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a b s t r a c t 

This paper presents a novel non-linear extension of the Random Projection method based 

on the degree-2 homogeneous polynomial kernel. Our algorithm is able to implicitly map 

data points to the high-dimensional feature space of that kernel and from there perform a 

Random Projection to an Euclidean space of the desired dimensionality. Pairwise distances 

between data points in the kernel feature space are approximately preserved in the re- 

sulting representation. As opposed to previous kernelized Random Projection versions, our 

method is data-independent and preserves much of the computational simplicity of the 

original algorithm. This is achieved by focusing on a specific kernel function, what allowed 

us to analyze the effect of its associated feature mapping in the distribution of the Random 

Projection hyperplanes. Finally, we present empirical evidence that the proposed method 

outperforms alternative approaches in terms of pairwise distance preservation, while being 

significantly more efficient. Also, we show how our method can be used to approximate 

the accuracy of non-linear classifiers with efficient linear classifiers in some datasets. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Random Projection (RP) is a simple yet computationally efficient dimensionality reduction method. While other dimen-

sionality reduction methods compute the directions onto which the data will be projected by analyzing a training dataset, RP

populates the projection matrix with a random normal distribution, thus requiring low computational effort. This technique

is based on a theoretical result known as the Johnson–Lindenstrauss (JL) lemma: For any 0 < ε < 1 and x 1 , x 2 , . . . , x n ∈ R 

d 

there is a map f : R 

d → R 

k for k = O(ε−2 log (n )) such that: 

∀ i, j (1 − ε) || x i − x j || 2 � || f (x i ) − f (x j ) || 2 � (1 + ε) || x i − x j || 2 (1)

Furthermore, this map can be found in randomized polynomial time. For a simple proof of this lemma, refer to Dasgupta

and Gupta [10] . Originally, the map f consisted of projecting the points from R 

d to R 

k by means of a d × k matrix whose

elements were drawn from a Gaussian distribution. Later on, Achlioptas proved that the projection matrix could be popu-

lated according to a much simpler distribution [1] . Concretely, he showed that the entries of the projection matrix R can be

computed as shown in Eq. (2) ; where Achlioptas used s = 1 and s = 3 (see [22] ). 

r i j = 

√ 

s 

{ 

1 with prob. 1 / 2 s 
0 with prob. 1 − 1 /s 
−1 with prob. 1 / 2 s 

(2) 
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In fact, Achlioptas proved that the only requirement to satisfy the JL lemma is that the entries of the projection matrix

must be independent random variables with zero mean and unit variance. Once the d × k matrix R has been populated, an

arbitrary set of n points represented as an n × d matrix X can be projected from R 

d to R 

k according to Eq. (3) (see [1] ). 

X 

′ 
n ×k = 

1 √ 

k 
X n ×d R d×k (3)

Using the distribution proposed by Achlioptas to populate the projection matrix reduces the computational cost of the

projection. This is because the multiplication by 
√ 

s present in Eq. (2) can be delayed, so the computation of the projection

itself reduces to aggregate evaluation (i.e. summation and subtraction but no multiplication). 

Over the years, various authors [3,32] have explored the possibility of performing random projections from the feature

space associated to different kernel functions. This is of interest because of two main reasons: (1) if the JL-lemma is satis-

fied, the pairwise distances between samples in the kernel feature space will be preserved in the resulting representation,

so the low-dimensional projected points will preserve most of the structure from the kernel feature-space; and (2), since

Random Projection preserves separability margins [3] , classification problems may become more lineally solvable after the

Random Projection form a kernel feature space. If this is the case, the classification accuracy of scalable linear classifiers will

increase. Motivated by these advantages, Zhao et al. recently proposed a kernelized variant of the original Random Projection

Algorithm, capable of working with an arbitrary kernel function [32] . As a drawback, their proposal lost some of the ben-

eficial features of the original Random Projection algorithm. In particular, the method proposed in [32] is data-dependent

and, unlike the original Random Projection algorithm, requires an expensive training phase. In addition, this algorithm is

not compatible with the database-friendly distribution proposed by Achlioptas [1] and its distance-preserving capabilities

have not been analyzed empirically. Moreover, it has been theoretically proven that formulating an algorithm capable of

performing a Random Projection from the feature space of an arbitrary kernel function, by just having black-box access to

the kernel function but no training samples (i.e., in a data-independent manner) is not possible [3,5] . However, the question

of whether this could be achieved for particular kernel functions such as the polynomial kernel remains open. 

In this paper, we present a novel method to efficiently perform random projections from the feature space of the homo-

geneous polynomial kernel of degree two. By focusing on a specific kernel function, our method overcomes the limitations

of previous kernelization attempts of the Random Projection algorithm (i.e., data-dependence and training inefficiency). In

addition, our method is compatible with the database-friendly distribution proposed by Achlioptas. Our experimental re-

sults evidence that, by using our method, one can efficiently generate a low-dimensional representation of data samples

that condenses the structure of data in the feature space of the degree-2 homogeneous polynomial kernel, approximately

preserving the pairwise distances between samples in that space. Because of the data-independent nature of the proposed

method, it can be applied in online-learning scenarios [13] where no data samples are initially available. In addition, this

representation can be used to train efficient linear classifiers that approximate the accuracy of their non-linear counterparts.

