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The Internet of Things is in a continuous evolution thanks to new technologies that open
the doors to various applications. While the structure of the IoT network remains the same
over the years, specifically composed of a server, gateways, and nodes, their tasks change
according to new challenges: the use of multimedia information and the large amount of data
created by millions of devices forces the system to move from the cloud-centric approach,
where most of the processing is delegated to the server, to the thing-centric approach, where
also the node partially processes the information. Computing at the sensor node level solves
well-known problems like scalability and privacy concerns. However, this study’s primary
focus is on the impact that bringing the computation at the edge has on energy efficiency:
continuous transmission of multimedia data drains the battery, and processing information
on the node reduces the amount of data transferred to event-based alerts. Nevertheless, most
of the foundational services for IoT applications are provided by Artificial Intelligence. Due
to this class of algorithms’ complexity, they are always delegated to GPUs or devices with
an energy budget that is many orders of magnitude more than an IoT node, which should
be energy neutral and powered only by a tiny energy harvester. Enabling AI on IoT nodes
is a challenging task. In this thesis, we tackled it from two sides. From the software side,
this work explores the use of the most recent compression techniques for Neural Networks,
enabling the reduction of state-of-the-art networks to make them fit in microcontroller sys-
tems. From the hardware side, this thesis focuses on hardware selection. It compares the
latest AI algorithms’ efficiency running on both well-established microcontrollers for Digi-
tal Signal Processing and state-of-the-art processors for machine learning applications. An
additional contribution towards energy-efficient AI at the edge is the exploration of custom
hardware for acquisition and pre-processing of sound data from the environment, analyz-
ing the data’s quality for further classification. Moreover, the combination of software and
hardware co-design is the key point of this thesis to bring AI at the very edge of the IoT
network. In the first chapter, the topic of near-sensor processing and artificial intelligence
is discussed. Then, the thesis presents application scenarios with various multimedia sen-
sors, and it demonstrates the capability of neural networks in these scenarios. Therefore, in
chapter 3 and 4, this study explores different compression techniques to port complex neural
networks on microcontrollers. Finally, chapter 4 and 5 describe the importance of hardware
selection in the processing unit and sensors following the in-sensor processing paradigm.
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Chapter 1

Context Information Extraction for
Smart Cities

1.1 Internet of Things and Smart Cities

1.1.1 Background

The Internet of Things (IoT) is a multidisciplinary area based on the vision of a society
where many of the objects that surround us will be networked and connected to the Internet
offering innovative and efficient services [7]. The IoT initiated with RFID technology, which
is increasingly used in logistics, pharmaceutical production, retail, and diverse industries [6].
The emerging wireless sensory technologies have significantly extended the functionalities
of devices embedding them and therefore, the original concept of IoT has been extended
soon to ambient intelligence and autonomous control. To date, not only RFID and NFC,
but a number of technologies are involved in IoT, such as wireless sensor networks (WSNs),
barcodes, intelligent sensing, low energy wireless communications, cloud computing [60, 42,
18].

This has clear consequences on the technology market. The McKinsey’s report on the
global economic impact of IoT [53] predicts that this impact in 2025 would be in the range
of $2.7 to $6.2 trillion. These expectations imply the tremendous and steep growth of the
IoT services, their generated data, and consequently their related market in the years ahead
[61]. IoT opens great opportunities by enabling the collection of data from the environment,
people, and daily life scenarios and the actuation of feedback based on real-time data pro-
cessing [19].Thus, it affects a wide range of application fields, spanning from agriculture to
automotive, smart cities, consumer devices, retail, manufacturing, supply chain, and many
others [4]. Waste management can be more efficient by sensing the actual demand, and
pricing based on actual consumption habits, thus encouraging virtuous behavior. Occupant
recognition permits to adjust lighting, sound, air conditioning/heating so that occupants do
not need to “push any button”. Similarly, distributed audition permits to develop situational
awareness, build real-time noise urban maps to mitigate noise pollution at critical times, and
localize noise events for safety assurance. Living Labs are appearing as an emerging concept
in which companies, public authorities, and citizens work together to create, prototype, vali-
date and test new services, businesses, markets, and technologies in real-life contexts, such as
cities, city regions, rural areas, and collaborative virtual networks between public and private
players [65, 13].

1.1.2 IoT Infrastructure

Figure 1.2 shows that the IoT is structured into three tiers of devices. At the bottom, IoT
nodes perform sensing and interact with the physical world. To assure scalability and ubiq-
uitous network access, gateways collect, protect (under users’ control) and route data from
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FIGURE 1.1: Timeline of IoT evolution [49, 61]

several and physically proximal IoT nodes, and route it to servers. The latter perform data
aggregation and knowledge extraction and deliver physically enhanced cloud services. Some
additional intermediate levels of aggregation might be needed, depending on the amount of
data generated, the area covered by a sub-network, and the density of IoT nodes, among the
others.

Due to their large number and ubiquity, IoT nodes need to be untethered and hence their
power budget is very small, and is as low as sub-mW for miniaturized systems powered by
energy harvesters. Due to their larger size and lower density, concentrators are expected to
be mostly tethered, and hence their power can be much larger (e.g., in the order of Watts). A
server blade dissipates a power that is two orders of magnitude larger.

1.1.3 Technology Challenges

The IoT provides many new opportunities to the industry and end-user in many application
fields. Currently, however, the IoT faces many challenges in the fields of privacy, ethics,
business model, global cooperation, and standards [95]. For what concerns technology issues,
the two main points are:

• Energy self-sustainability: Energy will be a major technological challenge in the next
five to 10 years; systems should be able to harvest energy from the environment and
not waste any under operation [95]. In the perspective of implementing a pervasive
network of untethered and autonomous devices, an IoT end-node requires being pow-
ered by batteries or energy harvesters. Depending on the application environment, the
battery recharge or replacement may be prevented for technical reasons or, however,
should occur with a low frequency to keep the maintenance costs contained (e.g. once
every one or more years) [77].

• Scalability: specifically managing the large amount of data generated by the growing
number of connected devices. Efficient exploitation of data becomes crucial to avoid
overwhelming the network and, at the same time, guaranteeing a suitable service level.
[19]
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FIGURE 1.2: IoT infrastructure with different hardware layers, namely IoT node,
Gateways and Cloud [61]

1.1.4 IoT end Node

IoT nodes perform sensing and interact with the physical world. They are the building blocks
for the IoT, and they stand below the overall infrastructure. IoT nodes need to be energy au-
tonomous and rely on battery and an energy harvester as energy source [4], because battery
replacement is not considered in many cases due to the volume of devices connected. As op-
posed to purely battery-powered systems such as smartphones or laptops, energy harvested
IoT nodes can operate perpetually, as long as the harvester power exceeds the average power
consumption of the node, and can hence indefinitely sustain the power required by the IoT
node. Fig. 1.3 depicts the general architecture of a sensor. An analog conditioning circuit is
placed between the sensing element and the digital interface. Alternatively, an external ADC
converter can be employed to digitize the sensor output. The radio interface communicates
with the remote server through wireless communication, while the power management unit
takes the power from the energy harvester and redistribute it over the node. Finally, the sen-
sor signal is periodically sampled, according to the Nyquist sampling rate, and transferred
to a central collector, i.e. the digital processor, which applies signal processing and filtering
routines to the sensed data [19]. To reduce the power consumption of the overall IoT node,
the microcontroller can run more advanced data processing to extrapolate the relevant infor-
mation. In this way, the power consumption of the microcontroller decreases, but the system
transmits fewer data, and the overall power consumption decrease. This approach of moving
intelligence at the node level will be discussed in deep in the next chapter.

1.2 Near Sensor Processing

1.2.1 Problems of Cloud Computing

In many IoT applications, the user is not interested in the data stream itself, but only in
specific events or some extracted information from them. For heart rate monitoring, the
application can be interested only in unusual patterns of the patience to call an aid quickly.
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FIGURE 1.3: Main building blocks IoT end nodes

The same is in fall event detection, where the inertial data are not useful in a raw format, but
processed to identify an event to trigger an alert. Audio event detection sends an alarm to
the users when an intruder is detected in the proximity of his apartment. Finally, counting
the number of cars crossing a street does not require the full video stream, but only the
transmission of the counting index.

As already mentioned in the previous section, the IoT node is responsible for interfacing
with the physical world. In a cloud computing paradigm, remotely located computing facil-
ities (servers) are utilized using the Internet to store, gather, manage, and process the data
coming from the node, that sends all the data to the remote server [2, 27].

Opposite to cloud computing, in a different computing paradigm, the IoT node not only
acquires the physical data from the environment, but enables the data processing within the
local system, transmitting only relevant information and alerts. This approach has differ-
ent names in literature: mist computing [102], edge computing [72] or near sensor (edge)
processing [44].

When the node has enough processing capability and energy budget for implementing
this second paradigm, there are many reasons for which edge/mist computing is preferable to
cloud computing.

• Bandwidth The bandwidth required depends on the application: simple applications
like temperature room monitoring does not require a large data transfer. For such
sensors, the duty cycle reduces the average data rate down to hundreds of tens of
bits/second. Other kinds of sensors, such as accelerometers, microphones, or cameras,
try to catch dynamic and transient events, so that the application needs high granular-
ity data. For these applications, the bandwidth is in the order of kB or even MB in the
case of video application (see figure 1.4). Therefore, computing at the edge solves the
bandwidth problem of sending bulk amounts of data to the central server.

Problems related to bandwidth are mainly saturation of the communication channel and
power consumption due to the transmission of data. Hybrid approaches between edge
and cloud computing, such as fog computing [10], solve the saturation issue thanks
to a distribution of the computation over gateways, but it does not solve the power
consumption problem, because the IoT node has to send all the data to the gateway.

• Privacy IoT implementation raises major concerns regarding individual privacy due
to the ubiquitous connectivity of IoT devices and sensors [28]. Data can be collected
from every connected appliance in every home and aggregated from every device in a



1.3. Artificial Intelligence for IoT 5

smart city. Privacy issues arise due to the streaming of sensitive data to a remote site,
which can be used to identify and influence people [30].

Edge processing can limit the raw data to the IoT node and preserve the privacy of the
user: If the IoT node just sends the event related to the physical phenomena, there is
no way to identify the user where processed data are aggregated. Intuitively, sending
the number of people present in a city area preserves privacy much more than sending
the raw video to the cloud.

• Centralization Compared with the huge and centralized servers as found in cloud
computing, edge computing has smaller edge servers that are distributed. One side
effect is to reduce the probability of a single point of failure. For what concerns latency,
it has been highlighted that cloud computing is suitable for delay-tolerant and complex
data analysis, whereas edge computing is suitable for low-latency real-time operations
[82]. Cloud computing provides also a solution for handling big data and processing
them. However, it requires massive data storage volume, huge processing resources to
deliver a high quality of service (QoS) in real-time [47].
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FIGURE 1.4: Bit rates for different kind of sensors [4].

1.3 Artificial Intelligence for IoT

In recent years, many IoT applications arose in different vertical domains, i.e., health, trans-
portation, smart home, smart city, agriculture, education, etc. The main element of most of
these applications is an intelligent learning mechanism for prediction (i.e., regression, clas-
sification, and clustering), data mining and pattern recognition or data analytics in general
[61].

IoT applications are heterogeneous but there are recurrent foundational services. In other
words, different application scenario often shares similar tasks to be computed starting from
the data. Figure 1.5 shows many typical IoT applications that share a set of foundational
services.

In all these three tasks, Artificial Intelligence and Deep Learning are recently getting
the best performances, thanks to the increasing amount of datasets and computational re-
sources. Residual Networks [32, 78] are examples of SoA for image classification. Deep
neural networks outperform Gaussian Mixture Model (GMM) and Hidden Markov Model
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FIGURE 1.5: IoT applications and the foundational services [61]

(HMM) system in speech recognition [34, 29]. Literature demonstrates that traditional ma-
chine learning approaches are less effective than DNN for posture analysis in fall detection
[20].

Focusing on Smart Cities applications, scene understanding, and context analysis are
among the application domains where processing at the edge can be crucial. They often rely
on computer vision. However, the combination with audio processing can highly improve
the accuracy of event detection and activity recognition, complementing vision where line-
of-sight occlusions or environmental light changes occur [97]. Furthermore, the use of audio
detection alone can partially solve privacy concerns of camera-based solutions.

Thus, Sound Event Detection (SED) is a powerful tool for many applications such as
traffic monitoring [64], crowd monitoring [55], measurement of occupancy levels for smart
and energy-efficient buildings [94], and emergencies detection [24].

SED, as well as acoustic scene recognition, can benefit from understanding events locally
where they happen both in terms of privacy [51] and reaction time, which can be kept in
the range of ms. More than this, device lifetime can be guaranteed up to several years of
operation when energy harvesting is applied and the transmission is limited to a few bytes.

Another common example of Artificial Intelligence in everyday life is Keyword Spotting
(KWS): KWS in the audio domain targets to distinguish a specific small set of words in
a predefined dictionary. This task becomes increasingly popular in numerous applications,
like wake-word detection or conversational human-technology interfaces. The system cannot
transmit everyday audio stream due to privacy concerns, latency, and energy consumption.
Therefore, many fully voice-based interfaces rely on the user to preface their command with
a keyword, that is processed on the device. The following speech translation and natural
language processing are delegated to the cloud.

Artificial Intelligence and edge computing are strictly related because most of the ap-
plication that uses multimedia data gets most of the benefit by local processing. Processing
data locally preserves privacy and reduces the bandwidth transmission significantly, since
multimedia data are the one with the highest throughput.

However, this always-on and battery-powered application scenarios for smart devices im-
pose constraints on hardware resources and power consumption. Therefore, high complexity
algorithms from state-of-the-art research such as deep convolutional neural networks can-
not be used as they are (or off-the-shelf). In the next section, I will describe how Artificial
Intelligence can coexist in the IoT end-node with some relevant examples.
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1.4 From Server to Microcontrollers: Advances in Artifical In-
telligence on Board

1.4.1 Trend In Artificial Intelligence for IoT

The machine learning field has seen a veritable breakthrough avalanche within the last few
decades, driven by the extensive newly available compute capability, public accessibility
to large and diverse datasets, and easy-to-use deep learning frameworks like Tensorflow,
Torch, Caffe. Especially, Convolutional Neural Networks (CNNs) or Deep Neural Networks
(DNNs) have revolutionized computer vision and data analytics in a broad spectrum of ap-
plications and challenges [68].

State of the Art neural network models require hundreds of watts for inference, hundreds
of megabytes, and billions of complex floating-point operations. Canziani et al. [11] con-
cluded that accuracy and number of operations are in a hyperbolic relationship. It means, that
best performing models require more operations, as shown in figure 1.6. As a consequence, a
current trend is to use networks of continuously increasing size and complexity because they
generalize better than shallower ones.

An example of this concept is Sound Event Detection (SED), that I have already men-
tioned in the previous chapter as one of the foundational services for IoT. SED is a rather
challenging task, especially when applied in outdoor contexts. After some pioneering ef-
forts [93, 109, 58], which have not led to established solutions, recent progresses in deep
learning and the release of sound event datasets and challenges like UrbanSound8K [81],
AudioSet [22], ESC50 [71] and DCASE [56, 57] have reawakened interest in these applica-
tions, considerably improving the performance and paving the way to further developments.
Nevertheless, advances in terms of accuracy and robustness of current acoustic event detec-
tion algorithms are achieved by using large neural networks, which are increasingly hungry
in terms of computational power and memory: for instance, deep neural networks (DNNs)
for SED such as L3 [16] and VGGish [33] require approximately 4M and 70M parameters,
respectively.

In the computer vision domain, the VGG-16 [87] network contains about 140 million
32-bit floating-point parameters and it achieves 92.7% top-5 test accuracy for image clas-
sification task on ImageNet dataset. The entire network needs to occupy more than 500
megabytes of storage space and perform 8 GMACs in floating-point. [73].

