
Navigation with uncertain Spatio-temporal
Resources

Dissertation von Sebastian Schmoll

München 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Hochschulschriften der LMU

https://core.ac.uk/display/427318075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Navigation with uncertain Spatio-temporal
Resources

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt/eingereicht von
Sebastian Schmoll

aus
München

14.10.2020

Erstgutachter/in: Prof. Dr. Matthias Schubert

Zweitgutachter/in: Prof. Dr. Herke van Hoof

Drittgutachter/in: Prof. Dr. Goce Trajcevski

Tag der mündlichen Prüfung: 04.02.2021

iii

Eidesstattliche Versicherung
Hiermit erkläre ich, Sebastian Schmoll, an Eides statt, dass die vorliegende Dissertation
ohne unerlaubte Hilfe gemäß Promotionsordnung vom 12.07.2011, § 8, Abs. 2 Pkt. 5,

angefertigt worden ist.

München, 07.04.2021
Sebastian Schmoll

iv

Contents

Zusammenfassung vii

Abstract ix

1 Introduction 1

2 Mobility Tasks with Stochastic Spatial Resources 5
2.1 Stochastic Spatial Resources . 5
2.2 Classification of the Research Area . 5

2.2.1 Spatial . 6
2.2.2 Sequential Decision Making . 7
2.2.3 Routing . 7
2.2.4 Uncertainty . 7

2.3 Applications . 9
2.3.1 Parking Search . 9
2.3.2 Travelling Officer Problem . 10
2.3.3 Passenger Dispatching . 11
2.3.4 Courier Service . 11
2.3.5 Pursuit . 12
2.3.6 Summary . 13

3 Solving Mobility Tasks with Stochastic Spatial Resources 15
3.1 Resource Routing . 17

3.1.1 Defining an MDP for Resource Routing 17
3.1.2 Bounded Real-time Dynamic Programming 18
3.1.3 Modeling Agent Locations . 19
3.1.4 Probabilistic Interesting . 19

3.2 Resource Collection . 20
3.2.1 Model-free Deep Reinforcement Learning 21

3.3 Non-deterministic Spatial Mobility Tasks 24
3.3.1 ORIENTATION: One Solver for all Applications 24

3.4 Multi-agent and Partial Observations . 25

vi Contents

4 Concluding Remarks 27
4.1 Conclusion . 27
4.2 Future Work . 28

A Publications 31
A.1 Dynamic Resource Routing using Real-Time Information 32
A.2 Dynamic Resource Routing using Real-Time Dynamic Programming 33
A.3 RL in smart spatio-temporal environments 34
A.4 Scaling the Dynamic Resource Routing Problem 35
A.5 Semi-Markov RL for Stochastic Resource Collection 36
A.6 Option-based ReInforcemENT learning for spatial navigATION 37
A.7 Optimizing the STARS Problem with Reinforcement Learning 61
A.8 SMART-Env . 62

Acknowledgements 69

Zusammenfassung
Durch intelligente Navigationssysteme werden Verkehrsteilnehmer davor bewahrt, Umwege
zu fahren. Dadurch sparen sie Zeit, Geld und verringern den CO2-Ausstoß. Aus diesem
Grund verbauen Hersteller Navigationssysteme in fast allen Neuwägen. Bis heute unter-
stützen die meisten Systeme nur einfache Routenplanung, die den kürzesten oder schnell-
sten Pfad von A nach B berechnen. Dennoch müssen Fahrer regelmäßig Entscheidungen
darüber hinaus treffen. Beispielsweise soll eine möglichst günstige Tankstelle auf dem Weg
zum eigentlichen Ziel besucht werden. Allerdings kann diese ihre Preise, während der
Fahrer oder die Fahrerin auf dem Weg dort hin ist, dynamisch ändern. Anschließend muss,
sobald das eigentliche Ziel erreicht ist, ein Parkplatz gefunden werden. Bisher fahren Park-
platzsuchende zufällig durch das Zielgebiet in der Hoffnung möglichst schnell einen freien
Parkplatz zu finden. Die Suche verursacht zusätzlichen Verkehr und der Fahrer oder die
Fahrerin verbringt mehr Zeit auf der Straße. Neben Privatpersonen müssen auch Trans-
portunternehmen komplexe Entscheidungen über Bewegungen treffen. Zum Beispiel muss
ein Taxifahrer, wenn er gerade keinen Fahrgast hat, entscheiden, wo er sich als nächstes
positioniert. Zwar könnte er am letzten Zielort warten, bis er einen Anruf der Taxizen-
trale bekommt. Falls jedoch der letzte Zielort in einem entlegenen Gebiet ist, muss der
nächste Fahrgast wahrscheinlich lange warten, bis der Fahrer oder die Fahrerin bei ihm
ankommt. Damit sinkt die Kundenzufriedenheit, was wiederum einen potentiellen Verlust
der Kunden bedeutet. Seit Kurzem gibt es immer mehr Datenquellen, die Entscheidungen
für diese Probleme verbessern. Beispielsweise wird durch Parkplatzsensoren die Verfüg-
barkeit der Parkplätze verfolgt, mobile Anwendungen sammeln Anfragen über Fahrgäste
und Tankstellen veröffentlichen ihren aktuellen Preis in Echtzeit. In dieser Arbeit wird
der Forschungsfrage nachgegangen, wie Algorithmen gestaltet werden können, sodass diese
veränderlichen Informationen verwendet werden können. Standard-Routing-Algorithmen
gehen von einer statischen Welt aus. Aber die Verfügbarkeit von Fahrgästen, die Tankstel-
lenpreise und die Parkplatzzustände ändern sich nicht deterministisch. Aus diesem Grund
modellieren wir eine Reihe von Anwendungen als Markov-Entscheidungsproblem (MDP).
Applikationsabhängig schlagen wir vor, das MDP mit dynamischer Programmierung, Re-
planning bzw. Hindsight Planning oder Reinforcement Learning zu lösen. Abschließend
fassen wir alle Anwendungen in einer Domäne zusammen. Dadurch können wir einen
Reinforcement Learning Ansatz definieren, der alle Anwendungen in dieser Domäne ohne
Änderung lösen kann. Dieser Ansatz ermöglicht es, die Routenplanung von der eigentlichen
Problemstellung zu lösen. Dadurch ist die gelernte Funktionsapproximation auch auf bisher
unbekannte Straßennetze ohne weiteres Training anwendbar.

viii Abstract

Abstract

Supporting people with intelligent navigation instructions enables users to efficiently achieve
trip-related objectives (e.g., minimum travel time or fuel consumption) and preserves them
from making unnecessary detours. This, in turn, enables them to save time, money and,
additionally, minimize CO2 emissions. For these reasons, manufacturers integrate navi-
gation systems into almost all modern automobiles. Nevertheless, most of them support
only simple routing instructions, i.e., how to drive from location A to B. Albeit, people
are regularly faced with more complex decisions, e.g. navigating to a cheap gas station
on the route while incorporating dynamic gas price changes. Another example-scenario
is after reaching the destination, an available facility to park needs to be found. So far,
people cruise almost randomly around the goal area in the search for a parking space. As
a consequence, persons valuable time is consumed and unnecessary traffic arises. Besides
private persons, transportation companies have to make complex mobility decisions. For
instance, taxi drivers have to find out where to move next whenever the taxi is idle. There
are plenty possibilities for where the taxi driver could go. In case the last drop-off was in
a sparsely populated region, waiting for a call from the taxi office will likely result in a
longer drive to the next customer. In turn, customer satisfaction decreases with a longer
waiting time and implies a potential loss of customers.

Recently, the number of data sources that potentially improve these mobility decisions
increased. For instance, on-street parking sensors track the current state of the spaces (e.g.
Melbourne), mobile applications collect taxi requests from customers and gas stations pub-
lish the current prices all in real-time. This thesis investigates the question of how to design
algorithms such that they exploit this volatile data. Standard routing algorithms assume
a static world. But the availability of passengers, gas prices and the availability of parking
spots change over time in a non-deterministic manner. Hence, we model multiple real-
world applications as Markov decision processes (MDP), i.e., a framework for sequential
decision making under uncertainty. Depending on the task, we propose to solve the MDP
with dynamic programming, replanning and hindsight planning or reinforcement learning.
Ultimately, we combine all applications in a single problem domain. Subsequently, we pro-
pose a reinforcement learning approach that solves all applications in this domain without
modification. Furthermore, it decouples the routing task from solving the application itself.
Hence, it is transferable to previously unseen street networks without further training.

x Abstract

Chapter 1

Introduction

The geographic mobility of persons and goods dramatically increased within the last cen-
tury. In modern civilization, people perform different tasks in various places, such that
the locations for working, housing and leisure activities are scattered. Hence, people are
constantly on the move. Furthermore, goods such as groceries or other consumer items
are delivered around the globe. However, the fluctuation in modern civilization has its
price. In Germany, the transport sector emitted 20 percent of the CO2 emissions (as of
May 2020), which corresponds to 163 million tons of greenhouse gases [38]. Those gases
reinforce climate change and this, among others, increases the number and strength of
natural disasters (wildfire, flooding, hurricane). Furthermore, the higher sea-level reduces
valuable soil, which in turn decreases living environment and food production. As the
climate change overall has appalling consequences, the goal is to minimize the CO2 emis-
sions. The research community and industry are working on alternatives to combustion
engines. Nevertheless, mobility will always consume energy and if we want to exclusively
use renewable energies, we have to keep in mind the limited volume that renewable sources
provide.

In developed countries, traveling is an integral part of daily life. There are two main
logistic categories – public and individual transportation (and sometimes a particular trip
may combine the two models). From an energy consumption point of view, public trans-
portation is much more efficient, since it bundles a bunch of people or goods in a single
truck, or train. Specifically, in the case of trains, a frequently electric engine moves hun-
dreds of individuals or goods along the same way. It further causes less particulate matter
in cities. Nonetheless, the bundling has its drawbacks. The start and destination of the
public transport system are fixed and not equal to the actual routes of the different in-
dividuals. Hence, they require another type of mobility for the so called last mile, i.e.,
the first/last portion of the respective trips. The carrying of heavy or large items is less
comfortable. Economically oriented organizations often decide in favor of individual trans-
portation, since lower travel times save personnel costs and customer satisfaction can often
be increased. Moreover, as the recent COVID-19 pandemic has demonstrated, the epidemic
spread is facilitated by crowded train compartments. The more or less frequent trips and
sometimes not duly schedule of trains and buses restrict the planning capabilities of the
individuals. The energy consumption benefits in sparse regions is put into perspective by

2 1. Introduction

fewer individuals to share the commute. In any case, private transportation is more flexible
and time-efficient than public traffic connection, particularly but not limited in non-urban
regions.

Individual transportation gives people a high degree of flexibility. As a simple example,
at every turning point, a car or truck driver can decide which direction to choose, i.e., a
driver can move from any point in a street network to another. But doing so requires a
sequence of decisions, i.e., at every upcoming intersection they want to pick the direction
that leads them to their destination. Finding the shortest path from a location A to another
location B is called routing and is mostly considered to be solved in static environments.
For decades, navigation systems have been relieving drivers of this sequential decision-
making task. Nonetheless, mobility is more than routing. For instance, an employee wants
to drive home from the office, but he/she wants to stop by a (cheap) gas/charging station
and an ATM along the way. The car needs a place to park on-street close to the densely
populated residence. The availability of parking spots is volatile. Hence, the shortest path
solutions fails to provide an effective method for encompassing all the requirements of the
mobility-related task. Let us consider a further example. Suppose we are in a smart city
or amusement park that collects information about the occupancy and waiting times of
attractions. People want to visit a set of places. If we do not consider waiting times,
and reduce the walking times only for a given bulk of attractions, this setting becomes
an instance of the travelling salesman problem. For a pleasant stay, people want to visit
various types of point of interests (restaurants, sights, rides) alternately. Thereby, they
want to increase the number of visits, ranked by personal preferences, within a given
time-period. Since the status of the attractions changes in a non-deterministic manner, a
pre-computed plan for the whole day (path) is not adequate. Most research so far focused
on static environments. However, due to the increasing amount of available data-sources,
taking into consideration the stochastic future changes of potential interesting locations
can further improve the solutions, implying shorter on-street time and less CO2 emissions.

Such potentially interesting locations with stochastic development occur in many real-
world applications. We summarize them by the definition of stochastic spatial resources
(SSR). Other illustrative examples are parking spots, taxi passengers or rental bicycles.
They all share the property of having a location and status that changes over time according
to a stochastic process. People may directly alter the state of the SSRs, e.g. occupying
the parking spot or picking up a taxi passenger.

Here is where our research comes in. This thesis tackles the question of how to support
people with navigation decisions by using data about SSRs provided by smart cities or
mobile applications. This is a sequential decision making task under uncertainty.

We present several applications in which an agent navigates along a road graph and
visits SSRs. One such task is the parking search problem, where the agent searches an
available parking spot close to the destination. We model this problem as an instance of a
Markov decision process (MDP) and solve it optimally with dynamic programming (DP)
techniques. Since the state space and by implication the computational efforts grow expo-
nentially with the number of parking spots, DP is only suitable for small problem settings.
Even after only updating relevant parts of the state space and optimizing the transition

3

function, the computational efforts become intractable with an increasing number of loca-
tions that are subject to updates. Thus, for scalability, we seek good approximate solutions.
Some real-world applications are not “probabilistic interesting”, which means that choosing
a non-optimal option likely results in a significantly worse situation. For instance, picking a
sub-optimal turn during a parking search is typically reversible with little additional costs.
For this reason, we can show that replanning and hindsight planning approaches work well
within the parking search task. Nevertheless, in some cases, even the determinization is
once again an instance of the travelling salesman problem and accordingly NP-hard [25].

Even with existing data for a particular task, defining the MDP (particularly the state
transition probabilities) may be difficult or error-prone. Therefore, we provide a broad
framework based on deep reinforcement learning that applies to the issues described above
without modification and the need for an MDP model.

This thesis is structured as follows. Chapter 2 gives an in-depth overview of this
thesis research area, previous research and applications. Afterwards, Chapter 3 sketches
the contributions of this work. Then, we conclude and recommend directions for future
research.

4 1. Introduction

Chapter 2

Mobility Tasks with Stochastic
Spatial Resources

This chapter highlights the previous research gap filled by this thesis’s research. We explain
the term stochastic spatial resources (SSR), illustrate the research gap which this research
closes and list example applications treated within this work.

2.1 Stochastic Spatial Resources
It often requires movement to get a particular task done. For example, people desire to
visit a specific target location (e.g. office) or type of target (e.g. restaurant). Generally,
these places have volatile states, e.g. an ATM can be closed, a gas station has changing
prices, and a restaurant may be fully occupied. We call such targets stochastic spatial
resources (SSR). As mentioned, the problem settings addressed in this thesis assume that
all the resources have a location. While this is static for some types of resources (e.g.
ATM, gas station), the resource’s place may change over time for other instances, e.g. an
ice cream cart moves over time. An SSR has a potentially volatile state, e.g. availabilities,
prices, etc. We assume that a stochastic process changes both SSR properties over time.
Some resources may be altered directly or indirectly by the agent. For instance, a guest
(agent) occupies a restaurant table, or a thief takes flight from a policeman (agent).