Formally, we propose replacing the inner product that takes place during the matrix multiplication of Eq. (3) (i.e. projec-

tion of data points of X onto directions in R ) by the kernel function (see Eq. (4) ). By doing so, the columns of the projection

matrix and the data samples are mapped by φ( ·) and the projection takes place in the kernel feature space: 

x ′ i j = 

1 √ 

k 
K 

(
[ x i 1 , x i 2 , . . . , x id ] , [ r 1 j , r 2 j , . . . , r dj ] 

)
= 

1 √ 

k 
〈 φ( row i X ) , φ(col j R ) 〉 (4)

where 〈· , ·〉 denotes the scalar product. However, this is not in general equivalent to explicitly mapping the data points to

the extended feature space by means of φ : R 

d → H and then performing a Random Projection. This is because we cannot

guarantee that the distribution of the elements in R will be preserved by the embedding φ( ·). Therefore, our goal will be to

define the projection matrix R in such a way that when its columns are mapped by φ( ·) to the implicit, high-dimensional

feature space H the result will be a set of valid random projection directions. This is the reason why we must focus on a

specific kernel function, so we can analyze how its associated mapping φ( ·) affects the columns of the projection matrix. 

The rest of this paper is structured as follows. Section 2 reviews the related work available in the literature. Section 3 de-

scribes the proposed approach and how it manages to efficiently perform a valid Random Projection form the feature space

of the degree-2 homogeneous polynomial kernel. An improved method to construct the implicit projection hyperplanes is

then described in Section 4 . In Section 5 , we provide empirical evidence that our method approximates a Random Projection

form the feature space of the degree-2 homogeneous polynomial kernel, so the pairwise distances between points in the

feature space are approximately preserved in the reduced representation. Additional experimental results regarding the suit-

ability of our method for the task of classification are reported in Section 6 . Finally, Section 7 summarizes the conclusions

and future research lines. 

2. Related work 

This paper focuses on the design of a novel method to perform a Random Projection from the feature space associated to

a specific kernel function, namely the degree-2 homogeneous polynomial kernel. By performing this random projection, it is

possible to efficiently generate a compact representation of samples that captures the structure of data in the kernel feature

space. Conveniently, this is achieved without any explicit computation of the expensive mapping function φ( ·). By focusing

on a specific kernel function, we were able to preserve some of the most important beneficial features of the original
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Random Projection algorithm, namely its data-independence, efficiency and the possibility of implementing the projection

in terms of aggregate evaluation, thanks to the distribution proposed by Achlioptas [1] . One important advantage of this

kernel family is that the associated feature space is known and of finite (but very high) dimension. The intuition behind

the homogeneous polynomial kernel is that it is often useful to construct new features as the product of original features.

The feature space of the degree-2 homogeneous polynomial kernel consists of all the possible second order monomials of

the original features of a sample, so it is able to account for interactions between the original features. For instance, in a

text-processing problem where the features of samples represent the number of occurrences of a word in a document, the

features in the kernel feature space correspond to co-occurrences of pairs of words, which may be more informative than

individual frequencies. This explains why numerous machine learning problems are more easily solved in the feature space

of polynomial kernels [8,20,29,30] . Moreover, the suitability polynomial kernels for various classification tasks is supported

by the results presented in [7] . In this work, the authors analyzed the effectiveness of the polynomial kernel of degree two in

the context of Support Vector Machine (SVM) classification. They propose an alternative to the standard kernel-SVM method.

Specifically, they apply fast linear-SVM classification methods to data samples explicitly mapped by the mapping function

φ( ·) associated to the polynomial kernel of degree two. Their results evidence that, using this approach, it is possible to

achieve accuracy rates close to those achieved when using highly non-linear kernels (e.g. radial basis kernels) for various

large-scale datasets. However, using the explicit feature map φ( ·) is highly inconvenient due to the size of the resulting

representation. To overcome this limitation, the authors of [7] applied various techniques that rely on the sparsity of training

data, but of course this is not always the case. 

In [21] , the authors developed a novel technique to generate a set of random hyperplanes over an implicit kernel feature

space { r 1 . . . r k } ∈ H which are restricted to be approximately Gaussian. The main idea of their proposal, often known as the

Kulis–Grauman approach, is to construct the hyperplanes in the implicit feature space H as a weighted sum of a subset

of the training-data points, thus being a data-dependent method. The Kulis–Grauman approach was recently adopted to

perform a kernelized version of Random Projection in the context of image classification [2] . Although this version is com-

patible with an arbitrary kernel function, it loses much of the computational efficiency and conceptual simplicity of Random

Projection. In addition, it makes use of the specific data to be projected during the training stage (as opposed to standard

RP, in which the projection matrix R is completely data-independent and no training stage is required). Later on, this kernel-

ized version of RP was extended and applied to the problem of image clustering [32] . The authors proposed three versions

of the algorithm: Kernelised Gaussian Random Projection (KG-RP), Kernelised Orthonormal Random Projection (KORP), and 

KPCA-based Random Projection (KPCA-RP). The three versions differ in the manner in which the hyperplanes are generated

over the implicit feature space, but the mentioned limitations (computational and conceptual complexity, data-dependence

and training phase need) still apply. In addition, these studies do not provide empirical evidence that the JL-lemma still

applies when using their proposed versions of the algorithm (i.e. pairwise distances between data points in H should be

preserved in the resulting space). Our experimental results suggest that our method outperforms that of Alavi et al. [2] in

terms of distance preservation while having a much lower computational cost. 

In fact, Balcan et al. [3,5] showed that performing a Random Projection from the feature space of an arbitrary kernel

function, by just having black-box access to the kernel function but no training samples to estimate the data-distribution

is not possible. They work, however, left as an open problem whether this could be done for specific kernel functions such

as the polynomial kernel. In that sense, our work answers that question positively, by providing a means to perform a

Random Projection from the feature space of the degree-2 homogeneous polynomial kernel without the need of accessing

the distribution of samples that will be projected. 

