rad + t)

((ξiA1iA + ξiB(1− 1iA))− t)
. (A.42)

Since we are using a summation on all {j = 1, ..., n}, we can consider them sepa-

rately and the difference will depend on {1jA, j = 1, ..., n} outcomes. From triangle

inequality we have,

|f ′(W (i)
rad + ξiA)− f ′(W (i)

rad + t)| ≤ ||f ′′ || |ξiA − t|

when 1iA = 1,

|f ′(W (i)
rad + ξiB)− f ′(W (i)

rad + t)| ≤ ||f ′′ || |ξiB − t|

when 1iA = 0.

By (3.6) and (3.8) and from Hölder’s inequality, we have the following inequality for
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Wrad using Stein’s method.

E|E[(
NA

nρ
+

NB

n(1− ρ)
)f
′
(Wrad)−Wradf(Wrad)|1jA, j = 1, ..., n]| ≤

||f ′′ || E
[ n∑
i=1

1iA
[
Eξ2iAE|ξiA|+

1

2
E|ξ3iA|

]
+

n∑
i=1

(1− 1iA)
[
Eξ2iBE|ξiB|+

1

2
E|ξ3iB|

]]
≤ ||f ′′ || E

[3
2

n∑
i=1

1iAE|ξ3iA|

+
3

2

n∑
i=1

(1− 1iA)E|ξ3iB|
]

≤ 3

2
||f ′′ || E

[ n∑
i=1

1iAE|ξ3iA|

+
n∑
i=1

(1− 1iA)E|ξ3iB|
]
.

(A.43)

From (2.15) ||f ′′|| ≤ 2||h′||, If h is bounded, then we can rewrite (A.43)

E|E[(
NA

nρ
+

NB

n(1− ρ)
)f
′
(Wrad)−Wradf(Wrad)|1jA, j = 1, ..., n]| ≤

3||h′ ||{ E[
n∑
i=1

1iA E|ξiA|3 +
n∑
i=1

(1− 1iA) E|ξiB|3
]
}.

(A.44)
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We know the definition for EξiA, EξiB from (3.3) and (3.4), we have,

E|E[(
NA

nρ
+

NB

n(1− ρ)
)f
′
(Wrad)−Wradf(Wrad)|1jA, j = 1, ..., n]| ≤

3||h′ ||E
[ n∑
i=1

1iA
1

n
√
nρ
√
ρ
E|XiA − µA

σA
|3

+
n∑
i=1

(1− 1iA)
1

n
√
n(1− ρ)

√
(1− ρ)

E|XiB − µB
σB

|3
]
.

(A.45)

Since in RAD the patients’ responses are i.i.d. Therefore, we have,

E|E[(
NA

nρ
+

NB

n(1− ρ)
)f
′
(Wrad)−Wradf(Wrad)|1jA, j = 1, ..., n]| ≤

3||h′ ||E
[
NA

1

n
√
nρ
√
ρ
E|X1A − µA

σA
|3

+NB
1

n
√
n(1− ρ)

√
(1− ρ)

E|X1B − µB
σB

|3
]
.

(A.46)

Similar to (A.25) we have,

|E(h(Wrad)− h(Z))| ≤ ||f ′||E|1− NA

nρ
|+ 3||h′||E

[ NA

n
√
nρ
√
ρ
E|X1A − µA

σA
|3
]

+ ||f ′ ||E|1− NB

n(1− ρ)
|+ 3||h′||E

[ NB

n
√
n(1− ρ)

√
(1− ρ)

E|X1B − µB
σB

|3
]

≤
√

2

π
||h′ ||E|1− NA

nρ
|+ 3||h′ ||E

[ NA

n
√
nρ
√
ρ
E|X1A − µA

σA
|3
]

+

√
2

π
||h′||E|1− NB

n(1− ρ)
|+ 3||h′ ||E

[ NB

n
√
n(1− ρ)

√
(1− ρ)

E|X1B − µB
σB

|3
]
.

(A.47)

Using Slutsky’s theorem, proof of the theorem is completed because NA
n
→ ρ a.s. as
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n→∞.