Hitherto, real-time information about SSRs was sparse. However, due to sensors and
mobile applications, the observability about the states and locations becomes increasingly
accessible. Future applications will expectedly consider this information to provide their
customers with better navigation decisions.

2.2 Classification of the Research Area
Below, we provide a positioning of the research area in the context of existing classifications
of spatial and artificial intelligence (AI) research, illustrated in Figure 2.1.

6 2. Mobility Tasks with Stochastic Spatial Resources

Figure 2.1: Placement of the SSR research within the spatial and AI research. The illustra-
tion contains multiple research areas (circles) that are enclosed within others or intersect.
The ratio of a subset of the super-set in the illustration does not indicate the real portion.

2.2.1 Spatial

Improving today’s mobility is a core topic of the spatial research community. State-of-
the-art navigation systems gather data from numerous sources (e.g. sensor data or mobile
applications) to enhance navigation decision to efficiently guide users to a specific desti-
nation. Hence, the spatial community combines knowledge gathered from diverse other
research fields. For instance, the spatial community integrates research on database and
data mining technologies among others, because data has to be efficiently stored, retrieved
and processed. Due to crowd sources and sensor value errors, the data is regularly uncertain
[35, 11]. Uncertainty due to incomplete information about the state is hereinafter called
partially observability [54]. Even if we certainly know the real current state (i.e., fully
observable), the future development usually follows a probability distribution. Therefore,
the spatial community uses and adapts machine learning tools from the AI community to
learn the expected future state (e.g. regression) [10, 6, 30] or to sample from the distribu-
tion (e.g. generative adversarial networks) [40]. Those machine learning models can then
be helpful for human decision making.

2.2 Classification of the Research Area 7

2.2.2 Sequential Decision Making
Making a sequence of decisions to reach a specific goal is called sequential decision making
(SDM). It has a sustained research background in artificial intelligence (AI). In some appli-
cations the transition model is deterministic, i.e., a given state-action pair always implies
the same next state. Then, search algorithms find the solution (here a sequence of actions)
for a given start state. In some applications, people are happy to find any solution. In
others, they want to minimize the number of actions (bread-first search) or the costs for
executing the sequence like, for example minimizing the travel distance from a given source
to a given destination (using Dijkstra’s algorithm [7]). Search algorithms differ in the order
in which they expand state-action pairs. The goal is to find a solution with as few expan-
sions as possible. For this purpose, informed search algorithms use heuristics, e.g. A* [14].
However, many heuristics are problem-specific. Nevertheless, applications are plentiful,
e.g. sliding puzzles, routing, robot navigation, automatic assembly sequencing and protein
design. Consequently, research on application-independent heuristics is available, e.g. FF
[15]. (cf. [37], Chapter 3 and 10)

2.2.3 Routing
Only in the 20th century, cartography became more widely available to both individuals
and companies, and its effective use was enabled due to print techniques and areal- and
satellite images. Prior to that, little help was available for deciding how to find (an efficient
route to) a specific location. Access to automobiles tremendously increased the mobility
range of the large portion of the population, and the demand for routing to previously
unknown areas has become more frequent. It was common to look up and memorize an
easy route rather than the shortest or fastest route. At every turning point, it was necessary
to make a decision based on the previous preparation. Especially in complex paths, partial
information about the current position made decisions while driving error-prone. Today,
GPS and regularly updated map data simplify the decisions drives have to do on-street,
as the navigation system tells at each intersection which direction to take next. Modern
map-systems are even aware of current traffic congestion. Consequently, they save the
driver time and reduce CO2 emissions.

Although the first systems were able to reduce stress and preparation and driving
time, path computations for long distances were time consuming and difficult due to low
computational power. Spatial research tackled this issue. Researchers proposed better
lower bounds compared to the areal-distance, e.g. landmarks [13]. Hierarchical approaches
(e.g. highway hierarchies [39]) split the task into two different action abstractions, such
that long-distance routing is efficiently done on a reduced, higher-level graph (highways).

2.2.4 Uncertainty
So far, we assumed a deterministic world. However, future developments are stochastic in
some applications. We call such tasks sequential decision making under uncertainty. A

8 2. Mobility Tasks with Stochastic Spatial Resources

framework for such problems is the Markov decision process (MDP).
Since the follow-state is probabilistic, searching for a goal state is not useful. We

do not know if the assumed state sequence will occur. Further, we cannot make any
guarantee about the costs (or rewards) received in a particular trial. Hence, we optimize
the expected costs or rewards in an episode. An MDP describes a probability distribution
for the next state given the current state and action. Accordingly, MDPs describe a
Markovian (memoryless) stochastic process. In [45], we argue why MDPs are well-fitting to
uncertain mobility tasks. Methodologies for solving MDPs already exist in general-purpose
AI literature, e.g. value iteration [3], policy iteration [16] and q-learning [52]. However,
they do not converge in an adequate amount of time in realistic settings. In the last
decade, developments of the graphics processing unit (GPU) technology and deep learning
frameworks utilizing GPUs lead to advantages in function approximation with artificial
neural networks. With approximations (e.g. deep neural networks), the algorithm can
assign close representations, a similar utility and abstract experiences between states. By
virtue of these advances, deep reinforcement learning has reached the capability to solve
much larger problems.

The ambition of general-purpose AI is to develop algorithms that maximize the number
of environments for which an effective solution can be generated. Nonetheless, for the
specific applications, it makes sense to exploit knowledge about the problem (e.g. spatio-
temporal knowledge) to let it converge in a reasonable time. Utilizing this knowledge has
been done before in deterministic contexts, i.e., routing. The deterministic heuristic search
in general-purpose AI (e.g. FF [15]) differs from the spatial routing solutions only in the
heuristic function (e.g. areal distance or landmarks [13]). Correspondingly, we improve
heuristic functions for uncertain mobility tasks by exploiting the spatio-temporal nature
of the problems. We focus on applications that have SSRs as fundamental component
of their domain. When scaling the settings, the state space grows exponentially with
the number of SSRs. Soon, approximate solutions become necessary. A major topic is
the state representation as input for deep neural networks. The position of the agent is
a discrete node in the graph. When learning an embedding for the nodes (i.e., one-hot
encoding) advantages to the table-based reinforcement learning are relativized. Related
work discretizes the street network into grid cells [1, 26, 27, 28, 50]. Then, actions are to
go north, south, east or west. The agent can hence decide only on rough areas, but it does
not make routing decisions anymore. Our goal is to let the agent decide on the lowest
possible level, i.e., which action to take next.

2.3 Applications 9

2.3 Applications

2.3.1 Parking Search

Figure 2.2: Illustration of a parking search. The P signs indicate a node with a parking
spot. A green/red dot denotes that it is available/occupied. The target sign marks the
target location of the driver. The car icon shows the position of the driver. (1) The driver
heads the available parking spot to the right of the target location. (2) By the time that
he/she arrives, the parking spot became occupied. Hence the driver attempts to move to
the next best parking spot (3).

Finding an available parking spot close to the destination is a time-consuming task in
many urban areas. The increasing individual traffic and the spatial limitations resulted in a
shortage of parking spaces, especially in populated areas (e.g., restaurants, office district),
as well as areas that host large events (sport, concert). With an uninformed search of
parking spots, the driver searches slowly in a kind of random walk manner around the
target. Parking search causes on average 30 % of urban traffic [48]. Accordingly, the
driver slows down the traffic flow and produces unneeded CO2 emissions. Moreover, the
additional driving time and the slower traffic flow have harmful economic consequences.
Some cities have installed on-street parking sensors to tackle this issue (e.g. Melbourne
and San Francisco). Additionally, mobile applications and modern cars can detect parking
activities [31]. Although applications with partial observation are even more challenging
due to the partial and erroneous nature of the data, even if flawless information is available,
the parking spots’ states still change while driving according to a stochastic process.

Previous research in (partially observable) parking search tried to solve the problem
with solutions based on the paradigm of time-dependent travelling salesman problem (TSP)
[19, 20]. Solving the TSP is computationally expensive and only approximates the actual
query, as it does not handle stochastic state transitions. We map the resource routing task
to the framework of MDPs.

Other approaches suggest a reservation system for parking spots. In our opinion, such
a system may be unfair and may end up being waste of resources. A reserved parking spot
will be unoccupied yet it will not be available for other cars for a particular amount of
time. Furthermore, a customers may have other business to attend and no longer need the
spot, leaving an open spot unavailable for other people. It is likely that spots are reserved

10 2. Mobility Tasks with Stochastic Spatial Resources

precautionary to have a spot just in case. On the other hand, someone might just need to
drop something off while the spot is still empty, thus blocking the reserved space.

Banning individual traffic from cities would solve the issue of insufficient space for
parking, however, it could result in an overload of the capacities of already overcrowded
public transportation systems. Besides, it is usually unmanageable to avoid individual
transport (e.g. delivery vehicles).

A parking spot is a resource having two states, available and occupied. The goal is to
find an available resource as fast and as close to the target as possible. Hence, we refer to
this task also as the resource routing task.

2.3.2 Travelling Officer Problem

Figure 2.3: Blue, green, red, yellow dots indicate parking spots in free, occupied, violated
and fined state, respectively. The officer fines the violation on the left hand side (1-2).
When he/she arrives, the parking states changed and there is no violation left, so the
officer moves towards the parking spot being in violation soon (3).

Due to the high demand and the low offer of parking spots in urban areas, many cities
restrict parking spots with a maximum parking duration. This yields a fairer share of
resources. Unfortunately, without controlling the restrictions, violations would frequently
occur. Most large sites have parking officers patrolling. However, if the officer has to check
every car with an uninformed search, human resources are used ineffectively. Various data
sources, e.g. camera systems, mobile apps detecting parking events or movement data of
vehicle fleets, could enhance the efficiency and effectiveness of the officer’s observation.
Some cities, e.g. Melbourne, San Francisco and Canberra (Manuka), have on-street park-
ing sensors. The officer may exploit this information to detect overstays. Due to legal
constraints, a parking officer may have to deliver the parking tickets by hand. Hence, the
goal of this task is to maximize the number of issued parking tickets. Withal, the human
resources are limited and it is paramount that a particular officer can cover a larger area.

Suppose the actual departure and arrival times of vehicles are known in advance. Then,
the travelling officer problem would be an instance of a time-dependent travelling salesman
problem. In reality, due to on-street sensors, we know the current state of the parking
spots, but we do not know the future parking activities. Equivalent to the parking tasks,

2.3 Applications 11

Figure 2.4: Illustration of a taxicab example. The taxi-icon shows the location of the
agent. Human icons are passengers looking for a taxi. (1) The taxi chooses to pick up
the passenger on the right-hand side. When he/she arrives (2) the other passenger is
not available anymore, but a new passenger appeared. (3) The taxi driver brings his/her
passenger to the destination location.

we assume a stochastic process behind the vehicle movements. Thus, we do not know if
the car in violation is still available by the time the officer arrives. It becomes even more
uncertain when we consider the parking spot states after more time has passed. The set
of all possible follow-states after fining a car is vast. Therefore, we argue it does not make
sense to plan too far into the future, i.e., solving a travelling salesman problem, as done
in previous work [47]. Preferably, our policy should choose the parking spot, having the
optimal expected value of accumulated future parking tickets. Again, this is a query for
an MDP.

2.3.3 Passenger Dispatching
The personal transportation of passengers also plays an essential role in large cities. Re-
gardless, if a single taxicab wants to minimize its idle time or a whole fleet seeks optimiza-
tion, the goal is always to maximize the customers handled. In some settings it is even
allowed to share a ride with other customers, e.g., [1, 26]. Existing variations of this task
are determined by the availability and nature of the provided information. The demands of
a taxicab with no information about potential passengers and other taxicabs, e.g., [5, 22],
have different challenges than matching taxis and passengers with full knowledge about
passengers, e.g. [50]. Nevertheless, in all manifestations an idle vehicle should be posi-
tioned as close as possible to a potentially new passenger, and minimize the waiting and
driving time of passengers. Since a stochastic process behind the appearance of passengers
is reasonable, it makes sense to solve this as an MDP.

2.3.4 Courier Service
The delivery of goods from one place to another is a service with increasing demand,
especially in urban areas. An employee of the courier company riding a truck, car or
bicycle receives incoming source and destination locations or customer requests. The type

12 2. Mobility Tasks with Stochastic Spatial Resources

Figure 2.5: Illustration of a food delivery task, an example of a courier service. An employee
of the courier company decides to pick up and deliver a pizza (1). When he/she enters
the pizza restaurant, a new request from a burger restaurant turns up (2). The courier
decides to pick up the burger on the way before delivering the pizza. Afterwards, he/she
delivers the burger to the corresponding customer. Finally, the employee returns to the
pizza restaurant because (3) he/she received the information that a pizza is about to be
ready soon.

of goods is variable. Some couriers specialize in mail delivery, while others deliver food
from restaurants to customers. Nevertheless, all courier companies share the property,
that new customer requests arrive over time in a non-deterministic manner. Furthermore,
a courier may decide to pick up multiple commodities before delivering them. At the same
time, a courier aims to minimize delivery times.

The courier task is different from existing vehicle routing problems (VRP) [36, 49],
where the target is to visit a predefined set of target locations. An instantiation of the
VRP is the travelling salesman problem (TSP). But there are other variants, such as VRP
with (soft) time windows, where the vehicle has to (or should in case of soft time windows)
visit the targets at predefined periods. Some research assumes that new requests occur
dynamically over time. In the courier task, however, we have pickup and drop-off locations.
Delivery requests are usually not announced before the pickup time. VRPs typically try to
minimize the costs, while in the courier setting, the agent aims to maximize the number of
delivery requests satisfied in time. Furthermore, the courier can decide if he/she wants to
deliver a parcel. In many VRPs the vehicle has to fulfill all requests, however, variants of
the problem in which some deliveries cannot be fulfilled (with associated penalty, subject
to minimization) have also been considered, e.g., [51].

2.3.5 Pursuit
In some scenarios, an agent wants to catch one or multiple moving targets. For instance,
a policeman needs to arrest a criminal. Another example is finding a dog equipped with
a GPS transmitter, after it had ran away. Sometimes the exact location of the target is
known (e.g. by GPS, video cameras or a helicopter). However, one cannot know where it
is going to move next. Hence, the target is modifying its location according to a stochastic
process.

2.3 Applications 13

Figure 2.6: Illustration of a Pursuit. A thief robs a bank (1). Afterwards he/she takes
flight and the police is alerted (2). The cops follow and catches the thief and imprisons
him/her (3).

2.3.6 Summary
In the above examples, the objectives and potential user groups are very diverse. Never-
theless, they share common properties. First, each application operates on a user (agent)
positioned on a street network. The agent wants to visit one or multiple locations, that
we call resources, e.g. parking spot, pickup/drop-off locations or a moving ice cream cart.
Some of those resources move over time or change their state according to a potentially
unknown stochastic process. In this thesis, we present solution approaches for the appli-
cations mentioned above.

