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ABSTRACT 

Type 2 diabetes mellitus (T2DM) is an age-related disease characterized by chronic hyperglycaemia 

mainly explained by insulin resistance and impaired insulin secretion and strongly linked to 

dysregulation of carbohydrate, lipid and protein metabolism. T2DM is a worldwide increasing 

disabling disease – in 2013, the International Diabetes Federation estimated that 382 million adults 

suffered from T2DM and that by 2035 there will be 592 people affected. These worrisome numbers 

challenge biomedical research at identifying new biomarkers for the diagnosis. The purpose of this 

study was to analyse and integrate different sources of phenomics (clinical) data – clinical history, 

anthropometrical measurements, biochemical parameters, cell counts and blood differential, and 

medication – with glycomics data in control, prediabetics and diabetics cohorts, in order to 1) 

identify the major sources of variation in both data sets, 2) visualize trends or patterns in variables 

within- and between-omics (e.g. a combination of N-glycans highly correlated with some 

biochemical parameters), 3) determine whether the identified patterns ‘naturally’ cluster according 

to known biological sources or conditions (i.e. diagnostic T2D parameters, lipidic profile, liver, 

kidney, iron, coagulation biomarkers, or blood-related factors), 4) deeply study the fluctuation of 

clinical variables over age, by sex and by groups (Ctrl/PreDiab/Diab), and 5) estimate an aging 

clock based on the clinical variables and N-glycans and apply it to assess whether the groups of 

prediabetic and diabetic patients show an accelerated aging as compared with control, and, within 

each group, whether there are differences between the two sexes. The analytical methods employed 

were two-way partial least squares (O2PLS) and regression. Results indicate that 1) the phenomics 

and glycomics joint components are different among groups, 2) males and females follow a 

different pattern dynamics over age reflected by the relative changes of clinical variables and N-

glycans, 3) intra- and inter-correlations between joint PCs obtained integrating the phenomics data 

set or sets of endophenotypes with the glycomics data set point to a common N-glycan signature 

(instead of endophenotype-specific), and 4) a model based on the Klemera-Doubal method (KDM) 

estimates that T2DM patients are biologically older than prediabetics and controls, being this effect 

more evident for male patients. Our main conclusions are that i) a combination of N-glycans could 

be used as complementary tool for the early diagnosis of metabolic dysregulation and/or T2D, as N-

glycan changes are already present in prediabetics, ii) glycan peaks (GP) 1, GP2, and GP6 are 

confirmed as markers of aging, while GP8 and GP10 appear associated with dyslipidemia, and iii) 

this is the first time that prediabetics and diabetics have been included in an aging clock, as pure 

“healthy” controls do not exist: “the effects of atherosclerosis are superimposed on normal aging of 

the underlying vessel” (Wang and Bennett, 2012). 
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INTRODUCTION 

1. TYPE 2 DIABETES 

1. Overview  

Type 2 Diabetes (T2D) is characterized by dysregulation of carbohydrate, lipid and protein 

metabolism. Although it is primarily caused by insulin resistance, followed by impaired insulin 

secretion, T2D is a multifactorial disease involving genetic and environmental factors (DeFronzo et 

al., 2015). 

2. Epidemiology 

The epidemic of diabetes mellitus and its complications has already become a global challenge. The 

International Diabetes Federation (IDF) estimated that 1 in 11 adults aged 20-79 years (415 million 

adults had diabetes mellitus (including type 1 diabetes (T1D), T2D, gestational diabetes) in 2015. 

This alarming numbers are calculated to raise to 642 million by 2040, and the largest increments 

will come from emerging countries transitioning from low-income to middle-income wealth (IDF 

Diabetes Atlas, 7th Edition). However, these estimates may be, in absolute numbers, 

underestimated by the current pandemic of coronavirus, which is causing many deaths in this group 

of individuals, as glycaemic control, body mass index (BMI), T2D and cardiovascular disease are 

risk factors for COVID-19 mortality (Holman et al., 2020), and by other undergoing rapid 

demographic transitions (Zimmet, 2017). The grounds for this ascending epidemic of diabetes 

mellitus are numerous and diverse: population ageing, economic development, urbanization, 

unhealthy eating habits and sedentary lifestyles (Zheng et al., 2018). Even though the genetic 

background might partially determine an individual’s response to environmental stimuli 

(Fuchsberger et al., 2016), the main drivers are the raise in obesity, a sedentary lifestyle, energy-

dense diets, and population ageing (Chatterjee et al., 2017). In fact, strong evidence points to that 

many cases of T2D could be prevented by keeping a healthy weight, engaging in a healthy diet, 

exercising daily for 30 min, avoiding smoking and consuming alcohol in moderation (Schellenberg 

et al., 2013; Hu et al., 2001).  

3. Genetics 

T2D runs in families and is heritable. The relative risk (RR) for T2D with 0 affected siblings is ~2-3 

compared with siblings of non-T2D families, but, when 2 siblings are affected, the relative risk of 

other siblings for T2D is 30. Interestingly, the RR for T2D is higher when the mother is affected as 

compared to when the father is affected. Also, RR for T2D is increased if BMI ≥30 or fasting 

glucose concentrations >5.5 mmol/L (DeFronzo et al., 2015). 

Over the last decade, plenty of genome-wide association studies (GWAS) were performed to 

identify common variants involved in T2D. In particular, in 2007 the Wellcome Trust Case Control 

Consortium (WTCCC) made a significant breakthrough by reporting single nucleotide 

polymorphisms (SNPs) associated with T2D (WTCCC, 2007). The strongest signal mapped in the 

gene TCF7L2, that up until now remains the most important SNP associated with T2D (Garagnani 

et al., 2013). Other genes significantly associated with T2D are CAPN10 (Horikawa et al., 2000), 

KCNQ1 (Yasuda et al., 2008), KCNJ11 (Gloyn et al., 2003), ABCC8 (Gloyn et al., 2003), SLC30A8 
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(Sladek et al., 2007), IDE–KIF11–HHEX (Sladek et al., 2007) and EXT2–ALX4 (Sladek et al., 

2007). However, the fact that most of the genetic variants map into (unknown) non-coding regions 

of the genome, the problem of the missing heritability (whereby the genetic loci described explain 

only a small proportion of the observed heritability, possibly due to disease heterogeneity, exclusion 

of rare variants, gene-environment interactions, gene-gene interactions and epigenetics), modest 

effect sizes, and the lack of replication of many genetic variants, inter alia, hamper the 

comprehension of the specific role each variant may have in increasing the risk for T2D. Moreover, 

novel mutations cannot explain the diabetes epidemic, which is instead largely explained by the 

epidemic of obesity. Beyond that, the majority of non-diabetic people carry risk variants for T2D, 

which roughly account for ~15% of heritability (DeFronzo et al., 2015). 

4. Diagnosis  

The diagnosis of T2D can be made on the basis of one of the following (American Diabetes 

Association, 2020): 

- Increased casual plasma glucose test (≥200 mg/dL) in patients with classic symptoms of 

hyperglycaemia or hyperglycemic crisis 

- Fasting plasma glucose levels (≥126 mg/dL) 

- 2h postload glucose level (≥200 mg/dL after 75g oral glucose)  

- Hb1Ac (≥6.5%), confirmed by repeat testing 

With regard to prediabetes, the diagnosis is established by one of the following criteria (American 

Diabetes Association, 2020): 

- Fasting plasma glucose levels (100-125 mg/dL) 

- 2h plasma glucose during 75g oral glucose tolerance test (140-199 mg/dL) 

- Hb1Ac (5.7-6.4%) 

5. Motivation 

T2D is a multifactorial complex and heterogeneous disease – the clinical presentation, underlying 

pathophysiology and disease progression in patients with diabetes can vary remarkably among 

individuals and, at times, atypical manifestation of symptoms can make clear-cut classification of 

prediabetes and diabetes difficult –. In addition, diabetes often overlaps with other complex 

pathologies, such as obesity or cardiovascular disease, and/or it may evolve to vascular 

complications. In this doctorate studies, in order to investigate the complexity of the disease, I made 

use of a rich database comprising up to 55 variables, that could be grouped in clinical and 

anthropometrical measurements, biochemical parameters (diagnostic parameters of T2D, lipid 

profile, liver profile, kidney profile, cell counts and blood differential) and N-glycans. Besides, we 

aimed to take into account the heterogeneity of all individuals, not only prediabetics and diabetics, 

but also controls, since above a certain age (~60 years) the definition of healthy controls blurs with 

preclinical age-related diseases. To achieve that, we grouped patients by sex and age ranges.  

Accordingly, the following subsections of the general introduction tackle the contextualization of 

the variables that are used in this research. 
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2. ATHEROGENIC DYSLIPIDEMIA 

6. Lipoproteins (LDL, VLDL, HDL), Cholesterol, Triglycerides and 

Apolipoproteins 

The insolubility of cholesterol and triglycerides (TG) in plasma requires that they are transported in 

macromolecules named lipoproteins, which are composed of a hydrophobic core containing 

phospholipid, fat-soluble antioxidants and vitamins, and cholesteryl ester, and a hydrophilic coat 

that contains free cholesterol, phospholipid and apolipoprotein molecules (reviewed from Hegele, 

2009). Lipoproteins can be grouped according to their densities: chylomicrons (CM), very low 

density lipoprotein (VLDL), low density lipoprotein (LDL), intermediate density lipoprotein (IDL), 

and high density lipoprotein (HDL). CM and VLDL are the main TG-carrying lipoproteins, while 

the main cholesterol-carrying lipoproteins are LDL and HDL (reviewed from Hegele, 2009).  

The terms “cholesterol”, “LDL”, and “LDL cholesterol (LDL-C)” are often used interchangeably, 

but they have different meanings. LDL refers to the particles circulating in fasting blood. Instead, 

the LDL-C term is used in clinical practice as a measure of the total amount of cholesterol 

contained in LDL particles, since plasma LDL level is generally not measured directly. Cholesterol 

is an essential component of cell membranes and a precursor of bile acids and steroid hormones; it 

can be of exogeneous and endogenous origin and it is transported to peripheral cells, mostly by Apo 

B – containing lipoproteins in plasma (reviewed from Ference et al., 2017). Analogous to LDL-C, 

HDL-C is the measure of the total amount of cholesterol contained in HDL particles.  

Patients with T2D often have lipid profiles that seem more benign than those of other high-risk 

individuals without T2D. Generally, LDL-C levels in diabetic individuals are not higher than in 

non-diabetic individuals who are matched for age, sex, and body weight. Indeed, the most frequent 

LDL-C level is “borderline high” (130-159 mg/dL) (The Expert Panel, 2002). Besides, high LDL-C 

levels (>160 mg/dL) are not found at higher rates in T2D individuals. Nevertheless, LDL-C has an 

important role in cardiovascular disease (CVD) in both T2D and non-T2D individuals. In fact, 

LDL-C levels may underestimate CVD risk in T2D (Buse et al., 2007). This is due to the LDL 

fraction characteristic in T2D individuals: small, dense particles with less cholesterol than normal-

sized LDL particles, which are exceptionally atherogenic (Krentz, 2003; Marcovina and Packard, 

2006; Goldberg, 2001). Such atherogenic nature of LDL particles in T2D individuals accounts for 

that the small, dense LDL particles are more handily oxidized and glycated and can more easily 

penetrate the arterial wall than larger LDL particles. As a result, atherosclerosis is enhanced and 

atherosclerotic plaques can increase migration and apoptosis of vascular smooth muscle cells 

(reviewed from Nesto, 2008). Accordingly, individuals with T2D have a two- to threefold increased 

risk for CVD (myocardial infarction, stroke, peripheral vascular disease) compared with non-

diabetics, and CVD is responsible for ∼80% of mortality in T2D patients (Morrish et al., 2001).   

LDL-C not only presents a major role in T2D, but it also interacts with risk factors of the metabolic 

syndrome that multiply the risk of CVD. As an example, increased small, dense LDL particles and 

raised triglycerides seem to be tied to insulin sensitivity. Insulin resistance in skeletal muscle fosters 

hepatic TG synthesis, which in the long-run generates a large amount of atherogenic TG-rich 

lipoprotein particles, specially VLDL. In turn, many TG molecules from VLDL are exchanged for 

cholesterol in LDL particles, which leads to the formation of TG-enriched (and cholesterol-

depleted) LDL. These LDL particles will become smaller and denser through the TG hydrolysis 

mediated by the hepatic lipase. Hence, adverse changes in LDL particles are positively correlated 
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with TG levels. Once TG levels exceed 100 mg/dL, small, dense LDL particles predominate 

(reviewed from Nesto, 2008). Figure 1 shows that when plasma concentrations of VLDL are high, 

cholesteryl ester transfer protein (CETP) will exchange VLDL triglyceride (TF) for cholesteryl ester 

(CE) in the core of LDL and HDL particles. This triglyceride can then be converted to free fatty 

acids by the actions of plasma lipases, primarily hepatic lipase. The net effect is a decrease in 

density of both LDL and HDL particles (Goldberg, 2001). 

 

Figure 1. Plasma lipid exchange. 

In this line, the Adult Treatment Panel III (ATP) report of the National Cholesterol Education 

Program considers elevated LDL-C as the primary target of lipid-lowering therapy for reducing 

CVD risk (NCEP, 2001). Conversely, some a posteriori studies claim that apo B and apoA1 may, 

indeed, be more powerful lipid-related predictors of risk for CVD (Packard, 2003; Sniderman et al., 

2003; Walldius and Jungner, 2004). 

Apo B-100 is a master protein component of the pro-atherogenic VLDL, IDL and LDL particles, 

each containing one Apo B molecule. Thus, plasma Apo B levels reflect the total numbers of the 

pro-atherogenic particles. TG endogenously synthesized in the liver are transported with VLDL 

particles into plasma, where they undergo lipolysis to IDL by the action of lipoprotein lipase. IDL, 

in turn, is lipolyzed by hepatic lipase, giving rise to LDL, or taken up by the liver via the LDL 

receptor. Apo B is also fundamental for the binding of LDL particles to the LDL receptor for 

cellular uptake and removal of LDL particles. In contrast, Apo A1 is the main apolipoprotein 

component of the anti-atherogenic HDL, and thus Apo A1 concentrations are strongly associated 

with HDL-C levels. Apo A1 is essentially involved in removing excess cholesterol from tissues and 

embedding it into HDL for reverse transport through the macrophage ATP-binding cassette 

transporter ABCA1 (reviewed from Chan and Watts, 2006). Chan and Watts (2006) compared 

different observational studies that used either LDL-C and/or apolipoproteins as predictors of 

coronary/cardiovascular risk. Among them, Apolipoprotein-related Mortality Risk Study (AMORIS, 

N=98,722 men and N=76,831), Second Northwick Park Heart Study (NPHSII, N=2,505 men), and 

Women’s Health Study (WHS, N=15,632 women) estimated the association of both predictors 

(LDL-C and the apolipoproteins B and A1) with CVD, and the three of them showed that the odds 

ratio (OR) of the Apo B / Apo A1 ratio is noticeably higher than the OR of LDL-C (Walldius et al., 

2001; Talmud et al., 2002; Ridker et al., 2005; Chan and Watts, 2006). 

On the other hand, HDL enhances reverse cholesterol transport and it is an immunomodulator. 

According to different studies, HDL reduces LDL oxidation (Norata et al., 2006), inhibits oxidized 

LDL-induced MCP-1 (monocyte chemoattractant protein 1) production and monocyte 
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transmigration in a co-culture of human aortic endothelial cells and human aortic smooth muscle 

cells (Van Lenten et al. 1995; Navab et al., 1991), blunts inflammatory response of endothelial cells 

to tumour necrosis factor-1 (TNF-α) and interleukin (IL)-1 stimuli (Ashby et al., 1998), and exerts 

anti-thrombotic and anti-apoptotic effects (Vergès, 2015; Femlak et al., 2017). 

HDL is composed of proteins that become affected by oxidative stress during an inflammatory 

response, including Apo A1. Modification of the protein content can turn HDL a proinflammatory 

particle, a scenario in which HDL becomes “dysfunctional”. Epidemiological research has shown 

that HDL levels are inversely correlated with the risk of CVD. However, there are individuals who 

have suffered a clinical event and present normal or high levels of HDL. Low levels of HDL 

cholesterol are also associated with increased risk for type 2 diabetes. The hypothesis of 

“dysfunctional” HDL has been studied in T1D. Overall, T1D patients with lowered levels of HDL-

C have a higher cardiovascular risk, but T1D patients with high levels of HDL-C may not have a 

lower cardiovascular risk (Orchard, 1990). Thus, the mechanisms of such relationship are yet to be 

understood. To date, though, it has been suggested that different HDL subfractions relate to 

coronary artery disease (CAD) incidence in a different manner (reviewed from Femlak et al., 2017).  

1. BMI and WHR 

Along with the lipid profile, some anthropometric measures are also taken into account as a 

function of health in patients. A few well-known parameters are waist circumference (WC), waist-

to-hip ratio (WHR), and BMI. There has been controversy in whether BMI or WHR is a better 

predictor of obesity (Murray, 2006; Qyao and Nyamdorj, 2010). Qyao and Nyamdorj (2010) revised 

different investigations with the goal of comparing between BMI, WC, and WHR in their relation to 

the incidence and prevalence of T2D. They concluded that all studies showed that either BMI or 

WC predicted or was associated with T2D independently and stressed that the nature of the study 

could condition on results. In other words, prospective studies favoured equally BMI, WC, WHR 

and the waist-to-stature ratio (though these studies were limited to ethnic groups), while cross-

sectional studies evidence pointed to that WC or WHR discriminate better cases with diabetes from 

those without, as compared with BMI (though these studies provide only possible association). 

Another investigation aimed to explore both the relative magnitude of association and the 

discriminative capability of multiple indicators of obesity with CVD mortality risk by conducting a 

meta-analysis of 9 cohort studies of men and women from the British general population 

(Czernichow et al., 2014). They measured BMI, WC, and WHR, and, after a mean of 8.1 years of 

follow-up, 6,641 deaths were recorded from a total of 82,864 individuals. In this research, they 

estimated the association of CVD risk and CVD mortality with the mentioned variables and reached 

the conclusion that measures of abdominal adiposity, but not BMI, were related to an increased risk 

of CVD mortality (Czernichow et al., 2014). In any case, the increasing adiposity is the single most 

important risk factor for T2D (De Fronzo et al., 2015). Figure 2, extracted from De Fronzo et al. 

(2015), shows the relationship between the age-adjusted RR of T2D and BMI and reflects that the 

higher the BMI, the higher the age-adjusted RR of T2D is, being greater in women than men.  
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Figure 2. Association between BMI and T2D 

7. Common risk factors in cardiovascular disease and type 2 diabetes 

Thus far, I reviewed the role of key players in CVD and T2D without clearly distinguishing 

between the two diseases, which, indeed, share many traditional and non-traditional risk factors. 

Traditional CVD risk factors in T2D include dyslipidemia (altered lipid profile), increased blood 

pressure, being overweight or obese (>25 kg/m2), having abdominal or central obesity (independent 

of BMI), reduced physical exercise, and cigarette smoking. Non-traditional CVD risk factors 

comprise insulin resistance and hyperinsulinemia, postprandial hyperglycaemia, glucose variability, 

microalbuminuria, haematological factors, thrombogenic factors, increased levels of C-reactive 

protein (CRP), homocysteine and vitamins, erectile dysfunction, and genetics and epigenetics. 

There are consistent evidences which underscore that control of the traditional risk factors are 

necessary for reducing CVD risk in T2D patients. Cardiovascular benefits are acquired if the 

control of such risk factors start early in subjects with short duration of diabetes and low 

cardiovascular risk. On the contrary, in elderly subjects with a longer time exposure to 

hyperglycaemia and high cardiovascular risk, there are no cardiovascular improvements but losses. 

This positive or negative effect could be attributed to the “metabolic memory” hypothesis, whereby 

the early glycaemic exposure is imprinted in target organs, resulting in long-term protective or 

deleterious consequences (reviewed from Martín-Timón et al., 2014). The main gain of reducing 

concentration of plasma glucose in T2D is prevention of long-lasting microvascular complications 

and, to lesser extent, of macrovascular complications. However, hyperglycaemia is a loose risk 

factor for CVD (UKPDS, 1998; Holman et al., 2008), and interventions (Gerstein et al., 2008; Patel 

et al., 2008; Duckworth et al., 2009) focusing on reducing plasma glucose have unsuccessfully 

reduced CV risk and mortality. The cluster of CV/metabolic factors (obesity, dyslipidemia, 

hypertension, endothelial dysfunction, procoagulant state) associated with insulin resistance, that is 

usually moderate to severe in individuals with T2D, is known as insulin resistance (metabolic) 

syndrome and is a combinatorial major factor responsible for CV risk in T2D (DeFronzo, 2009; 

DeFronzo, 2010; Abdul-Ghani et al., 2017). In this line, obese non-T2D individuals but with insulin 

resistance syndrome exhibit an akin raised risk for CVD compared with T2D individuals, which 

reinforces the notion that hyperglycaemia is not a paramount risk factor for CVD. In accordance 

with this, antidiabetic drugs (e.g. insulin, sulfonylureas, and dipeptidyl peptidase 4 (DPP-4) 

inhibitors), which diminish plasma glucose without affecting insulin resistance, do not lessen CVD 

risk and mortality in T2D (Abdul-Ghani et al., 2017). 
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2. Prediabetes is Key for Understanding Cardiovascular Complications in Type 2 

Diabetes 

Prediabetes is characterized by one of the following (DeFronzo et al., 2015):  

➢ Impaired fasting glucose (IFG): muscle insulin resistance + impaired late insulin secretion. 

➢ Impaired glucose tolerance (IGT): hepatic insulin resistance + impaired early insulin 

secretion. 

➢ ↑Glycated haemoglobin (HbA1c). 

Both IFG and IGT use hyperinsulinemia as a coping mechanism to reduce elevated fasting or 

postprandial glucose (Laakso, 2010). Some studies, though, have provided evidence that individuals 

with IGT have a more marked degree of insulin resistance, whereas individuals with IFG are 

characterized by a more marked β-cell defect (Weyer et al., 1999; Festa et al., 2004). In addition to 

that, it has been shown that insulin resistance per se is correlated with atherosclerosis, even in 

normoglycemic individuals (Laakso et al., 1991). Furthermore, several investigations have 

demonstrated that high insulin level is associated with risk of cardiovascular heart disease (CHD) 

(Laakso, 1996). Prediabetics have a cluster of CVD risk factors that may differ of the cluster of 

CVD risk factors in diabetics. Nevertheless, diabetics are at least as insulin resistant as prediabetics 

(Laakso, 1996). Therefore, insulin-resistance RR in both prediabetics and diabetics are likely to 

explain an important part of the atherosclerotic process (figure 3, extracted from Laakso, 2010).  

 

Figure 3. Relative risk of CVD in normoglycemia, prediabetes and diabetes 

3. Sex in Cardiovascular Complications in Type 2 Diabetes 

Intriguingly, RR for CHD is higher in T2D female patients than in T2D male patients. The reason 

for this sex difference is not known, but it could be explained by a heavier risk-factor burden and a 

greater effect of blood pressure and atherogenic dyslipidemia on the risk of CVD in T2D women 

than in T2D men (Juutilainen et al., 2004).  

8. Thrombosis and fibrinolysis 

Insulin resistance and diabetes are associated with an increased prothrombotic risk (coagulation 

factors VII, XII, and fibrinogen) and with suppressed fibrinolysis, due to elevated levels of the 

fibrinolytic inhibitor PAI-1 and of the thrombin-activatable fibrinolysis inhibitor (TAFI) (Grant, 

2007; Hori et al., 2002).  
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3. GLYCANS 

9. Glycans definition  

The terms glycan and polysaccharide are defined by IUPAC as synonyms meaning "compounds 

consisting of a large number of monosaccharides linked glycosidically". In practice, glycan, 

carbohydrate, saccharide and sugar are generic terms used interchangeably (IUPAC Gold Book – 

Glycans). Figure 4 shows some examples of glycans. 

 

Figure 4. Examples of glycans (IUPAC Gold Book) 

Glycans are not only defined by monosaccharide units, but also by the bond position, its anomeric 

configuration (alpha or beta), the number of branches and the position of branching (Lauc and 

Zoldoš, 2010). Along with nucleic acids, proteins and lipids, glycans are essential macromolecular 

and structural components or, in other words, building blocks, of all cells, and they can be found 

attached to proteins and lipids or as independent macromolecules (Marth and Grewal, 2008). 

10. Glycans biosynthesis 

In the case of protein glycosylation, glycans synthesis can be split into N-linked, O-linked, and the 

GlcNAc modification (revised from Zhou et al., 2018): 

▪ N-glycosylation synthesis: N-linked glycosylation starts with the transfer of a large 

precursor oligosaccharide from a membrane-embedded dolichol phosphate lipid to the 

asparagine of a nascent protein while being synthesized in the rough endoplasmic reticulum 

(ER). The glycan assists in protein folding by mediating interactions with ER chaperones 

like calnexin and calreticulin, thereby functioning as a quality control checkpoint. Upon 

proper folding, the glycans are trimmed to “high mannose” structures prior to moving to the 

Golgi apparatus, where they undergo further trimming and then rebuilding through the 

combined action of various glycosyltransferases. This results in both hybrid and complex- 

type N-glycans, which are common at the plasma membrane and on secreted glycoproteins, 

including immunoglobulin (Ig) G and essentially every surface protein on a cell (reviewed 

from Zhou et al., 2018; figure 5, extracted from New England Biolabs). 
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Figure 5. Protein N-glycosylation biosynthesis 

▪ O-glycosylation synthesis: O-linked glycosylation is a wide category comprising various 

modifications named for the glycosidic linkage of oxygen on threonine or serine residues, 

and includes O-GalNAc, O-fucose, and O-mannose glycans. Unlike the co-translational N-

glycosylation, all of these are built progressively from a single initiating sugar post-

translationally cell (reviewed from Zhou et al., 2018). 