Therefore, we have,

lim
n→∞

E|h(Wrad)− E(h(Z))| → 0. (A.48)

Since Z follows a standard normal distribution. Similarly, from the definition of the

L1 mentioned before in (2.26) and (A.48) we can conclude that,

Wrad
d−→ Z. as n→∞. (A.49)

�



Appendix B

Simulation R Codes

This appendix provides the simulation program in R for the RPW design and the

DBCD that is used to target the RSIHR and YW allocations from Yi and Li (2018)

[20]. Also, we have provided the steps for bootstrap re-sampling from Rosenberger

and Hu (1999) [15]. The steps to use the program is as follows:

• Input r - the repetition number; d - the total number of patients; cutZ - the

critical value for the statistical power (one-sided); pa - the success probability

for treatment A; pb - the success probability of treatment B.

• Run the R function for the RPW design or for the RSIHR and YW distrSRPW,

distrSDBC2 and distrSDBC3 designs. Before run the function for RSIHR or

YW the target allocation should be run in R firstly.

• From the return functions the results can be obtained.

###############

#Variables definitions

# r is the repetition number

# d is the total number of patients-2,

#Level of significant as an example alpha =0.05
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#Success probability on treatment A is pa

#Success probability on treatment B is pb

#Difference of the success probabilities is called mu

###############

#RPW Using Response Adaptive Design

distrSRPW<-function(alpha,cutZ,pa,pb,r,d){

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)

xNA<-1:(d+1)

sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

zDistr<-rep(0,r)

CI=c()

CI_RPW=matrix(0,r,2)

countCI=0

SD=c()

#r for replicate simulated coverage probabilities

for (n in 1:r){ print(n)#Count the simulation run

na<-1 #First two patients

nb<-1

sa<-0

sb<-0

u1<-runif(2,0,1)

if (u1[1]<pa) {sa<-sa+1}

if (u1[2]<pb) {sb<-sb+1}

aBall<-1 #RPW(1,1,1)

bBall<-1

Add<-1

p<-aBall/(aBall+bBall)
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for (i in 1:d){

u<-runif(3,0,1)

e<-c(0,0,0)

if (u[1]<p){na<-na+1

if (u[2]<pa){sa<-sa+1

aBall<-aBall+Add

e[2]<-1}

if (e[2]==0){bBall<-bBall+Add}

e[1]<-1}

if (e[1]==0){nb<-nb+1

if (u[3]<pb){sb<-sb+1

bBall<-bBall+Add

e[3]<-1}

if (e[3]==0){aBall<-aBall+Add}

}

p<-aBall/(aBall+bBall)

}

s<-sa+sb

naCount[na]<-naCount[na]+1

sCount[s+1]<-sCount[s+1]+1

#SD and NA/n

p_cum=p_cum+(na/(na+nb))

p_sd=append(p_sd,(na/(na+nb)))

#Use an adjustment by Agresti and Caffo(DBDCD)

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

#Convergence probability and Power of the test

#Using CIs

mu=pa-pb

MuHat=paHat-pbHat

SdHat=sqrt(paHat*(1-paHat)/(na)+pbHat*(1-pbHat)/(nb))
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E = qnorm(1-(alpha/2))*SdHat

CI<-c(MuHat-E, MuHat + E)

CI_RPW[n,]=CI

if (CI_RPW[n,1]<=mu && mu<=CI_RPW[n,2]){countCI=countCI+1}

#With test statistics and cutZ

z<-(paHat-pbHat)/sqrt(paHat*(1-paHat)/(na)+pbHat*

(1-pbHat)/(nb))#power wald

zDistr[n]<-z

c1<-0

if (z<cutZ){c1<-1} # for one-sided

if (c1==0){zCount<-zCount+1}

}

#Out comes

mean_length=mean(CI_RPW[,2]-CI_RPW[,1])

p_cum_r=p_cum/r #Mean (NA/n)

p_sd_r=sd(p_sd)#SD(NA/n)

probNA<-naCount/r #NA count

probS<-sCount/r # Success count

powerZ<-zCount/r #simulated power

CountCI_r=countCI/r #Simulated CI

return(list(zDistr=zDistr,

xNA=xNA,probNA=probNA,

probS=probS,

CI_RPW=CI_RPW,

pa=pa,pb=pb,cutZ=cutZ,

p_cum_r=p_cum_r,

p_sd_r=p_sd_r,

powerZ=powerZ,

CountCI_r=CountCI_r,

mean_length=mean_length

))}
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###############

#RSIHR

#Using the doubly biased coin design allocation function g(x,rho)