As mentioned before, one of the motivations to design methods that can perform Random Projections from the feature

space of kernel functions is the possibility of using the resulting representation as a basis for efficient categorization with

linear classifiers. Since separability margins are approximately preserved after a Random Projection [5] , a linear support

vector machine classifier (SVM) trained on the resulting representation may be able to approximate the accuracy of its

kernelized counterparts, with the advantage that linear SVMs are significantly more efficient [31] . In fact, a lot of effort has

been recently put into designing more scalable versions of the traditional kernel-SVM. A notable example is the development

of Least Squares Support Vector Machines (LS-SVM) [6,17,26] , which replace the constrained quadratic programming problem

in the formulation of kernel-SVMs by a set of linear equations, thus being applicable to large-scale problems. 

3. Random Projection from the feature space of the homogeneous polynomial kernel 

Given a set of n points from R 

d represented as a n × d matrix X , the goal of our method is to map them to the high-

dimensional, implicit feature space H of the degree-2 homogeneous polynomial kernel and then perform a random pro-

jection from H to R 

k so the resulting points are represented as a n × k matrix X 

′ . Preferably, these operations should be

performed implicitly via the kernel function (as shown in Eq. (4) ), avoiding any explicit computation of the mapping func-

tion φ( ·). As mentioned before, in order to ensure that Eq. (4) approximates a valid Random Projection in the kernel feature

space of the degree-2 homogeneous polynomial kernel, we will define an appropriate distribution for the projection matrix

R by analyzing the properties of that specific kernel function. Essentially, homogeneous polynomial kernels are a subset of

the family of polynomial kernels, parametrized by the polynomial degree p and the constant term c : 

K(x, y ) = (x T y + c) p (5) 
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When c is fixed to zero, the result is a homogeneous polynomial kernel. As opposed to other kernel functions, the implicit

feature space associated to the homogeneous polynomial kernel of degree two can be easily determined. To do so, it suffices

to write the kernel function in the extended from. The homogeneous polynomial kernel of degree two is defined as: 

K(x, y ) = (x T y ) 2 (6a)

= 

( 

d ∑ 

i =1 

x i y i 

) 2 

= 

d ∑ 

i =1 

(x i ) 
2 (y i ) 

2 + 

d−1 ∑ 

i =1 

d ∑ 

j= i +1 

( 
√ 

2 x i x j )( 
√ 

2 y i y j ) (6b)

where x, y ∈ R 

d . Then, it is clear that the previous expression corresponds to the inner product of x and y in the feature

space defined by the following embedding (see, for example [25] ): 

φ(x ) = (x 2 1 , . . . , x 
2 
d , 

√ 

2 x 1 x 2 , . . . , 
√ 

2 x 1 x d , 
√ 

2 x 2 x 3 , . . . , 
√ 

2 x 2 x d , . . . , 
√ 

2 x d−1 x d ) (7)

Once the feature space associated to the kernel is known, one might consider performing a standard Random Projection

from this representation. Following this approach, data samples should be transformed by φ( ·) and then projected to a low-

dimensional space by standard Random Projection. In fact, if the sparse distribution proposed by Achlioptas is used, the

projection matrix R might be efficiently stored using a sparse matrix implementation. However, explicitly computing φ( x )

might be a very expensive and almost intractable task. This is mainly due to the fact that the dimension of φ( x ) grows as

O(d 2 ) . As a consequence, trying to explicitly transform a set of samples with φ( ·) requires intensive computations and a

significant storage capacity, especially if data samples are dense and sparse matrix implementations cannot be used (which

is often the case). For instance, in Section 5 we will see that storing the explicit form of φ( x ) for 200 samples from a

dataset of 96 × 96 colour images would require more than 284 GB of memory, which is far beyond the current capacity of

most devices’ main memory. Nevertheless, in Section 5 we empirically compare this approach to our proposed method both

in terms of performance and efficiency. From now on, we will refer to the explicit transformation of data samples by φ( ·)
followed by the application of standard Random Projection as the explicit approach . 

Returning to our proposed method, once the feature space of the kernel has been determined, it becomes possible for us

to define a distribution for the projection matrix R such that its columns will follow a valid Random Projection distribution

when transformed by φ( ·). In this manner we will be able to perform the Random Projection via the kernel function, thus

avoiding any explicit computation of φ( ·). Particularly, we propose populating the projection matrix R according to Eq. (8) .

r i j = 

√ 

s 
4 
√ 

2 

{ 

1 with prob. 1 / 2 s 
0 with prob. 1 − 1 /s 

−1 with prob. 1 / 2 s 
(8)

Given that the embedding associated to the kernel function is known, we can analyze its effect on the proposed distribu-

tion. Let r ∈ R 

d be any of the columns of R ; then, consider the distribution of features in φ( r ) (i.e. one of the projection

hyperplanes onto which data points will be projected). Two different distributions emerge: 

φ( r ) = 

⎛ 

⎝ r 2 1 , · · · , r 2 d ︸ ︷︷ ︸ 
distribution A 

, 
√ 

2 r 1 r 2 , · · · , 
√ 

2 r 1 r d , 
√ 

2 r 2 r 3 , · · · , 
√ 

2 r 2 r d , · · · , 
√ 

2 r d−1 r d ︸ ︷︷ ︸ 
distribution B 

⎞ 

⎠ (9)

A := 

{
s √ 

2 
with prob. 1 /s 

0 with prob. 1 − 1 /s 
B := 

√ 

s ′ 
{ 

1 with prob. 1 / 2 s ′ 
0 with prob. 1 − 1 /s ′ 

−1 with prob. 1 / 2 s ′ 
(10)

where s ′ = s 2 . Conveniently, distribution B corresponds to the original formula proposed by Achlioptas (see Eq. (2) ). Notice

that only the first d elements of φ( r ) follow distribution A . The total number of features in φ( r ) is d + d((d − 1) / 2) ; hence,

the percentage of components of φ( r ) that follow distribution A tends to zero as d grows: 

lim 

d→∞ 

d 

d + d( d−1 
2 

) 
= lim 

d→∞ 

2 

d + 1 

= 0 (11)

Therefore, as the original dimension of samples d increases, the computation defined in Eq. (13) with the projection matrix

R populated according to Eq. (8) approximates the explicit mapping of points from R 

d to H and its reduction by means of

Random Projection from H to R 

k . Conveniently, this is done without any explicit computation of the embedding φ( ·). 
In case one needs to work with very low-dimensional samples (i.e. low d values), it is possible to define a modified

polynomial Kernel which ensures that all the components of φ( ·) follow distribution B . The implicit feature space associated

to the kernel presented in Eq. (12) is that of the homogeneous polynomial kernel of degree two but without the first d

components (precisely those following distribution A ). 

