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No quiero olvidarme de Pilar Garćıa y el resto del grupo de F́ısica Matématica No

Lineal, siempre dispuestos a echar una mano.

Una persona que merece especial mención es el Dr. Enrique Diez, que me ha

prestado ayuda desinteresada siempre que la he requerido y me ha dado sabios con-

sejos. No me cabe la más mı́nima duda de que este trabajo no seŕıa lo que es si no
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“The principles of physics, as far as I can see, do not

speak against the possibility of maneuvering things

atom by atom. It is not an attempt to violate any

laws; it is something, in principle, that can be done...”

Richard P. Feynman†

C H A P T E R 1

Introduction

The dreamt idea of being able to make and control systems at the atomic scale has

fascinated scientists since the middle of the past century. Nowadays, the wish to carry

on the race of miniaturization of the electronic devices along with the development

and improvement of different techniques for seeing and altering the microscopic na-

ture of matter, have made it possible to manufacture semiconductor devices for which

one can choose at will their electrical, optical or magnetic properties, and whose re-

duced dimensions can include only a few tens of atoms. This technology is now a

part of our Everyday Life, appearing in different systems ranging from semiconductor

lasers to memory chips and microprocessors of computers, cellular phones and other

digital appliances.

Semiconductor heterostructures can be designed to change the dimensionality of

the confinement of the carriers [95] (two-dimensional electron gas, quantum wires

(1-D), quantum dots (0-D)) and this quality has been used to observe different phys-

ical phenomena such as the Quantum Hall Effect or the electronic localization in

disordered potentials. Other structures in Nature can also exhibit features of low-

dimensional systems such as certain configurations of carbon nanotubes [187] or

pieces of DNA [156], whose main electronic properties can be understood by de-

scribing the system in terms of a 1-D potential.

†Excerpt from the talk “There’s plenty of room at the bottom” that Richard Feynman gave on December

29th 1959 at the annual meeting of the American Physical Society at Caltech.
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The study of the physics underlying these low-dimensional systems requires of

a proper theoretical approach different from the one used at the macroscopic scale,

since at the former level matter exhibits a behaviour completely determined by quan-

tum mechanical rules. In particular a detailed characterization of the electronic prop-

erties of these systems is essential not only for the development of practical applica-

tions but also to look into the principles of physics which are revealed at this scale.

For this characterization one important element to be considered is the presence of

disorder in the structures: roughness of interfaces in the semiconductor layers, dis-

locations, vacancies and impurities in the lattices or substitutional and structural dis-

order in the system. In low-dimensional structures, disorder plays a key role in the

transport processes and it can strongly alter the properties of the system, giving rise

to phenomena such as electronic localization and other particular features which are

specially noticeable at this scale and in the low temperature regime. The main aim

of this work is to contribute to the understanding of the electronic properties of one-

dimensional structures and more specifically to analyse the effects of the presence of

disorder. Then, since disorder is a key ingredient of our recipe, let us discuss some

basic concepts about the theory of disordered systems.

1.1 Diving in the physics of disordered systems

1.1.1 What do you mean by ‘disordered’?

In solid state physics the notion of order has always been tied to periodic structures

and translational symmetry. This definition establishes a well-defined border in the

classification of matter between crystalline materials, exhibiting translational invari-

ance and several rotational symmetries, and amorphous materials. Hence, periodicity

is regarded as a paradigm of order and thus other aperiodic arrangements could be

labelled as disordered configurations. However, this choice is not useful since it is

possible to differentiate well-defined groups of aperiodic sequences, each one charac-

terized by its own properties [137]. One can roughly speak of:

- Incommensurate potentials: those formed from two or more interpenetrated pe-

riodic chains whose periods are incommensurate, that is, their ratio cannot be

expressed as a ratio of integer numbers.

- Sequential arrangements: those aperiodic sequences which are built following a set

of well-defined substitutional rules, like the Fibonacci or Thue-Morse series.

- Other arrangements that do not obey the previous patterns.
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Within the context of this work, the disordered sequences will be the members of

the latter group. And two different types of elements must be distinguished, namely

uncorrelated and correlated disordered sequences. The first one obeys a completely

random generating process while in the correlated case the generation of the nth

element of the sequence is affected by the values previously assigned. Depending

on the range of this influence one can speak of long-range or short-range correlated

sequences. Hence, from our point of view, correlations must be defined in a strictly

statistical sense from the sequence.

The construction of a one-dimensional disordered array of atomic potentials re-

quires the following elements:

1. Set of configurational variables: the physical parameters of the potentials (atomic

species, interatomic distances, concentrations, . . . ) along with the distributions

that such variables must obey.

2. Disordered sequence: a disordered sequence must be generated according to the

number of variables and their distributions.

3. Physical mapping: a one-to-one correspondence between the elements of the dis-

ordered sequence and the physical variables of the configurational set.

Depending on the parameters constituting the configurational set one can differentiate

between two main types of disorder. If one chooses different atomic species with a

certain distribution as configurational parameters but the interatomic distances are

fixed to form a regular lattice, then the system is said to have substitutional disorder,

also known as alloy-type disorder. On the contrary, if the interatomic distances are the

configurational parameters to be mapped onto the disordered sequence while only one

atomic species is allowed, then we have structural or topological disorder.

Let us remark that we say that the one-dimensional disordered potential exhibits

correlations only when the distributions of the configurational variables of the sys-

tem give rise to disordered sequences possessing correlations in a statistical sense. To

clarify this concept let us consider a simple case in which one builds a disordered bi-

nary system including two atomic species, namelyA and B, with equal concentrations

and each species being followed by a characteristic distance dA and dB respectively.

Then a disordered sequence for two variables with equal concentrations must be gen-

erated. Since no further requirements concerning the distributions of the different

species have been imposed, the generation of the disordered sequence will be com-

pletely random, and therefore we say that such a disordered system does not possess

correlations, that is, it is completely random. Notice that A, B and dA, dB could take
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any values, they even can be chosen to satisfy strange relations or to ensure certain

properties of the system, but in all cases the disordered sequence will be random, and

then from our point of view the system does not exhibit correlations. This is of course

a personal criterion but we understand that helps to avoid confusions.

1.1.2 Effects of disorder: Localization

In a periodic structure all the electronic states have the same probability of finding

themselves in any primitive cell of the crystal, as it follows from the Bloch theorem.

These states are completely extended over the system. Will the properties of the sys-

tem and the nature of the eigenstates change in the presence of disorder? An approach

to the problem of disorder was originally made in one-dimensional systems (see refer-

ence [135] for a collection of the first works on one-dimensional disordered systems).

And it was Anderson in 1958 who described one of the most important physical con-

sequences of disorder: localization [9]. Anderson studied the electronic diffusion in

a three-dimensional tight-binding model in which the energies of the different sites

are randomly assigned from a given interval according to a constant probability dis-

tribution. He showed that above a critical degree of disorder, which he quantifies as

the width of the site-energy distribution, diffusion in the system is suppressed due to

the spatial localization of all the electronic eigenstates. After the work of Anderson

localization was regarded as one of the main effects stemming from the absence of

periodicity in the systems. Localization of eigenstates implies that their probability

density does not vanish only in a limited spatial region. Moreover if the envelope of

the state decreases exponentially from a given point inside the localization region, the

state is said to be exponentially localized. The localization length is a measure of

the spatial extension of the localized state. Localization is tightly tied to electronic

transport and it is a fundamental concept to understand the existence of metals and

insulators and in particular to explain the metal-insulator transition (MIT) of matter.

Let us suppose that the Fermi energy (EF ) of a certain material at zero temperature

lies in a region of the spectrum populated by localized states. In this situation since the

conducting properties of the system are mainly determined by the states around EF ,

the material behaves as an insulator because the electronic states around the Fermi

level are not able to move throughout the system and thus they will not carry any cur-

rent. On the contrary if the eigenstates nearEF are extended, the material will exhibit

good conducting properties because these states contribute actively to the transport

through the system. Localization is the result of coherent interference phenomena

and that means that its significance goes beyond the field of condensed matter and it

can be observe for example studying the propagation of waves in classical systems as
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well as in other contexts. Localization in quantum random systems can be connected

to classical analogues [183, 114], in particular to chaotic systems of oscillators where

quantum localization can be understood in terms of energetic stability of phase-space

orbits of the classical system [177].

Anderson proved for his model (the Anderson model) that the system in 3-D reg-

isters a MIT with the strength of the disorder. It was also subsequently proved that

the Anderson model in 2-D and 1-D does not exhibit such transition because all the

electronic states are exponentially localized whatever the magnitude of the disorder

is [1, 11, 155, 55]. These results were completely understood and explained by the

Scaling theory of localization [1, 11], which we shall briefly describe later on. Scaling

theory was intended to derive the different asymptotic regimes of the system, namely

the ohmic and the insulating regime, analysing the disorder on a microscopic scale.

According to this theory a MIT is only possible in 3-D structures and it is absent in 2-D

and 1-D systems, for which all states must be localized in the presence of disorder.

By the eighties, Scaling theory seemed to close the problem of localization and its

relation with the dimensionality of the system. However, in the nineties, several ex-

perimental works on two-dimensional electron and hole systems, directly related with

the Quantum Hall Effect, were reported in which a MIT was observed as a function of

the carrier density or as a result of an applied magnetic field [123, 168, 189]. These

observations were not compatible with the Scaling theory and they meant a reopen-

ing of the localization and the MIT problem. A similar process (perhaps even more

dramatic) has happened in 1-D systems, as we shall see in the following sections.

Localization in 1-D

After Anderson, many works have concluded that localization also appears in different

disordered one-dimensional systems.

In 1961 Mott and Twose showed for a particular 1-D model, consisting of square

barriers of the same height placed at arbitrary distances from one another obeying

a continuous distribution, that all electronic states are exponentially localized [148]

(confirmed by Mott in 1967 [147]). They conjectured that perhaps the same thing

occurs for other 1-D models, however it can be read in their work: “we have not

been able to extend the proof to a more general case”. In 1963, Borland was led to

the same conclusion for a 1-D chain composed of equal potentials of finite range and

arbitrary shape separated by zones of zero potential assigned randomly according to

a continuous distribution [27]. It was later specified by Tong (1970) than for the

Borland model extended states could exist for any structural disorder if the individual

potential unit exhibits resonances of the transmission [182]. A study on localization
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in different models of one-dimensional random potentials can be found in a review by

Ishii [109].

Only for particular models and for certain types of disorder it has been analytically

proved that all eigenstates are exponentially localized in one dimension. However,

probably because localization has been consider as a central tenet of the theory of

disordered systems and also due to a naive extension of the properties of the 1-D

Anderson model to other potentials, one can frequently find in the literature (even

nowadays!) assertions like: “it has been proved that in one-dimensional disordered

random systems all sates are localized”, which must be interpreted quite carefully.

Correlated disorder on stage

It was then believed for a long time that one-dimensional disordered systems could not

exhibit complex features like a metal-insulator transition. However further research

has shown that a large variety of different situations can occur in 1-D. For example,

deterministic quasi-periodic potentials were considered that can generate localized or

extended electronic states depending on their parameters [19, 162, 90].

On the other hand at the beginning of the nineties the works by Flores [81] and

Dunlap and co-workers [73] introduced different 1-D models in which the disorder

showed short-range correlations, a feature absent from the original Anderson model.

The short-range correlations were able to include in the spectrum of the system iso-

lated extended states, in particular the random-dimer model (RDM) proposed by

Dunlap and co-workers was used to try to explain the anomalous high conductivity

observed in certain organic polymers that should behave as insulators [154]. Since

then, the RDM has been extensively treated in the literature both from a theoreti-

cal viewpoint [29, 83, 161, 160, 111, 107, 167, 87] and also with a view to make

practical implementations in semiconductors superlattices [64, 71, 65]. And other

models of one-dimensional disordered systems with short-range correlations have ap-

peared: the diluted Anderson model [104, 131, 130, 50], symmetrical impurities in a

pure chain [108, 188], short-range correlations with classical analogues [110, 121],

and more [77, 103, 68, 178, 190]. In all models considered the effect of short-range

correlations is to include in the spectrum of the disordered chain isolated extended

states that constitute a set of null measure. In 1999 the first experimental evidence

that short-range correlations delocalize the electronic states at certain energies and

thus improve the transport properties of the system, was observed in semiconductor

superlattices [18].

The role of long-range correlations has also been analysed. Moura and Lyra con-

sidered a 1-D tight-binding disordered model with long-range correlations in the se-
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quence of site-energies [46, 47]. They observed numerically the emergence of a con-

tinuum of extended states and mobility edges for the carriers, marking the transition

between phases of localized states and extended states. An important contribution to

the understanding of the effect of long-range correlations was made by Izrailev and

Krokhin who established an analytical relation between localization length and poten-

tial pair correlators and showed how long-range correlations lead to the appearance of

mobility edges in 1-D [112]. However their results are only valid in the approximation

of weak disorder and to second-order perturbation theory. Tessieri has extended the

perturbative approach to fourth-order to show that in fact the apparently extended

states are still exponentially localized but on much larger scale than the states of

the localized phase [176]. Upon crossing the ‘mobility edges’ the inverse of the lo-

calization length changes from a quadratic to a quartic dependence on the disorder

strength, and for weak disorder it means that the increase of the spatial extension of

the electrons can be huge. Therefore qualitatively this change can be regarded as a

MIT. Similar conclusions have also been reported for other disordered models with

long-range correlations [159, 45, 170]. The long-range correlation effects predicted

have been experimentally confirmed in microwave transmission through single-mode

waveguides with a linear array of long-range correlated scatterers [125, 124].

Therefore correlations of the random potentials can deeply affect the structure of

electronic states and endow 1-D disordered models with far richer transport properties

than it was previously thought.

...and more

Nowadays, the significance of the appearance of phases of extended states in one-

dimensional disordered systems keeps growing and interesting dynamical phenomena

such as Bloch oscillations have been theoretically described in disordered systems

[69, 48]. On the other hand the influence of correlated disorder on the transport

properties is also becoming apparent in 2-D structures [105, 99]. It has recently been

shown that delocalization in 1-D systems with completely random disorder can also

take place due to the existence of long-range interactions [157, 138, 49].

Almost half a century after the work of Anderson, the problem of localization can

be understood in different ways (see for example reference [70] for a quite pedagogi-

cal approach to Anderson localization) and the corresponding field of research is still

becoming larger and larger.
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1.1.3 Conductance in 1-D systems

The study of the quantum-mechanical probability of transmission of 1-D systems is

essential since it is directly related to the conductance of the system, which is a

measurable quantity, hence establishing a bridge between theory and experiment.

A fundamental approach to the characterization of conductance in one-dimensional

systems was first made by Landauer in 1957 [126] and also in subsequent works in

1970 [127] and 1988 [128]. Landauer concluded that the conductance of a one-

dimensional guide in which the carriers are scattered by static obstacles is given by

G =
e2

2π}

T

R
, (1.1)

where T andR = 1−T are the probabilities of transmission and reflection of the whole

structure respectively. Moreover, taking into account multiple scattering processes,

Landauer established that the resistance of the system grows exponentially with the

number of obstacles. He also thought that such a behaviour could be related to the

exponential decrease of the wave functions in disordered systems. By that time these

results were not considered to be fully correct mainly because they were not based

on the widely accepted linear response theory. It was Economou and Soukoulis [75]

and also Langreth and Abrahams [129] who faced the conductance problem using the

linear response theory. Both works lead to similar results: that conductance strongly

depends on the nature of the leads. On the one hand if the leads are considered to be

perfect one-dimensional conductors, then conductance should obey

G =
e2

2π}
T. (1.2)

On the other hand if the leads are considered to behave classically as a current source,

then Landauer expression would be obtained. The authors conclude that both situ-

ations are idealizations and that the connection with real experimental situations is

not clear. Later, Engquist and Anderson tackled the question in the context of real

experimental situations [76]. In particular they point out that together with the leads

supplying the current, the voltage difference in the sample is usually measured via

two additional contacts, what is known as a four-probe measurement. For this exper-

imental set-up they obtained a general expression for the conductance of the sample

which reduces to the Landauer formula in the case of zero temperature. Then, the dif-

ferent physical situations in which the Landauer formula (four-probe measurement)

and the Economou and Soukoulis formula (1.2) (two-probe measurement) hold were

established. For two and three-dimensional systems, the conductance formalism is

similar to the one described in 1-D. The expressions show a significant resemblance
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with the above equations and the role played by the transmission probability in 1-D is

performed by the scattering matrix connecting the different transmission channels in

a system with a higher dimensionality. For example, the two-probe conductance for a

quasi-one-dimensional system including an arbitrary number of transmission channels

N , reads —as stated by Fisher and Lee [79]—

G =
e2

2π}
Tr (tt†), (1.3)

where t is the N ×N transmission matrix connecting the incident flux in the various

channels on one side of the disordered region to the outgoing flux on the other side.

Subsequently, Büttiker generalized the expressions for the conductance in the case

of multichannel and multiprobe measurements [31, 34]. A nice discussion on the

historical development of the conductance formalism and the physical meaning and

implications of the different formulae, is given in reference [174].

The characteristic coefficient e2/h appearing in the above definitions is the quan-

tum of conductance and equivalently its inverse is the quantum of resistance h/e2 =

25 812.8 Ω. Quantization of conductance and resistance was revealed in the measure

of the Integer Quantum Hall Effect [184], where the value of the Hall resistance obeys

RH = 1
j h/e

2 for integer j, thus producing the plateau structure. The quantized Hall

resistance is known to an extremely high accuracy and it is one of the most accurate

ways to determine the atomic fine-structure constant. Quantization of conductance

has also been experimentally observed in the ballistic regime of electronic transport

through low-dimensional systems such as quantum point contacts [185], and the sig-

nificance of the elemental unit e2/h has been also established in the universal conduc-

tance fluctuations observed in mesoscopic systems [133, 98].

1.1.4 Universality and Scaling

Landauer described that disorder should cause an exponential increase of the resis-

tance of the system with its length, which has been rigorously proved later for certain

disordered models [117, 120]. Then he was somehow a precursor of the scaling the-

ory, whose origin is also directly related to quantum phase transitions and critical

phenomena [172]. Initially, scaling theory —as proposed by Abrahams, Anderson,

Liciardello and Ramakrishnan— tried to understand localization by considering the

behaviour of an ‘average’ or ‘scaling’ dimensionless conductance g as a function of

the system size or of other scale variables [1]. The theory was intended to derive the

different asymptotic regimes for g, the ohmic metal regime on the one hand and the

insulator regime in which g must decrease exponentially with the system size on the

other hand, from the value g0 of the conductance on a mean free path scale, which is
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a measure of the microscopic disorder. And it gave a successful explanation of why a

MIT is possible in 3-D disordered systems while it is absent in 2-D and 1-D structures

(see reference [132] by Lee and Ramakrishnan for a thorough description of scaling

theory and its consequences). However it was later remarked by Anderson and co-

workers that since resistance of a 1-D sample varies exponentially with its length, its

value can fluctuate wildly and its distribution function becomes increasingly broad as

the length increases. Consequently the average resistance can be very different from

the typical resistance and thus the choice of a scaling variable requires some care.

They concluded that the variable − log(T ) is well-behaved as the length of the system

goes to infinity [11, 10]. Therefore scaling must be understood in a wider sense, since

a complete scaling description must necessarily include the behaviour of the distri-

butions of the proper quantities. Let us discuss in some detail the aspects of scaling

theory that are more relevant for our work.

Universality and scaling stem from the insensitivity of macroscopic laws to micro-

scopic details. In the context of disordered systems, universality means that proba-

bility distributions for various (macroscopic) transport-related quantities are largely

universal an do not depend on the details specifying the microscopic Hamiltonian.

Consider, for instance, the dimensionless resistance ρ ≡ g−1 of a 1-D disordered sys-

tem. The value of ρ will depend upon the particular realization of the disorder. Then

it is natural to define the probability distribution for the resistance PL(ρ) of different

realizations of the system with a given length. For large L one can expect that the

microscopic details will become irrelevant and the distribution will approach some

universal shape. Then, only a few parameters will be needed to specify the distribu-

tion completely. Single-parameter scaling in these terms means that the large-scale

distribution is specified by just one parameter ∆L which obeys a scaling law,

d log ∆L

d logL
= β(∆L). (1.4)

Let us try to outline the general situation concerning the distribution functions of the

proper quantities for a 1-D disordered system. In the most general case, it seems that

as L → ∞ and in the strong localization regime, when L is much greater that the

localization length (ξ), the distribution of the variable uL ≡ − log TL approaches a

Gaussian, which is determined by two parameters: the mean value 〈uL〉 and the vari-

ance var(uL). However if one assumes the phase randomization hypothesis, which

was initially proposed by Anderson and co-workers [11], scaling can be different. The

phase randomization hypothesis assumes that phases of individual scatterers (i.e. the

phases of the individual complex scattering amplitudes) can be considered to vary

randomly on a length scale lph, such that lph � ξ, and hence the cumulative phase
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log  u 1
N  >>10

weak  disorder strong  disorder

0

G(u)

G(u,var(u))

ρP(  )

SPS 2PS
log N Figure 1.1. Universality dia-

gram for 1-D disordered systems

within the phase randomization

hypothesis. N means the length

of the system and u = − logT ,

G means a Gaussian distribution

and P (ρ) is the exponential distri-

bution for the dimensionless re-

sistance. Different colours high-

light the ranges of validity of the

different scaling regimes.

appearing in the composite transmission of the system can be considered to spread

uniformly in the interval [0, 2π]. In this case in the limit L → ∞ and in the strong

localization regime (L� ξ) a Gaussian distribution for uN is recovered, for which the

mean value satisfies 〈uN 〉 = N〈u1〉, where N is the number of scatterers or sites of

the system and 〈u1〉 means the average of the quantity − log T1 over all possible con-

figurations of an individual scatterer. However in the weak disorder approximation,

that is 〈u1〉 � 1, the variance of the Gaussian distribution turns out to be determined

by the mean value according to var(uN ) = 2〈uN 〉. Therefore single parameter scaling

(SPS) holds1. On the contrary for strong disorder (〈u1〉 � 1) the variance cannot be

written in terms of the mean only and thus two parameter scaling (2PS) is obtained.

In the weak disorder approximation and within the weak localization regime (L� ξ)

a universal exponential distribution for the dimensionless resistance ρ is also found,

that reads PL(ρ) = ξ
2L exp(−ρ ξ

2L). Notice that the concept of weak or strong disorder

is defined from a microscopic criterion and it must not be confused with the regime of

strong or weak localization that is decided from the comparison of the length of the

system and the localization length. The physical situation within the phase random-

ization hypothesis is summarized in the diagram of figure 1.1 and the details are very

well described in the works of Shapiro and co-workers [169, 37], Mello [141] and

Flores and co-workers [80].

Scaling theory is still evolving nowadays. In fact it has been recently questioned

whether the phase randomization hypothesis is a necessary condition to have SPS

[62]. And it seems that the emergence of SPS is governed by a new length scale

which is related to the integrated density of states [59, 60, 57] and also that different

1Alternatively it is also very common to define the universal Gaussian distribution using the variable

λL = − 1
2L

log TL instead of uL. Therefore the SPS requirement is usually written as var(λL) = 〈λL〉/L.

The variable λL is known as the Lyapunov exponent and it will be introduced in the following chapter.
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SPS regimes can be found when correlations in the disorder are introduced [58].

1.1.5 Decoherence mechanisms: Delocalization

Decoherence mechanisms can be very relevant in disordered systems. Since localiza-

tion is a coherent interference effect, the different phenomena introducing decoher-

ence in the system —which are generally enhanced at non-zero temperature— such

as inelastic scattering events, electron-electron or electron-phonon interaction, non-

linear effects,. . . can give rise to the break of electronic localization in certain energetic

regimes and thus improving the transport properties of disordered systems (see refer-

ence [142] for a description on decoherence measurements). The coherent transport

regime, the mesoscopic regime, in which the system size is comparable to the coher-

ence length of the carriers, is characterized by quantum interference patterns that can

be altered by applying external fields, giving rise to the well-known universal conduc-

tance fluctuations [116]. Therefore decoherence also entails the lost of this universal

regime in which conductors cannot be characterized by materials constants.

As described by Büttiker, the effect of inelastic scattering events inducing phase-

randomization on barrier tunnelling can increase the off-resonant transmission [33].

Similar results on barrier tunnelling have been found as a consequence of non-linear

effects [63]. It has also been shown that in the strong localization regime the con-

ductance of a one-dimensional disordered system can be improved due to electron-

electron interaction [186, 166], inelastic scattering events modelled by parametrized

scatterers [140, 102] or complex extensions of the potential [173, 41], and also non-

linear effects [67]. Additionally it has been recently described how delocalization

can take place as a result of the decoherence induced by iterative measurements on

the disordered system [93, 82]. The analysis and modelling of delocalization mecha-

nisms is important to evaluate to which extent they can alter the transport properties

of disordered systems.

1.2 Objectives and outline of the work

Once some basic concepts about one-dimensional disordered systems have been intro-

duced and the present situation of the research in the field has been briefly described,

let us shortly discuss the main purposes of this work.

Our fundamental premise to study the electronic properties of one-dimensional

disordered systems is to consider non-interacting spinless carriers within the indepen-

dent particle approximation. Also our approach focuses on the characterization of the

static transport properties of these structures. Within this framework, probably the
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most important aim of this work is to generalize, extend and compile a set of tools

that can be used for all one-dimensional systems in order to analyse their electronic

properties (distribution of states, nature of states, . . . ). In particular, we derive an en-

semble of universal functional equations which characterize the thermodynamic limit

of all one-dimensional models (within the approximations made above) and that are

useful to obtain relevant quantities of the system such as density of states or localiza-

tion length in that limit. Therefore a great part of our efforts are aimed at contributing

to the growth of a general methodology that can be applied to all potential models

in one-dimension. Our approach is analytical up to a point from which numerical

techniques are necessary to obtain the desired solutions. These methods are used to

perform a systematic study of different models of quantum wires in one dimension.

The effects that disorder induces upon the distribution of states is studied in detail

and the existence or not of extended states in the spectrum is thoroughly examined.

Correlated disorder is also treated via a new model of short-range correlations whose

influence on the transport properties of finite 1-D structures is revealed. Finally, imag-

inary potentials are introduced in the linear arrays to include dissipative processes in

the wire.

The contents of the work are divided in different chapters according to the follow-

ing scheme:

• Chapter 2 is devoted to the description and development of the theory underly-

ing the different methods used to characterize disordered 1-D systems.

• In chapter 3 the well-known delta model is used to build one-dimensional chains.

The properties of these wires are studied in detail.

• In chapter 4 a new type of 1-D disordered system based on Pöschl-Teller-like

potentials is built. The interesting features that compositions of these potentials

exhibit are analysed.

• Chapter 5 comprises quantum wire models with imaginary potentials. Two dif-

ferent tasks are carried out: the building of PT -symmetric periodic chains and

the modelling of dissipative processes.

• Chapter 6 includes a summary of the concluding remarks and a final discussion.

Let us finally remark that some intricate calculations and extensive analysis of

certain subjects have been included in several appendices at the end of the manuscript.

It has been done so in order to make the reading as easy as possible. However the

information contained in some of the appendices is essential for a full understanding

of the work.
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Theory and methodology

Unlike the case of ordered matter, for disordered systems there is a lack of a general

theory describing in a compact form their physical properties. Nevertheless a large

ensemble of different techniques exists that can be used to unravel some features of

this kind of structures. The aim of this chapter is to build a general methodology that

can be applied to all one-dimensional potential models. We give a detailed descrip-

tion of the tools used in this work to characterize several models of disordered wires,

regarding mainly their electronic properties.