#(DBCD) in Hu and Zhang (2007) allocating by p=1/2

TargProp2<-function(pa,pb){rho<-sqrt(pa)/(sqrt(pa)+sqrt(pb))

return(rho)}

# gamma is the parameter in allocation function g(x,rho);

# r is the repetition number.

# critical value for one-sided test

# d is the number of patients-2.

# success probability on treatment A pa

# success probability on treatment B pb

distrSDBC2<-function(alpha,pa,pb,gamma,d,r,cutZ){

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)

xNA<-1:(d+1)

sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

scCount<-0

zDistr<-rep(0,r)

CI=c()

CI_RSIHR=matrix(0,r,2)

countCI=0

#SD=c()

for (n in 1:r){ print(n)

sa<-0

sb<-0

na<-1 # the first two patients
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nb<-1

u1<-runif(2,0,1)

if (u1[1]<pa) {sa<-sa+1}

if (u1[2]<pb) {sb<-sb+1}

#Use an adjustment by Agresti and Caffo (the same as Rosenberger et al)

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp2(paHat,pbHat) #define target proportion

x1<-1/2

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

for (i in 1:d){

u<-runif(3,0,1)

e<-0

if (u[1]<p){na<-na+1

if (u[2]<pa){sa<-sa+1}

e<-1}

if (e==0){nb<-nb+1

if (u[3]<pb){sb<-sb+1}}

#Use an adjustment by Agresti and Caffo (the same as Rosenbergeret al)

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp2(paHat,pbHat)

x1<-na/(i+2)

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

}

s<-sa+sb

naCount[na]<-naCount[na]+1



66

sCount[s+1]<-sCount[s+1]+1

#SD and NA/n

p_cum=p_cum+(na/(na+nb))

p_sd=append(p_sd,(na/(na+nb)))

paHat<-(sa+1)/(na+2)

#print(paHat)

pbHat<-(sb+1)/(nb+2)

ComSuc<-(s+2)/(d+4)

#Using CIs

mu=pa-pb

MuHat=paHat-pbHat

SdHat=sqrt(paHat*(1-paHat)/(na)+pbHat*(1-pbHat)/(nb))

E = qnorm(1-(alpha/2))*SdHat

CI<-c(MuHat-E, MuHat + E)

CI_RSIHR[n,]=CI

if (CI_RSIHR[n,1]<=mu && mu<=CI_RSIHR[n,2]){countCI=countCI+1}

#Using Zdist

Def<-paHat-pbHat

varDef<-sqrt(paHat*(1-paHat)/na+pbHat*(1-pbHat)/nb)

z<-Def/varDef

zDistr[n]<-z

c2<-0

if (z<cutZ){c2<-1} ##one-sided test

if (c2==0){zCount<-zCount+1}

}

mean_length=mean(CI_RSIHR[,2]-CI_RSIHR[,1])

p_cum_r=p_cum/r #mean(NA/n)

p_sd_r=sd(p_sd) #SD(NA/n)

probNA<-naCount/r

probS<-sCount/r

powerZ<-zCount/r
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CountCI_r=countCI/r

return(list(zDistr=zDistr,

xNA=xNA,probNA=probNA,

probS=probS,

CI_RSIHR=CI_RSIHR,

pa=pa,pb=pb,cutZ=cutZ,gamma=gamma,

p_cum_r=p_cum_r,p_sd_r=p_sd_r,

powerZ=powerZ,

CountCI_r=CountCI_r

,mean_length=mean_length))}

###############

#YW

#Using the (DBCD)

epsilin1<-0.25

#gamma is the parameter in allocation function g(x,rho)