K(x, y ) = (x T y ) 2 − (x 2 ) T (y 2 ) (12)
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The experimental results reported in Section 5 show that pairwise distances between data points in H are approximately

preserved in the reduced representation generated by the proposed method. However, if we compare the distance distortion

induced by our method to the distortion induced by the explicit mapping of points to H and its reduction to R 

k by means of

standard Random Projection (i.e., the explicit approach), we see that the former is slightly higher. To explain this deviation,

we must consider the requirements that the projection matrix must satisfy in order for the JL-lemma to hold. According

to Achlioptas [1] , the elements of the projection matrix must be independent random variables with zero mean and unit

variance. Unfortunately, our implicit projection hyperplanes do not completely satisfy the independence condition. Consider 

for example the following elements of φ( r ): 
√ 

2 r 1 r 2 , 
√ 

2 r 2 r 3 and 

√ 

2 r 1 r 3 . Once the sign of the first two elements is known,

the sign of the third is completely determined. This partial dependence between the elements of the projection directions

causes the deviation in the distance preservation with respect to the explicit approach. In the next section, an alternative

method to overcome this problem is proposed. 

4. Using the Central Limit Theorem to construct the projection hyperplanes 

In this section, a novel technique to construct a random projection matrix in the implicit feature space is proposed. The

elements of this implicit projection matrix will be nearly independent variables drawn form a normal distribution with

zero mean and unit variance. To populate this implicit matrix and perform the random projection in the implicit feature

space (without any explicit computation of φ( ·)), our method relies both on the properties of kernels and the Central Limit

Theorem [18] . 

First, we populate m projection matrices each of dimension d × k . We will refer to the l -th projection matrix as R ( l ) . After

this, an arbitrary set of n points represented as an n × d matrix X can be implicitly mapped from R 

d to H and then randomly

projected to R 

k according to Eq. (13) (the resulting points are represented as an n × k matrix X 

′ ). 

x ′ i j = 

1 √ 

k 

m ∑ 

l=1 

K 

(
row i X, col j R 

(l) 
)

(13) 

To show that Eq. (13) actually approximates a valid Random Projection, we begin by applying the definition of the kernel

function K(x, y ) = 〈 φ(x ) , φ(y ) 〉 to reveal the computations that take place in the feature space ( Eq. (14) ). Then, we apply a

fundamental property of inner products, 〈 x, y + z〉 = 〈 x, y 〉 + 〈 x, z〉 [24] , to rewrite the equation as a single inner product in

Eq. (15) , and use the summation notation to simplify the formula in Eq. (16) . 

x ′ i j = 

1 √ 

k 

m ∑ 

l=1 

K 

(
row i X, col j R 

(l) 
)

= 

1 √ 

k 

m ∑ 

l=1 

〈 φ( row i X ) , φ
(
col j R 

(l) 
)〉 (14) 

= 

1 √ 

k 
〈 φ( row i X ) , φ

(
col j R 

(1) 
)〉 + · · · + 

1 √ 

k 
〈 φ( row i X ) , φ

(
col j R 

(m ) 
)〉 

= 

1 √ 

k 
〈 φ( row i X ) , φ

(
col j R 

(1) 
)

+ · · · + φ
(
col j R 

(m ) 
)〉 (15) 

= 

1 √ 

k 
〈 φ( row i X ) , 

m ∑ 

l=1 

φ
(
col j R 

(l) 
)〉 (16) 

At this point, we have shown that Eq. (13) corresponds to the mapping of the i -th sample in X to the kernel feature space

H and its projection onto a vector of the form 

∑ m 

l=1 φ(col j R 
(l) ) . Therefore, in order for Eq. (13) to compute a valid Random

Projection from the kernel feature space, we just need to ensure that 
∑ m 

l=1 φ(col j R 
(l) ) follows a valid RP-distribution. In [1] ,

Achlioptas proved that any random distribution with zero mean and unit variance can be used to generate the projection

vectors. In this case, we will use the Central Limit Theorem to ensure that the projection vectors follow a normal distribution

with zero mean and unit variance. To this extent, we define the following distribution to populate the projection matrices

{ R (1) , R (2) , ���, R ( m ) }: 

r i j = 

√ 

s 
4 
√ 

2 m 

{ 

1 with prob. 1 / 2 s 
0 with prob. 1 − 1 /s 

−1 with prob. 1 / 2 s 
(17) 

Now, let us analyze the distribution of variables in the implicit feature space for the columns of the projection matrices.