2.1 The canonical equation

We shall be considering one-dimensional atomic wires within the independent particle

approximation. The electron-electron interaction is not considered and also the car-

riers are supposed to be spinless. Then, the Hamiltonian of the system only includes

the potential of a linear array of different atomic units. From the solutions of the

one-particle Schrödinger equation it is always possible to derive an expression with

the following canonical form1 [137, 161]

Ψj+1 = J(γj−1, γj)Ψj −
K(γj)

K(γj−1)
Ψj−1, (2.1)

where Ψj means the amplitude of the electronic state at the jth site of the wire, γj

denotes the parameters of the potential at the jth site (jth sector) and the functions

1The meaning of the coefficients appearing in the canonical equation depends on the particular

Hamiltonian. For a tight-binding model they have a straightforward interpretation in terms of the

on-site energies and the transfer integrals, thus the equation is usually written in the form αjΨj =

tj,j+1Ψj+1 + tj,j−1Ψj−1. For other models that comparison may not be so clear, so we keep a more

general expression.
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j-1 j j+1

(j-1)-sector j-sector

γj-1 γj

Ψj-1 Ψj Ψj+1

Figure 2.1. Sites and

sectors of a linear chain

J(γj−1, γj), K(γj), which depend on the potential and the energy, rule the spreading

of the state from one site to its neighbours, as shown in figure 2.1. The canonical equa-

tion can be systematically obtained for a given solvable Hamiltonian and it contains

the same information as the Schrödinger equation. It is not hard to see that J(γj−1, γj)

andK(γj) are real functions provided the potential is real, so that the state amplitudes

can be considered to be real. Equation (2.1) determines also the behaviour of other

elementary excitations inside 1-D structures, thus it appears in different physical con-

texts such as the study of vibrational states (phonons), electron-hole pairs (excitons),

. . .

Although the applicability of the canonical equation is not restricted by the order-

ing of the sequence in the wire, it is a key ingredient to study non-periodic arrange-

ments of potentials, for which the Bloch theorem is not valid. For certain boundary

conditions, one can numerically obtain the permitted levels and the form of the enve-

lope of the wave functions inside the system using equation (2.1). Apart from being

useful from a numerical viewpoint, the canonical form also provides some analytical

results concerning the gaps of the system’s spectrum. For this purpose, the equa-

tion must be written as a two-dimensional mapping, originally proposed in reference

[110], that permits establishing analogies between the quantum problem and classical

dynamical systems [114]. The matrix form of (2.1) with the definitions xj+1 = Ψj+1,

yj+1 = Ψj, reads

(
xj+1

yj+1

)
=

(
J(γj−1, γj) − K(γj)

K(γj−1)

1 0

)(
xj

yj

)
, (2.2)

which in polar coordinates xj = ρj cos θj, yj = ρj sin θj, leads to the following trans-

mission relations for the phase and the moduli:

θj+1 ≡ T(θj ; γj−1, γj) = arctan

{(
J(γj−1, γj) −

K(γj)

K(γj−1)
tan θj

)−1
}
, (2.3)

(
ρj+1

ρj

)2

≡ F(θj ; γj−1, γj) = cos2 θj +

(
J(γj−1, γj) cos θj −

K(γj)

K(γj−1)
sin θj

)2

. (2.4)

Now let us impose hard-wall boundary conditions in our wire composed of N atoms.

That means Ψ0 = ΨN+1 = 0. Using the mapping it is clear that the initial point

is {x1, y1} = {Ψ1, 0} placed on the x axis. Thus for an eigenenergy, after all the



2.2 Continuous transmission matrix formalism 17

steps the final point must be of the form {xN+1, yN+1} = {0,ΨN} lying on the y

axis. That means the whole transformation acts rotating the initial point. Therefore

the permitted levels must be clearly contained in the ranges of energy for which the

sequence of mappings generates a rotating trajectory (generally open) around the

origin, which is the only fixed point independently of the parameters of the mapping.

This behaviour guarantees that after an arbitrary number of steps the final boundary

condition could still be satisfied. However if all mappings have real eigenvalues the

behaviour described is not possible (see for example reference [175]). And it follows

that permitted levels cannot lie inside the energy ranges satisfying

J2(γj−1, γj) > 4
K(γj)

K(γj−1)
, ∀ γj, γj−1. (2.5)

Note that this conclusion does not depend upon the sequence of the chain, thus it

holds for ordered and disordered structures.

In the following sections it will become clear that obtaining the canonical equation

is essential when treating one-dimensional disordered systems.

2.2 Continuous transmission matrix formalism

The time-independent scattering process in one dimension can be described using the

well-known continuous transfer matrix method,

(
AR

BR

)
=

(
M11 M12

M21 M22

)(
AL

BL

)
≡ M

(
AL

BL

)
, (2.6)

where AL, BL(AR, BR), mean the amplitudes of the asymptotic travelling plane

waves eikx, e−ikx, at the left (right) side of the potential. The peculiarities of the

transmission matrix M and its elements depend on the nature of the potential. A

detailed analysis on this subject can be found in appendix A. As a summary let us

say that for real potentials M belongs to the group SU(1, 1) and that the property

detM = 1 holds for all kind of potentials whether they are real or complex.

The transmission and reflection scattering amplitudes read

t =
1

M22
, rL = −M21

M22
, rR =

M12

M22
, (2.7)

where the superscripts L, R, stand for left and right incidence. The insensitivity of

the transmission amplitude to the incidence direction is a universal property. In gen-

eral the reflection amplitudes will differ, although |rL| = |rR| for real potentials and

complex ones with parity symmetry [7].
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Obtaining the transmission matrix is specially easy for discontinuous short-range

potentials such as deltas or square well/barriers, for which the asymptotic limit is not

necessary to satisfy (2.6). In these cases the effect of a composition of N different

potential units can be considered through the product of their transmission matrices,

M = MNMN−1 · · ·M2M1, (2.8)

therefore obtaining analytically or numerically the exact scattering probabilities of the

whole structure. This formalism can also be used to obtain the bound states from the

poles of the complex transmission amplitude. An intuitive and general interpretation

of the composition procedure can be given in the following form. Let us consider two

finite range potentials V1(x), V2(x), characterized by the amplitudes t1, rL
1 , rR

1 , t2, rL
2 ,

rR
2 , and joined at a certain point. Then, the scattering amplitudes of the composite

potential can be obtained by considering the coherent sum of all the multiple reflection

processes that might occur at the connection region [17],

t ≡ t1

{
∞∑

n=0

(rL
2 r

R
1 )n

}
t2 =

t1t2

1 − rL
2 r

R
1

, (2.9a)

rL ≡ rL
1 + t1r

L
2

{
∞∑

n=0

(rL
2 r

R
1 )n

}
t1 = rL

1 +
rL
2 t

2
1

1 − rL
2 r

R
1

, (2.9b)

rR ≡ rR
2 + t2r

R
1

{
∞∑

n=0

(rL
2 r

R
1 )n

}
t2 = rR

2 +
rR
1 t

2
2

1 − rL
2 r

R
1

. (2.9c)

Replacing the scattering amplitudes with the elements of the corresponding transmis-

sion matrices M1, M2, one can trivially check that in fact the latter formulae are the

equations of the matrix product M2M1. Thus, the composition rules given by (2.9)

are not restricted to the convergence interval of the series
∑∞

n=0(r
L
2 r

R
1 )n. They pro-

vide an explicit relation of the global scattering amplitudes in terms of the individual

former ones and can be easily used recurrently for numerical purposes.

In the case of continuous potentials the calculation of the transfer matrix is more

complex. After solving the Schrödinger equation for positive energies, one has to take

the limits x→ ±∞ to recover the free particle states and identify the matrix elements.

Hence equation (2.6) is strictly satisfied only asymptotically. However depending on

the decay of the potential one could neglect its effects outside a certain length range.

If the asymptotic transmission matrix {Mij} of the potential in figure 2.2 is known,

then the matrix for the cut-off potential contained between the dashed lines is simply

(see appendix A)

Mcut =

(
M11 eik(d2+d1) M12 eik(d2−d1)

M21 e−ik(d2−d1) M22 e−ik(d2+d1)

)
. (2.10)
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x

0

V(x)

d1 d2
Figure 2.2. A continuous potential

The cut-off matrix is the same as the asymptotic one plus an extra phase term in

the diagonal elements that accounts for the total distance (d1 + d2) during which

the particle feels the effect of the potential, and also an extra phase term in the off-

diagonal elements measuring the asymmetry of the cut-off (d2 − d1). Doing such

approximation one gets matrices suitable to be composed in linear arrays.

Once the transmission matrix of the potential is known one can obtain the canoni-

cal equation applying to the electronic states in the one-dimensional composite chain.

Let us consider Mj to be the continuous transmission matrix of the jth potential,
(
Aj+1

Bj+1

)
= Mj

(
Aj

Bj

)
, (2.11)

where the coordinates of the electronic wave function in the different sectors of the

chain are chosen to satisfy that the value of the state at all sites is simply given by the

sum of the complex amplitudes of the travelling plane waves, that is Ψj = Aj + Bj

for all j. Then the canonical equation of the system can generally be written as (see

appendix A)

Ψj+1 =

(
Sj + Sj−1

Kj

Kj−1

)
Ψj −

Kj

Kj−1
Ψj−1, (2.12)

where for a real potential

Sj = Re [(Mj)11] + Re [(Mj)12] , (2.13a)

Sj = Re [(Mj)11] − Re [(Mj)12] , (2.13b)

Kj = Im [(Mj)11] − Im [(Mj)12] . (2.13c)

Then, the canonical equation can be easily calculated from the continuous transmis-

sion matrix of the compositional potentials of the system.

2.3 Discrete transmission matrix formalism

The problem of a one-dimensional quantum wire can also be treated via a composition

procedure of another type of transfer matrices, when one obtains a discretized version
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of the Schrödinger equation. An analytical discretized form of this equation is given

by the canonical expression (2.1), that can be written as

(
Ψj+1

Ψj

)
=

(
J(γj−1, γj) − K(γj)

K(γj−1)

1 0

)(
Ψj

Ψj−1

)
≡ Pj(γj−1, γj)

(
Ψj

Ψj−1

)
. (2.14)

The properties of the system can then be calculated from the product PNPN−1 · · ·P1

imposing appropriate boundary conditions.

If the solutions of the differential equation are not known, one can always take a

spatial discretization, translating the original equation

ψ′′(x) =
[
V (x) − k2

]
ψ(x), (2.15)

into

ψn+1 =
{[
Vn − k2

]
(∆x)2 + 2

}
ψn − ψn−1, (2.16)

where we have defined ψn ≡ ψ(n ·∆x), Vn ≡ V (n ·∆x) and ∆x being the spatial step.

And the corresponding matrix representation is

(
ψn+1

ψn

)
=

([
Vn − k2

]
(∆x)2 + 2 −1

1 0

)(
ψn

ψn−1

)
≡ Qn

(
ψn

ψn−1

)
. (2.17)

Then, the scattering probabilities of the system can be numerically obtained by con-

structing Q = QnQn−1 · · ·Q1, considering a large enough distance n · ∆x so that the

correct asymptotic form of the state ψ(x) = eikx + r e−ikx and ψ(x) = t eikx can be

imposed at the extremes. The transmission and reflection probabilities are then given

by

T =
4 sin2(k · ∆x)

|Q21 − Q12 + Q22eik·∆x − Q11e−ik·∆x|2
, (2.18)

R =

∣∣∣∣
Q11 − Q22 + Q12e

−ik·∆x − Q21e
ik·∆x

Q21 − Q12 + Q22eik·∆x − Q11e−ik·∆x

∣∣∣∣
2

. (2.19)

2.4 Characterizing electronic localization

The localized nature of the electronic states inside a disordered wire can be analyzed

using different tools (see for example reference [122]). Let us see some reliable pa-

rameters which can be used as a probe of the localized or extended character of the

carriers inside the system.
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2.4.1 Lyapunov exponents

Lyapunov exponents emerge from random matrix theory [38], and they are used to

characterize the asymptotic behaviour of systems determined by products of such ma-

trices. They are a key element in chaotic dynamics [175] and play an important role

in the study of disordered systems.

For a full understanding of the meaning of the Lyapunov exponents and their

expressions it is mandatory to recall Oseledet’s multiplicative ergodic theorem (MET)

(a complete analysis can be found in reference [12]), which in its deterministic version

and without full mathematical rigour2 reads as follows. Let be {Mn} a sequence of

d× d matrices and be MN = MNMN−1 · · ·M1. Then the following matrix exists as a

limit

lim
N→∞

(
Mt

NMN

) 1
2N ≡ Γ > 0, (2.20)

so that its eigenvalues can be written as eλ1 < eλ2 < · · · < eλd and the correspond-

ing eigenspaces U1, . . . , Ud. And for every vector x of this d-dimensional space the

following quantity exists as a limit

λ(x) ≡ lim
N→∞

1

N
log ||MNx||, (2.21)

that verifies λ(x) = max(λi, . . . , λj) where {Ui, . . . , Uj} is the set of spaces in which

x has a non-zero projection. The set {λi} are the Lyapunov characteristic exponents

(LCE) of the asymptotic product MN . Therefore this theorem implies that the asymp-

totic exponential divergence of any spatial vector x under the action of the product of

matrices MN is determined by the LCE. More precisely, the divergence will be domi-

nated by the component of x on {Ui} with the fastest growing rate.

Now let us consider our one-dimensional quantum wires, which as already known

can be described through products of different type of 2 × 2 matrices, namely the

discrete transfer matrices Pj defined from the canonical equation in (2.14) and the

continuous transmission matrices Mj defined in equation (2.6). It can be proved that

for one-dimensional Hamiltonian systems the two LCE come in a pair of the form

{λ,−λ} (see appendix B). Considering the discrete transfer matrices we have

xN+1 = PNPN−1 · · ·P1x1, (2.22)

where xN+1 =

(
ΨN+1

ΨN

)
and x1 =

(
Ψ1

Ψ0

)
. Therefore applying the MET

λ(x1) = lim
N→∞

1

N
log
√

Ψ2
N + Ψ2

N+1. (2.23)

2Several conditions must be satisfied by the set {Mn} and its products that we suppose to be fulfilled

in meaningful physical situations.
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Imposing hard-wall boundary conditions λ(x1) = limN→∞
1
N log |ΨN | which is straight-

forwardly equivalent to

λ = lim
N→∞

1

N

∑

j

log
|Ψj+1|
|Ψj|

, (2.24)

a common expression found in the literature for the Lyapunov exponent, and that

always provides the largest LCE [175], in our case the positive one.

On the other hand the same physical system can be realized using the continuous

transmission matrix formalism, that must yield asymptotically the same values for the

Lyapunov exponents if they have physical sense at all. Therefore,

xN+1 = MNMN−1 · · ·M1x1, (2.25)

where xN+1 =

(
AN+1

BN+1

)
and x1 =

(
A1

B1

)
corresponding to the amplitudes of the

travelling plane waves. If we impose the initial conditions A1 = 1, B1 = r(E), then the

final result will be AN+1 = t(E), BN+1 = 0, where r(E) and t(E) are the scattering

amplitudes. Thus the MET implies

− λ = lim
N→∞

1

2N
log T (E), (2.26)

where T (E) is the transmission probability of the system, and obviously the neg-

ative Lyapunov exponent is obtained. The above expression was first obtained by

Kirkman and Pendry [120]. It implies that for a given energy, the transmission of

a one-dimensional disordered structure decreases asymptotically exponentially with

the length of the system TN (E) ∼ e−2λ(E)N [117]. This is a consequence of the

same asymptotic exponential decreasing behaviour exhibited by the electronic states

for that energy. From this fact we define the localization length ξ(E) of the electronic

state with energyE, if it exists, as the inverse of the rate of the asymptotic exponential

decrease of the transmission amplitude with the length of the system for that energy,

ξ(E) ≡ λ(E)−1. (2.27)

This definition is also a measure of the spatial extension of the exponentially localized

state inside the system, and it has a clear physical meaning.

Although the Lyapunov exponent and therefore the localization length defined

can only be strictly obtained asymptotically, it makes also sense to characterize the

electronic localization in a long enough finite system through

ξ(E)−1 = − 1

2N
log T (E), (2.28)
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because the Lyapunov exponent is a self-averaging quantity [122], thus it agrees with

the most probable value (its mean value) in the thermodynamic limit, for every energy.

Therefore expression (2.28) gives relevant information of the localization length for

finite N , since it will show a fluctuating behaviour around the asymptotic value.

Finally let us say that a complex extension of the Lyapunov exponent is possible,

λc = lim
N→∞

1

N

∑

j

log

(
Ψj+1

Ψj

)
, (2.29a)

−λc = lim
N→∞

1

N
log t(E), (2.29b)

being Ψj the complex amplitudes of the state and t(E) the complex transmission

amplitude. The real part of this extension is related to the localization length whereas

its imaginary part turns out to be π times the integrated density of states n(E) per

length unit of the system [120].

2.4.2 Inverse participation ratio

Alternatively, localization is also usually characterized by the inverse participation

ratio (IPR) [35], which is defined in terms of the amplitudes of the electronic state at

the different sites of the system as

IPR =

∑N
j=1 |Ψj|4

(∑N
j=1 |Ψj|2

)2 . (2.30)

For an extended state the IPR takes values of order N−1 whereas for a state localized

in the vicinity of only one site it goes to 1. The inverse of the IPR means the length of

the portion of the system in which the amplitudes of the state differ appreciably from

zero.

2.5 Obtaining the density of states

The density of states (DOS) g(E) gives the distribution of permitted energy levels and

it is specially important for calculating some macroscopic properties of the structures

which are usually obtained from averages over the electronic spectrum. Strictly speak-

ing g(E) is the function such that g(E)dE is the number of eigenvalues of the energy

inside the interval (E,E+dE), and it is usually defined per length unit of the system.

The integrated density of states n(E) is defined as

n(E) ≡
∫ E

−∞
g(E′)dE′, (2.31)
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and measures the number of permitted energies below the value E. For a one-

dimensional wire the integrated DOS can be determined from the imaginary part of

the complex Lyapunov exponent. From (2.29b) one can write [137, 161]

n(E) =
1

πN
arg[t∗(E)], n(E) =

i

2πN
log

(
t(E)

t∗(E)

)
. (2.32)

The electronic DOS can also be numerically determined using the negative eigen-

value theorem proposed by Dean for the phonon spectrum [52], however this method

cannot be applied for all potential models. It is possible to build a generalization

of Dean’s method to obtain the DOS for finite chains. This technique shows some

relevant computational advantages comparing with the one involving the complex

transmission amplitude. The whole derivation can be found in appendix C. Defining

sj,j+1 = Ψj+1/Ψj the canonical equation (2.1) reads

sj,j+1 = J(γj−1, γj) −
K(γj)

K(γj−1)

1

sj−1,j
. (2.33)

Now let us consider a wire composed of different atomic species {α} and let be Nα(E)

the number of negative sj,j+1 whenever γj = α, divided by the number of sites of the

chain. That is, Nα(E) is the concentration of α atoms after which the envelope of

the electronic wave function with energy E changes its sign. Then the DOS can be

obtained as

g(E) =

∣∣∣∣∣
∑

α

sgn[K(α)]
dNα(E)

dE

∣∣∣∣∣ . (2.34)

Thus using the recursion relation (2.33), one has to calculate the concentrations of

changes of sing for the different atomic species, which must then be added or sub-

tracted according to the sign of the functions K(α) for the corresponding energy.

Finally a numerical differentiation with respect to the energy must be performed.

2.6 The functional equation: the thermodynamic limit

The description of the properties of a system in the thermodynamic limit (TL) reveals

the fundamental physics underlying the different problems, removing any accidental

finite size effects. The TL tells us which observations are a consequence of a general

physical principle. With this purpose scaling theory is intended to obtain different

magnitudes in the TL by figuring out how they scale with the size of the system.

Apart from scaling theory, a few authors have been in pursuit of obtaining analytically

several quantities of an infinite one-dimensional disordered system. Dyson (1953)

[74] and Schmidt (1957)[164] derived analytically a type of functional equations for
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certain distribution functions containing information about the integrated density of

states in the TL, for the phonon spectrum of a system of harmonic oscillators with

random masses and the electronic spectrum of a delta potential model with random

couplings, respectively. Although some efforts were made to solve numerically these

equations [3, 28, 51, 4, 91], this approach was almost completely forgotten probably

because of its cumbersome mathematics and the lack of analytical solutions.

We assert that it is possible to derive a set of universal functional equations de-

scribing the TL of one-dimensional systems. In this way one can build a formalism

which can be applied to a large variety of potential models. The solution of these

equations can be used to obtain relevant magnitudes of the system such as the DOS

or the localization length. A complete derivation of the equations can be found in

appendix D. Let our one-dimensional problem be governed by the canonical equation

Ψj+1 = J(γj−1, γj)Ψj −
K(γj)

K(γj−1)
Ψj−1. (2.35)

Using the mapping technique described in section 2.1, one can define a phase θ and

radius ρ satisfying the transmission relations (2.3) and (2.4). Assuming that the chain

is composed of different species (denoted by Greek letters) {γ} the following equa-

tions hold in the thermodynamic limit,

Wγ(θ) =
∑

β

pγβ

∣∣∣Wβ

(
T
−1(θ;β, γ)

)
−Wβ

(π
2

)
+ δ(β, γ)

∣∣∣ , (2.36a)

Wγ(θ + nπ) = Wγ(θ) + n, θ ∈ [0, π), n ∈ Z, (2.36b)

where pγβ is the probability of finding a β atom besides a γ atom, δ(β, γ) = 1 if

[K(γ)/K(β)] > 0 and δ(β, γ) = 0 otherwise, and T
−1(θ;β, γ) is the inverse transmis-

sion function for the phase,

T
−1(θ;β, γ) = arctan

{
K(β)

K(γ)

(
J(β, γ) − 1

tan θ

)}
, θ ∈ [0, π). (2.37)

Wγ(θ) are the phase distribution functions in the TL for each species γ, that is they

mean the probability that the phase modulo π right after a γ atom is included in the

interval [0, θ). Then dWγ(θ) is the natural measure of the phase inside the system for

the γ species, that is the probability of catching the phase in the interval (θ, θ + dθ).

Therefore this distribution functions can be used to calculate the average in the TL

of any quantity of the system that can be written in terms of the phase θ. Using this

latter fact one can obtain the inverse of the localization length and the DOS of the
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system in terms of the distribution functions as

ξ(E)−1 =
1

2

∑

γ,β

cγpγβ log F(π; γ, β) − 1

2

∑

γ,β

cγpγβ

∫ π

0
Wγ(θ)

F
′(θ; γ, β)

F(θ; γ, β)
dθ, (2.38)

g(E) =

∣∣∣∣∣
∑

γ

sgn[K(γ)]cγ
dWγ

(
π
2

)

dE

∣∣∣∣∣ , (2.39)

cγ being the concentration for the γ species and F(θ; γ, β) the transmission function

for ρ defined in (2.4),

F(θ; γ, β) = cos2 θ +

(
J(γ, β) cos θ − K(β)

K(γ)
sin θ

)2

. (2.40)

Let us remark the fact that binary correlations naturally appear in the definition of the

distribution functions through the set of probabilities {pγβ}, the completely uncorre-

lated situation would be defined by pγβ = cβ for all species.

Due to the formidable aspect of the functional equations it seems a hard task to

obtain analytical solutions, if they exist at all. Nevertheless they might be useful to

extract relevant information of the systems in the thermodynamic limit analytically.

2.7 An example: the tight-binding model

To exemplify the study of a quantum wire with the tools described in the previous

sections, let us consider a basic one-dimensional model: a tight-binding Hamiltonian

with nearest neighbour interactions,

Ĥ =
∑

k

(
εk
∣∣k
〉〈
k
∣∣+ tk,k+1

∣∣k
〉〈
k + 1

∣∣+ tk,k−1

∣∣k
〉〈
k − 1

∣∣) , (2.41)

where εk are the energies of the on-site orbitals
∣∣k
〉

and tj,j±1 mean the transfer

integrals, which we take equal to 1 for the sake of simplicity. The on-site energies

follow a random sequence so that this model is said to have diagonal disorder. The

one-dimensional Anderson model consists in choosing εj from a finite continuous

interval with a constant probability distribution. In our case the composition includes

different discrete species {ε1, ε2, . . .} appearing with concentrations {c1, c2, . . .}.

Since the orbitals
{∣∣j
〉}

constitute an orthonormal basis of the Hilbert space of the

system, the eigenstates can be written as
∣∣Ψ
〉

=
∑

j uj

∣∣j
〉
. The Schrödinger equation

is then translated into a discrete equation for the coefficients uj ,

uj+1 = (E − εj)uj − uj−1, (2.42)
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showing the desired canonical form of equation (2.1) with J(εj) = E−εj andK(εj) =

1 for all j. Using the results of section 2.1 concerning the gaps of the spectrum, it is

straightforward to conclude that the energy values satisfying |E − εj | > 2 for all j,

are not permitted. Therefore the eigenvalues can only be located inside intervals 4

units of energy wide centered at the different on-site energies. In fact each interval

corresponds to the allowed band of the pure chain of each species. The simplest mixed

system is a binary chain composed of two different species. In this case the spectrum

only depends upon the quantity |ε1 − ε2| thus the on-site energies are usually defined

as ε1 = −ε, ε2 = ε. When ε 6 2 the eigenenergies are all included in the interval

[−2 − ε, ε + 2]. That is the reason why this model is commonly referred to as a one-

band model. If ε > 2 a gap appears in the range [2 − ε, ε− 2].

From the canonical equation, the two-dimensional mapping defined in section 2.1

is easily built yielding the transmission functions

T
−1(θ; εj) = arctan

(
E − εj −

1

tan θ

)
, (2.43)

F(θ; εj) = 1 − (E − εj) sin(2θ) + (E − εj)
2 cos2 θ, (2.44)

which only depend on one species at each step. This latter property together with the

fact that K(εj) = 1 for this model, simplifies considerably the functional equations

(2.36) (see appendix D). For a chain with uncorrelated disorder a unique distribution

function for the phase can be defined W (θ) being the solution of

W (θ) =
∑

γ

cγW
(
T
−1(θ; εγ)

)
−W

(π
2

)
+ 1, (2.45a)

W (θ + nπ) = W (θ) + n, θ ∈ [0, π), n ∈ Z. (2.45b)

Thus only one functional equation needs to be solved. And the DOS per atom as well

as the localization length can be obtained in the thermodynamic limit from

ξ(E)−1 ≡ λ(E) =
1

2

∑

γ

cγ log F(π; εγ) − 1

2

∑

γ

cγ

∫ π

0
W (θ)

F
′(θ; εγ)

F(θ; εγ)
dθ, (2.46)

g(E) =

∣∣∣∣∣
dW

(
π
2

)

dE

∣∣∣∣∣ . (2.47)

Using the discrete transmission matrix formalism, the scattering amplitudes of a

finite chain can be obtained. In figure 2.3 the logarithm of the modulus of the trans-

mission amplitude is plotted as a function of the length of the system for different bi-

nary chains. The exponential decrease of the transmission is clearly observed and the

data for finite chains agrees with the value of the Lyapunov exponent obtained from
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the functional equation in the different cases. In figure 2.4 the DOS for a finite chain

is plotted, showing a fluctuating behaviour around the distribution corresponding to

the thermodynamic limit. The evolution of the DOS and the electronic localization

length in the thermodynamic limit for a binary chain as a function of the concentra-

tions can be seen in figures 2.5 and 2.6. It can be observed how the tools used provide

the correct results when the chain is composed of only one species: λ(E) = 0 and

λ(E) = arccosh(|E − ε|/2) inside and outside the allowed energy band respectively

and the density of states fits the correct form g(E) = π−1
[
4 − (E − ε)2

]−1/2
.

As can be seen in the analysis of the tight-binding Hamiltonian, taking the canon-

ical equation as a starting point a systematic characterization of the electronic prop-

erties of the system can be performed, both for finite arrays via the transmission

matrix formalism and in the thermodynamic limit with the functional equations. In

the forthcoming chapters, the methods described will be applied to a variety of one-

dimensional quantum wire models, trying to reveal the physical properties of this kind

of structures and understand their particular features.
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C H A P T E R 3

Quantum wire with delta chains

3.1 The potential

Let us consider a quantum wire model made up of an array of Dirac delta potentials,

each one with its own coupling αj and placed at equally spaced positions with inter-

atomic distance a. Then, the potential energy of an electron inside this linear chain

is

V (x) =
∑

j

αjδ(x− ja). (3.1)

This model was first introduced by Kronig and Penney in 1931 [44] and since then

it has been extensively considered in the literature. Indeed it is nowadays one of

the most treated models. In spite of its apparently simplicity, we shall see how it

is powerful enough to account for very different schemes containing an unexpected

physical richness.