As a consequence, the most recent and advanced solutions may be not practical if lim-
ited computational resources are available, as in the case of IoT application contexts. This
prevents the development of applications for distributed monitoring in public spaces, which
require a pervasive network of energy-neutral devices composed of cheap, low-power, low-
complexity platforms. Enabling advanced machine learning on IoT nodes is, therefore, of
great interest and is becoming an attractive research topic for a variety of digital signal pro-
cessing applications. As a confirm, an entire new scientific community has formed around
the topic of machine learning on these devices, namely the TinyML movement. TinyML de-
vices come with tight restrictions in power, energy, memory, and compute capabilities, which
is totally orthogonal to the requirements of the trend of new state-of-the-art ML algorithms.

To do so, different strategies exist, all of them target the power consumption reduction
affecting as little as possible the classification accuracy. Here is a comprehensive list of the
methods in literature:

• Optimized Network Topologies: Expedients to reduce the complexity of the model.
For example, the authors of [79] test different architectures to explore the consequence
of changing the size of different layers. By replacing the fully connected layer of an
existing convolutional neural network (CNN) with average max-pooling, Meyer et al.
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FIGURE 1.6: Top-1 accuracy in the ImageNet challenge versus amount of operations
required for a single forward pass. The size of the blobs is proportional to the number

of network parameters [11]

[59] reduced the number of parameters while increasing the accuracy for the targeted
dataset. More recently, the authors of [39] achieves the same performance of AlexNet
with 50 times fewer parameters reducing the input channel of convolutional networks
thanks to 1x1 convolutions. Mobilenets [37] and Efficientnets [91] are network topol-
ogy with a number of operations that can be controlled by some hyperparameters, and
those change some feature of the network like the number of filters, input resolutions,
and more generally the network’s structure.

• Network Pruning: Neural networks are usually over-parameterized with significant
redundancy in the number of required neurons. This results in unnecessary computa-
tion and memory usage at inference time. One common approach to address this issue
is to prune these big networks by removing less relevant neurons and parameters while
maintaining the accuracy [8, 31].

• Knowledge Distillation: This method takes an existing model, and it trains a new
network with a smaller memory footprint, but that effectively mimics the original one.
This approach is also referred to as Student-Teacher because the smaller network (stu-
dent) is trained to get the knowledge and mimic the output of the larger one (teacher)
[83]. The underlying idea is that the output of the neural network (soft labels) is more
abundant in information than the hard labels and makes the training easier [35].

• Approximate Computing: Deep learning frameworks train neural networks using
floating-point 32-bit weights and activations. However, neural networks are robust to
input noise by design; thus, researchers have tried to reduce numerical precision to
save memory, computation, and internal data bandwidth. This process, called quanti-
zation, aims to reduce the storage and computational costs of the inference task [50,
45]. On the other hand, it does not come for free: performance of the network in
terms of accuracy can degrade. If properly trained, the weight-quantized networks
can achieve performance close to the floating-point original models also on complex
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classification tasks [48]. Zhou et al. [107] present a technique for lossless weight
quantization down to 2 bits. This saves memory and bandwidth, but keeping activa-
tions in full precision requires always floating-point computations and 32 bit for each
activation. Unfortunately, activations are more sensitive to quantization in terms of
accuracy drop. The approximation of activations is quasi-lossless down to 8 bit [105]
and it allows the hardware to parallelize 4 computations over a 32-bit register. As an
extreme case of quantization, Binary Neural Network (BNN) reduces the precision of
both weights and neuron activations to a single-bit [15, 75]. BNNs work on simple
tasks like MNIST, CIFAR-10, and SVHN without any drop in accuracy [38]. On the
challenging ImageNet dataset, BNNs have a drop of 12% [108, 89]. The gain from
this accuracy degradation performance is an improvement of computation efficiency
because binarization reduces the amount of memory required and compress 32 MAC
operations in just two operations. Moreover, Binary operations convert multiplications
in hardware-friendly XNOR operations. However, quantization is not always the solu-
tion when facing very deep models: the complexity reduction can be up to 32 times
fewer parameters, and one of the previous technique should be taken into account when
the application requires further levels of compression.

1.5 Advances in Hardware For Very-Edge Computing

1.5.1 Microcontrollers Directions

The interest in Artificial Intelligence on IoT nodes have awakened primary digital electronic
industries.

GPUs and highly parallel architectures achieve the fastest inference and have enough
memory to run state-of-the-art models. On the other hand, their power consumption limits
the use of these architectures to big servers.

At the microcontroller lever, where the system can be powered only by an energy har-
vester, there are many architectures tailored to signal-processing. ARM has more than 180
billion processors shipped worldwide thanks to the ample range of cores targeting different
applications. While ARM Cortex-A families targets high-performance devices like mobile
phones, the leading commercial architecture for embedded devices is the ARM Cortex-M
series [100]. M0 and M3 cores aggressively reduce cost and power consumption, offering
limited computational capabilities but adequate in many IoT-like applications. Of great in-
terest for signal processing applications is the Cortex-M4 family that provides hardware and
software support for Digital Signal Processing (DSP), SIMD, and MAC instructions. Finally,
Cortex M7 cores are the best performing in terms of execution time, but they are meant to
work with a fast clock and therefore higher power consumption than the earlier families.

For the M4 and M7 families, ARM released the CMSIS libraries, which make use of
SIMD instructions and simplify programming interfaces, thus reducing development effort.
On top of it, CMSIS-NN is the official support for Neural Network inference functions, and
many tools exist to export neural networks from the most popular frameworks to CMSIS-NN
API.

In February 2020, ARM launched a new family of Cortex-M core, namely M55, which
proposes ad-hoc architectures for Artificial Intelligence. Thanks to Vector Processing Tech-
nologies, they improve of 15x the performance on Machine Learning algorithms compared
to previous Cortex-M solutions. The Cortex-M55 can be paired with an Arm Ethos™-U55
Neural Processing Unit, specifically designed to improve machine learning inference [101].
In the future, microcontroller industries will produce devices that equip these cores. Unfor-
tunately, at the time of this thesis, they were not available.
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FIGURE 1.7: Different ARM core families and their related application scenario [1]

The world of artificial intelligence is in continuous evolution; therefore, hardware and
instruction sets should adapt to the most recent innovation. In this context, ARM cortex
cores are not always the most suitable solution since their instruction set cannot be modified
for license reasons.

RISC-V ISA is getting popularity because, in contrast with ARM ISA, it allows the de-
sign of processors without a license fee and the designers can add ad-hoc instructions for
specific neural networks model or layers. Following this trend, companies that have always
included ARM core in their products are now exploring the use of RISC-V based architecture,
like PolarFire SoC from Microchip or RV32IMC from NXP.

Recently, a novel parallel processor, based on the RISC-V ISA, has been launched [96].
GAP8 is a commercial processor, implemented from the Parallel Ultra Low Power (PULP)
open-source project1. This processor has similar power requirements of the Cortex-M family
(hundreds of mW) with up to 20 times higher computation performance for machine learn-
ing applications, thanks to near-threshold parallel computing [96]. Furthermore, it features
RISC-V extensions providing accelerating the BNN processing. The popcount instruction
boosts the processing significantly for BNNs and other quantized neural networks.

TABLE 1.1: Examples of embedded platforms and their hardware capabilities.

Board Name Flash[KB] RAM[KB] Power [mW] MIPS
Arduino uno [ATmega328] 32 2 60 20
ChipKit uc32 [PIC32MX] 512 32 181 124.8
STM32L476RG [Cortex-M4] 1024 128 26 100
TI MSP432P4111 [Cortex-M4] 2048 256 23 58.56
BeagleBone Black [Cortex-A8] Ext 524288 2300 1607
Raspberry Pi 3 B+ [Cortex-A53] Ext 1048576 5500 2800

1.5.2 Hardware Design for Artificial Intelligence

The previous chapter focuses on general-purpose devices, that allows products to be low-cost
and off-the-shelf. The disadvantage of these devices is the loss in efficiency due to their
flexibility. FPGA implementations still have the flexibility needed for new ML advances

1https://www.pulp-platform.org
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and already significantly boost performance and energy efficiency. However, they are still
too expensive for large-distribution of devices and are also known to be at least one order
of magnitude worse than custom ASICs. Nevertheless, the higher energy efficiencies and
throughput come with a price, which is the loss of flexibility to adapt to the very fast-changing
AI research field. Furthermore, custom ASIC accelerators have very high non-recurrent costs,
which can just be compensated with a high number of sold chips. After this clarification about
the efficiency vs flexibility trade-off, peak throughput and energy efficiency are achieved by
ASIC accelerators. There are hardware accelerators meant to make neural network inferences
more efficient and faster. A known example is Movidius’ Myriad 2, which computes 100
GFLOPs and needs just 500mW@600 MHz [62, 40]. However, they are still over the energy
budget of IoT application, and therefore several dedicated hardware architectures have been
proposed to improve energy efficiency.

For binary-weights neural networks, YodaNN is the only BWN accelerator in literature
and achieves a core efficiency up to 61.2 TOPS/W [5]. Moving to Binary neural networks,
BinarEye [63] and XNORBIN [3] achieve an energy efficiency of 115 TMAC/s/W and 102
TMAC/s/W respectively.

These examples target ultra-low power consumption processing of neural network for
edge computing; they present stable accuracy and convincing memory footprint for their
model, but they do not focus on the power consumption of the overall system. In fact, figure
1.3 shows that also sensing should be taken into account, as well as the sensor-to-processor
data transfer, whose bandwidth linearly increases with the amount of produced data, deter-
mines an additional energy consumption, impacting the total budget.

For always-on multimedia applications, the sensing consumption can be dominant or
comparable with the processing consumption. In a SED system, the microphone itself, its
amplification circuitry, and the communication between the microcontroller and the sensor
are a relevant part of the energy used for audio analysis. Chapter 4 presents an edge comput-
ing system for sound event detection where it is shown that the system uses more than 60%
of the power budget for sensor reading and feature extraction, and only the remaining part is
for classification.

To tackle this bottleneck, hardware designers present innovative sensors that have these
two key points:

• Event-based alarms: The sensor communicates and send data to the processing unit
only when there is a relevant event.

• In-sensor preprocessing: Data is partially preprocessed on the sensor chip and therefore
data communication is reduced.

For embedded computer vision applications, a camera node with the described character-
istics is labeled as "smart", indicating a system that is not only able to capture data, but also to
process it thanks to a dedicated processing sub-system for data analytics. An example is the
FORENSOR sensor, where the camera embeds on-chip an image processing algorithm for
real-time event detection, exploiting a dynamic background subtraction approach to identify
the so-called hot-pixels, i.e. pixels with an intensity variation, and possibly corresponding to
a non regular action [46]. Paissan et Al. [66] evaluates the use of the FORENSOR sensor
in a classification scenario. They achieve 87% accuracy in people/car classification, proving
that the overall system consumes less than 2mW, thus being adequate for an IoT scenario.

Similarly, in the audio processing domain, intelligent hardware components, such as a
Mel-spectrogram extractor or a speech enhancer, can support the extraction of events or pat-
terns with optimized energy efficiency and performance. For example, audio classification
systems are often based on the regular sampling of microphone inputs with frequencies in
the range from 16 kHz to 192 kHz, which fixes a minimum power consumption that cannot
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be avoided. Thus, a "smart" microphone returning only features for classification instead of
the raw data stream would be beneficial to the energy efficiency of the whole system. In fact,
the following machine learning task will be activated only when relevant information has to
be processed, implementing an event-based paradigm.

In this direction, Mayer et al. [54] designed an analog front end that extracts time-
frequency features in hardware: it has a microphone, a bank of filters and an amplifica-
tion circuit, all designed targeting low power consumption. In this way, the authors move
the focus of optimization also in data acquisition and preprocessing. The output is a pulse
of a certain time duration that indicates how long a specific frequency is present. It has a
great benefit versus a normal sampling approach: the front end rises a pin when the spe-
cific frequency band is present. Therefore, the system acquires only the pulse, so that the
microcontroller reads the data only when something interesting for the system is going on,
following the event-based acquisition paradigm. The author of the analog front end presents
an underwater monitoring application, which is relatively simple and for this reason, the clas-
sifier is not powered by artificial intelligence. In chapter 5, I will present a keyword spotting
system that processes audio data and distinguish 10 different keywords in the speech: using
parallel filters, the microcontroller is able to reconstruct spectrogram-like information, which
is passed through the BNN for further classification.

1.6 Thesis Contribution

The thesis’s structure is the following: Chapter 1 has described the importance of IoT in the
present historical moment, the main challenges, and how near sensor processing can convinc-
ingly address the technological problems of cloud-based solutions. Next, I have presented
the relevant link between the Internet of Things and Artificial intelligence, showing that Neu-
ral Networks are the basic processing engine for knowledge extraction from most IoT data.
Then, I focused on Artificial Intelligence, presenting the growing trends in accuracy and
memory size, and computation complexity. A review of complexity-reduction algorithms
has shown that the problem does not have a unique solution. Next, a review of hardware
advances in the field of near sensor processing follows: after presenting commercial and
more advanced microcontroller, the focus has moved to hardware accelerators and finally
to mixed sensing and processing approaches, where the hardware also optimizes acquisition
and pre-processing of data.

Chapter 2 is one of the near-sensor processing prototypes in this thesis, targeting outdoor
people detection. To the best of my knowledge, this is the first study that explores the use
of a thermopile array in outdoor conditions. The low-resolution thermal images provided by
this sensor make the processing compatible with microcontrollers. Here is my first attempt to
use neural networks for multimedia data. Compared with more traditional computer vision
techniques, artificial intelligence is the best performing for the specific setup.

Chapter 3 moves to another multimedia application, known as Sound Event Detection.
Here I face the complexity problem because state-of-the-art neural networks in this task are
not suitable for near sensor processing. Therefore, I explore the combination of extreme
distillation (student-teacher approach) and quantization techniques. In this thesis, the student-
teacher paradigm is stressed to obtain student networks many order of magnitude smaller than
teacher networks. In this way, SoA networks can be used as teachers, and student networks
respect a microcontroller’s constraints.

Chapter 4 focuses more on the hardware side. Here, I prove the efficiency gain given
by hardware that targets machine learning problems. Multicore capabilities are an accelera-
tion factor for many neural networks, but most importantly, the combination with low voltage
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threshold hardware achieves impressive computation efficiency. Moreover, popcount instruc-
tions are a crucial point to make Binary Neural Network more efficient. Finally, the overall
system has a power budget that matches with an IoT end-node. The use of the particular
hardware platform is the enabling point for the execution time and energy consumption. At
the time of this thesis, binary neural networks were rarely used, and many application scenar-
ios did not have a research example for such networks. Here I investigate the use of BNN for
sound event detection, concluding that their efficiency definitely fits the artificial intelligence
at the very edge. On the other hand, the accuracy drop due to the 1-bit resolution is still an
open issue that prevents the deployment of such structures for real-application scenarios.

Until this point, the thesis presents significant advances in the compression of neural net-
works to enable their execution in IoT nodes, but the energy consumption does not include
just processing. So far, the thesis presents mainly significant progress in the field of neu-
ral networks to enable their execution on IoT nodes. Nevertheless, strategies to limit power
consumption do not only include acting on processing. A classification system also includes
sensing and pre-processing, which can be energy-hungry, especially in multimedia applica-
tions. For this reason, Chapter 5 explores the use of custom hardware for audio sensing and
pre-processing. Here, power reduction is given by the low power sensing system and the low
communication bandwidth between the sensor and the processing unit. The custom hardware
does not transmit the audio stream but only relevant features in a binary version. The pro-
cessing algorithm, again a Binary neural network, is perfectly integrated with such kind of
data. Finally, the Conclusion section presents a summary of the thesis and the lesson learned
over the whole Ph.D. work.

To summarize, my thesis’s contribution is moving AI-based computation (e.g., NN) at
the edge, exploring novel hardware and software co-design solutions.
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Chapter 2

Low Resolution Thermal Sensor for
Outdoor People Detection

2.1 Overview

As anticipated in the introductory chapters, we applied our approach of bringing intelligence
near the sensor, while considering energy efficiency both at hardware and firmware level,
in specific application scenarios. In this chapter we apply our approach on a IoT node for
presence detection. Presence detection is a useful functionality to make our living spaces
smarter and is implemented through several kinds of sensors and smart devices. Nowadays,
most of the research works focus their attention on the indoor environment. However, outdoor
people detection is also relevant: in the smart city era, people detection systems can be useful
in public spaces.

