
Grand Valley State University Grand Valley State University

ScholarWorks@GVSU ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

4-29-2021

Quantum Simulation Using High-Performance Computing Quantum Simulation Using High-Performance Computing

Collin Beaudoin
Grand Valley State University

Christian Trefftz
Grand Valley State University

Zachary Kurmas
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/theses

 Part of the Theory and Algorithms Commons

ScholarWorks Citation ScholarWorks Citation
Beaudoin, Collin; Trefftz, Christian; and Kurmas, Zachary, "Quantum Simulation Using High-Performance
Computing" (2021). Masters Theses. 1011.
https://scholarworks.gvsu.edu/theses/1011

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at
ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of
ScholarWorks@GVSU. For more information, please contact scholarworks@gvsu.edu.

https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/theses
https://scholarworks.gvsu.edu/grcp
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/1011?utm_source=scholarworks.gvsu.edu%2Ftheses%2F1011&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Quantum Simulation Using High-Performance
Computing: Hermitian Observable Multiplication

Algorithm

Collin Beaudoin1, Zachary Kurmas1 and Christian Trefftz1

1 Grand Valley State University, Allendale MI 49401, USA
beaudoco@mail.gvsu.edu

Abstract. Hermitian matrix multiplication is one of the most common actions
that is performed on quantum matrices, for example, it is used to apply observa-
bles onto a given state vector/density matrix.

 ρ→Hρ (1)

Our goal is to create an algorithm to perform the matrix multiplication within
the constraints of QuEST [1], a high-performance simulator for quantum cir-
cuits. QuEST provides a system-independent platform for implementing and
simulating quantum algorithms without the need for access to quantum ma-
chines. The current implementation of QuEST supports CUDA, MPI, and
OpenMP, which allows programs to run on a wide variety of systems.

Keywords: Quantum Computing, CUDA, MPI, OpenMP, HPC

1 Introduction

Quantum computing offers the ability to perform in seconds computations that would
take classical computers thousands of years to complete [5]. As quantum computing
becomes more available/larger in scale it will pose larger and larger threats to current
security, allow scientists to answer questions that were previously unsolvable and will
force a total paradigm shift in the world of computation. Quantum computer simula-
tions offer users the opportunity to create algorithms, test theories and even obtain
quantum algorithmic advantages. In the current Noisy Intermediate-Scale Quantum
(NISQ) climate, it is important to have ways to verify results, prove theories in an in-
expensive manner, and prepare for future security threats. One essential, fundamental
component of quantum algorithms is being able to multiply observables onto quantum
registers (an example of this would be the Pauli matrices). The knowledge of this ne-
cessity leads to the creation of an algorithm to simulate the quantum computation of a
quantum register being multiplied by a dense Hermitian matrix. The result of this mul-
tiplication then replaces the current quantum register. We implement this basic quan-
tum computation for the QuEST framework in OpenMP, MPI and CUDA. We then

2

compare the individual programs to demonstrate the benefit of each implementation,
following with potential future improvements.

2 Related Work

Quantum simulation is the ideal candidate for HPC programming. It is easy to see the
necessity of parallel programs to perform these simulations as even a relatively small 8
qubit array density matrix requires a matrix of 65,536 (28 x 28) double complex values
to represent. Due to the exponentially growing size requirements of classical bits and
the price of quantum computers, there are quite a few HPC quantum simulators that
exist, including: Q#, QCGPU, and qHipster. Each of these simulators have limitations.
QHipster from Intel [3] enables the use of arrays of machines, making it ideal for
“larger” amounts of qubits; but with little to no performance tuning for smaller qubit
problems. Q#, from Microsoft [2], enables the use of just a single machine, which
means it cannot handle anything larger than a few qubits for computation. QCGPU is
strictly for GPUs [4], which has the same smaller scale issue as Q# and requires specific
hardware, further limiting its usage. The current state of quantum simulators forces the
developer to potentially implement three different versions of their program depending
on their intention/hardware availability. This severely limits scaling and forces the de-
veloper into a single ecosystem, that may or may not fit their needs. QuEST removes
this issue by accounting for all three major HPC types within the simulator, allowing
for developers to create a single program that only requires recompilation for scaling.
This means any quantum algorithm creation will work machine agnostically.

3 Foundations

3.1 HPC:

HPC is an integral part of modern large-scale computations. It enables researchers to
resolve large scale problems that are too computationally heavy to perform on a single
threaded machine. It enables the use of multiple threads, the use of GPUs and the use
of multiple machines to resolve singular problems. It also allows for developers/re-
searchers to select different setups for their interests/problem sizes.