Due to the discontinuous nature of the potential the continuous transmission ma-

trix is easily calculated1, yielding for the jth delta potential followed by a zero poten-

tial zone of length a

Mj =



(
1 − i

kaj

)
eika − i

kaj
eika

i
kaj

e−ika
(
1 + i

kaj

)
e−ika


 , (3.2)

where aj = }2/mαj means the ‘effective range’ of the jth delta and k =
√

2mE/}.

The transmission probability for a delta potential is a monotonically increasing func-

1A collection of transmission matrices and canonical equations for different 1-D potentials can be

found in appendix F.
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tion with the energy. If the delta coupling is negative, then it can host a bound state

with energy k = i/|aj | whose amplitude decreases from the position of the delta as

exp(−|x/aj |). For positive energies the wave function in the different sectors of the

chain is simply a combination of the free particle solutions. Using the transmission

matrix one can derive the following relation among the amplitudes of the state at

contiguous sites

Ψj+1 = 2hj(ε)Ψj − Ψj−1, (3.3)

where Ψj is the amplitude of the state at the position of the jth delta and we define

hj(ε) ≡ cos(ε) +

(
a

aj

)
sin(ε)

ε
, (3.4)

being ε ≡ ka a dimensionless representation of the energy. The canonical form (3.3)

leads to the following discrete transmission matrices

Pj =

(
2hj(ε) −1

1 0

)
. (3.5)

Hence, the effect of a linear array of N deltas can be treated via the product of

their transmission matrices or equivalently through the composition rules (2.9). For

this model it is possible to write closed expressions for the scattering amplitudes of an

arbitrary chain,

tN (ε) =
eiNε

f(ε; a1, . . . , aN )
, (3.6)

rL
N (ε) = −e−2iε g(ε; a1, . . . , aN )

f(ε; a1, . . . , aN )
, (3.7)

with the definitions

f(ε; a1, . . . , aN ) =1 +
i

ε

N∑

j=1

(
a

aj

)
+

N∑

j=2

(
i

ε

)j

×
{
∑

σ

[(
a

aσ1

)(
a

aσ2

)
· · ·
(
a

aσj

) j−1∏

r=1

(
1 − e2iε(σr+1−σr)

)]}
,

(3.8)

g(ε; a1, . . . , aN ) =
i

ε

N∑

j=1

ei2jε

(
a

aj

)
+

N∑

j=2

(
i

ε

)j

×
{
∑

σ

[
ei2σ1ε

(
a

aσ1

)
· · ·
(
a

aσj

) j−1∏

r=1

(
1 − e2iε(σr+1−σr)

)]}
, (3.9)
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where for each j the symbol
∑

σ means one must sum over the
(N

j

)
combinations of

size j, σ = {σ1, σ2, . . . , σj} from the set {1, 2, . . . , N} with σ1 < σ2 < . . . < σj. The rR

amplitude up to a phase is obtained from rL for the reverse chain. The global potential

is then characterized by the arranged sequence of the ratios (a/aj) where the indices

label the positions from left to right. In spite of their formidable aspect, the above

equations are easy to program for sequential calculations providing the transmittivity

and reflectivity of the system with exact analytical expressions.

3.2 Periodic system

Let us briefly discuss the main properties of the periodic arrangement of potentials

for this model. According to the Bloch theorem [171] the permitted energies of the

infinite periodic system are such that the eigenvalues of the transmission matrix Mpc

of the primitive cell with length L, take the form of Bloch phases, eiqL. Then the

allowed bands come from

cos(qL) =
1

2
TrMpc, (3.10)

where q ∈ [−π/L, π/L] defines the first Brillouin zone (1BZ) in the reciprocal space.

The unit cell can be composed of different deltas, thus Mpc is given by a product of

matrices of the form (3.2) or equivalently the discrete matrices (3.5) can also be used.

For the case in which the primitive cell includes N different potentials it is possible to

find a general expression for TrMpc. The allowed bands obey

cos(Nqa) = B(ε; a1, . . . , aN ), (3.11)

where for even N

B(ε; a1, . . . , aN ) = (−1)
N
2 +

N
2∑

j=1

(−1)
N
2
−j 22j−1 ShN (2j), (3.12a)

and for odd N

B(ε; a1, . . . , aN ) =

N+1
2∑

j=1

(−1)
N+1

2
−j 4j−1 ShN (2j − 1). (3.12b)

And the function ShN (p) is defined as the sum of all possible products of p different

hj(ε) functions (hj1hj2 · · · hjp) such that j1 < j2 < · · · < jp and to an odd index follows
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an even one and reciprocally. Let us remark that the indices label the position of each

delta inside the primitive cell. The band equation for N = 1, 2, 3, 4 as stated by the

preceding formulae reads explicitly

cos(qa) = h1, (3.13)

cos(2qa) = 2h1h2 − 1, (3.14)

cos(3qa) = 4h1h2h3 − (h1 + h2 + h3), (3.15)

cos(4qa) = 8h1h2h3h4 − 2(h1h2 + h1h4 + h2h3 + h3h4) + 1. (3.16)

The band structure provided is extremely useful from a computational point of view,

due to the systematic use of the combinations of the elementary functions hj(ε). Once

the allowed bands are known the distribution of states can be written in a very simple

form. The DOS per atom inside the different permitted bands comes from

g(ε) =
1

Nπ

[
1 − B2(ε)

]− 1
2

∣∣∣∣
dB(ε)

dε

∣∣∣∣ . (3.17)

The regular oscillatory nature of the bands in the reciprocal space imposes some gen-

eral characteristic features to the DOS. The distribution of states reaches a minimum

at the inflexion point of each band and Van-Hove singularities appear at the band

edges, as expected for a one-dimensional system.

It is possible to write a compact analytical expression for the transmission proba-

bility of a finite periodic chain by making use of the Cayley-Hamilton theorem, that

permits writing the power of a 2 × 2 matrix in terms of Chebyshev polynomials (see

for example reference [89]). As an example the transmittivity for a one species pure

chain with m primitive cells can be written as

Tm(ε) =

{
1 +

(
a

a1

)2 sin2 [m arccos(h1(ε))]

ε2
(
1 − h2

1(ε)
)

}−1

. (3.18)

In figure 3.1 a characteristic example of the band structure, the DOS and the trans-

mission pattern for a periodic delta chain is shown.

3.3 Short aperiodic sequences

Let us consider now aperiodic arrays of deltas with hard-wall boundary conditions,

that is inside an infinite potential well, assuming that the walls are placed at one in-

teratomic distance a before the first potential and after the last one. Then the eigenen-

ergy condition is the vanishing of the wave function at the walls. It can be imposed
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Figure 3.1. DOS (left), band structure in 1BZ (middle) and transmittivity (right)

for a periodic chain whose primitive cell includes four deltas with parameters (a/aj) :

1,−2,−1, 0.6. The transmission corresponds to a chain with only 10 unit cells.

using the explicit form of the electronic state and the continuous transmission matri-

ces, but the discrete transfer formalism turns out to be specially suitable for this task.

For a chain with N potentials the eigenstates satisfy
(

0

ΨN

)
= PNPN−1 · · ·P1

(
Ψ1

0

)
≡ P

(
Ψ1

0

)
, (3.19)

that translates into P11 = 0. Apart from these solutions one must take into account

also the eigenstates of the infinite square well remaining unperturbed by the delta

chain, namely those with energy ε = nπ, n ∈ Z, which do not feel the delta potentials.

For arbitrary N the equation for the energy levels of the system can be written as

sin(ε)A(ε; a1, . . . , aN ) = 0, (3.20)

where for even N

A(ε; a1, . . . , aN ) = (−1)
N
2 +

N
2∑

j=1

(−1)
N
2
−j 22j ShN (2j), (3.21a)

and for odd N

A(ε; a1, . . . , aN ) =

N+1
2∑

j=1

(−1)
N+1

2
−j 4j−1 ShN (2j − 1). (3.21b)
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Figure 3.2. (Left) Infinite box including a chain of 10 delta potentials with param-

eters (a/aj) : 1, 2, 1.5, 0.6, 3, 1, 0.5, 0.5, 1, 2. The horizontal lines mark the position

of several permitted levels. (Right) Transmission probability of the chain with open

boundaries.

The function ShN (p) is defined as the sum of all possible products of p different hj(ε)

functions (hj1hj2 · · · hjp) such that j1 < j2 < · · · < jp, j1 is odd and to an odd index

follows an even one and reciprocally. The indices mark the position of the different

deltas. The eigenvalue condition for N = 1, 2, 3, 4 reads

sin(ε)h1 = 0, (3.22)

sin(ε) [4h1h2 − 1] = 0, (3.23)

sin(ε) [4h1h2h3 − (h1 + h3)] = 0, (3.24)

sin(ε) [16h1h2h3h4 − 4(h1h2 + h1h4 + h3h4) + 1] = 0. (3.25)

In figure 3.2 the position of several eigenlevels of an aperiodic delta sequence with

hard-wall boundary conditions is displayed and can be compared with the transmit-

tivity of the system with open boundaries.

3.4 Wires with uncorrelated substitutional disorder

We shall consider the effect of substitutional disorder in this one-dimensional model.

The potentials are set out on a regular lattice with parameter a and the delta cou-

plings follow a completely random sequence, yielding a wire composed of a finite

number of different atomic species, each one characterized by the parameter (a/aγ)

and its concentration cγ . And there are not any correlations among the different po-

tentials, hence the probability of finding a certain cluster of atoms is simply given by

the product of their concentrations.
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The starting point in the study of the electronic properties of this system is the

canonical equation described previously,

Ψj+1 = 2hj(ε)Ψj − Ψj−1, (3.26)

hj(ε) being defined in (3.4). The above expression fits the general canonical form

(2.1) with J(aγ) = 2hγ(ε) and K(aγ) = 1 for all γ. Then from equation (2.5) one

obtains that the energy ranges satisfying |hγ(ε)| > 1 for all γ are not permitted in the

spectrum of the disordered system. This condition can be interpreted using the results

from the periodic chains in section 3.2. According to equation (3.13), the previous

condition means that the common forbidden bands of the one species pure chains are

also forbidden ranges of the mixed system. In fact this conclusion does not depend

on the arrangement of atoms in the mixed system. This result means a proof of the

generalization of the Saxon and Hutner conjecture [163] concerning the gaps of a

binary delta chain that was proved by Luttinger [136].

The limiting distribution of the electronic levels as well as the localization proper-

ties in the thermodynamic limit are obtained using the functional equation formalism.

The relevant transmission functions for this model read

T
−1(θ; aγ) = arctan

(
2hγ(ε) − 1

tan θ

)
, (3.27)

F(θ; aγ) = 1 − 2hγ(ε) sin(2θ) + 4h2
γ(ε) cos2 θ. (3.28)

Just like for the tight-binding model, the simple forms of the canonical equation and

of the above functions simplify considerably the functional equations. Only one dis-

tribution function needs to be known, W (θ) ≡∑γ cγWγ(θ) being the solution of

W (θ) =
∑

γ

cγW
(
T
−1(θ; aγ)

)
−W

(π
2

)
+ 1, (3.29a)

W (θ + nπ) = W (θ) + n, θ ∈ [0, π), n ∈ Z. (3.29b)

Finally the DOS per atom and the localization length can be numerically obtained

from

ξ(ε)−1 ≡ λ(ε) =
1

2

∑

γ

cγ log F(π; aγ) − 1

2

∑

γ

cγ

∫ π

0
W (θ)

F
′(θ; aγ)

F(θ; aγ)
dθ, (3.30)

g(ε) =

∣∣∣∣∣
dW

(
π
2

)

dε

∣∣∣∣∣ . (3.31)

In figures 3.3 and 3.4 on pages 38 and 39, several distributions of states and Lyapunov

exponents are shown as functions of the energy for disordered chains with different

number of atomic species and concentrations.
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Figure 3.3. DOS (black) and Lyapunov exponent (orange) of several disordered

binary wires with parameters (a/aγ) : −2,−0.25 (top), (a/aγ) : 6, 0.5 (middle) and

(a/aγ) : 2, 4 (bottom) with equal concentrations. The dashed line corresponds to

the density of states of the simplest periodic binary chain in each case. The negative

part of the abscissa axis means imaginary values of ka, i.e. negative energies. The

different coloured bars on the abscissa axis mean: (black) range forbidden for all

species, (red) range forbidden for at least one species, (green) range allowed for all

species.
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Figure 3.4. DOS (black) and Lyapunov exponent (orange) of several disor-

dered delta wires for three species (a/aγ)[cγ ] : 10[0.3],−1[0.3],−2[0.4] (top), five

species (a/aγ)[cγ ] : 1[0.2], 2[0.2], 3[0.2],−2[0.2],−0.5[0.2] (middle) and eight species

(a/aγ)[cγ ] : 1[0.1],−1[0.1], 2[0.1],−2[0.1], 3[0.1],−3[0.1], 4[0.2],−4[0.2] (bottom). The

dashed line in the middle example shows the DOS for the periodic chain whose

primitive cell includes the five species in the order given. The negative part of the

abscissa axis means imaginary values of ka, i.e. negative energies. The different

coloured bars on the abscissa axis mean: (black) range forbidden for all species,

(red) range forbidden for at least one species, (green) range allowed for all species.
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Figure 3.5. DOS of binary wires with species (a/a1) = 0.25 and (a/a2) = −2 for

different concentrations.

3.4.1 Features of the distribution of states

Let us comment on the salient features of the density of states of the disordered chains.

Firstly let us notice that whenever some of the potential units support bound states,

then in the thermodynamic limit a set of permitted levels appears for negative en-

ergies, corresponding to pure imaginary values of ε ≡ ka, as can be seen in figures

3.3 and 3.4. On the other hand, the higher the energy the less the electrons feel the

effect of the potentials and therefore the less they are affected by the disorder. Then,

as the energy grows the density of states must approach the free particle distribution

of states, that in the variable ε is a constant with value gfree(ε) = 1/π ' 0.32. This

fact can be observed in the different examples and also it is more clearly seen as the

number of atomic species in the wire increases. The distribution of states also shows

a particular behaviour for ε = nπ, n ∈ Z, where independently of the parameters the

DOS tends to diverge and resembles the distribution of a periodic chain. This is due

to the fact that the multiples of π are permitted levels for all one species pure chains,

so that in a mixed system there is always a large number of available states in the

vicinity of these energies. But undeniably, the most interesting feature of the spectra

of the disordered wires is the irregular and peaky structure appearing in some energy

ranges. This strange behaviour is in great contrast with the smooth appearance of the

periodic distributions and at first sight it seems a direct consequence of the presence

of substitutional disorder in the system. In figure 3.5 the evolution of the DOS of a
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Figure 3.6. DOS for a random binary chain with (a/aA) = −2 and (a/aB) = −0.25

in a range forbidden for the A-type atoms. The concentrations are cA = cB = 0.5

(left) and cA = 0.9, cB = 0.1 (right). The coloured vertical lines mark the position

of eigenstates of different atomic B-clusters surrounded symmetrically by a certain

number of A atoms (indicated in the lower ordinate axis), calculated with hard-wall

boundary conditions.

pure chain as we dope substitutionally with atoms of a different kind is shown. It

can be seen how a sharp-pointed irregular aspect for some energies appears in the

disordered configurations. Although this characteristic behaviour of the DOS for this

disordered model was more or less distinguished several years ago [4, 91, 92], and it

is totally confirmed by the present computational resources, it has not been yet well

understood. The general interpretation of the distributions for these systems is non

trivial. Nevertheless one can say as a general rule —and following the suggestion of

Agacy and Borland [4]— that the peaked regions are more likely to appear in ranges

of the spectrum which are forbidden for some of the species involved but not for all

of them, since in this latter case the range is also not allowed for the random system.

This assertion can be confirmed by studying a random chain composed of two species

A and B. In a region forbidden for the A-type chain the allowed energies appearing

in the spectrum must be due to atomic clusters involving B atoms. As a result the

A atoms surrounding these groups isolate those eigenenergies because this species

does not provide any permitted level near the ones introduced by the B atoms, hence

inducing a decreasing in the density of states when one moves in a tiny energy re-

gion around each of the levels and therefore giving rise to a fluctuating distribution.

Thus in principle, one could reproduce the energies where the density of states would

be more prominent in this region, from the eigenvalues of certain atomic clusters

in which the B species have a substantial contribution. This correspondence can be

observed in figure 3.6, where the DOS for a binary random chain within an energy

region forbidden for one of the species is compared with the eigenstates of several
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tions.

atomic clusters calculated with hard-wall boundary conditions using equation (3.20).

When the concentrations of both species are equal, it is shown how the eigenstates

clusterize around the more peaked regions of the distribution, however one needs to

consider a huge number of clusters in order to reproduce all the maxima in this situ-

ation. Decreasing the concentration for the species that provides the permitted levels

one can see that the sharp points can be quite easily predicted. This behaviour can

also be checked when the number of different species increases (figure 3.7).

A cautious investigation of the irregular structure of the distribution of states re-

veals that this unexpected feature deserves a deeper analysis.

Fractality of the density of states

Let us observe the peaked regions of the distributions in detail. At first sight the

apparent roughness make the density of states appear hardly differentiable within

those intervals. To decide on the possible lack of differentiability one has to look

deeper into the distributions and obtain the DOS in smaller energy ranges, which

involves a rigorous and very time-consuming numerical calculation. In figure 3.8 the

DOS for a certain random chain is shown for shorter and shorter energy intervals.

As can be seen, as the energy domain is made smaller inside the rough region, the

distributions reveals a finer structure: new sharp points appear and the density does

not evolve smoothly. The existence or not of these irregularities in such a small scale

has to be decided by a numerical calculation, thus several technical comments about
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Figure 3.8. DOS for a binary disordered chain with parameters (a/a1) = −2 and

(a/a2) = −0.25 and equal concentrations. The left column corresponds to an irreg-

ular region and the right one to a smooth region. A global plot of the distribution is

shown in figure 3.3

the numerical algorithm seem mandatory here. The functional equation satisfied by

the distribution function for the phaseW (θ), is solved with a previous discretization of

the phase θ ∈ [0, π) with a certain number of points, using a self-consistent algorithm

that permits knowing W (θ) up to an error of 10−15 in each of the discretized points.

Then a numerical differentiation ofW (π/2) with a sufficiently small step of the energy

∆ε is performed to obtain the density of states. For a global plot of the DOS, such as

those of figures 3.3 and 3.4, taking 5000 points for the discretization and a step of

∆ε = 4 · 10−3 is more than enough and yields very precise results. For the calculation

of figure 3.8 we proceeded doubling the number of points for the discretization and

checking the convergence of the DOS at each step until the desired accuracy. In all

cases the average variation of g(ε) in the last step relative to the domain of the ordinate

axis was less than 0.75%. The final parameters were:

points for θ ∆ε

Fig. 3.8 (a) 5001 7.5 · 10−4

Fig. 3.8 (b) 35001 2.5 · 10−5

Fig. 3.8 (c) 150001 2.5 · 10−6
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Figure 3.9. Energy spacings for the first 100 eigenlevels appearing inside an ir-

regular zone (ε > 1.4, red) and inside a smooth zone (ε > π, blue) of the spec-

trum of binary chains with different lengths composed of species (a/a1) = −2 and

(a/a2) = −0.25 with equal concentrations (see DOS in figure 3.8). The ordinate cor-

responding to a point n on the abscissa axis represents the energy distance between

the (n − 1) and the n level. For a fixed length all the states calculated belong to

the same random sequence. The eigenenergies were obtained by carrying out the

transmission of the wave function through the system imposing hard-wall boundary

conditions.

As a final check we performed the same calculation for the same random chain,

with the same parameters but inside an apparently smooth region of the density of

states, obtaining the results shown in the right column of figure 3.8 corresponding to

a perfectly differentiable function. It seems that the irregular behaviour is not due

to numerical errors of the computation and that there exist ranges of the spectrum

in which the DOS of the disordered chain is not differentiable. The differentiability

of the DOS is a consequence of a regular —almost homogeneous— distribution of

the permitted levels inside a small energy interval. A clear view of the differences

between the way in which eigenlevels appear inside an irregular region and inside a

smooth region of the DOS can be obtained by plotting the energy distances between

adjacent permitted levels. In figure 3.9 these spacing distributions are shown for the

first 100 permitted levels that appear inside an irregular region of the density of states

and inside a smooth zone for several finite length chains. As the length of the array

grows the first 100 levels are included in a smaller energy interval, i.e. the energy

scale decreases. Following this procedure one sees how the spacing distribution in the

smooth region becomes more and more homogeneous, and the energy distance be-
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tween neighbouring levels tends regularly to zero which ensures the differentiability

of the DOS in that region. On the other hand, the spacing distribution for the levels

inside the irregular zone does not show a defined tendency nor a homogeneous as-

pect as the length of the system increases. In fact this latter distribution exhibits the

same aspect whatever the scale in energy is. It is clear that differentiability cannot be

reached for the DOS in these irregular ranges.

The results presented strongly support the idea that the density of states for these

systems may be fractal in certain energy ranges. Let us analyse rigorously this possi-

bility. First a few words about fractals are in order. Two different type of fractals can

be distinguished, namely self-similar fractals and self-affine fractals [16]. The formers

are those structures invariant under isotropic scale transformations, i.e. objects such

that a part of them enlarged vertically and horizontally by the same factor overlaps

exactly the original pattern. An example of this kind is the Cantor set or the Sierpinsky

gasket. Self-affine fractals are those invariant under anisotropic scale transformations.

For example, a part of a self-affine function h(x) has to be scaled by a factor b accord-

ing to h(x) → bαh(bx) in order to recover the original pattern. If α = 1 the scaling

would be isotropic and the function would be self-similar. The exponent α is called

the Hölder exponent and gives a quantitative measurement of the roughness of the

function h(x). When the fractal object emerges from the iteration of a certain rule, it

is said to be deterministic. However there exist fractals which are random. In this case

the self-similar or self-affine character is decided in a statistical sense, that is when an

isotropically or anisotropically enlarged portion of it retains the same statistical prop-

erties of the original object. The coastline of a continent is an example of a random

fractal.

In our case the DOS seems to behave as a self-affine random fractal in certain

energy ranges. To decide on the fractality let us calculate the fractal dimension of

the distribution of states within these irregular regions. This task is accomplished by

analysing the semivariance of the series of values of the DOS. Let f(xi) be a value

of a discrete series at the point xi belonging to a certain fixed interval. Then, the

semivariance with step s of the series is defined as

∆s =
1

Ns

Ns∑

i=1

[f(xi+s) − f(xi)]
2 , (3.32)

where Ns is the number of segments with length s covering the x interval. It can be

proved that for a self-affine fractal and sufficiently small values of s the semivariance

scales as
√

∆s = κ · sα, (3.33)
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Figure 3.10. log(
√

∆s) vs log(s) for disordered chains in different energy inter-

vals. (a) binary chain with parameters (a/a1) = −2 and (a/a2) = −0.25 and equal

concentrations (see DOS in figure 3.3). (b) a five-species chain with parameters

(a/aγ) : 1, 2, 3,−2,−0.5 and equal concentrations (see DOS in figure 3.4). The leg-

ends show the energy interval considered to calculate the semivariance. In all cases

s ranges from 10−5 to 3 · 10−4. α and log(κ) mean respectively the slope and the

ordinate at the origin of the linear fits.

where κ is a constant and the Hölder exponent satisfies α = 2 − df and df is the

fractal dimension of the series in the interval considered. Then the value of the fractal

dimension can be obtained from a linear fit of pairs of values (
√

∆s, s) in a log-log

plot. For our purpose, we proceed considering a fixed energy interval in which the

DOS is calculated with a short enough step in energy which is the initial smallest

value of s, to obtain subsequently the semivariance of the distribution in the interval

given for gradually larger values of the step s. In figure 3.10 the log-log plot of the

semivariance and the corresponding linear fit are shown for two disordered infinite

chains in different energy ranges corresponding to smooth and irregular regions of

their distributions of states. In the case of figure 3.10(a) a binary chain is considered

whose DOS can be characterized by a fractal dimension df = 1.2881 in the range

ε ∈ [1.6, 2.6] whereas in the range ε ∈ [3.2, 4.2] the fractal dimension changes to df =

1.0054 which equals the topological dimension of a curve. Then in the latter interval

the DOS is not fractal and evolves smoothly. The same thing occurs considering a five

species chain in figure 3.10(b) and one can measure df = 1.3891 for ε ∈ [0.5, 1.5] and

df = 1.0163 for ε ∈ [2.8, 3.1].

From this rigorous analysis one is led to the conclusion that fractality in certain

energy ranges is a feature of the density of states of delta chains with substitutional

disorder. It appears independently of the chain parameters and although further in-
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vestigation for other potential models would be needed, the fractal behaviour is prob-

ably a universal effect in the sense that it seems a consequence of disorder and the

dimensionality of the system only.

Understanding the reason why the distribution of states behaves in a such a pe-

culiar way does not seem trivial. In a previous explanation, the irregular fluctuating

aspect of the DOS was justified in terms of permitted levels included in the spectrum

by certain atomic clusters, inside energy ranges forbidden for some of the atomic

species composing the system. Fractality could also be understood in the following

manner. Let us consider a certain piece of the disordered chain. Then, at other posi-

tions of the array there certainly exist other pieces with the same length and including

the same number of atoms of each species as our initial portion of the system. But

all these pieces will differentiate from one another at least in a transposition of two

atoms, so that the minimum change from one piece to another is a discrete finite

transformation consisting in the interchange of the position of two atoms, due to the

structural constraint of the potential. Now if we consider the eigenlevels introduced

by one of these pieces of the system, then the permitted levels introduced by the

rest of these same length parts cannot be located arbitrarily near the former levels,

because of the discretized character of the minimum transformation from one piece

to another. In other words, this discretized character of the change among different

pieces of the chain, could be possibly translated into an impossibility for the levels

introduced in the spectrum by one of these pieces to lay arbitrarily close in energy

to the levels introduced by another piece. As a consequence of this effect the energy

spacing distribution could not be regularized homogeneously and the density of states

would show a fractal behaviour. However, if this was completely correct one would

expect a fractal behaviour for all energies and that is not true. There are some energy

ranges for which the distribution of states is regular and smooth for the disordered

systems. The non-fractal character is more likely to appear in ranges of the spectrum

permitted for all the species composing the chain (see figures 3.3 and 3.4). Some-

how the fact that a given energy interval is allowed for all the species permits the

distribution to become smooth and regular, although the regularization is only strictly

reached when the chain is infinite and for a finite array the DOS shows and irregular

behaviour inside these energy zones also, as can be seen in figure 3.11.

As a summary the emergence of fractality could be probably due to a combination

of the effects described: the discrete character of the minimum change among differ-

ent portions of the system, together with the existence of ranges forbidden for some

of the atomic species involved. The border between fractal and non-fractal zones is

not very clear and also it might not be possible to describe the fractal character of a
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Figure 3.11. Comparison of the DOS for a finite chain (right) with the distribution

corresponding to the thermodynamic limit (left). The system is a binary random

chain with parameters (a/a1) = −2 and (a/a2) = −0.25 and equal concentrations.

distribution by a single fractal dimension. The density of states for this disordered

model shows a highly complex, unexpected and non-trivial behaviour.

3.4.2 Electronic localization

For a one-dimensional system with completely random disorder one generally expects

to find the spatial localization of the electronic states. In our case the system exhibits

random substitutional disorder together with an underlying structural ordering that

surely affects the electronic properties. In figures 3.3 and 3.4 it can be observed how

for the different configurations considered in the thermodynamic limit the Lyapunov

exponent takes finite non-zero values for all energies, indicating the exponential spa-

tial localization of the states, except for the discrete set ε = nπ, n ∈ Z, for which

the inverse localization length vanishes. Before discussing the nature and the implica-

tions of the π-resonances in detail, let us first comment on the general features of the

Lyapunov exponent. As the energy grows the Lyapunov exponent shows a tendency

to decrease, corresponding to the natural approach to the free particle behaviour, and

also the localization length seems to be related to the distribution of states. As can be

seen in the examples of pages 38 and 39, the Lyapunov exponent tends to decrease

in the peaks of the DOS and increase in the troughs. It seems that the state is less

localized when it lies on a range containing a large number of permitted levels close

to its energy, whereas on the contrary an isolated energy shows always a stronger lo-

calization. The localization length at a given energy depends on the value of the DOS

for the rest of the spectrum as stated by Thouless [179, 180]. It is also remarkable

that inside the smooth regions of the DOS the Lyapunov exponent takes lower values

than inside the fractal ranges of the distribution, which are apparently connected with
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Figure 3.12. Comparison of the Lyapunov exponent and the inverse participation

ratio as functions of the energy, for different binary disordered chains. The parame-

ters for the different chains are (a/aγ)[cγ ]: −2[0.5],−0.25[0.5] (black), 1[0.4],−1[0.6]

(red), 6[0.5], 0.5[0.5] (blue). The IPR is obtained averaging over 100 realizations of a

1000-atom array.

a strong localization. The localized character of the states can also be quantify by the

inverse participation ratio that measures directly the spatial extension of the wave

function. In figure 3.12 it is clearly seen how the tendency of the IPR as a function

of the energy agrees quite well with the evolution of the Lyapunov exponent in the

thermodynamic limit.