14 2. Mobility Tasks with Stochastic Spatial Resources

Chapter 3

Solving Mobility Tasks with
Stochastic Spatial Resources

This chapter depicts the relations and the contributions of the papers that piece together
this thesis. First, we model a task (resource routing) with real-world application (parking
search) as an MDP and solve it with dynamic programming [44]. The experiments show
that our new approach outperforms previous solutions by exploiting real-time information.
The results indicate that the MDP-based solution can effectively utilize the real-time in-
formation to provide improved solutions. Then, we improve the dynamic programming
solver [43] by focused Bellman updates, improved heuristics and pruning transitions with
marginal probability. The new approach notably outperforms standard solver. Despite
these significant improvements, the state space complexity remains exponential. Hence,
we present approximate solutions based on replanning and hindsight planning [41]. The
conducted experiments demonstrate that our approximated solutions are close to the op-
timum in environments in which the MDP is solvable within an adequate time period.
Moreover, our replanning and hindsight planning approaches scale well with the number
of SSRs, thus, enabling the quick computation of environments with SSRs in the margin of
hundreds. In addition, we apply model-free deep reinforcement learning on the travelling
officer problem [46]. The distance-based function approximation shares parameters along
all SSRs. Consequently, it is sample efficient and transferable. In large and complex envi-
ronments, we significantly outperform previous approaches and generalize it for all mobility
tasks having SSRs [42]. Comparison with standard reinforcement learning baselines show
that our solution is more sample efficient on all four example tasks. Finally, we present a
solution and training environment for multi-agent and partially observable settings (taxi
passenger dispatching) [5, 9]. Table 3.1 gives a concise summary of the main results and
indicates the respective publication in which the findings were presented.

16 3. Solving Mobility Tasks with Stochastic Spatial Resources

Research Question Brief Description Paper
How can we solve mobility
tasks with full information
about spatio-temporal elements
in general?

The framework of Markov decision processes
and reinforcement learning fits well to those
environments. We envision that reinforce-
ment learning and other Markov decision pro-
cess solver will appear more frequently in
future research when considering real-time
information about spatio-temporal elements
that affect the objective function.

[45]

How can we optimally solve the
research routing task under full
observation?

We model the research routing task with real-
time information as Markov decision process
and solve it with value iteration [4].

[44]

How can we efficiently solve
the resource routing task if pre-
computation is not possible?

We use the anytime approach with heuristic
search Bouned Real-time Dynamic Program-
ming (BRTDP) and improve the bounds.
Furthermore, we skip very unlikely transi-
tions to speed up updates.

[43]

Is it possible to approximately
solve the Resource Routing task
with hundreds of resources in
real-time?

The Resource Routing task is not probabilis-
tic interesting. Hence, replanning [29] and
hindsight planning [53] performs well. We ex-
ploit the spatial nature of the task to make it
scalable.

[41]

How can we compute a good
policy for the travelling officer
problem?

Previous research solved the problem with
a time-varying travelling salesman problem.
We model the task as a semi-Markov decision
process and solve it with deep reinforcement
learning.

[46]

Can we solve all spatial mobil-
ity tasks having SSRs with the
same algorithm?

We define the new problem domain called
Non-deterministic Spatial Mobility Tasks
(NSMT) and integrate it to the framework
of MDPs. We present a sample efficient re-
inforcement learning approach that is able
to solve all problems of this domain without
modification.

[42]

What is a good policy for
searching new taxicab passen-
gers when the taxis do not know
the location of passengers and
other taxis (GIS Cup 2019)?

We propose round-trips for idle taxi drivers.
Choosing the next round-trip is done with a
stochastic policy learned with a multi-armed
bandit approach.

[5]

How can we train multi-agent
environments with SSRs?

We provide a training environment for multi-
agent resource search tasks with different lev-
els of observation.

[9]

Table 3.1: Overview of the research questions and the corresponding summary of the work
within each paper that is part of this work.

3.1 Resource Routing 17

3.1 Resource Routing
Resource routing is the first spatial mobility task with SSRs that we address. In the problem
set-up, an agent navigates on a street graph. Furthermore, there is a set of SSRs usually
with two states, i.e., available and occupied. The states flip according to a stochastic
process over time. The objective is to find an available resource as quickly and efficiently
as possible. Depending on the application, acquiring an SSR may imply terminal costs.
One example application is the parking search. As explained in Section 2.3.1, an agent
is looking for an available parking spot. After the car is parked, the driver walks to the
actual destination (terminal costs). Other applications are finding charging stations or free
rental bikes.

3.1.1 Defining an MDP for Resource Routing
The states of resources in the resource routing task alter over time according to a stochastic
process. Hence, the optimal solution must consider all possible future states, generated by
the stochastic process, which, as described below, is what an MDP does. Hence, we argue
that the optimal solution can be computed by solving the corresponding MDP. Modeling
an instance of the resource routing domain as an MDP requires expert knowledge about
the stochastic processes (model assumptions). In [44], we provide an MDP model for the
resource routing task under full observation (i.e., real-time information about the SSRs’
states). We propose to represent a state as a combination of the driver’s current node
and the availability of each SSR, which naturally implies that the state space expands
exponentially with the growing volume of SSRs. The set of actions are the edges in the
graph, yet for a given state, only adjacent edges are allowed. An MDP additionally defines
a transition function, i.e., the probabilities for each possible follow state given the current
state and action. For this purpose, we take two simplifications. First, we assume inde-
pendence between SSRs. Second, we propose to model the dwelling time from occupied
to available and vice versa exponentially distributed. Since the exponential distribution is
memory-less, the probability that a parking spot is available at a given point in time is a
continuous-time Markov chain. This is in accordance with [19].

In resource routing, the duration of different actions vary. Meaning, the distances and
maximum speed between two nodes in the graph are variable. Hence, the driver needs
a variable travel time for each edge. On the other hand, an MDP assumes a discrete
and uniform duration for every step. If this is not the case, we have a semi-Markov
decision process (SMDP). The discrete-time SMDP framework [17] allows to model the time
between two decisions as a random variable. The two Bellman update rules differentiate
only on how to discount future rewards (or costs). In the resource routing setting, we do
not need discounting, because a second in the future counts as much as the current second.
Accordingly, we set the discount factor to 1, implying that the MDP is mathematically
equivalent to the SMDP.

In [44], we solve the MDP with value iteration [4], a well known dynamic programming
approach for solving MDPs. Nevertheless, only a few parking spots are manageable due to

18 3. Solving Mobility Tasks with Stochastic Spatial Resources

the exponential growth of the state space. Therefore, we propose to pool all parking spots
on one edge and pre-compute policies for small areas which are within walking distance of
the actual target.

3.1.2 Bounded Real-time Dynamic Programming

Sometimes, pre-computation of policies for multiple areas is impractical. For instance,
suppose there exists a target node, where the driver eventually wants to go after acquiring
a SSR, and the objective is to minimize the overall time until the driver reaches the target
node. Then, we would need to solve the MDP for every target node in advance, which
is impractical. Thus, a solver that can retrieve a good policy in real-time is preferred.
In [43], we propose to define the parking search problem as a stochastic shortest path –
a subset of the MDP class. Thereupon, we can apply real-time dynamic programming
(RTDP) [2] approaches, which update only states that likely appear for a given start state.
More precisely, we use bounded RTDP (BRTDP) [32]. Hence, the updates are much more
focused. We can directly apply BRTDP on our resource routing MDP model. It already
helps as it reduces the runtime until convergence. However, especially the standard bounds
do not scale with the number of resources. Thus, we eliminate the exponential factor of the
runtime of both the lower and the upper bounds for the optimal expected costs of a state.
Nevertheless, since every state has an exponentially increasing quantity of subsequent
states (w.r.t. SSRs), handling even a single update becomes rapidly infeasible. Since the
probability for a succeeding state is the product of probabilities for the respective resource
transitions of the continuous time Markov chains, there is a vast amount of subsequent
states with numerically irrelevant probability.

To tackle this issue, we introduce a novel algorithm, scanning for the minimal set
of states such that the cumulative probability of the remaining events is smaller than a
threshold. A naive approach would sort the set of transitions by the probability value
and return the states with the highest probability until the sum of probabilities is large
enough. The difficulty is that we do not want to iterate over every follow-state. Otherwise,
we do not have any benefit. Consequently, we need an algorithm that returns the highest
probable transitions without explicitly listing and sorting them. We propose a best-first
search that guarantees to return follow-states with decreasing transition probability. By
assuming independence between SSRs, we know that the transition with the most likely
probability value is the one where each SSR has its most likely Markov chain transition.
This follow-state is the root node of our search graph. Subsequently, we expand the root
by adding a child for every possible separate SSR state switch. We add these follow-states
to a priority queue and prove that the transition with the second-highest probability is in
the priority queue. Then, we do the expansion for this node, get the follow-state with the
highest value, and so on. Since most states have a numerical marginal, we can retrieve
the highest likely transitions without processing most of the follow-states. Adding this
algorithm to the real-time solver improves the runtime notably and only slightly decreases
its quality [43].

3.1 Resource Routing 19

3.1.3 Modeling Agent Locations
In contrast to [44], we define the location of the agent in [43] as an edge, not a node. An
edge contains more information, i.e., the source direction. As a result, we can penalize
u-turns, as they take more time than other turns. Furthermore, resources (e.g. parking
spots) are typically located on edges, not nodes. However, there are about two to three
times more edges, resulting in a larger state space. Overall, both attempts are valid and
have their advantages and disadvantages. Formally, both fit well to the MDP framework.

3.1.4 Probabilistic Interesting
In the previous section, we proposed solutions that efficiently return (epsilon-)optimal
policies for the resource routing task with dynamic programming. Since the MDP state
space grows exponentially, no matter how efficiently we solve this problem, the runtime
grows exponentially. Hence, it does not scale beyond around ten SSRs. However, there
are applications for which this is not sufficient. For instance, a city can have hundreds of
relevant parking spots. Therefore, we seek reliable and scalable approximations. We know
that not every MDP is “probabilistic interesting” [29]. Intuitively, an MDP is “probabilistic
interesting” if it contains states similar to the following example:

Suppose we are in a state with two actions, o and p. Action o has two outcomes. The
first and most likely leads to the goal with high rewards. The second, still quite probable,
outcome leads to a state from where it is impossible to reach the goal. Action p always
results in a goal state with medium reward.

If the MDP is not probabilistic interesting, we can use the approximation replanning
[29], i.e., we relax the probabilistic problem such that it becomes deterministic. A com-
mon approach is to assume that the most likely outcome will happen. The deterministic
problem has a much lower computational complexity. Hence, the agent acts according to
the deterministic plan, and when an unexpected state occurs, we replan.

What happens if we apply replanning on the probabilistic interesting example from
above? The agent would choose action o. But this choice is poor as we will not reach
the goal with moderate probability. Nevertheless, we argue that resource routing is not
probabilistic interesting. Typically, the driver can (almost) undo this action by driving
back. And, there exists no state from which you can never acquire an SSR. For this
reason, we propose a replanning and a hindsight planning approach to cater to scalability
in the parking search scenario [41].

Hindsight planning [53] revises some shortcomings of replanning, but it has a higher
computational complexity. The basic idea is to sample many possible deterministic futures,
solve them, and estimate the expected future costs. As this assumes knowledge about
future development while solving the determinization, it is an optimistic approximation of
the real expected return. Then, the agent greedily chooses the best action.

By choosing replanning and hindsight planning as the solver, we relaxed computational
complexity w.r.t. the number of states, but the exponential state complexity still remains.
Consequently, we present equivalent approaches that do not depend on the number of SSRs.

20 3. Solving Mobility Tasks with Stochastic Spatial Resources

This is possible because we assume one specific development of the SSRs. Accordingly, the
SSRs do not need to be part of the state space. Further, we can exploit some spatio-
temporal properties of the resource routing task, and have the state-space become linear
in the number of graph nodes.

If there is currently no available SSR, replanning does not return any solution, because
the most likely transition after every action is that no SSR changes. Then, the planner has
no chance to find the goal state. Furthermore, it is a valid policy to drive to a good SSR
and wait until it is available. Accordingly, we alter the cost model of the deterministic
planning task, such that an occupied SSR has an action allowing us to wait for the SSR
to be available. The costs for this action are the expected waiting time until the agent can
acquire this SSR.

Since in large settings most of the time after every step at least one parking spot changes
its state, in replanning, recomputation of the deterministic solution would be persistently
necessary. We use the D*-Lite algorithm [23], which updates the values only if the change
is relevant. This way, handling hundreds of parking spots becomes feasible. We show that
our replanning approach is quite close to the optimal solution in settings where the MDP
is still solvable.

One weakness of replanning is that it independently considers parking spots. Hence, it
will prefer one slightly better parking spot to two spatially close parking spots. As shown
in [41] for hindsight planning, this is not an obstacle. Due to the sampling of deterministic
futures, hindsight planning will notice that most of the times the direction towards the
two parking spots is optimal. In an inhomogeneous synthetic setting, hindsight planning
performs slightly better than replanning. However, in more realistic environments, both
approaches perform about the same, yet hindsight planning consumes more computational
capacities.

To conclude, we propose to use replanning and hindsight planning to solve the resource
routing task. We adapt the general-purpose approaches to exploit expert knowledge of this
task. In settings where BRTDP still converges in a reasonable time, our improved replan-
ning and hindsight planning approaches are close to the optimal solution. Furthermore,
when applied to hundreds of parking spots, the approaches generate good policies while
completing within a reasonable amount of time.

3.2 Resource Collection
In this section, we discuss the methods proposed for the resource collection task, which is
quite similar in spirit, and can be formalized in a related manner to the resource routing
task. Both have an agent seeking for SSRs while navigating on a street network. However,
in resource collection, there is no terminal state transition after consuming an SSR. Instead,
the agent is positively rewarded for collecting an SSR. Following, the SSR is non-collectable
for an unknown period. The objective of the resource collection task is to collect as many
resources as possible in a pre-defined period. In summary, the resource collection task is
a finite horizon MDP consisting of a street graph, an agent navigating on it and a set of

3.2 Resource Collection 21

SSRs. An example application is the travelling officer problem (cf. Section 2.3.2).
The objective of resource collection is to maximize the number of SSRs collected. Hence,

it is not indicative using the MDP with the cost terminology. It is possible to define an
MDP such that the target is to maximize the expected future rewards or to minimize the
expected future costs. So far, we used the cost terminology, since it is common in the
spatial community to minimize the travel. In the resource collection task, we want to
maximize the collected resources. Hence, we award every collection event positively.

As mentioned earlier, the problem definitions of resource routing and resource collection
are related. The application of the resource routing solution to the resource collection task
sounds therefore reasonable. However: (1) standard dynamic programming approaches (as
in [44]) do not scale due to the exponential growing state space. (2) Unlike the resource
routing task, resource collection is no stochastic shortest path. Resource collection is a
finite horizon MDP with no termination except the end of the working day. Accordingly,
the trials are very long and diverse. RTDP approaches, as proposed in [43] for resource
routing, would need too much time to converge in this setting. (3) Creating a deterministic
future of the problem (as done in [41]) does not substantially reduce the complexity. If
the future is known, the resource collection task is a Vehicle Routing Problem (VRP) with
time windows – an NP-hard problem [25]. It is possible to use approximations for solving
VRPs [21, 24, 34] and VRP with time windows [18]. However, it is more promising to use
reinforcement learning with function approximations for solving the actual problem rather
than using the same approach to solve a relaxed version of the problem. Furthermore,
we argue it is questionable to plan too far in the future (complete working day) in a
deterministic manner if the set of all possible futures is vast, and every potential eventuality
would result in separate plans. Consequently, we propose to use model-free reinforcement
learning with function approximation to solve the resource collection task.