TargProp3<-function(pa,pb){qa<-1-pa

qb<-1-pb

rho<-(qb+epsilin1*min(qa,qb)*sign(pa-pb))/(qb+qa)

return(rho)}

# gamma is the parameter in allocation function g(x,rho);

# r is the repetition number.

# critical value for one-sided test

# d is the number of patients-2.

# success probability on treatment A pa

# success probability on treatment B pb

distrSDBC3<-function(alpha,pa,pb,gamma,d,r,cutZ){

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)

xNA<-1:(d+1)
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sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

scCount<-0

CI=c()

CI_YW=matrix(0,r,2)

countCI=0

zDistr<-rep(0,r)

for (n in 1:r){ print(n)

sa<-0

sb<-0

na<-1 # the first two patients

nb<-1

u1<-runif(2,0,1)

if (u1[1]<pa) {sa<-sa+1}

if (u1[2]<pb) {sb<-sb+1}

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp3(paHat,pbHat)

x1<-1/2

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

for (i in 1:d){

u<-runif(3,0,1)

e<-0

if (u[1]<p){na<-na+1

if (u[2]<pa){sa<-sa+1}

e<-1}

if (e==0){nb<-nb+1

if (u[3]<pb){sb<-sb+1}}
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paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp3(paHat,pbHat)

x1<-na/(i+2)

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

}

s<-sa+sb

naCount[na]<-naCount[na]+1

sCount[s+1]<-sCount[s+1]+1

#E(NA/n) and SD

p_cum=p_cum+(na/(na+nb))

p_sd=append(p_sd,(na/(na+nb)))

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

ComSuc<-(s+2)/(d+4)

#Using CIs

mu=pa-pb

MuHat=paHat-pbHat

SdHat=sqrt(paHat*(1-paHat)/(na)+pbHat*(1-pbHat)/(nb))

E = qnorm(1-(alpha/2))*SdHat

CI<-c(MuHat-E, MuHat + E)

CI_YW[n,]=CI

if (CI_YW[n,1]<=mu && mu<=CI_YW[n,2]){countCI=countCI+1}

#Using Zdist

Def<-paHat-pbHat

varDef<-sqrt(paHat*(1-paHat)/na+pbHat*(1-pbHat)/nb)

z<-Def/varDef

zDistr[n]<-z

c2<-0
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if (z<cutZ){c2<-1} #one-sided test

if (c2==0){zCount<-zCount+1}

}

#Out comes

mean_length=mean(CI_YW[,2]-CI_YW[,1])

p_cum_r=p_cum/r #mean(NA/n)

p_sd_r=sd(p_sd) #sd(NA/n)

probNA<-naCount/r

probS<-sCount/r

powerZ<-zCount/r

CountCI_r=countCI/r

return(list(zDistr=zDistr,

xNA=xNA,probNA=probNA,

probS=probS,

CI_YW=CI_YW,

pa=pa,pb=pb,cutZ=cutZ,gamma=gamma,

p_cum_r=p_cum_r, p_sd_r=p_sd_r,

powerZ=powerZ,

CountCI_r=CountCI_r

,mean_length=mean_length))}

\end{lstlisting}

Now we move forward to Bootstrap method in RAD as follows:

\begin{lstlisting}

###############

#Estimate pa and pb

#RPW

distrSRPW_matix<-function(alpha,cutZ,pa,pb,r,d){

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)
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xNA<-1:(d+1)

sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

zDistr<-rep(0,r)

CI=c()

CI_RPW=matrix(0,r,2)

MuHat_RPW=c()

countCI=0

SD=c()

pHat_estimate=matrix(NA,r,2)

for (n in 1:r){ print(n)

na<-1

nb<-1

sa<-0

sb<-0

u1<-runif(2,0,1)

if (u1[1]<pa) {sa<-sa+1}

if (u1[2]<pb) {sb<-sb+1}

aBall<-1 # RPW(1,1,1)

bBall<-1

Add<-1

p<-aBall/(aBall+bBall)

for (i in 1:d){

u<-runif(3,0,1)

e<-c(0,0,0)

if (u[1]<p){na<-na+1

if (u[2]<pa){sa<-sa+1

aBall<-aBall+Add

e[2]<-1}

if (e[2]==0){bBall<-bBall+Add}
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e[1]<-1}

if (e[1]==0){nb<-nb+1

if (u[3]<pb){sb<-sb+1

bBall<-bBall+Add

e[3]<-1}

if (e[3]==0){aBall<-aBall+Add}

}

p<-aBall/(aBall+bBall)}

s<-sa+sb

naCount[na]<-naCount[na]+1

sCount[s+1]<-sCount[s+1]+1

#SD and NA/n

p_cum=p_cum+(na/(na+nb))

p_sd=append(p_sd,(na/(na+nb)))