Regarding the π-resonances of this model, the first evidence of their existence

appears explicitly in a work by Agacy and Borland, however they did not comment

on this fact that their computations clearly showed [4]. Later, Ishii describes these

special energies of the model [109]. This is one of the first disordered systems in

which extended states were found coexisting with localized ones. Let us analyse the

reason why these extended states can survive within the disordered system. Recalling

the study of short aperiodic sequences with hard-wall boundary conditions in section

3.3, the multiples of π were eigenlevels of the infinite well unperturbed by the delta

potentials due to their punctual nature. From this fact, one is tempted to conjecture

that the resonances remain in the infinite system because of the punctual character

of the potential, and this is not completely true. To understand the appearance of

these special energies let us consider first the canonical equation for a free particle.

By sampling the wave function at different spatial points placed at arbitrary distances,

one obtains the relation

Ψj+1 = [cos(kxj) + cot(kxj−1) sin(kxj)] Ψj −
sin(kxj)

sin(kxj−1)
Ψj−1, (3.34)

that naturally describes extended states, where xj is the length between the positions

corresponding to Ψj and Ψj+1. In the simplest case when the sampling is regularly
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taken at distance a this expression reduces to

Ψj+1 = 2 cos(ka)Ψj − Ψj−1. (3.35)

The canonical equation for the electrons inside the disordered system reads

Ψj+1 = 2

(
cos(ka) +

(a/aj)

ka
sin(ka)

)
Ψj − Ψj−1, (3.36)

that in the cases ka = nπ, n ∈ Z, turns out to be the same for all sites of the system

as the free canonical equation

Ψj+1 = ±2Ψj − Ψj−1. (3.37)

Therefore the localization length diverges at those energy values in the thermody-

namic limit. Whenever the canonical equation of a system for a certain value of the

energy and for all its sites reduces to the free canonical form, an extended state ap-

pears. And the punctual nature of the potentials is not a crucial condition in principle

for this coincidence to happen.

It is important to know the functional dependence of the localization length on

the energy near the resonances, since it determines the role these extended states

play in the transport through a finite chain. Azbel and Soven concludes that for certain

binary chains the localization length near the π-resonances behaves asymmetrically as

|ε−nπ|−1 and |ε−nπ|−1/2 [14, 15, 13]. In fact, from their results it is straightforward

to obtain the value of the coefficients for each case. Defining V = c1(a/a1) + c2(a/a2)

and V = (a/a1) − (a/a2), if V > 0 then the Lyapunov exponent obeys

λ(ε) =





c1c2V
2

4|V |nπ |nπ − ε| +O
(
|nπ − ε|2

)
, ε 6 nπ

√
2|V |
nπ

|ε− nπ|1/2 +O
(
|ε− nπ|3/2

)
, ε > nπ

(3.38)

and for V < 0 the dependence is the same but the energy intervals appear reversed.

The above expressions are correct only when the following strange relation holds [14]

4ε|2V cot(ε) − ε| � 2|V |
[
8c1c2V ε cot(ε)

]2/3
. (3.39)

For the multiples of π both members of the inequality diverge, and the left hand side

term increases always faster than the other in a region close enough to the resonance

if V 6= 0 and for all V . Then, the above requirement limits the energy interval around

the resonance where the behaviour of the Lyapunov exponent can be well approxi-

mated by equation (3.38). If this interval is very short then the exponents described
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Figure 3.13. Lyapunov exponent for binary disordered chains near the resonance

ε = π. Solid lines correspond to analytical expressions (3.38) for the Lyapunov and

(3.40) for the DOS, while circles mark numerical results. (a) Parameters (a/a1) = −2

and (a/a2) = −0.25 with equal concentrations. The inset shows the DOS. Notice

that for the Lyapunov exponent the vertical scales are different before and after

the resonance to ensure an optimal visualization. (b) Parameters (a/a1) = 1 and

(a/a2) = −1 with equal concentrations. The inset shows the numerical DOS. Notice

the symmetric behaviour of the quantities.

may not be properly distinguished. Only the binary chains with V = 0 show different

values for the critical exponents. In figure 3.13(a) the Lyapunov exponent for a binary

chain is plotted in the vicinity of ε = π. The asymmetric structure of the localization

length around the resonance is clearly due to the asymmetric behaviour exhibited by

the density of states. The exponent 1/2 for λ corresponds to the side of the resonance

showing a gap in the distribution of states and the linear dependence with the energy

corresponds to the other side where permitted levels appear. The length of the energy

range in which equation (3.38) rules is clearly related to this asymmetry of the DOS:

if permitted levels start appearing on the gap side of the resonance then the energy

interval for the critical exponents given becomes shorter. In fact for V = 0 the DOS is

perfectly symmetric around the resonances and coherently the Lyapunov exponent is

also symmetric and does not obey (3.38), as can be seen in figure 3.13(b).

The localization length seems to behave in different manners near the resonances

depending on the number of species composing the wire and the distribution for their

parameters. Ishii found exponents 1/2 for λ(ε) when considering a Cauchy distribu-

tion for the species [109].

From the behaviour of the localization length around the critical energies in the

thermodynamic limit, one can estimate the effect of the presence of these singular

extended states on the transport properties of a finite system. Since the Lyapunov

exponent for the finite sample fluctuates around its mean value, corresponding to the



52 Quantum wire with delta chains

thermodynamic limit value, one can say from equation (3.38) that for a finite system

containing N atoms, there is a zone beside the π-resonances of width |ε0 − nπ| ∼
N−1 in which the states have a localization length larger than the system size, where

λ(ε0) = N−1. And the number of such states can be calculated from the DOS, that

near the resonance behaves as the distribution for a periodic chain as discussed in

section 3.4.1. From the analytical expression (3.17) one finds

g(ε) =

∣∣∣∣∣Re

(√
−(a/a1) − (a/a2)

2π
√
nπ

[ε− nπ]−1/2

)∣∣∣∣∣+O
(
[ε− nπ]1/2

)
. (3.40)

And therefore the number of states participating actively in the transport through a

finite chain for each resonance is∣∣∣∣
∫ ε0

nπ
Ng(ε)dε

∣∣∣∣ ∼
√
N. (3.41)

This is the same scaling exhibited by models with isolated extended states arising

from the presence of a correlated disorder such as the random dimer [73, 29, 161]

and other correlated schemes [68]. The manner in which these levels whose localiza-

tion length is larger than the system size, appears near the resonances is very peculiar.

Inspecting the vicinity of a multiple of π considering a tiny energy scale for a finite

length system, one observes the behaviour shown in figure 3.14. As the length of the

system increases, the states corresponding to transmission resonances (marked by a

sharp decrease of the Lyapunov exponent) start approaching the exact value of π. The

larger the system the more the states squeeze together near ε = π (figure 3.14(a)). It

may be surprising the fact that the exact value ε = π is not a transmission resonance

when the length of the chain is finite. This energy becomes a resonance only when

the length of the system goes to infinity. The reason for this is clear: the transmission

resonances somehow correspond to virtual states of the continuum spectrum of the

system, whose nature is absolutely determined by the boundary conditions. There-

fore when one considers a finite length system, the resonances arise at the energy

values for which the states can satisfy the proper scattering boundary conditions at

the extremes of the system with a high value of the transmission, and one expects the

fulfilling of the boundary conditions to depend on the length and on the sequence of

the chain. Then, the appearance of transmission resonances in the spectrum of a finite

disordered system is an agreement between two factors: the spatial extension of the

state and the boundary conditions. The former determines the range of energies in

which one could find high transmission efficiencies (i.e. a range with low values of

the Lyapunov exponent and the IPR) and the latter establishes the precise values of

the energies within this range where the resonances occur. Of course this effect only

becomes apparent at a very small scale of energies.
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Figure 3.14. (a) Lyapunov exponent and IPR near the resonance ε = π for finite

length binary chains with parameters (a/a1) = −2, (a/a2) = −0.25 and equal con-

centrations. The coloured solid lines correspond to the Lyapunov exponent while

the dashed lines show the IPR. (b) Magnification of the IPR near the resonance.

The horizontal dotted lines mark the inverse of the length of the sample for each

case. Graphics on the right column show the envelope of the electronic states for the

sequence withN = 2000 atoms for three different energies: π and the two first trans-

mission resonances corresponding to the sharp decrease of the Lyapunov exponent.

The data of all figures correspond to the same sequence for a given length.

Inspecting the IPR around ε = π, one finds that for a small scale of energies the in-

verse participation ratio does not reproduce the behaviour of the Lyapunov exponent,

so that the transmission resonances cannot be correctly identified from this quantity.

For the different lengths considered the IPR reaches its minimum valueN−1 exactly at

ε = π and for higher energies it shows higher values of the same order of magnitude

(figure 3.14(b)). The behaviour of the IPR can be understood by observing the explicit

form of the envelope of the electronic state at different energies. In figures 3.14(c)

the states at ε = π and at two transmission resonances for the 2000-atom chain can be

seen. The IPR gives us information about the spatial structure of the state, but since

it is a normalized quantity it lacks any information about the amplitude of the state,

which is essentially the transmission. Hence the IPR does not retain all the informa-

tion about the boundary conditions. It can be seen in figure 3.14 how the state (c.1)
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Figure 3.15. Lyapunov exponent (solid lines) and IPR (dashed lines) for binary

disordered chains with the same parameters as in figure 3.14. Both quantities have

been averaged over 100 realizations of the disorder for each length. The horizontal

dotted lines mark the position of the inverse of the length of the system.

is strictly more extended that (c.2) and (c.3) which have valleys with zero amplitude,

therefore one expects the IPR in the first case to be smaller than for the other two

cases. However, the amplitude for (c.1) is almost zero (T = 1.96 · 10−6) while for

the other two energies the states live with a transmission coefficient close to unity. If

the length of the system grows, the amplitude of the state for ε = π would increase

so that for an infinite system the state would be perfectly flat with amplitude 1. As

a summary, the IPR ignores everything concerning the value of the global amplitude

of the state and although open boundary conditions are absolutely necessary to build

the state correctly, the information of the transmission coefficient is not contained in

the IPR, and this makes it useless for identifying the exact energies of transmission

resonances of a finite system within very small ranges of energy. On the other hand

this fact means that the IPR retains the information of the thermodynamic limit and

as can be seen in figure 3.14(b) the minimum value N−1 is reached independently of

the length of the system for the energy ε = π, which we know to be an extended state

in the thermodynamic limit. It seems that this behaviour of the IPR is a fingerprint of

the existence of a state with a divergent localization length, and in principle it could

be useful for identifying such states in other models by studying finite realizations of

the systems.

Finally, it can be checked that the behaviour described for the Lyapunov exponent

and the IPR for finite chains near the π-resonances depends mainly on the length of the

system. In figure 3.15 both quantities are plotted for different lengths of the array after

averaging over 100 realizations of the disorder for each length. It can be seen how the

hollows of the LE are slightly broadened in energy and shortened in height due to the

averaging process, but they are still present manifesting the weak dependence of the



3.5 Wires with uncorrelated structural and substitutional disorder 55

xjxj-1 xj+1

aj-1 aj aj+1 aj+2

Figure 3.16. Delta chain with structural and substitutional disorder.

transmission resonances upon the particular disordered sequence for a given length.

The IPR shows the same aspect as for a single realization of the disorder. This confirms

the fact that at this energy scale the IPR contains the information of the system in the

thermodynamic limit. This strong dependence on the number of sites explains why

when the length of the system is increased proportionally, as in figures 3.14 and 3.15,

the transmission resonances appear following a self-similar pattern.

3.5 Wires with uncorrelated structural and substitutional

disorder

Besides substitutional disorder one can also include structural disorder as an addi-

tional ingredient of the model: the case in which the delta potentials with different

couplings following a random sequence are not placed on a regular lattice. The inter-

atomic distances are also random being determined by a certain probability distribu-

tion. One-dimensional models with structural disorder for which the distribution of

interatomic distances is continuous are known as one-dimensional liquid models. In

1960 the delta model only with structural disorder was studied by Frisch and Lloyd

[86] and Borland, who derived and integral equation for obtaining the DOS and the

localization length in the thermodynamic limit [25, 26]. This integral equation was

later numerically solved showing the effects of structural disorder upon the distribu-

tion of a periodic pure chain: as the degree of structural disorder increases the gaps in

the spectrum get narrower and the divergences of the DOS at the band edges disap-

pear in a kind of ‘melting’ process [28]. More recently, the structural disordered delta

model has been considered in the approximation of weak disorder with long-range

correlations [113] and it has also been used to show how a 1-D disordered conduc-

tor in the coherent regime, without considering inelastic collisions, can behave in a

metallic way due to thermal smearing and resonant tunnelling [143].

Our system exhibiting structural and compositional disorder is shown in figure

3.16. Now each potential is determined by two parameters: the delta coupling and

the distance after the delta. The canonical equation that rules the system takes the
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form

Ψj+1 = J(xj−1, xj , aj)Ψj −
K(xj)

K(xj−1)
Ψj−1, (3.42)

where

J(xj−1, xj , aj) = cos(kxj) + cot(kxj−1) sin(kxj) +
2

kaj
sin(kxj), (3.43)

K(xj) = sin(kxj). (3.44)

The function J depends on the coupling aj and the distance xj of the j sector and the

distance xj−1 of the (j−1) sector whileK is determined by the distance of each sector.

The system is composed of a discrete number of different species with different con-

centrations and the interatomic spacings are determined by a continuous distribution

which is chosen to satisfy the following requirements:

- It is the same for all atomic species.

- It maximizes at xj = a for all j. a being the interatomic distance of the regular

lattice.

- It is symmetric around the value a and therefore its domain is the interval (0, 2a] in

which it must be correctly normalized.

Our distribution for the distances shall be denoted by P (l, σ), where l ≡ x/a is a

dimensionless variable and σ measures the degree of structural disorder. And it reads

P (l, σ) =
1

N (σ)

1

σ
√
π

e−
(l−1)2

σ2 , (3.45)

where N (σ) is the normalization factor. P (l, σ) is a probability density for the values

of the interatomic distances and it satisfies

lim
σ→0

P (l, σ) = δ(l − 1), (3.46)

lim
σ→∞

P (l, σ) =
1

2
. (3.47)

The spacing distribution (figure 3.17) is normal for low values of σ and it approaches

a constant distribution as σ grows. The most important changes occur in the range

σ = 0−1 whereas for higher values the distribution is almost flat. The crossover value

above which the Gaussian behaviour is distorted is σ ∼ 0.4.

The properties of this one-dimensional system in the thermodynamic limit are

obtained using the functional equation formalism. In terms of the dimensionless vari-

ables l and ε ≡ ka the functions of the canonical equation read

J
(
l̄, l, aγ

)
= cos(lε) + cot

(
l̄ε
)
sin(lε) +

2(a/aγ)

ε
sin(lε), (3.48)

K(l) = sin(lε). (3.49)
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Figure 3.17. Probability den-

sity function for the interatomic

distances.

The relevant functions T
−1
(
θ; l̄, l, aγ

)
and F

(
θ; l̄, l, aγ

)
needed to construct the func-

tional equations are obtained from definitions (2.3) and (2.4). In this case the func-

tional equations take the form (see appendix D),

Wl(θ) =
∑

γ

cγ

∫ 2

0
P
(
l̄, σ
)
dl̄
∣∣∣Wl̄

(
T
−1
(
θ; l̄, l, aγ

))
−Wl̄

(π
2

)
+ δ

(
l̄, l
)∣∣∣ ,

(3.50a)

Wl(θ + nπ) = Wl(θ) + n, θ ∈ [0, π), n ∈ Z, (3.50b)

where δ
(
l̄, l
)

= 1 if [K(l)/K
(
l̄
)
] > 0 and δ

(
l̄, l
)

= 0 otherwise. A phase distribution

function Wl(θ) is defined for each value of l. A discretization of the spacing distri-

bution must necessarily be taken to carry out the numerical solving. The Lyapunov

exponent and the DOS per atom are obtained respectively from

λ(ε) =
1

2

∫ 2

0
P
(
l̄, σ
)
dl̄

∫ π

0
dWl̄(θ)

[
∑

γ

cγ

∫ 2

0
P (l, σ)dl log F

(
θ; l̄, l, aγ

)
]
, (3.51)

g(ε) =

∣∣∣∣∣

∫ 2

0
P (l, σ)dl sgn [K(l)]

dWl

(
π
2

)

dε

∣∣∣∣∣ . (3.52)

Let us analyse the effect of structural disorder on the distribution of states. In

figure 3.18 the evolution of the DOS versus σ is shown for a binary and a ternary

chain. It can be clearly seen how when the structural disorder appears the density

of states registers a tendency to smooth down. The gaps close as σ increases, the

divergences at the π-resonances disappear and the distribution becomes very homo-

geneous in the whole energy range approaching the value of the DOS for the free

particle. The higher the structural disorder the more regular the distribution becomes

independently of the number of species and their concentrations. And what is more

interesting, the fractal nature of the DOS in certain ranges due to the substitutional

disorder is absolutely removed. In fact the dependence of the fractal behaviour on the
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Figure 3.18. Evolution of the DOS vs degree of structural disorder (σ). (a) bi-

nary chain with parameters (a/a1) = −2, (a/a2) = −0.25 and equal concen-

trations. The case σ = 0 is also shown in figure 3.3. (b) ternary chain with

(a/aγ)[cγ ] : 10[0.3], −1[0.3], −2[0.4]. The case σ = 0 is also shown in figure 3.4.

structural disorder seems critical. For the binary chain considered in figure 3.18(a)

the calculation of the fractal dimension in the range ε ∈ [1.6, 2.6] yielded df = 1.29

as discussed in section 3.4.1. Considering a small energy interval ε ∈ [1.8, 1.85] and

a small value for sigma σ = 0.05 a careful analysis reveals that the fractal dimension

has diminished to df = 1.05. For such a low degree of the structural disorder fractality

has almost completely disappeared and the DOS shows the aspect of a differentiable

curve. This fact somehow confirms the reasoning of the previous section for explain-

ing the fractality of the distribution, based on the discretized character of the change

among different pieces of the chain containing the same number and species of atoms,

due to the structural constraint of the regular arrangement. Now the interatomic dis-

tances obey a continuous distribution. This means that if we consider a piece of the

infinite chain, there certainly exist other pieces with the same length and including

the same number and species of atoms which differentiate from the former portion

in an infinitesimal displacement of the position of only one atom. So that the spa-

tial changes among substitutionally identical portions of the wire obeys a continuous

distribution and they are not discretized. This makes it possible that the permitted

levels introduced by one of these pieces can lie arbitrarily close to levels introduced
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Figure 3.19. Lyapunov exponent (left) and IPR (right) for different degrees of

structural disorder for (a) binary chain and (b) ternary chain with the same param-

eters as in figure 3.18. The insets show a magnification of λ in the vicinity of ε = π.

The IPR corresponds to an average over 100 realizations of a 1000-atom sequence.

by another piece of the system. As a result a regularization of the distribution of

states within small energy intervals can be achieved and the differentiability is then

guaranteed.

Regarding the effect of structural disorder upon localization of electronic states,

the π-resonances must disappear for a non-vanishing σ. This must be expected since

these extended states survive in the substitutionally disordered wire due to the regular

arrangement of the potentials, as discussed in the previous section. One can check

that for ε = nπ the canonical equation of the system (3.42) is no longer identical

to the canonical equation for the free particle (3.34). As σ increases the Lyapunov

exponent tends to lose its original structure in a kind of smoothing process until it

becomes a monotonically decreasing function with the energy (figure 3.19). This

seems a general behaviour independently of the compositional parameters. Structural

disorder rearranges the states in such a way that the localization length decreases with

σ for some energies and increases for other energies in search of a balance. This effect

is also confirmed by the IPR as can be seen in figure 3.19. For σ = 1 the spacing

distribution is quite flat and keeping increasing its value does not mean an essential

change in the localization of the carriers. This can be observed comparing the IPR for

σ = 1 and σ = 10 in the examples given.
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To conclude let us say that the presence of structural disorder in the system could

be viewed somehow as a result of a finite non-zero temperature. Although tempera-

ture effects of course have to be taken into account in terms of electron-phonon inter-

actions and through the Fermi-Dirac distribution modifying the population of active

carriers, the thermal vibrations of the atoms are simply a series in time of structurally

disordered configurations. Therefore thinking naively one could understand the ef-

fects of structural disorder as the effects of temperature on the basic spectrum of the

system within the independent particle approximation.

3.6 Wires with correlated substitutional disorder

Once the properties of the completely random system have been analysed, let us con-

sider now the case in which the disorder in the system shows statistical correlations.

This means that the values of the parameters characterizing the atomic potentials are

not randomly assigned, but the type of potential appearing at a certain site can de-

pend on its neighbours. Correlations can be classified according to the range of this

dependence. One roughly speaks of short-range correlations when the length of the

system is much larger than the correlation length and long-range correlations when

both lengths are comparable. Of course these definitions make sense only for long

enough systems. The delta potential model has been treated in the literature with

both types of correlations. Short-range correlations in the case of the random-dimer

substitutional model [161, 64, 160], consisting in imposing for a binary chain that

at least one of the potentials appears always in pairs that are randomly placed. As

a result of this correlation new isolated extended states are included in the spectrum

together with a set of states close to the resonant one whose localization length is

larger than the system size, that participate actively in the transport processes as it

has been experimentally verified in semiconductor structures [18]. And long-range

correlations, in the approximation of weak disorder, with substitutional [112] and

structural disorder [113]. The effect of this type of correlations is the emergence of a

continuum set of extended states in the spectrum and mobility edges for the electrons.

These predictions have also been experimentally confirmed in microwave experiments

[124, 125].

We consider a very natural model of short-range correlations in which for fixed

concentrations of the atomic species one can choose the probability of appearance of

the different binary clusters composing the system. The system will be characterized

by the species concentrations {ci}i=1,...,m where m is the number of different species,

and by an additional set of probabilities {pij}i,j=1,...,m where pij means the probability
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for an i-atom to be followed or preceded2 by a j-atom. Thus the frequency of appear-

ance of binary atomic clusters can be altered by these quantities. The probability of

finding at any position the couple −ij−(−ji−) would be cipij or equivalently cjpji.

Then in the thermodynamic limit the physical properties of such a system will depend

upon the couplings of the species, the concentrations and the probabilities {pij}. This

correlated model naturally includes the situation when the disorder in the wire is com-

pletely random, that is just defined by the values pij = cj for all i, j. The correlations

introduced in this way must be the consequence of the existence of an atomic inter-

action (or the effect of some physical parameter such as the size of the atoms) which

might choose certain spatial sequences of the potentials modifying subtly the other-

wise chain’s purely random character. Thus this procedure seems a natural manner

to account for correlations which can be present in nature or even those that can be

produced inside a manufactured disordered quantum wire in a non-intentional way,

aside from the fact that of course one can always try to construct a wire exhibiting the

desired correlations to recover the theoretical results.

Once we have understood the meaning of the correlations, let us check the rela-

tions among them. The following equations must be satisfied:

cipij = cjpji, (3.53a)

m∑

j=1

pij = 1, (3.53b)

0 6 pij 6 1, i, j = 1, . . . ,m. (3.53c)

According to these expressions the correlation matrix P ≡ (pij) is completely known

from the m(m − 1)/2 above diagonal elements, where m is the number of different

species. However these elements are not completely independent due to (3.53c),

because when one of the correlations is chosen, the maximum allowed value for some

of the others is affected. This fact can be clearly seen in two simple examples:

2 species: the matrix is completely determined by p12,

p11 = 1 − p12, p21 =
c1
c2
p12, p22 = 1 − p21,

and it must be p21 6 1 ⇒ p12 6
c2
c1

. Therefore p12 6 min

{
1,
c2
c1

}
.

3 species: the matrix is determined by p12, p13, p23. And we choose their values in

this order. p12 6 min

{
1,
c2
c1

}
which implies p13 6 min

{
1 − p12,

c3
c1

}
. On the

2This requirement follows from a simple reflection symmetry argument although it is strictly true

only for an infinite system.
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other hand it must be

p23 6 1 − p21 ⇒ p23 6 1 − c1
c2
p12,

p32 6 1 − p31 ⇒ p23 6
c3
c2

(1 − p31) ⇒ p23 6
c3
c2

− c1
c2
p13,

therefore p23 6 min

{
1 − c1

c2
p12,

c3
c2

− c1
c2
p13

}
.

An expression for the general form of the upper bounds can be obtained for arbitrary

m. Fixing the above diagonal elements of the correlation matrix from left to right

following row order,

P =




p11 p12 −→ . . . −→ p1m

p21 p22 p23 −→ −→ p2m

...
...

. . .
. . .

...
...

...
. . .

. . .
...

p(m−1)1 p(m−1)2 . . . . . . . . . p(m−1)(m−1) p(m−1)m

pm1 pm2 . . . . . . . . . pm(m−1) pmm




, (3.54)

then

pij 6 min

{
1 − 1

ci

i−1∑

k=1

ckpki −
j−1∑

k=i+1

pik,
cj
ci

− 1

ci

i−1∑

k=1

ckpkj

}
, (3.55)

where the limits are written in terms of the already chosen correlations.

Once the concentrations and P are fixed, the characterization of the quantum wire

can be given in a compact form using the matrix

Q = (qij) ≡ (cipij), (3.56)

which is symmetric (Q = Qt) and it determines uniquely the wire and its correlations,

m∑

j=1

qij = ci,

m∑

i=1

qij = cj , pij =
qij
ci
. (3.57)

qij means the probability of finding the cluster −ij− (−ji−) at any position inside the

wire.

In the most general case a wire including m different species is determined by

(m−1) independent concentrations and m(m−1)/2 independent correlations, which

mean a configuration space of dimension (m+ 2)(m− 1)/2. The binary case m = 2 is

the only one for which the entire space can be represented and also the one for which

an easy systematic analysis exploring all possible configurations can be carried out.
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Figure 3.20. Correlation space for 2 species as a function of the concentration. (a)

p12 vs c1. (b) optimal representation: if c1 6 0.5 then p12 vs c1, if c1 > 0.5 then p21

vs c1. The dashed line corresponds to the completely random configurations.

One usually takes as configuration parameters {c1, p12}. The allowed configuration

space with these parameters is shown in figure 3.20(a). However one can optimize

the representation of this space by choosing the parameters {c1, p12} when c1 6 0.5

and {c1, p21} when c1 > 0.5, so that the allowed configuration space is expanded and

the spatial points can be better differentiated, as shown in figure 3.20(b). Therefore,

for a given concentration different values for p12(p21) can be chosen, and only one

of them corresponds to the completely random chain. When the configuration of the

binary chain lies on the dashed lines of figure 3.20 we have a completely random

chain, whereas if the configuration lies anywhere else we have a correlated chain.

Let us remark that the random dimer binary configuration is not included in this

model. Nevertheless, the random dimer model can be viewed as a random chain in

which the basic compositional units are couples of identical atoms. With a proper

renormalization of the canonical equation, the random dimer model can be solved in

the thermodynamic limit using the functional equation formalism.