3.2 Quantum Computing:

Quantum computing is proven to be more performant in comparison to classical com-
puters [5][6], both in the near term and long term of computation. It enables parallel
computation, with a logarithmic scale of qubits to bits, by exploiting quantum mechan-
ical properties such as superposition. Unfortunately, the state-of-the-art quantum com-
puters are extremely expensive and do not offer many more usable qubits than what can
reasonably be simulated using large arrays of machines.

3

3.3 Quantum Simulators:

Quantum simulators allow for both the simulation of state vectors and density matrices,
enabling researchers to perform studies that would exemplify current NISQ computers.
The biggest issue with current simulators is the lack of ability to replicate absolute ran-
domness, because of this there can be errors in computation. However, simulators ena-
ble approximations and proof of concepts that would otherwise be unrealizable.

4 Approach

Our initial focus is to create an algorithm that will work given that ρ is a state vector.
This is to remove any extra complexity that may occur with multi-dimensional matrix
multiplication. Our first step is to design an algorithm that allows for the simulation of
the quantum state vectors being multiplied by dense Hermitian matrices [10]. The result
of this multiplication then replaces the current state vector. We approached the problem
by obtaining the state vector, normalizing the values, and then obtaining the Hermitian
matrix which we will use to perform our computations.

4.1 MPI:

MPI allows for the use of multiple machines to work on a single problem [7]. We begin
the MPI implementation by creating a distributed solution to the linear algebra problem
of matrix vector multiplication.

𝑎 ⋯ 𝑎
⋮ ⋱ ⋮

𝑎 ⋯ 𝑎

𝑏
⋮
𝑏

=
𝑎 𝑏 +⋯+ 𝑎 𝑏

⋮
𝑎 𝑏 +⋯+ 𝑎 𝑏

Figure 1: Matrix Vector Multiplication Model

QuEST’s memory management requires that both the Hermitian matrix and the state

vector be distributed evenly over n-nodes (given the constraint that n is a power-of-2).
Fortunately, the Hermitian matrix memory requirements have no definition beyond this,
allowing for tuning to obtain the best algorithmic speed-up.

The bottleneck of MPI tends to be communication. This means the most time effi-
cient approach is to use the least possible amount of communication between nodes.

4

Figure 2: Three Qubit State Vector Memory Distribution Examples

Given that the state vector and Hermitian matrix are both to be evenly distributed,

and that the size of the state vector would be Q times smaller than the Hermitian ma-
trix (where Q is the size of the state vector), the obvious item to communicate is the
state vector. To use the least amount of communication, the Hermitian matrix is split
so the row of the state-vector’s calculated entry will always be on the same machine.

Ultimately, the memory distribution results in a column storage distributed in the
same way as the state vector.

Figure 3: Three Qubit Two Node Dense Matrix Distribution

Following this memory distribution, it is possible to use MPI’s send-receive to dis-

tribute the state vector in its entirety to each individual node. This allows for each entry
of the state vector to be calculated with no calculation redundancy and no further reli-
ance on other node communication.

5

4.2 OpenMP:

OpenMP relies on all memory existing on the machine that is performing the calcula-
tions [8]. This removes any need for communication. Out of simplicity, the distribution
of the Hermitian is once again split into a column structure, as there is no need for
special memory distribution. Following the implementation of the column memory
structure, we implemented a simple loop that iterates through the Hermitian matrices
for calculation of the state vector’s individual entries. We implemented a critical section
on the write to ensure that only a single write is occurring to the entry at a time.

4.3 CUDA:

CUDA relies on NVIDA GPUs for accelerated calculations [9]. To perform the Her-
mitian multiplication, there must be a communication between the CPU memory and
the GPU memory. To stay consistent with OpenMP and MPI, the Hermitian is split into
the aforementioned column structure. We concatenated these columns to feed them to
the GPU. This is to remove any device dependent optimization or memory issues that
CUDA’s 2D operations would require addressing (such as pitch size). Following this,
we implemented a kernel program that relies on a singular for loop. This allows the
GPU to handle the matrix multiplication in O(N) time per process.

5 Performance

To better understand the overall performance there are a few items worth discussing.
The general item to test is the average speed performance of the algorithms and com-
paring this to the sequential times of the program. However, with MPI there are three
other important measurements that help explain how performance may scale: total
throughput (TT), serial rounds of communication (SRC), and required buffer size (BS).