#Use DCBD adjustment

# Use an adjustment by Agresti and Caffo

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

#Convergence probability and Power of the test

pHat_estimate[n,1]=paHat

pHat_estimate[n,2]=pbHat

#Using CIs

mu=pa-pb

MuHat=paHat-pbHat

SdHat=sqrt(paHat*(1-paHat)/(na)+pbHat*(1-pbHat)/(nb))

E = qnorm(1-(alpha/2))*SdHat

CI<-c(MuHat-E, MuHat + E)

CI_RPW[n,]=CI

MuHat_RPW[n]=MuHat

if (CI_RPW[n,1]<=mu && mu<=CI_RPW[n,2]){countCI=countCI+1}

#With test statistics and cutZ
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z<-(paHat-pbHat)/sqrt(paHat*(1-paHat)/(na)+pbHat*(1-pbHat)/(nb))#power wald

zDistr[n]<-z

c1<-0

if (z<cutZ){c1<-1} #for one-sided

if (c1==0){zCount<-zCount+1}

}

#Out Comes

mean_length=mean(CI_RPW[,2]-CI_RPW[,1])

p_cum_r=p_cum/r #Mean (NA/n)

p_sd_r=sd(p_sd) #SD(NA/n)

probNA<-naCount/r #NA count

probS<-sCount/r # Success count

powerZ<-zCount/r #simulated power

CountCI_r=countCI/r #Simulated CI

return(list(zDistr=zDistr,

xNA=xNA,probNA=probNA,

probS=probS,

powerZ=powerZ,

pa=pa,pb=pb,cutZ=cutZ,

CI_RPW=CI_RPW,

p_cum_r=p_cum_r,

p_sd_r=p_sd_r,

CountCI_r=CountCI_r,pHat_estimate=pHat_estimat,

mean_length=mean_length,MuHat_RPW=MuHat_RPW

))}

#Bootstrap

#RPW

distrSRPW_boot<-function(alpha,cutZ,B,BB,d,data){

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)
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xNA<-1:(d+1)

sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

zDistr<-rep(0,B)

CI=c()

#CI_RPW=matrix(0,r,2)

co=0

SD=c()

#mu_diff=c()

CI_RPW=matrix(0,BB,2)

#CI_RPWb=matrix(0,BB,2)

boot_count=0

#Cov_countb=0

for(b in 1:BB){ print(b)

pa=data[b,1]

pb=data[b,2]

pa_boot=pb_boot=c()

theta1=as.vector(NULL)

theta2=as.vector(NULL)

theta=as.vector(NULL)

#sort_theta=as.vector(NULL)

p_theorya=as.vector(NULL)

p_theory=as.vector(NULL)

Quantile_Boot=as.vector(NULL)

for (n in 1:B){#print(n)##Count the simulation run

#the first two patients are assigned to the two trs,one on each

na<-1

nb<-1

sa<-0

sb<-0
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u1<-runif(2,0,1)

if (u1[1]<data[b,1]) {sa<-sa+1}

if (u1[2]<data[b,2]) {sb<-sb+1}

aBall<-1 # RPW(1,1,1)

bBall<-1

Add<-1

p<-aBall/(aBall+bBall)

#print(p)

for (i in 1:d){

u<-runif(3,0,1)

e<-c(0,0,0)

if (u[1]<p){na<-na+1

if (u[2]<data[b,1]){sa<-sa+1

aBall<-aBall+Add

e[2]<-1}

if (e[2]==0){bBall<-bBall+Add}

e[1]<-1}

if (e[1]==0){nb<-nb+1

if (u[3]<data[b,2]){sb<-sb+1

bBall<-bBall+Add

e[3]<-1}

if (e[3]==0){aBall<-aBall+Add}

}

p<-aBall/(aBall+bBall)