3.6.1 Effects of the correlations on infinite chains

The effects of the correlations introduced in the wire upon the limiting distribution

of states and the localization properties in the thermodynamic limit are obtained by

making use of the functional equation formalism. In this case the functional equations

read

Wγ(θ) =
∑

β

pγβ

{
Wβ

(
T
−1(θ; aγ)

)
−Wβ

(π
2

)}
+ 1, (3.58a)

Wγ(θ + nπ) = Wγ(θ) + n, θ ∈ [0, π), n ∈ Z, (3.58b)

where γ and β run over the different species and the inverse transmission function for

the phase is defined in (3.27). The DOS per atom and the inverse localization length
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Figure 3.21. DOS for a binary disordered wire with parameters (a/a1) = −3,

(a/a2) = 4 and c1 = 0.4 for different values of the correlation p12.

can be numerically obtained respectively from

g(ε) =

∣∣∣∣∣
∑

γ

cγ
dWγ

(
π
2

)

dε

∣∣∣∣∣ , (3.59)

ξ(ε)−1 ≡ λ(ε) =
1

2

∑

γ,β

cγpγβ

∫ π

0
dWγ(θ) log F(θ; aβ), (3.60)

where the function F(θ; aβ) is defined in (3.28).

Once we have built the mathematical framework lying under the model, one can

try to answer the physical questions that obviously arise from this new configuration

of the disordered quantum wire: how strong is the effect of this short-range cor-

relations?, do they produce a measurable change in the density of states or in the

localization of the electrons? Let us analyse in first place the density of states. In

figure 3.21 the evolution of the DOS for a binary wire as a function of the correla-

tion p12 is shown for a certain value of the concentrations. This distribution of states

is drastically changed from the initial situation in which the probability to find the

cluster −12− is low, to the final stage when the atoms of species 1 appear always

isolated. Note however that the concentrations are the same in all cases. From these
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Figure 3.22. Lyapunov exponent (left) and IPR (right) for a binary wire with pa-

rameters (a/a1) = −2, (a/a2) = 5 and c1 = 0.5 for different values of the corre-

lations. The IPR in each case is obtained after averaging over 100 realizations of a

1000-atom chain.

graphics we conclude that the correlations can unbalance the spectra of the disorder

system quite far from the completely random configuration. In fact the correlation

can be tuned to open or close energy gaps, thus modifying the number of available

states in a certain energy interval without changing the concentrations of the atomic

components. The variation of the DOS with the correlations is of course a function

of the concentrations, being the chain with homogenized participation the one whose

distribution has the strongest dependence on P. Let us also remark that the fractal

behaviour of the density of states in certain energy ranges, still manifests itself for

the different correlation regimes. Let us have a look at the localization of the elec-

tronic states. In figure 3.22 the evolution of the Lyapunov exponent as a function of

the correlations is shown for a binary chain with fixed concentrations. The change of

the Lyapunov exponent is also faithfully reproduced by the inverse participation ratio.

The effective influence of the correlations on the localization of the electrons inside

the quantum wires is established. As can be seen, the model of correlations proposed

is not able to include in the spectrum new truly extended states in the thermodynamic

limit. However an important effect on the localization of the states is shown that

seems to act globally in the whole energy range, in contrast to the more restricted ef-

fect of others short-range correlated disorder models. In fact for certain energies the

Lyapunov exponent can be decreased an 80-90% of its maximum value changing the

correlations, at the expense of an increasing behaviour for other energies. The corre-

lations clearly change the distribution of states on both sides of the π-resonances and

this causes the behaviour of the localization length close to these energies to change

also, as can be seen in figure 3.22. The range of validity of expressions (3.38) or

probably the value of the critical exponent itself depends on the correlations.
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Figure 3.23. DOS (black) and Lyapunov exponent (orange) for a 4-species wire

with couplings (a/aγ) = 1,−1, 3,−5. The configuration is contained in the charac-

teristic matrix Q. Notice that the concentrations are the same in both plots.

As the number of species m increases, similar effects are observed as shown in

figure 3.23 for a 4-species wire. The dimension of the configurational space grows as

(m + 2)(m − 1)/2 ant that makes it more complex to perform a complete analysis in

terms of all the independent parameters.

3.6.2 Effects of the correlations on finite wires

Although our model of correlations is not able to include new extended states in

the spectrum of the system, this does not mean that the effects upon the transport

properties of a real finite wire can be ignored. The electronic localization is altered

and it may translate into a measurable change of the macroscopic conductance of

these correlated disordered structures. To analyse the effect of the correlations on

finite arrays, the transfer matrix formalism described in the previous chapter is used

to evaluate the transmission of different samples.

Let us have a look at the transmission patterns of finite binary chains for different

configurations of concentrations and correlations. In figure 3.24 the transmission is

shown for several chains composed of 1000 atoms, for different values of the cou-

plings and concentrations. In these cases the worst performance corresponds to the

completely random configurations, for which the transmission probability only raises

near the multiples of π due to the well-known resonances of the model at these en-

ergies. However as we move away from the completely random configuration (above

or below the dashed line) the transmission is noticeably improved. Notice that this

improvement is not necessarily localized around the multiples of π. Although quan-

titatively this enhancement depends on the values of the couplings, qualitatively it

seems a generic behaviour. In order to check whether this effect can be extended

over the whole correlation space, we characterize each of its points by an efficiency of
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Figure 3.24. Transmission probability vs energy for 1000-atom binary disordered

chains in different correlation regimes. The circular point inside the insets marks

the configuration on the configurational space. Only one realization of the disorder

has been considered for each case. (Left column) couplings (a/a1) = 1, (a/a2) =

−1, concentrations c1 = 0.4, c2 = 0.6 and correlation from top to bottom p12 =

0.6, 0.1, 1.0. (Right column) couplings (a/a1) = 2, (a/a2) = 4, concentrations c1 =

c2 = 0.5 and correlation from top to bottom p12 = 0.5, 0.1, 0.85.

transmission defined as

Teff =
1

k2 − k1

∫ k2

k1

T (k)dk, (3.61)

which is the area enclosed by the transmission coefficient per energy unit. This def-

inition depends on the integration interval, but qualitatively the results will not be

affected as long as a reasonable interval is chosen, generally one of the form [0, k2].

Notice that for very high energies the transmission will saturate for all configurations,

thus the contribution to the integral in (3.61) will be the same independently of the

{c1, p12} values. We are interested in establishing a qualitative comparison of these

efficiencies for different correlations.

For certain values of the couplings and a length of 1000 atoms the evolution of

the transmission efficiency over the configuration space is shown in figure 3.25. It

is clearly shown that the lowest values for the transmission efficiency are distributed

around the completely random configurations, specially when the participation of the
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Figure 3.25. Transmission efficiency for different configurations of a binary chain

with 1000 atoms and couplings (a/a1) = 1, (a/a2) = −1. For each configuration only

one realization of the disorder has been considered. The integration interval for Teff

was [0, 15].

species is homogenized (c1 ∼ 0.5). High efficiencies can be observed for low and

high concentrations of one of the species (and therefore approaching a pure chain)

and around the point {c1 = 0.5, p12 = 1.0} which corresponds to the periodic bi-

nary chain. Nevertheless by looking at the evolution of Teff as a function of p12 for a

fixed concentration (figure 3.26 on the facing page), we conclude that the minimum

efficiency is reached near the completely random configuration and the correlated sit-

uations show noticeably higher values. Therefore the electronic transmission through

a finite wire is improved by this type of correlations although truly extended states do

not appear in the system. The reason for the improvement then must be the existence

of states behaving as extended states, that is their localization length being larger

than the system size. Let us analyse the behaviour of the Lyapunov exponent. In

figure 3.27 the Lyapunov exponent as a function of the energy is shown for a ran-

dom chain. We can see a very good agreement between the thermodynamic limit

distribution and λ for the finite realization of the disorder, that shows a characteristic

fluctuating behaviour around the values of the former one. These fluctuations are

responsible for the enhancement of transmission. A fine observation of the Lyapunov

exponent, in figure 3.28 on the next page, reveals that for a chain with fixed con-

centrations the number of states whose localization length exceeds the sample length

increases dramatically in a correlated configuration with respect to the completely

random situation. The correlations induce a decrease of the limiting distribution of

the Lyapunov exponent in certain energy ranges, so that for a finite system the fluc-
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Figure 3.27. Lyapunov exponent vs en-

ergy for a binary chain with parameters

(a/a1) = 1, (a/a2) = −1, c1 = 0.4,

p12 = 0.6. The blue line corresponds to

a 1000-atom realization and the red line

to the infinite chain.

2 4 6 8 10
ka

0

0.001

0.002

λ(ka) (a)

2 4 6 8 10
ka

0

0.001

0.002

λ(ka)
(b)

Figure 3.28. Lyapunov exponent vs energy for a 1000-atom binary chain with cou-

plings (a/a1) = 1, (a/a2) = −1 and concentration c1 = 0.4 for (a) completely ran-

dom configuration p12 = 0.6 and (b) correlated configuration p12 = 0.1. The dashed

line marks the inverse of the length of the sample. The red line shows the Lyapunov

exponent for the infinite chain.

tuations of this quantity around its mean value make the appearance of such states

possible. Let us notice that the decreasing of the limiting value of the Lyapunov expo-

nent does occur in different energy ranges depending on the parameters of the chain,

so that the improvement of the transmission can take place in different energy inter-

vals, and hence the appearance of states whose localization length (ξ) is larger that

the length of the system (L) is not restricted to the vicinity of the resonances located

at the multiples of π. This is in sharp contrast to other short-range correlated models

such as the random dimer, which is able to improve the transport in finite systems

in a similar manner but the states with ξ > L always appear around a resonant ex-

tended state (ξ = ∞) [161]. Let us remark that although the fluctuating pattern of

the Lyapunov exponent is a fingerprint of the particular realization of the disorder,

the amplitude of these oscillations does only depend upon the length of the system.
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Figure 3.29. Evolution of the fluctuations of the Lyapunov exponent versus the

length of the system for a binary chain with parameters (a/a1) = 1, (a/a2) = −1

and concentration c1 = 0.4. The variance times the length of the system divided by

the value of the Lyapunov exponent in the thermodynamic limit (λ∞) is plotted for

different energies and correlations. For each length the variance is obtained after

averaging over 5 · 104 realizations of the disorder.

Therefore the results are not due to particular unusual realizations of the disorder for

a given length. The behaviour described can be clearly observed in all realizations of

a certain configuration. The fluctuations of the Lyapunov exponent for finite chains

are quantified through the variance var(λ) that according to the central limit theo-

rem must decrease asymptotically with the length of the system as L−1 [165]. This

asymptotic behaviour of the Lyapunov exponent can be checked in figure 3.29 where

the evolution of the variance with the length of the system is analysed for different

localization lengths corresponding to different configurations. For a certain value of

the energy and the correlations the localization length is obtained from the Lyapunov

exponent in the thermodynamic limit λ∞. Then, different realizations of the disor-

der for different lengths are considered for calculating the variance of the Lyapunov,

var(λ) = 〈λ2〉−λ2
∞, where the average is taken over 5 · 104 sequences for each length.

The plot var(λ)L/λ∞ versus L/ξ ≡ Lλ∞ clearly shows a saturation when L� ξ in all

the cases considered. The asymptotic value reached in the strong localization regime

(Lλ∞ � 1) depends of course on λ∞ and the distribution of these asymptotic values

for different λ∞ might correspond to single parameter scaling (SPS) [1, 11]. As we

know, SPS implies that the variance of the Lyapunov exponent (LE) scales with the

length of the system according to the limiting value of the LE itself, so that the rela-

tion τ ≡ var(λ)L/λ∞ = 1 is satisfied. However the regime in which single parameter

scaling works is still controversial and new expressions for τ and new requirements

for the validity of SPS have recently appeared [59, 57, 58, 72]. Also the exact expres-

sion of τ seems to depend on the model and the type of distributions considered. It
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Figure 3.30. Transmission efficiency over configuration space for a binary chain

with couplings (a/a1) = 1, (a/a2) = −1 for different lengths: L = 500 (left) and

L = 2000 (right).

would be very interesting to check the applicability of SPS for this correlated model.

However this task deserves a thorough and deep analysis.

It must then be clear that taking averages of the Lyapunov exponent over several

realizations kills its fluctuating behaviour since that procedure is intended to approach

the thermodynamic limit. And on the other hand averaging the values of the efficiency

of transmission over several realizations for a given length will not have any effect on

the results presented, according to the above discussion.

As expected for a model of short-range correlations, all the effects disappear un-

avoidably in the thermodynamic limit. Thus as the length of the chain grows the

fluctuations of the Lyapunov exponent decrease and the localized character of the

electronic states naturally manifests itself for all energies. The lost of the enhance-

ment of transmission can be shown as a function of the evolution of Teff over the

configuration space for different lengths. The higher the number of atoms the more

the black zones spread from the completely random lines as can be seen in figure

3.30. However the decay of the transmission efficiency with the length of the system

depends upon the correlations. In figure 3.31 on the following page it can be seen how

the fastest decreasing corresponds to the completely random situation, whereas the

correlated chains show always higher efficiencies for all lengths. Plotting for different

configurations ∆Teff = Teff − Teff(R) as a function of the length, where (R) means the

completely random situation, we see how the effect of the correlations reaches a max-

imum which is roughly contained in the region L ∼ 200−500, apparently independent

of the values of the species couplings.

Let us finally remark that although the model of correlations considered is not able

to include any new truly extended state in the spectrum, its effects upon the trans-

port of real finite samples are absolutely non-negligible. We believe that the effects

described are essentially independent of the potential model so that they may be sig-



72 Quantum wire with delta chains

0 1000 2000 3000 4000
L

0

0.1

0.2

0.3

0.4

0.5

Teff

p12 = 0.1  
p12 = 0.6 (R)
p12 = 1.0

0 1000 2000
L

0

0.1

0.2
∆Teff

(a)

0 1000 2000 3000 4000
L

0

0.1

0.2

0.3

0.4

0.5

Teff

p12 = 0.1  
p12 = 0.5 (R)
p12 = 0.9

0 1000 2000
L

0

0.1

0.2
∆Teff

(b)

Figure 3.31. Transmission efficiency vs length for different configurations of a

1000-atom binary chain with parameters (a) (a/a1) = 1, (a/a2) = −1, c1 = 0.4 and

(b) (a/a1) = 2, (a/a2) = 4, c1 = 0.5. (R) marks the completely random situation.

The inset shows the relative differences ∆Teff = Teff − Teff(R).

nificant in certain experimental devices such as for example superlattices, which have

already been used to observe the effect of other models of short-range correlations

[18].

3.7 Concluding Remarks

In this chapter we have thoroughly analysed the delta model for a one-dimensional

quantum wire. More explicitly:

• Analytical expressions have been built for the band structure of an arbitrary

periodic array and for the condition of eigenstates in the case of an aperiodic

sequence with hard-wall boundary conditions. The scattering amplitudes for a

finite chain with open boundaries have also been described analytically.

• Different disordered configurations have been treated for which the distribution

of states and the localization properties in the thermodynamic limit have been

numerically obtained by means of the functional equation formalism.

• In the case of substitutional disorder several interesting features of the DOS have

been found such as its fractal behaviour in certain energy ranges that has been

rigorously demonstrated and interpreted. The existence of extended states at

ε = nπ and the functional dependence of the localization length and the DOS

around these energies have been described. The role that the π-resonances play

in the spectrum of finite arrays and the importance of the boundary conditions

for determining the appearance of transmission resonances have been exam-

ined. Within the energy regions of weak localization, the IPR has revealed itself
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as a quantity that contains the information of the system in the thermodynamic

limit and this makes it useless for certain purposes like identifying correctly the

exact energies of transmission resonances in finite chains but very valuable for

identifying states with a divergent localization length by studying finite realiza-

tions of the system.

• Structural disorder has been included in the system together with the composi-

tional one. The effect of this combination has manifested itself in a smoothing

process of the DOS and the complete lost of its fractal character even for very

low degrees of structural disorder. The removal of the π-resonances and the

global modification of the localization length have been shown. These features

might be understood as part of the effects of a non-zero temperature.

• Finally a natural model of short-range correlations have been proposed for sub-

stitutional disorder, modifying essentially the distribution of states and the lo-

calization properties of the system. Although additional extended states have

not been found an important enhancement of the transport properties of finite

samples have been observed.
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C H A P T E R 4

Quantum wire with Pöschl-Teller

potentials

So far, in the literature mainly two kind of potentials have been used to build one-

dimensional disordered wires, namely the Dirac delta potential and the square well,

due to their well-known and easy to manipulate transmission matrices. In this chapter

we show how to model a one-dimensional wire using a different potential profile.

4.1 The potential

Let us consider the general Pöschl-Teller potential given by

V (x) =
}2α2

2m

V

cosh2(αx)
, (4.1)

that is shown in figure 4.1. It resembles the form of an atomic well or barrier depend-

ing on the sign of V, a dimensionless parameter that together with α determines the

height or depth of the potential. The parameter α, with units of inverse of length, con-

trols the half-width of the potential which reads d1/2 = 2α−1arccosh
√

2. The larger α

is the narrower and higher(deeper) the potential becomes. The Schrödinger equation

for the Pöschl-Teller potential is analytically solvable and its solutions are well known

[84, 118, 40]. The general state for positive energies can be written in terms of Hy-

pergeometric functions. The asymptotic transmission matrix is obtained following the

procedure described in appendix A, from the asymptotic forms of the solutions which

are collected in appendix E. After some algebra one finds the asymptotic transfer
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Figure 4.1. Pöschl-Teller poten-

tial defined in (4.1).

matrix for positive energies:

M =

(
eiϕ

√
1 + w2 −iw

iw e−iϕ
√

1 +w2

)
, (4.2)

where

w =
sin(πb)

sinh(πk/α)
, (4.3)

ϕ =
π

2
+ 2 arg Γ

(
i
k

α

)
− arg

{
Γ

(
b+ i

k

α

)
Γ

(
1 − b+ i

k

α

)}
, (4.4)

b =
1

2
+

√
1

4
− V, (4.5)

and Γ(z) is the complex Euler gamma function. The matrix has the symmetries cor-

responding to a real and parity invariant potential. w is always a real quantity as can

be seen in its alternative definition w = cosh(π
√

V − 1/4)/ sinh(kπ/α). The dimen-

sionless amplitude in terms of b reads V = −b(b − 1) which is the usual form found

in the literature. Let us remark that the above expressions are only valid for positive

energies since several simplifications have been carried out with the assumption of

k ∈ R. From (4.2) the asymptotic probability of transmission is T = (1 + w2)−1. One

characteristic feature of this potential is that T = 1 for all energies whenever b is a

real integer. Hence an absolute resonant transmission occurs for potential holes with

V = −2,−6,−12,−20, . . . independently of the value of α.

In the case of atomic wells (V < 0) several bound states exist, that can be calcu-

lated from the poles of the transmission amplitude by making a proper extension into

the complex plane via k → iη, where η can be considered to be positive without loss

of generality. The correct form of the transmission matrix for negative energies reads

M =

(
f(−η) −q
q f(η)

)
, (4.6)
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Figure 4.2. Bound states for the Pöschl-Teller hole. The solid curves mark the po-

sition of the eigenstates given by equation (4.9). The dashed line mark the position

of the bottom of the well (−
√
|V|). The blue dotted grid highlights the integer states

and the red dotted grid the half-integers.

where

q =
sin(πb)

sin(πη/α)
, (4.7)

f(η) =
η/αΓ2(η/α)

Γ (1 − b+ η/α) Γ (b+ η/α)
. (4.8)

The condition for bound states is then f(η) = 0. Since for potential wells b is real

and greater than 1 the eigenstate equation reduces to Γ−1(1 − b + η/α) = 0, which

is satisfied whenever the argument of the gamma function equals a negative integer.

Finally, the energies of the bound states are

η

α
= b−m, m = 1, 2, 3, . . . , [b], (4.9)

where [b] reads the integer part of b. Therefore the Pöschl-Teller hole host [b] bound

states equally spaced in the variable η =
√

2m|E|/} (figure 4.2). A couple of peculiar

cases deserves a comment:

1.- If b is an integer then the energies of the bound states are also integers. η/α = m,

m = 1, 2, . . . , b − 1. This is also the case for which the potential hole behaves

as an absolute transparent potential for all energies (resonant well). Example

values for the dimensionless amplitude: V = −2,−6,−12,−20,−30, . . .

2.- If b is a half-integer then the energies of the bound states are also half-integers.

η/α = m + 1/2, m = 0, 1, . . . , b − 3/2. In this case the transmission takes the

form T = tanh2(πk/α) independently of b. Some values of the dimensionless

amplitude for this situation are V = −0.75,−3.75,−8.75,−15.75,−24.75, . . .
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We shall see how due to the characteristic features exhibited by the Pöschl-Teller po-

tential some exciting effects arise when several potential units are connected.

4.2 Building linear chains

To build a chain with the potentials described, one must do the approximation of con-

sidering that each potential unit has a finite range. Hence a cut-off must be included

in the Pöschl-Teller potential. Using this approximation one obtains matrices suitable

to be composed in linear chains, applying the composition technique through equa-

tions (2.9). The goodness of this procedure depends on the decay of the potential. Let

us suppose that the potential (4.1) is appreciable only inside the interval [−dL, dR],

where the superindices L, R, stand for the left and right lengths of the interval from

the centre of the potential. Outside this interval the wave function is assumed to be

a superposition of the free particle solutions. Then, according to chapter 2 and ap-

pendix A and from (4.2) and (2.10) the transmission matrix for the cut-off potential

reads

Mcut =

(
ei[ϕ+k(dR+dL)]√1 + w2 −iweik(dR−dL)

iwe−ik(dR−dL) e−i[ϕ+k(dR+dL)]√1 + w2

)
. (4.10)

The cut-off matrix is the same as the asymptotic one plus an extra phase term in

the diagonal elements that accounts for the total distance (dR + dL) during which

the particle feels the effect of the potential, and also an extra phase term in the off-

diagonal elements measuring the asymmetry of the cut-off (dR − dL). These phases

are the key quantities since they will be responsible of the interference processes that

produce the transmission patterns. In our case due to the rapid decay of the Pöschl-

Teller potential the cut-off distance admits very reasonable values. In fact we have

seen that for a sensible wide range of the parameters α and V, one can take as a

minimum value for the cut-off distance d0 = 2d1/2 ' 3.5/α where d1/2 is the half-

width. Taking dL,R > d0 the connection procedure works really well, as we have

checked in all cases considered by comparing the analytical composition technique

versus a numerical integration of the Schrödinger equation for the global potential.

In the case of a symmetric cut-off dL = dR = d, composing two potentials char-

acterized by the parameters α1, b1, d1, and α2, b2, d2, one finds for the transmission

probability, using the previously defined quantities w and ϕ,

T =
1

w2
1w

2
2 + (1 + w2

1)(1 + w2
2) + 2w1w2

√
1 + w2

1

√
1 + w2

2 cos [ϕ1 + ϕ2 + 2k(d1 + d2)]
.

(4.11)
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Figure 4.3. Transmission probability for different compositions of Pöschl-Teller

holes. (a) double well with parameters: α1 = α2 = 2(x−1 units), b1 = b2 = 2.4,

d1 = d2 = 5(x units). (b) two symmetric compositions with the following parame-

ters for the first five potentials of the sequences: (solid line) α = 1, 1, 0.5, 1, 1(x−1

units), b = 1.66, 2.19, 5.01, 2.3, 2.16, d = 4, 4, 7, 4, 4(x units) and (dashed line)

α = 2, 2, 1, 1, 1(x−1 units) b = 1.66, 1.66, 2.03, 2.03, 2.03, d = 2, 2, 4, 4, 4(x units).

The insets show the potential profiles.

The latter expression clearly shows the interference effect depending on the distance

(d1 + d2) between the centres of the potentials. An example of transmission is shown

in figure 4.3(a).

One important feature of the formulae for the composite scattering probabilities is

the fact that they analytically account for the fully transparent behaviour of the whole

structure as long as there is resonant forward scattering of the individual potential

units, as can be easily checked in equation (4.11). The composition procedure can be

applied with a small number of atoms to study the transmittivity of different poten-

tial profiles resembling molecular structures, such as those in figure 4.3(b), although

our main interest is to consider the transmission matrix (4.10) to make a continu-

ous disordered model in the form of a large chain of these potentials with random

parameters.

As it has been shown, using reasonable approximations handy transmission matri-

ces can be obtained for other potentials aside from the delta and the square well.

4.3 Wires with uncorrelated disorder

Once the properties of the potential have been studied and the procedure for con-

structing linear arrays has been described, let us consider now the effects of uncor-

related disorder upon this particular model. First is obtaining the canonical equation

applying to the electronic states inside the system. From the transmission matrix
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Figure 4.4. Potential of a disordered Pöschl-Teller wire

(4.10) one is led to the following relation

Ψj+1 =

(
Sj + Sj−1

Kj

Kj−1

)
Ψj −

Kj

Kj−1
Ψj−1, (4.12)

where

Sj ≡ S(αj ,Vj , d
L
j , d

R
j ) = −wj sin

[
k(dL

j − dR
j )
]
+
√

1 + w2
j cos

[
k(dL

j + dR
j ) + ϕj

]
,

(4.13)

Sj ≡ S(αj ,Vj , d
L
j , d

R
j ) = wj sin

[
k(dL

j − dR
j )
]
+
√

1 + w2
j cos

[
k(dL

j + dR
j ) + ϕj

]
,

(4.14)

Kj ≡ K(αj,Vj, d
L
j , d

R
j ) = wj cos

[
k(dL

j − dR
j )
]
+
√

1 + w2
j sin

[
k(dL

j + dR
j ) + ϕj

]
,

(4.15)

in terms of w and ϕ defined in (4.3) and (4.4). The amplitudes Ψj correspond to the

value of the state at the junction points of the potentials as shown in figure 4.4, and in

this case each potential is determined by four parameters: dL
j , d

R
j , αj ,Vj . For negative

energies the canonical equation reads the same but the functions must be defined as

Sj = −qj sinh
[
η(dL

j − dR
j )
]
+

1

2

[
eη(dL

j +dR
j )fj(η) + e−η(dL

j +dR
j )fj(−η)

]
, (4.16)

Sj = qj sinh
[
η(dL

j − dR
j )
]
+

1

2

[
eη(dL

j +dR
j )fj(η) + e−η(dL

j +dR
j )fj(−η)

]
, (4.17)

Kj = qj cosh
[
η(dL

j − dR
j )
]
+

1

2

[
e−η(dL

j +dR
j )fj(−η) − eη(dL

j +dR
j )fj(η)

]
, (4.18)

in terms of q and f(η) defined in (4.7) and (4.8). In the case of symmetric cut-off the

functions adopt a simpler form and Sj = Sj .

The properties of the uncorrelated disordered chain in the thermodynamic limit,

composed by different species with parameters {~pγ = (dL
γ , d

R
γ , αγ ,Vγ)} and concen-
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trations {cγ} are obtained from the functional equation formalism:

Wγ(θ) =
∑

β

cβ

∣∣∣Wβ

(
T
−1(θ; ~pβ, ~pγ)

)
−Wβ

(π
2

)
+ δ(~pβ , ~pγ)

∣∣∣ , (4.19a)

Wγ(θ + nπ) = Wγ(θ) + n, θ ∈ [0, π), n ∈ Z, (4.19b)

where δ(~pβ , ~pγ) = 1 if [K(~pβ)/K(~pγ)] > 0 and δ(~pβ , ~pγ) = 0 otherwise. The inverse

transmission function T
−1(θ; ~pβ, ~pγ) is constructed from the functions of the canon-

ical equation using definition (2.37). The Lyapunov exponent and the DOS in the

thermodynamic limit come from

λ(ε) =
1

2

∑

γ,β

cγcβ

∫ π

0
dWγ(θ) log F(θ; ~pγ , ~pβ), (4.20)

g(ε) =

∣∣∣∣∣
∑

γ

(αγ/α)

αγ(dL
γ + dR

γ )
sgn[K(~pγ)]cγ

dWγ

(
π
2

)

dε

∣∣∣∣∣ , (4.21)

where the function F(θ; ~pγ , ~pβ) is defined in (2.40). In this case g(ε) corresponds to

the density of states per piece of length α−1, where α is a value of reference for the

parameters {αγ} of the different species. The dimensionless representation of the

energy reads ε ≡ k/α. These choices are made to get optimal representations of the

DOS and also to maintain the value of the density of states for the free particle the

same as for the previous models, gfree(ε) = π−1.

On the one hand the fact that the potentials are determined by four independent

parameters gives a high degree of versatility to the model, but on the other hand spec-

ifying the configuration of the disordered wire including several species can be really

a tedious and repetitive task since one needs to list a large amount of parameters.