3.2.1 Model-free Deep Reinforcement Learning
All approaches mentioned hitherto, require a model assumption. It is irrelevant whether
we demand the model to solve the MDP directly or to choose/sample deterministic futures.
Either way, the assumptions likely deviate from reality. In some cases, a historical dataset of
the development of stochastic spatial resources exists. For instance, the city of Melbourne
published the parking events from January 2011 until May 2020 (as of September 2020).
Therefore, we can check how good our model assumptions for the parking setting are. To
recall, we assumed that the parking times are exponentially distributed. The benefit of
this assumption is that the distribution is memory-less. In Figure 3.1 we compare the
exponential distribution with the Melbourne parking dataset of 20191. At first glance, the
real data (blue) looks exponentially distributed. However, one can see that the likelihood
decreases much faster than in the exponential distribution (orange). Figure 3.1 shows
that another distribution, namely the gamma distribution (green), fits much better. We
fitted the parameters of this distribution, such that the variance and expectation is equal

1https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-2019/
7pgd-bdf2

https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-2019/7pgd-bdf2
https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-2019/7pgd-bdf2

22 3. Solving Mobility Tasks with Stochastic Spatial Resources

(a) 1 hour (Monday to Saturday 7:30 - 18:30) (b) 2 hours (Monday to Saturday 7:30 - 20:30)

(c) 1 hour (Monday to Friday 7:30 - 18:30) (d) 1 hour (Monday to Sunday 7:30 - 23:00)

Figure 3.1: Histogram of vehicle parking times in Melbourne. The subplots (a), (b), (c) and
(d) represent different park signs. An exponential distribution and a gamma distribution
is fitted for the most frequently used parking signs. The exponential distribution was
chosen so that the expected value corresponds to the actual distribution. For the gamma
distribution, the expected value and the variance are fitted to the data set. The title of
each plot represents the parking sign. The X-axis displays the time in minutes and the
y-axis is the likelihood.

3.2 Resource Collection 23

to the real data. However, the gamma distribution is not memory-less. The increasing
likelihood around the maximum parking duration further emphasizes that the real data is
not memory-less. This implies that the MDP state requires the present parking duration
of a vehicle on its associated parking spot to be Markovian. Hence, the state space would
be continuous. This, in turn, excludes standard dynamic programming approaches from
the set of possible solvers.

We note, however, that if, if the real-world dataset is representable, one can directly
apply model-free learning approaches to this dataset. The prerequisite for this is the
assumption that the stochastic SSR dynamics of the dataset will not be affected by the
agent. In the travelling officer problem example, this means that we assume that an
assigned parking ticket does not shorten or extend the parking duration of the car. We
argue that this is true for most of the cases because the driver will notice the ticket only
when he/she departs. Once we made this assumption, we can replay the historical data and
let the reinforcement learning agent train on top of this simulation. Formally, we choose a
random day within the dataset and jump to its starting hour. We look up the current state
of each SSR at the starting time. The agent has an arbitrary node on the graph. Whenever
the agent moves, we add the travel time to the simulation time and look up the new state
of the SSRs. When the agent collects an SSR, it changes the SSRs collected property to
true. We continue similarly until the end of the working day. By this procedure, there is
no need to create stochastic processes adapted to the real data. Hence we introduce less
bias. The model-free reinforcement learner implicitly learns the stochastic processes of the
dataset.

Based on this reasoning, we argue that model-free reinforcement learning is an excellent
choice for solving the resource collection task. In [46], we propose a Deep-Q-Network-based
(DQN) [33] solution, i.e., a famous deep reinforcement learning approach, with a specialized
function approximation for the resource collection task. Since we have non-uniform action
directions and a discount factor < 1, we need to regard the semi-Markov characteristics.
We propose higher-level temporal abstractions, i.e., moving directly to a specific resource.
The agent’s location (a node) is a discrete entity. Hence, a naive approach would be to
learn an embedding for each node. We decided against it, because that way the function
approximation is unable to generalize experience between two different locations, even if the
nodes are next to each other. Our proposed function is distance-based. Hence, the artificial
neural network can generalize experience to states where the distances are similar. Another
benefit of this is the fact that it is independent of the graph, allowing the applications of the
trained weights without further training to previously unseen street graphs. We compare
our solution with different deep reinforcement learning baselines and previous approaches
for the travelling officer problem. The solutions proposed in the literature [47] are time-
varying travelling salesman problem solvers (replanning) and a heuristic greedy agent. If
the number of simultaneous violations is small (e.g. in tiny areas), the approaches from
literature show good results. However, when we increase the area size, solving the travelling
salesman problem becomes prohibitively costly, and the greedy heuristic becomes too weak.
Consequently, our approach significantly outperforms the exisiting baselines in large areas.
Furthermore, we show that training on a small graph and applying it to large environments

24 3. Solving Mobility Tasks with Stochastic Spatial Resources

is possible without further training.

3.3 Non-deterministic Spatial Mobility Tasks
In [42] we introduce and formally define a new problem, which combines all the applica-
tions mentioned in Section 2.3 into one problem definition, which we call non-deterministic
spatial mobility tasks (NSMT). The applications have very different dynamics and objec-
tives. Nevertheless, they all share some common properties, i.e., they have SSRs and the
intent is to move an agent around in a street graph. Although we can assume a subse-
quent node to be deterministic (i.e., driver executes only instructed turns), the SSRs are
typically not. All SSRs have a location, and the agent might alter the properties if it is
nearby. By doing so, the agent may (positively) affect the rewards received and sometimes
modify the agent’s properties. While some NSMTs terminate after “consuming” a resource,
others have a fixed horizon. Furthermore, besides the location, an agent may have further
properties that may or may not be non-deterministic, e.g. passengers on board or charging
level. To conclude, all tasks consist of:

• A street graph

• An agent with a location (node or edge) and other potentially non-deterministic
properties altered by a stochastic process

• SSRs have a position and features, both of which are potentially non-deterministic

Then, the agent can choose an action (the next edge) and alter SSRs. The objective is to
maximize the (stochastic) rewards (or minimize the costs) received. The only differences are
the shape of the properties and the stochastic processes which alter the non-determinisms.

Notice that the objective function for the resource routing task in [42] looks quite
different from the objective function in [43, 44]. In the more general framework, we prefer
to use reward (higher is better). One method to transfer costs to rewards is to multiply
by −1 and to maximize negative rewards. However, this reward function does not fit to
our function approximation well. In preliminary experiments, the agent tends to learn to
choose shorter distances before recognizing that it has to move the long way to achieve a
goal. A sparse reward signal when reaching the goal performed much better as it seems
easier to learn that an available SSR gives a positive reward. Yet, if we want to minimize
the travel time, we have to use a discount factor with a value smaller than one. Then, time
is decayed exponentially instead of linearly. Since both decays are monotone, the optimal
policy is the same.

3.3.1 ORIENTATION: One Solver for all Applications
So far, we had to develop a specialized solution for every task. Adapting the solver to every
NSMT needs a lot of expert knowledge. For a broader applicability, we present a general
solver approach for all NSMTs. Reinforcement learning has the capability for this. Its goal

3.4 Multi-agent and Partial Observations 25

is to find a solution for every sequential decision making task under uncertainty. However,
table-based approaches and general-purpose function approximations do not scale when
applied to NSMTs. Hence, we use a distance-based function approximation optimized for
navigation on graphs with SSRs [42]. Further, we propose to make use of the options
framework, i.e., add higher-level temporal abstractions (directly routing to a specific node
in the graph). Higher level temporal abstractions, i.e., hierarchical reinforcement learning,
are the key to solving large MDPs. With our proposed set of options, the agent does not
need to learn how to route from one location to another, but it can choose the option for
doing so. This speeds up the exploration process and is therefore more sample efficient.

We call our new framework ORIENTATION. It is transferable to previously unseen net-
works in the same domain. The transferred network performs well as long as the stochastic
processes of the SSRs are similar. If they differ too much, the implicitly learned assumptions
become invalid, and further training is required. Nevertheless, despite general-purpose rein-
forcement learning approaches, ORIENTATION’s function approximation has a constant
number of parameters regardless of the network size and number of SSRs, allowing for
great flexibility. To conclude, ORIENTATION is a model-free RL approach applicable to
all single-agent NSMTs, with the property of being sample efficient and transferable.

3.4 Multi-agent and Partial Observations
All proposed approaches so far were on a single agent and assumed full observability.
However, some NSMTs are indeed multi-agent settings, e.g. the taxicab task. In our
submission to the GIS Cup 2019 [5], we apply reinforcement learning on the taxicab task.
In the setting defined by the competition, the goal was to optimize thousands of taxis
such that the idle driving times are minimal and the passengers dispatched are maximal.
However, the taxis are unaware of the positions of the other vehicles. A centralized agency
automatically assigns passengers to the closest taxicabs within an acceptable radius. We
trained a model-free one-step reinforcement learning approach (multi-armed bandit) with
temporal abstracted actions and the current time as observation. The weights were pre-
trained with a statistical model. For further research in this area, we designed a framework
[9] to train multiple agents in NSMTs (in particular Taxicabs), where one can decide
between different levels of observability.

26 3. Solving Mobility Tasks with Stochastic Spatial Resources

Chapter 4

Concluding Remarks

In the following, we summarize the contributions and offer directions for future research.

4.1 Conclusion
Due to the increasing amount of sensors deployed in smart cities, more information becomes
available about the current state of stochastic resources. One example is the parking search.
Ignoring parking sensor values would cause extra driving to search for a parking spot and
increase the emission of CO2 since vehicles take more time on the street for an uninformed
search of parking spots in crowded urban areas. Other origins of knowledge are likewise
crucial for future transportation tasks. For instance, mobile applications collect data of
food or passenger pickup and drop-off locations, parking activities or traffic congestion. We
argue that the future will bring more and more spatial applications where an agent needs
to react according to stochastic spatial resources (SSRs). With this work we show how to
model the resource routing task as an MDP and solve it (epsilon) optimal. The dynamic
programming based solvers are well-suited in case pre-computation is possible, the number
of resources to consider is manageable, and we want to have quality guarantees. For settings
where pre-computation is not possible, and the number of resources are smaller or equal
to ten, we present a more efficient anytime approach. Often, a guaranteed optimal policy
is not necessary, but we want to consider more resources. We show that resource routing
is not probabilistic interesting and propose solutions based on replanning and hindsight
planning. Both approaches are close to the optimal solutions where the MDP is still
(epsilon) optimal solvable. However, replanning and hindsight planning have a reduced
runtime complexity, which allows resources in the scope of hundreds without a problem.

In other spatial mobility tasks with SSRs (e.g. resource collection), the determinization
is not efficiently solvable, or it is not “probabilistic interesting”. Additionally, previous
methods require expert knowledge about the specific task and stochastic processes. With
Model-free reinforcement learning, we can overcome this issue. We present a reinforcement
learning approach that solves the resource collection task and subsequently, generalize
it to a single framework that can optimize the policies for all non-deterministic spatial

28 4. Concluding Remarks

mobility tasks (NSMT) without any alteration. Our novel neural network architecture
allows transferability to previously unseen street graphs and resources.

4.2 Future Work
The approaches proposed so far mainly focused on single-agent settings with full observa-
tions. Some sensor data, however, might be incomplete. For instance, suppose a mobile
app tracks parking activities. Not every driver has this app installed or activated. Hence,
only a fraction of the information is available. Also, there may be taxi passengers that
do not request a ride over a mobile application. Due to an incomplete state description,
further development is dependent on the history of observations. Hence, the value func-
tion becomes more complex and needs to get the history of resource states and potentially
agent positions as input. In the case of function approximations, one can do this with
recurrent neural networks. But there might be a smarter - potentially problem-specific -
ways to do this, which are more sample efficient. If the model is known, it is possible to
consider approximating the partially observable MDP (POMDP). Typically, this problem
has a continuous state space with an exponentially growing dimensionality, which is why
replanning approaches might become more tricky.

Furthermore, in many multi-agent NSMTs, a vehicle fleet tries to optimize a common
objective. For instance, a taxi company tries to maximize the number of passengers dis-
patched. When we optimize this objective, the taxis share the reward. Hence, an empty
cab in the middle of nowhere receives positive gratification regularly. But the positive
reward does not come from his weak policy. In literature, this is called the credit assign-
ment problem. To overcome this issue, one can optimize the agents independently. In
many applications, this will be close to the optimum [8]. However, in general, the “price
of anarchy” can be larger, leading to the question, how to tackle the credit assignment
problem.

In this thesis, we provide solutions for NSMTs, having resources that affect the future
reward positively when the agent is at the right time nearby. Notwithstanding, there are
stochastic elements in a road network affecting the agent negatively, e.g. traffic congestion.
Due to the structure of the options and function approximation, the agent has difficulties
to avoid specific nodes. Therefore, one might relax the restriction that options are the
shortest paths to a given node. Preferably, it can be any path to the node. But this
dramatically increases the number of potential opportunities. The approach needs to learn
an understanding of sound paths.

Another direction is combining the planning and reinforcement learning approaches.
After training and convergence, inference of a reinforcement learning approach is fast.
Planning, on the other hand, does not need time for off-line training, but it takes much
more time on-line. Yet, by knowing the current state, planning can focus on the currently
relevant parts of the state space, whereas reinforcement learning has to perform well on
all possible states. One can consider reinforcement learning as the instinct and planning
as the thoughts [12]. Combining both approaches should hence be able to improve the

4.2 Future Work 29

overall performance. However, the question is how to design this interaction and how much
planning is allowed/necessary. Ideally, one can integrate a real-time planning approach to
our option based reinforcement learning framework.

30 4. Concluding Remarks

Appendix A

Publications

32 A. Publications

A.1 Dynamic Resource Routing using Real-Time In-
formation

Publication
Sebastian Schmoll and Matthias Schubert. Dynamic resource routing using real-time infor-
mation. In Michael H. Böhlen, Reinhard Pichler, Norman May, Erhard Rahm, Shan-Hung
Wu, and Katja Hose, editors, Proceedings of the 21st International Conference on Extending
Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018, pages 501–504.
OpenProceedings.org, 2018

DOI: https://doi.org/10.5441/002/edbt.2018.57

Contribution
After discovering the Melbourne and Manuka (Australia) parking duration dataset, Se-
bastian Schmoll proposed the idea of modelling the parking search task with real-time
information as MDP. Sebastian Schmoll suggested and implemented the model and value it-
eration solver and run experiments. The source code extends the existing NAVIGAZELLE
framework. Matthias Schubert contributed in discussions with thoughts. Both, Matthias
Schubert and Sebastian Schmoll, composed the text of this paper.

https://doi.org/10.5441/002/edbt.2018.57

A.2 Dynamic Resource Routing using Real-Time Dynamic Programming 33

A.2 Dynamic Resource Routing using Real-Time Dy-
namic Programming

Publication
Sebastian Schmoll and Matthias Schubert. Dynamic resource routing using real-time dy-
namic programming. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden, pages 4822–4828. ijcai.org, 2018

DOI: https://doi.org/10.24963/ijcai.2018/670

Contribution
Sebastian Schmoll proposed to solve the parking search problem with real-time information
with the Real-time Dynamic Programming (RTDP) algorithm. Sebastian Schmoll imple-
mented several extensions of RTDP and found out that Bounded RTDP performs best.
Sebastian Schmoll developed improved heuristics and the transition pruning strategy. He
wrote down the lemma and proofs have the TopProbabilities algorithm after discussions
with Matthias Schubert. Sebastian Schmoll extended the source code from the previous
paper with the new approaches and run the experiments. Matthias Schubert contributed
in discussions with thoughts. Both, Matthias Schubert and Sebastian Schmoll, composed
the text of this paper.