Therefore, we focus on outdoor people detection. This kind of scenario is more challeng-
ing than detection in indoor environments for many reasons, such as the high variability of
several parameters, i.e. sudden changes of temperature and light due to weather conditions,
or high variability of human and background temperature and wide daytime temperature vari-
ation. Typical solutions for outdoor people detection are based on sensors deployed in the
environment, typically cameras. However, video surveillance can be invasive, not preserving
citizen privacy, and generating a large amount of raw data, not all meaningful, to be analyzed.
Hence, here we target a low cost, low power and resource-constrained system, to detect the
presence in outdoor scenarios while preserving privacy. For these reasons, we explored a
very low-resolution thermal camera, that generates easy to process images where people are
indistinguishable. Moreover, The approaches and techniques chosen are not computationally
intense and thus thought for a resource-constrained embedded system. The processing algo-
rithms implemented can be divided into two blocks: 4 different well-established computer
vision approaches and a Convolutional Neural Network. All of them have never been applied
to thermopile array sensor input before. In this chapter, we present the first use of a ther-
mopile array in outdoor environments for people detection. That is not trivial because out-
door conditions complicate the detection. To fit existing methods to our sensing device and
environment we explore and test solutions that are innovative in the field of low-resolution
thermal images. The whole study is then confirmed by a real-time implementation running
the Convolutional Neural Network in a microcontroller, which shows that it is possible to
achieve 76.7% of accuracy in the outdoor people detection task using 16.5 mW of power and
6 KB of RAM.

2.1.1 Related Work

People detection systems usually include camera based solutions, but the output of this kind
of sensors is strongly illumination-dependent and requires a high computational load [74].
Furthermore, vision systems often limit privacy. Our application scenario requires the system
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to work in a wide spectrum of illumination conditions, from night to direct sunlight. For these
reasons, we deploy a system based on thermal spot detection.

Detection of people using infrared radiation is a broad research area. In this field, Passive
InfraRed sensors (PIR) are a frequent solution for fire alarm and intruder detection since the
eighties [99]. However, there are many disadvantages related to the physics of the measured
process, which is in many cases affected by noise. Some examples are background radiation,
reflection and change in ambient temperature [43]. For this reason, researchers adopting this
solution focus on reducing the number of false recognitions. In the work presented in [36],
the authors try to reduce the number of false alarm events using two different algorithms,
based on the statistical characteristics of false and target alarms. Nevertheless, the main
advantage of PIR technology is the low energy consumption and low cost of the product. To
reduce the number of false alarms, many works combine information from different types of
sensors, as in [12], where each sensor node includes a microphone, x-y axis magnetometers,
and four passive infrared (PIR) motion sensors.

An alternative solution for detecting people outdoor is using thermal cameras. A thermal
camera acquires a digital image and not an analog signal such as PIR sensors. From these
images, it is possible to differentiate humans from other sources of noise, coming from the
environment. For example, the authors of [17] have developed a processing technique for
pedestrian detection. They implement conventional two-stages approaches to detect people
in thermal imagery that combines a particular background-subtraction with a classifier. In
their work, dataset is recorded with 320 x 240 Raytheon 300D thermal sensor at 30 Hz. It
is 3 orders of magnitude more expensive than PIR and the huge amount of data requires a
high-level processing platform. In addition, thermal images can show too many details and
privacy is not always guaranteed.

The middle ground between PIR and thermal cameras are thermopile arrays, whose low
resolution is a compromise between output information, power consumption and costs. Ther-
mal array sensors can provide coarse-grained detection while preserving privacy of the sub-
jects [26]. In this work, we adopted the Grid-EYE Panasonic thermopile array [26], a promis-
ing low-cost sensor that has been recently exploited also in [9] and [85]. The authors of [9]
focus their attention on people counting indoor, with excellent results. On the other hand,
their hypotesis of a fixed and stable temperature for both background and human body is not
applicable to the outdoor conditions, considered in our work.

In [85] the system measures the speed of the gait using the Grid-EYE sensor. It detects the
thermal peak using background subtraction technique very similar to one of the techniques
presented in this document. The paper emphasizes the presence of noise in the environment,
such as airflow or spontaneous change of air temperature. However, they do not explore the
outdoor environment, even if their system is robust to noise.

A similar work is the one of Gomez et Al. [25], where the authors target edge comput-
ing implementing people counting using thermal images. They implemented a CNN on a
microcontroller, analyzing the power consumption in a battery-powered prototype. In their
case, the environment is indoor, therefore less affected by thermal noise caused by weather
changing.

They reach a power consumption of 34.4 mW, which is close to our results. However, the
execution time is ∼63 s, with a consequent gap between two collected images sufficient to
miss detection of people crossing and standing for shorter periods. In our case, the execution
time of ∼ 5 ms guaranteeing an higher temporal resolution.
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2.2 System Description

2.2.1 Application Scenario

The present work has been conducted as contribution to the MAKE IT PAYT project, where
the goal is applying sensors and RFID tags to optimize door-to-door waste collection. The
waste bag are equipped with RFID tags to associate the user with the related waste, to im-
plement the "pay-as-you-throw" paradigm. One request set in the project is to activate the
RFID reader only when necessary. In particular when the garbage collector in front of the
back of the truck, before she/he empties the waste into the vehicle and generate an event to
activate the RFID antenna (see figure 2.1). Even if we focused on a specific application, it
is representative of a generic mobile outdoor scenario, where background and environment
conditions may present wide and sudden changes.

Thus, the conditions are:

• Covered Area 2m x 1.4m: the garbage collector remains in a small area behind the
truck while emptying the bags.

• Ambient Temperature Range from -10 C◦ to 40 C◦: possible range of temperature
in urban environment.

• Robustness to Light: the system should work in wide range of light conditions, from
dark at night to direct sunlight.

• Criticality of False Negatives: missing an emptying event is a fault, since the system
does not turn on the RFID antenna.

2.2.2 Sensing Device

The second and third requirements lead us to choose a thermopile array as sensing device.
The single thermopile measures infrared radiation from a small area. An array of them gener-
ates an heat-map. The specific device used in this work is the Grid-EYE sensor, an IR camera
in a compact all-in-one SMD package [26].

The main specification are:

• 64 thermopile elements in an 8x8 grid format

• 10 Hz frame rate

• 30 mW power comsumption

• 60◦ viewing area

• IR detector and mixed signal processing IC in a single ceramic package

We locate the prototype at a 2.85 meter with a 60◦ angle, to cover a 3m x2 m detection
area. The low number of pixel makes the hardware simple and fast.

2.2.3 Outdoor Scenario

For many reasons people detection in outdoor environment by means of thermal cameras,
PIR or thermopile arrays, is more challenging than in indoor environment:

• Outdoor temperature is subject to frequent changes throughout the day, differently
from what happens in close spaces, where environment has a fixed span of possible
temperatures, tailored to the human comfort. Therefore, background modeling meth-
ods should consider this to be robust.
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FIGURE 2.1: Area in which the operator should be detected. The truck is at the right.

• As a matter of fact, human body temperature in outdoor scenes depends on weather
conditions. During the winter, warm clothes such as coats reduce drastically the surface
temperature. As a consequence, infrared radiation decreases.

• In the daytime, soil heat-map may have different "red spots" due to sun lighting in part
of the field of view. Shadows due to objects in the scene create the opposite result.

• Wind flows change drastically scene temperature in few seconds. This phenomenon is
definitely negligible in indoor environment.

These elements differentiate the techniques implemented in our study compared to those
used in indoor environment by means of Grid-EYE. For example, authors in [9] assume that
background and humans have a fixed interval of temperatures. As a consequence, they detect
people in correspondence of a set of pixel values above a fixed threshold. The assumption
done in that work, as already explained before, is not applicable to outdoor environments.
Comparing pixel temperature value with a fixed threshold is not a viable solution in our
scenario. Finally, outdoor background model must adapt more quickly than the indoor one
to possible immediate changes due to sudden heat flows (warm or cold).

2.3 Methodology

2.3.1 Classic Computer Vision Approaches

The continuous change of background explained in the previous section forces to implement
processing techniques taking outdoor problems into account. For this reason, it is more con-
venient to obtain a relative value between the environment and the person, by means of back-
ground estimation and extraction of the foreground components or by means of comparison
between consequent frames.

Thus, we compare the performance of four different techniques providing results on they
accuracy to detect people by computing their F1 score. The four approaches are:

• Frame Difference (FD)

• Gradient Difference (GD)

• Background Correlation (BC)

• Background Variance Detection (BVD)
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Figure 2.2 shows that only the first two algorithms pre-process the image by means of an
exponential filter.

Frame Difference technique computes the absolute value of the difference between the
input frame and the previous frame. The result is an 8x8 matrix and from this it extracts
the maximum element. At this point, the value is compared with a threshold to classify the
presence of an heat source. The equation that summarizes the algorithm is:

FDi,j[n] = max(|Ii,j[n]− Ii,j[n − 1]|) ∀(i, j) ∈ image (2.1)

where Ii,j[n] is the (i, j) pixel in the current frame and Ii,j[n − 1] is the (i, j) pixel in the
previous frame.

Gradient Difference is very similar to the previous one, but there is an additional step
before the frame difference. For each frame, the algorithm computes the gradient magnitude
between the pixel and the next ones. The gradient magnitude is calculated in two steps. First
of all, the soble operator calculates the horizontal and vertical gradient for the whole image,
pixel by pixel. Then the magnitude is computed considering it as a vector. The result is a
new pixel for each one of the raw image, and overall a 8x8 matrix. Then it computes the
gradient magnitude of the previous frame and finally it calculates the the absolute value of
the subtraction between the two elements.

GD[n]i,j = max(|GMag(Ii,j[n])− GMag(Ii,j[n − 1])|) (2.2)

GMag is a function that takes a frame and generates a new 8x8 matrix. It is composed of
the magnitude of gradient vector for each pixel. Using the gradient magnitude, the output is
more sensitive to moving sources than the frame difference.

Background Correlation provides a more complex model for the background. It is com-
puted by a weighted combination of several previous images. When the sensor is powered
on, the background is initialized with the first frame. Next, each pixel of the background is
updated using an exponential filter:

BGi,j[n] = (1 − α)BGi,j[n − 1] + αIi,j[n] (2.3)

BG[n] is the background image at the step n and α is the exponential filter constant. The
idea is to slowly adapt the background model based on the new frames. Following, for each
new frame, the algorithm computes a cross-correlation between the current frame and the
background. For each c x c window in the frame, the following equation (2.4) computes a
scalar value between 0 and 1.

ρi,j =
∑(n,m)∈N In,m ∗ BGn,m

∑(n,m)∈N In,m ∑(n,m)∈N BGn,m
(2.4)

N is a c x c sub-matrix centered in the pixel (i,j). The size of N, c, is considered as a
parameter. When background and current frame are similar, the output matrix is filled with
1. When a heat source appears, the pixel of the output matrix relative to the foreground
element approaches the value of 0. For the sake of clarity, values are mirrored with this
equation:

BCi,j = 1 − ρi,j (2.5)

in this way obtaining a low value means that there are no foreground elements. Higher value
corresponds to differences between current frame and background.

In Background Variance Detection, the scene model increases in complexity and contains
both mean and variance of the pixel over time. Mean is calculated as 2.3, considering µi,j =
BGi,j. The equation 2.6 describes a possible way to update the variance using the mean and



20 Chapter 2. Low Resolution Thermal Sensor for Outdoor People Detection

FIGURE 2.2: Computational graph of the algorithms. Blue bold arrow means 8x8
images, red light arrow means single values.

the current frame:

σi,j[n] = (1 − α)σi,j[n − 1] + α(µi,j[n]− Ii,j[n])2 (2.6)

Next step is the comparison between the current frame and the background frame. The
calculated value is as follows:

BVDi,j =| µi,j − Ii,j

σi,j
| (2.7)

The model is based on ideally fitting a Gaussian probability density function for each
pixel [69]. The value computed, called standard-score or Z-score, is a distance between
current data and mean, scaled by the variance.

Moreover, the algorithm does not update variance and mean if the output is greater than
the threshold. This is because the foreground object should not be included in the background
model.

Figure 2.2 shows the block diagram of the algorithms. The outputs are 8x8 matrices,
but the system should generate an event when a person appears. For this reason, it takes the
maximum value of the output matrix, then compares the result with a threshold in order to
generate the trigger signal. The four algorithms perform in a different way, depending on the
specific scene. Each of them has its own pros and cons.

Frame difference technique is very easy to implement, it is basically a subtraction frame
by frame. The resulting hardware implementation has therefore real-time performance on
most platforms. On the other hand, if a person stands still in the camera field of view she/he
dissapears in the image, because there are no movements. As a matter of fact, calculating the
frame difference corresponds to implement a motion detector and therefore static foreground
elements are not detected.



2.3. Methodology 21

FIGURE 2.3: Data acquisition and processing while a person is in the field of view.
From the left: (a) raw data (b) output matrix of gradient difference technique (c)
output of the background variance detection after the threshold comparison for each

element of the matrix.

Gradient difference approach is heavier from a computational point of view, but empha-
sizes the movement of a heat source. The result is an higher signal to noise ratio. However,
it is not yet able to detect a non moving target.

Background correlation approach needs to compute the background model and the output
matrix. To generate a single frame, the algorithm applies the equation (2.4) for each pixel,
incrementing the computational demand. However, static objects can be detected but only
for a short time. Equation (2.3) incorporates each element in the scene in the background.
Foreground elements disappear after a certain number of frames. This number depends on the
α parameter in equation (2.4). The same parameter tunes the ability to adapt the background
to changes in the environment, providing a trade-off between static detection and background
adaptation. If α = 1, the background is the previous frame and the result is similar to the
frame difference algorithm. If α = 0, the background is the first frame and remains the same
throughout the whole execution of the algorithm. In this case the foreground elements never
disappear, but the algorithm is not able to adapt to changes in the environment.

Background variance detection is the only algorithm able to detect a non moving person.
In fact, foreground elements are not included in background because mean and variance of
the pixels over threshold are not updated. However, α is still a tunable parameter related to
the changes of scenario.

Figure 2.3 shows the system working in an outdoor scenario. From raw data Fig 2.3.a is
difficult to recognise that there is a person in the scene. In the output of gradient difference
Fig 2.3.b the presence is more visible. In Fig 2.3.c the output of background variance detec-
tion is compared to a threshold. In figure 2.3, the shape of a walking person as seen from
above is evident.

2.3.2 Convolutional Neural Network

We applied background subtraction before feeding the image to the neural network. This
is because of the too wide range of possible temperature and to highlight the differences
between the background and not only the absolute temperature value. In fact, a static sunspot
can create an indistinguishable pattern from a low resolution image.

We implemented a running background average: the main advantage of this method is the
adaptive maintenance of the background model while changes occur in the scene [88]. When
the sensor is powered on, the background is initialized with the first frame. Afterwards, the
algorithm updates each pixel of the background using an exponential filter:

BGi,j[n] = (1 − α)BGi,j[n − 1] + αIi,j[n] (2.8)
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FIGURE 2.4: Flowing diagram depicts the raw image taken from sensor, then per-
forming a running average background and then passed to a CNN

BG[n] is the background image at the step n, i and j are the indexes of the image. The
idea is to slowly adapt the background model based on the new frames.

Finally the input image is computed as following:

INPUTi,j[n] =| BGi,j[n]− Ii,j[n] | (2.9)

The drawback of this method is object vanishing. The exponential filter incorporates any
foreground element in the background after a certain time. This duration depends on the
learning rate α. Mathematically, the step response of exponential filter reaches around 2/3
after the time constant τ. The relationship between the learning rate and the time constant,
given the sampling period ΔT, is:

α = e−ΔT/τ −→ τ = − ΔT
log(α)

(2.10)

For division implementation in microcontroller, alpha is a power of two (2−7 ≈ 0, 008).
According to equation 2.10, it achieve around 10 s of time constant, that is a reasonable du-
ration for people detection in outdoor. This parameter can be tuned according to the specific
application requirements.

The problem described is presence detection. Formally, it is a binary classification be-
tween the two classes "person" and "no person" in the field of view.