Therefore, from now on whenever the only configurational parameters of a chain are

the dimensionless amplitudes {Vγ}, it is implied that α is equal for all species included

in the array and also that the cut-off is symmetric and its distance is set to d = 4/α,

so that the total length of every potential is 2d = 8/α.

Several examples of distributions of states and Lyapunov exponents in the ther-

modynamic limit for different Pöschl-Teller disordered wires can be seen in figure 4.5

on the next page.

4.3.1 General features of the DOS

In the examples given in figure 4.5 the salient features of the distribution of states

for this model can be observed. As must be expected, whenever potential wells are

included in the disordered chain a group of permitted levels appears for negative ener-

gies, which correspond to bound states of the global composite potential. For positive
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Figure 4.5. DOS (black) and Lyapunov exponent (orange) for several disordered

Pöschl-Teller wires with parameters (a) Vγ [cγ ] : −4[0.5], 3[0.5], (b) Vγ [cγ ] : 5[0.5],

7[0.5], (c) Vγ [cγ ] : −1[0.5], −3[0.5] and (d) Vγ [cγ ] : 1[0.2], 6[0.2], −5[0.2], −1[0.2],

9[0.2]. Notice the different vertical scales for DOS (left) and λ (right). The negative

part of the abscissa axis represents negative energies (-η/α).
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Figure 4.6. Semivariance analysis: log
(√

∆s

)
vs log(s) for a binary disordered

Pöschl-Teller wire with parameters V1 = 1 and V2 = −1 and equal concentrations.

The legend shows the intervals considered to calculate the semivariance. α and

log(κ) mean respectively the slope and the ordinate at the origin of the linear fits.

The graphic on the right shows DOS and λ for the system.

high energies the correct asymptotic value of the free particle distribution is reached in

all cases. As for the delta model discussed in the previous chapter, for the Pöschl-Teller

disordered wires the density of states also shows an irregular fluctuating behaviour in

certain energy ranges. And for this model the location of these energy zones is more

predictable than for the delta potentials. The peaky structure lies almost entirely in

the energy range below the maximum height of the potential barriers constituting the

array. When the energy goes over the top of the potential barriers (ε > (αγ/α)
√

Vγ),

the carriers found a regular distribution of states that evolves smoothly towards the

value π−1 as the energy grows. This description agrees with the intuitive reasoning

that for energies exceeding the barriers the effects of the potential and hence of the

disorder must drastically decrease. In the cases when the system contains only poten-

tial wells, the DOS is regular for almost all the positive spectrum (figure 4.5(c)) and

the asymptotic value gfree(ε) is reached for very low energies. The structure of the

positive spectrum is naturally much more complex when the chain includes potential

barriers.

Regarding the sharp-pointed structure of the DOS, it can be asserted that the dis-

tributions for the Pöschl-Teller chains are fractal in certain energy intervals. The semi-

variance analysis described in chapter 3 clearly reveals the fractal nature of the dis-

tributions. In figure 4.6 the linear fit of the log-log plot for pairs of values (
√

∆s, s)

for a binary disordered chain can be seen. For the binary chain considered the anal-
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ysis yields a fractal dimension df = 1.5526 for the irregular interval ε ∈ [0.88, 1] and

df = 1.0038 for the smooth interval ε ∈ [1.72, 1.85]. This result can be extended to

ternary and higher wires for which the fractal behaviour of the distribution of states

is noticeable (figure 4.5(d)).

Extensive analysis similar to those performed for the delta potential model, con-

cerning the distribution of spacings of adjacent permitted levels and the description

of prominent peaks of the DOS in terms of eigenstates related to the appearance of

certain atomic clusters, can also be carried out for the Pöschl-Teller model leading to

similar results as those contained in chapter 3.

We conclude that for our one-dimensional wire composed of non-punctual and

continuous potentials the DOS exhibits a fractal behaviour as a consequence of the

presence of disorder in the system. This result gives strong support to the conjecture

made in the previous chapter, that fractality of the distribution of states may be a

universal effect independently of the potential model. From the results described

in the present chapter and in the previous one, we conclude that fractality seems

to be a consequence not of the type of disorder (structural or compositional), but

of the nature of the distribution of the parameters in the disordered system. If the

distributions of all parameters are discrete, for example the species composing the

system are a discrete set, then fractality emerges for the disordered system in the

thermodynamic limit. On the other hand if any of the distribution is continuous, for

example the one given in section 3.5 to introduce structural disorder or a continuous

distribution of compositional species, then fractality must not be generally expected

in the thermodynamic limit. Then, this behaviour seems a universal feature of the

distribution of states, although probably several matters need to be specified, like for

example whether or not there exists a critical width of a continuous distribution of

parameters playing a significant role in the appearance of a fractal DOS.

4.3.2 Electronic localization

Let us have a look at the electronic localization for this disordered model. From

what can be seen in figures 4.5 and 4.6 the Lyapunov exponent registers globally the

localization of the electronic states. As expected, the localization length increases

with the energy. When potential barriers are included in the chain, it can be noticed

how for energies above the maximum barrier height the electrons become strongly

delocalized. If the wire is composed only of potential wells, the Lyapunov exponent

takes very low values for almost all the permitted positive spectrum. As discussed for

the delta model, the tendency of the Lyapunov exponent to decrease at the energies

for which the DOS shows a peak can also be seen. Let us remark that localization
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Figure 4.7. Comparison of the Lyapunov exponent and the inverse participation

ratio as functions of the energy, for different binary disordered chains. The parame-

ters for the different chains are Vγ [cγ ]: −1.5[0.5],−4[0.5] (black), 1[0.5], 3[0.5] (blue),

5[0.5], 7[0.5] (red). The IPR is obtained averaging over 100 realizations of a 1000-atom

array.

is always weaker inside the non-fractal regions of the spectrum, whereas fractality of

the distribution of states seems to be linked to a strong localization.

The most important feature concerning the electronic localization is the presence

of isolated energies for which the Lyapunov exponent vanishes (figure 4.5). These

critical energies are always located inside non-fractal regions of the spectrum, they

appear apparently only for binary chains and their values depend on the compositional

species. Before going into a detailed analysis, let us remark that the localization

properties deduced from the behaviour of the Lyapunov exponent are also faithfully

confirmed by the inverse participation ratio calculated for finite chains after averaging

over several realizations of the disordered sequences (figure 4.7).

The isolated resonances of the spectrum seem to be independent of the concentra-

tions of the binary chains, as can be seen in figure 4.8 on the following page, where

the evolution of the Lyapunov exponent with the concentration of the disordered wire

is shown. Let us notice that when the chain is partially or totally composed of po-

tential barriers the resonances can occur for energies below or above the maximum

barrier height as can be checked in the different examples given. Around every res-

onance there exists a range of energies in which the Lyapunov exponent takes very

low values and the higher the energy of the resonance the wider this interval is. In

fact, the number of resonances may be infinite but above a certain energy they are

indistinguishable since the Lyapunov exponent is almost zero anyway.

The appearance of the extended states shown in the examples given can be ex-

plained by the arguments given by Gómez and co-workers for a square barrier model[88],

based on the commutativity of the product of the individual transmission matrices of
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Figure 4.8. Evolution of the Lyapunov exponent vs energy and concentration for

disordered binary wires with parameters (a) V1 = −2.5, V2 = 5 with resonances

at εc = 1.809, εc = 2.226 and (b) V1 = 5, V2 = 7 with resonances at εc = 2.601,

εc = 2.954. The top mapping shows the Lyapunov exponent in a colour scale. Notice

how the resonances are present for all concentrations.

the system, that we shall review here. In the case of a binary chain composed of matri-

ces M1, M2, critical energies εc can be found among those that satisfy [M1,M2] = 0.

This is a necessary condition but not a sufficient one. Now since for these energy

values the matrices of the two species commute, the disordered sequence can be

changed at will and therefore the effects of the disorder disappear. Let us imagine

that the atoms are rearranged so that the sequence becomes a juxtaposition of two

semi-infinite pure chains. It is clear that the transparency intervals common to both

pure chains are also transparent. Therefore if εc lies on the permitted bands of both

species pure chains it will be a resonance of transmission and an extended state in

the thermodynamic limit. Let us remark that this reasoning holds for all values of

the concentrations in the binary array. To summarize, in a binary disordered system

extended states exist at energies εc fulfilling the following requirements: commutative

matrix product ([M1,M2] = 0), and they belong to the permitted spectrum of both

species.

Let us analyse these conditions in our particular model. The commutator of the

Pöschl-Teller transmission matrix becomes in the more general case

[M1,M2] =

(
y z

z∗ y∗

)
, (4.22)
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where

y = − 2 iw1w2 sin
[
k(dL

1 − dR
1 − dL

2 + dR
2 )
]
, (4.23)

z =2 eik(dR
2 −dL

2 )w2

√
1 + w2

1 sin
[
k(dL

1 + dR
1 ) + ϕ1

]

− 2 eik(dR
1 −dL

1 )w1

√
1 + w2

2 sin
[
k(dL

2 + dR
2 ) + ϕ2

]
, (4.24)

that for the critical energies must be zero. And the condition of belonging to the

permitted spectrum of the pure chains can straightforwardly be written from the trace

of the transmission matrix,

∣∣∣
√

1 + w2
j cos

[
k(dL

j + dR
j ) + ϕj

]∣∣∣ 6 1, j = 1, 2. (4.25)

We shall assume that none of the species is a resonant well, hence w1 6= 0 and

w2 6= 0 in general. Let us begin considering the simplest case, taking the parameter α

the same for both species and a symmetric cut-off equal for all potentials to d = 4/α.

In this case, since y is identically zero the commutative condition reduces to

w2

√
1 + w2

1 sin(8ε+ ϕ1) = w1

√
1 + w2

2 sin(8ε+ ϕ2). (4.26)

There exist two free parameters corresponding to the dimensionless amplitudes V1,

V2, and although the above equation cannot be solved analytically, we have found

that seemingly for all values of the amplitudes there exist solutions of this equation

that also satisfy the requirement (4.25). It can be checked that the extended states

observed in figures 4.5, 4.7 and 4.8 correspond to energies meeting these conditions.

Going one step further, one can consider that both species have different αj , with

symmetric cut-off but with different lengths depending on the species, dR
1 = dL

1 = d1

and dR
2 = dL

2 = d2. In this situation y is again identically zero and the commutative

constraint is simply

w2

√
1 + w2

1 sin(2kd1 + ϕ1) = w1

√
1 + w2

2 sin(2kd2 + ϕ2). (4.27)

And each potential is specified by three parameters αj, Vj, dj for j = 1, 2. Due to the

oscillatory nature of the members of the above equation, there exist many energies

satisfying the commutative matrix product, and as the energy grows they appear more

easily, in such a manner that some of them always lie in the permitted spectrum

of both species. In all the cases we have considered with these three parameters

chosen randomly we have always found at least one or two resonant energies perfectly

distinguishable. One example can be seen in figure 4.9(a). In fact by modifying the

parameters αj and the cut-off distances one can favour the emergence of resonances

for energies below the highest barrier.



88 Quantum wire with Pöschl-Teller potentials

1 2 3
k/α

0

0.5

1

1.5

2

DO
S,

 λ
(k

/α
)

(a)

1 2 3
k/α

0

0.5

1

1.5

2

DO
S,

 λ
(k

/α
)

(b)

Figure 4.9. DOS and Lyapunov exponent for binary chains. (a) Two species with

symmetric cut-off: α1 = α, V1 = −1, d1 = 4.5/α1 and α2 = 1.95α, V2 = 2, d2 =

4.1/α2. The three first resonances occur at εc = 1.6818, εc = 2.3986 and εc =

3.1064. Notice that the first two resonances are located below the barrier height

εmax = 1.95
√

2 ' 2.76. (b) Two species with asymmetric cut-off: α1 = α, V1 = 1,

dL
1 = 5.2/α1, dR

1 = 4.2/α1 and α2 = 1.5α, V2 = 3, dL
2 = 6.8/α2, dR

2 = 5.3/α2. The

first four resonances occur at εc = 1.7434, εc = 2.0618, εc = 2.3865 and εc = 2.7143.

Notice that the first three resonances are located below the highest barrier εmax =

1.5
√

3 ' 2.60.

Things can even be more general by considering asymmetric cut-off satisfying

dR
1 − dL

1 = dR
2 − dL

2 , that is the asymmetry being the same for both species. In this

situation y is again identically zero and the commutation relation can still be written

in a simple form

w2

√
1 + w2

1 sin
[
k(dL

1 + dR
1 ) + ϕ1

]
= w1

√
1 + w2

2 sin
[
k(dL

2 + dR
2 ) + ϕ2

]
. (4.28)

One can choose freely 7 of the 8 parameters of the system and finally set one of the

cut-off distances to satisfy the asymmetry condition, and in all cases considered we

have checked the appearance of resonances. An example is shown in figure 4.9(b).

It is remarkable that contrary to what one could think at the beginning, these type

of resonances appear very easily without doing awkward or very restrictive fits of the

parameters of the system.

Of course other particular situations can also be considered, for example one can

choose where to place the resonance from the condition k(dL
1 − dR

1 − dL
2 + dR

2 ) = nπ,

n ∈ Z, and hence making y = 0 and then fit some of the left parameters to fulfill

z = 0.

As we have seen, this kind of resonances, that we shall refer to as commuting-

resonances (according to reference [88]), appear very often and they are very versatile

in the sense that their presence seem to be compatible with a wide continuous range

of several parameters of the potentials.
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Figure 4.10. DOS and Lyapunov exponent for binary chains with all parameters

chosen randomly. (a) α1 = α, V1 = −4, dL
1 = 4/α1, dR

1 = 5/α1 and α2 = 1.8α,

V2 = 1, dL
2 = 6/α2, dR

2 = 4.5/α2. (b) α1 = α, V1 = −5, dL
1 = 4.2/α1, dR

1 = 5.5/α1

and α2 = 1.5α, V2 = 2, dL
2 = 6.1/α2, dR

2 = 4.25/α2.

Finally in the case of a binary chain in which the 8 parameters of the system

(4 for each species) are chosen at random, one would expect in principle to see no

resonances in the spectrum, since in this case it will be more difficult to satisfy all re-

quirements for a critical energy to exist. Let us have a look at the spectra of a couple

of such chains in figure 4.10. From what can be seen in the figures it seems that there

exist resonances, but they are not indeed. They seem to correspond to energies for

which the commutator of the transmission matrices is relatively small and that at the

same time these energies belong to the spectrum of both species. For such energies the

resonance conditions are close to be satisfied. This kind of energies appears surpris-

ingly very often when choosing the parameters of the binary system at random, and

that is due to the nature of the elements of the commutator. The functions y, Re (z)

and Im (z) are oscillatory functions whose amplitude decay with the energy, hence

even when choosing all the parameters of the chain at random, there exist always

some energy intervals within which all the functions crosses zero relatively near from

one another. It is impressive that for some of these energies the Lyapunov exponent

takes such very low values that make them hardly distinguishable from real extended

states. In fact these energies may have a significant effect on the transmission of a

finite sample although they are not true resonances in the thermodynamic limit.

Although commuting-resonances naturally emerge for a binary system they could

also exist in ternary and higher chains. For N species all the binary commutators

must vanish and at the same time the energies must belong to the permitted spectrum

of all species. Let us make a simple calculation for the Pöschl-Teller case. Let us

consider that the cut-off distances are chosen to satisfy dR
i − dL

i = dR
j − dL

j , for i, j =

1, . . . , N . Then the system is determined by 3N + 1 variables, and on the other hand
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in this situation the conditions of commuting-resonance imply one equation for each

commutator plus one inequality for each species. Therefore in the case of an N -

species wire we have 3N +1 variables to fulfill N(N +1)/2 requirements. This simple

calculation shows that for N 6 5 is perfectly possible to find commuting-resonances,

and in fact we have done so for a ternary chain, although the fit of the parameters is

much more restrictive as N grows in comparison with the binary case.

Extended states can also appear in the thermodynamic limit of disordered systems

by imposing different conditions in principle, like for example the one introduced by

Hilke and Flores to describe extended states in a square barrier/well model [106].

The condition consists in imposing Ψj+1 = ±Ψj for all sites of the system. Clearly

if all species of the chain satisfy this constraint for the same energy a transmission

resonance arises in the thermodynamic limit. Our Pöschl-Teller disordered wires can

also host extended states of this kind. Let us see how one can build them by imposing

the specific conditions to the transmission matrices of the individual species included

in the system.

Let us consider the transmission matrix of a real potential ranging in the interval

[xj , xj+1]. Its tranfer matrix is an element of the group SU(1, 1) as stated in appendix

A and it connects the amplitudes of the travelling plane waves on both sides of the

potential (Aj , Bj) and (Aj+1, Bj+1). The coordinates are chosen to ensure that the

state right before the potential Ψj, and right after the potential Ψj+1, is simply given

by the sum of the respective complex amplitudes. Then, one can wonder about the

form the transmission matrix must adopt to satisfy the condition Ψj+1 = ±Ψj. It can

be easily calculated that the transmission matrix must fit the expression

M =

(
±1 − ia −ia

ia ±1 + ia

)
, a ∈ R. (4.29)

Thus whenever the transmission matrix takes this form, the probability distribution

of the state does not decay after the individual potential but it remains constant.

Trivially, the matrices (4.29) constitute a subgroup of SU(1, 1). Then a disordered

linear array of potentials which can be described in terms of these matrices will give

rise to a completely extended state with a flat probability distribution. Imposing the

given form to the most general transmission matrix for a real potential

Mj =

(
Λj βj

β∗j Λ∗
j

)
, |Λj|2 − |βj |2 = 1, (4.30)

one is led to equations

Im (Λj) = Im (βj) , (4.31a)

Re (βj) = 0, ∀j, (4.31b)
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and they straightforwardly guarantee that Re (Λj) = ±1. This latter condition implies

that the energy is a common band-edge of the periodic spectrum of all species. There-

fore, this kind of extended states correspond to a certain class of common band-edges

of the spectrum of the individual species composing the wire. Notice that not all com-

mon band-edges will satisfy the above requirements. If the individual potentials are

parity invariant, then only equation (4.31a) has to be imposed, since the off-diagonal

elements of the transmission matrices are pure imaginary (see appendix A) and hence

condition (4.31b) is identically satisfied. In the most general case both equations

(4.31) must be fulfilled.

Now in the case of a disordered binary Pöschl-Teller wire, one could choose the

values of the parameters of the potentials so that there exists an energy εc for which

the matrices of both species take the form (4.29). From (4.10) it follows that the

conditions for εc to exist are

√
1 + w2

j sin
[
k(dR

j + dL
j ) + ϕj

]
= −wj cos

[
k(dR

j − dL
j )
]
, (4.32a)

wj sin
[
k(dR

j − dL
j )
]

= 0, j = 1, 2. (4.32b)

For the sake of clarity let us restrict to the default case of symmetric cut-off d = 4/α,

and the same α for both species. In this case the only constraint is

√
1 + w2

j sin(8εc + ϕj) + wj = 0, j = 1, 2, (4.33)

or Kj = 0, using the canonical equation function (4.15). Therefore for a fixed V1

one chooses one of the infinite roots of K1(ε) to place the extended state, namely

εc, and then equation K2(εc) = 0 is solved in terms of V2. In some cases several

solutions exist for the latter equation. Then the Lyapunov exponent will vanish at

εc for the disordered binary chain independently of the concentrations. A couple

of examples are shown in figure 4.11 where the Lyapunov exponent for two binary

chains is plotted. Notice that the existence of this kind of extended states is compatible

with the presence of commuting-resonances. In fact the matrices (4.29) constitute an

abelian subgroup of SU(1, 1) as can be straightforwardly checked, which means that

the resonances arising from the common band-edges are in fact particular cases of

commuting-resonances arising from a very precise fit of the parameters of the different

species. These extended states are exactly of the same type as the π-resonances for

the delta model, since the multiples of π are always band edges of the periodic delta

chain independently of the delta coupling. Although these critical energies are also

commuting-resonances we shall refer to them using a different label, let us call them

CBE-resonances (common band-edge resonances). The CBE-resonances and the rest

of commuting-resonances exhibit very different features as we shall see.
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Figure 4.11. DOS and Lyapunov exponent for binary chains with parameters (a)

V1 = −4, V2 = 1.571051 and (b) V1 = 4, V2 = 7.217957 with equal concentrations

in both cases. The CBE-resonances are located at εc = 0.814459 and εc = 2.56389

respectively.

Let us check the functional dependence of the Lyapunov exponent and the density

of states near the resonant energies. In the case of CBE-resonances a careful inspection

reveals an asymmetric behaviour of the Lyapunov exponent around the critical energy.

Seemingly it can be well described by

λ(ε) ∼




|ε− εc|,
|ε− εc|1/2,

(4.34)

on the different sides, as can be observed in figure 4.12(a). The DOS apparently be-

haves in the same way as for a periodic chain near a band-edge: gap on the side where

the critical exponent for λ(ε) is 1/2 and dependence of the type g(ε) ∼ |ε− εc|−1/2 on

the side with the linear change of the Lyapunov exponent. In summary the behaviour

near the CBE-resonances is apparently the same as for the π-resonances in most of

the delta chains. These resonances are of the same nature and exhibit similar features

independently of the potential model. Therefore from the analysis made in chapter

3, the number of states around the CBE-resonance whose localization length is larger

than the system size, in a finite chain, scales as
√
N where N is the number of atoms.

On the other hand the behaviour of the distribution of states and the localization

length in the vicinity of a commuting-resonance is completely different. In all cases

studied the Lyapunov exponent seems to fit a quadratic dependence around the crit-

ical energy λ(ε) ∼ (ε− εc)
2, where the coefficients for ε < εc and ε > εc can differ.

The DOS around these resonances evolves linearly g(ε) ∼ g0 + (ε− εc). It all can be

observed in figure 4.12(b). With the dependence described for λ(ε) and g(ε), it fol-

lows that in a finite system the number of states near the commuting critical energy

with a localization length larger than the system size scales as
√
N , the same as for
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Figure 4.12. Behaviour of DOS and Lyapunov exponent near critical energies for

binary wires. Symbols mark numerical results. (a) V1 = −4 and V2 = 1.571051 with

equal concentrations. CBE-resonance located at εc = 0.814459. Notice that for the

Lyapunov exponent the vertical scales are different before and after the resonance to

ensure an optimal visualization. Solid lines correspond to fits according to expres-

sion (4.34) for λ(ε) and g(ε) ∼ |ε− εc|−1/2. (b) V1 = 5 and V2 = 7 with different

concentrations. Commuting-resonance located at εc = 2.601. Solid lines correspond

to quadratic fits for λ(ε) and linear fits for DOS.

the CBE-resonances. As mentioned in the previous chapter, this scaling is exhibited

by very different models with isolated extended states in their spectra [29, 161, 68],

and it is probably a general feature of isolated resonances in one-dimensional disor-

dered systems. The DOS and the Lyapunov exponent seem to balance their functional

dependence near the critical energies to ensure the
√
N scaling.

The different characters of the two types of extended states described also man-

ifest themselves in the way that transmission resonances appear close to the critical

energies for finite chains. As expected, within a small scale of energies near the CBE-

resonances one finds exactly the same behaviour for the Lyapunov exponent and the

IPR as for the π-resonances in the delta model, as can be seen in figure 4.13. The

longer the system the higher the number of transmission resonances lying beside the

critical energy is. The inverse participation ratio reaches its minimum value N−1 at

εc for all lengths, and the spatial distributions of the wave functions inside the system

show the same aspect as the ones in figures 3.14(c) on page 53. Within this energy

scale near the CBE-resonances the system is mainly determined by its length and not

by the atomic sequence, since all the individual transmission matrices behaves essen-

tially in a similar manner independently of the species.

Let us see what happens in the vicinity of a general commuting-resonance. It

is remarkable that the IPR for a finite system shows a characteristic plateau around

the critical energy (figure 4.14(a)). This flat zone gets narrower as the length of the
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Figure 4.13. Lyapunov exponent and IPR near a CBE-resonance for a binary chain

with parameters V1 = 2 and V2 = −2.6422653344 with equal concentrations. The

critical energy is εc = 0.9270063568. The horizontal dotted lines mark the inverse of

the length of the system in the different cases considered.

system increases and it seems to be essentially symmetric around εc, which is in perfect

agreement with the symmetric dependence of the Lyapunov exponent with the energy

in this region in the thermodynamic limit. However in figures 4.14(a) and 4.14(b) it

can be noticed that the IPR does not reach its minimum value N−1 for any energy.

Nevertheless the inverse participation ratio for different lengths takes a value at εc

that seems to scale roughly as IPR(εc) ∼ 3
2N

−1. Inspecting the Lyapunov exponent

at a very small energetic scale near εc, it can be observed how as the length of the

chain grows the number of transmission resonances increases following a symmetrical

arrangement around the critical energy (figure 4.14(b)). This is in great contrast to

the CBE critical energies for which the transmission resonances are only located on

one of the sides of εc. In figures 4.14(c) one can have look at the appearance of

the envelope of the electronic states with open boundary conditions near the critical

energy for a chain with 1000 atoms. The states show a strongly fluctuating behaviour

that seems to be modulated in a periodic manner. Apart from the differences in the

global amplitude and the transmission, the three states shown exhibit essentially the

same features. For cases 4.14(c.2) and (c.3), whose energy is not exactly the critical

value, the periodic modulation starts to be subtly distorted. The spatial distribution

of the states explains the behaviour of the IPR. First, all states near the critical energy

have essentially the same structure leading to similar values of the IPR and therefore

the plateau. And second, the fluctuating nature of the states prevents the IPR from

reaching its minimum valueN−1, which requires of the envelope of the state to be flat.

In figure 4.15 on page 96, one can observe how the state at the critical energy evolves

as the concentration of the wire is changed for a finite binary system including 500
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Figure 4.14. (a) IPR near the critical energy εc = 1.808977 for a binary wire with

parameters V1 = −2.5 and V2 = 5 with equal concentrations. (b) Lyapunov expo-

nent (solid lines) and IPR (dashed lines) near the critical energy for different lengths.

The horizontal dotted lines mark the inverse of the different lengths considered. For

a given length, data of all figures correspond to the same disordered sequence. Only

one realization of the disorder has been considered for each length. Graphics on the

right column show the envelope of the electronic state for the chain with 1000 atoms

for three different energies corresponding to transmissions: (c.1) T = 0.1067, (c.2)

T = 0.9999, (c.3) T = 0.8537.

atoms. For pure one species chains the envelope shows a perfect periodic modulation,

although the latter period sometimes can be larger than the size of the chain. The

electronic state registers a morphing process through the disordered configurations

between the two limiting pure cases and it always remains completely extended over

the array.

Let us also comment that within this small scale of energies near the commuting-

resonances, the influence of the atomic sequence is much more important than in the

case of CBE-resonances, because the structure of the envelope of the wave function at

a local level is fully determined by the atomic sequence. Of course this dependence

on the realization of the disorder gets weaker as the system grows. This influence can

be noticed in figure 4.14(b), where the arrangement of the hollows of the Lyapunov
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Figure 4.15. Evolution of the envelope of the electronic state at a commuting crit-

ical energy as a function of concentration, for binary disordered wires with open

boundary conditions. (a) V1 = −2.5, V2 = 5 and εc = 1.808977, (b) V1 = 5, V2 = 7

and εc = 2.600753. In all cases the system includes 500 atoms and the states are

properly normalized to make the comparison possible.

exponent (i.e. resonances of the transmission) for different N seems more irregular

than in the case of a CBE-resonance (figure 4.13), although the length of the system

is increased by the same factor in both cases. Only for the chain with 16000 atoms the

self-similar pattern in the appearance of transmission resonances emerges, manifest-

ing that the effect of the length of the system has become stronger than the effect of

the particular sequence.