5.1 Sequential vs. HPC:

QuEST suggests that a 2GB GPU can run the equivalent of a 26-qubit simulation. To
ensure there are no anomalies that occur from attempting maximum threshold compu-
tations, we used a 14-qubit simulation for the sequential, MPI, OpenMP and CUDA
versions of the program for testing. This is to better understand the general use case of
the program. For proper testing, each version of the program is run 5 times, it is also
important to note that MPI is given 4 machines to run on while OpenMP is run on 2
threads. The resulting average runtime is shown in Figure 4.

6

Figure 4: Average Run Time Per Quantum Simulation of 14 Qubit Hermitian Multiplication

Table 1. Average Run Time Per Quantum Simulation of 14 Qubit Hermitian Multiplication

Simulation Type Sequential MPI CUDA OpenMP
Average Runtime (s) 10.8914162 1.6871054 0.293759 10.5397898

To get a better idea of the potential realizable speedup from exploiting quantum’s par-
allel properties, the speedup of each runtime is calculated.

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑇𝑖𝑚𝑒 /𝑇𝑖𝑚𝑒 (2)

Table 2. Average Run Time Per Quantum Simulation of 14 Qubit Hermitian Multiplication

Simulation Type Sequential MPI CUDA OpenMP
Average Speedup 1 6.455682141 37.07602559 1.033361804

7

5.2 MPI:

When working with MPI it is important to know how much communication is necessary
for an algorithm’s implementation, as this tends to be the bottleneck with larger scale
problems. Starting with TT, the throughput for the algorithm is:

Total Throughput
Starting with TT, the throughput for the algorithm would be:

 𝑇𝑇 = (𝑛 − 𝑛)𝐴 (3)

Where:

 𝐴 = (4)

Which simplifies to:

 𝑇𝑇 = (𝑛 − 1)𝑄 (5)

Serial Rounds of Communication
Next is the SRC, this calculation is simple and accounts for the number of rounds of

communication necessary for the entire process. This is a 1 round SRC, as the commu-
nication only runs once from a machine to another.

Buffer Size
Finally, the BS. To account for the calculation of the individual entries the buffer

needs to be large enough to hold the partition’s size for calculations. This additional
buffer space must be added to each machine to accept:

 𝐵𝑆 = 𝐴 (6)

However, there is an additional buffer size that must be added to each machine, this is
to accept the communication of the rest of the state vector to properly perform the cal-
culation of the Hermitian multiplication. This additional memory is:

 𝐵𝑆 = 𝐴 + (𝑄 − 𝐴) → 𝐵𝑆 = 𝑄 (7)

6 Conclusions and Future Work

Quantum computation offers many benefits in terms of calculation speedups, but to
exploit these benefits researchers need to be able to work through and prove algorithms.
In the current status this is best performed with HPC quantum simulations. These

8

simulators need to enable researchers to focus on algorithms rather than hinder them
with platform limitations and new syntax. This Hermitian multiplication algorithm al-
lows researchers to use necessary calculations at quicker than sequential rates regard-
less of their platform limitations. To further improve MPI performance it would be
plausible to add a secondary buffer to the QuEST storage structure. This would remove
any need for cross communication, and it can be assumed that the machine can handle
this memory addition as the machine is holding at least the same number of values for
the Hermitian matrix.

References

1. Jones, T.: QuEST and High Performance Simulation of Quantum Computers. Scientific Re-
ports (2019).

2. Q# About Page, https://docs.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-
and-qdk, last accessed 2021/03/11.

3. Smelyanskiy, M.: The Quantum High Performance Software Testing Environment (2016).
4. Kelly, A.: Simulating Quantum Computers Using OpenCL (2018).
5. Arute, F.: Quantum supremacy using a programmable superconducting processor. Nature

(2019).
6. Shor, P.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on

a Quantum Computer. (1995).
7. MPI Tutorial, https://computing.llnl.gov/tutorials/mpi/, last accessed 2021/03/11
8. OpenMP Tutorial, https://computing.llnl.gov/tutorials/openMP/last accessed 2021/03/11
9. CUDA About Page, https://developer.nvidia.com/about-cuda, last accessed 2021/03/11

10. Beaudoin, C: Quantum Project, https://github.com/beaudoco/Quantum-Project, last ac-
cessed 2021/03/25

	Quantum Simulation Using High-Performance Computing
	ScholarWorks Citation

	Microsoft Word - springer_write_up