▪ O-GlcNAcylation (O-GlcNAc glycosylation): O-GlcNAc glycosylation corresponds to the 

addition of N-acetylglucosamine on serine and threonine residues of cytosolic and nuclear 

proteins. O-GlcNAcylation is a dynamic post-translational modification, analogous to 

phosphorylation, that regulates the stability, the activity or the subcellular localisation of 

target proteins (e.g. RNA polymerase II, histones, histone deacetylase complexes and 

members of the Polycomb and Trithorax group). This reversible modification depends on 

the availability of glucose – 2-5% of glucose enters the hexosamine biosynthetic pathway 

(HBP) – and therefore constitutes a powerful mechanism by which cellular activities are 

regulated according to the nutritional environment of the cell (as above-mentioned GlcNAc 

is considered to be the metabolic sensor of the cell). O-GlcNAcylation has been implicated 

in important human pathologies including Alzheimer disease and type-2 diabetes. Only two 

enzymes, OGT and O-GlcNAcase, control the O-GlcNAc level on proteins (reviewed from 

Issad et al., 2010; figure 6). 
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Figure 6. O-GlcNAcylation in cell metabolism 

11. Molecular diversity of glycans 

Glycosylation is not only the most abundant post-translational modification, but also by far the most 

structurally diverse. Conservative estimates state that >50% of proteins are glycoproteins, without 

considering the countless number of nuclear and cytoplasmic proteins modified by O-GlcNAc. It is 

estimated that between 2-5 glycans are attached to an average glycoprotein, the 10% of which are 

O-linked, and the other 90% are N-linked or both (Apweiler et al., 1999). In this line, there are at 

least 13 different monosaccharides and 8 different amino acids involved in glycoprotein linkages, 

with a total of at least 41 different chemical bonds known to be linking the glycan to the protein 

(Spiro, 2002). Importantly, each one of these glycan:protein linkages is unique in both structure and 

function. However, if the structural diversity of different branches composed by different 

monosaccharides is added to these single-linkages, the molecular diversity increases exponentially. 

Just the “sialome” rivals or exceeds many other post-translational modifications in abundance and 

structural/functional diversity. Besides, chemical modifications, such as phosphorylation, sulfation 

and acetylation, increase the glycan structural/functional diversity even more. Therefore, 

categorizing glycosylation as a single type of post-translational modification may be misleading and 

useless (Cohen and Varki, 2010). 

12. Functions of glycans 

Very conservative estimates indicate that there are over a million different glycan structures in a 

mammalian cell's glycome, and consequently glycoproteins are involved in a myriad of functions. 

Varki (2017) revised the multiple functions of glycans, and classified them into four groups (see 

figure extracted from Varki, 2017):  

i. Structural and modulatory roles: as example, the addition of O-GlcNAc residues to 

histones surrounding chromosomal DNA is key in the histone code that regulates gene 

expression. 

ii. Extrinsic (interspecies) recognition of glycans: as example, glycans, such as 

polysaccharide A, derived from the mammalian gut microbiome, helps to modulate the host 

immune system to a more tolerant state (via T-reg engagement). 
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iii. Intrinsic (intraspecies) recognition of glycans: as example, the conservative 

glucosylation/deglucosylation cycle of protein folding in the ER. 

iv. Molecular mimicry of host glycans: as example, molecular evolution of microorganisms 

has allowed them the acquisition of host sialoglycans or the direct transfer of host sialic 

acids by trans-sialialidases, thereby acting as self-associated molecular patterns (SAMPs) 

recognized by Siglecs – receptors of sialoglycans –, limiting complement activation, or 

masking antibody recognition. 

 

Figure 7. Biological roles of glycans proposed by Varki (2017) 

13. Genetics of protein glycosylation 

The synthesis of glycans, in contrast to genes, is a template-independent process – glycans are 

encoded in a dynamic network of hundreds of genes that code for enzymes involved in glycan 

synthesis, e.g. glycosyltransferases (>250), glycosidases, enzymes for sugar nucleotide 

biosynthesis, etc. In addition to over 600 such proteins, there are various transcription factors, Golgi 

organizers, proton pumps, etc. that affect their expression and activity (reviewed from Lauc and 

Zoldoš, 2010). 

In genetics, three groups of mutations/SNPs in genes coding for enzymes involved in glycosylation 

have been described at large:  

a. Embryologically lethal: those affecting enzymes involved in the pathway of glycans 

biosynthesis, and that consequently they impair the proper functioning of thousands of 

proteins (reviewed from Lauc and Zoldoš, 2010). 
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b. Rare mutations: those comprising a group of rare genetic disorders (the so-called 

congenital disorders of glycosylation or CDC) caused by mutations in the core N-

glycosylation pathway – these mutations result in residual enzymatic activity, but are 

nonetheless associated with significant mortality and broad motoric, immunologic, 

digestive and neurologic symptoms (reviewed from Lauc and Zoldoš, 2010). 

c. Glycophenotype: those variations in genes involved in modifications of glycan antennas, 

which are common in the population and apparently cause a large part of individual 

phenotypic variations that exist in humans and in other higher organisms. Indeed, the 

majority of variability originates from SNPs that individually do not have visible 

glycophenotypes, but if present in specific combinations within the same individual can 

have significant phenotypic effects (reviewed from Lauc and Zoldoš, 2010). 

Regardless of mutations/SNPs, it has been reported that a large part of the observed variability is 

under genetic control (Lauc and Zoldoš, 2010). 

14. Environmental factors affecting protein glycosylation 

The complex dynamic network of hundreds of proteins taking part in glycans biosynthesis makes 

the process of protein glycosylation intrinsically sensitive to all changes occurring within a cell, so 

that the glycan structures produced at any instant of time reflect the significant past events in the 

cell. Indeed, glycosylation sites on the same protein can contain different glycan structures that 

reflect the cell type, developmental stage and metabolic state of the cell in which they are 

synthesized. 

While general glycan structures appear to be mostly defined by the genetic makeup, some specific 

glycans are sensitive to environmental factors. Some examples of environmental factors that change 

the glycomic profile are age, smoking and diet.  
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MATERIALS & METHODS 

15. Data description 

4. Clinical database 

A database consisted of 123 variables (including 10 N-glycans) of N=1185 individuals was 

provided. The clinical data were classified in groups to facilitate the comprehension (table 1). 

Table 1. Database classified variables by biomedical groups 

GROUP VARIABLE 

Sex – Age 
Sex 

Age 

Clinical History 

Bypass 

Somatic Neuropathy 

Nephropathy 

Chronic Renal Insufficiency 

Retinopathy 

Arteriopathy Obliterans of Lower Limbs 

Arteriopathy Obliterans of Upper Limbs 

Cardiac Ischemia 

Major Adverse CDV Events 

Anthropometrical Measurements 

Weight 

Height 

Body Mass Index  

Waist 

Hips 

Waist-to-Hip ratio 

Biochemical Parameters 

Glycaemia 

GLIC MM (unk) 

Hb1Ac 

Azotemia 

Creatinine 

Uric Acid 

Alkaline Phosphatase 
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AST 

ALT 

Cholesterol 

HDL 

Triglycerides 

Insulin  

HOMA 

Estimated glomerular filtration rate 

C Reactive Protein 

Fibrinogen 

PAI-1  

Thrombin activatable fibrinolysis inhibitor 

Gamma glutamyl transpeptidase 

Total Bilirubin 

LDL 

Apolipoprotein A1 

Apolipoprotein B 

Total iron 

Transferrin 

Ferritin 

Total Protein 

Telomere Length 

Symmetric Dimethylarginine  

Asymmetric Dimethylarginine  

ASAH1 (lysosomal enzyme) 

ASAH1 (lysosomal enzyme percentage) 

Glucoamylase (lysosomal enzyme) 

Glucoamylase (lysosomal enzyme percentage) 

Cell counts 

White Cells 

Red Cells 

Hemoglobin 

Hematocrit 
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Mean Corpuscular Volume 

Mean Corpuscular Hemoglobin 

Mean Corpuscular Hemoglobin Concentration 

Red blood cell Distribution Volume – SD 

Red blood cell Distribution Width – CV 

Platelets 

Platelets Distribution Width – SD 

Mean Platelets Volume 

Blood Differential 

P.LCR (Platelet Large Cell Ratio) 

Neutrophils 

Lymphocytes 

Basophils 

Eosinophils 

Monocytes 

Absolute Neutrophils 

Absolute Lymphocytes 

Absolute Basophils 

Absolute Eosinophils 

Absolute Monocytes 

Medication 

ACE Inhibitors 

Anti-inflammatories 

Bisphosphonates 

Anti-arrythmics 

Calcium Antagonists 

Beta blockers 

Fibrates 

Statins 

Metformin 

Sulphonylureas 

Glinides 

Insulin administration 

Vasodilators 
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Anti-aggregants 

Diuretics 

Gastroprotectors 

Micronutrients 

Antibiotics 

SNC Medication 

Thyroid Medication 

Lipid Therapy 

Glycaemia Therapy 

Hypertension Therapy 

Presence Therapy 

Metabolic Syndrome (ATPIII diagnosis)* 

Metabolic Syndrome (IDF diagnosis)* 

Survival-like variables 

Smoker 

Smoking Years 

Number Cigarettes 

Stop Smoking Year 

Diabetes 

Diabetes Duration 

Hypertension Medication 

Hypertension Onset Year 

Cholesterol Medication 

Hypercholesterolemia Onset Year 

Acute Myocardial Infarction 

Acute Myocardial Infarction Onset Year 

Ictus 

Ictus Onset Year 

Genetic markers 

Haplogroup 

RFLP markers 

Pavia 

Genetics geographical precedence 
Municipality 

Province 
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Genetics genealogical precedence 

Paternal Grandfather 

Paternal Grandmother 

Maternal Grandfather 

Maternal Grandmother 

*ATPIII: adult treatment panel III; *IDF: international diabetes foundation; unk: unknown; yellow ochre 

color: variables used in all analyses; green color: variables used for the global O2PLS; grey color: 

variables never used. 

 

The variables in gray (a total of 32) were removed – except the “Diabetes” variable –, either 

because they were redundant with other variables or were out of the scope of this research.  

5. N-Glycans 

10 quantified total plasma N-glycan abundances measured with DSA-FACE were used for the 

analysis (table 2).   

Table 2. 10 N-glycans obtained with the DSA-FACE (images obtained with the Glycoworkbench software) 

Short Code 

(DSA-FACE Code) 
Structure 

GP1 

(NGA2F) 

 

GP2 

(NGA2FB) 

 

GP3 

(NG1(6)A2F) 
 

GP4 

(NG1(3)A2F) 
 

GP5 

(NA2) 
 

GP6 

(NA2F) 
 

GP7 

(NA2FB) 
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GP8 

(NA3) 

 

GP9 

(NA3F(b)) 

 

GP10 

(NA4) 

 
 

16. Preprocessing: Clinical Database and N-glycans 

Summary of the preprocessing – Phenomics data set 

The preprocessing was run 3 times for the exploratory data analysis (EDA) visualization plots. On 

the 1st time 2 impossible values were detected: Height=110cm (BMI=61), Glucoamylase_Lys.Enz=-

80.3 (negative value), which were considered as missing values. Plots and summary tables were 

obtained and a screening was made for extreme outliers (>3/4 times the 0.01/0.99 percentiles), and 

13 values were removed. After that, preprocessing was run a second time, in which variables that 

were skewed were transformed and pairs of variables considered redundant (highly correlated) were 

filtered (1 out of the pair). The 3rd run contains plots from the whole processed data set. 

6. Categorical variables to binary 

The variables “Anti-aggregants”, “Vasodilators”, “Anti-arrythmics”, “Anti-inflammatories” and 

“Statins” from the group “Medication” were all converted to binary, i.e. she takes medication – 

YES/NO, instead of considering the class of drug. 

7. Center log-ratio (clr) transformation on N-glycans and Blood cells % 

Compositional data are measures of proportions, percentages, parts per million, etc. which sum up 

to the unity or 100 constraint. In the case of N-glycans, this means that when they are transformed 

to percentage, the level of one glycan increases at the expense of the decrease of (another) 

glycan(s). This might lead to a misinterpretation of the correlation coefficients between the original 

glycans, commonly referred as the negative bias problem (Houwing-Duistermaat et al., 2017). To 

deal with compositional glycans, we used the center log-ratio (clr) transformation, mathematically 

expressed as: 
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clr(x) = (log(x1/g(x)), …, log(xD/g(x))) 

where x represents the composition vector, g(x) is the geometric mean of the composition x, and xD 

is Euclidean distances between the individual N-glycan variables. The clr was carried out with the 

compositions package from R software. In figure 8 the glycans distribution is shown for non-clr and 

clr transformed glycans. 

Before applying clr transformation, it was noted that 17 rows in the Glycomics data set were 

completely missing, and thus removed (N=1168). No other missing values were detected in the data 

set. 

 

Figure 8. Distribution of N-glycans without vs without clr transformation 

The same applies to blood cell percentages, thereby the sum of neutrophils %, lymphocytes %, 

basophils %, eosinophils % and monocytes % equals 100. Accordingly, the clr too was performed 

in blood cell counts (figure 9). These 5 variables had a total of 6 NA, but it should be noted that the 

clr deals with missing values when performing the transformation. 

The clr on N-glycans and blood cells was conducted on separate dataframes (df), respectively; 

afterwards, they were rejoined to the “Phenomics” df for the imputation. 
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Figure 9. Distribution of Blood Cells without vs without clr transformation 

8. Missing values and imputation 

1164/1168 rows contained missing values, which were present in 70/122 columns. Briefly, 96 

variables had <1% NA, 11 variables had 1-25% NA, 0 variables had between 25-50% NA, and 16 

variables >50% NA. 

The 16 variables >50% NA were deleted, so that the final number of clinical variables became 106. 

All 106 (≤25% NA) were imputed with the mice package. 

9. Outliers detection and treatment 

After a first process of data cleaning (following NA deletion or imputation), different plots 

(histograms, Q-Q plots, boxplots) and tables (summary statistics and quantiles) were produced (data 

not shown). Cohorts are explained in the next section, but so far N=292 controls (Ctrl), N=313 

prediabetics (PreDiab) and N=563 diabetics (Diab). 

These EDA served to check for data distribution and to detect whether there could be possible 

influential outliers that could drastically bias/change the fit of estimates and predictions. 

In general, values were not extreme, indicating that the best is to include them over other methods, 

like trimming based on reference values – up to 130 samples would be lost – or winsorizing, i.e. 

imputing the most external top and bottom outliers to the 5th and the 95th quantiles, which would 

introduce bias. Based on the EDA, the following extreme outliers were detected: 

• Age: 17-Ctrl 

• Creatinine: 6-Ctrl 

• HOMA: 47.3-Diab 

• Triglycerides: 1528-Diab 
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• Estimated glomerular filtration rate (EGFR): 364.8-PreDiab, 7.3-Ctrl 

• C Reactive Protein: 130.6-PreDiab 

• Gamma Glutamyl Transpeptidase: 946-Diab 

• Total Bilirubin: 7.5-Diab, 9-Ctrl 

• Ferritin: 1500-PreDiab 

• Platelets: 965-Diab 

• Alkaline Phosphatase: 300-Ctrl, 410-Diab 

These values were removed (except for a technical reason the “EGFR=7.3-Ctrl” (ID and value 

could not be read by R)), giving to: N=288 Ctrl, N=310 PreDiab and N=557 Diab (final N=1155). 

10. Descriptive Statistics 

After dealing with missing data and extreme outliers, data were visually check for normally 

distribution or skewness through histograms, Q-Q plots, boxplots and tables of summary statistics 

(data not shown). From plots and tables it could be inferred that the following variables are: 

• Highly right skewed: Creatinine, AST, HOMA, ALT, Triglycerides, Insulin, C Reactive 

Protein, Gamma Glutammyl Transpeptidase, Ferritin, Alkaline Phosphatase, Azotemia, 

Uric Acid, Telomere Length, Symmetric Dimethylarginine, Asymmetric 

Dimmethylarginine, Red blood cell Distribution Width. 

• Highly left skewed: Mean Corpuscular Volume. 

1. Kolmogorov-Smirnov test 

For the 17 highly right skewed variables, a Kolmogorov-Smirnov (K-S) normality test was 

performed to numerically check for normality. “Cholesterol” was used as reference variable, since it 

follows a fair Gaussian distribution. The null hypothesis that each of the skewed variables follows a 

normal distribution and, thus, it is not different from the “Cholesterol” distribution was rejected in 

all skewed variables (p-value < 2.2e-16). 

11. Skewed Continuous Variables Transformation 

Next, 10 different transformations were tested in each variable – log, square root, raise to the power 

of coefficients ranging from 0.1 to 0.3 – to decide which transformation suited most to each 

variable. 
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2. Summary 

• No transformation: Mean Corpuscular Volume. 

• Log: Creatinine, AST, ALT, Triglycerides, Insulin, Gamma Glutamyl Transpeptidase, 

Alkaline Phosphatase, Azotemia, Uric Acid, Telomere Length, Red blood cell Distribution 

Width. 

• Square root: Symmetric Dimethylarginine, Asymmetric Dimethylarginine. 

• Raise to the power 0.125: Ferritin. 

• Raise to the power 0.275: C Reactive Protein. 

• Raise to the power 0.3: HOMA. 

12. Redundant Correlated Variables Filtering 

A high correlation between two variables means they have similar trends and are likely to bring 

similar information. This can bring down the performance of some models drastically (e.g. linear 

and logistic regression models (Sharma P (2018)).  

A Pearson correlation matrix between numerical variables was calculated, and for variables 

crossing a certain threshold, one of them was deleted. Since dropping a variable is highly 

subjective, choosing between one of them was done based on domain knowledge, so that, for 

example, for blood variables, those already surpassing a threshold of ≥ 0.5 or ≤ -0.5 were removed, 

while for the rest of variables a threshold of ≥ 0.7 or ≤ -0.7 was set, excluding core variables for the 

study, such as HbA1c/HOMA. Ten variables (7 blood-related and 3 lysosomal enzymes) were 

dropped: 

• Basophils 

• Red blood cell Distribution Volume – SD 

• Mean Corpuscular Hemoglobin Concentration 

• Hematocrit 

• Platelet Large Cell Ratio 

• Platelets Distribution Width – SD 

• Mean Corpuscular Hemoglobin 

• Glucoamylase 

• ASAH1 % 

• ASAH1 
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A second Pearson correlation matrix was computed after filtering for those variables, to visually 

assess for correlations among the remaining variables (not shown). 

17. Cohorts: controls, prediabetics, diabetics 

As mentioned before, N=288 Ctrl, N=310 PreDiab and N=557 Diab (final N=1155). 

These cohorts were established by the diabetologists of Ancona (where the database was produced), 

who determined if individuals were diabetics or not. However, since there is a time gap between the 

diagnosis of T2DM – ranging from 70’s up to the early 2000, being the 2 most recent diagnosed 

individuals in 2005, plus incomplete cases – and the data collection – year 2009 –, it was considered 

appropriate to redefine the groups based on the 2 first diagnostic reference values from table 

(extracted from De Fronzo et al. 2015), in agreement with the American Diabetes Association 

(ADA), because they could be more informative than the previous ones. For that, I did not change 

the “diabetes” status established by the diabetologists from Ancona (to date, diabetes cannot be 

cured, just controlled), and I just took the individuals with absence of diabetes (according to the 

diabetologists) and classified them into controls and prediabetics following the ADA criteria 

(subsection Diagnosis). 
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CHAPTER 1: Characterization of the T2D-Dysmetabolic-Aging 

Phenotype 

4. INTRODUCTION 

Aging is a time-dependent multifactorial process that results in a global deterioration of the 

physiological functions and elevated risk of pathologies, including CVD, neurodegenerative 

diseases, cancer and diabetes (López-Otín et al., 2013). Over recent years, the new approach termed 

“Geroscience” has focused the attention on a limited number of highly interconnected “pillars”, 

shared between aging and age-related diseases (López-Otín, 2013; Kennedy et al., 2014). Among 

them, inflammation plays a key role, though being indispensable for survival and paradoxically 

non-detrimental in childhood and adulthood (Furman et al., 2019). A particular feature of the old 

immunophenotype is the chronic, low-grade, sterile inflammation status, termed inflamm-aging, 

that can be largely explained by a disequilibrium between inflammatory and anti-inflammatory 

networks. Within this context, immune cells are major players in eliciting inflammatory responses 

and constantly adapting their functions at facing internal and external stimuli, but not unique.  

Different organs, tissues and cells, such as adipose tissue (AT), liver, muscle, fibroblasts or 

endothelial cells, are also capable of inducing a proinflammatory status, thus contributing to 

systemic inflammation and to subsequent chronic diseases (Salvioli, 2013). Of note, adipocytes and 

hepatocytes are pivotal metabolic cells that, under chronic overnutrition, promote inflammatory 

local pathways, which, in turn, drive the recruitment of proinflammatory macrophages. In the long 

run, this may result in obesity, CVD and hepatic steatosis, which constitute intermediary 

phenotypes that combined raise risk for metabolic syndrome (MetS) (Grundy et al., 2004). Besides, 

chronic obesity-associated inflammation greatly contributes to insulin resistance and posterior β-cell 

inflammation and dysfunction, increasing risk for T2DM. Within this framework, a common 

denominator for these maladies is the low-grade, chronic inflammation state induced by metabolic 

cells in response to excess nutrients and energy, termed metaflammation (Gregor et al., 2011).  

Metaflammation and inflamm-aging share molecular mechanisms of inflammation that characterize 

aging and age-related diseases. For example, inflammatory cytokines can impair the insulin 

signalling pathway by inactivating the insulin receptor substrate 1 (ISR1) via phosphorylation, thus 

leading to the inactivation of the phosphatidylinositol-3-kinase (PI3K)-Akt path. From a clinical 

point of view, some T2DM patients are non-obese and some obese patients are non-diabetic, but 

anti-inflammatory drugs do not prevent diabetes and CVD events progression, which points towards 

inflammation as link between obesity and diabetes development (Franceschi et al., 2000; Franceschi 

et al., 2017; Prattichizzo et al., 2018). Though, immunometabolic disorders often come up in 

clusters and nurture aging and age-related diseases (Hotamisligil, 2006; 2017). In point of fact, the 

World Health Organization estimates that 39% adults worldwide are overweight and 13% are also 

obese, and that between 2015 and 2050 the world's population over 60 years will increase from 12% 

to 22%. These worrisome numbers challenge biomedical research at identifying new biomarkers for 

the diagnosis of age-related diseases. A field that has a lengthy trajectory, but it is only recently 

being recognized by immunologists, is glycomics (Zhou et al., 2018), upon which this chapter will 

focus on for reviewing shared links between inflamm-aging and metaflammation. 

Glycomics refers to the studies that strive for defining and quantifying the glycome of a cell, tissue 

or organism (Hart and Copeland, 2010). The glycome is the entire set of glycans, or carbohydrates, 

and glycoconjugates produced by a cell or organism under specific conditions (Bertozzi and 
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Sasisekharan, 2009). The covalent addition of glycans to proteins and lipids, termed glycosylation, 

is the most abundant post-translational modification and by far the most structurally richest. In 

mammalian cells, protein glycosylation can be mainly classified into three classes: the co-

translational N-linked glycosylation, the post-translational O-linked glycosylation, and the O-linked 

β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation). N-linked chains are those 

glycans attached to the nitrogen of asparagine; O-linked glycans are the ones attached to the oxygen 

of serine or threonine residues, and comprise O-linked N-acetylgalactosamine(O-GalNAc), O-

fucose, and O-mannose glycans; while O-GlcNAcylation is an ancient modification whereby 

GlcNAc is swiftly added or removed, being uridine diphosphate (UDP)-GlcNAc the metabolic 

sensor of cellular condition (Zhou et al., 2018). Not surprisingly, these post-translational 

modifications directly or indirectly take part in a myriad of cellular and extacellular functions 

(Varki, 2017). Importantly, glycans and glycan-binding proteins are core to a properly functioning 

immune system (Johnson et al., 2013), and the genetic makeup and environmental changes can 

significantly impact the glyco-immune homeostasis, favouring/triggering different pathological 

conditions (Lauc and Zoldoš, 2010). These encompass infectious and complex diseases, including 

cancer, neurological disorders and severe inflammation (Moran et al., 2011, Theodoratou et al., 

2014), as well as the aging process. Aberrant changes in glycosylation are particularly relevant for 

immunoglobulin G (IgG) effector functions, since these antibodies can prompt proinflammatory 

responses and fuel metaflammation and inflamm-aging. Indeed, glycoforms of the immune system 

and of circulating proteins can be captured by examining either the whole spectrum of N-linked 

glycans (N-glycome) or the N-glycans attached to IgGs (IgG glycome) present in serum or plasma. 

In this regard, recently developed high-throughput (HTP) methods have significantly enhanced 

investigations on N-glycans. 

In this chapter, we briefly introduce the main characteristics of glycosylation and the 

immunometabolic crosstalk between aging and metabolic syndrome. Then, we describe the 

pathophysiological roles of glycans and their receptors in inflamm-aging and metaflammation. 

Finally, we discuss the most relevant N-glycan biomarkers in these inflammatory processes.  

 

18. Intracellular biological roles of glycans: focus on cellular metabolism 

13. Metaflammation intra-organ 

crosstalk 

Obesity elicits various triggering events (step 1), 

such as hypoxia, lipotoxicity, ER stress, that 

initiate activation of inflammatory signaling 

pathways in parenchymal cells, such as 

adipocytes and hepatocytes (Lee et al., 2018; 

figure 10).  

These cells, in turn, secrete different chemokines, 

which drive chemotaxis and migration of 

macrophages and other immune cell types, into 

Figure 10. Metaflammation intra-organ crosstalk 
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the underlying tissue (step 2; Lee et al., 2018; figure 10). 

Overall, these immune cells take on a proinflammatory phenotype and secrete a number of factors 

(cytokines, galectin-3, exosomes; step 3), which exert local paracrine effects to cause insulin 

resistance in adipocytes, hepatocytes and myocytes, or decreased insulin secretion stimulated by 

glucose in beta cells (step 4; Lee et al., 2018; figure 10). 