Let r ∈ R 

d be a column of any of the m projection matrices populated according to Eq. (17) , then: 

φ( r ) = 

⎛ 

⎝ r 2 1 , · · · , r 2 d ︸ ︷︷ ︸ 
distribution A 

, 
√ 

2 r 1 r 2 , · · · , 
√ 

2 r 1 r d , 
√ 

2 r 2 r 3 , · · · , 
√ 

2 r 2 r d , · · · , 
√ 

2 r d−1 r d ︸ ︷︷ ︸ 
distribution B 

⎞ 

⎠ (18) 
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A := 

{
s √ 

2 m 

with prob. 1 /s 

0 with prob. 1 − 1 /s 
B := 

√ 

s ′ 
m 

{ 

1 with prob. 1 / 2 s ′ 
0 with prob. 1 − 1 /s ′ 

−1 with prob. 1 / 2 s ′ 
(19)

where s ′ = s 2 . The mean and the variance of distribution B can be determined as follows [28] : 

μ = E (B ) = 

∑ 

b 

b · P (b) = 

√ 

s ′ 
m 

· 1 

2 s ′ −
√ 

s ′ 
m 

· 1 

2 s ′ = 0 (20)

σ 2 = E 

(
[ B − μ] 

2 
)

= 

∑ 

b 

( b − μ) 
2 · P ( b ) = 

( √ 

s ′ 
m 

− 0 

) 2 

· 1 

2 s ′ + 

( 

−
√ 

s ′ 
m 

− 0 

) 2 

· 1 

2 s ′ = 

s ′ 
m 

· 1 

2 s ′ + 

s ′ 
m 

· 1 

2 s ′ = 

1 

m 

(21)

where �b denotes the sum over all of the possible values of B and P ( b ) is the probability of the specific value b in the

random distribution B . Once the mean and variance of B are known, we can apply the Central Limit Theorem (CLM) [18] to

ensure that, for sufficiently large m , the majority of the elements of 
∑ m 

l=1 φ(col j R 
(l) ) will follow a normal distribution of zero

mean and unit variance. Only the first d elements of the projection directions will not follow that distribution. Fortunately,

as in the previous section the percentage of elements that follow distribution A with respect to the desired distribution B

tends to zero as d grows larger. 1 Note that the m hyperparameter, which controls the number of vectors summed to form

the final projection hyperplanes, must be specified manually. In the context of the CLM, a sample size of 25 or 30 is usually

recommended to obtain a good approximation of the desired normal distribution [16] . The effect of choosing different m

values in the proposed method is empirically studied in Section 5 . 

Since by the CLT most of the entries in 

∑ m 

l=1 φ(col j R 
(l) ) are distributed according to N (0 , 1) , and we have shown that

Eq. (13) corresponds to the mapping of a sample to the kernel feature space followed by a projection onto a vector of

the form 

∑ m 

l=1 φ(col j R 
(l) ) , we can conclude that Eq. (13) approximates a valid Random Projection from the kernel feature

space. Note that, due to the fact that the first d features in 

∑ m 

l=1 φ(col j R 
(l) ) do not follow a valid RP-distribution, we cannot

categorically state that the JL-lemma will be satisfied. However, as we have seen in the previous section, the percentage of

features that follow distribution A tends to zero as d grows larger. In fact, our experimental results evidence that the effect

of these features is indeed neglectable, as in all cases our method was able to induce an average distortion in samples as

low as that of the explicit approach by using a big enough m value. Also, Section 5.4 reports on the results of statistical tests

which ensure that there is no significant difference between the distance preservation capabilities of the proposed approach

and a standard Random Projection from the explicitly-computed kernel feature space. Nevertheless, we could also use the

modified kernel function (see Eq. (12) ), which removes these inconveniently distributed features from the kernel feature

space. In that case, all the features in 

∑ m 

l=1 φ(col j R 
(l) ) would follow the desired standard normal distribution. 

Finally, note that the distribution proposed in this section to populate the projection matrices is conveniently a gener-

alization of the one proposed in the previous section. When the m hyperparameter is set to one (i.e. only one projection

matrix is used) the distribution proposed in Eq. (17) is the same as in Eq. (8) . Similarly, when m = 1 , Eq. (13) is equivalent

to the method described in the previous section. From now on, we will refer to our method as Polynomial-kernel Random

Projection (P-RP), indicating in each case the value used for the m hyperparameter. 

4.1. Computational complexity of the proposed approach 

The original Random projection algorithm has a remarkably low computational complexity: the training step (i.e. popu-

lating the projection matrix R ) takes O(dk ) time, and projecting the n × d data matrix X into R 

k can be done by means of

Eq. (3) at the cost of time O(ndk ) [4] . In the proposed variation of the algorithm, the training step consist of populating

m projection matrices, thus having a complexity of O(mdk ) . Given that the polynomial kernel can be computed in O(d) ,

the complexity of projecting the n × d data matrix X into k dimensions by means of Eq. (13) is of order O(mndk ) . However,

since m is a hyperparameter whose value does not depend on the input data, it can be considered as a constant. By doing

this, the complexities of the training and test phases turn out to be the same as in the original RP algorithm. This indicates

that the scalability of P-RP when the number of training samples and its dimension grow is the same that the scalability of

RP. 

P-RP has a lower computational complexity than most common non-linear dimensionality reduction methods. For in-

stance, Kernel PCA, Multidimensional scaling (MDS) and Isomap have a training computational complexity of O(n 3 ) [27] .

This makes them scale poorly as the amount of training instances increase. Other methods (such as Autoencoders and Local

Linear Coordination) depend on solving non-convex optimization problems. Hence, they might get stuck in local minima. 
1 Given that the first d elements of φ( col j R 
( l ) ) are never negative, the first d elements of 

∑ m 
l=1 φ(col j R 

(l) ) will grow larger as m increases, having a negative 

impact in the distance preservation capabilities of P-RP. To solve this problem, we multiply half of the elements in the summation of Eq. (13) by minus one. 