Table 2.1 describes the network layers. The other common parameters between layers are
kernel size 3 and stride 1. No max-pooling and no padding is applied: the number of pixel
is already low (8x8) and decreasing it by pooling would harm the classification. We used
no padding, adding extra pixels will change the image significantly. The activation function
of each convolutional layer is the Rectified Linear Unit (ReLU). Finally, the last dense layer
uses sigmoid as activation function, because a binary classification is required. The sigmoid
represents a probability, thus we split the possible outputs in two classes with a threshold of
0.5.

TABLE 2.1: Layer descriptions and bytes needed in an 8 bit format for weights and
intermediate outputs

Layer Type Filter Shape Filter Size Out Shape Out Size
#0 Input - - 8x8x1 64B
#1 Conv. 3x3x1x4 36B 6x6x4 144B
#2 Conv. 3x3x4x8 288B 4x4x8 128B
#3 Conv. 3x3x8x16 1152B 2x2x16 64B
#4 F. C. 16x2x2 64B 1 1B

We used the Python programming language and the framework Tensorflow. The network
takes the images after background subtraction as an input. Then, we split the Dataset in
training, validation and test in 60%-20%-20%. Cross entropy is the cost function and we
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TABLE 2.2: The value of parameters used in the methods, with the corresponding
reference to the equation

Equation Symbol Value
exponential filter constant C 0.9

background refresh rate b. correlation (2.3) α 0.99
window size b. correlation (2.4) c 2

background refresh rate b. v. detection (2.6) α 0.999

used the Adam Optimizer to minimize the it, with a starting learning rate of 0.001. We stop
the training after 1000 epochs and in each epoch the best model on validation set is saved.
Then we used the test set to evaluate the final performance.

2.3.3 Adaptive Threshold

In order to test the algorithms and acquire data we have built a prototype. We have fixed the
Grid-EYE camera at 2.85 m of height, inclined 60 degree in order to cover an area of 2m x
1.4m. The data is saved and then processed on a computer, simulating a real-time situation.

We have collected a dataset of 70 independent acquisitions, each one with 4 instances of
a person crossing the scene at different distances. Each recording lasts for 16 seconds (160
frames), and for half of the acquisition, the human subject moves with walking speed in the
whole field of view of the camera. Each acquisition was collected in a different situation,
during a time span of 4 months and with background temperatures ranging from 5 to 30 C◦.
Labelling is done by means of temporization of crossing during acquisition, tagging the start-
ing and ending instant. It is done manually and for this reason, we added a tolerance of 300
ms. This correction value is extracted from collected data as average of the synchronization
errors detected in those acquisition samples where signal to noise ratio is high and therefore
it is very easily identified.

The collected data was used to tune the algorithm parameters and to evaluate their per-
formance. In fact, we optimize the neural networks weights, the constant of the exponential
filter, the refresh rate in background extimation and the window size for the background
correlation technique. The pairs parameter-value obtained are in table 2.2.

With the labelled dataset, we have implemented a script able to find the optimal threshold
for each acquisition. We have chosen to define as optimal the threshold that maximizes the
F1 score. F1 is calculated with the general equation

F1β = (1 + β2) · precision · recall
β2 · precision + recall

(2.11)

with β = 1.2 to give more importance to recall than to precision, as required in our applica-
tion scene.

Thresholds follow a quadratic trend: they become lower when the background tempera-
ture reaches value around 20-25 C◦. This is due to the similarity with the human tempera-
ture in external environment (with dresses, ecc..). When temperature rises, the human body
becomes colder than the background, therefore it can be distinguished very well. Figure 2.5
shows this behaviour for the background correlation case. Similar curves have been extracted
in the other three cases. We propose that using the threshold given by the background temper-
ature increases the robustness of the algorithms to different environmental settings. When the
background temperature is around 20-25 degrees, a lower threshold should be used to get the
small differences between humans and the environment. When the weather is far from 20-25
degrees, it is worthy of raising the threshold because the human temperature is very different
and easy to distinguish. Increasing the threshold avoids that small fluctuations of temperature
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FIGURE 2.5: Optimal thresholds and quadratic interpolation: results follow a
quadratic trend

in the environment are detected as a person. Thanks to the interpolated curve it is possible to
apply a threshold for each background temperature, measured from the environment.

2.3.4 Embedded Programming for the Convolutional Neural Network

To compute the output of the neural network on a microcontroller, we used the CMSIS-NN
libraries. This framework achieves performance optimization of neural networks on resource-
constrained microcontroller based platforms [45]. The calculation uses low-precision fixed
point representation (e.g. 8 or 16 bit), to optimize the memory footprint and avoid the float-
ing point computation. Moreover, the functions take advantage of the SIMD instructions to
exploit parallel computing, always present in convolutional operations.

Many compatibility issue should be managed in the conversion from the computer to the
embedded programming. Each weight is quantized to 8-bit fixed point format. To decide
how many digits should be used for the integer part, we check the value of all the weights.
The values are between -1 to 1, so we use all the bits to describe the digits, and 1 for the
sign. In this way, the range of possible number is [−1, 1 − 2−7] with a resolution of 2−7.
The intermediate values (the output of each convolutional layer) is hard to predict as it varies
with different input. One possible solution is to try the whole space of input, and determine
the range of bits to represent decimal value for each intermediate value and preprocessing
output.

This approach is not optimal for our system, because background subtraction output
hardly reach the ideal maximum value (an item of 80◦ appears in a background model of
0 ◦). Thus, we decided to use the training set to estimate the range of the value in practice.
We evaluated how many numbers goes above a certain power of two. If the percentage of this
numbers is negligible (1%), we use the respective number of digits for the integer, clipping
the value above. This is a middle ground between loosing resolution (decimals) and clipping
the unlikely integer.

Finally a program export all these information. Firstly, the weights are quantized accord-
ing to this formula

Wq = round(W ∗ 2n) (2.12)

where Wq is the quantized weight, W is the floating point weight in Tensorflow and n is the
number of digits used to describe the decimal part. If the output number is bigger than 27 or
smaller than −(27 − 1), it is clipped to these values.
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A program saves the weights in a header file, in a flattened way ([out channel, filter
size, filter size,in channel]) according to the one expected from the CMSIS functions. The
script automatically saves the number of integer digits for intermediates output in a header
files, together with others hyperparameters like number of filters, output-image dimensions,
padding and kernel size.

2.3.5 Hardware Platform

In order to evaluate the power consumption and the real-time performance of the neural
network implementation, we moved from an offline PC-based system to a generic low power
hardware.

The board is the STM NUCLEO-L476RG. The main feature of its microcontroller is
a Cortex-M4 core, up to 80 MHz clock and the possibility to reach very low consumption
(down to 8 µA) in stop modes. The sensor outputs data every 100 ms. The forward propa-
gation in the neural network takes less than 5% of this time in maximum frequency mode.
As a result, the microcontroller has an idle period and it lets the system go in low power
mode to reduce the overall power consumption. To wake up the system every 100 ms, the
microcontroller has an integrated low power timer that enable periodic interrupt also during
the sleeping mode, with a low-frequency clock of 32 kHz. Then when the system is woken
up, the clock is set to 80 MHz and acquisition restarts.

2.4 Results

To evaluate the system quality we have used the optimal threshold and we have compared the
results with ground truth. The evaluation criteria are defined in this way:

• False Positive: the output goes above the threshold at least once when nobody is in
the field of view

• True Positive: the output goes above the threshold at least once when there is a person
in the field of view

• False Negative: the output never goes above the threshold during all the crossing

• True Negative: the output remains below the threshold when nobody is in the field of
view

These definitions come from the application scenario. On the other hand, they are the
same in most of the system related to people detection.

Figure 2.6 shows the F1 score for different kinds of thresholds. The yellow bars are
referred to a fixed threshold for all the dataset. Red bars are relative to results achieved by
using interpolated thresholds from quadratic curves (figure 2.4). Graphs show that F1 score
using interpolated thresholds is clearly higher than the one using a fixed threshold.

Background correlation is the most sensitive to threshold. In fact, with this technique
performance with fixed threshold is very poor. The five techniques have similar performance
in terms of F1 score, and the Convolutional Neural Networks is the best performing. For this
reason, in the next section we focus on its implementation in an embedded platform.

Results in general demonstrate that usage of thermopile arrays for people detection is
possible in outdoor conditions. In addition, the adaptive thresholds described in this work
achieve the best results.
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FIGURE 2.6: Results for the same data but with different thresholds

2.4.1 Hardware Implementation Results

In this section, we describe the hardware performance in terms of execution time, power
consumption and memory footprint for the best performing algorithm, namely the neural
network. Then, a different firmware enables the simulation of test images on the micro-
controller and let us calculate the loss in classification performance due to the quantization
process.

TABLE 2.3: Overall Results

Power Consumption [mW] 16.5
Power Consumption µc [mW] 2.3
Execution Time [ms] 4.01
Text [B] 19688
BSS [B] 2712
Data [B] 2680

Power Consumption: As explained in section 2.3.5, the algorithm goes in low power
when it processes the image and it wakes up when the image from the sensor is ready. So the
current absorbed is considerable during acquisition and processing, but it is negligible during
stop mode. The device used for current measuring is the Real-Time Current Monitor EE203.
STM board let the costumers to measure the consumption of microcontroller, without con-
sidering the current flowing in regulators, debugger and other devices on the board. Anyhow,
the sensor is part of the system itself, so we have measured current absorbed from the voltage
supply, with and without the sensor connected.

Computation Time: Part of the time is needed to load the image from the sensor via I2C
bus, then it computes the background subtraction and lastly it performs the classification.
Therefore, computation time is the time elapsed between starting reading and classification
output. Total time is 4.01 ms; figure 2.4.1 shows the different parts in the active phase. Read-
ing the data takes most of the time, background subtraction is negligible and classification
takes around 2 ms.

Memory Footprint The compiler returns Text, BSS and Data values for the implemented
firmware. Biggest size is text, that fits into around 20 kB Flash. The other two values in table
2.3, BSS and Data, are respectively initialized and uninitialized variables. The sum of the
two shows a total of around 6 kB in the RAM.
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FIGURE 2.7: Current consumption during the active phase.

Classification Performance To evaluate the differences, we computed the accuracy of
the test Dataset with Tensoflow on the PC. Then we send the Dataset via UART to the board,
already preprocessed on the computer. This is to focus on the loss due to the classification,
by not considering the contribution of preprocessing. We sent all the three sets (training,
validation and test) to have a more generic description of the losses.

TABLE 2.4: Loss in classification between 32 bit floating point and 8 bit fixed point
representation

Accuracy Tensorflow [%] CMSIS-NN [%] Loss[%]
Train 81.1 80.9 0.2
Validation 77.4 76.4 1.0
Test 76.9 76.7 0.2

2.5 Conclusions

Summing up, we demonstrated that, in the case of the Convolutional Neural Network, low
precision format (8 bit fixed-point) does not affect significantly the performance, and it makes
the system lose at maximum 1% of accuracy. Finally, it lets the network fits in just ~20 kB
of Flash and ~6 KB of RAM.

Overall, the case study presented here was a first exploratory activity to apply the main
elements of our approach: bringing intelligence at the "thing" level keeping an eye on the
balance between performance and energy efficiency, acting at both hardware and software
level. The underneath application theme is to enable functionalities at the edge of an IoT
infrastructure for context extraction in outdoor scenarios. This is because we want to apply
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our research to smart cities. In the next chapter, we will move to a different sensor, but we
will dig further in the exploration of deep learning techniques to make the "things" even more
smarter. We thus switch the application domain to Audio Event Detection, where the algo-
rithm is still a convolutional neural network, and the quantization procedure in this chapter
is the starting point for a more advanced approach.
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Chapter 3

Neural Network Distillation Targeting
Embedded Platforms

3.1 Overview

The work on the low-resolution thermal sensor shows the predominance of neural networks
against classic computer vision approaches. At the same time, the images coming from the
sensor do not carry enough details to identify different events or extract context information.
To extract richer content and perform more advanced classification tasks a different sensor
will be required, e.g., a high-resolution vision sensor. Examples of applications enabled
by a camera could be trackers/counters of cars, people, bicycles. A well-known drawback,
however, is their power consumption. Moreover, the use of cameras in public places raises
privacy concerns.

Audio sensors, i.e. microphones, are more energy-efficient components than vision ones
for IoT end nodes. They likewise enable context information extraction, keeping the con-
sumption of the sensor itself under mW values. Everyday experience tells us that audio
signals provide useful and different information, such as understanding a scene we are in or
observing or identifying specific events. As in the study done with the thermal sensor, the ar-
chitecture for audio analysis is based on convolutional networks, this time on spectrograms.
It means that most of the explorations for the embedded implementation of the people detec-
tion system described in the previous section is reused and improved in this chapter. While
in the case of the thermal sensor the model itself was shallow, and the main limitation is the
relatively low information in the input data, here the problem is on the computational ef-
fort. State of the art sound processing techniques for classification tasks, such as audio event
detection or scene recognition, are not tailored for embedded system. In other words, the
number of operations required and the amount of RAM needed exceeds microcontroller ca-
pabilities. However, low-power microcontrollers are, in many cases, the only possible choice
to implement an energy independent end node and thus a pervasive IoT application.

Our proposed approach differentiates itself from those available in literature in many di-
rections since it attempts to pull together the benefits of the multiple compression methods
described in the introduction (see paragraph 1.4.1). We start from a large model and com-
press it. However, instead of just focusing on pruning or weight sharing, which provides
limited memory reduction without decreasing the processing time, we design a minimal tar-
get network and use KD to train it (instead of training from scratch as in [79, 92, 105]). Note
that distillation is typically employed to obtain limited network reductions, while here, we
target extremely high compression factors. On top of this heavy compression, we apply a
stochastic weight and buffer quantization without the need for retraining the network. To
confirm all the estimation in a real-life scenario, we implemented the student network on a
microcontroller with resources typical of an IoT end-node, and we evaluated the accuracy of
the actual implementation. The final result definitely respects an IoT end-node constraint,
using just 34.3 kB of RAM and 5.5 mW of power consumption.



30 Chapter 3. Neural Network Distillation Targeting Embedded Platforms

FIGURE 3.1: From state-of-the-art to IoT: Starting from a sound event detection
dataset and a state-of-the-art network topology that performs well on the problem,
we apply the student-teacher approach to train a much smaller network that would fit
on IoT devices. Finally, we quantize the compact network and write the firmware for

low-energy platforms.

3.2 Knowledge Distillation

In this section, we give a brief overview of the Student-Teacher approach.
Considering a generic neural architecture where a feature extractor is followed by clas-

sifier, several strategies can be adopted to train the student network. Figure 3.2 graphically
shows the distillation process, where the upper part represents the teacher network and the
lower part is the student.

The first training strategy uses the hard (one-hot) labels, which corresponds to training the
network from scratch without any other knowledge. Since we are dealing with a multi-class
classification problem, the loss is based on cross-entropy:

Lh(X) = −
N

∑
n=1

C

∑
c=1

yn log(pc(xn)), (3.1)

where X = {x1, . . . xN} is the set of the network input features, N is the number of samples,
C is the number of classes, Y = {y1, . . . yN} are the one-hot labels, yn is a C-dimensional
binary vector and pc(xn) is the network output for class c = {1, . . . , C} given the input
vector xn. Denoting as pc(xn) the output of the teacher network, the soft loss Ls(X) can be
formulated by replacing the hard labels with the teacher output:

Ls(X) = −
N

∑
n=1

C

∑
c=1

pc(xn) log(pc(xn)). (3.2)

Combining equations 3.1 and 3.2 leads to the approach in [35]:

Lh,s(X) = αhLh(X) + αsLs(X), (3.3)

where αh and αs are combination weights. A further strategy, in line with [76], is to make the
student learn how to replicate the features produced by the teacher, leaving the classification
independent. The embedding loss Le(X) is thus defined as:

Le(X) =
N

∑
n=1

||vt(xn)− vs(xn)||2, (3.4)

where vt(·) and vs(·) are the feature vectors produced by the teacher and student networks
respectively. Finally, we consider a compound loss obtained as linear combination of the
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FIGURE 3.2: Block diagram of KD using teacher intermediate features (LE), soft
teacher output (LT) and dataset labels (LH)

three losses introduced above:

L(X) = αhLh(X) + αsLs(X) + αeLe(X) (3.5)

3.2.1 Dataset

For SED in outdoor urban environments, three datasets are often used in literature: Urban-
Sound8K [81], AudioSet [22], ESC50 [71] and TUT Sound events 2017 [56]. The latter is
particularly attractive because it features real recordings and several comparative methods
are available thanks to the related DCASE challenges [57]. Unfortunately, the task is very
hard and the state-of-the-art accuracy is rather low. Moreover, the class distribution is highly
unbalanced towards one class. Therefore the dataset does not allow a fair evaluation of KD
methods. ESC50 is also rather in line with our application scenario, but its size is relatively
small (3 minutes of audio per class) and does not allow generalizing the results. Finally, we
also discarded AudioSet because its video-based labels, referring to scenes instead of isolated
sound-events, require consistent additional work to be aligned with the label required for our
analysis.