14. Metaflammation inter-organ crosstalk 

Obesity gives rise to chronic inflammation in metabolic tissues (liver, adipose tissue, muscle; figure 

11, extracted from Lee et al., 2018). It also promotes dysbiosis in the gastrointestinal tract and 

gliosis in the central nervous system. These tissues secrete factors that not only act locally (as 

paracrine effects), but also enter the bloodstream to cause distal effects on insulin sensitivity and 

food intake. Each factor has the potential to foster the production and secretion of some other 

factors, adding to the complexity of the integrated network comprising metabolic inter-organ 

crosstalk (Lee et al., 2018). 

 

Figure 11. Metaflammation inter-organ crosstalk 

15. Metaflammation intracellular crosstalk 

In obesity, NF-kB can be turned on by multiple mechanisms (figure 12, extracted from Catrysse 

and van Loo, 2017): microbiota-derived lipopolysaccharide (LPS), free fatty acids (FFAs), 

advanced glycation end products 

(AGEs), inflammatory cytokines, 

oxidative stress, and ER stress all 

recruit inflammatory signaling 

cascades activating NF-kB kinase 

subunit 2 (IKK2). On activation, 

IKK2 will phosphorylate insulin 

receptor substrate (IRS) proteins on 

inhibitory Ser sites, prompting insulin 

resistance. In addition, IKK2 can 

induce the activation of the inhibitory 

insulin regulatory proteins 

mammalian target of rapamycin 

(mTOR) and ribosomal protein S6 

kinase1 (S6K1) by suppressing the 

Figure 12. Metaflammation intracellular crosstalk 
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activity of tuberous sclerosis 1/2 (TSC1/2). NF-kB also affects insulin signaling by transcriptional 

induction of protein tyrosine phosphatase 1B (PTP1B) and suppressor of cytokine signaling 3 

(SOCS3), which can both interfere with the phosphorylation state of IRS proteins. Also, ceramide 

biosynthesis genes are upregulated, leading to increased production of ceramide from FFA 

metabolism and the activation of protein kinase C (PKC), which contribute to the development of 

insulin resistance. NF-kB signaling also induces a low-grade inflammatory environment by driving 

the production of a wide range of inflammatory chemokines and cytokines, which further leads to 

the recruitment of immune cells, augmenting the inflammatory response (Catrysse and van Loo, 

2017). 

16. Glucotoxicity in the frame of metaflammation 

In this subsection, a mechanism contributing to metaflammation is described. Accordingly, the 

higher the input concentration of glucose and glutamine to the cell, the higher the concentration of 

UDP-GlcNAc, and, consequently, more proteins become O-GlcNAcylated (Issad et al., 2010; 

figure 13). 

 

Figure 13. O-GlcNAcylation in conditions of hyperglycaemia 

Insulin activates the Akt/PI3K pathway in the cell, which subsequently boosts glucose transport and 

metabolism. ~2-5% of glucose is directed towards the HBP, which induces the biosynthesis of 

UDP-GlcNAc, the OGT substrate. OGT goes to the plasma membrane and glycosylates (O-

GlcNAcylation) the proximal elements of insulin signaling, resulting in signal attenuation. In 

chronic hyperglycemia, this chronic glycosylation in signaling proteins may foster the deterioration 

of insulin sensitivity (Issad et al., 2010; figure 14).   
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Figure 14. Relationship between chronic glycaemia, chronic glycosylation and insulin sensitivity 

However, it has not been established a direct causal relationship between the increase in the UDP-

GlcNAc intracellular levels and the development of insulin resistance, since, even though that the 

raise in the intracellular concentrations of glucose and glutamine results in the increase of UDP-

GlcNAc and O-GlcNAc levels, there are three factors accounting against this idea: 1) the increase in 

oxidative and ER stress, that promotes chronic inflammation and insulin resistance; 2) UDP-

GlcNAc inhibits the glutamine-fructose-6-phosphate transaminase (GFAT) enzyme, which is the 

rate limiting enzyme controlling the HBP flux, and 3) the inhibition of OGT in animal models in 

hyperglycaemic conditions still results in insulin resistance (reviewed from Copeland et al., 2008).  

Hyperglycemia is not only linked to 

insulin resistance, but also to 

cardiovascular disease. In conditions of 

hyperglycemia (muscle/fat), there is an 

activation of glucose responsive genes that 

are associated to insulin resistance (figure 

15). For example, the transcription factor 

SP1 is glycosylated by OGT and it 

enhances the expression of PAI-1, which 

is an inhibitor of fibrinolysis, and TGF 

beta, a profibrotic factor, which contribute 

to atherosclerotic lesions in obese and 

diabetic patients. But there can be 

involved many transcription factors, genes 

and proteins (Copeland et al., 2008). 

Another important thing in CVD is that endothelial dysfunction is an abnormality that may 

accompany insulin resistance and diabetes but not necessarily be a direct cause of it (Copeland et 

al., 2008). 

 

 

 

Figure 15. Hyperglycaemia, glycosylation and 

cardiovascular disease 
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17. Lipotoxicity in the frame metaflammation 

In this subsection, another 

mechanism involving protein 

and glycosylation and T2D is 

summarized. In islets from 

wild-type mice fed with 

normal chow, Foxa2 and 

HNF1a control the 

expression of Slc2a2 (Glut2) 

and of Mgat4a (GnT-4a, an 

N-acetylglucosamine 

transferase, figure 16, 

extracted from Thorens, 

2011). GnT-4a is required for 

the formation of a N-glycan 

structure on Glut2 (and Glut1 

in human islets), a process 

that takes place in the 

secretory pathway. The N-glycan is required to anchor Glut2 at the cell surface through interaction 

with a lectin, galectin9 (Gal9). In HFD-fed mice or upon exposure of mouse or human islets to 

palmitic acid, Foxa2 and HNF1a are excluded from the nucleus, by a mechanism that can be 

inhibited by the antioxidant N-acetylcysteine (NAC), suggesting that reactive oxygen species 

(ROS), produced as a result of lipid catabolism, are engaged in this process. Nuclear exclusion of 

the transcription factors reduces GnT-4a and Glut2 expression, as well as the normal glycosylation 

of Glut2, leading to transporter internalization, reduced cell-surface expression, and reduced GSIS. 

This results in glucose intolerance, insulin resistance, and hepatic steatosis. These deregulations can 

be prevented by transgenic overexpression of Mgat4a and Slc2a2 (Ohtsubo et al., 2011; Thorens, 

2011). 

18. Inflammasomes activation following glucotoxicity / lipotoxicity 

Another mechanism contributing to 

inflamm-aging/metaflammation is 

the activation of the intracellular 

inflammasomes.  

It has been proposed a model for IL-

1beta-induced inflammation in 

response to diabetes-associated 

DAMPs (Shin et al., 2015). Long-

lasting exposure of macrophages or 

pancreatic cells to elevated levels of 

glucose and palmitate boosts NLRP3 

activation through a mechanism that 

involves ROS and TXNIP 

activation, resulting in an increased 

production of mature IL-1. In 

Figure 16. The absence of glycosylation of Glut2 in mice fed with high fat 

diet impairs insulin secretion 

Figure 17. Inflammasomes activation in glucotoxicity/lipotoxicity 
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addition, palmitate stimulates the expression of IL-1 through NF- B activation via TLR4. Ceramide 

can also trigger the processing of pro-IL-1 into its mature form through NLRP3 activation in 

macrophages. IAPP secreted from cells aggregates into insoluble islet amyloid deposits and is 

internalized by macrophages, inducing NLRP3 activation and the production of mature IL-1. 

Endocannabinoids (ECs) also promote NLRP3 activation and IL-1 production via CB1R. RAGE 

and its ligands (AGE, HMGB1, S100 protein, and IAPP) can enhance IL-1 expression and beta-cell 

death. Deleterious levels of IL-1 induce beta-cell death and deregulate insulin receptor (IR) 

signaling, potentially leading to insulin resistance in insulin target cells (revised from Shin et al., 

2015). 

19. Endoplasmic reticulum stress response 

Endoplasmic reticulum is a well-known target organelle for inducing inflammation (figure 19, 

extracted from Gregor and Hotamisligil, 2011). There have been reported three different ER stress 

pathways leading to inflammation, deriving from the ER’s unfolded protein response (reviewed 

from Gregor and Hotamisligil, 2011). IRE-1 uses its 

kinase domain partnering with TRAF2 to activate the 

inflammatory kinases JNK and IKK; this leads to 

upregulation of inflammatory mediators via the 

transcription factors AP-1 and NF-κB, respectively. 

IRE-1 splicing of XBP1 mRNA also triggers 

inflammatory consequences, as XBP1 has been shown 

to regulate inflammatory cytokine stimulation and 

immune responses in various cell types, especially 

macrophages. PERK activation results in decreased 

translation of IκBα, a suppresor of NF-κB signaling, 

thereby augmenting NF-κB transcriptional activity. In 

addition, PERK activation mediates ATF-4 translation, 

and ATF-4 was shown to regulate inflammatory 

cytokine induction, although the mechanism remains 

unknown. PKR is also activated by ER stress and 

contributes to JNK and IKK activation. Finally, ATF-6 

has also been demonstrated to increase NF-κB 

transcriptional activity (reviewed from Gregor and Hotamisligil, 2011).  

 

 

 

 

 

 

 

 

Figure 18. Endoplasmic reticulum stress 

responses 
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19. Extracellular biological roles of glycans: focus on inflammation (IgG 

glycosylation)  

20. Antibody glycosylation controls antibody activity 

Each IgG has an N-glycan 

attached at Asn297 in the 

polypeptide chain of each 

heavy part (figure 19, 

modified from Higel et al., 

2016); since the constant 

Fc region of the heavy 

chains defines the capacity 

of the antibody to interact 

with Fc receptors, the IgG 

immune response can be 

measured as a function of 

the interaction between 

IgG N-glycan composition 

and Fc receptor type 

(Higel et al., 2016). There are two major groups of Fc receptors: classical (FcϒRI, FcϒRIIa, 

FcϒRIIb, FcϒRIIc, FcϒRIIIa, FcϒRIIIb) and non-classical (C-lectin-type receptor DC-SIGN, 

FcRn) (Winkel and Anderson, 1991). It is interesting to note that 70% of human IgGs are 

asymmetrically glycosylated (being both Fc chains always glycosylated, while the Fab regions are 

glycosylated only in 20% of IgGs), and that the addition and removal of sugars (galactose, fucose, 

b-GlcNAc, or sialic acid) are directly linked to altered antibody functionality (Higel et al., 2016; 

Jennewein and Alter, 2017). In this line, it has been described that: removal of fucose enhances IgG 

affinity for FcϒRIIIa and thus it boosts antibody-dependent cellular cytotoxicity (ADCC) (Seeling 

et al., 2017), exposed bisecting GlcNAc residues (“G0”) also promote ADCC (Seeling et al., 2017), 

fucosylation and bisection are largely mutually exclusive (Seeling et al., 2017), removal of 

galactose either increases or decreases affinity for FcϒR (depending on specific FcϒR receptor and 

IgG subclass), and presence of sialic acids has been linked to anti-inflammatory effects as they 

decrease binding to FcϒRIII receptors (Seeling et al., 2017). 

21. Glycovariation in physiological and pathological conditions 

Glycosylation is a highly ordered and conserved process. However, disease-associated changes (e.g 

autoimmune or infectious diseases) suggest that it is actively modulated during inflammatory 

responses. The specific mechanisms leading to this variation in glycosylation, though, are 

incompletely understood. Nevertheless, some factors that shape antibody glycosylation have been 

proposed (reviewed from Zhou et al., 2018):  

- Glycosyltransferase/glycosidase expression 

- Shifts in monosaccharide availability 

- ER stress 

Figure 19. Antibody glycosylation controls antibody activity 
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- Golgi pH and organization 

- Kinetics of protein production 

- Availability of vesicular transport machinery  

22. Aberrant antibody glycosylation in ageing and disease: the egg or the chicken? 

In this subsection, I modestly disclosure the most important research questions related to my 

investigation. 

What comes first: metaflammation or inflamm-aging? (Figure 20) Do they become an unavoidable 

unbreakable dichotomy in the long run? In other words, are older patients (>60 years old), already 

exhibiting a low-grade pro-inflammatory phenotype and with more abundance of agalactosylated 

glycans species, more prone to metaflammation and other pathophysiological changes in protein 

glycosylation? Do N-glycan species related to inflamm-aging differ from N-glycan species related 

to metaflammation? There is some evidence in literature that this might be the case (see next 

subsection). Although more studies are needed, considering this starting point, another question 

comes up: are glycans the cause or the consequence of metaflammation and/or inflamm-aging?  

Rheumatoid arthritis (RA) and the human immunodeficiency virus (HIV) are two examples that aid 

to provide a better insight to these questions. In the case of RA, loss of galactosylation on IgG1 

appears in circulation before onset, shortly after the development of anti-citrullinated (CCP) 

antibodies (Ercan et al., 2010); therefore, in RA, the sequence of events apparently is 1) auto-

antibodies, 2) loss of galactosylation, 3) onset of disease, pointing to that glycans are the 

consequence of RA disease. In HIV, it has been demonstrated that spontaneous controllers (low to 

undetectable viral replication) without retroviral therapy, maintain the highest levels of 

agalactosylated antibodies (reviewed from Zhou et al., 2018), which suggests that in HIV glycans 

are also the consequence of the disease. 

In the case of metaflammation and glycosylation, the answer to what is first is intuitive, as the 

question becomes too simplistic, due to the complexity and heterogeneity of the disease. Thus, it 

should be reformulated: do N-glycans change over the course of preclinical (that is, insulin 

resistance and impaired insulin secretion) to clinical diagnoses (obesity and/or T2D, T2D 

complications, metabolic syndrome)? 

 

Figure 20. What comes first in RA, HIV and metabolic syndrome, disease or inflammation? 
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23. Advanced glycation end products / HbA1c: surrogate biomarkers of N-glycans in 

T2D? 

Though further research is needed to answer the posed research questions concerning N-glycans 

species as disease trackers, specifically in T2D, it has been shown that the so-called advanced 

glycation end products (AGEs) do precede diabetes mellitus (Vlassara and Striker, 2011). AGEs are 

a heterogeneous family of sugar-amino acid adducts formed by a nonenzymatic covalent binding of 

reducing sugars to protein amino groups. 

Vlassara and Striker postulated that current processed 

food contains appetite-enhancing AGEs, that prompt 

food consumption and overnutrition, which in the long-

term lead to increased BMI, obesity and diabetes 

mellitus, as well as oxidant overload. Steady influx of 

nutrient AGEs and advanced lipoxidation end products 

(ALEs) leads to suppression of innate host defenses and 

an overflow of intracellular ROS, which increases the 

basal oxidant stress and inflammation (reviewed from 

Vlassara and Striker, 2011). The interaction of these 

processes can simultaneously cause β-cell dysfunction, 

impaired insulin secretion and insulin resistance, as well 

as diabetic complications. Restriction of food-derived 

AGEs reduces oxidative stress and prevents or improves 

type 1 and type 2 diabetes mellitus in mice (figure 21, 

extracted from Vlassara and Striker, 2011).  

The most studied glycated protein is glycated hemoglobin (or HbA1c), which, indeed, has been 

shown to display a strong association with AGEs. As mentioned in the general introduction, HbA1c 

serves as indicator of long-term glycaemia (average lifespan of red cells is of 4 months). In 2010, 

the American Diabetes Association (ADA) added HbA1c as a further diagnostic criterium for 

diabetes and prediabetes in an attempt to shorten the diagnosis time of T2D (the average time 

between onset and diagnosis of T2D is 7 years) and as a marker of glycaemic control in established 

patients – in T2D individuals, the rate of formation of HbA1c is a direct function of the average 

blood glucose concentration – (Gillett, 2009; American Diabetes Association 2010). In this regard, 

we wondered whether a combination of N-glycans would predict the T2D status better than HbA1c 

alone (see aims of thesis below), considering a) the nature of the bond type (non-enzymatic in N-

glycans vs enzymatic in HbA1c), and b) the origin of bond formation (mostly intracellular in N-

glycans vs extracellular in HbA1c).  

 

20. N-glycans as biomarkers in liver diseases, aging, and age-related diseases 

In this section, I review major studies conducted in aging and (the underlying diseases that give rise 

to) metabolic syndrome which use N-glycans as candidate biomarkers. 

Figure 21. The relationship between AGEs 

and T2D/obesity 
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24. Liver diseases 

Most of plasma proteins, and thus N-glycans (Apweiler et al., 1999), are synthesized in the liver and 

pancreas (Uhlén et al., 2015), whereas immunoglobulins are synthesized specifically in cells of the 

immune system (Rhoades and Pflanzer, 2002). Particularly, liver is not only an important source of 

glycoproteins generation, but also a metabolic organ. Thus, it is worthy to focus on liver diseases to 

better understand N-glycan profiling of age-related diseases (e.g. T2D or obesity). In this line, a 

bunch of literature has extensively reported the characteristic derived glycan traits (i.e. N-glycan 

features: sialylation, galactosylation, bisection, fucosylation) and the implicated enzymes in liver 

pathologies (figure 22, extracted from Takahashi et al. (2016).  

 

Figure 22. Glycosyltransferases enzymes 

 

Figure 23. Summary of main findings regarding alteration of glycosylation in liver pathologies 

3. Alcoholic liver disease 

In alcoholic liver disease (ALD), haptoglobin, α1-acid glycoprotein, α2-HS glycoprotein, and 

transferrin are known to exhibit an increased branching. The Golgi apparatus plays an essential role 

in the alteration of glycosylation patterns in all liver diseases. In ALD, there is a characteristic 

significant accumulation of hepatic protein caused by impaired glycosylation and glycoprotein 
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trafficking. A proposed explanation for the diminished Golgi functioning is the deficient 

polymerization of microtubular protein as a downstream consequence of hepatic acetaldehyde due 

to ethanol oxidation. In an experimental rat model of ALD by Gosh et al., it was described a 

decreased activity of the mannosyltransferase and galactosyltransferase enzymes, a lowered 

intracellular dolichol concentration, and a strong decreased synthesis and activity of ST6GalI. The 

authors also reported an increase of 30% in liver weight as compared to the body weight of that rat 

model, which was attributed to the accumulation of hepatic lipids and proteins leading to fatty liver 

and steatosis. In this research, they also studied O-glycosylation in Apo E, which showed, as in N-

glycosylation, a decrease in mannosylation and sialylation. The relative ratio of labeled sugar to 

leucine incorporation (glycosylation index) revealed a 50% reduction in relative mannosylation of 

Apo E at both the microsomal and the Golgi level. The impairment in the glycan structures of Apo 

E was hypothesized to be responsible for the defective clearance of HDL and VLDL, resulting in a 

defective cholesterol transport to the liver and the subsequent hepatic accumulation (reviewed from 

Blomme et al., 2009; Callewaert et al., 2004). 

4. Fatty liver diseases 

At least two different studies investigated the impact of aberrant glycosylation by overexpressing 

N-acetylglucosaminyltransferase (GnT) III in transgenic mice. An increased GnT-III activity results 

in an increased level of bisecting GlcNAc in Apo B, which impairs the glycoprotein functionality 

by preventing its release in bloodstream, and thus its accumulation in the liver. Not only Apo B 

concentrations were significantly elevated in the liver, but also Apo A1. These studies point to that 

N-glycans can have an important impact on lipid metabolism (reviewed from Blomme et al., 2009; 

Callewaert et al., 2004). 

Not only GnT-III, but also the ectopic expression of α1,6-fucosyltransferase (α1,6-FT) causes 

steatosis in the liver and the kidney (reviewed from Blomme et al., 2009; Callewaert et al., 2004). 

The increased expression of this enzyme lowered the activity of the lysosomal acid lipase (LAL), 

the accumulation of which might contribute to the lipid accumulation observed in the lysosomes of 

the liver.  

5. Hepatocellular carcinoma and cirrhosis 

Alteration of glycosylation has also been documented in malignant cellular transformation. In 

hepatocellular carcinoma (HCC), three glycosyltransferases are considered crucial: GnT-V, GnT-III 

and α1,6-FT. GnT-V is coded on the MGAT5 gene, which is regulated by the Ras signaling pathway 

(commonly up-regulated in cancerous cells). Though GnT-III and GnT-V compete for the same 

substrate, the bisecting GlcNAc, and the activity of both enzymes is increased in HCC, the activity 

of GnT-III is more prominent; on the other hand, GnT-V is directly associated with metastasis.  

In HCC, the activity of ST6GalI is increased, in contrast to ALD, in which is decreased. But the 

best known biomarker in HCC is the elevated serum concentration of fucosylated α-fetoprotein 

(AFP) (reviewed from Blomme et al., 2009; Callewaert et al., 2004). 
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25. Type 2 diabetes mellitus 

Table 3 shows a summary of collected literature about major glycomic biomarkers findings in T2D. 

As a whole, the studies report increased levels of N-glycan branching (Testa et al., 2015; Keser et 

al., 2017; Adua et al., 2018) in whole plasma glycome. Regarding sialylation, there is controversy: 

two observational studies show a reduction in levels of sialylation (Lemmers et al., 2017; Dotz et 

al., 2018) in the IgG plasma N-glycome of T2D patients, measured with MALDI-TOF, and an 

experimental analysis by Tanigaki et al. (2018) demonstrated that IgG hyposialylation in mice 

promotes obesity-induced insulin resistance. Conversely, Keser et al. (2017) revealed an increase in 

trisialylated glycans in whole plasma N-glycome of patients with hyperglycaemia, Liu et al. (2019) 

also evinced increased levels of sialylation whole plasma N-glycome in an Uyghur population of 

T2D patients. With respect to digalactosylated structures, Adua et al. (2018) and Testa et al. (2015) 

report decreased levels, while Liu et al. (2019) shows an increase in bigalactosylation. There are 

also divergent results with regard to bisecting GlcNAc structures: Lemmers et al. (2017) shows an 

increase while Liu et al. (2019) shows a reduction.  

The causes of divergencies between studies should be deeply analyzed in each case, but possible 

sources are: technology used for the collection of N-glycans, IgG or whole N-glycome, small 

sample size, lack of randomization, unbalanced number of cases vs controls, poor variables 

matching in case-control studies, confounders not considered (thus, structure present in the data that 

explain the results), possible batch effects, different normalization techniques, models used for the 

analyses and the covariates employed. 

Table 3. Summary of the major glycomic signatures of T2D described in literature 

Set up  Analysis Overview Main results Reference 

MALDI-TOF 

70 N-glycans, 96 derived traits 

IgG plasma N-glycome  

Discovery cohort:  

1583 cases, 728 controls. 

Replication cohort:  

232 cases, 108 controls. 

Logistic regression models: 

Model1 = Group ~ N-glycans + 

Sex + Age + Sex*Age 

Model2 = Model1 + BMI 

Model3 = Model2 + HDLc + 

nonHDLc + smoking 

 

↓alpha2,3-linked 

sialylation 

Dotz et al., 2018 

MALDI-TOF  

70 N-glycans, 96 derived traits, 

IgG plasma N-glycome 

Discovery cohort:  

DiaGene:  

N=1886 cases, N=854 controls 

3 Replication cohorts: 

CROATIA-Korcula  

1. Logistic regression models 

(in each of the 4 cohorts): 

Model1 = Group ~ N-glycans + 

Sex + Age + Sex*Age 

Model2 = Model1 + BMI 

Model3 = Model2 + HDLc + 

nonHDLc + smoking 

2. Meta-analysis of the 4 

cohorts: weighted z-transform 

IgG in T2D: 

↓galactosylation  

↓sialylation 

↑bisection of fucosylated 

structures 

Lemmers et al., 2017 



50 

 

CROATIA-Vis  

ORCADES  

N=162 cases, N=3162 controls  

method, 

Bonferroni correction for 

multiple testing 

3. Logistic regression models 

for prediction analyses  

HILIC-HPLC  

46 N-glycans, 12 derived traits, 

Whole plasma N-glycome 

Case/control study: 

Cases: hyperglycaemic  

Controls: normoglycaemic  

Casos or controls with critical 

illness are considered to have 

higher risk for T2D. 

Discovery cohort:  

N=59 cases, N=49 controls 

Test cohort: 

N=52 cases, N=14 controls 

3 Replication cohorts: 

FinRisk population: 

N=37 T2D, N=37 controls 

ORCADES:  

N=94 cases with ↑[HbA1c], 

N=658 controls 

SABRE: 

N=307 cases with ↑[HbA1c], 

N=307 controls 

Analyses of associations 

between clinical trait of interest 

and glycan measurements were 

performed using a regression 

model with age and sex 
included as additional 

covariates.  

Individuals who developed 

hyperglycaemia had: 

↓low-branching ↑high-

branching  

↑trigalactosylated 

↑tetragalactosylated  

↓neutral glycans  

↑trisialylated  

glycans  

Keser et al., 2017 

UPLC 

39 N-glycans 

Total plasma N-glycome 

Case cohorts from the Prospective 

EPIC - Potsdam cohort 

(n=27548): 

Incident cases of T2D (N=5820; 

median follow-up time 6.5 years)  

Cases of CVD (N=5508; median 

follow-up time 8.2 years) 

1. N-glycan data were adjusted 

for age by applying multiple 

fractional polynomial (MFP) 
regression separately in men 

and women. The age-adjusted 

residuals were used to construct 

an N-glycan score to predict 

type 2 diabetes with machine 

learning techniques. 

2. The score was validated in an 

independent cohort and used in 

6 different models to assess the 

ability of different predictors to 

The N-glycan–based type 

2 diabetes score was 

strongly predictive for 
diabetes risk (weighted C-

index 0.83, 95% CI 0.78–

0.88). 

N-glycans were 

moderately predictive for 

CVD incidence (weighted 

C indices 0.66, 95% CI 

0.60–0.72, for men; 0.64, 

95% CI 0.55–0.73, for 

women).  

Wittenbecher et al., 2020 
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predict type 2 diabetes. 

4. Selection of potential CVD-

specific predictors was 

conducted analogous to the 

selection of diabetes-related N-

glycans with machine learning 

techniques, deriving a weighted 

score. 