Finally, we carried out the multifractal analysis for states near the commuting criti-

cal energies. This is somehow motivated by the fluctuating structure of the wave func-

tions and also as an additional check of their real extended character. The multifractal

analysis was first introduced to characterize the structure of a fractal distribution at

various spatial scales via a set of generalized fractal dimensions [94]. The applicability

of this tool to the study of electronic states comes from critical wavefunctions, which

exhibit an intricate oscillatory behaviour that may include self-similar fluctuations at

different spatial scales (see reference [137] for a nice dissertation about critical states

among many other things). Regarding electronic states, the multifractal analysis es-

sentially studies the scaling of the different moments of the probability distribution of

the state with the length of the system N . Those moments are defined as

µq(N) ≡
∑

j |Ψj|2q

(∑
j |Ψj |2

)q . (4.35)

And the corresponding generalized fractal dimensions Dq are obtained from the scal-

ing law µq(N) ∼ N−(q−1)Dq for large N . Let us notice that the second order moment

µ2 is the inverse participation ratio. The multifractal analysis is useful in order to

decide on the localized or extended character of a given state, since one finds Dq = 0
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Figure 4.16. Multifractal analysis for binary wires with parameters: (a) V1 = −2.5,

V2 = 5 and (b) V1 = 5, V2 = 7 with equal concentrations in both cases. The

moments considered range from q = 2 to q = 8. Dashed lines correspond to equation

µq(N) = N−(q−1).

for all q > 1 for a localized state whereas in the case of extended states, which spread

over the whole system and show no fractal structure at all, Dq equals the spatial di-

mension of the system for all q > 1. In figure 4.16 it can be seen for a couple of binary

wires that at the critical energies the moments considered scale with the length of the

system according to Dq = 1 confirming the extended character of the states, whereas

for energies slightly deviated from the critical value the localized nature arises and

the generalized dimensions go to zero.

To close this subsection the summarized characteristics of the different types of

extended states described can be found on table 4.1 on the following page. Although

those features correspond to the Pöschl-Teller model, we have seen how in the case

of CBE-resonances the delta model exhibits the same behaviour, therefore it would be

very interesting to study whether the features of a given resonance (critical exponents,

behaviour of IPR, electronic envelope,...) are fully determined by the nature of the

critical energy or on the contrary are also dependent upon the particular potential

model.

4.3.3 Negative spectrum of the disordered wires

Let us have a look at the spectrum of bound states of the Pöschl-Teller wires. Most

of the times the negative spectrum of disordered systems is not studied since it is not

directly involved in the transport processes. The negative spectrum of our model ex-

hibits interesting features very similar to those of the positive spectrum, that we shall
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Table 4.1. Summary of features of the different types of isolated resonances in the

spectrum of a disordered Pöschl-Teller wire.

RESONANCE
CRITICAL

EXPONENTS
IPR ENVELOPE

STATES WITH

λ < N−1

Commuting
λ ∼ (ε− εc)

2

g(ε) ∼ g0+(ε−εc)
IPR(εc) 6= N−1

plateau
Fluctuating

√
N

CBE

λ(ε)




|ε− εc|

1
2

|ε− εc|

g(ε)





0

|ε− εc|−
1
2

IPR(εc) = N−1 Flat
√
N

briefly describe. One can wonder about the degree of localization of the electronic

bound states. For negative energies the localization can still be characterized via the

Lyapunov exponent even though its physical meaning cannot be defined in terms of

the rate of decreasing of the transmission with the length of the system. The well

defined meaning of the Lyapunov exponent for negative energies is guaranteed by

Oseledet’s theorem (MET), as the quantity that measures the exponential divergence

of an initial vector under the action of a product of random matrices. The contin-

uous transmission matrices for negative energies are given in definition (4.6). The

initial vector of amplitudes for the bound states must be (A1 = 0, B1 = 1), where the

amplitudes correspond respectively to the exponential solutions of the Schrödinger

equation e−ηx, eηx, where η =
√

2m|E|/}. Then the MET implies that the Lyapunov

exponent comes from

λ = lim
N→∞

1

N
log
√

M2
12 + M2

22, (4.36)

where M is the global matrix of the system. Since the final condition for a state to

be bound is M22 = 0, one can characterize the electronic localization in a sufficiently

large but finite system through

λ =
1

N
log |M12|. (4.37)

Then the Lyapunov exponent for bound states can only be understood as a measure

of the inverse of their localization length, ξ−1(E) = λ(E), and the above expression

is the natural extension for negative energies of expression (2.28). On the other hand

the negative spectrum of the wire in the thermodynamic limit can be straightforwardly

obtained by using the functional equation formalism —which is valid for the whole
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Figure 4.17. DOS and Lyapunov exponent for binary chains. (a) V1 = −0.5,

V2 = −3.399309 with equal concentrations. The CBE extended state occurs at

εc = −0.297183. (b) α1 = α, V1 = −3.1, dL
1 = 4.5/α1, dR

1 = 4/α1 and α2 = 2α,

V2 = −2.5, dL
2 = 5.5/α2, dR

2 = 4.5/α2 with equal concentrations. The commuting

extended bound state is located at εc = −0.314670. The negative part of the abscissa

axis correspond to −η/α.

spectrum— with the proper canonical functions (4.16)-(4.18). Then one can speak of

extended bound states whenever λ = 0 and of exponentially localized bound states

otherwise.

Extended bound states can generally be found using the same reasoning as for

the positive spectrum. For example, imposing the condition Ψj+1 = ±Ψj for all sites

of the chain one can find the particular form the transmission matrices for negative

energies must adopt to generate an extended state,

M =

(
±1 − a(η) −a(η)
a(η) ±1 + a(η)

)
, a(η) ∈ R. (4.38)

Imposing the proper equations to all species included in the chain one is led to the

conclusion that this kind of extended bound states can only exist if all potential wells

are symmetric (dR
j = dL

j = dj), and in this case the following conditions must be

satisfied,

qj +
1

2

[
fj(−η)e−2ηdj − fj(η)e

2ηdj

]
= 0, ∀j, (4.39)

in terms of q and f(η) defined in (4.7) and (4.8). It can be checked that the above

conditions imply that the energy is a common band-edge of the negative spectrum of

the species. Therefore CBE extended bound states can be built as one can see in figure

4.17(a).

Extended bound states can also exist at commuting energies that belong to the

permitted spectrum of all species of the wire. For negative energies the commutator
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reads

[M1,M2] =

(
F (−η) H(η)

−H(−η) F (η)

)
, (4.40)

where

F (η) =2q1q2 sinh
[
η(dL

1 − dL
2 − dR

1 + dR
2 )
]
, (4.41)

H(η) = − e−η(dR
2 −dL

2 )q2

[
f1(−η)e−η(dL

1 +dR
1 ) − f1(η)e

η(dL
1 +dR

1 )
]

+ e−η(dR
1 −dL

1 )q1

[
f2(−η)e−η(dL

2 +dR
2 ) − f2(η)e

η(dL
2 +dR

2 )
]
. (4.42)

Assuming that none of the species is a resonant well, then in general q1 6= 0 and

q2 6= 0, although of course the critical energy could be fix from q1 = 0 or q2 = 0 but

this would mean a much more restrictive fit of the parameters. Commuting extended

bound states can be found for a really wide range of the parameters of the potentials

as long as the asymmetry of the species is the same, dR
1 − dL

1 = dR
2 − dL

2 , since in this

case F (η) is identically zero and the only requirements to have a commuting energy

are: H(η) = 0 and the condition of belonging to the permitted spectrum of both

species, which can readily be obtained from the trace of the transmission matrix. An

example is shown in figure 4.17(b).

A particular case that deserves a comment is the composition of wells for which

b, defined in (4.5), is a half-integer (the case of integer b corresponds to the resonant

well which will be treated in the next section). Let us remember that the dimension-

less amplitude can be written as V = −b(b − 1). We already know from section 4.1

that the bound states of a well with a half-integer b correspond to half-integer values

of η/α. It can easily be checked that the matrix of such a well at the eigenenergies

reads

M =

(
0 ±e−η(dR−dL)

∓eη(dR−dL) 0

)
. (4.43)

These matrices trivially commute with eachother provided the asymmetry is the same

for all wells. Therefore a chain including different wells with different half-integer

values of bγ and values for αγ such that the potentials exhibit common levels will

show extended bound states precisely at those energy levels, as can be seen in figure

4.18(a).

Even when b is not a half-integer, due to the structure of the discrete spectrum of

the Pöschl-Teller hole (figure 4.2 on page 77) is easy to choose a couple of different

wells with common bound levels, however in this case the matrix of a general well for

its eigenenergies reads

M =

(
f(−η)e−η(dR+dL) ±e−η(dR−dL)

∓eη(dR−dL) 0

)
. (4.44)



4.3 Wires with uncorrelated disorder 101

0.5 10-0.5
k/α

0

0.4

0.8

1.2

1.6

DO
S,

 λ
(k

/α
)

(a)

0.5 10-0.5
k/α

0

1

2

DO
S,

 λ
(k

/α
)

-1.5 -1
0

1

2

3

4

5

DO
S,

 λ
(k

/α
)

-0.3 -0.2 -0.1

0

0.001

0.002

(b)

Figure 4.18. DOS and Lyapunov exponent for binary chains including wells in

equal concentrations with parameters: (a) b1 = 3/2, b2 = 5/2 with a common eigen-

state for η/α = 0.5 and (b) V1 = −2.8125 and V2 = −7.3125 showing common

eigenstates at η/α = 0.25, 1.25. The commuting extended bound states are located

at εc = −0.217142 and εc = −1.25. Notice the change in the vertical scale at −0.75

in the (b) example. The negative part of the abscissa axis represents −η/α.

And these matrices do not commute. Therefore the composition of wells with common

levels but with non half-integer (nor integer) values of b will not exhibit extended

bound states at the energies of the common levels. Nevertheless since in this case all

wells share common levels, a band of bound states is formed around these energies in

the thermodynamic limit and we have checked that within these bands a commuting

extended bound state always exists and it can be located quite near the common level

depending on the width of the band, as can be seen in figure 4.18(b).

It must be emphasized that the behaviour of λ and DOS around the different

types of negative critical energies is the same as for their counterparts in the positive

spectrum described in table 4.1.

4.3.4 Including resonant wells in the disordered chain

Let us finally considered the interesting case of including resonant potential wells in

the disordered system. The resonant wells correspond to potentials with an integer

value of b greater than 1. From section 4.1 we know that the transmission for this kind

of potentials is identically 1 for all positive energies. The transmission matrix (4.10)

for a resonant well naturally reduces to

M =

(
ei[ϕ+k(dL+dR)] 0

0 e−i[ϕ+k(dL+dR)]

)
, (4.45)

which is the transmission matrix of a zero potential. The resonant well for positive en-

ergies behaves as a zero potential with an effective length Leff(k) = ϕ/k + (dR + dL)
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that depends on the energy. This definition of the effective length only makes sense

if it appears multiplied by the energy, since otherwise a divergence appears as k goes

to zero. A handy expression can be obtained for the effective length. For a resonant

well described by parameters {dL
γ , d

R
γ , αγ , bγ} it can be proved by induction using the

properties of the Gamma function that the following expression is correct

kLeffγ (k) ≡ εLeffγ (ε) = ε
αγd

R
γ + αγd

R
γ

(αγ/α)
+(bγ−1)π−2

bγ−1∑

j=1

arctan

(
ε

j(αγ/α)

)
, (4.46)

where the variable ε ≡ k/α has been introduced and α being the reference value for

the parameters {αγ}.

Let us briefly analyse the appearance of critical energies for a binary chain in

which one of the potentials is a resonant well. Since for the resonant well wγ = 0 the

conditions of positive commuting-resonance reduce simply to

sin
[
kLeffγ (k)

]
= 0, (4.47)

plus the condition of belonging to the permitted spectrum of the other species and

without further restrictions on the parameters of the second potential. In the case of

CBE-resonances, since the resonant well has no gaps in its positive spectrum it can

easily be checked that the conditions (4.32) reduce also to equation (4.47) together

with the energy being an appropriate band-edge of the spectrum of the second species.

Therefore in a binary chain with one of the species being a resonant well, transmission

resonances can only lie among the set of energies satisfying εLeffγ (ε) = nπ, n ∈ Z. For

the negative spectrum one similarly obtains that extended bound states must fulfill

the equation

e−η(dL
γ +dR

γ )fγ(−η) − eη(dL
γ +dR

γ )fγ(η) = 0, (4.48)

where fγ(η) for a resonant well can be expressed as

fγ(η) =

bγ−1∏

j=1

η/αγ − j

η/αγ + j
. (4.49)

If such an energy lies in the permitted spectrum of the other species then a commuting

extended bound state emerges without further requirements on the parameters of the

second species. On the other hand if the energy coincides with a band-edge of the

negative spectrum of the second species, which must be a symmetric well, then we

have a CBE extended bound state.

Now let us consider a disordered chain entirely composed of different resonant

wells. Regarding the negative spectrum of the chain, the matrix of a resonant well
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for its eigenlevels is the same as for the case of half-integer b discussed previously

(equation (4.43)). Let us remember that the well host (bγ − 1) bound states that cor-

respond to integer values of η/αγ . Therefore the common eigenlevels of all resonant

wells, according to parameters {αγ}, will arise as extended bound states as long as

the asymmetry of all wells is the same. For positive energies the canonical equation

of the system (4.12) reduces to

Ψj+1 =
{
cos
[
kLeffj (k)

]
+ cot

[
kLeffj−1

(k)
]
sin
[
kLeffj (k)

]}
Ψj −

sin
[
kLeffj (k)

]

sin
[
kLeffj−1

(k)
]Ψj−1,

(4.50)

which is the canonical equation for the zero potential defined in (3.34) on page 49

where the wave function is evaluated at different distances corresponding to the effec-

tive length of each potential. It is then clear that the electronic states for all energies

remain extended in the disordered system. The transmission of the whole structure is

maximum for all energies since the system globally behaves as a zero potential. Let

us remark that the fully resonant behaviour of the Pöschl-Teller hole provided bγ is

an integer is independent of dL
γ , dR

γ , and αγ as long as the minimum value for the

cut-off distances is preserved. In fact, the real dimensional depth of the well reads

}2α2
γVγ/(2m), hence one can choose at will the depth of the resonant well by varying

αγ , although it also means a change in the width of the potential. Therefore, one

can build a disordered chain of resonant wells with different widths and depths that

even can be placed at arbitrary distances from one another with absolutely no corre-

lations in the sequence, which can be completely random indeed, and the structure

will behave as a transparent potential for all energies. To our knowledge this is the

first theoretical model for which one can build totally random arrays that exhibit a full

continuum of extended states and hence an interval of complete transparency, which

is indeed the whole positive spectrum.

Let us see how it is possible to describe analytically the distribution of states of

these disordered chains in the thermodynamic limit. For a zero potential of length

L the integrated density of states is trivially N (k) = Lk/π. From this fact one is

led to the conclusion that a resonant well should provide the spectrum of the system

with kLeffγ (k)/π available states with energy less than k. Then the contribution of

every resonant well to the integrated density of states (IDOS) of the chain per piece

of length α−1 would be

(αγ/α)

αγdR
γ + αγdL

γ

εLeffγ (ε)

π
. (4.51)

Since all species behave effectively as zero potentials, the IDOS of the chain per piece

of length α−1 in the thermodynamic limit is just the composition of the contributions
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Figure 4.19. DOS for disordered chains composed of resonant Pöschl-

Teller holes. Coloured lines correspond to definition (4.54) while black

dashed lines are obtained by solving numerically the functional equa-

tion. (a) 2 species with V1 = −2 and V2 = −6 with equal con-

centrations (b) 3 species with {αγ ,Vγ , d
L
γ , d

R
γ }[cγ ]: {α,−2, 5/α1, 4/α1}[0.5],

{1.2α,−6, 4/α2, 4/α2}[0.3], {1.5α,−12, 4.5/α3, 4.5/α3}[0.2], (c) 2 species with

{αγ ,Vγ , d
L
γ , d

R
γ }[cγ ]: {α,−6, 5/α1, 4/α1}[0.7], {1.8α,−12, 4.2/α2, 6.1/α2}[0.3] and

(d) 2 species with V1 = −6, c1 = 0.3 and V2 = −12, c2 = 0.7.

of the different species with their respective concentrations {cγ},

n(ε) =
1

π

∑

γ

cγ
(αγ/α)

αγdR
γ + αγdL

γ

εLeffγ (ε). (4.52)

And the DOS would obey

g(ε) =
1

π

∑

γ

cγ
(αγ/α)

αγdR
γ + αγdL

γ

d

dε

[
εLeffγ (ε)

]
. (4.53)

Inserting expression (4.46) into the latter definition one finally gets

g(ε) =
1

π
− 2

π

∑

γ

cγ
(αγ/α)

αγdR
γ + αγdL

γ

bγ−1∑

j=1

j(αγ/α)

j2(αγ/α)2 + ε2
. (4.54)

Using the same reasoning the analytical expression for the DOS can also be straight-

forwardly obtained when the parameters {αγ , d
R
γ , d

L
γ } obey a continuous distribution.

In figure 4.19 the DOS for several disordered chains composed of resonant wells is

plotted. It can be seen how the analytical expression reproduces exactly the distribu-

tion of states calculated numerically via the functional equation formalism. The DOS

for the resonant chains is a continuous and smooth function without gaps that does

not vanish for zero energy, and it registers relatively small changes by varying the

concentrations or the number of different resonant wells. In figure 4.20 the tolerance



4.3 Wires with uncorrelated disorder 105

0 1 2
k/α

0

0.2

0.4

DO
S,

 λ
(k

/α
)

Vγ = -2, -6
Vγ = -1.98, -6.06
Vγ = -1.9, -6.3
Vγ = -1, -3

(a) 0 1 2
k/α

0.2

0.4

0.6

0.8

1

T

(b)

Figure 4.20. Tolerance of the properties of a binary resonant chain with their pa-

rameters. (a) DOS(solid line) and Lyapunov exponent(dashed line) in the thermo-

dynamic limit. (b) Transmission patterns for a 1000-atom random sequence. Cases

have been considered where both dimensionless amplitudes are deviated 1%, 5%

and 50% from the resonant values V1 = −2, V2 = −6.

of the properties of a binary resonant chain are evaluated when their parameters are

deviated from the resonant values. As can be seen, a small change of the parameters

mean the lost of the full resonant behaviour for all energies. Nevertheless for devia-

tions of order 1%−5% in the dimensionless amplitudes, the efficiency of transmission

is still much higher than for any other non-resonant binary chain composed of wells.

Naturally, for the resonant chains the Lyapunov exponent in the thermodynamic limit

calculated via the functional equation vanishes for all energies. It can also be checked

that the IPR for finite resonant chains as a function of the energy is simply a straight

line at the value N−1 where N is the number of potentials, as it must be for flat

extended states.

One must not forget that the transmission matrix proposed for the Pöschl-Teller

potential is an approximation, since we have assumed that at the cut-off distance the

asymptotic form of the states can be used. In fact, this approximation is quite correct;

the error that it entails is almost irrelevant for an individual potential and the larger

the cut-off distance is the smaller the error becomes. However it might happen that

when applying the composition procedure of the potentials to build a disordered ar-

ray, these small individual deviations give rise to an error growing exponentially with

the length of the chain. If it were true, then the behaviour of a real continuous com-

position of Pöschl-Teller units (i.e. the sum of all the contributions of the potentials

centred at different positions) would be far from the results obtained using our tech-

niques. In particular it would be dramatic for a resonant chain for which its resonant

behaviour and the delocalization of the electronic states could disappear in the real

continuous composition. To show that this exponential error does not occur, we have

calculated the transmission probability of several random resonant chains with 100,
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Figure 4.21. Transmission probability for random resonant chains of Pöschl-Teller

holes, calculated by solving numerically the Schrödinger equation for the continuum

spectrum. The left box shows the random potential profile for 100 potentials. For

all lengths the chains include three different species with symmetric cut-off. The pa-

rameters are {αγ ,Vγ , dγ}[cγ ]: {1,−2, 4}[0.4], {0.75,−6, 5.5}[0.3], {0.65,−12, 6}]0.3].

200 and 400 potentials, by integrating numerically the Schrödinger equation1 con-

sidering the whole continuous potential of the chain, that is taking into account the

superposition of all potential holes centred at their respective positions. In figure 4.21

it can be observed how for very low energies (k < 0.05) a small deviation appears

from T = 1, that for the longest chain is less than 3 · 10−2. Although this deviation

seems to increase slightly with the length of the chain, it apparently does not follow an

exponential growing and its effect does not noticeably distort the resonant behaviour

of the chain. Then, our composition procedure describes faithfully the properties of

the real continuous composite potential profile.

As we have shown, the richness of the Pöschl-Teller potential gives rise to the

emergence of new exciting effects in the disordered chains ranging from the appear-

ance of different types of isolated extended states in the spectrum to the construction

of resonant chains exhibiting a continuum of delocalized states.

4.4 Wires with correlated substitutional disorder

The Pöschl-Teller potential model is also studied under the effect of correlated sub-

stitutional disorder introduced in the same way as for the delta potential model, de-

scribed in detail in section 3.6. The probability of appearance of different atomic

groups is modified by the quantities {pγβ}. We have the opportunity to check whether

the influence of the model of correlations and their significant effects upon the trans-

port properties of the one-dimensional systems are universal or on the contrary de-

pend upon the atomic model.

1The numerical integration of the Schrödinger equation for the continuum spectrum must be under-

stood as the numerical calculation of the scattering amplitudes via a spatial discretization of the global

potential as described in chapter 2 (section 2.3).
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Figure 4.22. DOS for correlated configurations of a binary chain with parameters

V1 = −2.5 and V2 = 2 with concentration c1 = 0.4.
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Figure 4.23. Evolution of the Lyapunov exponent and the IPR with the correlations

for a binary chain. The IPR has been obtained after averaging 100 sequences of a

1000-atom array. The parameters are: V1 = −1, V2 = 1, c1 = 0.5. Notice the

presence of a critical energy at εc = 1.095.

4.4.1 Effects of the correlations in the thermodynamic limit

As already known, the limiting distributions of the DOS and the Lyapunov exponent

for the infinite system are obtained by solving numerically the most general form of

the functional equations.

The density of states of a binary chain is altered by the effect of the correlations in

a similar manner as for the delta model. In figure 4.22 the DOS is plotted for the two

limiting correlated situations of a binary chain with fixed concentrations. The number

of available states in certain ranges as well as the gaps can be changed by tuning p12.

It can also be checked that for the correlated configurations the fractal character of

the distribution persists in different energy intervals.

The electronic localization is globally altered by the correlations in the whole en-

ergy spectrum, although as expected no new extended states emerge in the thermo-

dynamic limit, as can be seen in the examples of figure 4.23. The evolution of the

Lyapunov exponent for a fixed concentration with the probability p12 agrees perfectly

with the behaviour of the inverse participation ratio calculated by averaging over
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Figure 4.24. DOS and Lyapunov exponent for different correlated configurations

of a ternary chain with fixed concentrations. The species are V1 = −3, V2 = 2 and

V3 = −1. The configuration for each case is included in the characteristic matrix Q.

many finite realizations of the disordered system. Let us notice that the critical ener-

gies of the spectrum corresponding to extended states are present in all the different

correlated regimes. It is also remarkable the fact that as the correlations change, the

value of the Lyapunov exponent can be strongly decreased for several energies. These

energies for which the localization can be severely weakened are related to resonances

of different atomic clusters whose concentration is modified by the correlations. For

example, in a binary chain composed of a well (1) and a barrier (2), for the case

p12 = 1.0 the wells are completely isolated so that they always appear in the cluster

barrier-well-barrier. Therefore it seems reasonable that in this correlated situation the

energies of transmission resonances of the latter cluster will tend to be more delocal-

ized than for any other value of p12. This effect is more noticeable in this model than

for the delta model, since in that case the atomic potentials lack an internal structure.

When more species are included in the wire similar effects can be observed and

the properties of the system can be considerably altered as can be seen in figure 4.24

for a ternary chain.

4.4.2 Effects of the correlations on finite wires

Although not truly extended states are included in the spectrum, the effects of these

short-range correlations upon finite samples of the wires are able to improve notice-

ably the electronic transport. In figure 4.25 on the facing page several transmission

patterns for finite binary chains composed of 1000 atoms are plotted. In the correlated

configurations the transmission is improved with respect to the completely random sit-

uation. Let us notice that just like for the delta model the improvement can take place
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Figure 4.25. Transmission probability vs energy for 1000-atom binary disordered

chains in different correlation regimes. The circular point inside the insets marks the

configuration on the configurational space. Only one realization of the disorder has

been considered for each case. Parameters: (left column) V1 = −1, V2 = 1, c1 = 0.4

and correlation from top to bottom p12 = 0.6, 0.1, 1.0 and (right column) V1 = −2.5,

V2 = 5, c1 = 0.5 and correlation from top to bottom p12 = 0.5, 0.1, 0.9.

in different energy ranges and it is not restricted to the vicinity of the critical energies

in the thermodynamic limit. As expected, the enhancement of transmission occurs

in the whole configurational space of the binary wire as revealed by the transmission

efficiency,

Teff =
1

k2 − k1

∫ k2

k1

T (k)dk. (4.55)

The minimum intensity of the transport is found around the completely random lines

whereas the correlated configurations perform always better (figure 4.26 on the next

page). The patterns of the enhancement are similar to those of the delta model al-

though it must be emphasized that the transmission efficiency may adopt a strong

asymmetric distribution over the configuration space, depending on the species am-

plitudes. This asymmetry is absolutely negligible in the delta model since the delta

potential from the point of view of the transmission behaves essentially in the same

way independently of the sign of the coupling. However provided the atomic poten-

tials are non-punctual and have an internal structure, this asymmetry may be quite
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Figure 4.26. Transmission efficiency over correlation space for binary chains: (a)

V1 = −2.5, V2 = 5 and integration interval [0, 3.7], (b) V1 = 2.5, V2 = 5 and

integration interval [0, 3].

noticeable since a potential well performs a better transmission than a potential bar-

rier, and the same thing happens comparing barriers of different heights. Therefore

the transmission efficiency naturally registers a global lift or a global decrease de-

pending on whether the concentration of the species that is more tolerant with the

transmission process is larger or less than 0.5.

Then the enhancement of transmission in finite wires is a fact. And the reason is

that the short-range correlations modify the localization in the thermodynamic limit

in such a way that the fluctuations of the Lyapunov exponent for a finite system cause

an important increase of the number of states whose localization length (ξ) is larger

than the system size (L). This seems to be a universal effect of this sort of correlations

independently of the atomic model. Additionally, once the compositional species and

the concentrations of the wire are fixed, the correlations can be chosen to localize to

a certain extent the improvement of transmission in a particular energy range. Let us

also remember that the amplitude of the fluctuations of the Lyapunov exponent and

therefore the number of states with ξ > L only depends upon the length of the system.

Hence in all the calculations only one realization of the disorder has been considered

for each configuration.

As the length of the wire grows the completely random chain displays the fastest

decay of Teff whereas the correlated situations show higher efficiencies for all lengths,

as can be seen in figure 4.27. The relative differences ∆Teff = Teff − Teff(R) as a

function of the length, where (R) means the completely random value, reveals that

the effect of the correlations is generally maximized for short chains.

From the analysis made on the Pöschl-Teller wires and the delta wires, it must be

remarked that the effects described of this type of correlated disorder are essentially

independent of the potential model.
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Figure 4.27. Transmission efficiency vs length for different configurations of a

1000-atom binary chain with parameters (a) V1 = −1, V2 = 1, c1 = 0.4, integra-

tion interval [0, 1.75] and (b) V1 = −2.5, V2 = 5, c1 = 0.5, integration interval

[0, 3.05]. (R) marks the completely random situation. The inset shows the relative

differences ∆Teff = Teff − Teff(R).

4.5 Concluding remarks

In this chapter the Pöschl-Teller potential has been considered to build one-dimensional

quantum wires. Let us briefly summarize the results:

• The transmission matrix of the Pöschl-Teller potential has been constructed in

its asymptotic as well as in its cut-off version. Using the former the peculiari-

ties of the potential has been described whereas the latter has made it possible

to assembly an arbitrary number of atoms to study different atomic potential

profiles.

• The properties of the disordered wire in the thermodynamic limit have been

thoroughly studied using the canonical equation and the functional equation

formalism.

• Fractality of the density of states has manifested itself as a universal property of

the spectra of disordered systems and it seems to be related to the discretized

nature of the distributions of the parameters characterizing the disordered sys-

tem.