Erratum
• In Algorithm 1, in the fourth line from below x shall be replaced with s′.

• In Algorithm 1, in the second line from below x shall be replaced with s0.

https://doi.org/10.24963/ijcai.2018/670

34 A. Publications

A.3 Vision paper: reinforcement learning in smart
spatio-temporal environments

Publication
Sebastian Schmoll and Matthias Schubert. Vision paper: reinforcement learning in smart
spatio-temporal environments. In Farnoush Banaei Kashani, Erik G. Hoel, Ralf Hartmut
Güting, Roberto Tamassia, and Li Xiong, editors, Proceedings of the 26th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL 2018, Seattle, WA, USA, November 06-09, 2018, pages 81–84. ACM, 2018

DOI: https://doi.org/10.1145/3274895.3274963

Contribution
The vision that an increasing amount of real-time information about dynamic elements
in spatial navigation tasks will be available in future, has been developed in discussions
between Matthias Schubert and Sebastian Schmoll. Since future developments of such
dynamic elements are uncertain, Sebastian Schmoll proposed to model them as Markov
decision process, which can be seen as stochastic generalization of usually routing.

https://doi.org/10.1145/3274895.3274963

A.4 Scaling the Dynamic Resource Routing Problem 35

A.4 Scaling the Dynamic Resource Routing Problem

Publication
Sebastian Schmoll, Sabrina Friedl, and Matthias Schubert. Scaling the dynamic resource
routing problem. In Walid G. Aref, Michela Bertolotto, Panagiotis Bouros, Christian S.
Jensen, Ahmed Mahmood, Kjetil Nørvåg, Dimitris Sacharidis, and Mohamed Sarwat, edi-
tors, Proceedings of the 16th International Symposium on Spatial and Temporal Databases,
SSTD 2019, Vienna, Austria, August 19-21, 2019, pages 80–89. ACM, 2019

DOI: https://doi.org/10.1145/3340964.3340983

Contribution
Literature research brought Sebastian Schmoll to the property “probabilistic interesting”.
As a result, Sebastian Schmoll developed the idea that resource routing is an MDP, but
is well approximated by replanning methods. Further research leaded Sebastian Schmoll
to hindsight planning. Sabrina Friedl proposed to use the D*-Lite algorithm. Sebastian
Schmoll have developed and implemented the solutions (based on NAVIGAZELLE) and
executed the experiments. The effect of the Indecisive Hindsight Planner and its solution
has been discovered and developed by Sebastian Schmoll. Matthias Schubert helped with
hyper-parameter optimization. Sabrina Friedl, Matthias Schubert and Sebastian Schmoll
contributed the text to the paper.

Erratum
In Algorithm 2, line 7 shall be replaced with:

P (r = available) =
{

T timeBefore
a,a (r) if r is available

T timeBefore
o,a (r) if r is occupied

https://doi.org/10.1145/3340964.3340983

36 A. Publications

A.5 Semi-Markov Reinforcement Learning for Stochas-
tic Resource Collection

Publication
Sebastian Schmoll and Matthias Schubert. Semi-markov reinforcement learning for stochas-
tic resource collection. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 3349–3355.
ijcai.org, 2020

DOI: https://doi.org/10.24963/ijcai.2020/463

Contribution
Sebastian Schmoll contributed to this paper the idea to model the travelling officer prob-
lem as a Markov decision process and to use temporal abstractions. Sebastian Schmoll
proposed and developed the function approximation and feature representation. Further,
the environment and experiments have been developed and executed by Sebastian Schmoll.
Matthias Schubert helped with hyper-parameter optimization. Both, Matthias Schubert
and Sebastian Schmoll, composed the text of this paper.

https://doi.org/10.24963/ijcai.2020/463

A.6 Option-based ReInforcemENT learning for spatial navigATION 37

A.6 ORIENTATION: Option-based ReInforcemENT
learning for spatial navigATION

Publication
Sebastian Schmoll, Sabrina Friedl, and Matthias Schubert. Orientation: Option-based
reinforcementlearning for spatial navigation. Published in appendix, October 2020

Contribution
Sebastian Schmoll proposed to separate the task of routing from the actual spatio-temporal
task. Therefore, he proposed to use the options framework with target options. Sebastian
Schmoll generalized the approach from [46] and implemented the source code in a new
framework. Experiments have been performed by Sebastian Schmoll. Sabrina Friedl,
Matthias Schubert and Sebastian Schmoll composed the text of this paper.

Publication below:

ORIENTATION: Option-based ReInforcemENT
learning for spatial navigATION

Sebastian Schmoll, Sabrina Friedl, Matthias Schubert
LMU Munich

Germany

October 13, 2020

Abstract

In many tasks involving spatial navigation in road networks, the environment con-
tains stochastic resources making it non-deterministic. Examples for resources are
parking spots or charging stations, passengers for taxicabs, as well as moving objects
like other vehicles, etc. Even if a smart city infrastructure provides the current status of
these resources, future developments are uncertain and often unknown. Finding optimal
navigation policies in these settings is often not possible due to the exponential growth
of the state space w.r.t. the number of resources. Hence, reinforcement learning meth-
ods using function approximations are essential to scale solutions into realistic settings.
In this paper, we present a framework for learning efficient policies with reinforcement
learning, which applies to any task involving spatial navigation in environments as de-
scribed above. More precisely, we propose to use the options framework and introduce
a set of options that make use of established route planning methods such that learning
can focus on higher-level goals. Furthermore, we present a sample efficient function
approximation that applies to a wide range of mobility tasks and is transferable to
previously unseen graphs. In our experiments, we show that one can apply the learned
function approximation without further training to previously unseen road networks in
the same problem set.

1 Introduction
Recently, reinforcement learning (RL) has started receiving increasing attention in the spatio-
temporal domain [25]. Applications like the taxi dispatching [10, 12, 30], ride-sharing [1, 11],
and travelling salesman problems [8, 9] took advantage of recent developments in general RL.
Besides, the growing availability of location-based data in smart cities further stimulates this

1

trend. Taking into account more data can potentially improve the execution of spatial tasks,
e.g. by minimising search times, lowering traffic or reducing pollution.

All of the mentioned tasks have in common that an agent navigates a road network and
visits locations to receive a reward. Let us note that the availability of the reward might
change over time, e.g. a new passenger disappears. Due to the varying availability, the
state space usually grows exponentially concerning the reward locations. To reduce this
complexity, a variety of approaches works on a grid overlay of the map, e.g. [11, 30]. This
way locations and resources are summarised into grid cells and actions are limited to visiting
neighbouring grid cells. However, movement along with grid cells often yields only a rough
approximation of navigating a road network as travel times between various locations in two
adjacent cells may strongly vary.

On the other hand, standard RL approaches usually suffer from the large action space
(edges in the graph) when trying to learn a policy for directly navigating a road network.
General-purpose function approximations cannot share experience across taken edges, re-
sulting in the need for a large number of training steps.

In this paper, we define non-deterministic spatial mobility tasks (NSMTs) and present a
novel general framework for solving NSMTs where an agent directly navigates through a road
network by choosing road segments as actions. In particular, NSMTs include all applications
in which an agent traverses the network and affects the reward positively by being at the
right location at the right point of time. Examples for these tasks include searching for free
parking spots, pick up and deliver goods as well as chasing other vehicles. In all three cases,
the environment contains what we call stochastic spatial resources (SSR) which require non-
deterministic planning techniques. The non-determinism arises from the stochastic behaviour
of SSRs: parking spots might change their availability over time, new delivery requests may
occur and other vehicles constantly change their position in the network. Abstracting from
these examples, all SSRs have in common that they provide a reward at certain locations for
certain points in time. Furthermore, the behaviour of SSRs is assumed to be controlled by
an unknown statistical process. Let us note that this is different from related vehicle routing
problems [28] which rather work with static spatial resources having known locations and
known time-intervals. In contrast, in our setting, the agent has to learn the behaviour from
experience and even an optimal policy might miss rewards due to not reaching an SSR in
time. When modelling spatial environments with SSRs, we can observe that even SSRs
with a fixed position and the simple attribute of being available or not result in exponential
growth of the state space w.r.t. the number of SSRs.

To solve these tasks efficiently, we present a function approximation whose number of
parameters does not increase with the number of SSRs. Instead, the function approximation
shares parameters when computing the impact of each SSR. Hence, a major benefit of our
method lies in its sample efficiency. Another important characteristic of our approach is
that it models tasks as semi-Markov decision processes (SMDPs). By doing so, we can
allow actions, like traversing a road segment, to have varying durations. To avoid that an

2

agent has to learn the subtask of routing as well, we propose to use temporal abstractions
and define options that route to any specific node in the graph directly on the shortest
path. To this end, we make use of deterministic routing methods like [13]. This way,
learning can focus on higher-level goals. In our experiments, we apply our approach to four
different tasks and show that the learned policies for a given task can be transferred to
other road networks containing different SSRs. To conclude, the contributions of this paper
are (1) the definition of non-deterministic spatial mobility tasks covering various spatial
applications, (2) a reinforcement learning approach based on the options framework that
combines dedicated routing algorithms with function approximation based policy learning,
and (3) a neural function approximation which learns policies which are transferable between
road networks.

2 Related Work
There are various approaches to solve spatio-temporal problems with Machine Learning and
reinforcement learning methods. The works in [7, 8, 9, 17] apply reinforcement learning (RL)
to solve the Travelling Salesman Problem (TSP), or other variants of the Vehicle Routing
Problem (VRP). In contrast to these works, we do not decide on the optimal order in which to
visit a given set of locations but find policies that determine the next location an agent should
go to, given the current state of the environment. A related spatial task is the travelling
officer problem (TOP) first described by [27]. In this task, the agent (the officer) tries to
maximize the number of parking violations fined within a certain time frame. Shao et al.
claim that the optimal solution is a linear program optimising the agent’s paths [27, 26].
In contrast, we argue that parking violations fall under the category of stochastic spatial
resources (SSRs), such that the optimal solution for TOP, among other tasks, should rather
be defined as a (semi–) Markov decision process (SMDP).

The task of resource routing (RR) [24] aims at finding a single available resource such as a
parking bay. In their work, the stochastic behaviour of resources is modelled by a continuous-
time Markov chain and the proposed MDP is solved with real-time dynamic programming.
In the follow-up work [23], approximate planners were proposed to scale up the solution
to settings with larger numbers of resources. In our work, we also consider spatial tasks
as MDPs. However, our new approach does not rely on any model assumption w.r.t. the
underlying transition probabilities. Instead, we employ model-free reinforcement learning to
solve the problem.

Besides TSP, popular applications to which spatial RL techniques have been applied
successfully include fleet-management tasks like the taxi-dispatching problem (TDP) [10,
12, 30] or ride-sharing tasks [11, 1]. All of these approaches, however, work on simplified
state spaces based on grid cells or spatial areas and often also aggregate large numbers of
time steps into intervals of several minutes to make solutions tractable. In contrast, our new

3

approach works directly on the road network representing the spatial environment.
The temporal abstraction used in this paper falls into the framework of hierarchical

reinforcement learning (HRL) which has been regarded as essential for learning complex
tasks early on [4]. In HRL, a task is decomposed into several subtasks that can be solved
individually with a partial policy for each subtask. HRL is more efficient than trying to
solve the entire problem at once and can speed up the learning process significantly by
decreasing the number of impractical actions. In the past two decades, several hierarchical
RL models, such as hierarchies of abstract machines (HAM) [18] and MAXQ value function
decomposition [5], have been proposed. Many of these approaches are based on pre-defined
subgoals and auxiliary pseudo-rewards. In addition, there has been put quite some effort into
learning useful subgoals and reusable sub-policies [14, 31]. A general and very commonly
used framework that has been defined independently of any assumption about subtasks or
-goals is the options framework introduced by Sutton [29]. In this model, an option simply
denotes a partial policy that can terminate at any time depending on the current state. The
authors show that adding options to the underlying MDP conveniently results in an SMDP.
In [2], the authors present the option-critic architecture that learns the partial policies (called
option policies) along with the termination conditions and the policy for choosing the options
(called policy over options) without the need to provide any subgoals or additional rewards.
The tasks in this paper involve the subtask of routing to a certain node (intersection) for
which efficient planning like Dijkstra exist. Thus, we base our work on the options framework
and do not consider defining additional subgoals manually. We will compare our solution
to the option-critic implementation which is the HRL approach that comes closest to ours.
Temporal abstractions based on options have also been used in the context of spatial RL
by [30]. However, [30] focuses only on the particular task of taxi dispatching in a multi-
agent environment and works on hexagonal grid cells instead of the nodes of the underlying
street graph. To summarise, we distinguish from existing approaches by providing a general
framework that can be applied to a wide range of applications. Also, our new approach is
transferable within the same domain to previously unseen spatial areas.

3 Background
In a Markov decision process (MDP), an agent observes an environment’s state s, decides on
an admissible action a, and subsequently receives an immediate reward R(s, a) at each time
step t. To allow for variable action lengths, the more general framework of semi-Markov
decision processes (SMDPs), models the time between two successive decisions as a random
variable τ .

Formally, a discrete-time semi-Markov decision process (SMDP) [6] is defined as a five
tuple (S,A,R, P, γ), in which S is a set of states and A is a set of actions, with A(s) denoting
the set of admissible actions in a given state s ∈ S. The transition function P (s′, τ | s, a)

4

defines the probability that an agent traverses from state s ∈ S to s′ ∈ S after taking
action a ∈ A(s) in τ ∈ N+ time steps. The reward function R(s, a) → R is a function
that defines the expected reward for being in state s ∈ S, taking action a ∈ A(s). We
denote rt+1, rt+2, . . . rt+τ as a sample of the distribution underlying R if taking an action
took exactly τ time-steps. The discount factor γ is a value between zero and one and defines
the optimization horizon of an agent.

Reinforcement learning (RL) provides a set of solvers for Markov decision processes (in-
cluding SMDPs), without the need to know the exact MDP definition. Instead, an agent
interacts with an environment, which contains the dynamics of the MDP. A commonly used
technique is Q-Learning [32]. In this paper, we base our solution on Q-Learning. We aim
to find a policy π(a | s), i.e. a distribution of actions a ∈ A(s), that maximizes the future
expected rewards V (s) for all states s ∈ S. The Q-Learning approach updates the Q-values
(state-action values), Q(s, a), by running trials in the environment. One can show that once
the state-action values converged to the optimum, following the greedy policy is optimal:

π(a | s) =
{
1 if argmaxa′∈A(s)Q(s, a′) = a

0 otherwise
(1)

The update rule for the Q-values after executing one action is given by:

Q(st, a) ← Q(s, a) + α

(
τ−1∑

i=0

γirt+i+1 + γτ max
a′∈A(st+1)

Q(st+1, a
′)−Q(s, a)

)
(2)

When using the epsilon greedy policy, i.e. taking a random action with probability
ε and otherwise the action of the greedy policy (Equation 1), one can show that the Q-
values converge to the optimal values after an infinite number of trials. However, as soon as
function approximations are used, e.g. [16], there are no theoretical convergence guarantees
[3]. Nevertheless, in practice, it can usually be achieved that Q-learning converges to local
optima.