By doing so, the first d elements of the projection directions will exhibit a zero mean, and the distribution of the remaining entries will not be modified 

due to de symmetry of distribution B . 
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5. Experimental results on distance preservation 

The proposed technique aims to implicitly project data samples from R 

d to H and then project them to R 

k in such a way

that pairwise distances between samples in H are preserved in the resulting space. To evaluate the distance preservation

properties of the different approaches, we compare the squared Euclidean distance between two dimensionality-reduced

data vectors to their squared Euclidean distance in the kernel feature space. To do so, we use the following measure: let x,

y be a couple of samples from R 

d and let x ′ , y ′ be their reduction to R 

k , then: 

distortion x,y = 

abs ( || x ′ − y ′|| 2 − || φ(x ) − φ(y ) || 2 ) 
|| φ(x ) − φ(y ) || 2 (22) 

This measure can be easily interpreted. For example, if distortion x,y = 0 . 12 we can conclude that the distance between both

samples in H suffered a 12% distortion (increase or decrease) in the resulting feature space. Note that the computation of

|| φ(x ) − φ(y ) || 2 can be performed without any explicit evaluation of φ( ·), via the kernel function [23] : 

|| φ(x ) − φ(y ) || 2 = −2 K(x, y ) + K(x, x ) + K(y, y ) (23)

To measure the distortion induced by a given method while reducing a set of n samples, the average distortion among

all the 
(

n 
2 

)
possible pairs of different samples is computed. We shall use the average distortion measure to compare the

different approaches proposed in this paper. To validate the effectiveness of the proposed method, the experiments were

carried out using three datasets from different domains, namely artificial vision and speech recognition. We also evaluated

the effectiveness of alternative methods such as the explicit approach (see Section 3 ) and Kernelised Gaussian Random

Projection (KG-RP) [32] . In the case of KG-RP the p hyperparameter, which controls the number of samples used to estimate

the distribution of data, must be set manually. By its nature, increasing its value can only cause the performance of the

algorithm to improve, at the expense of longer running times. The authors of this method suggest using p = O( 
√ 

n ) to

achieve a balance between efficiency and performance [21,32] , where n is the number of training samples. We followed

this recommendation in our experiments and evaluated KG-RP with p = 3 
√ 

n , 6 
√ 

n , and 9 
√ 

n . To support our claims about

the scalability of the proposed method, each distance distortion result reported in this section is provided along with the

corresponding training/embedding times. 

5.1. Experiments on CIFAR-10 

The CIFAR-10 dataset [19] consists of 60,0 0 0 32 × 32 colour images distributed among 10 different classes. It contains

exactly 60 0 0 images per class. The train/test split is usually arranged with 50,0 0 0 training images and 10,0 0 0 test images.

Given that the images are of size 32 × 32 with three channels, the sample size d is 3072. The dimensionality of the implicit

feature space H (for the homogeneous polynomial kernel of degree two) is 4,717,056. In this case, the explicit approach

(i.e. explicit transformation of the samples by means of φ( ·) and reduction by linear Random Projection) is still tractable.

However, it is extremely demanding both in terms of computational power and memory. For example, storing 200 samples

from H as a matrix of 32-bit floats requires approximately 3.6 GB of memory. 

To compare the different approaches, 200 samples were selected at random from the whole dataset. Then, the samples

were reduced by means of the different methods proposed in this paper and the average pairwise distance distortion was

measured. Fig. 1 a) shows the average distortion induced by the different methods as the resulting dimension k grows. 

As we can se in Fig. 1 a), the method proposed in Section 3 (i.e., P-RP with m = 1 ) provides a reasonably low distortion

given its simplicity. However, as explained before, a significant gap exits between the effectiveness of this method and the

explicit approach. On the other hand, the method proposed in Section 4 to overcome that limitation shows a rapid decrease

in the induced distortion as the hyper-parameter m grows. Table 1 compiles the resulting average distortions obtained using

different methods and various values of k and m . To mitigate the stochastic nature of these methods, each experiment was

performed ten times. The average result and the standard deviation are reported. Regarding the ruining times, P-RP is by far

the fastest alternative, especially considering training times (which in the case of P-RP are solely due to the initialization of

the random projection matrices). As expected, the explicit approach reports the longest running times due to the expensive

explicit computation of the kernel feature space. 

Finally, we analyze the effect of the hyperparameter m on the average distortion induced by P-RP. To this extent, the

dimension of the resulting space k was fixed to 160 and the average distortion was evaluated for a wide range of m values.

The results were compared to the average distortion induced by the explicit approach, also with k = 160 . This comparison is

shown in Fig. 1 b). The results evidence that using values of m greater than 100 will ensure a performance of P-RP equivalent

to that of the explicit approach. In addition, it is even possible to obtain a very close approximation to this performance

with much lower m values. 

5.2. Experiments on ISOLET 

The ISOLET Spoken Letter Database is a dataset of letters from the English alphabet pronounced by native speakers

under controlled conditions. The data consist of two productions of each letter by a total of 150 subjects (with uniform

gender distribution). The dataset contains a total of 7800 samples, each corresponding to the features extracted from the
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Fig. 1. a) Average distortion induced on CIFAR10 samples by using different methods as the resulting dimension grows. b) Effect of different values for the 

hyperparameter m on CIFAR10 samples transformed by P-RP; the resulting dimension was fixed to 160. 

Table 1 

Average pairwise distance distortion induced by different methods and hyperparameters on 200 samples from 

CIFAR10. Training/embedding times are also provided for all the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pronunciation of a letter. For more details on the feature extraction process see [12] . Each sample consist of 617 features;

therefore, the dimensionality of the associated implicit feature space H is 190,653. Note that the storage of 200 samples

from H as a matrix of 32-bit floats requires approximately 145.5 MB of memory. 

To compare the different approaches, 200 samples were selected at random from the whole dataset. Then, the samples

were reduced by means of the different methods proposed in this paper and the average pairwise distance distortion was

measured. Fig. 2 a) shows the average distortion induced by the different methods as the resulting dimension k grows.