DSA-FACE  

10 Whole serum N-glycans 

Italian cohort: 

N=562 T2D, N=599 healthy 

controls 

1) Comparison of serum N-

glycan profiles in T2DM, 

without and with complications, 

2) association of N-glycans with 

diabetic complications, 

3) associations with MetS, 

4) correlation of N-glycans 

profiling with MetS parameters 

↓Monogalactosylated, 

core-fucosylated 

diantennary N-glycans in 

T2D compared with 

controls 

Testa et al., 2015 

HILIC-UPLC 

Total plasma N-glycome  

39 N-glycans and 22 derived traits 

Cohort: 

Ghana population 

N=232 cases, N=219 controls 

Association between N-glycans 

and age in both males and 

females for cases and controls, 

determined by linear regression, 

and multiple testing adjustment 

with Benjamini-Hochberg 

method to control FDR 

T2DM compared with 

controls: 

↑high branching 

↑trigalactosylation 

↑antennary fucosylated 

↑triantennary  

↓low branching 

↓non-sialylated 

↓biantennary 

galactosylation 

↓biantennary structures 

Adua et al., 2018 

HILIC-UPLC  

IgG plasma N-glycome 

24 N-glycans  

Case-control Australian 

population cohort: 

N=217 cases, N=632 controls 

1) logistic models: disease 

status ~ IgG glycan traits + 

covariates (age, sex, BMI, 

WHR, SBP, and DBP), multiple 

testing with Benjamini-

Hochberg procedure;  

2) classification model based on 

the significantly altered glycans 

to evaluate the potential of IgG 

N-glycans as T2D biomarkers 

Two directly measured and 

four derived glycan peaks 

were significantly 

associated with T2DM. 

Li et al., 2019 

HILIC-UPLC  

IgG subclass Fc N-

glycopeptidome plasma/serum 

(unknown)   

1. Associations between IgG 

subclass-specific Fc N-

glycopeptide profiles and 

disease status were performed 

using logistic regression, 

adjusting for risk factors for 

27 directly measured and 4 

derived glycan traits of the 

IgG subclass-specific N-

glycopeptides were 

significantly associated 

Liu et al., 2019 
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24 N-glycans  

Case-control Uygur population 

cohort: 

N=115 cases, N=122 controls 

T2DM covariates; 

2.  LASSO to select IgG 

subclass-specific Fc N-glycans; 

3. Model evaluation 

with T2DM. 

IgG2 in T2DM:  

↓bisecting GlcNAc 

↑digalactosylation  

IgG4 in T2DM:  

↓agalactosylation  

↑sialylation 

 

Human and transgenic C57BL/6J 

mouse pancreatic beta cells  

Experimental analyses in human 

and mice beta pancreatic cells 

to: induction of molecular 

events by exposure of elevated 

levels of free fatty acids (FFA) 

or by administration of high-fat 

diet associated with obesity  

↑[FFA] caused nuclear 

exclusion and ↓expression 
of the transcription factors 

FOXA2 and HNF1A in 

beta cells; 

this resulted in a deficit of 

GnT-4a 

glycosyltransferase 

expression in beta cells 

that produced 

signs of metabolic disease, 

including hyperglycemia 

Ohtsubo et al., 2011 

Male C57BL/6 WT, 

FcγRIIB–/–, Fcγ–/–, B–/–, SAP–/–, 

FcγRIIBfl/fl and VECad-Cre mice, 

or in offspring from their mating  

Experimental analyses ↓IgG sialylation in mice is 

implicated in obesity-

induced insulin resistance 

Tanigaki et al., 2018 

 

26. Aging research 

Table 4 shows a summary of collected literature about major glycomic biomarkers findings in 

aging. In general, studies agree in the fact that over age there is a progressive decrease in 

bigalactosylated species that goes along an increase of agalactosylated species. 

Table 4. Summary of the major glycomic signatures of aging described in literature 

Set up  Analysis Overview Main results Reference 

HILIC and WAS HPLC 

33 IgG plasma N-glycome 

population-based study of 

N=1914 individuals from Vis 

and Korkula 

Multiple linear regression 

used to analyze the association 

of selected predictor variables 

and each glycan feature 

F2, G0, G2, S2, A2 glycan 

traits: age-dependent 

↑galactosylation correlate with 

lipid status 

Knezevic et al., 2010 

DSA-FACE  GlycoAge test definition GlycoAgeTest:  -Significantly 

↑in dementia patients 

Vanhooren et al., 2010 
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10 whole serum N-glycan  

Participants: 

N=425 healthy Belgian adults  

N=84 Italian centenarians 

N=79 with dementia  

N=6 Cockayne Syndrome 

(CS) 

compared with age-matched 

controls. 

-Highly heterogeneous in CS, 

but even the lowest value is 

much higher than in the 

controls 

HILIC-HPLC  

26 whole plasma N-glycans 

N=2396 middle aged 

participants in the Leiden 

Longevity Study (LLS) 

Regression strategies applied 

to evaluate associations 

between glycan patterns, 

familial longevity, and healthy 

aging. 

↑A2G2: associated with 

healthy ageing (longevity) 

↓A2G1S1: associated with 

occurrence of myocardial 

infarction 

Ruhaak et al., 2011 

UPLC 

24 IgG plasma N-glycans 

Participants:  

N=906 Vis island 

N=915 Korčula island 

N=2035 Orkney islands 

N=1261 TwinsUK 

A predictive model of age was 

built (“GlycanAge”) 

IgG N-glycans markers of age: 

FA2B, FA2G2, and FA2BG2, 

explaining 58% variance 

Kristic et al., 2014 

MALDI-TOF-MS 

12 tryptic IgG1 and IgG2 Fc 

glycopeptides 

N=1967 participants in the 

LLS 

Several regression strategies 

were applied to evaluate the 

association of IgG 

glycosylation with age, sex, 

and longevity 

Galactosylated glycoforms: 

↑bisecting GlcNAc with age. 

Sex-related differences below 

60 years: younger females had 

higher galactosylation, which 

↓stronger with age 

Ruhaak et al., 2010 
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5. MATERIALS AND METHODS 

This section, following the general description of materials and methods, describes the algorithm 

used in the analyses, that is two-way orthogonal partial least squares (O2PLS) (figure 24):  

 

Figure 24. Two-way orthogonal partial least squares algorithm 

O2PLS is a dimension reduction technique that decomposes the variance of 2 data sets in 3 parts 

(Bouhaddani et al., 2016): 

• Joint part: biologic variance common to both data sets (clinical and N-glycans). 

• Single-omics specific part: the variance specific to each data set. 

A critical point for identifying the joint and the specific parts is to choose the number of joint and 

specific principal components (PCs) through 1) the elbow technique by the visualization of the 

eigenvalues plot, and 2) cross-validation. The analyses were done with the OmicsPLS package. 

Since in this thesis dissertation, a high number of O2PLS models were performed, the number of 

PCs was chosen only by cross-validation, by selecting the combination of joint and specific PCs 

with lower mean-squared error (MSE). 
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PART I 

6. AIMS 

The general aims of this study are:  

1. To assess whether N-glycans predict diabetic or non-diabetic status better than the HbA1c. 

2. To identify the major sources of variation both in Phenomics and Glycomics in four age 

ranges in six groups of individuals (Ctrl F, Ctrl M, PreDiab F, PreDiab M, Diab F, Diab M) 

and to identify whether such sources of variation correspond to major biological conditions 

(e.g. prediabetic or diabetic status, metabolic syndrome).  

3. To visualize the integrated weights (i.e. loading values) and mean values of both data sets. 

The specific for this study are: 

1. To perform a logistic model by modelling a binary outcome composed of controls (N=285) 

and diabetics (N=555) as function of HbA1c or as function of N-glycans. 

2. To identify covariating N-glycan species and endophenotypes characteristic across different 

age ranges and per sex by considering N=288 controls (FIRB cohort) – individuals with 

normal ranges of HbA1c, insulin, HOMA and fasting glucose –, N=310 prediabetics and 

N=557 diabetics – individuals with abnormal ranges of HbA1c, insulin, HOMA and fasting 

glucose –. This will be achieved by performing O2PLS models on two data sets, one 

composed of 44 clinical variables (excluding sex, as it does not follow a normal 

distribution) and another one composed of 10 N-glycans, in each of 4 predefined age ranges 

(20-44, 45-55, 56-70, 71-85 years) and in the full age range (20-85 years) in Ctrl and, due 

to smaller sample sizes, 3 age ranges in PreDiab and in Diab (45-55, 56-70, 71-85 years), 

separately in males and females (total of 23 O2PLS models).  

3. To generate line plots of the integrated weights (i.e. loading values) and mean values for the 

most relevant clinical variables and N-glycans to detect patterns taking place at specific age 

ranges and between sexes either in “healthy” controls, prediabetics, or diabetics. 
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7. RESULTS 

21. Demographic characteristics of the cohort 

The characteristics of the participants included in the study are described in Table 5 and Table 6. 

Table 7 illustrates the number and the frequency of individuals that take medication.  

Table 5. Patients baseline characteristics 

Variable Ctrl F 

(n=177) 

Ctrl M  

(n=109) 

PreDiab F 

(n=187) 

PreDiab M 

(n=122) 

Diab F 

(n=259) 

Diab M 

(n=298) 

mean Sd mean sd mean sd mean Sd mean Sd mean sd 

Azotemia 

(log U) 

36.38 8.97 40.83 12.56 38.19 9.67 39.22 8.4 40.26 13.89 40.25 10.27 

Age (years) 56.4 13.21 65.14 8.27 60.44 11.52 60.24 10.14 66.6 7.73 56.39 12.44 

BMI (kg/m2) 25.75 4.81 28.32 4.29 27.75 5 27.71 3.5 29.66 5.16 27.17 4.23 

WHR (cm) 0.83 0.09 0.97 0.06 0.85 0.07 0.94 0.05 0.9 0.06 0.92 0.06 

Fasting 

glucose 

(mg/dL) 

87.2 6.28 165.6 48.75 96.16 10.85 100.9 8.97 160.83 48.72 89.22 5.59 

HbA1c (%) 5.43 0.36 7.41 1.3 5.93 0.3 5.82 0.31 7.5 1.22 5.35 0.21 

Cholesterol 

(mg/dL) 

218.26 38.8 196.73 35.27 221.53 35.35 210.46 36.32 218.88 37.52 204.33 36.45 

HDL 

(mg/dL) 

64.24 13.92 48.72 11.88 60.19 13.92 51.61 13.55 56.68 16.41 50.18 11.81 

EGFR 

(mL/min) 

87.14 20.35 80.38 19.86 83.53 17.96 90.77 25.8 76.47 21.25 95.16 26.02 

Fibrinogen 
(mg/dL) 

289.5 73.05 296.41 81.01 306.91 77.08 269.5 67.28 315.33 79.98 267.19 84.21 

PAI1 

(ng/mL) 

19.28 10.23 19.56 8.99 22.3 11.14 23.45 12.4 22.41 10.3 25.01 12.24 

TAFI (%)  132.39 17.24 126.11 17.3 134.17 21.25 130.18 17.37 133.9 17.26 133.91 18.7 

Total 

Bilirubin 

(mg/dL) 

0.67 0.26 0.73 0.31 0.61 0.25 0.79 0.37 0.62 0.24 0.79 0.35 

LDL 

(mg/dL) 

125.04 34.34 110.8 28.13 126.15 29.79 122.78 30.08 123.12 32.67 120.98 30.73 

Apo A1 

(mg/dL) 

186.22 29.68 159.01 31.39 183.99 29.05 168.04 31.68 178.24 34.88 167.64 27.1 

Apo B 

(mg/dL) 

97.47 27.9 98.24 26.15 103.05 27.77 103.92 27.67 105.57 26.58 100.38 28.87 

Total Iron 

(mcg/dL) 

79.64 27.77 86.45 27.94 78.47 24.15 82.74 31.38 78.63 25.15 84.05 33.5 

Transferrin 

(mg/dL) 

255.44 44.75 259.24 37.46 261.49 42.71 258.55 38.09 270.58 47.05 262.99 48.11 

Total Protein 

(g/dL) 

7.12 0.43 7.25 0.52 7.03 0.49 7.09 0.45 7.15 0.49 7.2 0.47 

White Cells 

(n/mm3) 

5.97 1.59 6.58 1.57 6.06 1.34 6.45 1.56 6.8 1.65 6.3 1.69 

Red Cells 

(n/mm3) 

4.56 0.39 4.83 0.44 4.53 0.36 4.97 0.36 4.57 0.42 4.96 0.44 

Haemoglobin 13.52 0.99 14.89 1.21 13.53 0.99 14.99 0.91 13.6 1.14 14.95 1.11 



57 

 

(g/dL) 

MCV (fL) 88.12 5.31 88.84 5.13 88.82 5.22 88.5 5.06 87.84 5.45 88.77 5.1 

Platelets 

(n/mm3) 

237.81 51.24 199.59 54.53 241.07 58.34 215.73 50.99 239.07 63.57 213.78 57.77 

MPV (fL) 11.12 0.98 11.21 0.96 11.11 1.01 11.1 0.85 11.11 0.96 11.17 0.98 

Neutrophils 

(CLR U) 

2.1 0.4 2.12 0.33 2.06 0.37 2.05 0.35 2.17 0.33 2.09 0.41 

Lymphocytes 

(CLR U) 

1.65 0.32 1.49 0.31 1.57 0.32 1.54 0.33 1.6 0.31 1.54 0.36 

Eosinophils 

(CLR U) 

-0.98 0.52 -0.86 0.53 -0.93 0.5 -0.84 0.52 -0.93 0.49 -1 0.52 

Monocytes 

(CLR U) 

-0.07 0.26 -0.1 0.3 -0.09 0.3 -0.03 0.27 -0.14 0.28 0 0.33 

Creatinine 

(log U) 

0.73 0.14 1.01 0.32 0.74 0.14 0.91 0.22 0.82 0.28 0.89 0.21 

Uric Acid 

(log U) 

3.9 1.03 4.95 1.25 4.42 1.19 5.37 1.12 4.68 1.24 5.28 0.98 

Alkaline 

Phosphatase 

(log U) 

70.98 19.66 72.58 21.74 73.4 22.1 71.43 20.77 82.51 26.97 74 18.68 

AST (log U)  20.35 5.33 22.55 10.02 21.4 7.45 23.25 10.35 21.61 12.29 25.43 13.21 

ALT (log U) 35.79 8.47 44.7 17.14 39.3 15.06 42.63 14.83 41.66 15.04 42.17 12.19 

Triglycerides 

(log U) 

82.11 40.64 134.12 96.14 101.97 56.04 127.06 95.86 141.73 86.35 112.29 82.26 

Fasting 

insulin (log 

U) 

5.7 3.61 6.94 6 6.98 5.65 7.76 7.36 7.22 4.84 6.48 4.18 

HOMA 
(pow. 0.3 U) 

1.22 0.79 2.95 3.12 1.7 1.56 1.87 2.04 2.9 2.41 1.42 0.88 

CRP (pow. 

0.275 U) 

2.94 3.67 4.46 8.85 4.17 6.71 3.06 4.29 5.07 7.02 3.71 9.9 

GGT (log U) 45.16 15.71 60.22 37.14 47.64 16.63 53.7 17.34 55.27 40.86 51.73 19.59 

Ferritin 

(pow. 0.125 

U) 

69.69 70.39 166.97 162.33 79.96 62.77 125.34 105.88 88.9 78.3 119.48 123.58 

Telomere 

Length (log 

U) 

0.5 0.2 0.43 0.22 0.45 0.18 0.46 0.19 0.45 0.19 0.48 0.16 

SDMA (sqrt 

U) 

1 0.57 0.9 0.61 0.96 0.5 1.11 0.67 0.91 0.65 1.1 0.65 

ADMA (sqrt 

U) 

1.01 0.6 1.04 0.56 1.04 0.51 1.07 0.67 1.09 0.61 0.92 0.5 

RDW-CV 

(log U) 

13.4 1 13.17 0.73 13.48 0.84 13.34 0.8 13.52 1.03 13.3 0.94 

Log U: log transformed units; pow. 0.125/0.275/0.3 U: raise to the power of 0.125/0.275/0.3 transformed units; sqrt U: 

square root transformed units; CLR U: centre-log ratio transformed units; BMI: body mass index; WHR: waist to hip ratio; 

HbA1c: glycated haemoglobin; HDL: high-density lipoprotein; EGFR: estimated glomerular filtration rate; PAI1: 

plasminogen activator 1; TAFI: thrombin activatable fibrinolysis inhibitor; LDL: low-density lipoprotein; Apo A1/B: 
apolipoprotein A1/B; MCV: mean corpuscular volume; MPV: mean platelets volume; CRP: C reactive protein; GGT: 

gamma glutamyl transpeptidase; SDMA: symmetric dimethylarginine; ADMA: asymmetric dimethylarginine; RDW-CV: 

red blood cell distribution width – coefficient of variation. 
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Table 6. Number and frequency of individuals that are affected by clinical conditions 

Clinical History  Ctrl F 

(n=177) 

Ctrl M  

(n=109) 

PreDiab F 

(n=187) 

PreDiab M 

(n=122) 

Diab F 

(n=259) 

Diab M 

(n=298) 

Metabolic Syndrome (ATPIII) 12 (7%) 7 (6%) 37 (20%) 14 (11%) 190 (73%) 140 (47%) 

Metabolic Syndrome (IDF) 15 (8%) 15 (14%) 59 (32%) 33 (27%) 201 (78%) 180 (60%) 

Bypass 2 (1%) 2 (2%) 0 1 (1%) 10 (4%) 39 (13%) 

Somatic Neuropathy 0 0 0 0 35 (14%) 67 (22%) 

Nephropathy 0 0 0 0 24 (9%) 48 (16%) 

Chronic Renal Insufficiency 0 0 0 0 5 (2%) 15 (5%) 

Retinopathy 0 0 0 0 72 (28%) 82 (28%) 

Arteriopathy Obliterans of Lower 

Limbs 

0 0 0 0 14 (5%) 21 (7%) 

Arteriopathy Obliterans of Upper 

Limbs 

0 0 0 0 10 (4%) 16 (5%) 

Cardiac Ischemia 0 0 0 0 37 (14%) 62 (21%) 

Major Adverse CDV Events 6 (3%) 1 (1%) 3 (2%) 6 (5%) 26 (10%) 58 (19%) 

 

Table 7. Number and frequency of individuals that take medication 

Medication Ctrl F 

(n=177) 

Ctrl M  

(n=109) 

PreDiab F 

(n=187) 

PreDiab M 

(n=122) 

Diab F 

(n=259) 

Diab M 

(n=298) 

ACE Inhibitors 29 (16%) 10 (9%) 37 (20%) 19 (16%) 120 (46%) 113 (38%) 

Anti-inflammatories 7 (4%) 4 (4%) 12 (6%) 12 (10%) 55 (21%) 90 (30%) 

Bisphosphonates 9 (5%) 0 6 (3%) 0 5 (2%) 3 (1%) 

Anti-arrythmics 2 (1%) 1 (1%) 1 (1%) 4 (3%) 18 (7%) 18 (6%) 

Calcium-Antagonists 8 (5%) 6 (6%) 14 (7%) 11 (9%) 49 (19%) 86 (29%) 

Beta-blockers 12 (7%) 7 (6%) 15 (8%) 9 (7%) 48 (19%) 56 (19%) 

Fibrates 0 1 (1%) 1 (1%) 1 (1%) 9 (3%) 4 (1%) 

Statins 9 (5%) 8 (7%) 17 (9%) 8 (7%) 55 (21%) 53 (18%) 

Metformin 0 0 0 0 108 (42%) 96 (32%) 

Sulphonylureas 0 0 0 0 122 (47%) 146 (49%) 

Glinides 0 0 0 0 5 (2%) 8 (3%) 

Insulin Administration 0 0 0 0 52 (20%) 48 (16%) 

Vasodilators 1 (1%) 2 (2%) 2 (1%) 2 (2%) 21 (8%) 30 (10%) 

Anti-aggregants 5 (3%) 11 (10%) 8 (4%) 6 (5%) 43 (17%) 55 (18%) 

Diuretics 11 (6%) 1 (1%) 10 (5%) 4 (3%) 35 (14%) 30 (10%) 

Gastroprotectors 15 (8%) 6 (6%) 12 (6%) 4 (3%) 22 (8%) 23 (8%) 

Micronutrients 12 (7%) 3 (3%) 12 (6%) 1 (1%) 22 (8%) 13 (4%) 

Antibiotics 3 (2%) 1 (1%) 1 (1%) 0  4 (2%) 4 (1%) 

SNC Medication 23 (13%) 2 (2%) 24 (13%) 2 (2%) 32 (12%) 22 (7%) 

Thyroid Medication 14 (8%) 2 (2%) 13 (7%) 5 (4%) 14 (5%) 4 (1%) 

Lipid Therapy 9 (5%) 11 (10%) 18 (10%) 9 (7%) 65 (25%) 58 (19%) 

Glycaemia Therapy 0 0 0 0 195 (75%) 224 (75%) 
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Hypertension Therapy 44 (25%) 21 (19%) 63 (34%) 30 (25%) 162 (63%) 174 (58%) 

Presence Therapy 91 (51%) 34 (31%) 106 (57%) 43 (35%) 240 (93%) 273 (92%) 

 

22. Prediction of (non-)diabetic status by HbA1c and by N-glycans 

May N-glycans predict T2D status than the classic HbA1c? To answer that I performed two logistic 

models, one using HbA1c as predictor and N-glycans for the other model. The total N was of 840 

individuals. The areas under the curve (AUC) and the confusion matrixes of the following models 

evidence that HbA1c predicts diabetic or non-diabetic status far better than the 10 N-glycans. 

Confidence intervals (CI) for the AUC were generated by bootstrapping, using an α=10%. 

Model 1: Ctrl/Diab ~ HbA1c 

AUC=0.979 (0.970-0.988) 

Table 8. Confusion matrix for HbA1c 

 Expected Ctrl Expected Diab 

Observed Ctrl 277 8 

Observed Diab 31 524 

 

Model 2: Ctrl/Diab ~ 10 N-glycans 

AUC=0.706 (0.782-0.843) 

Table 9. Confusion matrix for 10 N-glycans 

 Expected Ctrl Expected Diab 

Observed Ctrl 159 126 

Observed Diab 81 474 

 

2. Sources of variation in Phenomics and Glycomics data sets 
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Figure 25. Decomposed parts of the O2PLS integrations between 44 clinical variables and 10 N-glycans in 

four different age ranges by groups and sexes 

Figure 25 illustrates the decomposed parts of the two integrated data sets in all groups by age 

ranges (on the left, the phenomics joint part; on the right, the glycomics joint part). In general, the 

joint phenomics data set has lower signal/noise ratio, as compared with the joint glycomics data set; 

the latter also exhibits a higher percentage of joint part non-predicted by phenomics (thus predicted 

but something unknown but correlating with this part), when compared with the non-predicted by 

glycomics in the phenomics data set. These non-predicted parts become more evident as the sample 

size increases (range 20-85 years); this is especially true for the glycomics data set, in which the 

noise slightly decreases, in contrast to that in phenomics, which slightly heightens. 

In order to make results of joint loadings more comprehensive, the description that follows 

comprises the six groups (Ctrl F, Ctrl M, PreDiab F, PreDiab M, Diab F, Diab M) considering the 

full age range (20-85 years), instead of examining the groups in the four age ranges previously 

shown (Table 10). However, in the next section, the loading values for all age ranges will be 

presented. 

Table 10. Sample size of groups by age ranges and in the full age range and frequency of individuals in 

each age range per group 

Age Range Group 

Ctrl F Ctrl M PreDiab F PreDiab M Diab F Diab M 

20-44 y 37 (20.9%) 14 (13%) 18 (9.7%) 9 (7.4%) 2 (0.78%) 5 (1.7%) 

45-55 y 44 (24.9%) 39 (36.1%) 45 (24.3%) 28 (23.1%) 19 (7.4%) 32 (10.7%) 

56-70 y 74 (41.8%) 39 (36.1%) 88 (47.6%) 67 (55.4%) 157 (61%) 183 (61.4%) 

71-85 y 22 (12.4%) 16 (14.8%) 34 (18.3%) 17 (14%) 79 (30.7%) 78 (26.1%) 

20-85 y 177 108 185 121 257 298 

Total N=1146 
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Figure 26. Joint PC1 loading values of control males aged 20-85 y. 

Table 11. Top 10 joint PC1 loading values of phenomics and glycomics data sets in Ctrl M 
 

Phe_load Phenomics_var Gly_load Glycan_var 

1 -0.38972 Fibrinogen 0.519007 GP6 

2 -0.2994 TAFI 0.504762 GP3 

3 -0.28026 Neutrophils -0.4416 GP9 

4 -0.25263 White.Cells 0.426182 GP4 

5 -0.24958 CRP 0.219393 GP7 

6 -0.2493 HbA1c -0.19362 GP5 

7 -0.21139 Creatinine -0.07801 GP1 

8 0.202448 EGFR -0.06804 GP8 

9 -0.18609 Apo.B -0.04437 GP2 

10 -0.18532 Platelets 0.03005 GP10 
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Figure 27. Joint PC1 loading values of control females aged 20-85 y. 

Table 12. Top 10 joint PC1 loading values of phenomics and glycomics data sets in Ctrl F 

 

 

 

 

 

 

 

 

 

 
Phe_load Phenomics_var Gly_load Glycan_var 

1 -0.41373 Age 0.54965 GP6 

2 -0.28302 Triglycerides -0.41975 GP2 

3 -0.27213 Alkaline.Phosphatase 0.36011 GP4 

4 -0.26922 WHR 0.352816 GP3 

5 -0.26905 Uric.Acid -0.34491 GP1 

6 -0.26828 Ferritin 0.292037 GP7 

7 -0.21569 CRP 0.196503 GP5 

8 0.198648 EGFR -0.11466 GP10 

9 -0.19739 Fibrinogen -0.07649 GP8 

10 -0.19192 AST -0.07536 GP9 
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Figure 28. Joint PC1 loading values of prediabetic males aged 20-85 y. 