3.1 Options

An option is a higher level temporal abstraction of action. That is to say, an option executes
multiple actions until it decides to terminate. Hence, an option o consists of (S , µ, β), where
S ⊆ S is the set of possible states where the option can be started, µ is the policy defined
for this option and β : S → [0, 1] is a function that defines the probability that this option
terminates in a given state. We assume that any state where the option may continue is in
S . Every action a ∈ A can be defined as a one-step option by defining S := {s : a ∈ A(s)},
µ(a|s) = 1, and β(s) = 1 for all states s ∈ S. For more details refer to [4].

5

Finding the optimal policy over options, i.e. π(o | s), for all options o ∈ O in all states
s ∈ S, fits again into the SMDP framework [20, 29, 19, 21, 22]. However, in this case, one
would treat options as opaque indivisible units, yet it is more powerful to look inside the
options [20]. With intra-option learning methods, it is possible to update options after one
action. Consequently, if the option policies are Markov, it is possible to update multiple
options simultaneously, namely all options whose policies have the same action distribution
in the given state [20]. If the distribution is not exactly equal, one may use importance
sampling. The resulting update rule for one-step intra-option Q-Learning based on SMDPs
is:

Q(st, o) ← Q(st, o) + α

(
τ−1∑

i=0

γirt+i+1 + γτV (st+τ , o)−Q(st, o)
)
, (3)

where τ is the amount of time steps consumed by the current action. We define V (s, o)
as follows:

V (s, o) := (1− β(s))Q(s, o) + β(s)max
o′∈O

Q(s, o′) (4)

It is possible to define hand-crafted options. Nevertheless, the usual target of general RL
is to learn good options either directly [2], or by finding good sub-goals [15, 14, 31].

The authors of [29] showed that it is an improvement to the policy if you allow the option
to interrupt before it terminates, to favour a better option. This is called option interrupt.

3.2 Non-Deterministic Spatial Mobility Tasks

The environment of a non-deterministic spatial mobility task (NSMT) consists of a (di-
rected) road network G = (N,E, ttravel), where the nodes N represent crossings, the edges
E represent road segments and ttravel(e) represents the travel time for traversing segment
e. Additionally the environment has a set of stochastic spatial resources (SSRs) R where
each SSR ρ ∈ R has a location nρ ∈ N , a type ιr (e.g. parking spot or destination) and a
status vector xρ. xρ is task-specific and encodes information which is used to indicate the
reward and the impact on the agent when arriving at the location of the SSR. For example,
xρ might contain the amount of the reward and the time claiming the reward might take
when an agent arrives at ρ. The location of the agent is denoted as na ∈ N . Besides the
location, an agent may have further domain-specific features ζ (e.g. the remaining range
of the vehicle). The action set A is defined as A := E × {True, False}, where each edge
e = (ni, nj) with ni, nj ∈ N can only be executed if na = ni. Since the agent might not want
to take every resource, the second part of the action indicates whether a resource should
be consumed (if possible) or not. Executing an action increases the real-world time ϑ by

6

ttravel(e) which can be transferred into discrete time steps by division with a multiple of
the greatest common divisor of all edge travel times in the graph G. Let us note that xρ
and nρ change over time and can be modified by the agent. Thus, SSRs can show arbi-
trary behaviour allowing for modelling a plethora of tasks. Furthermore, we assume that the
behaviour of SSRs is non-deterministic and described by an unknown statistical process.

In the following, we will introduce four NSMTs which are used in the evaluation. In
resource routing (RR) [24], the SSR state contains a binary variable indicating SSR avail-
ability. For the application of parking search, this means a parking bay is either available
or occupied. The actual destination of the driver is modelled by another type of SSR, such
that the agent can learn to prefer parking spots close to the destination. The search termi-
nates after any SSR is consumed and to ensure that policies with shorter search times are
preferred, we have to choose γ < 1. In resource collection (RC) the agent is rewarded
for any available resource it collects within a finite horizon. The travelling officer problem
[27] and taxi dispatching are instances of the resource collection task as parking offenders
or taxi customers might leave before the agent’s arrival. For the chaser task, we consider
a single SSR which is always available but with a location varying over time. The agent
receives a reward when getting close enough to the SSR which also ends the episode. As for
RR, we choose γ < 1 to prefer shorter episodes. Applications involve intercepting suspicious
vehicles, hunting an eloped cat equipped with GPS, or reaching a moving ice cream seller.
In the courier task, there are two types of SSRs which appear pairwise: pickup SSRs and
drop off SSRs. Consuming a pickup SSR does not grant a reward but changes the state
of the corresponding drop off SSR to consumable for a given time interval. Rewards are
earned by consuming these drop off SSRs. Episodes are finite horizon and agents should
maximize the number of drop-offs. The courier task has applications in routing bike couriers
or ride-sharing tasks where the same agent can work on several deliveries in parallel. Let us
note that these settings are just a small selection of tasks where our method works and more
complicated NSMTs could be formulated by considering more SSR and agent variables.

4 Solution
Target Options. The idea behind our approach, named ORIENTATION, is to separate
the task of deciding which location should be visited to positively affect future rewards from
the task of planning a route to get there. We argue that in many settings this navigation
subtask can be solved by efficient deterministic planers such as Dijkstra’s algorithm, whereas
the decision about where to navigate next is more difficult due to the non-deterministic
nature of the SSRs. To integrate this idea into reinforcement learning, we employ the options
framework as described above. We define the set of all options as follows: O := {on | n ∈ N},
where on := (Sn, µn, βn) is an option whose policy µn follows the shortest path to node
n ∈ N from the position na of the current state and potentially consumes resources only at

7

the destination. Further, let us define the set of input nodes Sn := N \ {n}. The option
terminates iff the node of the current state is the target node n, i.e. βn(s) is 1 if the current
state’s node na is n and 0 otherwise. Note that we do not need any one-step options, since
there is always at least one option for each edge, i.e. the option for the target node of the
edge. Usually, the amount of options |O| is smaller than the amount of actions |A|, since
in connected graphs |E| ≥ |N | − 1. The policy of an option is computed of an arbitrary
routing algorithm computing the shortest path from na to the target node n of option on.
For simplicity, we employed Dijkstra’s algorithm in our experiments. Nevertheless, more
efficient methods could be employed to save time for larger road networks.

Figure 1: Illustration of the function approximation.

Function Approximation. In this section, we explain our proposed neural network ar-
chitecture to approximate the Q-function. In the following, we denote fh(·|θ) as a standard
multilayer perceptron (MLP) with h output neurons, the parameter set θ and unless oth-
erwise stated a ReLU unit as non-linearity between both dense layers. Furthermore, the
distance function dist(ni, nj) describes the length of the shortest paths between ni and nj
in the network G w.r.t. travel time. The first step of our function is to convert each SSR
ρi ∈ R to a feature representation xi := fh([ρi, dist(na, nρi), ζ] | θιρi), where na is the lo-
cation of the agent and nρi is location of the SSR ρi. θιρi is the parameter set for the
feature representation shared along all SSRs ρi ∈ R with the same type ιρi . Note that
this step enables the use of differently shaped resource representations. Next, we want
to compute an embedding for each option oj ∈ O. We propose to use a distance based
weighting function χ(oj, ρi) := sigmoid(f 1(dist(nj, ni) | θχ)), where θχ are the parameters
for the weighting function. The non-linearity in this multilayer perceptron is the sigmoid
function. χ determines the relevance of a stochastic element to the embedding of option
oi and is not necessarily a function of the distance between the option target and the lo-
cation of the SSR. For instance, one could replace it with an attention mechanism, where

8

πθ ← epsilon greedy policy w.r.t. Q(s, o | θ)
exp_buffer ← queue(maxlen)
initialize θ and θ̂ randomly
for episode in #episodes do

done ← false
while not done do

s, a, r, s′, done, τ ← act(πθ)
exp_buffer.add((s, a, r, s′, done, τ))
if every kth step (k = 4) then

minibatch = sample(exp_buffer)
for si, ai, ri, s′i, donei, τi ∈ minibatch do

choose set of options Oi where next edge on the shortest path from
the node defined by si to target node of the option is ai
for oj ∈ Oi do

if donei then
yi,j ← ri

else
yi,j ←
ri + γτi ·

(
(1− β(s′i))Q(s′i, oj | θ̂) + β(s′i)maxo′∈OQ(s′i, o

′ | θ̂)
)

end
end

end
update θ w.r.t. loss (yij −Q(si, oj))2
if every lth time then

θ̂ ← θ
end

end
end

end
return πθ

Algorithm 1: Pseudocode of ORIENTATION

9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·106

0

20

40

60

80

Episodes

cu
m
.
re
w
ar
d

ORI Target SDQN OC

Figure 2: Test performance in the Resource Collection setting for Kraiburg (KB). The y-axis
represents the travel time until the opponent got caught.

the key is any kind of option representation (e.g. target node representation) and the val-
ues are the xi representations for all SSRs. However, the distance-based weighting worked
well in our settings and is transferable. Hence, we compute the target option representation
τj for option oj as follows: τj = 1/|R| ·∑ρi∈R χ(oj, ρi) · xi. In the next step, we compute
Q(s, oj) := f 1([τj, dist(na, nj)] | θQ), where θQ is the respective parameter set. Let us note
that f 1([τj, dist(na, nj)] | θQ) receives a concatenation of option description τj in addition
to the distance between the agent location na to the option target node nj to integrate the
information about the time required to follow option oj. Figure 1 provides an overview on
the complete architecture. The pseudocode can be found in Algorithm 1.

Efficient Path Calculations. For computing τj, we need the shortest path distances
from every stochastic element position to every other node (option targets). In small graphs,
the all pair shortest paths can be pre-computed to speed up training. One might argue
that this becomes infeasible very fast. However, learning a spatial task on street graphs
being larger than the feasible size for pre-computing is usually intractable with standard
reinforcement learning approaches. Nevertheless, if one wants to train or apply it to a very
large graph, computing a (truncated) reversed Dijkstra from the stochastic elements ρ ∈ R
can be performed if |R| << |N |. As one can assume that far off stochastic elements do not
have any effect on the target options, one might truncate the reversed Dijkstra algorithms
at some maximum distance. Yet, this is task-specific. In Orientation, we need to efficiently

10

retrieve all options whose policy would take the given action in a given state. A naive
algorithm would compute the shortest path to all nodes and checks if the next edge is equal
to the edge defined by the action. This is very inefficient and we can do better. Our proposal
is to store all shortest paths in a matrix P , where Pij is the id for the next node when the
source node is the ith node in N and the target node is the jth node in N of the shortest
path. Now, we want to retrieve all target nodes whose shortest path from node na traverse
the edge ea ∈ E defined by the given action a. Therefore, we check which entries of the row
Pk are equal to the destination node nd of ea, where k is the id of the given state’s node
na. Hence, we simply compute Pi == nd, which can be efficiently calculated on GPU with
state-of-the-art deep learning libraries.

5 Environments
In this section, we present the environments used in our experiments. All environments
contain a graph that is either synthetically generated (grid graph) or downloaded from
OpenStreetMap1. Further, they all have a step function that is moving the agent’s position
along a (valid) edge from one node to another. Thereby, the agent consumes time. In
this step function, the agent can further decide whether it wants to consume a resource (if
possible). The step function returns the next state, reward and consumed time. This is
task specific. Hence, every task extends the step function with additional logic, as described
below.

Resource Routing. In the resource routing task, the goal of the agent is to route to the
destination as quickly as possible. However, the agent needs to acquire a resource before
it can walk to the destination. After claiming the resource, the agent possibly changes its
mode of transportation, i.e. his travel speed and directly traverses to the destination node.
For instance, the agent could represent a driver searching for a parking spot. There are
multiple resources in this environment. However, resource availability is stochastic since
they might become occupied in the near future. The actual destination is represented as an
SSR with a different type than the parking spots. That way, the agent can learn to prefer
parking spots close to the destination. For simulating a resource routing (RR) task, we
model the residence times of parking spot states (available/occupied) with a Poisson process
and sample residences time from an exponential distribution. The locations of the resources
are fixed though (parking spots do not move). The agent receives a positive reward of 1
if it reaches the destination after claiming a parking spot and walking to the destination,
otherwise the reward is 0. The agent representation ζ is always 1. The episode ends when
the agent successfully claims a resource or a predefined time horizon is reached.

1https://www.openstreetmap.org/

11

Resource Collection. In the resource collection task, the agent tries to claim as many
available resources as possible within a certain time frame. As in the resource routing task,
there are multiple resources with fixed locations but stochastic availabilities. Our implemen-
tation models them as a Poisson process and sample residence times from an exponential
distribution. By contrast to the other tasks described above, here, an episode does not end
after a resource is acquired, but continues until a certain fixed time has passed (horizon). An
available resource may be collected only once. Then, it changes its state to collected, unless
it re-appears. The SSR representation xρ consists of two boolean, i.e. the availability and if
it has been visited/collected already. In this implementation, the agent representation ζ is
always 1, but it could e.g. be the remaining horizon if the stochastic process changes over
time.

Chaser. To also model moving targets, in the chaser task, the agent has to “catch” another
agent that performs a random walk on the street graph and moves ten percent slower. The
target agent is caught if the chasing agent traverses an adjacent edge at the same tick of
the simulation. The agent then receives a reward of 1 and the episode ends. In contrast to
resource routing, there is only one SSR with a fixed state, i.e. xρ = 1 (it is always available),
however its location is stochastic/dynamic. The agent representation ζ is always 1. The
episode ends when the agent successfully claims a resource or a predefined time horizon is
reached.

Courier. In the courier task, a deliverer tries to execute as many delivery requests as
possible. A request consists of a start location and a destination. Real world examples of
this task are food delivery or a bike messenger delivering urgent mails. In the courier task,
there are three different kinds of SSRs, namely the start and destination of new requests and
the destination of packages already picked up. The representation xρ of a start SSR is the
one-vector and the xρ of a destination is the one-hot encoding of its request’s state (already
picked up or not). The agent receives a positive reward (+1) if it successfully executed the
delivery. Withal, the agent may pick up multiple requests before delivering. However, if
the agent is not able to deliver the package in a certain amount of time, the customer is
not interested in the delivery anymore. E.g. the customer might say, if the pizza is not
delivered in two hours, he/she does not want any pizza anymore. For simplicity, in our
experiments, the start and destination nodes are sampled uniformly. Due to the varying
number of resources (and hence input size) over time, the baseline function approximations
are not applicable anymore in this task. However, our proposed function approximation can
handle this issue out of the box.

12

(a) Grid5
(b) Schoeffelding

(c) Kraiburg (d) Landshut

Figure 3: Illustration of the graphs used in the experiments (here: resource collection).
The red/green dots denote (non-)collectable resources. The blue dot is the agent’s position.
Yellow dots denote recently collected resources.