Table 2 compiles the resulting average distortions obtained using different methods and various values of k and m . Each

experiment was performed ten times; the average result and standard deviation of those ten runs are reported. To analyze

the effect of the hyperparameter m on the average distortion induced by P-RP, the dimension of the resulting space k was

fixed to 160 and the average distortion was evaluated for a wide range of m values. The results were compared to the

average distortion induced by the explicit approach also with k = 160 . This comparison is shown in Fig. 2 b). 

5.3. Experiments on STL-10 

The STL-10 dataset [9] , inspired by the CIFAR-10 dataset, is another very popular image recognition dataset. The two

major differences with respect to CIFAR-10 are the lower amount of labelled images per class and the dimensions of the

images in SLT-10 which are significantly bigger. The dataset consists of 500 training images, 800 test images per class and

10 0,0 0 0 unlabelled images for unsupervised learning. Each image is of size 96 × 96 with three colour channels; therefore

each sample contains 27,648 features. The dimensionality of the implicit feature space H is then 382,219,776. Consequently,

storing 200 samples from H as a matrix of 32-bit floats requires approximately 284.7 GB of memory, which is far beyond
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Fig. 2. a) Average distortion induced on ISOLET samples by using different methods as the resulting dimension grows. b) Effect of different values for the 

hyperparameter m on ISOLET samples transformed by P-RP; the resulting dimension was fixed to 160. 

Table 2 

Average pairwise distance distortion induced by different methods and hyperparameters on 200 samples 

from ISOLET. Training/embedding times are also provided for all the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the current capacity of personal computers and a challenging volume even for high-end computing systems. This illustrates

how rapidly (exponentially indeed) the explicit approach becomes intractable when the dimensionality of data samples

grows. Working with this sample size renders the explicit approach intractable. For this reason, it was not evaluated in this

case study. However, we could still measure the effectiveness of the other compared methods. To compare the different

approaches, 500 samples were selected at random from the whole dataset. Then, the samples were reduced by means of

the different methods proposed in this paper and the average pairwise distance distortion was measured. Fig. 3 a) shows the

average distortion induced by different methods as the resulting dimension k grows. Table 3 compiles the resulting average

distortions obtained using different methods and various values of k and m . Each experiment was performed ten times; the

average result and standard deviation of those ten runs are reported. Fig. 3 b) analyzes the effect of the hyperparameter m

on the average distortion induced by P-RP ( k was fixed to 160). 

5.4. Friedman test and post-hoc tests 

This subsection reports on the results of several statistical tests that support our claim that the proposed method ap-

proximates a Random Projection from the feature space of the degree-2 homogeneous polynomial kernel. We applied

the Friedman method with post-hoc tests as described in [14,15] . For all the tests, the performance measure used was

1 − a v g. distortion . Intuitively, big values of this performance measure correspond to small induced distortions in pairwise

distances. 

First of all, we analyzed whether a significant difference existed in the performance of the compared methods over the

different datasets evaluated. Under the null-hypothesis, the Friedman test states that all the algorithms are equivalent, so a
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Fig. 3. a) Average distortion induced on 500 STL-10 samples by using different methods as the resulting dimension grows. b) Effect of different values for 

the hyperparameter m on STL-10 samples transformed by P-RP; the resulting dimension was fixed to 160. 

Table 3 

Average pairwise distance distortion induced by different methods and hyper-parameters on 500 samples 

from STL-10. Training/embedding times are also provided for all the experiments. 

Table 4 

Adjusted p -values for the comparison of the control algorithm ( φ(·) + RP) with the remaining algorithms 

(Bonferroni-Dunn, Holm and Hochberg tests). 

i Algorithm Unadjusted p p Bonf p Holm p Hoch 

1 KG-RP ( p = 3 · √ 

n ) 4.62394 × 10 −12 3.23676 × 10 −11 3.23676 × 10 −11 3.23676 × 10 −11 

2 KG-RP ( p = 6 · √ 

n ) 5.43308 × 10 −9 3.80316 × 10 −8 3.25985 × 10 −8 3.25985 × 10 −5 

3 KG-RP ( p = 9 · √ 

n ) 3.06125 × 10 −6 2.142877 × 10 −5 1.53062 × 10 −5 1.53062 × 10 −5 

4 P-RP 6.79534 × 10 −6 4.75674 × 10 −5 2.71813 × 10 −5 2.71813 × 10 −5 

5 P-RP ( m = 2) 0.00204 0.014328 0.00614 0.00614 

6 P-RP ( m = 10) 0.04550 0.31850 0.09100 0.09100 

7 P-RP ( m = 30) 0.31731 2.22117 0.31731 0.31731 

 

 

 

 

 

 

 

 

rejection of this hypothesis implies the existence of differences among the performance of the different methods. Using the

Friedman statistic over the performance results previously reported in this section resulted in a value of 80.805 (distributed

according to chi-square with 7 degrees of freedom) and a corresponding p -value of 4 . 3258 × 10 −11 . As a consequence, we

can reject the null-hypothesis and conclude that significant differences exist between the performances of the compared

methods. Hence, a post-hoc statistical analysis must be performed. We selected the best performing method, namely φ(·) +
RP (i.e., the explicit approach), as the control. Then, the Bonferroni-Dunn, Holm and Hochbergs tests [15] were used to

find whether the control method presents statistical differences when compared to the remaining approaches in terms of

performance. The adjusted p -values for these tests are reported in Table 4 , stressing in bold those methods that were worse

than the control considering a level of significance α = 0 . 05 . 
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Table 5 

Feature number, kernel feature space size, training sample number and 

test sample number of the datasets used in Section 6 . 