 

Table 13. Top 10 joint PC1 loading values of phenomics and glycomics data sets in PreDiab M 

 

 

 

 

 

 

 

 

 

 

 
Phe_load Phenomics_var Gly_load Glycan_var 

1 0.423193 TAFI 0.480792 GP8 

2 0.27211 Fibrinogen 0.430459 GP10 

3 0.268923 Platelets -0.42573 GP1 

4 0.251033 Transferrin -0.34782 GP7 

5 -0.24822 Age 0.330355 GP5 

6 -0.24152 RDW_CV -0.2525 GP4 

7 -0.22559 HDL -0.25155 GP2 

8 0.187685 Red.Cells -0.18286 GP3 

9 -0.18065 Ferritin -0.10071 GP6 

10 0.178323 Glycaemia 0.039649 GP9 
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Figure 29. Joint PC1 loading values of prediabetic females aged 20-85 y. 

 

Table 14. Top 10 joint PC1 loading values of phenomics and glycomics data sets in PreDiab F 
 

Phe_load Phenomics_var Gly_load Glycan_var 

1 -0.35149 Age 0.525998 GP6 

2 -0.28861 Alkaline.Phosphatase 0.470829 GP4 

3 -0.26585 CRP 0.398601 GP3 

4 -0.26315 WHR -0.39574 GP2 

5 -0.23627 Fibrinogen 0.286845 GP7 

6 -0.22258 Triglycerides -0.17994 GP1 

7 0.212599 HDL -0.16396 GP10 

8 -0.20779 Uric.Acid -0.15836 GP9 

9 -0.20166 Azotemia -0.12574 GP8 

10 -0.19987 Insulin 0.061027 GP5 
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Figure 30. Joint PC1 loading values of diabetic males aged 20-85 y. 

Table 15. Top 10 joint PC1 loading values of phenomics and glycomics data sets in Diab M 
 

Phe_load Phenomics_var Gly_load Glycan_var 

1 -0.45435 Total.Protein 0.446021 GP8 

2 0.340855 CRP -0.42861 GP3 

3 0.33144 TAFI -0.40985 GP4 

4 -0.2797 Total.Iron 0.351605 GP10 

5 0.267464 WHR 0.274701 GP9 

6 0.236585 Fibrinogen -0.26355 GP1 

7 -0.22355 Total.Bilirubin 0.260263 GP5 

8 0.176752 Apo.B -0.21204 GP7 

9 0.156645 Cholesterol -0.18503 GP2 

10 0.148456 Neutrophils -0.18413 GP6 
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Figure 31. Joint PC1 loading values of diabetic females aged 20-85 y. 

Table 16. Top 10 joint PC1 loading values of phenomics and glycomics data sets in Diab F 
 

Phe_load Phenomics_var Gly_load Glycan_var 

1 -0.3216 AST 0.479851 GP8 

2 -0.32025 Total.Protein -0.47455 GP3 

3 0.303065 TAFI -0.46463 GP4 

4 0.294732 HbA1c 0.432795 GP10 

5 -0.28893 Total.Iron -0.22885 GP7 

6 0.234337 CRP -0.20625 GP6 

7 0.211017 White.Cells 0.205671 GP5 

8 0.209755 Glycaemia -0.06177 GP1 

9 -0.20004 Total.Bilirubin -0.01761 GP9 

10 0.196148 Platelets -0.00388 GP2 

 

Figures 26-31 and Tables 11-16 show the loading variables in each joint set for each group. It can 

be noticed that three of the top 4 joint glycans in control males, control females and prediabetic 

females are GP6 (digalactosylated, fucosylated glycan, already described in the literature to be 

negatively associated with aging), GP3 and GP4 (monogalactosylated, fucosylated glycans), while 

GP2 (agalactosylated, bisecting GlcNAc, fucosylated, described too in the literature as typical of the 

aging phenotype) is also common in the top 4 in control females and prediabetic females (Figure 

27, Table 12). GP6, GP3 and GP4 are negatively correlated mainly with coagulation and blood 
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parameters in control males and with age (Figure 26, Table 11), alkaline phosphatase and lipid 

parameters in control females (Figure 27, Table 12). Conversely, the top 4 glycans in diabetic 

males and females are GP8, GP10, GP3 and GP4 (Figures 30-31, Tables 15-16). Prediabetic males 

also show GP8 and GP10 as top 2, and they are mainly positively correlated with three coagulation 

parameters (Figure 28, Table 13). In diabetics, both sexes show that GP8 and GP10 are positively 

correlated with diverse parameters from the phenomics data set, including lipid, coagulation, iron, 

blood parameters and factors used for the T2D diagnosis, while GP3 and GP4 are negatively 

correlated with those (Figures 30-31, Tables 15-16). 

When testing the correlation between phenomics and glycomics joint scores in each group (Table 

17), controls display joint PC1 correlations of the order of .7, prediabetics, of the order of .6, and 

diabetics of the order of .5. This observation highlights that the inter-variation phenomics/glycomics 

decreases with disease (from controls to prediabetics and to diabetics), thus that the intra-variation 

of each data set increases with disease, which, in turn, underlines the heterogeneity and/or 

complexity of disease and age. 

Table 17. Pearson intra-correlations between pairs of Phenomics/Glycomics joint scores 

Group Correlation between Phenomics/Glycomics joint scores 

Control males Joint PC1: R2=0.71 

Joint PC2: R2=0.61 

Control females Joint PC1: R2=0.70 

Joint PC2: R2=0.53 

Prediabetic males Joint PC1: R2=0.64 

Joint PC2: R2=0.59 

Prediabetic females Joint PC1: R2=0.64 

Joint PC2: R2=0.55 

Diabetic males Joint PC1: R2=0.53 

Joint PC2: R2=0.36 

Diabetic females Joint PC1: R2=0.52 

Joint PC2: R2=0.48 

 

23. Visualization of mean values and integrated weights  

 

Figure 32. Parallel plots of groups of variables (I) 
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Figure 33. Parallel plots of groups of variables (II) 

Figures 32 and 33 visually describes the differences among the groups of individuals in groups of 

variables – 42 phenotypical variables (excluding sex, age, telomere length) were grouped according 

to the tissue of production, their functionality or their diagnostic value: diagnostic parameters of 

T2D, lipid profile, liver, kidney, iron, coagulation, and cell counts & blood differential, and 

visualized with parallel plots for EDA –. N=1152, because individuals >85 years old had also been 

included. 

In T2D parameters, differences are clear, especially for glycaemia (fasting glucose) and HbA1c. In 

the remaining groups of variables, overall diabetics stand out over controls and prediabetics in 

WHR, LDL, Apo A1, triglycerides, GGT, ferritin and TAFI. There many variables that illustrate the 

heterogeneity of diabetics, by peaking up and falling down at the same time, especially for kidney, 

coagulation and blood parameters: EGFR, creatinine, azotemia, SDMA, ADMA, fibrinogen, TAFI, 

red cells, MCV, lymphocytes, eosinophils, monocytes. 

The next subsection shows in more detail the mean values per variable (on the left) as well as the 

loading values obtained with O2PLS (on the right) grouped by the same groups of variables as the 

parallel plots; only the most relevant variables within each group are shown. 

Diagnostic parameters of T2D 

 

Figure 34. Means and weights of fasting glucose 
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Figure 35. Means and weights of glycated haemoglobin 

Fasting glucose and HbA1c. A clear segregation of groups is observed in the mean values plot. In 

addition, females present lower concentrations of fasting glucose across all age ranges than males, 

but higher concentrations of HbA1c (an indicator of long-term glucose), except at the age ranges 

20-44 and 45-55. Weights reach a maximum at 56-70 years (positive for all of them) and diminish 

again at 71-85 years, forming a triangle-like shape across the age ranges 45-55, 56-70, and 71-85. 

 

Figure 36. Means and weights of HOMA 

HOMA and fasting insulin. The means show that in the case of HOMA, groups are segregated, 

though at the age ranges 45-55 and 71-85, controls and prediabetics mix up. In the case of insulin, 

control and prediabetic females follow a similar curve to that of HOMA, that is at 45-55 years of 

age, they shrink, and at the next age range they raise again. Diabetic females present the highest 

concentrations of insulin in all age ranges (specially at 20-44y), except at 71-85 years of age. In 

males, prediabetics have higher levels of insulin in the first three age ranges, while diabetic males 

present constant concentrations across ages, and control males aged 20-44 years present the lowest 

levels. Weights do not follow any particular pattern, though in fasting insulin, groups tend to 

aggregate at 56-70 and 71-85 years of age. 
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Figure 37. Means and weights of fasting insulin 

 

Lipid profile 

 

Figure 38. Means and weights of BMI 

 

Figure 39. Means and weights of WHR 
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BMI and WHR. Mean values show that diabetic females have the highest BMIs (29 to 32, according 

to the age range), while control females, the lowest (24 to 25), though at the age 56-70, it raises 

above 27. Diabetic males and prediabetic females and males present a BMI of 27-29 across all age 

ranges. With respect to WHR, males display much higher WHR than females in the three groups 

across all age ranges. Loading values do not follow a specific pattern. 

 

Figure 40. Means and weights of total cholesterol 

Cholesterol and LDL. Mean values illustrate that, in generall, females have more elevated 

cholesterol levels than males; in particular, diabetic males have the lowest concentrations of 

cholesterol and diabetic females, the highest in the age range 20-44 years old. In relation to LDL, 

diabetic males follow the same pattern as cholesterol levels across ages, and roughly the same 

applies in control and prediabetic females. Weights of the groups tend to converge at 56-70 years, 

while before and after they look more scattered. 

 

Figure 41. Means and weights of LDL 



72 

 

 

Figure 42. Means and weights of HDL 

HDL and Triglycerides. Mean values confirm that diabetic females aged 20-44 years have very low 

levels of HDL and, at the same time, very high levels of triglycerides as compared with males, 

while prediabetic and control females have the highest levels of HDL and the lowest levels of 

triglycerides. Weights in HDL in prediabetics and diabetics shrink at 56-70 years, while in controls 

they remain constant from 45-55 to 71-85 years; in triglycerides, prediabetics and diabetics have 

loading values clustered between 0 and -0.25, and controls of +0.25, in 56-70 years, the six groups 

group together to dissipate at 71-85 years. 

 

Figure 43. Means and weights of triglycerides 

   

Liver biomarkers 
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Figure 44. Means and weights of alkaline phosphatase 

Alkaline phosphatase*. Overall, mean values show an upward trend across the four groups of age, 

with the exception of diabetic females, in which at 20-44 y, the mean value is exceptionally high, 

and conversely, very low in prediabetic females in the same group of age (*enzyme that comes 

primarily from the liver, but also from the bones; higher levels may indicate a problem in the liver 

or a bone disorder). Weights do not follow a specific pattern. 

 

Figure 45. Means and weights of total bilirubin 

Total bilirubin*. In this parameter, there is a general separation between males and females in the 

means, except at 45-55, in which values for control females raise and for diabetic males fall 

(*higher bilirubin levels indicate that either red cells are breaking down at an unusual rate or that 

liver isn’t breaking down waste properly and clearing it from blood). Loading values evolve at once 

for females with an inverted triangle-shaped pattern (fall at 45-55 y – raise at 56-70 y), while males 

do not follow a specific pattern. 
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Figure 46. Means and weights of AST 

AST*. In mean values, except for control males and diabetic females, there is a rise in ALT levels 

from 20-44 to 45-55 years, followed by a general stabilization across ages (*high levels may 

indicate hepatitis, cirrhosis, mononucleosis or other liver diseases). Weights do not follow a specific 

pattern. 

 

Figure 47. Means and weights of C reactive protein 

CRP*. Regarding mean values, except for diabetic females, who display very high levels of CRP at 

20-44, which slightly fall over ages, there is an upward trend in all groups from 20-44 years up to 

71-85 years (*it is a marker of inflammation, and high levels may indicate infection, cancer, 

cardiovascular disease, aging). Weights are similar for prediabetic males and females and diabetic 

females at 45-55 and 56-70 years, while the other groups do not follow a specific pattern. 
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Figure 48. Means and weights of creatinine 

Creatinine*. In mean values, there is a clear separation between males and females, the formers 

presenting higher mean values, and except for control/prediabetic males at 45-55 years of age, 

controls, prediabetics and diabetics are escalated in each sex (*high creatinine levels indicate that 

kidneys are not working properly). Weights follow a triangle-shaped pattern, except in control 

males and diabetic females, in which from 45-55 to 71-85 years they fall down. 

 

Figure 49. Means and weights of azotemia 

Azotemia*. Overall, mean values raise across age ranges, except in diabetic females (*high levels 

indicate abnormally high levels of nitrogen-containing compounds, such as urea, creatinine, waste 

compounds…). Weights tend to cluster at 56-70 years, though they do not follow a specific pattern. 
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Figure 50. Means and weights of uric acid 

Uric acid. Males means show higher levels of uric acid across all age ranges, and in the case of 

females, groups are escalated (diabetics presenting the highest and controls, the lowest). Loading 

values do not follow a specific pattern, though at 56-70 years, females aggregate. Weights do not 

follow a specific pattern. 

Iron biomarkers 

 

Figure 51. Means and weights of ferritin. 

Ferritin*. Males and females follow a diverse dynamics: diabetic males present higher mean values 

of ferritin that peak up at 45-55, followed by a reduction across ages; prediabetic and control males 

present their lowest levels at 45-55: females present the lowest levels at 20-44 years, which rise up 

until 56-70 years to diminish again at 71-85 (*it measures the amount of iron stored in the liver). 

Weights do not follow a particular pattern. Weights segregate negatively in prediabetics and 

diabetics and positively in controls at 45-55 years, at 56-70 years they cluster around 0 and minus 0, 

and at 71-85 years dissipate again. 

Coagulation biomarkers 
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Figure 52. Means and weights of fibrinogen 

Fibrinogen. It clearly separates both groups and sexes, being males and controls the ones with 

lowest mean values. At 20-44 years, they are at their lowest levels and increase steadily until 71-85 

years, except for control females, who diminish fibrinogen concentrations at 71-85 years. Weights 

follow a triangle-shaped pattern (raise at 45-55 y – fall at 56-70 y), except in control and prediabetic 

females, that augment progressively from 20-44 y and 45-55, respectively. Weights follow roughly 

the same pattern than in CRP. 

 

Cell counts and blood differential 

 

Red cells. Mean values separate males and females, and the dynamics between sexes follows a 

different pattern: it diminishes across ages in males, while in females, red cells concentration starts 

raising at 45-55 years (except diabetics females at 20-44 years, who have high levels), and in 71-85 

years, that diminish in prediabetics and diabetics, while in female controls still increases. Weights 

follow roughly the same pattern than creatinine and azotemia. 
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Figure 53. Means and weights of haemoglobin 

Haemoglobin. Mean values clearly show much higher concentration of hemoglobin in males than 

females, and diabetic males show much higher levels at 20-44 years. Weights do not follow a 

specific pattern. 

 

Figure 54. Means and weights of white cells 

White cells. Diabetic males and females means are the highest, the latter group displaying a very 

high value at 20-44 years; prediabetic males and females have the same mean values, except a raise 

in males at 56-70, which are lower than diabetics, and control females present the lowest values. 

Weights follow a triangle-shaped pattern (raise at 45-55 y – fall at 56-70 y), except in control and 

prediabetic males. 
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Figure 55. Means and weights of platelets 

Platelets. In this case, the sexes cluster, being females the group with higher mean values, which are 

at its highest at 20-44 years of age. Weights do not follow a specific pattern. 

 

Figure 56. Means and weights of telomere length 

Telomere length. Mean values vary according to the cohort (defined by age range, sex, and group), 

but it becomes evident that at 71-85 years diabetics present the lowest levels, followed by 

prediabetics and diabetics. Weights group at 56-70 years, except in prediabetic males, and at 71-85 

years. 
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Figure 57. Means and weights of GP1 

GP1. Mean values increase over age and reach the maximum values at 71-85 years age; there are 

differences between sexes at 20-44 years, by which females show much lower values, though at the 

same time, they display a steeper raise until 45-55 years – for males, from the youngest age range 

until the 2nd age range, mean values remain roughly constant. Weights do not follow a specific 

pattern. 

 

Figure 58. Means and weights of GP2 

GP2. Mean values present a pronounced increase from younger ages until 56-70 or 71-85 years; in 

the case of diabetic males, diabetic females and control males (with this order) they present much 

higher mean values already at 20-44 years, in contrast to the other three groups, and start raising 

their values at 45-55 years. Weights do not follow a general pattern – they remain roughly constant 

between around -0.4 and 0. 
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Figure 59. Means and weights of GP3 

GP3. Means of GP3 depart from high positive values and fall down up until 56-70 years, except in 

diabetic males, and slightly raise again at 71-85 years. It is surprising that controls, prediabetics and 

diabetics are quite escalated, being controls generally the ones to have higher mean values. Weights 

separate males and females at 45-55 years (negative and positive loading values, respectively), 

converge at 56-70 years (female loadings become negative) to scatter again at 71-85 years. 

 

Figure 60. Means and weights of GP4 

GP4. Mean values follow a steep decrease from 20-44 years until 71-85 years for females, being 

controls the ones with higher values, followed by prediabetics, while in males do not decrease or 

decrease less from 20-44 years until 45-55 years, and increase/decrease or remain constant until 71-

85 years. Weights follow roughly the same pattern as in GP3. 
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Figure 61. Means and weights of GP5 

GP5. Mean values in control and prediabetic females are positive high at 20-44 years and sharply 

decrease until 45-55 years, while in diabetic females the contrary applies; from 45-55 to 71-85 years 

mean values slightly decrease, though the fall is more important in controls. Instead, males follow 

an approximate constant pattern from 20-44 until 71-85 years. Weights, except in control and 

diabetic males, present a triangle-shaped pattern (raise at 45-55 years – fall at 56-70 years), which is 

sharper in females. 

 

Figure 62. Means and weights of GP6 

GP6. Mean values are very high at 20-44 years for females, and they markedly decline, almost 

lineally, until 71-85 years old; in males, from 20-44 to 45-55 years remain constant for controls and 

diabetics while diminishing in prediabetics, and from 45-55 until 71-85 years they steadily lessen. 

Weights, except in prediabetic females, follow an inverted triangle-shaped pattern (fall at 45-55 

years – raise at 56-70 years), more closed (<90º) in females and more opened (>90º) in males. 
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Figure 63. Means and weights of GP7 

GP7. Mean values are quite low for males at 20-44 years and steadily increase until 71-85 years; for 

females is quite the opposite, mean values are high at 20-44 years and diminish until 71-85 years, so 

that sexes mix. Weights follow a similar pattern to that of GP3. 

 

Figure 64. Means and weights of GP8 

GP8. Mean values show that groups are differentiated, that is females have higher values from 20-

45 years and keep roughly constant until 71-85 years, except for diabetic females at 20-44 years, 

which sharply rise until 45-55 years to diminish again. Weights follow a pattern from 45-55 to 56-

70 years, in which males have high positive values from 20-44 years until 45-55 years, while 

females exhibit less positive, neutral or negative loadings at 45-55 years, and increase until 45-55 

years, where all the groups converge. 
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Figure 65. Means and weights of GP9 

GP9. Mean values are lower for females than males across ages, except control males, which 

present a lower loading value at 20-44 years than the rest of the groups, and diabetic females have a 

much higher value than the other groups; from 45-55 years, means increase until 56-70 or 71-85 

years. Weights are positive from 45-55 years in males and negative in females, though in males they 

steeply decrease from 56-70 years, while the decrease in females is less important. 

 

Figure 66. Means and weights of GP10 

GP10. Mean values and weights follow the same pattern as in GP8. 
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PART II 

8. AIM 

The general aim of this study was: 

• To identify the major sources of Phenomics variation (when integrated with N-glycans) by 

integrating endophenotypes/groups of biological variables, composed by biologically 

similar variables, that is variables diagnostic of T2D, lipid profile, liver biomarkers, kidney 

biomarkers, iron and coagulation parameters and blood factors, again in the six groups of 

individuals in four age ranges and the full age range, and to identify N-glycans changes 

according to these endophenotypes and to the group. 

The specific aim of this study was: 

• To follow the procedure described in the 2n objective of the aims in Part I, but in addition 

to integrate phenomics with glycomics, to apply O2PLS in seven additional sets of 

endophenotypes with N-glycans. Unlike in Part I, for the integration Phenomics/Glycomics, 

the variable age was not included. 
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9. RESULTS 

24. Sources of variation in Phenomics, T2D, Lipids, Liver, Kidney, Iron, 

Coagulation, Blood & Glycomics data sets 

 

Figure 67. Decomposed parts of the O2PLS integrations between 8 different data sets and 10 N-glycans in 

four different age ranges and the total age range by groups and sexes 

Figure 67 illustrates the decomposed parts of the eight integrated data sets with N-glycans in all 

groups by age ranges (“T2D” refers to the four variables used for diagnosing or quantifying T2D, that is 

fasting glucose, fasting insulin, HbA1c and HOMA). In general, the joint parts of the endophenotypes 

sets have higher signal/noise ratio, as compared with the joint phenomics data set. Conversely, in 

the glycomics joint part, while the covariating Phenomics exhibits a high signal/noise ratio, the 

covariating endophenotypes show a much lower signal/noise ratio. The same applies to the non-

predictive parts, which are in higher percentage in joint endophenotypes parts but in lower 

percentage in the joint phenomics part, when compared with the non-predicted by glycomics in the 

phenomics data set. Instead, in the glycomics joint part, the covariating phenomics set presents a 

high percentage of non-predicted by phenomics part, while this percentage falls down in the 

glycomics joint of the covariating endophenotypes. 

In order to make results of joint loadings more comprehensive, the description that follows 

comprises the six groups (Ctrl F, Ctrl M, PreDiab F, PreDiab M, Diab F, Diab M) considering the 

full age range (20-85 years) in each of the 8 integrated data sets, instead of examining the groups in 

the four age ranges previously shown.  

The intra-correlations between pairs of joint PC scores show that in prediabetics, in both sexes, N-

glycans scores correlate less with T2D diagnostic parameters and lipid profile scores, while they 

display a high correlation with liver and coagulation scores (Table 18). Conversely, in diabetics, in 

both sexes, the correlation of joint scores between N-glycans and T2D diagnostic parameters and 
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lipid profile is surprisingly low. In turn, the correlation with liver and coagulation is higher, yet 

much lower than the same correlations observed in prediabetics, which may be explained by 

medication (Table 7). By contrast, in comparison to controls and prediabetics, the correlation of the 

glycomics scores with kidney scores increases (Table 18). Yet, the expected tri-/tetragalactosylated 

glycans GP8 and GP10 are not in the top 4 of glycomics loadings integrated with liver, except for 

diabetic females, though they are in the coagulation data set in prediabetic males, diabetic females, 

and diabetic males. Instead, the top 3 N-glycans common in both prediabetic males and females are 

GP6 (digalactosylated, fucosylated), GP3 (monogalactosylated, fucosylated) and GP4 

(monogalactosylated, fucosylated) (Table 19). Regarding controls, the highest intra-correlations 

between joint PCs are found in T2D, lipids, kidney and blood data sets pairing with N-glycans, and 

iron and coagulation for males too (Table 18). 