}

s<-sa+sb

naCount[na]<-naCount[na]+1

sCount[s+1]<-sCount[s+1]+1

#Use DCBD adjustment

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)
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pa_boot=c(pa_boot,paHat)

pb_boot=c(pb_boot,pbHat)

}

theta1=c(theta1,pa_boot)

theta2=c(theta2,pb_boot)

theta=sort(theta1-theta2)

Quantile_Boot<- quantile(theta,probs =c(alpha/2,1-(alpha/2)))

CI_RPW[b,]=Quantile_Boot

if(CI_RPW[b,1]<=0.2 && 0.2<=CI_RPW[b,2]){boot_count=boot_count+1}

}

p_boot_count=boot_count/(BB)

mean_length=mean(CI_RPW[,2]-CI_RPW[,1])

return(list(CI_RPW=CI_RPW,

p_boot_count=p_boot_count,

mean_length=mean_length

))}

#Estimate pa and pb

#RSHIHR

distrSDBC2_matrix<-function(alpha,pa,pb,gamma,d,r,cutZ){

pHat_estimate=matrix(NA,r,2)

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)

xNA<-1:(d+1)

sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

scCount<-0

zDistr<-rep(0,r)

CI=c()

CI_RSIHR=matrix(0,r,2)
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MuHat_RSHIR=c()

countCI=0

#SD=c()

for (n in 1:r){ print(n)

sa<-0

sb<-0

na<-1

nb<-1

u1<-runif(2,0,1)

if (u1[1]<pa) {sa<-sa+1}

if (u1[2]<pb) {sb<-sb+1}

## Use an adjustment by Agresti and Caffo (the same as Rosenberger et al)

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp2(paHat,pbHat)

x1<-1/2

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

for (i in 1:d){

u<-runif(3,0,1)

e<-0

if (u[1]<p){na<-na+1

if (u[2]<pa){sa<-sa+1}

e<-1}

if (e==0){nb<-nb+1

if (u[3]<pb){sb<-sb+1}}

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp2(paHat,pbHat)

x1<-na/(i+2)
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y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

}

s<-sa+sb

naCount[na]<-naCount[na]+1

sCount[s+1]<-sCount[s+1]+1

#SD and NA/n

p_cum=p_cum+(na/(na+nb))

p_sd=append(p_sd,(na/(na+nb)))

paHat<-(sa+1)/(na+2)

#print(paHat)

pbHat<-(sb+1)/(nb+2)

ComSuc<-(s+2)/(d+4)

#with CIS

pHat_estimate[n,1]=paHat

pHat_estimate[n,2]=pbHat

mu=pa-pb

MuHat=paHat-pbHat

SdHat=sqrt(paHat*(1-paHat)/(na)+pbHat*(1-pbHat)/(nb))

E = qnorm(1-(alpha/2))*SdHat

CI<-c(MuHat-E, MuHat + E)

MuHat_RSHIR[n]=MuHat

CI_RSIHR[n,]=CI

if (CI_RSIHR[n,1]<=mu && mu<=CI_RSIHR[n,2]){countCI=countCI+1}

#With zdist

Def<-paHat-pbHat

varDef<-sqrt(paHat*(1-paHat)/na+pbHat*(1-pbHat)/nb)

z<-Def/varDef

zDistr[n]<-z

c2<-0
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if (z<cutZ){c2<-1} #one-sided test

if (c2==0){zCount<-zCount+1}

}

mean_length=mean(CI_RSIHR[,2]-CI_RSIHR[,1])

p_cum_r=p_cum/r #mean(NA/n)

p_sd_r=sd(p_sd) #SD(NA/n)

probNA<-naCount/r

probS<-sCount/r

powerZ<-zCount/r

CountCI_r=countCI/r

return(list(zDistr=zDistr,

xNA=xNA,probNA=probNA,

probS=probS,

CI_RSIHR=CI_RSIHR,

powerZ=powerZ,

pa=pa,pb=pb,cutZ=cutZ,gamma=gamma,

p_cum_r=p_cum_r,CountCI_r=CountCI_r,p_sd_r=p_sd_r,

pHat_estimate=pHat_estimate,mean_length=mean_length,

MuHat_RSHIR=MuHat_RSHIR))}

#Bootstrap

#RSHIR

distrSDBC2_boot<-function(alpha,B,BB,gamma,d,data,cutZ){

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)

xNA<-1:(d+1)

sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

zDistr<-rep(0,B)