Therefore, we focused on UrbanSound8K. It includes 8732 audio samples related to the
city environment, with different sampling rates, number of channels and a maximum length
of 4 seconds. Each recording has a unique label among 10 possible classes: air conditioner,
car horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren,
and street music. All clips are taken from Freesound1, a vast collaborative database of audio
samples. Following the recipe reported in [81], we use 10-fold cross-validation and average
scores. However, we took one additional fold for validation: 8 folds are used as training data,
one is used as validation and the remaining one for test (training-validation-test ratio is 0.8-
0.1-0.1). Validation fold is one index less than the test one (for example, when the test fold
is 9, the validation fold is 8). Performance is measured in terms of classification accuracy. In
all experiments, the dataset is augmented through pitch shifting [80], with both positive (up)
and negative (down) semitones with values -2,-1,1,2.

3.2.2 Teacher

State-of-the-art solutions for SED are mostly CNN fed with mel-spectrogram [70][106][104].
However, to fully exploit the potential of the KD approach, rather than training from scratch

1"http://www.freesound.org"
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TABLE 3.1: Architecture of the models under analysis. "-" means that the layer is
not active, "x" means that the layer is active.

Layer VGGish/M70M M20M M2M M200k M20k
Conv1 64 64 32 8 4
Pool1 x x x x x
Conv2 128 128 64 16 8
Pool2 x x x x x
Conv3 256 256 128 32 16
Conv4 256 - - - -
Pool3 x x x x x
Conv5 512 256 128 64 16
Conv6 512 - - - -
Pool4 x x x x x
Conv7 - - - 64 32
Pool5 - - - x x
FC1 4096 2048 512 256 64
FC2 4096 2048 - - -
FC3 128 128 128 128 128
BatchNorm x x x x x
GRU 20 20 20 20 20
FC4 10 10 10 10 10
#Param ~72.1M ~18.0M ~1.88M ~202k ~30.6k

our big CNN, we employed the publicly available VGGish2 feature extractor [33], followed
by a classification stage tailored on UrbanSound8K. VGGish is trained on the Youtube-8M
Dataset [23] and it is expected to generalize well to other application contexts. Note that
this fact introduces a further novelty in our work since distillation is performed on a dif-
ferent dataset than that used in the original training. VGGish converts 960 ms audio input
mel spectrogram into a 128 dimensional embedding that can be used as input for a further
classification model. The classifier can be shallow as the VGGish embeddings are more se-
mantically representative than raw audio features. The VGGish architecture is described in
Table 3.1. For all the convolutional layers the kernel size is 3, the stride is 1 and the activation
function is ReLu. Max pooling layers are implemented with a 2x2 kernel and a stride of 2.

The classifier consists of a gated recurrent unit (GRU) followed by a fully connected
layers and maps the VGGish embeddings into the 10 classes of UrbanSound8K. A Batch-
Normalization layer is inserted between the feature extractor and the classifier to accelerate
training.

VGGish expects as input 960 ms of audio signal sampled at 16 kHz. Each clip in Ur-
banSound8K is resampled and padded or cropped to get a length of 960*4=3840 ms. The
resulting signal is divided into 4 non-overlapping 960 ms frames. For each frame, the short-
time Fourier transform is computed on 25 ms windows every 10 ms. The resulting spectro-
gram is integrated into 64 mel-spaced frequency bins, covering the range 125-7500 Hz, and
log-transformed. This gives 4 patches of 96 x 64 bins that form the input of the VGGish.

2"https://github.com/tensorflow/models/tree/master/research/audioset"
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FIGURE 3.3: Average accuracy for the 4 different models in table 3.1 plus model
M70M. Each line represents a different training strategy. Th is standard training,
using just hard labels. Th,s uses both hard and soft labels. Th,s,e minimize also the
feature vector produced by an intermediate level. Dashed line is the teacher accuracy,

here referred as baseline.

3.2.3 Distillation

In this section, we analyze how the compression factor impacts on the final classification
accuracy, using the standard loss and the loss compound described above. Although our goal
is to fit the classifier on an IoT device, we consider four different degrees of compression,
to better assess the potential and limits of the proposed approach, as reported in Table 3.1.
An heuristic adjustment of the layers and the number of filters is used to design the reduced
networks. The model subscript Mx approximately represents the number of parameters of the
upstream part. Note that the student networks drastically reduce the feature extractor only.
The classifier is re-trained, but it keeps the same architecture, i.e. a 20-unit recurrent layer
followed by a 10-unit fully connected layers.

Figure 3.3 reports the results in terms of classification accuracy for the 4 models and
when training from scratch on UrbanSound8K and when distilling from the VGGish teacher.
In addition, we consider the model M70M, which is a replica of the VGGish’s architecture. All
models considerably improve thanks to knowledge distillation with respect to being trained
from scratch. Note also how the large models (M20M, M70M) perform much worse than
VGGish and slightly worse than M2M when trained from scratch: this is due to the fact that
UrbanSound8K is not large enough for such huge networks. Finally, it is worth noting that
the VGGish baseline is outperformed also by all models with more than 2M parameters.
This is mostly due to the domain adaptation that we are implicitly applying when distilling
knowledge from the teacher. As a matter of fact, the student feature extractor is tailored to the
new in-domain data from UrbanSound8K, providing an improvement over the more general
purpose VGGish feature extractor trained on Youtube8-M.
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FIGURE 3.4: Two stage distillation: M70M is firstly trained from VGGish and the
student M20k is distilled from M70M

3.2.4 Two-Stage Distillation

The previous analysis, showing that we are jointly performing domain adaptation and param-
eter reduction, suggested us to investigate whether a further improvement can be achieved by
separating these two processes. Figure 3.4 describes our proposed 2-stage distillation, where
we train the smallest network using the M70M network as teacher. Note that M70M is still
trained using the compound loss in Eq. 3.5. Results are reported in Table 3.2 in comparison
against training from scratch and using distillation from VGGish. The proposed approach
achieves a 72.67% accuracy on the test set, providing a 3 points improvement over a more
traditional distillation strategy (69.7%). We expect an increase in performance in the small
network because the new teacher is performing better on the dataset (%76.07 versus %74.7 of
the baseline). Interestingly, the new M20k model is just 2 points below the VGGish baseline
and 4 points below M70M, in spite of using less than 0.0424% of the parameter and 0.12% of
the operation.

TABLE 3.2: Accuracy of the M20k for: training from scratch, distillation from VGG-
ish and distillation from M70M

Standard Training From VGG-ish From M70M
M20k 61.83 69.72 72.67

3.3 Hardware Resources and Network Requirements

3.3.1 Approximate Hardware Requirements per Model

One interesting aspect towards tayloring our distilled networks for a resource constrained
platform is to understand what are the computational and hardware requirements for a given
model, or to understand what accuracy would be achievable with a given platform.
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TABLE 3.3: Approximate computational and memory requirements for each network

VGGish M20M M2M M200k M20k
#Param ~72.1M ~18.0M ~1.88M ~202k ~30.6k
#Operations ~1.72G ~608M ~148M ~13.6M ~2.11M
#Buffer [B] ~614k ~602k ~301k ~76.0k ~34.3k

Table 3.3 reports an approximation of the computational requirements of each network:
number of parameters to store, number of operations and buffer sizes. For memory require-
ments, we refer to an implementation using 8-bit quantized weights and buffers as specified
in the CMSIS-NN library.

With an 8-bit quantization, each parameter takes one byte; therefore, the non-volatile
memory in bytes needed by a model equals the total number of weights and biases (first row
of Table 3.3).

Buffers keep the outputs of each layer available during propagation and are stored in the
RAM. The size of these buffers depends on the output dimensionality of each layer. However,
the total amount of run-time memory required depends heavily on how efficiently buffers are
implemented. The third row of Table 3.3 reports the RAM requirements of each model given
the buffer design described in section X.

The number of operations (both multiplications and sums) depends on the layer type:
in convolutional and maxpooling layers, each output pixel comes from a filter application.
Given kernel size k and number of input channels c, each filter requires the following opera-
tions:

Ops f ilter = 2 · c · k2. (3.6)

Therefore, the number of operations for each convolutional and maxpooling layer is:

OpsConv = Ops f ilter · outH · outW · outC, (3.7)

where outH, outW , andoutC are the output height, width an channel respectively.
For dense and GRU layers the number of operations is the number of matrix multiplica-

tions:
OpsDotProduct = 2 · inshape · outshape. (3.8)

Gated recurrent unit requires also three element-wise products.

3.3.2 Selection of the Device Class

Table 3.4 shows a non-exhaustive list of processing platforms potentially adequate to be
integrated into an end-device, with their power consumption and memory. In this section,
we provide a qualitative analysis of what devices would be able to run the distilled models
presented in the previous sections. This analysis is inevitably rough as many figures are
approximated and the actual values cannot be derived analytically. Additionally, we are
not considering the time and resources required for other processing stages (e.g., Mel-bins
extraction); thus, the constraints are rather relaxed with respect to the actual application.
Nevertheless, the devices in Table 3.4 show substantial differences in MIPS and memory (in
the order of powers of 10); therefore, the results of this study are still valid as long as we
refer to classes of devices.

Computational Cost. To ensure real time classification, the network must process each
960 ms audio frame (~1 second) before the next frame arrives. Thus, classification time must
be shorter than 1 second. Unfortunately, converting exactly the Million Operation Per Sec-
ond (MOPS) required by each model in the MIPS available on a given device, as reported in
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TABLE 3.4: Examples of embedded platforms and their hardware capabilities.

Board Name Flash[KB] RAM[KB] Power [mW] MIPS
Arduino 32 2 60 20
ChipKit uc32 512 32 181 124.8
STM32L476RG 1024 128 26 80
TI MSP432P4111 2048 256 23 58.56
BeagleBone Black Ext 524288 2300 1607
Raspberry Pi 3 B+ Ext 1048576 5500 2800

the datasheet, is not feasible. As a matter of facts, the number of instructions required by an
operation depends on many factors, the most important being the actual implementation. In
this analysis, we rely on the assumption that, on average, the number of operations is equal
to the number of instructions. Typically, instructions are more than operations because each
operation involves branch, load and store instructions. However, most of 32-bit microcon-
trollers support single instruction multiple data (SIMD), which allows up to four instructions
in one clock cycle. We assume that these two effects are balanced and the number of opera-
tions is equal to the number of instructions. In the next sections, we will demonstrate that the
actual throughput (operation per instruction) is larger than 1, but it gets close enough (1.8)
in some situations. Given this assumption, in combination with the fact that other processing
stages are not being accounted for, the MIPS available on the device must be larger (with
some margin) than the MOPS needed in one forward propagation.

Memory constraints are also relevant: the RAM on-board must contain the intermediate
values and the non-volatile memory should contain all network parameters. However, non-
volatile memory is not the main limit in our examples: whenever the network does not fit in
the flash memory it does not respect one of the others two parameters (RAM or MIPS).

Figure 3.5 roughly compares the devices in Table 3.4 in terms of RAM and MIPS limi-
tations against the compressed models each device can afford. None of the proposed models

FIGURE 3.5: Models requirements vs hardware capabilities: a qualitative analysis
Rectangles define network requirements : in terms of MIPS and RAM.

fits in the Arduino platform due to its limited RAM. The last two platforms of Table 3.4 (Bea-
gleBone Black and Raspberry Pi 3 B+) have enough RAM and MIPS to handle all models
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(actually VGGish fits only in Raspberrypi 3 B+). However, their power consumption is in
the range of Watts that is not suitable for IoT applications. Therefore only devices ChipKit
uc32, STM32L476RG, and TI MSP432P4111, which are approximately in the same class,
are potentially suitable to host the distilled models. Uc32 is faster than both STM32 and
TI platforms and would comfortably run the two smallest models in real-time, but its 32KB
RAM is not large enough to fit even the ~34.3 kB needed for the buffers of the smallest model
M20k. Concluding, M20k and M200k are the only suitable models for the target application and
can be implemented in both the STM32L476RG and TI MSP432P4111 platforms. In the next
section, we detail our implementation of M20k in the STM32L476RG platform.

3.4 Embedded Programming

For the implementation of our SED system, we selected a Cortex M4 architecture operating
up to 80 MHz, which is a good compromise between efficiency in processing and flexibil-
ity in power management. In particular, we worked on an STM3276RG Nucleo board as
a development platform. Thus, the reference values for current consumption are 420 nA in
standby mode and 100 µA/MHz in full running mode. The Floating Point Unit (FPU) fea-
tures single precision and implements a full set of optimized Digital Signal Processing (DSP)
instructions for fixed-point operations.

Cortex-M4 provides SIMD instructions that operate on 8 or 16-bit integers. They are
powerful for processing data such as video or audio, when full 32-bit precision is not neces-
sarily required. The SIMD instructions allow 2 x 16 bit or 4 x 8 bit operations to be performed
in parallel [52].

3.4.1 Quantization

Feed-forward propagation through a neural network requires vector/matrix/tensor multipli-
cation and convolution. Therefore, all the core features employed in signal processing can
be used for neural network computations. For this reason, ARM developed the CMSIS-NN
framework for neural network propagation on top of DSP libraries [45]. The CMSIS-NN
library maximizes performance and energy efficiency of common deep learning kernels on
top of Cortex-M series cores.

Like for DSP, truncation of floating point numbers to 8 or 16-bit fixed point numbers
improves the execution time and reduces the memory footprint. According to [45], 8-bit
quantization achieves 4.6X improvement in runtime/throughput and 4.9X improvement in
energy efficiency in image classification with CIFAR10 dataset. On the other hand, since
quantization implies loss of precision, we could expect a direct impact on the final prediction
performance. However, the authors of [50] experimented different kinds of quantization in
image classification, achieving a 20% drop in model size without significant loss of accuracy.
In the following, we describe the quantization process from a 32-bit floating-point to an 8-bit
fixed-point representation. From now on, we will assume that floating point numbers has
infinite precision and we will use the nomenclature typically used for DSP.

Quantization describes a real number with finite resolution. When a uniform quantization
is applied, three parameters are used to define the fixed point representation: bit-width, step-
size (resolution) and dynamic range [50]. These parameters are correlated by the following
expression:

Range = Stepsize · 2bitwidth−1, (3.9)

where bitwidth − 1 accounts for the bit used to represent the sign. Stepsize is the minimum
step between two fixed point numbers and will be always chosen as a power of two for
convenience with binary representation.
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An equivalent formulation of Eq. 3.9 can be obtained by considering the number of bits
used for the decimal and integer parts of numbers:

Range = 2integer

Stepsize = 2−decimal

bitwidth = integer + decimal + 1

where, integer is the number of bits used to represent the integer and decimal is the number
of bits used for the decimal part. +1 in the last equation accounts for the sign bit. Basically,
given a fixed number bitwidth of bits, increasing the range by increasing the number of bits
for the integer part degrades the resolution. Conversely, decreasing Stepsize, by allocating
more bits to the decimal part, leads to a range reduction.

The quantization error eq is the difference between the infinite precision number and the
quantized representation:

eq = x − Q(x) (3.10)

where x and Q(x) are the input and the quantized output. If we treat the input as a random
variable with a probability density function fx (see [84]), the mean square quantization error
is the combination of two different errors, namely granular error (MSEq,g) and overload error
(MSEq,o)):

MSEq,g =
N

∑
i=1

� di+1

di

(x − Q(x))2 fx(x)dx

MSEq,o =
� d0

−∞
(x − Q(x))2 fx(x)dx +

+
� dN

−∞
(x − Q(x))2 fx(x)dx

where N is the number of quantization levels (in our case 2(bitwidth)) and di are the decision
levels, i.e. any number between di and di−1 is coded with the same fixed-point representa-
tion, usually (di + di−1)/2. The two mean square errors are related to Stepsize and Range
respectively. If Stepsize is reduced then MSEq,g decreases; on the other hand if Range is
made wider, MSEq,o decreases.