Table 18. Pearson intra-correlations of the joint PC scores in each pair of integrated data sets 

Group Phenomics/Gly T2D/Gly Lipids/Gly Liver/Gly Kidney/Gly Iron/Gly Coagulation/Gly Blood/Gly 

Ctrl F Joint PC1: 

R2=0.63 

Joint PC2: 

R2=0.53 

Joint PC3: 

R2=0.44 

Joint 

PC1: 

R2=0.35 

Joint PC1: 

R2=0.29 

Joint PC2: 

R2=0.24 

 

Joint 

PC1: 

R2=0.21 

Joint 

PC2: 

R2=0.22 

 

Joint PC1: 

R2=0.29 

Joint 

PC1: 

R2=0.22 

 

Joint PC1: 

R2=0.25 

Joint 

PC1: 

R2=0.29 

Ctrl M Joint PC1: 

R2=0.69 

Joint PC2: 

R2=0.55 

Joint PC3: 
R2=0.62 

Joint 

PC1: 

R2=0.39 

Joint PC1: 

R2=0.30 

Joint 

PC1: 

R2=0.27 

Joint PC1: 

R2=0.34 

Joint PC2: 

R2=0.30 

Joint 

PC1: 

R2=0.33 

Joint PC1: 

R2=0.29 

Joint PC2: 

R2=0.20 

Joint 

PC1: 

R2=0.30 

PreDiab 

F 

Joint PC1: 

R2=0.69 

Joint PC2: 

R2=0.55 

Joint PC3: 

R2=0.51 

Joint 

PC1: 

R2=0.32 

Joint PC1: 

R2=0.46 

Joint PC2: 

R2=0.32 

 

Joint 

PC1: 

R2=0.52 

Joint PC1: 

R2=0.41 

Joint 

PC1: 

R2=0.33 

Joint PC1: 

R2=0.44 

Joint PC2: 

R2=0.23 

Joint 

PC1: 

R2=0.39 

PreDiab 

M 

Joint PC1: 

R2=0.60 

Joint PC2: 

R2=0.54 

Joint PC3: 

R2=0.53 

Joint 

PC1: 

R2=0.32 

Joint 

PC2: 

R2=0.18 
 

Joint PC1: 

R2=0.39 

Joint 

PC1: 

R2=0.45 

Joint PC1: 

R2=0.25 

Joint 

PC1: 

R2=0.35 

Joint PC1: 

R2=0.48 

Joint 

PC1: 

R2=0.38 

Diab F Joint PC1: 

R2=0.52 

Joint PC2: 

R2=0.47 

Joint 

PC1: 

R2=0.35 

Joint PC1: 

R2=0.21 

Joint PC2: 

R2=0.23 

Joint 

PC1: 

R2=0.41 

Joint PC1: 

R2=0.37 

Joint PC2: 

R2=0.20 

Joint 

PC1: 

R2=0.30 

Joint PC1: 

R2=0.33 

Joint 

PC1: 

R2=0.35 

Diab M Joint PC1: 

R2=0.51 

Joint PC2: 

R2=0.33 

Joint PC3: 

R2=0.42 

Joint PC4: 

R2=0.29 

Joint 

PC1: 

R2=0.18 

Joint PC1: 

R2=0.26 

Joint PC2: 

R2=0.23 

Joint PC3: 

R2=0.22 

Joint 

PC1: 

R2=0.34 

Joint 

PC2: 

R2=0.32 

Joint PC1: 

R2=0.40 

Joint PC2: 

R2=0.21 

 

 

Joint 

PC1: 

R2=0.23 

 

Joint PC1: 

R2=0.35 

Joint 

PC1: 

R2=0.25 
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In this line, the inter-correlations among joint PC scores, for control males and females are mid-

low: in males, the highest correlations after the phenomics/glycomics joint parts are 1) between the 

glycomics joint PC1 integrated with T2D and the coagulation joint PC1 (R2=-0.46), and 2) between 

the blood joint PC1 with its glycomics joint PC1 counterpart (R2=0.41) (Figure 68); while in 

females, the highest correlations after the phenomics/glycomics joint parts are 1) the glycomics 

joint PC1 [integrated with T2D] and lipids joint PC1 (R2=0.5) and 2) T2D joint PC1 with lipids 

joint PC1 (R2=0.45) and the glycomics joint PC1 [integrated with liver] with the glycomics joint 

PC2 [integrated with liver] (R2=0.45) (Figure 69). Interestingly, in prediabetics and diabetics 

(Figure 70-73), there can be observed very high inter-correlations: the glycomics joint PC1 scores 

[integrated with phenomics] are strongly associated with glycomics joint PC1 [integrated with T2D] 

(R2=0.96 PreDiab M, R2=0.99 PreDiab F, R2=0.7 Diab M, R2=-0.82 Diab F), glycomics joint PC1 

[integrated with lipids] (R2=0.83 PreDiab M, R2=0.99 PreDiab F, R2=0.92 Diab M, R2=0.9 Diab F), 

glycomics joint PC1 [integrated with liver] (R2=-0.14 PreDiab M, R2=-0.98 PreDiab F, R2=0.98 

Diab M, R2=0.92 Diab F), glycomics joint PC1 [integrated with kidney] (R2=-0.89 PreDiab M, 

R2=0.95 PreDiab F, R2=0.95 Diab M, R2=0.78 Diab F), glycomics joint PC1 [integrated with iron] 

(R2=0.88 PreDiab M, R2=-0.1 PreDiab F, R2=0.2 Diab M, R2=-0.97 Diab F), glycomics joint PC1 

[integrated with coagulation] (R2=-0.80 PreDiab M, R2=0.99 PreDiab F, R2=-0.96 Diab M, R2=-

0.93 Diab F), and with glycomics joint PC1 [integrated with blood] (R2=0.89 PreDiab M, R2=0.79 

PreDiab F, R2=-0.84 Diab M, R2=0.12 Diab M). These observations highlight that N-glycans are 

not specific for the endophenotypes but rather indicative of a biological condition. On the other 

hand, the highest inter-correlation of phenomics joint PC1 is with liver joint PC1 for prediabetic 

females (R2=-0.74), diabetic males (R2=0.67) and diabetic females (R2=0.69), while for prediabetic 

males, the highest is with glycomics joint PC1 [integrated with blood] (R2=0.64). This indicates that 

liver is one of the primarily organs to be affected in T2D disease. 

It is to note the inter-correlations that are equal 0; they are attributed to an intrinsic assumption of 

O2PLS, thereby the reciprocal joint is uncorrelated with the following joint PC (for example, the 

glycomics joint PC1 [integrated with phenomics] has a correlation of 0 with phenomics joint PC2). 

 

Figure 68. Pearson inter-correlations among the joint PCs in Ctrl M 
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Figure 69. Pearson inter-correlations among the joint PCs in Ctrl F 

  

 

Figure 70. Pearson inter-correlations among the joint PCs in PreDiab M 
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Figure 71. Pearson inter-correlations among the joint PCs in PreDiab F 

 

Figure 72. Pearson inter-correlations among the joint PCs in Diab M 
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Figure 73. Pearson inter-correlations among the joint PCs in Diab F 

Intra- and inter-correlations between pairs of joint PCs and individual joint PCs, respectively, 

therefore, point to one underlying condition having a functional impact in multiple organs and 

tissues, rather than different medical entities, in prediabetics and diabetics. Table 19 reinforces this 

hypothesis, as the most common N-glycans covariating with the endophenotypes sets are GP3, GP4, 

GP6 for PreDiab F, GP5, GP8, GP10, GP1, GP7 for PreDiab M, GP3, GP4, GP8, GP10 for Diab F, 

and GP3, GP4, GP7, GP8, GP10 for Diab M; all of them fairly constant across glycomics scores of 

the same group, thus confirming the inter-correlations results.  

 

Table 19. Top 4 loading values of the joint parts for each pair of integrated data sets 

Group Phenomics/Gly T2D/Gly Lipids/Gly Liver/Gly Kidney/Gly Iron/Gly Coagulation/Gly Blood/Gly 

Ctrl F Phenomics: 

Triglycerides=-0.32 

AP=-0.29 

Uric Acid=-0.29 

WHR=-0.29 

T2D: 

HOMA=-0.59 

Insulin=-0.55 

FG=-0.45 

HbA1c=-0.38 

Lipids: 

WHR=-0.65 

Triglycerides=-0.53 

BMI=-0.34 

HDL=0.26 

Liver: 

AP=0.62 

AST=0.59 

TB=-0.37 

ALT=0.32 

Kidney: 

ADMA=0.56 

Creatinine=0.48 

EGFR=-0.47 

TP=0.37 

Iron: 

TI=0.69 

Ferritin=0.53 

Transferrin=-0.49 

 

Coagulation: 

PAI1=0.87 

TAFI=0.36 

Fibrinogen=0.34 

Blood: 

Neutrophils=-0.48 

Hemoglobin=-0.43 

Lymphocytes=-0.38 

Monocytes=-0.38 

Glycomics: 

GP6=0.53 

GP2=-0.40 

GP3=0.38 

GP4=0.37 

Glycomics: 

GP7=0.51 

GP6=0.41 

GP3=0.40 

GP1=-0.38 

Glycomics: 

GP4=0.60 

GP2=-0.46 

GP6=0.39 

GP5=0.38 

Glycomics: 

GP3=0.51 

GP7=0.48 

GP5=-0.37 

GP8=-0.36 

Glycomics: 

GP7=0.68 

GP2=-0.34 

GP1=-0.33 

GP10=0.32 

Glycomics: 

GP8=0.51 

GP10=0.41 

GP5=0.41 

GP4=-0.35 

Glycomics: 

GP4=0.44 

GP10=-0.38 

GP9=0.38 

GP6=0.34 

Glycomics: 

GP7=0.45 

GP6=0.45 

GP1=-0.42 

GP4=0.38 
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Ctrl M Phenomics: 

Fibrinogen=-0.38 

TAFI=-0.31 

Neutrophils=-0.27 

White cells=-0.26 

T2D: 

HbA1c=0.90 

FG=-0.37 

HOMA=-0.19 

Insulin=-0.14 

Lipids: 

HDL=-0.72 

Apo A1=-0.38 

Triglycerides=0.38 

BMI=0.35 

Liver: 

CRP=0.52 

ALT=-0.47 

TB=-0.44 

AST=-0.38 

Kidney: 

TP=-0.81 

Uric acid=-0.48 

Creatinine=0.21 

SDMA=-0.19 

Iron: 

Transferrin=-0.89 

TI=-0.46 

Ferritin=-0.07 

Coagulation: 

Fibrinogen=-0.93 

PAI1=-0.29 

TAFI=-0.22 

Blood: 

Platelets=-0.62 

Eosinophils=-0.43 

Lymphocytes=0.36 

White cells=-0.32 

Glycomics: 

GP3=0.52 

GP6=0.50 

GP4=0.45 

GP9=-0.42 

Glycomics: 

GP3=-0.43 

GP5=0.38 

GP4=-0.36 

GP9=0.36 

Glycomics: 

GP6=-0.64 

GP2=0.54 

GP3=-0.39 

GP7=-0.28 

Glycomics: 

GP3=0.61 

GP6=0.46 

GP9=-0.45 

GP4=0.31 

Glycomics: 

GP7=-0.51 

GP10=0.49 

GP8=0.47 

GP9=-0.31 

Glycomics: 

GP2=-0.64 

GP10=0.42 

GP1=-0.38 

GP6=0.28 

Glycomics: 

GP6=0.55 

GP9=-0.44 

GP7=0.32 

GP2=-0.32 

Glycomics: 

GP6=0.47 

GP7=0.46 

GP3=0.40 

GP5=-0.39 

PreDiab 

F 

Phenomics: 

AP=-0.31 

CRP=-0.29 

WHR=-0.29 

Triglycerides=-0.28 

T2D: 

Insulin=-0.68 

HOMA=-0.67 

FG=-0.29 

HbA1c=-0.10 

Lipids: 

WHR: -0.51 

Triglycerides=-0.49 

HDL=0.43 

BMI=-0.33 

Liver: 

AP=0.62 

CRP=0.55 

GGT=0.40 

AST=0.33 

Kidney: 

Azotemia=-0.65 

Uric acid=-0.62 

EGFR=0.27 

SDMA=0.18 

Iron: 

Transferrin=-0.74 

Ferritin=0.63 

TI=0.22 

Coagulation: 

Fibrinogen=-0.72 

TAFI=-0.64 

PAI1=-0.26 

Blood: 

RDW-CV=-0.57 

White cells=-0.42 

Lymphocytes=0.41 

Platelets=-0.31 

Glycomics: 

GP6=0.53 

GP4=0.46 

GP3=0.42 

GP2=-0.34 

Glycomics: 

GP4=0.52 

GP6=0.43 

GP7=0.38 

GP3=0.36 

Glycomics: 

GP4=0.48 

GP6=0.47 

GP2=-0.45 

GP3=0.36 

Glycomics: 

GP6=-0.52 

GP3=-0.46 

GP4=-0.46 

GP2=0.43 

Glycomics: 

GP6=0.58 

GP2=-0.42 

GP1=-0.35 

GP3=0.33 

Glycomics: 

GP5=-0.46 

GP8=-0.44 

GP1=0.40 

GP10=-0.40 

Glycomics: 

GP6=0.58 

GP4=0.43 

GP3=0.36 

GP7=0.32 

Glycomics: 

GP10=-0.49 

GP8=-0.41 

GP3=0.40 

GP4=0.39 

PreDiab 

M 

Phenomics: 

TAFI=0.48 

RDW-CV=-0.30 

Transferrin=0.27 

HDL=0.26 

T2D: 

FG=0.69 

HbA1c=-0.52 

Insulin=-0.36 

HOMA=-0.34 

Lipids: 

HDL=-0.59 

BMI=-0.57 

Apo A1=-0.35 

WHR=-0.29 

Liver: 

CRP=-0.71 

AP=-0.56 

TB=0.29 

ALT=0.28 

Kidney: 

TP=0.70 

SDMA=0.42 

Azotemia=0.32 

EGFR=-0.27 

Iron: 

Transferrin=0.71 

Ferritin=-0.66 

TI=0.24 

Coagulation: 

TAFI=-0.81 

Fibrinogen=-0.48 

PAI1=-0.32 

Blood: 

RDW-CV=-0.61 

Monocytes=0.52 

Hemoglobin=0.36 

White cells=-0.25 

Glycomics: 

GP8=0.50 

GP10=0.43 

GP1=-0.41 

GP5=0.35 

Glycomics: 

GP7=-0.55 

GP10=0.47 

GP5=0.36 

GP8=0.34 

Glycomics: 

GP1=-0.54 

GP5=0.43 

GP4=-0.39 

GP9=0.39 

Glycomics: 

GP6=0.63 

GP4=0.46 

GP9=-0.38 

GP3=0.37 

Glycomics: 

GP5=-0.54 

GP2=0.47 

GP8=-0.39 

GP10=-0.38 

Glycomics: 

GP8=0.53 

GP10=0.50 

GP7=-0.44 

GP1=-0.37 

Glycomics: 

GP8=-0.42 

GP10=-0.41 

GP6=0.39 

GP7=0.38 

Glycomics: 

GP1=-0.54 

GP5=0.42 

GP8=0.42 

GP10=0.35 

Diab F Phenomics: 

AST=-0.32 

TP=-0.31 

TI=-0.30 

TAFI=0.30 

T2D: 

HbA1c=-0.71 

FG=-0.60 

HOMA=-0.36 

Insulin=-0.11 

Lipids: 

HDL=-0.61 

Triglycerides=0.61 

Apo B=0.37 

WHR=0.23 

Liver: 

AST=-0.62 

CRP=0.52 

TB=-0.45 

ALT=-0.34 

Kidney: 

TP=-0.97 

EGFR=0.16 

ADMA=0.12 

Creatinine=-0.10 

Iron: 

TI=0.72 

Ferritin=0.50 

Transferrin=-0.49 

Coagulation: 

TAFI=-0.96 

Fibrinogen=-0.24 

PAI1=0.13 

Blood: 

Lymphocytes=0.62 

Red cells=0.38 

Hemoglobin=0.35 

Monocytes=0.34 

Glycomics: 

GP3=-0.48 

GP4=-0.48 

GP8=0.45 

GP10=0.42 

Glycomics: 

GP4=0.57 

GP3=0.56 

GP2=-0.35 

GP8=-0.34 

Glycomics: 

GP8=0.61 

GP10=0.50 

GP4=-0.40 

GP3=-0.30 

Glycomics: 

GP3=-0.48 

GP4=-0.43 

GP8=0.39 

GP10=0.34 

Glycomics: 

GP5=0.54 

GP1=-0.43 

GP8=0.35 

GP7=-0.32 

Glycomics: 

GP4=0.46 

GP3=0.44 

GP10=-0.42 

GP8=-0.40 

Glycomics: 

GP8=-0.61 

GP10=-0.53 

GP7=0.36 

GP3=0.29 

Glycomics: 

GP6=0.52 

GP8=0.42 

GP2=-0.27 

GP1=-0.35 

Diab M Phenomics: 

TP=-0.45 

TAFI=0.34 

CRP=0.28 

WHR=0.28 

T2D: 

HOMA=0.54 

FG=0.52 

HbA1c=0.49 

Insulin=0.45 

Lipids: 

WHR=0.58 

Apo B=0.42 

Cholesterol=0.39 

LDL=0.31 

Liver: 

CRP=0.73 

TB=-0.59 

AST=-0.27 

AP=0.15 

Kidney: 

TP=-0.96 

EGFR=0.19 

SDMA=-0.16 

Creatinine=-0.12 

Iron: 

TI=-0.72 

Transferrin=0.54 

Ferritin=-0.44 

Coagulation: 

TAFI=-0.78 

Fibrinogen=-0.61 

PAI1=-0.10 

Blood: 

Neutrophils=-0.41 

MPV=0.41 

Platelets=-0.39 

White cells=-0.35 

Glycomics: 

GP8=0.45 

GP3=-0.44 

GP4=-0.41 

GP10=0.35 

Glycomics: 

GP3=-0.59 

GP4=-0.54 

GP5=0.33 

GP7=0.29 

Glycomics: 

GP8=0.55 

GP3=-0.49 

GP4=-0.45 

GP10=0.32 

Glycomics: 

GP4=-0.44 

GP6=-0.41 

GP3=-0.38 

GP7=-0.36 

Glycomics: 

GP1=-0.51 

GP5=0.46 

GP4=-0.33 

GP3=-0.32 

Glycomics: 

GP5=0.52 

GP3=-0.43 

GP8=0.42 

GP10=0.41 

Glycomics: 

GP8=-0.43 

GP6=0.39 

GP4=0.37 

GP7=0.37 

Glycomics: 

GP8=-0.47 

GP3=0.44 

GP10=-0.36 

GP7=0.32 
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10. DISCUSSION 

N-glycans species change in conditions of inflammation and metaflammation. In the frame of T2D 

and metabolic syndrome, it is not clear whether these alterations in N-glycans profile are the cause 

or the consequence of the disease. The clinical diagnostic of T2D is achieved through the criteria 

established by ADA (2020); however, it has two potential drawbacks: it takes an average of 7 years, 

and, when T2D is confirmed, the individual already presents an overt clinical symptomatology that 

rarely ameliorates and, instead, it progresses towards vascular complications. Thus, when the 

clinical diagnostic of T2D is achieved, the quality of life of an individual and the lifespan will likely 

have already been conditioned. As a whole, the increasing number of geriatric population, along 

with the late diagnosis of T2D, will lead to a socio-economical burden is going to be difficult to 

manage, unless systematic changes in the health system are carried out and/or more biomarkers of 

T2D/dysmetabolism/aging (which often go hand in hand) are found.  

Here, we firstly address whether N-glycans could predict better the diabetic or non-diabetic status 

than HbA1c, used in clinical routine as parameter to diagnose T2D (ADA, 2020). Results confirmed 

that HbA1c is better for the diagnosis than N-glycans (AUCHbA1c = 0.97, AUCN-glycans = 0.71). 

Thereupon, we aimed to integrate 44 clinical variables of different sources (including T2D 

diagnostic parameters, biochemical parameters from the lipid profile, liver, kidney, and cell counts 

and blood differential factors) with 10 N-glycans obtained with DSA-FACE in six groups of 

individuals, that is, control males, control females, prediabetic males, prediabetic females, diabetic 

males, and diabetic females, in four age ranges, that is, 20-44, 45-55, 56-70, 71-85 years of age, and 

the full age range. We made these subgroups for different reasons: i) males and females present a 

different biology, ii) clinical parameters and N-glycans change with age, and iii) controls, with age, 

tend to resemble prediabetics/diabetics, especially from 60 years on, since as healthy individuals get 

older tend to become less healthy and start presenting subclinical alterations. Results of the six 

groups, focusing on the full age range, evidenced from the loading values of the integrated 

variables, in hand with their corresponding mean values, that N-glycans GP3, GP4, GP6 are 

negatively associated with age in the six groups, while GP8 and GP10 are positively associated with 

diverse clinical parameters, especially from coagulation and lipidic profile, in diabetic males and 

females, and in prediabetic males. These signals are suggestive of being some of the team players 

mirroring a metabolic dysfunction. In addition, the decreasing intra-correlations between joint 

phenomics and joint glycomics from controls to diabetics supports the heterogeneity and/or 

complexity of T2D and/or metabolic syndrome.  

To the best of our knowledge, there are currently no previous studies integrating clinical variables 

and N-glycans in the context of metaflammation and T2D. Notwithstanding, we confirmed GP6 

(digalactosylated, fucosylated) as an N-glycan that negatively correlates with aging (Vanhooren et 

al., 2008; 2010; Kristic et al., 2014), and GP8 and GP10 (multi-branched, galactosylated N-glycans) 

as N-glycans associated with lipidic profile and T2D diagnostic parameters (Testa et al., 2015, 

Keser et al., 2017). 

We further aimed to better understand whether these N-glycans changes arise from a common 

medical condition or there are specific signatures of N-glycans according to the endophenotypes to 

which they are integrated. Results of the intra-correlations between pairs of joint PCs scores showed 

that, in prediabetics, N-glycans scores correlate less with T2D diagnostic parameters and lipid 

profile scores, while they displayed a high correlation with liver and coagulation scores. 

Conversely, in diabetics the correlation of joint scores between N-glycans and T2D diagnostic 
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parameters and lipid profile was surprisingly low; in turn, the correlation with liver and coagulation 

was higher, yet much lower than the same correlations observed in prediabetics. Overall, this could 

be indicative of the fact that medication changes N-glycan profile, as diabetics take more drugs than 

prediabetics (and controls) (Table 7), especially for lowering the glycaemic and lipid indexes, or 

anti-aggregants for vascular disease-related conditions. On the other side, the highest intra-

correlation in controls was found in the T2D set, which may be attributed to the fact that these 

control individuals are not the prototype of healthy controls, as the mean BMI is 28.32 for males 

and 25.75 for females, and thus it is suggestive of an onset of biological dysregulation. Secondly, 

inter-correlations between individual joint PCs scores show that in prediabetics and diabetics N-

glycans are generally the same when integrated with different endophenotypes, instead of revealing 

a specific signature for each endophenotype, suggesting one biomedical condition; whereas in 

controls, inter-correlations are too low for interpretation.  

Together, this extensive characterization of the phenotype by integrating clinical and N-glycans 

data has shed light into the subclinical window of T2D/metabolic syndrome, obtained from healthy 

younger controls and less healthy older controls and prediabetics, and into the clinical window, 

obtained from younger and older diabetic patients. Overall, individuals should not only be studied 

on the basis of T2D diagnostic parameters, but also considering a combination of parameters 

characteristic of insulin resistance (metabolic) syndrome, which starts before the clinical onset and 

diagnosis of T2D, thus in control and prediabetic individuals. Further research is needed to refine 

and elaborate this design. Here we identify several future directions that can build on our work for 

investigating the joint variation between clinical and glycomic variables or other metabolites that 

provide further insight into the pathology.  

First, our analysis was limited to a single cohort, and one that lacked ethnic minority populations. 

Replication in other cohorts is needed, and replication using a larger number of younger and older 

healthy controls, younger and older less healthy controls, prediabetics and diabetics can also 

provide additional perspectives. Larger samples can also help understanding the less common 

phenotypes.  

Second, DSA-FACE N-glycans are low-dimensional and have the disadvantage that sialic acids are 

cut-off from the sugar, which blurs the interpretation of results. Further studies are needed that use 

N-glycans obtained with other technologies which include sialic acids and produce more N-glycan 

species, and not only from whole plasma glycome, but also from IgG glycome, which is especially 

relevant for understanding the role of inflamm-aging and metaflammation played by N-glycans. 

Third, the nature of the cross-sectional study hinders the ability to answer the question “do N-

glycans and other biochemical parameters change over the course of preclinical (that is, insulin 

resistance and impaired insulin secretion) to clinical diagnoses (obesity and/or T2D, T2D 

complications, metabolic syndrome)?” 

Our findings suggest that future studies of T2D/dysmetabolism incorporate longitudinal repeated 

measures of biomarkers to track change. They also suggest that these investigations of 

T2D/dysmetabolism incorporate multiple biomarkers to track change across different organ 

systems.  

Within the bounds of these limitations, the implication of the present work is that it is possible to 

identify subclinical and clinical signatures of T2D/dysmetabolism by integrating clinical and N-

glycans data. 
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CHAPTER 2: Estimation Of An Innovative Composite Aging Clock  

As Biomarker For Type 2 Diabetes And Related Metabolic 

Phenotypes 

11. INTRODUCTION 

Aging is a time-dependent multifactorial process that results in a global deterioration of the 

physiological functions and elevated risk of pathologies, including cardiovascular disorders, 

neurodegenerative diseases, cancer and diabetes (López-Otín et al., 2013). It is well-known that age 

is a major risk factor for functional impairments, chronic diseases and mortality; however, the aging 

rate is not universal for humans, as it depends on the individual exposure/resilience trade-off. 

Consequently, chronological age may not be a reliable indicator of the body’s physiological decline, 

but rather a proxy of the aging growth rate. In this line, the unprecedented growth rate of world’s 

aging population is highlighting the need for better understanding the aging process and the 

determinants of healthy and unhealthy aging. 

Traditionally, the aging rate has been estimated through the mortality curves of populations, i.e. 

individuals are tracked until their death to estimate their “biological age” at time points when they 

were alive (Moskalev, 2020). Thus, to measure the functional decline, and to predict the morbidity 

onset and the life expectancy with this method are not possible.  

An alternative to mortality risk estimation for measuring the biological age is the identification of a 

set of endophenotypes that change with aging, called “biomarkers of age”, that best predict 

chronological age. This is where the “paradox of biomarkers”, reformulated by Hochschild (1994), 

comes into play: “A hypothetical biomarker that approaches perfect correlation with chronological 

age could be replaced by chronological age and would be insensitive to differences in aging among 

individuals.” The core of the paradox is that biological age is estimated by multiple linear 

regression, which uses chronological age as dependent variable and a set of biological predictors as 

independent variables, thus resulting in biological age equal to chronological age (Klemera and 

Doubal, 2006). 

According to the American Federation for Aging Research (AFAR), a biomarker of age has to fulfil 

the following criteria (Johnson, 2006):  

1. it must predict the rate of aging (it should tell exactly where a person is in their total 

lifespan and it must be a better predictor of lifespan than chronological age); 

2. it must monitor a basic process that underlies the aging process, not the effects of disease; 

3. it must be able to be tested repeatedly without harming the person (for example a blood test 

or an imaging technique); 

4. it must be something that works in humans and in laboratory animals, such as mice (so that 

it can be tested in laboratory animals before being validated in humans). 

However, the existence of biomarkers meeting all AFAR criteria has been called into question, as 

organs and tissues age at different rates (Franceschi et al., 2018), which makes the estimation of the 

overall individual aging rate difficult and, in turn, the estimation of the overall population aging 

rates, too. Examples of aging rate types between individuals are: persons with Down syndrome (a 
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progeroid syndrome), who show accelerated aging from a young age; individuals with T2D (an age-

related disease), who have an increased risk for CVD, which make them more likely to age at faster 

rates than matched individuals without T2D; aged individuals with history of disease; aged 

individuals with no history of disease; and centenarians, who have avoided or postponed age-related 

diseases in their 60s, 70s and 80s and show decelerated aging. Thus, the phenotype in the elderly 

depends on the genetic background and the interaction with environment and lifestyle. 

Further impediments to identify biomarkers of aging are the challenge to disentangle the intrinsic 

processes underlying healthy aging from the ones of unhealthy aging or of onset of age-related 

diseases and to capture independent and overlapping mechanistic processes driving the aging 

process. To date, the biological mechanisms underlying aging that have been proposed are the 

“hallmarks of aging” (López-Otín et al., 2013) and the “seven pillars of aging” (Kennedy et al., 

2014). 

Many research studies have described biomarkers of aging, which constitute tiny pieces 

encompassing the complex puzzle of the aging process. These can be molecular – DNA 

methylation, transcriptome-based, proteome-based, metabolome-based, N-glycans, telomere length 

– and phenotypical – blood measures, neuroimaging, frailty, muskoskeletal functions –.  