13

6 Experiments
For our experiments, we implemented simulation environments for the four tasks mentiond
above: resource routing, resource collection, chaser and courier. All environments contain a
graph that is either synthetically generated (grid graph) or downloaded from OpenStreetMap.
We use the small street network of the German village Schöffelding (Schoeff) with 40 nodes
and 92 edges to train our approach and two larger graphs, namely Kraiburg (KB) with 249
nodes and 578 edges and Landshut with 1422 nodes 3503 edges (see Figure 3). Resource
availability times are modelled by a Poisson process. Environments and agents are coded in
Python (Pytorch) and training is run on a GTX 1080 or stronger GPU.

We compare our approach, ORIENTATION (abbreviated in the tables as ORI), with
four other deep reinforcement learning baselines on the four different spatial applications
described above. The baselines are described below:

The first baseline approach is a standard DQN [16] adopted for SMDPs. The function
approximation learns node embeddings for the source and target node, concatenates them
and applies a standard multi-layer perceptron on top of the concatenated embeddings. The
possible actions at each node include only the neighboring nodes to which an outgoing edge
exists (primitive actions). We call this baseline RDQN (for Routing DQN).

The next baseline is similar to the RDQN, as it is a standard DQN adapted for SMDPs.
However, its state representation and function approximation is applicable to all NSMTs
except the courier task. We call it SDQN. The function approximation learns a node em-
bedding for the agent’s current position, and uses the same multi-layer perceptron for all
ρ ∈ R with xtρ as input. All representations are concatenated and a multi-layer perceptron
predicts the Q-values for all primitive actions.

The Target baseline shows how important the proposed function approximation is. Target
is equal to the ORIENTATION approach, except that the function approximation has been
replaced by the function approximation as described in the SDQN. Thus, the primitive
actions are extended by the target options to all nodes.

OC (option-critic) is a famous framework for learning options end-to-end [2]. In contrast
to our approach, it learns the option policies of 20 options as well, i.e., it does not make use
of standard routing algorithms. The policy over options is trained with the SMDP baseline.
All one-step options are also available.

In each experiment, we continuously evaluate the different approaches after a fixed num-
ber of episodes has passed by stopping the training and calculating the averages of the
objective over 100 different episodes. The Plots additionally show the value range (min/max
values) shaded in the same color.

Resource Routing and Chaser. Table 1 displays the discounted cumulative reward on
three different graphs for the resource routing and chaser tasks. Let us note that a higher
discounted reward corresponds to shorter search time as the γ was set to 0.011/h where

14

Task Graph Steps Approach Objective

RR Grid5 500k ORI 0.891
SDQN 0.901
Target 0.894

OC 0.296
Schoeff 500k ORI 0.553

SDQN 0.711
Target 0.412

OC 0.589
KB 1M ORI 0.315

SDQN 0.091
Target 0.065

OC 0.002
Chaser Grid5 500k ORI 0.932

SDQN 0.935
RDQN 0.897
Target 0.938

OC 0.650
Schoeff 500k ORI 0.643

SDQN 0.715
RDQN 0.513
Target 0.635

OC 0.274
KB 500k ORI 0.714

SDQN 0.099
RDQN 0.093
Target 0.405

OC 0.105

Table 1: Performance for Resource Routing and Chaser task. Objective is the mean dis-
counted cumulative reward.

h is the horizon. For RR, we consider 5, 40 and 7 SSRs for the Grid5, Schoeff and KB
networks. Results indicate that standard methods perform well on the small networks but
are outperformed by ORIENTATION for the larger KB network. For RR on the KB network,
ORIENTATION was the only method finding a working policy even though all networks were
trained for 1 million steps which are twice as long as for the other settings. To conclude, in
smaller settings and in particular, in the simple grid graph all methods offered viable policies
and ORIENTATION sometimes falls behind the compared methods. This indicates that all

15

Task Graph Steps Approach Objective

RC Grid5 500k ORI 56.39
SDQN 34.04
Target 36.30

OC 7.91
Schoeff 500k ORI 33.7

SDQN 23.0
Target 18.37

OC 22.2
KB 5M ORI 48.27

SDQN 1.75
Target 32.11

OC 1.74
Courier Grid5 500k ORI 38.9

0 Requests 46.8
Schoeff 4M ORI 34.93

0 Requests 36

Table 2: Performance for Resource Collection and Courier task. Objective is the mean
cumulative reward.

methods are suitable for solving the task as long as networks are small. However, when
considering a larger setting as the KB graph, we can observe that the standard methods
do not offer viable policies in most cases and ORIENTATION outperforms all comparison
partners.

Resource Collection. For resource collection (RC), we report the cumulative reward
corresponding to the number of consumed SSRs. We consider 9, 40 and 13 SSRs for the
Grid5, Schoeff and KB networks. Results can be seen in table 2. For this setting, long term
planning is more important and thus, ORIENTATION outperforms all other methods on all
three graphs. Again we can observe that only the methods using the target options Target
and ORIENTATION managed to learn a viable policy for the larger KB graph. Let us note
that we had to train all approaches with 5 million steps for the KB graph as the setting is far
more challenging. Figure 2 shows the discounted cumulative reward on KB. As can be seen,
OC and SDQN are not capable to learn a viable policy whereas ORIENTATION quickly
learns how to improve the number of collected resources. Only the Target approach offers a
viable policy as well. However, the performance gap between Target and ORIENTATION
demonstrates the effectiveness of our proposed function approximation.

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

10

20

30

40

50

Episodes

D
el
iv
er
ie
s

ORI Mean Requests

Figure 4: Test performance on the Schöffelding graph w.r.t. training episodes. The dashed
blue line indicates the mean of available requests per episode. Hence, it is an upper bound.

Courier Task. The courier task is different from the other three tasks as the number
of SSRs cannot be predetermined as new delivery requests spawn randomly. However, all
three baseline approaches require a fixed number of SSRs for their function approximation.
In contrast, ORIENTATION can handle these circumstances as it aggregates the currently
present SSRs early on in the function approximation. Since we could not apply our com-
parison partners here, we compare our results to the expected number of delivery requests
spawning during an episode as this yield an upper bound for the performance. In table 2, we
display the cumulated reward of ORIENTATION compared to the average number of avail-
able request in each episode. As can be seen, ORIENTATION displays a viable result on the
simple grid graph and comes very close to an optimal policy on the Schoeff network. Further-
more, figure 4 displays the test performance of ORIENTATION during training indicating
a constant increase of served requests.

Transfer between Networks. To demonstrate that the policies learnt by ORIENTA-
TION offer viable solutions when applied to a different network, we applied the policy, we
learned on the grid graph to the road networks of Schoeffelding (Schoeff) and Kraiburg (KB).
Tables 3, 4, 5 and 6 display the results measured in discounted cumulative rewards for RR
and chaser and cumulative reward for the RC and courier tasks. As can be seen, in most
cases the results of the transferred neural network weights are competitive with the results of
the agents trained for the target street network. However, if the implicit model assumptions

17

Target Graph \Source Graph Grid5 Kraiburg Landshut Schoeffelding

Grid5 0.891 0.769 0.229 0.000
Kraiburg 0.250 0.173 0.000 0.000
Landshut 0.609 0.000 0.587 0.025
Schoeffelding 0.497 0.471 0.615 0.553

Table 3: Transfer results for the Resource Routing environment in cumulative discounted
rewards.

Target Graph \Source Graph Grid5 Kraiburg Landshut Schoeffelding

Grid5 0.931 0.788 0.923 0.781
Kraiburg 0.729 0.360 0.734 0.253
Landshut 0.686 0.101 0.501 0.110
Schoeffelding 0.697 0.467 0.727 0.436

Table 4: Transfer results for the Chaser environment in cumulative discounted rewards.

differ too much from the environment model, the agent can perform poorly. For instance, if
the resources’ availability changes in a very different frequency than expected, the actions
may become sub-optimal. On the other hand, the weights trained for the small graphs some-
times significantly outperform the agent trained directly for the target graph. Two reasons
may cause this effect. First, the dynamics of the resources are similar and the distances
between the resources have the same magnitude. Second, the amount of training steps is
not enough to let the agent fully converge close to the optimum at the target network in the
given environment. Nevertheless, it seems to be enough for the smaller Grid5 setting. This
suggests that training a task on a smaller graph and fine-tune the weights one the target
graph is possible to decrease training time.

Target Graph \Source Graph Grid5 Kraiburg Landshut Schoeffelding

Grid5 56.31 12.57 42.72 0.00
Kraiburg 16.02 7.02 2.49 0.00
Landshut 1.19 0.91 0.62 0.04
Schoeffelding 111.17 19.54 20.51 34.71

Table 5: Transfer results for the Resource Collection environment in cumulative rewards
(number of collected resources).

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·105

0

2

4

6

Episodes

cu
m
.
re
w
ar
d

ORI ORI interrupt

(a) Landshut RC.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·105

0

0.5

1

Episodes

cu
m
.
di
s.

re
w
ar
d

ORI ORI interrupt

(b) Landshut Chaser.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·105

0

0.5

1

Episodes

cu
m
.
di
s.

re
w
ar
d

ORI ORI interrupt

(c) Landshut RR.

Figure 5: Effect of option interrupt in Landshut.

19

Target Graph \Source Graph Grid5 Landshut Schoeffelding

Grid5 32.56 0.30 0.22
Kraiburg 1.06 0.00 0.00
Landshut 1.88 0.00 0.00
Schoeffelding 30.42 0.08 0.08

Table 6: Transfer results for the Courier environment in cumulative rewards.

Option Interrupt. So far, we have not made use of the option interrupt, i.e. stopping
one option for executing another option with better Q-value. In Figure 5, we illustrate the
effect of option interrupt on the Landshut graph. As one can observe, the policy converges
more stable and to better results in the chaser and RC task. At the RR task, both policies
are comparable. On small graphs, we did not observe much improvement, which is why we
omitted option interrupt in the settings before. However, if the distances become larger,
reacting on unexpected changes in the state becomes more important.

7 Conclusion & Future Work
Non-deterministic spatial mobility tasks (NSMTs) describe settings where an agent traverses
a road network and receives a reward when reaching a stochastic spatial resource (SSR)
having a suitable SSR state. The SSR state depends on an unknown stochastic process and
in addition, agent actions can also modify SSR states. As the non-deterministic behaviour
of SSRs often results in an exponentially growing state space, reinforcement learning is a
suitable way to find efficient policies for NSMTs. However, common approaches either do
not scale with the road network or aggregate the spatial environment into grid cells. In this
paper, we present a scalable framework for solving NSMTs on node-level. To let learning
focus on higher-level goals, we introduced a set of “target options” for routing to any node
in the graph that makes use of efficient deterministic routing algorithms. Moreover, we
propose a sample efficient function approximation that shares parameters overall dynamic
spatial elements. In our experiments, we show that our approach can solve four different
NSMTs and even show that policies can be transferred to different road networks. In the
future, we plan to investigate how the number of calculated target options could be reduced.
Moreover, we want to extend our approach to multi-agent settings, which are very common
in spatial tasks.

20

References
[1] A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal. Deeppool: Distributed model-free al-

gorithm for ride-sharing using deep reinforcement learning. CoRR, abs/1903.03882,
2019.

[2] P. Bacon, J. Harb, and D. Precup. The option-critic architecture. In S. P. Singh and
S. Markovitch, editors, AAAI, pages 1726–1734. AAAI Press, 2017.

[3] L. Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

[4] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1-2):41–77, 2003.

[5] T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of artificial intelligence research, 13:227–303, 2000.

[6] R. A. Howard. Dynamic probabilistic systems, volume 2: Semi-markov and decision
processes, 1971.

[7] W. Joe and H. C. Lau. Deep reinforcement learning approach to solve dynamic ve-
hicle routing problem with stochastic customers. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 30, pages 394–402, 2020.

[8] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimiza-
tion algorithms over graphs. In N(eur)IPS, pages 6348–6358, 2017.

[9] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

[10] M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang, G. Wu, and J. Ye. Efficient
ridesharing order dispatching with mean field multi-agent reinforcement learning. In
WWW, pages 983–994, 2019.

[11] M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang, G. Wu, and J. Ye. Efficient
ridesharing order dispatching with mean field multi-agent reinforcement learning. In
WWW, 2019.

[12] K. Lin, R. Zhao, Z. Xu, and J. Zhou. Efficient large-scale fleet management via multi-
agent deep reinforcement learning. In SIGKDD, page 1774–1783. ACM, 2018.

[13] A. Madkour, W. G. Aref, F. U. Rehman, M. A. Rahman, and S. M. Basalamah. A
survey of shortest-path algorithms. CoRR, abs/1705.02044, 2017.

21

[14] A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement learn-
ing using diverse density. In ICML, page 361–368. Morgan Kaufmann Publishers Inc.,
2001.

[15] E. A. Mcgovern. Autonomous discovery of temporal abstractions from interaction with
an environment. PhD thesis, University of Massachusetts at Amherst, 2002.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nat., 518(7540):529–533, 2015.

[17] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác. Reinforcement learning for solving
the vehicle routing problem. In Advances in Neural Information Processing Systems,
pages 9839–9849, 2018.

[18] R. Parr and S. J. Russell. Reinforcement learning with hierarchies of machines. In
N(eur)IPS, pages 1043–1049, 1998.

[19] R. E. Parr. Hierarchical Control and Learning for Markov Decision Processes. PhD
thesis, University of California, 1998.

[20] D. Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, University of
Massachusetts, 2000.

[21] D. Precup and R. S. Sutton. Multi-time models for temporally abstract planning. In
N(eur)IPS 10, pages 1050–1056. MIT Press, 1998.

[22] D. Precup, R. S. Sutton, and S. Singh. Theoretical results on reinforcement learning
with temporally abstract options. In ECML, pages 382–393. Springer, 1998.

[23] S. Schmoll, S. Friedl, and M. Schubert. Scaling the dynamic resource routing problem.
In SSTD, pages 80–89, 2019.

[24] S. Schmoll and M. Schubert. Dynamic resource routing using real-time dynamic pro-
gramming. In IJCAI, pages 4822–4828, 2018.

[25] S. Schmoll and M. Schubert. Vision paper: Reinforcement learning in smart spatio-
temporal environments. In ACM SIGSPATIAL, page 81–84, 2018.

[26] W. Shao, F. D. Salim, J. Chan, S. Morrison, and F. Zambetta. Approximating optimi-
sation solutions for travelling officer problem with customised deep learning network.
CoRR, abs/1903.03348, 2019.

22

[27] W. Shao, F. D. Salim, T. Gu, N. Dinh, and J. Chan. Traveling officer problem: Managing
car parking violations efficiently using sensor data. IEEE Internet of Things Journal,
5(2):802–810, 2018.

[28] M. M. Solomon and J. Desrosiers. Survey paper—time window constrained routing and
scheduling problems. Transportation science, 22(1):1–13, 1988.

[29] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211,
1999.

[30] X. Tang, Z. T. Qin, F. Zhang, Z. Wang, Z. Xu, Y. Ma, H. Zhu, and J. Ye. A deep
value-network based approach for multi-driver order dispatching. In SIGKDD, page
1780–1790, 2019.

[31] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and
K. Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. CoRR,
abs/1703.01161, 2017.

[32] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, UK, May 1989.