The figure of merit linked with MSE is the SQNR, defined as:

SQNR =
E
�
x2�

E
�
e2

q

� =
E
�
x2�

MSEq
(3.11)

Therefore, the goal is to define the optimum trade-off between Range and Stepsize to
minimize the SQNR in the target application. In the following, we describe two different
strategies to perform quantization using the quantization parameters and its figure of merit
described above.

3.4.2 Quantization Design

Applying quantization to neural networks has different requirements with respect to other
contexts, as image quantization or audio quantization. In particular, we are not interested
in preserving an accurate representation of all activation outputs or weights for each layer.
Conversely, we want that the final prediction is as close as possible to the prediction of the
network with a 32-bit floating-point representation. To summarize, accuracy is the most
relevant metric.
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An exhaustive search of all the possible integer/decimal combinations, evaluating the
final accuracy, is not feasible in practice. In the smallest network, i.e. M20k, the number
of integer/decimal digits would be 28, and each of them can vary between 0 and 7 (setting
the decimal digit decides the integer part when bitwidth is fixed). Therefore, the number of
possible combinations is given by the permutation with repetition: 728 = 4.5 ∗ 1023.

The two solutions presented in this paragraph target the maximization of the SQNR or
the reduction of the overload error.

The first approach to compute SQNR applies quantization on each variable (weights, ac-
tivation) one at a time. For the weights, we choose the number of decimals that maximizes
the SQNR. For the intermediate outputs we compute the SQNR running a forward prop-
agation in floating-point on the training dataset and testing all the possible integer/decimal
values (in the range from 0 to bitwidth). Each activation output is analyzed independently,
eventually leading to different quantization trade-offs.

This approach relies on [50], where the overall SQNR, here defined as γ, is the harmonic
mean of the SQNR of all preceding quantization steps:

1
γoutput

=
1

γa(0)
+

1
γw(1)

+
1

γa(1)
+ · · ·+ 1

γw(L)
+

1
γa(L)

(3.12)

It turns out that maximizing the single SQNRs maximizes the overall SQNR, regardless of
where quantization happens (at the first layers or at the last layers).

The second approach is based on the different effects of granular and overload errors. It
is reasonable that a single number with a high quantization error due to overload will affect
the overall forwarding of the neural network. Conversely, the ensemble of small granular
quantization error may not change the argmax of softmax layer, that is the value used to
determine prediction and accuracy. Therefore, we select the integer/decimal ratio that reduces
the probability of having values out of the quantization range. In particular, we set the number
of bits for the integer part i such as

min(i) : P(|x| < 2i) < Pth (3.13)

where x is the floating-point input and Pth is the probability of overload that one is willing to
accept. This approach differs from the previous one for three reasons. (i) Numbers with large
overload error have bitwidth of the same importance than numbers with small overload error.
(ii) Thus, each overload is considered uniformly, without accounting for the granular error
but taking into only the overload error. (iii) This second approach has a hyper-parameter, i.e.
the probability threshold, which requires a fine tuning on the training set. We heuristically
set the threshold to 10−4.

We estimate the probability density function f (x) using the whole training set. The
percentage of values out of the range is counted for all the possible decimal values involved
in the network feed-forward propagation.

The upper part of Figure 3.5 is the histogram of the absolute value of the activation
outputs between two consecutive powers of two. Most of the values (more than 106) are
between -1 and 1 (or equivalently |x| < 20). Oppositely, just a small set of numbers (around
102) are such that 22 < |x| < 23; they are depicted in the fourth bar. The central part
of Figure 3.6 depicts the relative distrbution for each class of values, e.g. the estimated
probability that a value is inside a given range related to two consecutive powers of 2. The
values confirm what bars show: values in |x| < 20 are the most likely and values in 22 <
|x| < 23 appears only with a probability of 10−5. Finally, the plot at the bottom depicts
the SQNR using the number of bits for the decimal part available for a given range in the
x axis (the range determines the bits for the integer part). For example, the most left point
is the SQNR using 0 bits for integer part (which allows describing numbers in the range
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FIGURE 3.6: The upper part shows a histogram of the activation values of one layer,
between consecutive powers of 2. The lower part shows an example of the behaviour
of the two quantization schemes investigated here. The central graph concludes that
3 decimals should be used for the integer part, because it is the first point in which
probability goes below the threshold. The bottom line shows that two digits for the
integer part are the solution with maximum SQNR and therefore the minimum MSE

0 ≤ |x| < 20) and 7 bits for the decimal part. In this particular case, corresponding to a layer
of the network, the optimum number of bits for the integer part obtained by maximizing the
SQNR (three) does not correspond to what obtained by setting the probability threshold to
10−4 (four).

3.4.3 Firmware Programming

To transfer the neural model from to CMSIS-NN we developed an automatic python script to
export the Keras model in an header file containing the weights to use in the firmware. To do
so, firstly, we reordered the weights following the convention of both source and destination
framework, then we quantized the weights using both quantization schemes. In this work, we
set bitwidth to 8 since we privilege execution time and power consumption with respect to
accuracy. Note that we implemented a slightly different version of the M20k model, replacing
the GRU layer with a vanilla recurrent neural network (RNN). The reason is that the im-
plementation of a GRU layer in CMSIS-NN requires an additional effort while the accuracy
does not change significantly.

The CMSIS-NN functions require different arguments: input dimension, number of chan-
nel and so on. These parameters should be extracted from the neural network and loaded in
the microcontroller. Some of them requires extra processing, like shifting of weights and bias
in internal operations. A detailed description of these parameters follows here.
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TABLE 3.5: buffers size required for each layer. Reuse of buffers allows memory
saving. Two buffers (A,B) must contain maximum value in odd index and even index

of sizeoutput respectively.

I C1 C2 C3 C4 C5
sizeoutput 6144 23312 10440 4368 720 ...
buffer A B A B A B

Suppose that we are in an intermediate layer i and that the quantization procedure con-
cludes that the number of integer bits m and the number of decimal bits n for weights, bias,
input and output are mw, nw, mw, mb, mi, ni, mo, mo. The neural network operations include
always a linear combination of weights and input, so that

output = input ∗ weight + bias.

In multiplications between fixed point numbers, the number of decimal digits of the result
are given by the sum of the number of decimal digits of the two operands. To sum the bias to
this intermediate value, we need to use the same number of decimals. Thus, we shift the bias
to make it match. In most of the cases it is a left shift. Finally, the output must have a certain
number of decimals to get back in a fixed bitwidth format, so we apply a further shift. This
last shift is opposite to the previous one and in CMSIS-NN is referred to as right shift. These
concepts are expressed in formulas, implemented in the header files by means of a macro:

le f t_shi f t = (ni + nw)− nb

right_shi f t = (ni + nw)− no

Another parameter to bear in mind is the size of the buffers. To necessarily instantiate
buffers in the program, they need to be known in advance. During inference, intermediate
values are discarded, and only the final prediction and the network state (in case of recurrent
neural network) are kept. As a consequence, it is possible to use the same buffers in multiple
layers.

Each layer needs a pair of buffers able to contain output and input. To find the minimum
size for these two buffers, we create a vector with the number of element between layers,
sizeoutput = a0, a1, a2, ..., where a0 is the input size. For each layer, the 2 buffers will switch
their role: in the first convolutional layer, the input will be a0 and the output a1. For the next
layer, a1 is the input, a2 is the output and so on. Table 3.5 shows the sequence of input and
output for each layer in the implemented network. It shows that the two buffer sizes should
be selected accounting for the maximum in odd and even indexes in the vector.

Finally, the CMSIS-NN framework requires also an additional small buffer for interme-
diate calculations, which can be reused in the implementation too.

3.5 Results

We evaluate the porting of our SED model to the microcontroller, in terms of power con-
sumption, execution and recognition accuracy.

3.5.1 Accuracy

Input data from the test-set are sent by UART to the Microcontroller (MCU) using a Python
script. The forward propagation is computed inside the microcontroller that provides the
prediction results on the same bus for accuracy evaluation. Following the recipe in [81], we
used a 10-fold cross validation and average scores. For each test fold, we load models in
the microcontroller with the quantization parameters computed on the related training set.
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FIGURE 3.7: Accuracy over the 10 folds for Urbansound8K dataset. Pink: floating
point implementation. Blue: quantization by maximizing the SQNR. Green: quanti-

zation by minimizing the probability of overload error

Figure 3.7 depicts the accuracy over the 10 folds. The average accuracy shows a decrease of
performance in both quantization schemes, but it is limited to a 2% drop overall if compared
to the floating-point version (pink). Note that this minor performance drop could be limited
by fine-tuning the quantized network [103].

Looking into more details, this performance deterioration is strongly dependent on the
train/test-set split of each fold. Figure 3.8 reports the performance for three folds (train/test
configurations): fold 7, fold 10, fold 2. When testing on fold 7, the performance deterioration
is in line with the average accuracy decreases of around 2%. On the other hand, when fold
10 is selected as a test set, the accuracy drop is more consistent (8%). Finally, the impact
of quantization error becomes negligible, or it even improves the classification results, in
fold 2. This behaviour is related to the robustness of the original floating point model. As
pointed out by Piczak [70], some classes are more difficult to detect by a convolutional neural
network, because of their short scale temporal structure (drilling, engine idling, jackhammer).
Whenever the floating point network correctly classifies these classes, the difference between
the likelihoods is probably shallow and the errors introduced by quantization can lead to a
misclassification, leading to huge performance degradation. Similarly, the gap between the
floating point and quantized network decreases or disappear when the reference network
already does not classify correctly the difficult classes, as performance is already bad.

To confirm that, we compared the accuracy gap due to quantization and the F1 for these
problematic classes. In all three cases, we confirmed that whenever the F1 score is high the
accuracy drop increases, following an exponential profile as Figure 3.9 shows. The figure
refers to the class "Jackhammer".

3.5.2 Execution Time and Power Consumption

In section 3.2.1, we estimated the execution time of several network architectures by assum-
ing that the number of operations is equivalent to the number of instructions, this way allow-
ing a comparison between different platforms in terms of MIPS available from the datasheets.
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FIGURE 3.8: Accuracy gap between floating point network and quantized versions
for different folds. Accuracy degradation in fold 10 is more evident than in fold 2

In this section, we evaluate the actual execution time and the power consumption of our im-
plementation of the smallest model M20. Measurements are done on the real prototype using
the same system used to compute the accuracy. We measure the performance layer by layer to
understand how each component contributes to the overall processing time. Table 3.6 reports
the evaluation results.

The CMSIS-NN framework implements a "basic" and a "fast" version of convolutional
layers. The latter uses assembly directives to speed-up execution, especially by means of
multiply-accumulate (MAC) and SIMD. The only constraint for using this faster implemen-
tation is that the number of channels must be a multiple of 4 for 8-bit fixed-point quantization.
This is the reason why, the number of channels of the convolutional layers of all architectures
described in Table 3.1 are multiple of 4. Problems arise on the first layer, whose input is the
Mel spectrum that has just one channel. This does not allow us to use the optimized version
for convolutional layers and for this reason the first convolutional layer takes more than half
of overall execution time, with a throughput of 6.56 MOPS (see line 2 of Table 3.6). The sec-
ond convolutional layer implements the fast version and takes just 20 ms, even if it is more
computationally intense, performing 37.34 MOPS. This highlights how important is the par-
allelization and how much a proper parallelization in the first layer can reduce drastically the
overall execution time.

To stress more the importance of an efficient framework for deep neural networks, we
used a reference implementation of plain C (without explicit SIMD directives) for convolu-
tional, maxpooling and fully connected layers. The comparison is in the last two lines of
Table 3.6. The total execution time is speed-up of x2.32 with the fast implementation of
CMSIS-NN with respect to plain C.

In Section 3.3, we stated that the combination of x4 parallelization and overhead, due
to branches and load-store instructions, makes the microcontroller able to perform an 8-bit
operation in just one instruction. The selected platform executes 80 MIPS, thus we expect
80 MOPS, but the overall throughput is different in real-time measurements (average 17
MOPS). Looking at the peaks in layer conv4, 53.44 MOPS is still far from our estimation
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FIGURE 3.9: Relation between performance in a specific class (Jackhammer) and the
drop in accuracy in each fold due to quantization error. Due to its short-time duration,
the class is difficult to detect for the convolutional model, thus its classification gets

harder in the quantized model

of 80 MOPS. It means that parallelization does not fully compensate the overhead due to
load-store and branches and we need approximately two instructions to execute an operation.
The average (17.08 MOPS) is far from this peak level, mainly because of the first layer, that
is the dominant part and it is not fully parallelized.

3.6 Conclusion

To sum up,

• we achieve a student model that, thanks to a two-step knowledge distillation, performs
just 2 points below the VGGish baseline in spite of using less than 0.0424% of the
parameter and 0.12% of the operation;

• the final implementation on the microcontroller has a propagation time of 125 ms for
each 1-second-audio-clip using just 5.5 mW average power and 34.3 kB of RAM.

In this chapter, we continued our exploration of the use of artificial intelligence at the
"thing" level, in this case considering audio as the information to elaborate. We described the
whole process from a state-of-the-art model for sound event detection to its energy efficient
implementation in a microcontroller adequate for IoT applications. In particular, we explored
knowledge distillation as a relevant approach to bring accurate context information at the very
edge. We also played with the quantization strategy and with the architecture of the student
network.

The lesson we learned from the specific case study presented is that knowledge distilla-
tion can be effective also for extreme compression rates, achieving models suitable for real
time applications on IoT nodes. We also confirmed the lesson learned in the thermal sensor
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case study regarding quantization, i.e. that 8-bit quantization is quasi-lossless. In the next
chapter, we move the quantization forward to 1 bit per weights and activations. Moreover,
the hardware platform, namely GAP8, is a recent commercial product meant to speed up
computation of neural networks.
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TABLE 3.6: Execution time on the real platform, layer by layer. In the bottom,
overall execution time using CMSIS-NN and without DSP optimization (Plain C)

Layer Output Channel #kop Exec. Time [ms] MOPS
Input96,64 1 - - -
Conv1 4 419.61 63.93 6.56
Pool1 x 23.31 10.17 2.29
Conv2 8 751.68 20.13 37.34
Pool2 x 24.84 8.32 2.99
Conv3 16 628.99 12.90 48.76
Pool3 x 11.09 3.63 3.03
Conv4 16 207.36 3.88 53.44
Pool4 x 2.16 0.69 3.15
Conv5 32 27.65 0.60 46.23
Pool5 x 0.58 0.17 3.31
FC1 64 8.19 0.22 38,10
FC2 128 16.38 0.42 38.73
RNN 60 22.56 0.55 40,58
FC3 10 1.20 0.04 33.33
Total - 2145.61 125.6 17.08
Plain C - 2145.61 291.4 7.36
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Chapter 4

Binary Neural Network for Sound
Event Detection

4.1 Overview

In the previous chapters, we presented the quantization of weights and activations as a power-
ful tool to reduce execution time and memory requirements. Losses due to lack of numerical
precision are negligible in all the cases presented. To summarize, quantization to 8-bit preci-
sion is a quasi-lossless speed up for neural networks.

The typical evolution toward this direction is less precise weights and activations, such
as 4 bits per number, ternary neural network down to binary neural network. In the last case,
weights and activations are described by a single bit, saved in 32bit-registers. It enables
the processing of 32 numbers with only a single instruction if the hardware supports specific
instructions. Unfortunately, the performance drop here is evident, and it goes from 7% to 15%
in various applications. Researchers are trying to reduce the gap of performance between full
precision and binary networks, and the methods implemented here are state of the art in loss
reduction.