25. Molecular biomarkers of aging 

27. DNA methylation 

A promising biomarker of age is DNA methylation age (DNAm), also referred as epigenetic clock, 

because it applies to all sources of DNA (cells, tissues and organs) and to the whole age spectrum 

(from prenatal tissue to tissues of centenarians) (Horvath and Raj, 2018).  

So far, at least nine robust state-of-the-art estimators have been described: seven epigenetic clocks 

based on DNAm (Horvath, 2013; Horvath et al., 2018; Hannum et al., 2013), Weidner et al., 2014, 

Levine et al., 2018; Lu et al., 2019), and CpG sites (genes islands ELOVL2 and FHL2, Garagnani et 

al., 2012).  

Horvath and Hannum epigenetic clocks show high correlations with chronological age (r=0.96 for 

Horvath and r=0.91 for Hannum) and small, mean absolute deviations (MAD) from calendar age 

(3.6 and 4.9 years, respectively) in their corresponding validation cohorts. Weidner reported a 

MAD=3.34 years and R2=0.98 in the discovery cohort, and a MAD of 5.79, 5.52 and 4.02 years in 

the validation cohorts. Sample size for the three algorithms was of N=8000 for Horvath, N=656 for 

Hannum and N=151 for Weidner. The Horvath clock is a multi-tissue predictor based on 

methylation levels of 353 CpG sites on the Illumina 27k array, Hannum clock uses only 71 CpG 

sites from the Illumina 450k array and performs best using whole blood samples, and Weidner 

identifies 3 age-related CpGs by using bisulfite pyrosequencing (Horvath, 2013; Hannum et al., 

2013; Weidner et al., 2014; Jylhävä et al., 2017). Selection of CpG sites was done using elastic net, 

a penalized regression multivariate model, in Horvath and Hannum (yet, they only have 6 CpG sites 

in common), and a recursive feature elimination in Weidner. The most important characteristics 

about Horvath and Hannum clocks is their ability to predict all-cause mortality independent of 

classic risk factors (Chen et al., 2016). When it comes to aging phenotypes, Marioni and colleagues 

reported that age and sex-adjusted Horvath’s clock was associated with different measures of 

fitness, that is, epigenetic age acceleration was associated to a poorer cognitive performance, lower 
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grip strength, and poorer lung function at baseline (Marioni et al., 2015), though the baseline 

DNAm at 70 years did not predict the rate of change of these fitness measures. Other associations 

have been performed in blood, in which the Horvath and Hannum clocks correlate with certain 

blood cell types that also show age-related changes (Marioni et al., 2015; Chen et al., 2016). The 

fourth clock, Levine’s clock, named DNAm PhenoAge, represents an improvement of the previous 

epigenetic biomarkers for several reasons: i) 41/513 CpGs in DNAm PhenoAge were shared with 

the Horvath clock, 5 of which were also shared with the Hannum’s clock), ii) unlike the previous 

epigenetic clocks, which aimed to optimize the correlation of the CpGs predictors with 

chronological age, the CpGs in DNAm PhenoAge were tuned to predict a multi-system proxy of 

physiological dysregulation (phenotypic age). As a result, the CpGs with the highest effect sizes in 

the new clock did not correlate with chronological age, but instead were related to the difference 

between phenotypic and chronological age (i.e. divergence in the rate of aging).  

Several investigations have also analysed the association between the epigenetic age and diseases of 

aging: in Alzheimer’s disease (AD) patients, prefrontal cortex was associated with the presence of 

plaques, amyloid load and a decline in global cognitive functioning, episodic memory and working 

memory (Levine et al., 2015); in Parkinson’s disease (PD), DNAm is higher for PD patients when 

compared with controls, after adjusting for cell blood composition (Horvath and Ritz, 2015); in 

cancer, the Hannum clock presents increased epigenetic age in the tested tumor tissues (Hannum et 

al., 2013), whereas the Horvath’s clock shows increased DNAm only in certain cancer types 

(Horvath, 2013; Horvath, 2015); in osteoarthritis, the Horvath’s clock was associated with an 

increased DNAm in the joint of the affected cartilage, but not in the nearby bone or blood (Vidal-

Bralo et al., 2016). 

The two CpG sites considered epigenetic markers map in the gene islands of ELOVL2 and FHL2. 

Both CpG sites display high correlations with chronological age (r=0.92 for ELOVL2 and r=0.80 for 

FHL2) that correspond to a progressive increase in methylation with age. The discovery was made 

on 64 subjects with Illumina 450k array on whole blood DNA and validated with a cohort of 501 

subjects analysed with Sequenom’s EpiTYPER (Garagnani et al., 2012). A subsequent investigation 

examined the relationship between DNA methylation and the prospective development of breast 

cancer and colorectal cancer in 845 subjects (Durso et al., 2017). The authors found that the two 

most used epigenetic clocks (Horvath and Hannum) were unable to detect age acceleration effects 

in females blood that were later diagnosed of breast cancer, while ELOVL2 did; conversely, 

Horvath’s clock and FHL2 predictor were associated with colorectal cancer in males (Durso et al., 

2017). 

28. Transcriptomics-based 

Ferrucci and colleagues conducted a transcriptome-wide gene expression analysis in peripheral 

blood leukocyte samples of individuals aged 30-104 years (N=698), to determine which transcripts 

were most associated with advancing age in the InCHIANTI study (Ferrucci et al., 2000), and they 

found that using expression levels of only 6 genes (LRRN3, CD27, GRAP, CCR6, VAMP5 and 

CD248), they were able to distinguish between younger (age<65) and older subjects (age≥75) with 

high accuracy (Ferrucci et al., 2000). Later on, they studied the performance of a modified model in 

three populations and determined whether individuals predicted to be biologically younger than 

their chronological age had biochemical and functional measures consistent with a younger 

biological age: individuals with younger gene expression patterns had higher muscle strength and 

serum albumin, and lower interleukin (IL)-6 and blood urea concentrations relative to “biologically 
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older” individuals (OR=1.05, 1.13, 0.61, 0.98; p=3.2×10−2, 2.7×10−4, 1.1×10−2, 2.6×10−2 

respectively) (Holly et al., 2013).  

Another large study performed a whole-blood gene expression meta-analysis in 14,983 individuals 

and identified 1,497 genes that were differentially expressed with chronological age; from these 

significant genes, the age-associated ones were enriched for the presence of potentially functional 

CpG methylation sites in enhancer and insulator regions. The authors calculated the “transcriptomic 

age” from the gene expression profiles and showed that differences between transcriptomic age and 

chronological age were associated with processes characteristics of aging, such as blood pressure, 

cholesterol levels, fasting glucose, and BMI (Peters et al., 2015).  

In another study, Fleischer and colleagues generated a data set of genome-wide RNA-seq profiles of 

human dermal fibroblasts from people aged 1 to 94 years old to test whether signatures of aging are 

encoded within the transcriptome (Fleischer et al., 2018). With this purpose, they made use of an 

ensamble machine learning method that predicts age to a median error of 4 years, thus 

outperforming algorithms proposed by prior studies that predicted age from DNA methylation 

(Horvath, 2013; Hannum et al., 2013; Peters et al., 2015; Xu et al., 2015). 

A further investigation aimed to account for the inter-individual variability by performing gene 

expression analysis in T lymphocytes from 27 healthy monozygotic twins aged between 22 and 98 

years (Remondini et al., 2017). The authors obtained a transcriptomic signature of 125 genes, from 

which chronological age could be estimated. It should be noted the relevance of this work as this 

signature represents genes involved in normative aging, which expression changes independently of 

environmental factors. 

29. Proteome-based 

A recent study quantified 2,925 plasma proteins from 4,263 individuals of 18 to 95 years old and 

developed a new bioinformatics approach that uncovered marked waves of changes in the proteome 

in the 4th, 7th and 8th decades of life (Lehallier et al., 2019). Specifically, to determine whether the 

plasma proteome could predict biological age and serve as a “proteomic clock”, the authors used 

2,817 randomly selected subjects to fine-tune a predictive model that was tested on the remaining 

1,446 subjects. Indeed, they identified a sex-independent plasma proteomic clock consisting of 373 

proteins, thereby individuals who were predicted to be younger than their chronological age 

performed better on cognitive and physical tests. The work is promising, because the panel of 373 

proteins can be used to assess the relative health of an individual and to measure health span, and 

thus, despite it needs more large-scale validation, it can be considered analogous to epigenetic 

clocks based on DNA methylation patterns (Lehallier et al., 2019). 

A subsequent research, by Johnson and colleagues, systematically reviewed 36 different proteomics 

studies of proteomics that significantly changed with age (Johnson et al., 2020). They discovered 

1,128 proteins that had been reported by ≥2 or more analyses and 32 proteins that had been reported 

by ≥5 analyses, and proposed two proteomic aging clocks, a smaller panel and a larger panel 

comprised of proteins that were reported to change with age in plasma in ≥4 and ≥3 studies, 

respectively (Johnson et al., 2020). They achieved so by validating the plasma proteins with an 

online aging plasma proteome interface created by Lehallier and colleagues and by demonstrating 

that these protein panels are bona fide aging clocks that can accurately predict patient age in a large 

cohort of 3,301 individuals. The authors reported that 2/3 of 1,128 proteins changed with age in ≥2 

tissues/cell types, by which they suggested that, similar to the Horvath’s clock, a single proteomic 
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clock might be estimated with the use of machine learning algorithms in a multi-tissue human 

dataset (Johnson et al., 2020).  

30. Metabolome-based 

The clinical manifestations of many age-related diseases, such as T2D, AD, PD are well known. 

However, the complex interconnection of biomolecular pathways contributing to the aging process 

are just beginning to be unveiled. In other words, the few pathways described so far, such as DNA 

damage or accumulation of ROS, have been seen as independent processes, but most of the links 

among them are missing – one exception is the evidenced interconnection between DNA damage 

and metabolic control (Bai et al., 2011; Sahin et al., 2011). Examples of metabolic systems known 

to be implicated in aging are the insulin/IGF1 pathway, the mTOR, sirtuin and AMP-activated 

protein kinase (AMPK) pathways (Houtkooper et al., 2011). 

Several studies have aimed to identify metabolic signatures of aging. A key investigation that shed 

light on the functioning of metabolic processes in longevity combined 1H-NMR profiling and 

targeted mass spectrometry (MS) approaches in a human aging cohort comprised mostly of female 

centenarians, elderly, and young individuals, and showed that, with increasing age, targeted MS 

profiling of blood serum markedly decreases in tryptophan concentration, while an unique alteration 

of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype (Collino et 

al., 2013). The authors proposed that the overall lipidome changes reflect the centenarians unique 

capacity to adapt to the accumulative oxidative and chronic inflammatory conditions of their 

extreme aging phenotype. Yet, the observational nature of the study made unable to establish causal 

links between the inflammatory status, aging, and modulation of lipid metabolism (Collino et al., 

2013).  

In this line, as in other omics studies, the lack of multilevel integration of different data sets hinders 

the understanding of the metabolic decline during aging that predisposes to age-related diseases. A 

novel work systemically integrated in vivo phenotyping with gene expression, biochemical analysis 

and metabolomics in young and 2 year old mice. They analysed muscle and liver affected pathways, 

and found that alterations in glucose and fatty acid metabolism and redox homeostasis translated in 

decreased long chain acylcarnitines and increased fatty acid levels and a marked reduction in 

various amino acids in the plasma of aged mice. The authors concluded that such metabolites serve 

as biomarkers for aging and health span (Houtkooper et al., 2011). 

31. Glycomics 

As mentioned before, glycans are product of a complex pathway that involves hundreds of different 

proteins and are encoded in a complex dynamic network of hundreds of genes (Lauc and Zoldoš, 

2010). Unlike the genome, which remains constant in life, glycans are stable molecules that change 

with physiological and pathological conditions; thus, their relative quantification and analysis can 

contribute to the understanding of the underpinning processes of aging. 

A pioneering study conducted by Krištić and colleagues confirmed that glycans, indeed, are a novel 

biomarker of chronological and biological ages (Krištić et al., 2014). The authors analysed 24 

immunoglobulin (Ig)G plasma N-glycans using the UPLC technology in N=906 subjects from Vis 

island, N=915 subjects from Korčula island, N=2035 subjects from Orkney islands, and N=1261 

subjects from TwinsUK cohort. The researchers built a predictive model of age, termed 
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“GlycanAge”, by which 3 IgG N-glycans, FA2B, FA2G2, and FA2BG2, explaining 58% of 

variance, were found to be markers of age (Krištić et al., 2014). Equally important was the work 

performed by Vanhooren et al. (2008; 2010) with the use of the DSA-FACE technology in total 

blood serum, in which they described that the GlycoAge Test, obtained from the log ratio of P1/P6, 

is better than chronological age at estimating physiological age, and is higher in dementia and 

Cockayne syndrome than in healthy individuals.  

It is worthy to note that, as Levine et al. (2018) highlighted, the biological age should not be 

estimated by optimizing the correlation of the predictors with chronological age, and instead it 

should focus on time-dependent weights of these predictors. In this line, Krištić et al. (2014), 

similar to Levine and colleagues with DNAm PhenoAge, defined the GlycanAge = intercept + 

β1·GP6 – β2·GP62 – β3·GP14 + β4·GP15, separately in males and females, but estimated the 

difference in the biological age with chronological age by computing the delta median of the 

GlycanAge calculated both in 2003 and in 2013 in the same subjects – in the case of females 

(N=20, aged 38-50) the median delta GlycanAge was of 9.6 years, while for the males (N=6, aged 

43-49) was equal to 0.6.  

26. Phenotypical biomarkers of aging 

32. Composite-based 

Other investigations have searched for multiple biomarkers that combined produce a single 

biological age predictor, which can be advantageous in biological research, public health and 

clinical practice. 

An important study was conducted by Levine et al. (2013), in which he compared the predictive 

ability of 5 different statistical methods for estimating Biological Age using the cohort National 

Health and Nutrition Examination Survey III (NHANES III). The study comprised N=9,389 

subjects, aged 30-75 years, that within 18-year follow-up, 1,843 deaths were recorded. Results 

showed that the Klemera and Doubal method (KDM) (Klemera and Doubal, 2006) was the most 

reliable predictor of mortality and performed significantly better than chronological age; thus, it 

may represent a useful algorithm for future research studies (Levine, 2013). In this line, other 

research works have also employed this algorithm to estimate BA (Belsky et al., 2015).  

Belsky and colleagues used a dual approach to study Biological Age and the Pace of Aging in 

N=954 young adults from the Dunedin Study birth cohort. Biological Age was obtained cross-

sectionally using the KDM, while the Pace of Aging was measured longitudinally at 3 different 

points of time. Results evidenced that study members with older Biological Age had faster Pace of 

Aging over the preceding 12 years (Belsky et al., 2015). Authors suggested as strategy for future 

studies to use longitudinal repeated measures of biomarkers to track change of multiple tissues and 

organs, and that these studies will require new statistical methods to measure the Pace of Aging, 

likewise KDM currently calculates Biological Age. 

A totally different approach was used by Sebastiani and colleagues, thereby they measured 19 blood 

biomarkers, comprised of hematological measures, lipids profile, and markers of inflammation and 

frailty in 4,704 participants of the Long Life Family Study (LLFS), aged 30-110 years. Briefly, they 

used an agglomerative algorithm to group LLFS subjects into clusters, which yielded 26 biomarker 

signatures, and they subsequently correlated them with longitudinal changes in physiological 
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functions and incident risk of cancer, CVD, T2D, and mortality, with the end goal of testing 

whether these signatures were associated with differences in biological aging. One of those 

signatures was associated with lower mortality, morbidity and more healthier aging, while nine 

other signatures were associated with higher risks for mortality, morbidity and less successful 

aging. Seven of the signatures were replicated in an independent cohort (Sebastiani et al., 2017). 

To conclude with the overview of the current described molecular and phenotypical clocks, future 

studies need to take into consideration: i) longitudinal repeated measures to measure the Pace of 

Aging, ii) new statistical methods for estimating both Biological Age and the Pace of Aging, iii) 

young and old subjects, i.e. an age spectrum as wide as possible, iv) multiple biomarkers accounting 

for different organs and tissues of molecular and phenotypical nature. 

27. Motivation 

In this study, not only controls are used, but also prediabetics and diabetics. It can be noted that the 

inclusion of prediabetics and diabetics in the experiment does not fulfill the AFAR criteria for a 

biomarker to calculate the biological age, because “it must monitor a basic process that underlies 

the aging process, not the effects of disease”. Notwithstanding, many studies reflect that blood 

vessel damage, atherosclerosis, CVD and CVD-associated mortality affect a great majority of the 

elders (e.g. Yazdanyar and Newman, 2009). In accordance with this, Wang and Bennett (2012) 

recently proposed that “the effects of atherosclerosis are superimposed on normal aging of the 

underlying vessel”. We, therefore, considered a different strategy with regard to previous studies, 

that is, to test whether a mix biomarker that includes determinants of healthy and unhealthy aging 

(i.e. variables of atherosclerosis that overlap with aging) can estimate biological age, considering i) 

that pure controls do not exist and ii) that, in the elder population, the concept of healthy control is 

cumbersome, since when progressively approaching the age of the average life expectancy, even in 

absence of overt diseases, the likelihood that subclinical pathological processes are active is high. 

At the same time, the fact of not only considering controls, but also prediabetics and diabetics, 

increases the sample size, which, in turn, increases the power of the study. 

 

12. MATERIALS AND METHODS 

28. Materials 

The study used a total of 1146 individuals, comprising 177 Ctrl F, 108 Ctrl M, 185 PreDiab F, 121 

PreDiab M, 257 Diab F, and 298 Diab M. 39 phenotypical variables and 10 N-glycans were used, 

while HbA1c, Fasting Glucose, HOMA, and Insulin, which are variables that define the pre-T2D 

and T2D status, were excluded from the study, along with sex and age. The inclusion criteria 

considered individuals aged 20-85 years old, group- and sex-matched, and with an age balanced 

distribution among groups. 

29. Methods 

In this section, the methods utilized are as follows:  
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6. Univariate linear regression 

It determines the relationship between one independent variable (X) and one dependent variable 

(Y). It is handy when the relationship between 2 variables is not obvious to the naked eye. The 

disadvantage of univariate regression is that it leads to high bias error because the model is too 

simple (Oby Tayo, 2019). In this study, univariate regression models were used to test the 

association of age with each variable: Age ~ Variable. P-values were adjusted with Bonferroni 

correction for multiple testing at an α=0.05 and n=number of variables (n=55). 

7. Multiple linear regression 

It determines the relationship between several independent variables (X1 + X2 + Xj) and one 

dependent variable (Y). In this study, we tested the association of each phenotypical variable as 

function of sex, age and diabetes (Variable~Sex+Age+T2D status) in order to check for the partial 

effect of these 3 variables on the phenotypical variables.  

8. Penalization or shrinkage methods 

Unlike univariate regression, where there is high bias and low variance, multivariate regression 

models often have large variance, especially in situations of collinearity (note: the square of the bias 

and the variance are the 2 components of the MSE). In such models, the variance is large and the 

MSE is mainly determined by this variance. Penalization models impose a bias by applying a 

penalty to the regression coefficients (revised from Archarjee, 2013).  

1. Ridge regression 

It shrinks the regression coefficients by imposing a penalty on the sum of squares (L2 norm) of 

regression coefficients. In ridge, none of the estimated regression coefficients becomes exactly zero; 

therefore, all variables stay in the model (Archarjee, 2013).  

2. Lasso regression: 

It shrinks the regression coefficients by imposing a penalty on the sum of the absolute values of the 

regression coefficients (L1 norm) of regression coefficients. In LASSO, some of the estimated 

regression coefficients become exactly zero; therefore, only the selected variables stay in the model 

(Archarjee, 2013). 

3. Elastic net regression: 

It is a combination of ridge and LASSO because it shrinks the regression coefficients by imposing a 

penalty on the sum of squares (L2 norm) and a penalty on the sum of the absolute values of the 

regression coefficients (L1 norm) of regression coefficients (Archarjee, 2013). 

9. Machine learning methods: 

The goal of machine learning is to build a computer system that can learn from experience: 
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4. Random forest regression: 

It is made up of decision trees, each of which is built from bootstrap samples of the data set. In 

general, 2/3 parts of the samples (in this study 9/10) are used in the training set, and 1/3 (here 1/10) 

is left out (the so-called out-of-bag (OOB) samples). Variables used which decrease the prediction 

error obtain higher variable importance (Archarjee, 2013). 

5. Support vector regression: 

The goal of SVR is to find a function f(x)=wx+b that has at most ε deviation from the actually 

obtained response (Age) for all the predictors, and at the same time, minimizes the distance between 

predicted and observed values (Archarjee, 2013). 

10. Dimension-reduction methods: 

The goal is to transform the data from a high-dimensional space into a low-dimensional space, so 

that the latter retains meaningful properties of the original data:  

6. Principal component analysis (PCA):  

It is carried out on all original regressors, and each component (latent variable) is represented by a 

linear combination of the original variables (Archarjee, 2013). 

7. Two-way orthogonal partial least squares (O2PLS):  

See materials and methods of chapter 1. 

11. Klemera-Doubal method (KDM): 

Briefly, it takes information from m number of regression lines of chronological age regressed on m 

number of biomarkers (Klemera and Doubal, 2006). 

 

13. AIM  

As posed before, the research problem is based in that age is a risk factor for functional 

impairments, chronic diseases and mortality, and that the world’s population is aging at a fast speed, 

thus generating a major healthcare and socio-economic burden. Accordingly, the research questions 

to be addressed in this study are: 1) How can we better understand the underlying mechanisms of 

the aging process? 2) Which are the determinants of healthy and unhealthy aging? To shed light on 

this topic, the aim of this research is to identify a composite biomarker capable of estimating 

biological age. 
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14. RESULTS 

30. Univariate regression models: Age ~ Variable  

First, to understand which variables may be importantly related to the Age variable, we conducted  

univariate models for all clinical variables and N-glycans (Table 20).  

Table 20. Univariate regression models. P-value was adjusted for multiple comparisons with Benjamini-

Hochberg correction at α=0.05 

Variable ß coefficient p-value adj. p-value Pearson cor (R2) 

GP2 0.01204 2.99E-46 1.58378E-44 0.404099 

GP6 -0.00659 3.37E-45 8.92652E-44 -0.3997 

EGFR -0.68998 2.92E-32 5.15406E-31 -0.33925 

GP1 0.008343 2.08E-29 2.75043E-28 0.323951 

WHR 0.002344 2.22E-26 2.34839E-25 0.306679 

Azotemia 0.006782 1.09E-21 9.65249E-21 0.277368 

HbA1c 0.030458 1.23E-18 9.32151E-18 0.256222 

GP3 -0.00573 9E-18 5.9604E-17 -0.24987 

GP4 -0.004 1.14E-17 6.70608E-17 -0.24911 

Fasting glucose 1.090439 1.88E-16 9.95026E-16 0.239809 

Alkaline phosphatase 0.005926 2.28E-13 1.09884E-12 0.214277 

Creatinine 0.004929 1.63E-12 7.21594E-12 0.206599 

Triglycerides 0.010435 2.38E-12 9.7003E-12 0.205099 

Fibrinogen 1.460053 9.37E-12 3.54891E-11 0.199527 

CRP 0.007166 5.7E-10 2.01502E-09 0.181771 

Uric acid 0.004198 6.1E-09 2.02152E-08 0.170667 

RDW-CV 0.000984 1.63E-08 5.0929E-08 0.165833 

Ferritin 0.003007 7.35E-08 2.16303E-07 0.158169 

Telomere length -0.00591 1.99E-07 5.55367E-07 -0.15288 

GP8 -0.00373 3.07E-06 8.14523E-06 -0.13732 

HOMA 0.003507 4.45E-06 1.12292E-05 0.13509 

Lymphocytes -0.00333 0.000147 0.000355207 -0.11188 

Transferrin -0.44121 0.000163 0.000376039 -0.11114 

GGT 0.003923 0.000334 0.000736812 0.105797 

MCV 0.049961 0.000459 0.000973306 0.10333 

GP10 -0.00326 0.000527 0.001074489 -0.10225 

BMI 0.040743 0.001718 0.00337147 0.092515 

Apo B 0.223262 0.002726 0.005159625 0.088456 

Red cells -0.00346 0.003931 0.007184274 -0.08512 

GP9 0.003783 0.004745 0.008383449 0.083361 

MPV 0.006914 0.007817 0.013364789 0.078536 

GP5 -0.00102 0.014079 0.023318579 -0.07251 

Hemoglobin -0.0085 0.015148 0.024328113 -0.07173 
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Cholesterol 0.227759 0.027009 0.042102768 0.065325 

HDL -0.08464 0.035829 0.054255352 -0.06201 

Neutrophils 0.001929 0.045682 0.067254532 0.059043 

ALT -0.00149 0.052744 0.07555229 -0.05723 

Platelets -0.30588 0.058009 0.080906828 -0.05601 

Eosinophils 0.002526 0.071087 0.09660524 0.053337 

AST 0.001594 0.084948 0.109811313 0.05091 

SDMA -0.00126 0.083844 0.109811313 -0.05109 

Total bilirubin 0.001185 0.147456 0.186074961 0.042818 

PAI 0.032517 0.265923 0.327765146 0.03289 

LDL 0.081479 0.342078 0.412048548 0.02809 

Total protein 0.001047 0.43205 0.508859405 0.023231 

TAFI 0.034632 0.490267 0.564872475 0.020399 

Monocytes 0.000538 0.501263 0.565253754 0.019885 

White cells -0.00273 0.530401 0.573699376 -0.01855 

ADMA 0.000446 0.521458 0.573699376 0.018957 

Apo A1 -0.0527 0.554935 0.588230573 -0.01746 

Insulin 0.000512 0.757608 0.787317775 0.009126 

GP7 0.00016 0.81052 0.826106591 0.00709 

Total iron -0.00044 0.995338 0.995338448 -0.00017 

 

Table 20 shows that variables most significantly correlated with age (R2≥0.1, p<0.05) are GP2, 

GP6, EGFR, GP1, WHR, Azotemia, HbA1c, GP3, GP4, Fasting glucose, Alkaline Phosphatase, 

Creatinine, Triglycerides, Fibrinogen, CRP, Uric Acid, RDW-CVM, Ferritin, Telomere Length, 

GP8, HOMA, Lymphocytes, Transferrin, GGT, MCV, GP10; and variables with larger effect sizes 

are Fibrinogen (ß=1.46), Fasting glucose (ß=1.09), EGFR (ß=-0.69) and Transferrin (ß=-0.44).  