CI=c()
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SD=c()

CI_RSIHR=matrix(0,BB,2)

boot_count=0

for(b in 1:BB){ print(b)

pa=data[b,1]

pb=data[b,2]

pa_boot=pb_boot=c()

theta1=as.vector(NULL)

theta2=as.vector(NULL)

theta=as.vector(NULL)

p_theorya=as.vector(NULL)

p_theory=as.vector(NULL)

Quantile_Boot=as.vector(NULL)

for (n in 1:B){ #print(n)##Count the simulation run

sa<-0

sb<-0

na<-1

nb<-1

u1<-runif(2,0,1)

if (u1[1]<data[b,1]) {sa<-sa+1}

if (u1[2]<data[b,2]) {sb<-sb+1}

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp2(paHat,pbHat}

x1<-1/2

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

for (i in 1:d){

u<-runif(3,0,1)

e<-0
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if (u[1]<p){na<-na+1

if (u[2]<data[b,1]){sa<-sa+1}

e<-1}

if (e==0){nb<-nb+1

if (u[3]<data[b,2]){sb<-sb+1}}

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp2(paHat,pbHat)

x1<-na/(i+2)

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

}

s<-sa+sb

naCount[na]<-naCount[na]+1

sCount[s+1]<-sCount[s+1]+1

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

ComSuc<-(s+2)/(d+4)

pa_boot=c(pa_boot,paHat)

pb_boot=c(pb_boot,pbHat)

}

theta1=c(theta1,pa_boot)

theta2=c(theta2,pb_boot)

theta=sort(theta1-theta2)

Quantile_Boot<- quantile(theta,probs =c(alpha/2,1-(alpha/2)))

CI_RSIHR[b,]=Quantile_Boot

if(CI_RSIHR[b,1]<=0.2 && 0.2<=CI_RSIHR[b,2]){boot_count=boot_count+1}

}

p_boot_count=boot_count/(BB)

mean_length=mean(CI_RSIHR[,2]-CI_RSIHR[,1])
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return(list(CI_RSIHR=CI_RSIHR,

p_boot_count=p_boot_count,

mean_length=mean_length

))}

#Estimate pa and pb

#YW

distrSDBC3_matrix<-function(alpha,pa,pb,gamma,d,r,cutZ){

pHat_estimate=matrix(NA,r,2)

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)

xNA<-1:(d+1)

sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

scCount<-0

zDistr<-rep(0,r)

CI=c()

CI_YW=matrix(0,r,2)

MuHat_YW=c()

countCI=0

#SD=c()

for (n in 1:r){ print(n)

sa<-0

sb<-0

na<-1

nb<-1

u1<-runif(2,0,1)

if (u1[1]<pa) {sa<-sa+1}

if (u1[2]<pb) {sb<-sb+1}

paHat<-(sa+1)/(na+2)
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pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp3(paHat,pbHat)

x1<-1/2

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

for (i in 1:d){

u<-runif(3,0,1)

e<-0

if (u[1]<p){na<-na+1

if (u[2]<pa){sa<-sa+1}

e<-1}

if (e==0){nb<-nb+1

if (u[3]<pb){sb<-sb+1}}

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp3(paHat,pbHat)

x1<-na/(i+2)

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

}

s<-sa+sb

naCount[na]<-naCount[na]+1

sCount[s+1]<-sCount[s+1]+1

#SD and NA/n

p_cum=p_cum+(na/(na+nb))

p_sd=append(p_sd,(na/(na+nb)))

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

ComSuc<-(s+2)/(d+4)
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#with CIS

pHat_estimate[n,1]=paHat

pHat_estimate[n,2]=pbHat

####

mu=pa-pb

MuHat=paHat-pbHat

SdHat=sqrt(paHat*(1-paHat)/(na)+pbHat*(1-pbHat)/(nb))