Another step forward made in this chapter towards AI-enabled IoT platforms regards the
hardware employed. In the two previous chapters, we implemented our approach on com-
mercial microcontrollers. These platforms have a well-supported software development kit
and a variety of examples and resources online. However, they are not updated to the latest
progress in literature, and the use of neural networks on microcontrollers is a recent field of
interest. On the other hand, hardware research is following the progress in algorithms. The
example of a state-of-the-art platform presented here in this chapter uses a multi-core struc-
ture powered by low voltages, following the Parallel Ultra Low Power (PULP) paradigm. In
addition, the used platform, namely GAP8, has a peculiar Instruction Set Architecture for
Binary Neural Network, which includes popcount instructions.

The challenges addressed in this chapter are different from the previous ones: the re-
search platform makes the development difficult, and we designed the Application Program
Interfaces for Binary Neural Network, caring about efficiency aspects and the correct use of
hardware features such as parallelization.

The combination of hardware parallelism and ad-hoc instructions is an enabling factor
for the specific application presented in this chapter. Experimental evaluation shows that
our implementation on the PULP platform is 51x more efficient and 10x faster than the
implementation of the same network in the Cortex-M4 based counterpart.

4.2 Feature Extraction and BNN

The idea behind BNNs is to approximate the multi-bit filter weights and inputs with binary
values in NNs. Binary weights and activations imply a significant decrease in memory usage
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as well as computational cost [75]. In this section, we describe the structure of the network,
starting from the audio stream to the final prediction.

4.2.1 Feature Extraction (Mel Bins)

The preprocessing part computes the short-time Fourier transform (STFT) in windows of
32 ms every 8 ms. Then, we apply the Mel filters to generate 64 Mel bins. The 400 features
are then assembled to create the Mel-spectrogram for 3.2 s of audio. The resulting matrix
with a shape of 64 × 400 is the input to the neural network.

4.2.2 First Layer and Binarization

The input data to the network is non-binary and has, therefore, to be treated separately. A
robust approach is to keep the first network layer in full-precision, like in Courbariaux et al.
[15]. In this way, the network learns the binarization function from the training set.

After the convolution, batch normalization is applied, which can be replaced in inference
by a bias and a scaling factor, and is finally followed by the signum activation function for
binarization.

To avoid floating-point operations, all the operations described in this section are done in
fixed-point. Fixed-point operations are more efficient in terms of execution time and energy
consumption without significant loss of performance [50].

On the other hand, fixed-point quantization requires additional effort in finding the cor-
rect amount of integer and fractional bits for each parameter representation. For doing this,
we check the range of the parameters, and we choose the number of integer decimals that
represents most of the numbers (99.9%) without overload error.

4.2.3 Binary Convolution

BNNs constrain weights and inputs to I ∈ {−1, 1}nin×h×b and W ∈ {−1, 1}nout×nin×ky×kx .
To avoid using two bits, we represent −1 with 0, whereas the actual binary numbers are
indicated with a hat (i.e., î = (i + 1)/2). It turns out that multiplications become xnor
operations ⊕̄ [75]. Formally the output ok of an output channel k ∈ {0, ..., nout − 1} can be
described as1:

ok = sgn
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Whereas Δy and Δx are the relative filter tap positions (e.g., (Δy, Δx) ∈ {−1, 0, 1}2 for
3× 3 filters). As calculating single-bit operations on microcontroller is not efficient, we pack
several input channels into a 32-bit integer (e.g., the feature map pixels at (y + Δy, x + Δx)
in spatial dimension and input channels 32n to (32(n + 1)− 1) packed in îy+Δy,x+Δx

32n:+32 ), while
the Multiply Accumulates (MACs) can be implemented with popcount and xnor operations.

Furthermore, as common embedded platforms like GAP8 do not have a built-in xnor op-
erator, the xor operator ⊕ is used and the result is inverted. Therefore, the final equation for
the output channel is ok =

sgn
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1For simplicity, we omit bias and scaling factor in the formula.
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TABLE 4.1: Kernel size, channel, and computational effort for each layer.

Layer Kernel Size Channel Stride MACs

First (real-valued) 3 × 3 32 1 7M
1. Binary Layer 3 × 3 64 2 109M
2. Binary Layer 3 × 3 128 1 405M
3. Binary Layer 3 × 3 128 2 186M
4. Binary Layer 3 × 3 128 1 154M
5. Binary Layer 1 × 1 128 1 17M
Last (real-valued) 1 × 1 28 1 6M

Total: 884M

4.2.4 Batch Normalization and Binarization

A batch normalization layer follows each binary convolutional layer. As the output of binary
layers are integer values, and the signum function can be written as a comparison function,
the activation function is simplified to:

· binAct(x) =





0, if x · sgn(γ�) ≥
�

β�

γ�

�

1, if x · sgn(γ�) <
�

β�

γ�

� . (4.1)

whereas γ� is the scaling factor and β� is the bias based on the batch normalization parame-
ters. While exporting the model, we compute the integer threshold value � β�

γ� � in advance. In
inference, one sign comparison and one threshold comparison have to be calculated for each
activation value.

4.2.5 Last Layer and Prediction

In the last layer, the fixed-point values from the last binary layer are convolved with the
fixed-point weights, and N output channels are calculated, where N is the number of classes.
Finally, the network performs an average pooling over the whole image giving N predictions
for each class.

4.2.6 Neural Network Architecture

Tbl. 4.1 summarizes the architecture of the NN. The neural network consists of 7 hidden
layers, 5 of which are binary. The first and last layers are real-valued. Their required com-
putations are significantly smaller than in the binary layers (e.g., 7 MMAC in the first layer
compared to 109 MMAC in the second layer), and therefore they minimally contribute to
the overall computational effort. The reason for having real-valued layers is the high loss of
accuracy with entirely binarized neural networks [75].

4.3 Embedded Implementation

The Mel bins extraction and BNN are implemented on GAP8. The application scenario
for this device is low-latency low-power signal processing. The device has a tunable fre-
quency and voltage supply. Fig. 4.1 shows the main block of the chip: GAP8 has two main
programmable components, the fabric control (FC), and the cluster. The FC is the central
microcontroller unit, and it is meant to manage peripherals and offload workloads to the
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FIGURE 4.1: Architecture of GAP8 embedded processor [21]

cluster. The cluster is composed of eight parallel RISC-V cores, a convolution accelerator,
and shared memory banks. The two domains share the same voltage source but keep two
different frequencies: On-chip DC-DC converters translate the voltage, and two indepen-
dent frequency-locked loops (FLLs) generate the two different clock domains. The FC is a
single-core in-order microcontroller implementing the RISC-V instruction set. To customize
the core for signal processing application, GAP8 extends the RISCV-IMC instruction set
for signal processing application. In addition to integer, multiplication, and compressed in-
struction (IMC), GAP8 ISA supports Multiply and Accumulate, Single Instruction Multiple
Data (SIMD), Bit manipulation, post-increment load/store, and Hardware Loops. The FC
is directly interconnected to an L2 memory of 512 kB SRAM. The cluster has eight cores
identical to the FC. The cores share the 64 kB L1 SRAM scratchpad memory, equipped with
a logarithmic interconnect that supports single-cycle concurrent access from different cores
requesting memory locations on separate banks.

The cores fetch instructions from a multi-ported instruction cache to maximize the energy
efficiency on the data-parallel code. Moreover, an efficient DMA (called µDMA) enables
multiple direct transfers from peripherals and L1 to the L2 memory. The cluster has a hard-
ware synchronizer for event management and efficient parallel threads dispatching. The FC
and cluster communicate with each other by an AXI-64 bidirectional bus. The software run-
ning on the FC overviews all tasks offloaded to the cluster and the µDMA. At the same time,
a low-overhead runtime on the cluster cores exploits the hardware synchronizer to implement
shared-memory parallelism in the fashion of OpenMP [14].

4.4 Experimental Results

To accurately evaluate the BNN, we designed a full system. Thus, the power and energy-
efficient measurements are performed on the hardware platform.
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TABLE 4.2: Accuracy and Memory Footprint for the Baseline CNN (16-bit Fixed-
Point precision), BNN with first/last layer in 16-bit Fixed-Point.

CNN [59] BNN-GAP8

Accuracy 85.1% 77.9%
Memory for weights [kB] 815 58
Memory for input [kB] 204 204
Memory requirement [kB] 10193 262

4.4.1 Dataset

For the work presented in this chapter, we use the dataset of Takahashi et al. [90], which is
based on the Freesound database, an online collaborative sound database. It consists of 28
different event types, e.g., instruments, animals, mechanical sounds. Each clip has a variable
length, and the total length of all 5223 audio files is 768 minutes. All audio samples have a
sampling rate of 16 kHz, a bit depth of 16, and are single-channel. The dataset is split into
training (75%) and test set (25%). We compute the STFT in windows of 512 samples every
128 samples, respectively 32 ms and 8 ms. Then we apply 64 Mel-filters to generate 64 Mel
bins. 400 features are then tiled together to create the Mel-spectrogram for 3.2 s of audio (see
Sec. 4.2.1). For the training set, we split each audio clip in consecutive chunks of 3.2 s.

Chunks shorter than 3.2s are discarded, or zero-padded if it is the only chunk. In the test
set, we extract one single patch of 3.2 s, starting from half of the clip.

4.4.2 Firmware Details

To cope with L1 memory constraints, we run the prediction on 4 tiles in which the image
is split. The tiles have an overlap of 20 pixels to take into account the receptive field of
convolutional kernels at the border of the tiles. The firmware implements a double buffering
for the weight loading: before the program processes the input of a specific layer, the cores
configure the DMA to load the weights of the next layer, from the L2 memory to the single-
cycle accessible L1 memory. An interesting feature of GAP8 is the built-in popcount
instruction, which takes just one cycle and decreases the execution time significantly in binary
layers, thus useful for BNN calculation. The single 3×3×C kernel application gains speed
thanks to loop unrolling. Finally, the code parallelization over the eight cores is implemented
using the OpenMP API.

4.4.3 Accuracy

We start from MeyerNet [59] and use the Additive Noise Annealing (ANA) algorithm [89] to
train the network with binary weights and activations. Tbl. 4.2 provides an overview of the
original MeyerNet and the BNN. The BNN-GAP8 network keeps the first and the last layer
in 16-bit fixed-point, whereas the other layers are binary. For the accuracy of Meyernet, we
consider its 16-bit quantized version because it is expected2 to be the same the FP32 baseline.

The BNN achieves an accuracy of 77.9%, which is 7.3% below the full-precision baseline
and is in-line with state-of-the-art binary and ternary networks (i.e., 12% binary and 6.5%
ternary neural networks for ImageNet [108, 89]).

Tbl. 4.2 shows that the BNN matches with the memory constraints of 512 kB of L2
memory in GAP8 chip, in contrast to the fixed-point baseline.

2DNNs are robust to quantization down to 16 bit [45, 67, 41]
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FIGURE 4.2: Throughput and energy efficiency at different supply voltages and op-
erating frequencies. All of the measured settings fulfill the requirement of one clas-

sification every 3.2s (see the grey dashed line).

4.4.4 Energy Efficiency

In the following section, we are discussing the throughput and energy efficiency trade-off.
First, we sweep the independent cluster and fabric control frequency ( fcl , f f c) ∈ {30, 50, 85, 100, 150}MHz ×
{10, 30, 50, 100, 150}MHz for 1 V, and ( fcl , f f c) ∈ {50, 100, 150, 200,
250}MHz × {10, 30, 50, 100, 150}MHz for 1.2 V, supported by the GAP8 microcontroller.
We set the real-time constraint to 0.3125 frames per second due to the 3.2 s long audio sam-
ples.

Fig. 4.2 shows clearly that the 1.0 V corners pareto-dominate the faster 1.2 V corners. It
can be seen that the most energy-efficient corner is at 100 MHz for the FC, and 150 MHz
for the cluster, where the system achieves an energy efficiency of 31.3 GMAC/s/W, and a
throughput of 1.5 GMAC/s.

4.4.5 Execution Time and Power Consumption

We profile time and throughput as well as the energy-efficiency of each layer of the Neural
Network (NN). The network architecture is shown in Tbl. 4.1 together with the amount of
MAC required for each layer at the most energy-efficient corner according to the analysis in
the previous section (i.e., Vdd = 1.0 V, ( fcl , f f c) = (150 MHz, 100 MHz)).

The measurements are performed with the Rocketlogger [86]. Voltage and current of the
system-on-chip (SoC) are logged. We evaluate the power and duration of measurements and
calculate the energy consumption. The results for each layer are listed in Tbl. 4.3.

Binary layers are the most efficient ones; this is because of the combination of xor and
popcount instructions processing 32 pixels in just 2 instructions. The efficiency peak is
at 67.1 GMAC/s/W in the fourth binary layer, and the average efficiency is 34.5 GMAC/s/W.
The most efficient configuration meets the real-time constraint, and the entire network runs
within 0.511 s.
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TABLE 4.3: Duration and energy consumption for each layer as well as throughput
and energy efficiency compared to MACs.

Layers MACs Time Energy Through. Efficiency
[ms] [mJ] [MAC/s] [MAC/s/W]

Mel bins - 77.0 2.64 - -
First Layer 7M 130.8 5.94 54M 1.2G
1. Bin Layer 109M 73.3 3.57 1494M 30.6G
2. Bin Layer 404M 168.0 8.86 2404M 45.6G
3. Bin Layer 185M 51.2 2.94 3628M 63.2G
4. Bin Layer 154M 40.3 2.29 79M 67.1G
5./6. Layer4 21M 47.4 1.93 1724M 1.9G

Total/Average 882M 588.0 28.18 1503M 31.3G

FIGURE 4.3: Improvement in throughput and energy efficiency compared to the
ARM Cortex-M4 implementation.

For a further investigation of the improvement in throughput and energy efficiency thanks
to the capabilities of the GAP8 SoC, we have implemented the BNN on the STM32F469I
Discovery board. Fig. 4.3 gives an overview of the improvements of the GAP8 implementa-
tions compared to the single-core ARM Cortex-M4F implementation, which has popcount
implemented in software. We port the SW-popcount (i.e., 12 cycles) to GAP8 and run the
code on a single core, and all 8 cores. The GAP8 compared to the STM32F469I, running
both the BNN on a single-core and without HW-popcount, shows a 7.9× better energy
efficiency, but with a 1.6× lower throughput due to the higher operating frequency of the
ARM core. Enabling the HW-popcount gives a significant improvement in energy effi-
ciency (2.8×) and speed in computation (4.3×). Running the BNN on all 8 cores gives an
improvement of 6.9/2.4× in throughput and energy efficiency. Finally, the popcount ISA
extension gives another boost of 2.4× and 2.6×, respectively.

Overall the GAP8 implementation that uses all the functionality of the core (i.e., popcount
instruction and multi-core) is 10× faster and 51× more efficient than running the same net-
work on the Cortex-M4F.

Fig. 4.4 shows the power trace of the layers in the same setup in Tbl. 4.3. As described
in Sec. 4.4.2, we split the input data into tiles to match the memory constraints. The traces
refer to one tile out of four. Thus the execution time is approximately one-fourth of the
one presented in Tbl. 4.3. Between layers, the FC offloads the cluster for configuring the
next layer: it switches the input and output buffer, allocates memory for the next weights,
configures the DMA, and so on. This behavior is visible in the drop of power traces because
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FIGURE 4.4: Power trace of running the BNN on one tile on the GAP8 platform.

the cluster is in sleep, and the activity of the FC consumes less. Similar behavior can be
observed inside binary layers, where the processing is split in chunks of 32 channels.

4.5 Conclusions

Starting from the best-performing DNN for sound event detection on our target dataset, we
have proposed and trained a DNN with the same topology but binary weights and activations.
The proposed BNN matches the memory and resource-constraints of milliwatt range of the
target embedded platforms.

The resulting BNN has an accuracy of 77.9%, a drop of 7.2 percent point from the full-
precision baseline which is in line of similar state-of-the-art BNNs/TNNs (i.e., 6.5-19%). The
overall program requires 230 kB of RAM, 3.9× less than the system using 16-bit quantized
baseline CNN. We evaluated energy efficiency with experimental measurement of the power
consumption of the full system. The classification of 3.2 s of audio requires 511 ms and
25.54 mJ, with a peak energy efficiency of 67.1 GMAC/s/W and average 34.5 GMAC/s/W.
The performance on the GAP8 board has been shown to be 10× faster and 51× more energy-
efficient than on an ARM Cortex-M4F platform, which comes from multi-core capabilities
(i.e., 4.3/19.3×), the build-in popcount instruction (i.e., 2.4/2.6×).