31. Statistical models 

Firstly, different statistical methods were tested, one based on a score, and five other methods based 

on 49 standardized predictors (39 phenotypical, 10 N-glycans). 

12. Biological Age I: Score-Based 

On the one hand, 7 O2PLS models were conducted, in which we integrated Glycomics (10 

variables) with Phenomics (39), Lipids (8), Liver (8), Kidney (8), Iron (3), Coagulation (3), and 

Blood (8). For each model, the number of joint and specific PCs were estimated with cross-

validation. Then, the 46 PCs obtained in the 7 models were regressed to chronological age using an 

elastic net model, which selected 34 PCs. 

On the other hand, a PCA was performed on the 49 predictors. Then, they were regressed to 

chronological age using an elastic net model, which selected all 49 PCs. 
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13. Biological Age II: Based on 49 predictors 

Secondly, three penalized models were employed, namely ridge regression (RR), lasso (LASSO), 

and elastic net (EN), and two machine learning algorithms, that is random forest (RF) and support 

vector machine (SVM). Each one of the regression models were applied on 49 independent 

variables and Age as response variable on the training set (using 9/10 folds). For that, a grid search 

was used to estimate the hyperparameters of the model with cross-validation (Table 21), using 

glmnet and caret packages from R. The models were computed using the hyperparameters and 

compared through metrics of performance (Table 22). 

Table 21. Best combination of hyperparameters calculated with cross-validation 

 

 

 

 

 

 

 

 

 

 

Overall, the models did not generalize well (they were fitted to non-predictive noise in the training 

set), specially the machine learning algorithms RF and SVM, which overfit, as evidenced by the 

high R2 in the training set and the low R2 (low accuracy) in the test set. The methods that best 

performed were O2PLS+EN and PCA+EN, specially the former displays the highest accuracy and 

lowest error in the test set; therefore, the two of them were chosen over the other methods for the 

downstream analysis. 

Table 22. Metrics of model performance 

Method Metrics of model performance 

R2 training set R2 test set MSEP test set 

O2PLS+EN 0.44 0.31 93.85 

PCA+EN 0.52 0.17 35662.2 

RR 0.50 0.08 25535.62 

LASSO 0.52 0.07 47782.64 

EN 0.54 0.07 49126.24 

RF 0.96 0.20 134.62 

SVM 0.74 #N/D (sd=0) 842.20 

 

Algorithm Hyperparameters 

O2PLS EN α=0.9 

λ(1SD)=0 

PCA EN α=0 

λ(1SD)=0.7 

RR α=0 

λ(1SD)=2.98 

LASSO α=1 

λ(1SD)=0.22 

EN α=0.4 

λ(1SD)=0.1 

RF mtry=49 

(OOB=56.44) 

ntree=500 

SVM γ=0.001 

cost=100 
(polynomial kernel) 
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32. Association between “Biological Age” and “Chronological Age”, separately in 

sexes:  

Thirdly, the association between the biological ages obtained with elastic net of O2PLS and elastic 

net of PCA (the models displaying the best performances) and chronological age was tested, and the 

KDM on them. Additionally, to have a control, the KDM was applied on the original 49 predictor 

variables. Eventually, the association between biological and chronological ages of the 3 KDM 

models (i.e. O2PLS+EN+KDM; PCA+EN+KDM; KDM) was compared with the O2PLS+EN and 

PCA+EN models. The association was tested separately in males and females and separately in 

groups (Table 23). In the three groups (controls, prediabetics, and diabetics), the raw KDM on the 

49 predictors best predicted chronological age; thus, KDM was taken for the downstream analysis. 

Table 23. Summary output of the linear model: Predicted Age = Biological Age ~ Chronological Age 

  

Group Model Sex beta p-value R2 

Controls O2PLS+EN Female 0.49 <2e-16 0.58 

Male 0.38 5.318e-14 0.44 

PCA+EN Female 0.56 <2e-16 0.65 

Male 0.47 6.84e-16 0.49 

KDM Female 1.07 <2e-16 0.80 

Male 0.87 <2e-16 0.68 

O2PLS+EN+KDM Female 1.11 <2e-16 0.70 

Male 0.83 <2e-16 0.56 

PCA+EN+KDM Female 1.53 2.67e-07 0.15 

Male 0.76 0.07309 0.03 

Prediabetics O2PLS+EN Female 0.44 <2e-16 0.44 

Male 0.42 6.38e-14 0.42 

PCA+EN Female 0.53 <2e-16 0.58 

Male 0.47 <2e-16 0.48 

KDM Female 1.03 <2e-16 0.73 

Male 0.91 <2e-16 0.70 

O2PLS+EN+KDM Female 1.07 <2e-16 0.62 

Male 0.83 <2e-16 0.53 

PCA+EN+KDM Female 1.20 0.0001 0.08 

Male 0.75 0.07694 0.02 

Diabetics O2PLS+EN Female 0.32 3.855e-10 0.16 

Male 0.32 2.264e-15 0.21 

PCA+EN Female 0.38 3.701e-16 0.25 

Male 0.38 <2e-16 0.30 

KDM Female 0.81 <2e-16 0.40 

Male 0.82 <2e-16 0.48 

O2PLS+EN+KDM Female 0.69 1.416e-13 0.21 

Male 0.69 <2e-16 0.28 

PCA+EN+KDM Female 1.19 0.0001082 0.08 

Male 0.75 0.076 0.02 
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33. Association between “Biological Age” with disease (T2D) separately in sexes:  

A multinomial logistic model was calculated to test the association of the Biological Age with T2D. 

Ctrl was the reference group to which “PreDiab” and “Diab” levels were compared in each sex 

(Table 24). 

The models output indicates that Biological Age of the KDM can significantly discriminate Ctrl F 

from PreDiab F and Diab F, and Ctrl M from PreDiab M and Diab M. 

Table 24. Summary output of the multinomial logistic model: Group (Ctrl vs PreDiab/Diab) ~ Biological Age 

 

 

 

 

 

1. Age acceleration in respect to controls calculated for both prediabetics and diabetics, 

separately in males and females, using the training data 

 

Figure 74. Age acceleration among controls, prediabetics, and diabetics in both sexes 

In order to establish whether prediabetics and diabetics had an accelerated aging compared with 

controls, the delta age (also called Age Acceleration (AgeAccel)) was estimated by calculating the 

difference between “Biological Age” and “Predicted Age” (defined as the association between 

“Biological Age” and chronological age) and plotted (Figure 74). The mean values were as 

follows: 0 Ctrl F, 0 Ctrl M, 1.97 PreDiab F, 1.67 PreDiab M, 3.79 Diab F, 3.25 Diab M.  

Pairwise comparisons using Wilcoxon’s rank sum test revealed no statistical differences between 

sexes in controls, prediabetics and diabetics (Table 25). It is interesting to note that, while control 

females show a younger trend than control males, this trend is reversed in prediabetics and 

Model Group OR  p-value CI (95%) 

KDM Diab F 1.09 5.71e-19 1.07-1.12 

PreDiab F 1.03 3.60e-4  1.01-1.05 

Diab M 1.10 5.45e-14 1.07-1.13 

PreDiab M 1.05  1.02e-3 1.02-1.07 
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diabetics, so that despite there are no statistical differences, females are slightly biologically older 

than males, as the above-mentioned means highlight. It can also be observed that there are statistical 

differences, though small, between prediabetic females and control females and males, while 

prediabetic males showed no differences with controls.  

Table 25. Pairwise comparisons using Wilcoxon’s rank sum test in KDM. P-value adjustment method: 

Benjamini-Hochberg. P<0.05 (*), p<0.01 (**), p<0.001 (***) at α=0.05. 

34. Associations with continuous traits or N-glycans: Trait/N-glycan ~ 

Phenotypical Age + Age + Sex + Group 

Finally, we aimed to measure the association between continuous clinical traits or N-glycans with 

Biological Age, Age, Sex, and Group with multiple linear regression. Beta values and p-values for 

N-glycans and clinical traits are shown in Table 26 and Table 27. It can be noted that only GP1, 

monocytes and RDW-CV were significantly associated with biological age, independently of 

chronological age, sex and disease status (p=0, 0.007, 5.31E-07, respectively). No variables were 

significantly associated with disease status independently of biological and chronological ages and 

sex. Platelets and Lymphocytes were significantly associated with Sex, independently of biological 

and chronological ages and disease status (p=1.37E-36 and 1.69E-17, respectively). No variables 

were significantly associated with chronological age, independently of biological age, sex and 

disease status. 

Table 26. Association between continuous N-glycans species and Biological Age, Chronological Age, Sex 

and Disease Status: Trait ~ Biological Age + Chronological Age + Disease Status 

 

 Ctrl F Ctrl M  PreDiab F  PreDiab M Diab F 

Ctrl M 0.95     

PreDiab F 0.03(*) 0.04 (*)    

PreDiab M 0.06 0.08 0.67   

Diab F 5.3e-05 (***) 0.0002 (***) 0.08 0.036 (*)  

Diab M 9.2e-05 (***) 0.0005 (***) 0.19 0.08   0.57 

Variable ß 

BioAge 

p.value 

BioAge 

ß 

Age 

p.value  

Age 

ß 

Sex 

p.value 

Sex 

ß  

Group 

p.value 

Group 

GP1 1 0 -9.2E-17 0.159165 3.96E-16 0.62077 5.91E-16 0.263415 

GP2 1.72E-17 2.61E-10 5.02E-18 0.116252 1.68E-16 2.03E-05 1 0 

GP3 6.8E-16 9.4E-124 1 0 2.64E-16 0.467184 3.94E-16 0.09964 

GP4 0.016255 3.46E-49 -0.00679 5.04E-08 -0.0095 0.532243 -0.03354 0.000852 

GP5 0.021727 1.67E-73 -0.00992 6.89E-14 -0.05735 0.000374 0.012241 0.247958 

GP6 -0.00938 2.32E-21 0.005436 2.32E-06 0.06289 8.88E-06 -0.07249 1.42E-14 

GP7 -0.00789 6.48E-29 0.004164 3.42E-07 0.056447 2.04E-08 -0.01538 0.019611 

GP8 -0.00529 7.16E-16 0.003622 2.43E-06 -0.00042 0.964004 0.034274 4.07E-08 

GP9 -0.01466 5.8E-117 0.007028 3.19E-25 0.057524 2.53E-12 0.027785 2.48E-07 

GP10 -0.00812 2.38E-14 0.007481 2.31E-09 0.000314 0.983589 0.01116 0.267888 
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Table 27. Association between continuous clinical traits and Biological Age, Chronological Age, Sex and 

Disease Status: Trait ~ Biological Age + Chronological Age + Disease Status 

Variable ß 

BioAge 

p.value 

BioAge 

ß 

Age 

p.value  

Age 

ß 

Sex 

p.value 

Sex 

ß  

Group 

p.value 

Group 

BMI -0.00255 0.036798 -0.00178 0.215943 -0.18477 3.23E-24 0.036119 0.002062 

WHR 0.012832 2.98E-10 -0.0091 0.000147 0.288206 8.78E-22 -0.02197 0.256802 

Fasting Glucose -0.00293 0.041663 -0.00015 0.930601 -0.21333 2.21E-23 0.021797 0.113734 

HbA1c 0.193287 1.84E-22 -0.18753 8.05E-16 -0.55755 0.048287 0.929867 6.64E-07 

Total Cholesterol 0.003127 6.3E-30 -0.00126 7.2E-05 0.074678 1.13E-70 0.015053 5.42E-09 

HDL 0.665669 2.5E-05 -0.65931 0.000413 3.521481 0.124387 38.97394 1.1E-113 

EGFR 0.014592 0.000471 -0.01388 0.004892 -0.10381 0.086912 1.061765 6.3E-119 

Fibrinogen 0.66555 3.58E-05 -0.27081 0.153788 -18.7322 2.82E-15 -5.27745 0.00063 

PAI1 -0.47351 1.11E-15 0.438241 2.88E-10 -8.99828 4.35E-25 -1.64194 0.003341 

TAFI -1.40451 6.09E-63 0.694136 1.36E-13 7.794943 1.31E-11 -1.17456 0.117929 

Total Bilirubin 3.836766 5.52E-32 -2.33836 5.18E-10 -31.6828 8.65E-12 2.431957 0.421341 

LDL 0.15311 0.000843 -0.09494 0.07966 0.10186 0.878472 -1.03515 0.018553 

Apo A1 0.393555 5.62E-07 -0.26769 0.003881 -5.00611 1.21E-05 -2.54188 0.000731 

Apo B -0.00586 3.67E-06 0.007381 8.49E-07 0.149039 1.24E-15 -0.03338 0.005847 

Total Iron 0.295841 0.029586 -0.10339 0.52012 -9.25305 3.27E-06 -4.33327 0.000918 

Transferrin -0.65591 1.45E-06 0.715181 8.89E-06 -18.1319 1.97E-19 -3.94606 0.002448 

Total Protein 0.617433 2.45E-07 -0.39015 0.005629 -4.40632 0.011037 -0.54345 0.633859 

White Cells -0.4812 6.42E-05 0.402626 0.004638 6.573219 0.000177 1.36713 0.235204 

Red Cells -0.85973 2.72E-06 0.162311 0.451898 -3.44471 0.194664 7.921404 6.66E-06 

Hemoglobin 0.00825 9.28E-05 -0.00806 0.00123 0.085982 0.005079 0.017416 0.388358 

MCV 0.043556 2.11E-10 -0.0547 1.66E-11 -0.00165 0.986661 0.292566 7.92E-06 

Platelets -0.00338 0.060643 -0.00068 0.749749 0.344655 1.37E-36 -0.00544 0.752802 

MPV -0.01324 0.005447 0.00132 0.814402 1.386223 1.37E-75 0.074143 0.104381 

Neutrophils 0.01328 0.557997 0.05391 0.044669 0.619151 0.060944 -0.4569 0.035945 

Lymphocytes 0.041548 0.866223 -0.1939 0.506538 -31.1282 1.69E-17 -2.1346 0.367369 

Eosinophils 0.004856 0.242841 0.002843 0.563229 0.059328 0.327139 -0.03846 0.335169 

Monocytes 0.004172 0.007286 -0.00269 0.142703 -0.0217 0.33705 0.010162 0.495213 

Creatinine -0.00538 9.37E-05 0.002004 0.21718 -0.07518 0.000177 -0.00078 0.95251 

AST 0.0007 0.75515 0.000777 0.769745 0.059802 0.067417 0.029153 0.175994 

HOMA -0.00047 0.713474 0.002689 0.074996 0.067154 0.000312 -0.05542 6.62E-06 

ALT 0.016365 1.35E-69 -0.01139 1.32E-27 0.178272 3.21E-42 0.008913 0.27968 

Triglycerides 0.004887 0.00064 -0.00214 0.205616 0.089646 1.76E-05 -0.05405 8.49E-05 

Insulin 0.009862 5.77E-19 -0.01012 9.25E-15 -0.00753 0.634585 0.118851 2.18E-28 

CRP 0.003668 0.001948 -0.00718 3.31E-07 0.07932 4.49E-06 0.050828 8.15E-06 

GGT 0.030034 3.74E-42 -0.02223 2.28E-18 0.023936 0.435827 0.094908 3.11E-06 

Ferritin 0.021727 1.11E-16 -0.023 9.94E-14 -0.04607 0.219681 0.019387 0.433187 

Alkaline Phosphatase 0.025082 1.27E-50 -0.01801 5.82E-21 -0.11135 1.63E-06 0.007909 0.603337 

Azotemia 0.012378 7.71E-13 -0.00951 2.77E-06 0.080524 0.001225 0.024529 0.134333 
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Uric Acid 0.005185 3.64E-10 -0.00272 0.00516 0.11699 9.12E-22 0.01544 0.049822 

Telomere Length 0.014925 4.11E-33 -0.00833 6.35E-09 -0.07923 6.65E-06 -0.02107 0.067996 

SDMA 0.011547 2.13E-26 -0.00393 0.001714 0.033996 0.02731 -0.02745 0.00688 

ADMA 0.013767 4.69E-39 -0.00948 5.35E-15 0.137505 5.12E-20 -0.0137 0.157582 

RDW-CV -0.00904 5.31E-07 0.003371 0.111945 -0.02992 0.251613 -0.02516 0.143508 

 

 

15. DISCUSSION 

The increase in geriatric population around the globe highlights the need for better understanding 

the processes underlying healthy and unhealthy aging, as age is a major risk factor for functional 

impairments, chronic diseases and mortality. In this context, the biomarkers of aging have come 

into play. There are two main ways of estimating biological age: 1) the traditional estimation of 

mortality curves (Moskalev, 2020) and 2) the estimation of chronological age (Horvath, 2013). The 

former has the disadvantage that it cannot be used to measure functional decline, predict morbidity 

onset and life expectancy, while the latter evidences the unsolved “paradox of biomarkers”, which 

uses a set of biological predictors to predict chronological age with linear regression, therefore 

resulting in biological age equal to chronological age (Hochschild, 1994). In addition, so far none of 

the studies carried out with the goal of defining new biomarkers of age has fulfilled the AFAR 

criteria (Johnson, 2006).  

In this study, we made use of a novel approach: 39 clinical predictors and 10 N-glycans were used 

as biological predictors for chronological age, considering three groups of individuals, that is, 

controls, prediabetics, and diabetics, and both sexes. We tested different models, and the Klemera-

Doubal one was the best in terms of performance. We applied this method on the 49 predictors, 

from which we derived our “biological age”. The calculated biological age was then associated with 

chronological age, T2D status, and with continuous clinical and N-glycan traits. Eventually, age 

acceleration was computed for each one of the six groups. Results showed that biological age was 

significantly associated with chronological age in the three groups in both sexes, that biological age 

can significantly predict (non-)prediabetic and (non-)diabetic status, and that biological age is 

significantly associated with GP1, monocytes and RDW-CV, independently of chronological age, 

sex and (non-)pre-/T2D status. Furthermore, results confirmed that prediabetic females are 

significantly older than control males and control females, and that diabetics are not significantly 

different than prediabetics, but they are significantly biologically older than controls, in both sexes.  

Summarizing, we have identified the biological age in individuals with diverse phenotypes, that is, 

healthy, dysmetabolic, prediabetic, and diabetic, by using the chronological ages and clinical and N-

glycan predictors in all of them at once, therefore without fulfilling the AFAR criterium by which a 

biomarker of age “must monitor a basic process that underlies the aging process, not the effects of 

disease”. The underlying reason for such design is that controls, with age, become inevitably less 

healthy, and especially around 60 years of age and above, it is difficult to find totally healthy 

controls, or, in other words, without subclinical or clinical symptoms of age-related diseases. 

Indeed, at least two review articles support this hypothesis. The first, from Wang and Bennett 

(2012), who stated that “the effects of atherosclerosis are superimposed on normal aging of the 

underlying vessel”. The second, from Franceschi et al. (2018), claims that precise boundaries 
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between aging and age-related diseases or geriatric syndromes do not exist, but instead they are a 

continuum.  

Unfortunately, our design makes it incomparable with findings of previous studies. Besides, most of 

the aging biomarkers identified are epigenetic clocks (Jylhävä et al., 2017). Nonetheless, at least 

two previous studies also estimated a composite-based biomarker of age, and another one who 

estimated a glycomics-based biomarker. Levine (2013) focused on the methodology and compared 

different statistical methods, reaching the conclusion that KDM was the best, the same that in our 

study, though here we compared other statistical methods. In turn, Belsky et al. (2015) used 10 

biomarkers for estimating biological age (Glycated haemoglobin, Forced expiratory volume in one 

second (FEV1), Blood pressure (systolic), Total cholesterol, C-reactive protein, Creatinine, Urea 

nitrogen, Albumin, Alkaline phosphatase, and Cytomegalovirus IgG.) of each Dunedin Study 

member’s at age 38, that is, 7 of our 49 variables, with the KDM, and one of the conclusions they 

draw is that biological age can provide a summary of accumulated aging in cases when only cross-

sectional data are available (Belsky et al. (2015)), a conclusion that we also draw in our study. 

Eventually, Krištić et al. (2014) used 24 UPLC N-glycans and estimated both chronological and 

biological ages by building predictive models. They demonstrated that 3 N-glycans (FA2B, FA2G2, 

FA2BG2, which correspond to GP2, GP6, and GP7 in DSA-FACE glycans, respectively) changed 

considerably with age; from these, GP2 and GP6 are the top 2 out of 49 variables most significantly 

associated with chronological age (Table 20) and biological age (Table 27), while GP7, in our 

study, has a Pearson’s correlation of 0.007 and p=0.8 (Table 20). 

Together, our findings constitute proof of principle for the measures of biological age in individuals 

with age-related diseases. Here we identify several future directions that can build on this proof-of-

principle for estimating accelerated age from younger to older ages. 

First, our analysis was limited to a single cohort, and one that lacked ethnic minority populations. 

Replication in other cohorts is needed, and replication using a larger number of younger and older 

healthy controls, younger and older less healthy controls, prediabetics and diabetics can also 

provide additional perspectives. Larger samples can also help understanding the less common 

phenotypes.  

Second, DSA-FACE N-glycans are low-dimensional and have the disadvantage that sialic acids are 

cut-off from the sugar, which blurs the interpretation of results. Further studies are needed that use 

N-glycans obtained with other technologies which include sialic acids and produce more N-glycan 

species, and not only from whole plasma glycome, but also from IgG glycome, which is especially 

relevant for understanding the role of inflamm-aging and metaflammation played by N-glycans. 

Third, the nature of the cross-sectional makes available just a snapshot of the phenotype. Therefore, 

further studies comprising multiple biomarkers sampled at different points of time are required to 

measure the pace of aging, since summarizing the data obtained at one single point cannot measure 

the functional decline nor predict the morbidity onset and life expectancy.  

Within the bounds of these limitations, the implication of the present work is that it is possible to 

identify a composite based biomarker of aging that not only considers pure healthy controls, but 

also prediabetics and diabetics. 
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CONCLUSIONS 

In this thesis, we aimed to conduct an in-depth analysis of metabolic phenotype by studying age- 

and sex-related features of type 2 diabetes. On the one hand, it was first tested whether 10 N-

glycans could predict better the diabetic status than HbA1c, and results showed that N-glycans 

cannot compete with the gold standard HbA1c. Secondly, an extensive characterization of the 

T2D/(dys)metabolic/aging phenotype was performed. Based on the integration of a set or subsets 

(part I and part II, respectively) of 44 clinical variables and 10 N-glycans, it can be concluded that:  

i. N-glycans GP3, GP4, GP6 are negatively associated with age in the three groups of 

individuals, that is controls, prediabetics, and diabetics, in both sexes. 

ii. N-glycans GP8 and GP10 are positively associated with a metabolism dysregulation, as 

revealed by prediabetic males and diabetics. 

iii. The observed N-glycans in control males are mainly correlated with coagulation and blood 

parameters; in control and prediabetic females, with age, alkaline phosphatase and lipid 

parameters; in prediabetic males, with coagulation parameters; and in diabetics, with 

diverse parameters from the phenomics data set, including lipid, coagulation, iron, blood 

parameters and factors used for the T2D diagnosis. 

iv. The decreasing intra-correlations between pairs of joint PCs from controls (R2=0.7%), 

prediabetics (R2=0.6%), and diabetics (R2=0.5%) in the integration phenomics/glycomics 

(part I) underlines the heterogeneity and/or complexity of disease and age, or, in other 

words, the higher homogeneity of controls. 

v. Males and females present different biological dynamics, as noted by the biochemical and 

glycomics data, especially at 20-44 and at 45-55 years of age, while at 56-70 and 71-85 

tend to progressively converge. 

vi. Control, prediabetic, and diabetic individuals, generally, present different quantities of 

biochemical and glycomics parameters. 

vii. Inter-correlations between individual joint PCs scores (part II) show that in prediabetics and 

diabetics N-glycans are generally the same when integrated with different endophenotypes, 

instead of revealing a specific signature for each endophenotype. 

On the other hand, we computed a composite biomarker of aging, by building on a predictive model 

of chronological age composed of 49 predictors, based on the Klemera-Doubal method. Over recent 

years, this method has become increasingly popular for measuring biological age. In this study, this 

approach was used on 1146 individuals, including controls, prediabetics, and diabetics of both 

sexes. On the whole, it demonstrated that biological age: a) is significantly associated with 

chronological age in the three groups in both sexes, b) can significantly predict (non-)prediabetic 

and (non-)diabetic status, c) is significantly associated with GP1, monocytes and RDW-CV, 

independently of chronological age, sex and (non-)pre-/T2D status. In addition, age acceleration, 

computed as the difference between biological age and predicted age, confirmed that prediabetic 

females are significantly older than control males and control females, and that diabetics are not 

significantly different than prediabetics, but they are significantly biologically older than controls, 

in both sexes. 
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Based on these conclusions, to better understand the implications of these results, future studies 

should include longitudinal sampling of clinical parameters and N-glycans species, glycomics 

technologies that are higher dimensional and that include sialic acids, larger cohorts, and cohorts of 

ethnic minorities. In particular, repetitive measures as well as mortality data could contribute to 

answer the question of whether N-glycans change over the course of preclinical (that is, insulin 

resistance and impaired insulin secretion) to clinical diagnoses (obesity and/or T2D, T2D 

complications, metabolic syndrome). Further research will be needed to address this question. 

It is important to emphasize that this work has provided a deeper understanding of N-glycan 

biomarkers and has confirmed the most important clinical factors involved both in aging and 

T2D/metabolism. 
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