E = qnorm(1-(alpha/2))*SdHat

CI<-c(MuHat-E, MuHat + E)

MuHat_YW[n]=MuHat

CI_YW[n,]=CI

if (CI_YW[n,1]<=mu && mu<=CI_YW[n,2]){countCI=countCI+1}

#With zdist

Def<-paHat-pbHat

varDef<-sqrt(paHat*(1-paHat)/na+pbHat*(1-pbHat)/nb)

z<-Def/varDef

zDistr[n]<-z

c2<-0

if (z<cutZ){c2<-1} #one-sided test

if (c2==0){zCount<-zCount+1}

}

mean_length=mean(CI_YW[,2]-CI_YW[,1])

p_cum_r=p_cum/r #mean(NA/n)

p_sd_r=sd(p_sd) #SD(NA/n)

probNA<-naCount/r

probS<-sCount/r

powerZ<-zCount/r

CountCI_r=countCI/r

return(list(zDistr=zDistr,

xNA=xNA,probNA=probNA,

probS=probS,
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CI_YW=CI_YW,

powerZ=powerZ,

pa=pa,pb=pb,cutZ=cutZ,gamma=gamma,

p_cum_r=p_cum_r,CountCI_r=CountCI_r,p_sd_r=p_sd_r

,pHat_estimate=pHat_estimate,mean_length=mean_length,

MuHat_YW=MuHat_YW))}

#Bootstrap

#YW

distrSDBC3_boot<-function(alpha,B,BB,gamma,d,data,cutZ){

p_cum=0

p_sd=c()

naCount<-rep(0,d+1)

xNA<-1:(d+1)

sCount<-rep(0,d+3)

xS<-0:(d+2)

zCount<-0

zDistr<-rep(0,B)

CI=c()

SD=c()

CI_YW=matrix(0,BB,2)

boot_count=0

#Cov_countb=0

for(b in 1:BB){ print(b)

pa=data[b,1]

pb=data[b,2]

pa_boot=pb_boot=c()

theta1=as.vector(NULL)

theta2=as.vector(NULL)

theta=as.vector(NULL)

p_theorya=as.vector(NULL)
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p_theory=as.vector(NULL)

Quantile_Boot=as.vector(NULL)

for (n in 1:B){

sa<-0

sb<-0

na<-1

nb<-1

u1<-runif(2,0,1)

if (u1[1]<data[b,1]) {sa<-sa+1}

if (u1[2]<data[b,2]) {sb<-sb+1}

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp3(paHat,pbHat)

x1<-1/2

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)

p<-g1

for (i in 1:d){

u<-runif(3,0,1)

e<-0

if (u[1]<p){na<-na+1

if (u[2]<data[b,1]){sa<-sa+1}

e<-1}

if (e==0){nb<-nb+1

if (u[3]<data[b,2]){sb<-sb+1}}

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

EstiProp<-TargProp3(paHat,pbHat)

x1<-na/(i+2)

y<-EstiProp

g1<-y*(y/x1)^gamma/(y*(y/x1)^gamma+(1-y)*((1-y)/(1-x1))^gamma)
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p<-g1

}

s<-sa+sb

naCount[na]<-naCount[na]+1

sCount[s+1]<-sCount[s+1]+1

paHat<-(sa+1)/(na+2)

pbHat<-(sb+1)/(nb+2)

ComSuc<-(s+2)/(d+4)

pa_boot=c(pa_boot,paHat)

pb_boot=c(pb_boot,pbHat)

}

theta1=c(theta1,pa_boot)

theta2=c(theta2,pb_boot)

theta=sort(theta1-theta2)

Quantile_Boot<- quantile(theta,probs =c(alpha/2,1-(alpha/2)))

CI_YW[b,]=Quantile_Boot

if(CI_YW[b,1]<=0.2 && 0.2<=CI_YW[b,2]){boot_count=boot_count+1}

}

p_boot_count=boot_count/(BB)

mean_length=mean(CI_YW[,2]-CI_YW[,1])

return(list(CI_YW=CI_YW,

p_boot_count=p_boot_count,

mean_length=mean_length))}
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