23

A.7 Optimizing the STARS Problem with Reinforcement Learning 61

A.7 Optimizing the Spatio-Temporal Resource Search
Problem with Reinforcement Learning (GIS Cup)

Publication
Felix Borutta, Sebastian Schmoll, and Sabrina Friedl. Optimizing the spatio-temporal re-
source search problem with reinforcement learning (GIS cup). In Farnoush Banaei Kashani,
Goce Trajcevski, Ralf Hartmut Güting, Lars Kulik, and Shawn D. Newsam, editors, Pro-
ceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, SIGSPATIAL 2019, Chicago, IL, USA, November 5-8, 2019,
pages 628–631. ACM, 2019

DOI: https://doi.org/10.1145/3347146.3363351

Contribution
Felix Borutta developed a round-trip based agent for the GIS Cup 2019. Felix Borutta
and Sabrina Friedl developed a statistical model for choosing the round-trips. Sebastian
Schmoll proposed the multi-armed bandit approach that improves the statistical model.

https://doi.org/10.1145/3347146.3363351

62 A. Publications

A.8 SMART-Env

Publication
Sabrina Friedl, Sebastian Schmoll, Felix Borutta, and Matthias Schubert. Smart-env. In
21st IEEE International Conference on Mobile Data Management, MDM 2020, Versailles,
France, June 30 - July 3, 2020, pages 234–235. IEEE, 2020

DOI: https://doi.org/10.1109/MDM48529.2020.00050

Contribution
Sabrina Friedl and Felix Borutta developed the simulation core for the SMART-Env. Sab-
rina Friedl designed and implemented the interface for reinforcement learning agents. Se-
bastian Schmoll contributed with discussions. Sebastian Schmoll implemented the user
interface for SMART-Env. Sabrina Friedl contributed with style improvements to the user
interface. Sabrina Friedl mainly wrote the text for the publication.

https://doi.org/10.1109/MDM48529.2020.00050

Bibliography

[1] Abubakr O Al-Abbasi, Arnob Ghosh, and Vaneet Aggarwal. Deeppool: Distributed
model-free algorithm for ride-sharing using deep reinforcement learning. IEEE Trans-
actions on Intelligent Transportation Systems, 20(12):4714–4727, 2019.

[2] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using
real-time dynamic programming. Artificial Intelligence, 72(1):81–138, 1995.

[3] Richard Bellman. A markovian decision process. Journal of mathematics and me-
chanics, pages 679–684, 1957.

[4] Richard Bellman. A markovian decision process. Journal of mathematics and me-
chanics, pages 679–684, 1957.

[5] Felix Borutta, Sebastian Schmoll, and Sabrina Friedl. Optimizing the spatio-temporal
resource search problem with reinforcement learning (GIS cup). In Farnoush Banaei
Kashani, Goce Trajcevski, Ralf Hartmut Güting, Lars Kulik, and Shawn D. Newsam,
editors, Proceedings of the 27th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, SIGSPATIAL 2019, Chicago, IL, USA,
November 5-8, 2019, pages 628–631. ACM, 2019.

[6] Di Chai, Leye Wang, and Qiang Yang. Bike flow prediction with multi-graph con-
volutional networks. In Proceedings of the 26th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL ’18, page
397–400, New York, NY, USA, 2018. Association for Computing Machinery.

[7] Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[8] Luca Foti, Jane Lin, and Ouri Wolfson. Optimum versus nash-equilibrium in taxi
ridesharing. GeoInformatica, pages 1–29, 2019.

[9] Sabrina Friedl, Sebastian Schmoll, Felix Borutta, and Matthias Schubert. Smart-env.
In 21st IEEE International Conference on Mobile Data Management, MDM 2020,
Versailles, France, June 30 - July 3, 2020, pages 234–235. IEEE, 2020.

64 BIBLIOGRAPHY

[10] Kaiqun Fu, Taoran Ji, Liang Zhao, and Chang-Tien Lu. Titan: A spatiotemporal
feature learning framework for traffic incident duration prediction. In Proceedings
of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’19, page 329–338, New York, NY, USA, 2019.
Association for Computing Machinery.

[11] Daniel A Garcia-Ulloa, Li Xiong, and Vaidy Sunderam. Truth discovery for spatio-
temporal events from crowdsourced data. Proceedings of the VLDB Endowment,
10(11):1562–1573, 2017.

[12] Hector Geffner. Model-free, model-based, and general intelligence. arXiv preprint
arXiv:1806.02308, 2018.

[13] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A search
meets graph theory. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January
23-25, 2005, volume 5, pages 156–165, 2005.

[14] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[15] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[16] Ronald A Howard. Dynamic programming and markov processes. 1960.

[17] Ronald A Howard. Dynamic probabilistic systems, volume 2: Semi-markov and deci-
sion processes, 1971.

[18] Waldy Joe and Hoong Chuin Lau. Deep reinforcement learning approach to solve
dynamic vehicle routing problem with stochastic customers. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 30, pages
394–402, 2020.

[19] Gregor Jossé, Klaus Arthur Schmid, and Matthias Schubert. Probabilistic resource
route queries with reappearance. In Gustavo Alonso, Floris Geerts, Lucian Popa, Pablo
Barceló, Jens Teubner, Martín Ugarte, Jan Van den Bussche, and Jan Paredaens, ed-
itors, Proceedings of the 18th International Conference on Extending Database Tech-
nology, EDBT 2015, Brussels, Belgium, March 23-27, 2015, pages 445–456. Open-
Proceedings.org, 2015.

[20] Gregor Jossé, Matthias Schubert, and Hans-Peter Kriegel. Probabilistic parking
queries using aging functions. In Proceedings of the 21st ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, pages 452–455.
ACM, 2013.

BIBLIOGRAPHY 65

[21] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning com-
binatorial optimization algorithms over graphs. In Advances in Neural Information
Processing Systems, pages 6348–6358, 2017.

[22] Joon-Seok Kim, Dieter Pfoser, and Andreas Züfle. Distance-aware competitive spa-
tiotemporal searching using spatiotemporal resource matrix factorization (GIS cup).
In Farnoush Banaei Kashani, Goce Trajcevski, Ralf Hartmut Güting, Lars Kulik,
and Shawn D. Newsam, editors, Proceedings of the 27th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, SIGSPATIAL
2019, Chicago, IL, USA, November 5-8, 2019, pages 624–627. ACM, 2019.

[23] Sven Koenig and Maxim Likhachev. D* lite. AAAI/IAAI, 15, 2002.

[24] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing
problems! In International Conference on Learning Representations, 2019.

[25] Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of vehicle routing and schedul-
ing problems. Networks, 11(2):221–227, 1981.

[26] Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin
Wu, and Jieping Ye. Efficient ridesharing order dispatching with mean field multi-
agent reinforcement learning. In The World Wide Web Conference, WWW 2019, San
Francisco, CA, USA, May 13-17, 2019, pages 983–994, 2019.

[27] Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin
Wu, and Jieping Ye. Efficient ridesharing order dispatching with mean field multi-
agent reinforcement learning. In The World Wide Web Conference, WWW 2019, San
Francisco, CA, USA, May 13-17, 2019, 2019.

[28] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet man-
agement via multi-agent deep reinforcement learning. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1774–1783, 2018.

[29] Iain Little, Sylvie Thiebaux, et al. Probabilistic planning vs. replanning. In ICAPS
Workshop on IPC: Past, Present and Future, 2007.

[30] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang. Traffic flow prediction with big data:
A deep learning approach. IEEE Transactions on Intelligent Transportation Systems,
16(2):865–873, 2015.

[31] Shuo Ma, Ouri Wolfson, and Bo Xu. Updetector: Sensing parking/unparking activ-
ities using smartphones. In Proceedings of the 7th ACM SIGSPATIAL international
workshop on computational transportation science, pages 76–85, 2014.

66 BIBLIOGRAPHY

[32] H Brendan McMahan, Maxim Likhachev, and Geoffrey J Gordon. Bounded real-
time dynamic programming: Rtdp with monotone upper bounds and performance
guarantees. In Proceedings of the 22nd international conference on Machine learning,
pages 569–576. ACM, 2005.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement
learning. CoRR, abs/1312.5602, 2013.

[34] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Re-
inforcement learning for solving the vehicle routing problem. In Advances in Neural
Information Processing Systems, pages 9839–9849, 2018.

[35] Layla Pournajaf, Daniel A. Garcia-Ulloa, Li Xiong, and Vaidy Sunderam. Partici-
pant privacy in mobile crowd sensing task management: A survey of methods and
challenges. SIGMOD Rec., 44(4):23–34, May 2016.

[36] Ulrike Ritzinger, Jakob Puchinger, and Richard F. Hartl. A survey on dynamic and
stochastic vehicle routing problems. International Journal of Production Research,
54(1):215–231, 2016.

[37] Stuart Russell and Peter Norvig. Ai a modern approach. Learning, 2(3):4, 2005.

[38] Thobias Sach, Korinna Jörling, Bastian Lotz, Martin Jakob, Henrik Schult, and Diego
Bietenholz. Klimaschutz in Zahlen – Fakten, Trends und Impulse deutscher Klimapoli-
tik – Ausgabe 2020. Online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/
Broschueren/klimaschutz_zahlen_2020_broschuere_bf.pdf, 2020.

[39] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest path
queries. In Gerth Stølting Brodal and Stefano Leonardi, editors, Algorithms - ESA
2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6,
2005, Proceedings, pages 568–579, Berlin, Heidelberg, 2005. Springer Berlin Heidel-
berg.

[40] Divya Saxena and Jiannong Cao. D-GAN: deep generative adversarial nets for spatio-
temporal prediction. CoRR, abs/1907.08556, 2019.

[41] Sebastian Schmoll, Sabrina Friedl, and Matthias Schubert. Scaling the dynamic re-
source routing problem. In Walid G. Aref, Michela Bertolotto, Panagiotis Bouros,
Christian S. Jensen, Ahmed Mahmood, Kjetil Nørvåg, Dimitris Sacharidis, and Mo-
hamed Sarwat, editors, Proceedings of the 16th International Symposium on Spatial
and Temporal Databases, SSTD 2019, Vienna, Austria, August 19-21, 2019, pages
80–89. ACM, 2019.

[42] Sebastian Schmoll, Sabrina Friedl, and Matthias Schubert. Orientation: Option-based
reinforcementlearning for spatial navigation. Published in appendix, October 2020.

https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/klimaschutz_zahlen_2020_broschuere_bf.pdf
https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/klimaschutz_zahlen_2020_broschuere_bf.pdf

BIBLIOGRAPHY 67

[43] Sebastian Schmoll and Matthias Schubert. Dynamic resource routing using real-time
dynamic programming. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden, pages 4822–4828. ijcai.org, 2018.

[44] Sebastian Schmoll and Matthias Schubert. Dynamic resource routing using real-time
information. In Michael H. Böhlen, Reinhard Pichler, Norman May, Erhard Rahm,
Shan-Hung Wu, and Katja Hose, editors, Proceedings of the 21st International Confer-
ence on Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29,
2018, pages 501–504. OpenProceedings.org, 2018.

[45] Sebastian Schmoll and Matthias Schubert. Vision paper: reinforcement learning in
smart spatio-temporal environments. In Farnoush Banaei Kashani, Erik G. Hoel,
Ralf Hartmut Güting, Roberto Tamassia, and Li Xiong, editors, Proceedings of the
26th ACM SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems, SIGSPATIAL 2018, Seattle, WA, USA, November 06-09, 2018, pages
81–84. ACM, 2018.

[46] Sebastian Schmoll and Matthias Schubert. Semi-markov reinforcement learning for
stochastic resource collection. In Christian Bessiere, editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
3349–3355. ijcai.org, 2020.

[47] Wei Shao, Flora D Salim, Tao Gu, Ngoc-Thanh Dinh, and Jeffrey Chan. Travelling
officer problem: Managing car parking violations efficiently using sensor data. IEEE
Internet of Things Journal, 2017.

[48] Donald C. Shoup. Cruising for parking. Transport Policy, 13(6):479–486, 2006.

[49] Marius M Solomon and Jacques Desrosiers. Survey paper—time window constrained
routing and scheduling problems. Transportation science, 22(1):1–13, 1988.

[50] Xiaocheng Tang, Zhiwei (Tony) Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai Ma,
Hongtu Zhu, and Jieping Ye. A deep value-network based approach for multi-driver
order dispatching. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, page 1780–1790, 2019.

[51] Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

[52] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK, May 1989.

[53] Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. Proba-
bilistic planning via determinization in hindsight. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008, pages 1010–1016, 2008.

68

[54] K.J Åström. Optimal control of markov processes with incomplete state information.
Journal of Mathematical Analysis and Applications, 10(1):174 – 205, 1965.

Acknowledgements

Without the people around supporting me, I would not have been able to contribute this
work to the research community. So I want to thank everyone who brought me all the way
on this site. My in-depth gratitude goes to Matthias Schubert. Thank you so much for
supporting my ideas and contributing valuable comments to our discussions. Thank you
for letting me benefit from your comprehensive, yet in-deep knowledge in this area. I want
to thank Tomas Seidl. Not only, he found my position, but also he accompanied me on
along my way as a PhD student. With your regular meetings (Doktorandenrunde) and your
knowledge about interpersonal communication, among many other things, my personality
is enhanced. I am very thankful to Herke van Hoof and Goce Trajcevski, for your interest
in my work and for agreeing in acting as a reviewer of my thesis. My sincere appreciation
is due to the chair members, who never hesitated in helping me when I had questions.
Thank you Felix Borutta, Niklas Strauß, Florian Richter, Janina Sontheim, Niklas Strauß,
Evgeniy Faerman, Julian Busch, Max Berrendorf, Daniyal Kazempour, Sandra Obermeier,
Anna Beer, Sahand Sharifzadeh and David Winkel. Especially Sabrina Friedl, thank you
for all the discussions and fruitful work we had together. Susanne Grienberger, thank you
for always answering my organizational questions.

Finally, I am very grateful to all the support I received from my family over the years.
In particular, I want to thank my wife and son for forbearance when I had to do extra
hours before deadlines. Many thanks to my parents, as they always have an open ear for
me.

	Zusammenfassung
	Abstract
	Introduction
	Mobility Tasks with Stochastic Spatial Resources
	Stochastic Spatial Resources
	Classification of the Research Area
	Spatial
	Sequential Decision Making
	Routing
	Uncertainty

	Applications
	Parking Search
	Travelling Officer Problem
	Passenger Dispatching
	Courier Service
	Pursuit
	Summary

	Solving Mobility Tasks with Stochastic Spatial Resources
	Resource Routing
	Defining an MDP for Resource Routing
	Bounded Real-time Dynamic Programming
	Modeling Agent Locations
	Probabilistic Interesting

	Resource Collection
	Model-free Deep Reinforcement Learning

	Non-deterministic Spatial Mobility Tasks
	ORIENTATION: One Solver for all Applications

	Multi-agent and Partial Observations

	Concluding Remarks
	Conclusion
	Future Work

	Publications
	Dynamic Resource Routing using Real-Time Information
	Dynamic Resource Routing using Real-Time Dynamic Programming
	RL in smart spatio-temporal environments
	Scaling the Dynamic Resource Routing Problem
	Semi-Markov RL for Stochastic Resource Collection
	Option-based ReInforcemENT learning for spatial navigATION
	Optimizing the STARS Problem with Reinforcement Learning
	SMART-Env

	Acknowledgements