In line with the approach described in the introduction, in this chapter we aim to move
AI on low-power IoT node that performs context information extraction. As always, the best
performing network does not fit the microcontrollers resources, and here we use BNNs as a
compression technique. Furthermore, hardware is the enabling factor to respect the real time
constraint.

Moving from the conclusion that GAP is the right hardware for BNNs, the next chapter
presents a further step towards low-precision computing. While here the input is a full-
precision Mel-frequency spectrogram, in the next chapter the features are generated in hard-
ware. They are again approximated to one-bit resolution, but instead of wasting energy in
building the full-precision spectrogram and then quantize it, in the next chapter we directly
generate the binary features, saving power in the acquisition and data transfer.
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Chapter 5

In-Hardware Audio Feature
Extraction for Efficient Binary
Neural Network

5.1 Overview

The thermal sensor used in chapter 2 outputs a very low-resolution image; as a consequence,
we outlined that the Convolutional Neural Network applied is shallow. In addition, looking
at the power consumption, most of the energy is used for the sensor data acquisition. The
algorithm itself uses only one-third of the overall power consumption. Similar considerations
were driven for the sound event detector in chapter 3. The network’s compression is the en-
abling factor for the embedded implementation because the state of the art network requires
too much memory and computational resources. However, after the quasi-lossless compres-
sion of the model, microphone reading and feature extraction of the spectrogram use most
of the system’s energy.In the case of Binary Neural Network (chapter 4), we implemented
the feature extraction efficiently, but still, the sensor consumption and most of all the sensor
reading takes a considerable amount of energy. All these considerations can be summarized
in this way: beside neural network compression, to obtain further power consumption reduc-
tion, the focus should be moved to a more efficient data acquisition. The inspiration came
from an analog front end for underwater monitoring developed by a group of researchers in
ETH. The hardware has suitable characteristics to be reused for audio classification tasks.
Here the innovation is the use of binary audio features for binary neural network. More
specifically, the analog front end collects data from a microphone and it mixes filtering, am-
plification, and binarization to output binary signals, which indicates if a certain bandwidth
is present in the signal and for how long. Moreover, the analog front end is event-based: it
means the hardware wakes up the microcontroller when a generic source of sound is present.
This event-based behavior allows a more efficient management of the system activations.
Commercial microphones are already low power, but they require amplification and high
sampling rate to acquire meaningful data. With the ETH analog front end, there is no sam-
pling paradigm. Whenever a certain frequency bandwidth is present, the microcontroller
records the length of the pulse. In this chapter, we demonstrate that this information is al-
ready sufficient to perform audio classification. The challenges in this exploration are many
because both classification and sensing hardware are based on approximation and it is hard
to handle the infinite hyperparameters for such not-established approach. Finally, we present
the power consumption and accuracy compared with well-established algorithm for classi-
fication. We conclude that the final system can reach less than one milliwatt consumption,
using two-order of magnitude less energy than the baseline.

To summarize, the contributions of this chapter are the following:
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• we present an innovative use of an analog front end for audio classification, focusing on
Keyword Spotting (KWS). We show an in-depth analysis of classification performance
and power consumption for different hardware choices. The analog front end reduces
energy consumption due to acquisition and processing, and it works as the first-stage
able to trigger the full system when sounds of interest are present.

• we present a novel implementation of Binary Neural Network for KWS. The results
of a standard solution with full-precision Mel-spectrogram are here compared with a
binarization of such features and, finally, with the use of the analog front end. We
conclude that Mel-spectrogram and analog front end present similar accuracy results
when binarized.

• we show that reducing the classification complexity with BNN is a great advantage
in terms of power consumption. However, only in combination with the analog front
end, the system reaches 0.96 mW of power consumption, 340 times less than the full
precision CNN and 20 times less than the BNN using full precision Mel-spectrogram
as an input.

5.2 Analog Front End

Data acquisition and the following feature extraction is performed using hardware compo-
nent, with a simplified version of the architecture described by Mayer et. Al [54]. Figure
5.1 shows the circuit schematic. The analog signal processing allows the use of any ana-
log microphone, here a low-noise MEMS from InvenSense (ICS-40310) is selected, which
consumes only 16 µA at 0.9 V.

The overall aim of the circuit is to extract frequency-time features, so the next step is
the filtering of the frequency band of interest. The output of the microphone is connected to
a General Impedance Converter (GIC), which uses the OPA379 operational amplifier from
Texas Instrument. It features a Gain Bandwidth Product of 90 kHz and a current of 2.9 µA
at 1.8 V. The configuration generates a band-pass filter with a center frequency and corner
frequency as follow:

fc =
1

2πRC
BW = fcRaRb (5.1)

To keep track of the temporal duration for which the frequency is active, the Analog Front
End has an active envelope detector connected to the filter’s output. It also amplify the output
of the GIC, following the formula

G =
R5

R4
(5.2)

Finally the envelope pass through a comparator, so that the output is only a binary signal The
LPV7215 consumes 580 nA at 1.8 V. The first input is the output of the envelope detector,
the second is a predefined reference voltage.

During classification, we need more than a single time-frequency detector to perform
keyword spotting. Therefore we change the value of resistors and capacitors in the GIC to
select a different center frequency and bandwidth of the filter. The same microphone is then
connected to different filters, but to avoid overloading the device, we connect a maximum of
8 filters per microphone. If the classification needs more than 8 filters, we add a microphone
and the corresponding time-frequency detector. Table 5.1 shows the power consumption
using a different number of filters.
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FIGURE 5.1: Left: schematic of the analog front end, divided in its three main blocks.
Right: intermediate signal in the circuit. From the top: the microphone output, the
filtered signal and the output of the active detector. In red the binary output after the

comparator.

TABLE 5.1: Power Consumption. The power consumption of the single elements is
depicted in the work of Mayer et al. [54]

System Power [µW]
Microphone 36

Time-Frequency Detector 15
8 filters AFE 153
16 filters AFE 306
64 filters AFE 612

5.3 Data Acquisition

5.3.1 Firmware

The output of the analog front end contains two pieces of information for each filter. It
shows a given frequency component in the input data and shows how long it lasts. The
binary output gives the presence; the length of the pulse gives the duration. For the other
classification part, we want to save this information. The microcontroller has each digital
output connected to a GPIO. In a silent situation, the microcontroller is in sleep mode. When
the first interrupt from one of the channels arrives, the microcontroller starts a timer, which
will be considered time 0. From now on, the microcontroller saves the timestamp of each
interrupt for all the channels. After one second, the firmware starts the reconstruction of the
time-frequency representation from the collected data. As in a spectrogram, we divide the
time axis in windows of 10 ms, and for each channel and for each window, we fill the time-
frequency representation with a "1" if the analog front end output is high at least once inside
the window. In this way, the binary image will be the input for the Binary Neural Network.

5.3.2 Software Simulation

To train the neural network, we need to convert audio files to the analog front end outputs
and gather them together like the firmware implementation.

We empirically observed that the voltage amplitude, while a person is speaking, is around
5 mV, so we used this value to rescale the sample in the wav files and the equivalent output
from the microphone. The following circuitry is simulated in Simulink, using the Openscape
library, while the power consumption informations come from the work of Mayer et al [54].
Finally, we do not pass the signal through the comparator, because we want the system to
learn not only weights for classification but also the voltage reference of the single compara-
tors (one for each filter). We save the simulation in the time domain, with the sampling rate
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TABLE 5.2: Kernel size, channel, and computational effort for each layer

Layer Kernel Size Channel Stride MACs

1. Binary Layer 3 × 3 64 2 109M
2. Binary Layer 3 × 3 128 1 405M
3. Binary Layer 3 × 3 256 2 186M
4. Binary Layer 3 × 3 256 1 154M
5. Binary Layer 1 × 1 256 1 17M
Last (real-valued) 1 × 1 28 1 6M

Total: 884M

of the input. The windowing of 10 ms described in section 5.3.1 is implemented here in the
following manner: we split the sequence in chunks of 10 ms, then we take the maximum
value in the chunk and we save its full precision representation. Only during training, we
compare the full precision value with a threshold, so that we can learn this threshold.

5.4 Binary Neural Network

From the simulation on the dataset, we obtain the maximum full-precision values of the
envelopes in windows of 10 ms. The binarization thresholds (one for each channel) are ini-
tialized with the single-channel average value through all the datasets. The full precision
envelopes value is normalized using min-max scaling. Finally, during training the thresholds
are trainable. This respects the hardware structure of the analog front end, which once de-
fined the best threshold for classification we change the resistors divider to create the desired
voltage reference for the comparator. Convolutions, batch normalization, and binarization
are the same described in chapter 4, while the structure has a different number of filters and
there is not a full precision layer as the input layer. Tbl. 4.1 summarizes the architecture of
the NN.

5.5 Experimental Setup

5.5.1 Dataset

We used the Google Speech Command V2, which contains 105k utterances of 35 words
[98]. The neural network model is trained to classify the processed audio in one of the 10
keywords: "Yes", "No", "Up", "Down","Left", "Right", "On", "Off", "Stop", "Go". In addi-
tion, there is a class "silence" (i.e., no word spoken) and "unknown" word, which is a subset
of the utterances in the remaining 20 keywords. Another setup for different applications is
the classification of the audio between "yes", "no" and "unknown", from now on referred to
as the 3 classes classification. The train-validation-step split has 80:10:10 ratio and it is done
following the recommendations of the dataset.

5.5.2 Effect of Model Binarization

First, we trained a well-established convolutional neural network using standard Mel-frequency
cepstral coefficients as input. For the whole chapter, it will be considered as a reference for
further results. We use windows of 25 ms and hop size of 10 ms to compute the spectrogram.
We apply the Mel transformation using 64 Mel-filters in the range between 125 and 7500 Hz,
following the methodology described in Hershey et al. [33]. The number of layers and the
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number of channels for each layer is described in table Tbl. 4.1, but the layers are here in full
precision and not binary layers. Between each convolution, there is Batch Normalization and
ReLU activation. We used Adam optimizer and a learning rate of 10−4 with a reduction of a
factor of ten when the training is not improving for 10 consecutive epochs.
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FIGURE 5.2: Effect of binarization of mel-based classifier. The baseline is compared
with versions with binary weights, binary weights and activation (BNN), and binary
weighs, activation and input (BNN binary input) by using threshold learnt during the

training process.

Figure 5.2 shows the degradation performances by using binary numbers instead of full-
precision representation. In detail, we binarize three different sets of elements in the network,
weights, activations, and input. In the first three cases, the first layer has full precision input,
in the last case, with binary input, the Mel-spectrogram is compared with a channel-wise
trainable threshold and the first layer receives the binary spectrogram as input. The base-
line, where all the data are in full precision, performs slightly worse than the version with
quantized weights, most likely because the binarization of weights acts as a regularization
in this phase. Quantization of both weights and activations instead drops significantly the
performance. Finally, the approach of quantizing the input data using a threshold is the worst
case, but it is the most similar scenario to the actual use of the analog front end.

5.5.3 Analog Front End Accuracy Performance

The two paragraphs in Figure 5.3 shows the performance of different configurations in terms
of accuracy. They are related to two different tasks: the left one is the classification setup
suggested by the creator of the dataset and the right one is the classification of two different
keywords ("yes" and "no") and a third classes "unknown", where keywords from the other
classes are taken randomly. We use the analog front end with banks of filters: we simulate 8,
16, and 64 filters equally spaced (in the Mel domain) with center frequencies between 150 Hz
and 7000 Hz. While the full precision network definitely outperforms all the binarized ver-
sion, we see that the 64 filter configuration has a very similar performance to the binarized



60 Chapter 5. In-Hardware Audio Feature Extraction for Efficient Binary Neural Network

MFCC classifier. The general trend is that by reducing the number of filters the performance
gets worse. This matches the expectations, as the amount of information decreases with the
with fewer filters.

Baseline B-MFCC AFE64 AFE16 AFE8
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FIGURE 5.3: The baseline is compared with BNN with binary inputs, including
Binary Mel bins and the analog front end with 64, 16 and 8 filters. Blue bars refer
to "yes", "no" and unknown keywords, Orange bars refer to the standard 10 keyword

task plus the classes "silence" and unknown keywords.

5.5.4 Power Consumption

The 5 different configurations have different power consumption. There are three main
blocks that can be isolated for power consumption, namely the sensor consumption, the fea-
ture extraction and reading of data, and finally classification. For what concerns data reading
of the analog front end, Section 5.3.1 describes the firmware used for the acquisition of 1-
second data. The consumption of such phase is mainly given by the short Interrupt Service
in which the microcontroller saves the timestamp of such events. To estimate this power, we
run the firmware with a set of interrupt rates on real hardware and we estimate the power
consumption per interrupt. Finally, we compute the number of interrupts in the simulations
for each different setup (8, 16 and 64 filters). The platform used for experimentation is the
STM32l476RG. Finally, the consumption of the neural network is computed through the val-
ues of the energy efficiency of BNN and fixed point layers presented in the chapter 4. Table
5.5.4 shows the consumption per each of the configuration. The power consumption of the
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TABLE 5.3: Energy consumption for the different system proposed

Mel bins Bin Mel AFE 64 AFE16 AFE8

Microphone 1.08 1.08 0.61 0.31 0.15
Sensor Reading 5.40 5.40 0.29 0.16 0.13
Classification 320.63 14.27 14.27 3.56 0.68

Total [mJ] 327.11 20.75 15.17 4.02 0.96

full-precision version is around 80 mJ, and the binarization of weights and activation reduces
the power consumption of the neural network inference, but not of the acquisition and fea-
ture extraction. The analog front end combines the low power analog microphone together,
in hardware feature extraction and event-based reading to significantly reduce all the power
consumption.

5.6 Conclusion

In this chapter we keep reducing power consumption to move AI-based system on low power
IoT nodes. We presented the use of an analog front end to minimize the contribution to power
consumption given by specific functionalities of a classification system, namely sensing and
feature extraction. we presented how features extracted from the analog front end are as good
as binarized Mel-spectrogram for classification using BNN, and they require significantly less
power to be acquired. However, the accuracy results are not comparable with a full-precision
Convolutional Neural Network that uses Mel-spectrogram. This wide gap in the accuracy
(from 93% to 71%) makes this approach not lossless and still requires further development
to improve the BNN accuracy performance, as we also concluded in the previous chapter.
On top of this exploratory work, we suggest a different trend towards better accuracy than
lower power consumption. The feature that shows to decrease the accuracy significantly is
a binarization of the input (see figure 5.2); thus, a more advanced approach should extract
Mel-spectrogram-like features but keeping the signal in full-precision.
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Chapter 6

Conclusions

In conclusion, this thesis presented hardware and software strategies to reduce power con-
sumption and memory footprint for tasks that usually require high-performance hardware
and billion of computation, with the main goal of near sensor processing in an IoT infrastruc-
ture. Microcontroller implementations of AI-powered systems were rare at the time of the
thesis and this field is continuously growing, so this thesis adds one of the first bricks to the
foundation of ubiquitous and intelligent devices.

From the research done in the framework of this thesis, some general conclusions can
be extracted about present trends in tinyML, or machine learning in IoT end nodes. First
of all, Artificial Intelligence in IoT nodes is feasible, without renouncing to high accuracy
performance. However, it is not straight-forward but requires different training strategies
with respect to networks that target only state-of-the-art accuracy.

Not all the compression techniques are the same and the same technique may behave
differently in different fields. The student-teacher approach has demonstrated to be a valid
approach to significantly reduce consumption keeping the accuracy loss limited or even negli-
gible. Moreover, this approach can lead to significant complexity reduction and the designer
can decide when to stop compressing as soon as the performance starts decreasing. Op-
positely, quantization of weight and activation does not always preserve accuracy, and the
boost given by quantization is not as significant as the student-teacher approach. The starting
structure can be reduced only by a factor of 32, which is not enough in most cases. While
quantization is "safe" down to 8 bit per weight and activation, further levels of approximation
lead to poor accuracy performance, as shown in the last two chapters.

To summarize, I conclude that quantization is a powerful tool to make computation more
efficient but it should be limited to 8-bit resolution and it should be used in combination with
other structural changes of the neural network (e.g. Student-Teacher).
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