Dataset Sample size d Size of H #train #test 

ijcnn1 22 253 49,990 91,701 

MNIST38 784 307,720 11,982 1984 

covtype 54 1485 464,809 116,203 

webspam 254 32,385 280,0 0 0 70,0 0 0 

Table 6 

Classification accuracy on various datasets obtained by using: a linear SVM over the original features, a Gaussian- 

kernel SVM, a linear SVM over the embedding defined by the polynomial kernel of degree two, a linear SVM 

trained on P-RP features and a linear SVM trained on KG-RP features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we can see, while KG-RP and P-RP with m < = 2 perform worse than the control approach, no significant differences

were detected by the tests when comparing the distance preservation performance of our method using m > = 10 and the

explicit approach φ(·) + RP (with a level of significance α = 0 . 05 ). This supports our claim that, when a big enough value is

selected for the m hyperparameter, our method approximates a Random Projection form the feature space of the degree-2

homogeneous polynomial kernel. 

6. Experimental results on classification accuracy 

Although Radial Basis Function (RBF) is the most widely used type of kernel in the context of support vector machine

(SVM) classification, it suffers from some limitations. Mainly, the implicit feature map φRBF ( ·) associated to the RBF kernel

is infinite dimensional, which enforces the application of the kernel trick to train RBF-SVMs. As a result, RBF-SVMs are

inefficient and poorly scalable as compared to their linear counterparts [31] . 

As an alternative, Chang et al. [7] proposed mapping the data samples by the feature transformation associated to the

polynomial kernel of degree two as a prior step to fast linear-SVM classification. Their experimental results evidence that,

using this method on some datasets, one may achieve accuracy rates close to those of using highly non-linear kernels.

Unfortunately, as we have mentioned before, the dimensionality of H grows rapidly as the original dimension of samples

increases. Therefore, the method proposed in [7] is not convenient when training samples have a significant number of

features and those features are not sparse. 

On the other hand, the method proposed in this paper can be used to efficiently condense the structure of a dataset in H
to a low-dimensional representation of the samples. This representation can be used to train efficient linear classifiers that

obtain accuracy rates almost as good as those trained on samples explicitly mapped by means of the embedding φ : R 

d → H.

To support our claim, we reproduced the experimental protocol developed in [7] . The accuracies obtained by using P-RP as

a feature extractor prior to linear classification 

2 were compared to the results presented by Chang et al. Table 6 compiles

the experimental results obtained on various datasets by various dimensionality reduction and classification methods. 3 For
details on the characteristics of the different datasets refer to Table 5 . 

2 We used the linear SVM implementation provided by LIBSVM [11] . 
3 The results concerning L-SVM, RBF-SVM and φ( ·) L-SVM where directly taken from [7] . 
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The results presented above evidence that the proposed method can be used as a previous step to linear classification,

boosting the capabilities of linear classifiers and approximating, in some cases, the performance attained by highly non-

linear classification methods. Interestingly, the effect of increasing the m hyperparameter of P-RP has a more subtle effect in

the classification accuracy than it had in the results concerning distance preservation in the previous section. Conveniently,

high accuracy rates can be achieved using very small m values. In fact, no significant accuracy improvements where regis-

tered using m > 20. Moreover, the best results with P-RP for webspam and covtype datasets were achieved by using m = 1 ,

which corresponds to the method described in Section 3 . In addition, we can see that KG-RP achieved similar or slightly

lower accuracies than our method on all datasets. 

7. Discussion and future work 

In this paper, a novel non-linear dimensionality reduction method has been presented. The proposed algorithm makes it

possible to implicitly perform a Random Projection from the feature space associated to the polynomial kernel of degree two

to an euclidean space of the desired dimension. This projection is conveniently performed without any explicit computation

of the embedding φ : R 

d → H. As opposed to previous techniques to perform random projections from kernel feature spaces

[2,32] , our method preserves the data-independence and efficiency properties of the original Random Projection algorithm.

In fact, the training stage only involves the population of the random projection matrices, thus preserving much of the

simplicity of the original Random Projection method. Moreover, the proposed method is compatible with the database-

friendly distribution proposed by Achlioptas [1] , thus allowing its implementation in terms of aggregate evaluation. This is

achieved by delaying the floating-point multiplication present in Eq. (17) . In addition, our work gives a positive answer to

the question brought up by Balcan et al. [3,5] , proving that it is possible to perform a Random Projection from the feature

space of an specific kernel function without access to the data distribution. 

Our experimental results show that the proposed method approximates the distance preservation properties of Random

Projection, so the generated representations approximately preserve the pairwise distances between samples in the kernel

feature space. Because of the data-independent nature of the proposed method, it could be applied in online-learning sce-

narios [13] where no data samples are initially available. In addition, the method proposed in this paper can be used to train

efficient linear SVMs that approximate the performance of non-linear SVMs with the homogeneous polynomial kernel. First,

P-RP is used to project the training data from H to R 

k ; by doing so, the non-linearity of features in H is retained in the

reduced space. A linear classifier can then be trained on R 

k and used to solve classification problems that were not linearly

separable in the original feature space. 

The major shortcoming of the proposed method is that it was designed to work solely with a specific kernel function. In

this regard, the efficiency and data-independence of our method was achieved at the expense of generality, as this method is

only compatible with the homogeneous polynomial kernel of degree two. Nevertheless, the wide applicability and popularity

of this kernel function [7,8,20,29,30] justifies the interest of our method. We also believe that it would be possible to develop

similar methods for other specific kernel functions, but this possibility will be examined in future work. In addition, the

suitability of the proposed method for other machine learning tasks (e.g. regression, clustering and document retrieval)

could be empirically evaluated. Finally, we believe a similar approach to the one proposed in this paper could be used to

develop a data-independent form of kernelized Locality-Sensitive Hashing (LSH) [21] with the polynomial kernel, as this

task is also based on the projection of samples onto random hyperplanes in the kernel feature space. 
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