• Different types of extended electronic states, defined as CBE-resonances and

commuting-resonances, have been described for the disordered system. Their

different features have been studied in detail in the thermodynamic limit and

for finite realizations of the chains. The appearance of extended bound states

belonging to the negative spectrum of the disordered wire has also been re-

vealed.
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• The building of a wire exhibiting a continuum of delocalized states for positive

energies has been described. The array is composed of resonant wells and its

implementation is quite versatile since many parameters of the system can be

varied without any restrictions and of course its behaviour is absolutely inde-

pendent of the random or correlated character of the sequence. The DOS for

this system in the thermodynamic limit has been analytically obtained.

• Finally, short-range correlations have been introduced in the system, showing

that the effects of the type of correlations proposed and its significant implica-

tions on the transmission efficiency of finite samples, are independent of the

potential model.
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Quantum wire with complex

potentials

Non-Hermitian Hamiltonians and complex imaginary potentials are often used with

different purposes. They lead to the appearance of new features in the behaviour

of systems whose description can be sometimes related to dissipative processes. On

the other hand the question of whether it is possible to define a less restrictive con-

dition than Hermiticity to build Hamiltonians describing real physical situations is a

subject of an intense research. The aim of this chapter is twofold. First a purely

academic study on the characteristics of a periodic system under the requirement of

PT -symmetry is performed. More general non-Hermitian Hamiltonians are later on

considered to try to describe electronic absorption in one-dimensional structures.

5.1 PT -symmetric periodic wires

Several years ago, it was claimed that the reality of the spectrum of certain non-

Hermitian Hamiltonians was due to PT -symmetry [22]. That is the Hamiltonian is

invariant under the joint action of parity (P̂) and time-reversal (T̂ ) operators. For

a complex local potential,
〈
x
∣∣ V̂ (x)

∣∣x′
〉

= V (x)δ(x − x′), the requirement of PT -

symmetry imposes V (x) = V ∗(−x), which means that the real part of the potential

must be symmetric and the imaginary part antisymmetric [150]. Different classes of

PT -symmetric Hamiltonians have been studied exhibiting a real and bounded below

discrete spectrum [23], though in some cases for a range of parameters complex eigen-

values do occur which are associated with a spontaneous breaking of PT -symmetry.
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There have been various attempts to demonstrate that PT -symmetry can be under-

stood most conveniently using the theory of pseudo-Hermitian Hamiltonians (see ref-

erence [144] for a review about the physical aspects of pseudo-Hermitian quantum

mechanics) and that a quantum system possessing PT -symmetry is equivalent to a

quantum system having a Hermitian Hamiltonian [146]. Nevertheless some contro-

versial points are still part of the theory [145].

The examples of PT -symmetric quantum Hamiltonians so far existing in the lit-

erature rely more on aspects concerning the discrete spectrum and bound states

[191, 21, 20] although there has been some or other attempt to extend the discus-

sion to states of the continuum spectrum [53].

Our aim is to perform band structure calculations by using PT -symmetric Hamil-

tonians. As has been well known for years, a Hermitian periodic potential cannot

alter its band spectrum just by fine tuning the parameters. The bands can indeed be

made wider or narrower but their number and quality (forbidden or allowed) remain

unchanged. The physical idea is indeed whether this behaviour would be maintained

if a PT -invariant potential is used. It was shown in an earlier work how for a certain

PT -symmetric periodic Hamiltonian the band condition remained real [24], however

the results concerning the appearance of removal of bands were inconclusive.

To tackle the given problem we have the use of an analytical band condition for

a simple one-dimensional model that can be easily extended to the PT -symmetric

domain.

5.1.1 The model

Let us begin with a brief remainder of the model presented in section 3.2 correspond-

ing to an infinite periodic potential whose primitive cell is made out of N equally

spaced deltas with different real couplings. If the spacing is a and aj = }2/mαj is the

length associated to each coupling (αj), the band structure can be written as

cos(Nqa) = B(ε; a1, . . . , aN ), (5.1)

where q ∈ [−π/L, π/L] defines the first Brillouin zone (1BZ) in the reciprocal space,

and the band condition B(ε; a1, . . . , aN ) is defined in equations (3.12) in terms of the

elementary functions hj(ε) = cos(ε)+(a/aj) sin(ε)/ε and ε ≡ ka being a dimensionless

representation of the energy. Let us list below, for the benefit of the reader, the first
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three conditions for the cases N = 2, 3 and 4.

cos(2qa) = 2h1h2 − 1, (5.2)

cos(3qa) = 4h1h2h3 − (h1 + h2 + h3), (5.3)

cos(4qa) = 8h1h2h3h4 − 2(h1h2 + h1h4 + h2h3 + h3h4) + 1. (5.4)

The next step is to add PT -symmetry to this model. In order to do so we include

the following changes:

• Promote the couplings from real to complex:
(

a
aj

)
→ rj + isj .

• Order the potential in a PT -invariant form, that allows us to choose a PT -

symmetric primitive cell. This leads to the following identifications (∗ means

complex conjugation):

hN = h∗1,

hN−1 = h∗2,

...




hN
2

+1 = h∗N
2

, even N

hN+1
2

= h∗N+1
2

, odd N .

It is easy to check that equation (5.1) remains real under these identifications, which

make obviously the periodic potential complex but PT -invariant. In order to analyse

the band structure, one has to assert whether the band condition B(ε; a1, . . . , aN ) is

above (below) +1 (−1). In the model of reference [24] this appears a very hard task

indeed as the authors do not have at their disposal an analytical band condition, so

they must carry out various kinds of approximations. In our case several analytical

and numerical analysis can be performed in order to check the dependence of the

band width and the band number on the key parameter that arises in the model: the

imaginary part of the complex couplings.

5.1.2 The band condition for couplings with non-vanishing imaginary

part

In order to understand the effect of the imaginary part of the couplings on the band

spectrum, one must analyse in detail the behaviour of the band condition. Let us

begin with the simplest PT -symmetric chain including 2 deltas in the primitive cell

characterized by the parameters (a/a1) = r1+is1 and (a/a1)
∗ = r1− is1. This case has
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been also studied considering different distances between the deltas [6]. The band

structure is entirely determined by the function B = 2 h1h
∗
1 − 1, which can written as

B = B(s1 = 0) +
2s21 sin2(ε)

ε2
. (5.5)

The term due to the imaginary part is always positive and it has the effect of lifting

up the band condition for all values of r1. The position and width of the allowed

(forbidden) bands come from the intersections at B = 1,−1, which depend strongly

on the position of the maxima and minima of the band condition. The changes on

these limiting points can be analytically described in this case.

From the equation dB/dε = 0 one can find the value of the oscillatory part of the

band condition (i.e. the trigonometric functions) as a function of ε and substituting

into B with a properly choice of signs will result in an analytical form for the curves

crossing the extremal points of the band condition,

C± = 2 f±f
∗
± − 1, (5.6)

where C+(C−) lies on the maxima(minima) and the functions f± are defined as fol-

lows:

f± =
1√
F±

[√
2r1(r1 − is1) ±

(
F± − 2r2

1ε
2
) 1

2

]
, (5.7)

F± = r21 + (r2
1 + s21)

2 + 2(r1 + r21 − s21)ε
2 + ε4

± (r1 − r21 − s21 + ε2)
[
(r1 + r21 + s21)

2 + 2(r1 + r21 − s21)ε
2 + ε4

] 1
2 .

(5.8)

Hence, the behaviour of the band condition can be studied through the evolution of

C±. Taking the limit s1 → 0 we obtain

lim
s1→0

C+ = 1 +
2r21
ε2

r1(2 + r1) + ε2

r1(2 + r1) + ε2 +
r2
1

ε2

, (5.9)

lim
s1→0

C− = −1. (5.10)

The real part of the couplings controls the amplitude of the oscillations (and therefore

the distance between C+ and C−) but the minima will always lean on B = −1 unless

the imaginary part is non-zero. Thus as we increase s1 the minima will rise, as can be

seen in figure 5.1(a), and they never touch −1 since limε→∞C− = −1. On the other

hand, considering r1 → 0, after some algebra one obtains

lim
r1→0

C+ =





−1 +
2s21
ε2

s41 + ε4 + s21(1 − 2ε2)

s41 + ε4 + s21(
s2
1

ε2
− 2ε2)

for ε 6 s1,

1 for ε > s1,

(5.11)



5.1 PT -symmetric periodic wires 117

0 5 10 15 20 25 30
ka

-1

0

1

2

3

4

5
(a)

0 5 10 15 20 25 30
ka

0

2

4

6

8
(b)

Figure 5.1. Band condition for N = 2 when s ∼ r in (a) r1 = 5, s1 = 4 and s � r

in (b) r1 = 0.5, s1 = 15. The coloured lines correspond to C±.

and for C− the limit is the same as for C+ but interchanging with respect to the

intervals in ε. Thus for an imaginary part of the coupling large enough compared

to the real one the band condition goes above +1 for energies below the value s1.

Figure 5.1(b) shows this last configuration. In fact the situation s1 � r1 can be easily

understood from the form of the band condition that can be written in this limit as

B ' −1 +
2s21
ε2

+ 2 cos2(x)

(
1 − s21

ε2

)
, (5.12)

which shows clearly the boundaries when ε 6 s1 : 1 6 B 6 −1 + 2s21/ε
2 saturated

at ε = nπ and ε = (2n + 1)π
2 , n ∈ Z, respectively. For ε > s1 the boundaries simply

interchange among them. Due to the nature of the functions hj(ε) the band condition

is always tied up to the value +1 at every multiple of π for all r1, s1, as figure 5.1(b)

clearly shows. Several configurations of the spectrum such as those in figure 5.1 can

be built for different values of the complex coupling.

Let us now consider a PT -symmetric chain whose primitive cell includes 3 atoms

characterized by the parameters (a/a1) = r1 + is1, (a/a2) = r2 and (a/a1)
∗. The band

condition function reads B = 4 h1h
∗
1h2 − (h1 + h∗1 + h2). This can be arranged as

B = B(s1 = 0) +
4s21 sin2(ε) [ε cos(ε) + r2 sin(ε)]

ε3
. (5.13)

The extra term arising from the imaginary part of the coupling can be either positive

or negative depending on the value of r2 and the energy. The effect of s1 is differ-

ent compared to the previous case although there is only one imaginary parameter.

The structure of the band condition seems to be composed by pieces each one includ-

ing 3 different types of extremal points, as figure 5.2(a) shows, each type apparently

following a given pattern. The curves crossing the extremal points of the band con-

dition can also be analytically calculated in the N = 3 case but the expressions are
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Figure 5.2. Band condition for N = 3 for different values of the couplings. Each

type of extremal point is labelled with a different colour. (a) r1 = 4, r2 = 5, s1 = 3,

(b) r1 = 3, r2 = 2, s1 = 5, (c) r1 = 3, r2 = 2, s1 = 25, (d) r1 = 10, r2 = 10, s1 = 25.

quite hard to simplify and therefore we do not provide the explicit form of the equa-

tions. Three curves are obtained, one for each type of extremal point. Initially when

s1 = 0 all the extremal points are outside or on the borders of the range [−1, 1]. As

we increase the imaginary part, the amplitudes of two of the three types of extremal

points begin to decrease (green and red in figure 5.2(b)). At the same time as s1

becomes larger the green and red curves get narrower with decreasing energy until

ε ∼ s1. Below this value the curves broaden trying to expel the extremal points of

the band condition outside the target range (figure 5.2(c)). From the form of B it is

clear that the even(odd) multiples of π will remain fixed to 1(−1). The efficiency of

this expelling process depends upon the values of the real couplings as they control

the amplitudes of the oscillations. One can stretch the maxima and minima (up and

down respectively) increasing r1, r2, as shown in figure 5.2(d).

Several configurations can be obtained among those shown in figure 5.2 and one

important feature must be emphasized: the band condition always changes ‘symmet-

rically’ with respect to the abscissa axis. That is, there is the same amount of positive

and negative function whatever the values of the couplings are. In fact the curves ly-

ing on the extremal points show an exact reflection symmetry around the energy axis.

This is in great contrast to the N = 2 case where the band condition can be pushed
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Figure 5.3. Band condition for N = 4 with different values of the couplings. The

coloured lines are intended to clarify the behaviour of different groups of extremal

points. (a) r1 = 3, r2 = 2, s1 = 0, s2 = 0, (b) r1 = 3, r2 = 2, s1 = 9, s2 = 2, (c)

r1 = 3, r2 = 2, s1 = 4, s2 = 25, (d) r1 = 3, r2 = 2, s1 = 20, s2 = 21.

up above +1 for certain couplings. Thus when s1 � r1, r2 there will always remain a

trace of the original permitted energy ranges in the form of ‘flat’ bands.

The first chain for which two different imaginary couplings can be manipulated is

the one with N = 4 atoms inside the primitive cell: (a/a1) = r1+is1, (a/a2) = r2+is2,

(a/a2)
∗ and (a/a1)

∗. In this case we have not calculated analytically the curves cross-

ing the extremal points. Nevertheless a pictorial approach for some of the curves has

been included in the graphics for a better understanding of the tendencies of change.

The initial situation (s1 = s2 = 0) is a common one for a periodic chain (figure 5.3(a))

and two different group of extremal points can be distinguished. As we increase the

imaginary part of the couplings one group of extremal points starts to decrease and

the band condition lifts up globally (figure 5.3(b)). The effect of the two imaginary

parts is quite similar. When both of them have comparable values the two groups

of minima follow the same tendency moving the band condition upwards. However

if one imaginary part grows much more than the other one, several minima stretch

down in a region of energy roughly included in ssmall < ε < slarge (figure 5.3(c)).

Finally when s1, s2 � r1, r2 one can force the band condition to go above +1 (keeping

our well known knots at ε = nπ) in a certain energy range which depends on the val-
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Figure 5.4. Band condition for a PT -symmetric chain with N = 5. (a) r1 = 4,

r2 = 1, r3 = 1, s1 = 20, s2 = 5, (b) r1 = 4, r2 = 2, r3 = 3, s1 = 10, s2 = 20.
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Figure 5.5. Band condition for a PT -symmetric chain with N = 6. (a) r1 = 5,

r2 = 3, r3 = 4, s1 = 2, s2 = 5, s3 = 4, (b) r1 = 1, r2 = 2, r3 = 0.5, s1 = 10, s2 = 11,

s3 = 12.

ues of the imaginary parts of the couplings (figure 5.3(d)), approximately the same

way as for the N = 2 case. Unlike the N = 3 example the band condition can be

unbalanced to positive values with a proper choice of the parameters.

The band condition has been also studied in detail for N = 5 and N = 6. Its

behaviour gets really complex as the number of atoms grows. In figures 5.4 and

5.5 some characteristic examples are shown. For N = 5 the band condition shows

five types of extremal points that evolve ‘symmetrically’ around the abscissa axis as

we change the imaginary couplings. For N = 6 three types of maxima and minima

appear and for large enough values of the imaginary couplings the band condition is

greater than +1.

To summarize this mathematical analysis of the band condition let us now list

some of the most salient features:

• The band condition is composed of pieces integrated by N(N/2) extremal points

for odd(even)N . Each extremal point belongs to a group that evolves differently

according to the values of the imaginary parts of the couplings.
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• For odd N the band condition is ‘symmetric’ around the abscissa axis for all

values of the couplings. Therefore, some permitted levels always remain as a

part of the spectrum.

• For evenN the band condition can be expelled out of the target range for certain

values of the couplings, so removing the allowed bands.

• For ε = nπ the band condition is fixed to +1 or −1 depending on the parity of

N and n for all values of the couplings.

• The real parts of the couplings are always proportional to the amplitude of the

oscillations.

Even with all the included figures, it is hard to make a complete explanation of the

behaviour of the band condition that otherwise can only be fully understood watching

some proper animations of the function. This is the procedure we have followed to

support the results.

5.1.3 The band structure and the electronic states

Let us now make some comments about the band structure. One important feature

that stands out from the above examples is the presence of maxima(minima) inside

the target range (−1, 1). This fact involves the presence of points in the reciprocal

space where the gradient of the energy diverges, that makes the physical interpreta-

tion of the Hamiltonian not so straightforward. Probably some additional restrictions

have to be imposed on the PT -symmetric Hamiltonian. These special points also

cause some changes on the form of the bands, which are always understood as the

ensembles of states and energies labelled with a certain index (n for the n-th band).

Every point of the Brillouin zone must represent a physical state on every band. There-

fore for a certain value qa let us label the eigenenergies of the Hamiltonian following

an increasing order (ε1(qa) < ε2(qa) < . . .). This procedure leads unavoidably to the

definition of bands whose dispersion relations are not continuous over the reciprocal

space, as seen in figure 5.6(a). Of course the choice of the band indices is not unique

but none of them will be free of these discontinuities.

On the other hand those pathologies can be avoided if one restricts one’s working

scenario to a small range of energies. In that case the imaginary parts of the couplings

can be tuned to modify essentially the spectrum of the system removing or decreas-

ing gaps to change virtually its response to transport phenomena (figures 5.6(b) and

5.6(c)).
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Figure 5.6. Band structure in the irreducible part of the first Brillouin zone for

different chains: (a) N = 3 with r1 = 1, r2 = 2, s1 = 3. Different colours show the

first four bands. (b) N = 5 with r1 = 4, r2 = 2, r3 = 1, s1 = s2 = 0 (red) and

s1 = 0.775, s2 = 0.1 (blue). (c) N = 6 with r1 = 5, r2 = 2, r3 = 3, s1 = s2 = s3 = 0

(red) and s1 = 1.613, s2 = 0.12, s3 = 0.3 (blue).

One can also wonder about the form of an electronic state belonging to such a

characteristic spectrum. It is not hard to calculate analytically the wave function

inside the primitive cell as a function of the position and the energy with the help of

the computer for low N . To our surprise we have found that the imaginary parts of

the couplings behave as control parameters of the distribution of probability of the

electronic states inside the primitive cell. Thus one could tune these parameters to

decrease the probability of presence in several sectors almost to zero or distribute it

more homogeneously over the primitive cell, as shown in figure 5.7(a). Also for non-

vanishing imaginary parts of the couplings the dependence of the state on the energy

seems quite strong as a small variation of this energy can involve an important change

in the shape of the state (figure 5.7(b)).

5.1.4 Concluding remarks

In this section the band structure of a periodic delta model with complex couplings

exhibiting PT -symmetry has been analysed:

• The band condition of the non-Hermitian Hamiltonian remains real under the

requirement of PT -symmetry .

• Appearance and removal of bands, impossible in the robust Hermitian models,

have been clearly described analytically and graphically for a low number of

deltas (N) in the primitive cell. For arbitrary N the band condition seems to
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Figure 5.7. Electronic wave functions normalized to 1 inside the primitive cell of

different PT -symmetric chains. (a) N = 3 with r1 = 5, r2 = 3. s1 = 0(blue) and

s1 = 19(red) at ε = 5.2. (b) N = 4 with r1 = 3, r2 = 4, s1 = 5, s2 = 8.1 for different

energies: ε = 2.95(red) and ε = 3.13(blue). The deltas are placed at the integer

multiples of a.

evolve with the imaginary couplings according to a well-defined set of rules.

• The imaginary parts of the couplings play an important role in the way the band

structure gets distorted and also have a significant effect on the form of the

electronic states.

5.2 Absorption in atomic wires with non-Hermitian Hamil-

tonians

The inelastic scattering processes occurring in mesoscopic samples as a consequence

of a finite non-zero temperature can noticeably change the coherent transport finger-

prints of these structures. The worsening of electronic transmission due to such effects

is expected but in some situations the competition between the phase-breaking mech-

anisms and the quantum coherent interferences can improve conductance in certain

energetic regimes. This is the case, for example, of disordered structures. This fact

has attracted much attention in the study and modelling of dissipative transport in

one-dimensional structures. Interest is also prompted by experiments currently being

carried out on real atomic chains [5].

A model of parametrized scatterers coupled through additional side channels to

electron reservoirs incorporating inelastic scattering events was initially proposed by

Büttiker [30, 32], and much work has been done along this line [119, 139, 140, 102].

On the other hand, inelastic processes can be modelled by small absorptions which

in turn can be described by extending the nature of the quantum potentials to the

complex domain. In this section we shall include absorptive processes by performing
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these complex extensions on different quantum wire models.

In the framework of one-dimensional atomic chains, non-Hermitian Hamiltonians

have been introduced for example in the study of electronic conductivity, using com-

plex site energies and frequencies [39, 181, 41, 101], or also to design composite po-

tentials behaving as perfect absorbers for certain energies [153]. But non-Hermitian

Hamiltonians have also been used to account for a large variety of phenomena, such as

wave transport in absorbing media [85, 54], violation of the single parameter scaling

in one-dimensional absorbing systems [61], appearance of exceptional points in scat-

tering theory [100, 56], description of vortex delocalization in superconductors with a

transverse Meissner effect [96, 97] or more phenomenologically with nuclear optical

potentials. Imaginary potentials also play a significant role for modelling time observ-

ables [149]. In fact a model of time-of-arrival measurement by fluorescence from a

two-level atom excited by a laser beam has been recently proposed [42, 152, 43, 151]

that in certain regimes can be exactly and rigorously described by local complex po-

tentials [158]. An interesting modern review on complex potentials and absorption

in quantum mechanics has appeared recently [150] and we address the interested

reader to this publication and references therein.

5.2.1 The Schrödinger equation for a complex potential

Let us consider a one-dimensional complex potential of finite support V (x) = Vr(x) +

iVi(x) (V (±∞) = 0). For the stationary scattering states, the density of the current

flux is proportional to the imaginary part of the potential

dJ

dx
=

2

}
Vi(x)|Ψ(x)|2, (5.14)

where J(x) is defined as

J(x) =
}

2mi

(
Ψ∗(x)

dΨ(x)

dx
− Ψ(x)

dΨ∗(x)

dx

)
. (5.15)

Therefore, in the presence of a non-vanishing Vi(x) the unitarity relation regarding

the transmission and reflection probabilities T (E) +R(E) = 1 is no longer valid. One

can still recover a pseudounitarity relation by defining a quantity that accounts for the

loss of flux in the scattering process. Dealing with the asymptotic state ΨL
k (−∞) =

eikx + rL(k)e−ikx, ΨL
k (+∞) = t(k)eikx, one can write the asymptotic values of the flux

as

J−∞ =
}k

m

(
1 −RL(k)

)
, (5.16)

J∞ =
}k

m
T (k), (5.17)
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yielding the relation

T (k) +RL(k) +
m

}k
(J−∞ − J∞) = 1. (5.18)

This latter equation remains the same for the right incidence case (with RR(k))

when the asymptotic state takes the form ΨR
k (−∞) = t(k)e−ikx, ΨR

k (+∞) = e−ikx +

rR(k)eikx. Using equation (5.14) the flux term reads

AL,R(k) ≡ − 2m

}2k

∫ ∞

−∞
Vi(x)|ΨL,R

k (x)|2dx = 1 −RL,R(k) − T (k), (5.19)

and it is usually understood as the probability of absorption [7]. But A(k) must be a

positive defined quantity in order to be strictly considered as a probability and this is

not ensured by the definition (unless Vi(x) < 0 for all x). The sign of A(k) depends

on both the changes in sign of the imaginary part of the potential and the spatial

distribution of the state. Although a negative value for A(k) could be viewed as

emission (because it means a gain in the flux current) it also leads the transmittivity

and the reflectivity to attain anomalous values T (k) > 1, R(k) > 1, which are difficult

to interpret. Let us also note that the integral representation of the absorption term

is useless for practical purposes, because to build the correct expression of the state

ΨL,R
k (x) one needs to impose the given asymptotic forms to the general solution of the

Schrödinger equation, therefore obtaining the scattering amplitudes, so one cannot

calculate the absorption probability without knowing R(k) and T (k).

5.2.2 Chain of delta potentials

Let us first consider the delta model extensively described in chapter 3 and let us now

incorporate the dissipative processes that are always present in real wires, causing

energy losses. We model that effect by including an imaginary part in the potential. In

this case the natural complex extension of our system consists in promoting the delta

couplings from real to complex, thus writing (a/aj) = rj − isj. We also take sj > 0

for all j in order to avoid anomalous scattering. The effect of ordering the complex

couplings in a PT -symmetric manner on the spectrum of an infinite periodic delta

chain has been studied in the previous section, now let us see what happens in a chain

with open boundaries. In figure 5.8 the usual scattering diagram is shown for a short

periodic chain with real potentials. Including a small imaginary part in the couplings

we see how the transmission pattern is altered with a non-negligible absorption that

peaks at the incoming band edges while the reflectivity is not noticeably changed. This

tendency of the absorption term also appears when several species are included in the

periodic array, and its pattern does not change much if only some of the couplings are

complexified.
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lines) and (a/a1) = 1.0 − 0.015i (solid lines).

1.5 2 2.5 3
ka

0

0.2

0.4

0.6

0.8

1

(a) 6.5 7 7.5 8 8.5 9
ka

0

0.2

0.4

0.6

0.8

1 R →
R ←
T
A →
A ←

(b)

Figure 5.9. Scattering process for disordered arrays of 15 deltas with complex cou-

plings. The sequences of the real parts of the characteristic parameters are: (a)

Re (a/aj): 3, 1, 2, 0.5, 3, 2, 1, 3, 0.5, 4, 5, 1, 2, 2, 3, (b) Re (a/aj): −1, −4, −3, −1,

−2, −3, −4, −1, −2, −3, −1, −4, −4, −2 ,−3. The imaginary part of each coupling

has been chosen as Im (a/aj) = −0.01|Re(a/aj) |. The arrows in the legends mark

the direction of incidence.

When the array presents no ordering at all, the graph is quite unpredictable and

different configurations can be obtained. In figure 5.9(a) a peaky spectrum with

very sharp absorption resonances is shown. The scattering process in this case is

strongly dependent on the incidence direction, as can be seen. On the other hand,

smoother diagrams are also possible in which the effect of the complex potential

manifests through an almost constant absorption background and a small change de-

pending upon the colliding side, like the one in figure 5.9(b). This naive model, apart

from being exactly solvable, is powerful enough to account for very different physical

schemes, which makes it a very useful bench-proof structure.
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complex Scarf potential.

5.2.3 Dissipative atomic quantum wells/barriers

Let us go one step further and consider a potential that resembles the profile of an

atomic well or barrier. We shall consider the extension of the Pöschl-Teller potential

given by the complexified Scarf potential,

V (x) =
}2α2

2m

(
V1

cosh2(αx)
+ i V2

sinh(αx)

cosh2(αx)

)
, (5.20)

with V1,V2 ∈ R. It is a proper complex extension for two reasons: it admits analytical

solutions [118, 40] and its imaginary part is somehow proportional to the derivative

of the real part of the potential. This latter criterion has been considered in nuclear

optical potentials to choose adequate complex extensions. It seems reasonable to

measure the strength of the dissipation processes in terms of the ‘density’ of the real

interaction and therefore writing an imaginary potential that is proportional to the

spatial derivative of the real one. The potential profile is shown in figure 5.10.

The Scarf potential has been extensively considered in the literature, mainly deal-

ing with its discrete spectrum, either in its real and complex forms, from the point of

view of SUSY Quantum Mechanics [36, 134] or focusing on its PT -symmetric form

[8].

First, a detailed mathematical analysis of the potential, regarding its scattering

properties, must be made to discuss some new features and some assertions that have

been made.

The left scattering amplitudes of the real Scarf potential have been obtained in

terms of complex Gamma functions [118]. Recently, a considerable simplification has

been pointed out [8]. In fact, the asymptotic transmittivity and reflectivity for the
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complex Scarf can be written as

T (k) =
sinh2

(
2π k

α

)

sinh2
(
2π k

α

)
+ 2 cosh

(
2π k

α

)
cosh(πg+) cosh(πg−) + cosh2(πg+) + cosh2(πg−)

(5.21)

RL(k) =
cosh2(πg+)e−2πk/α + cosh2(πg−)e2πk/α + 2 cosh(πg+) cosh(πg−)

sinh2
(
2π k

α

)
+ 2 cosh

(
2π k

α

)
cosh(πg+) cosh(πg−) + cosh2(πg+) + cosh2(πg−)

(5.22)

where g± =
√
V1 ± V2 − 1/4 and RR(k) is recovered from RL(k) by interchanging

g+ and g− (which is equivalent to substituting V2 → −V2 and therefore changing

the direction of incidence). These expressions of course can be derived from the

asymptotic transmission matrix, which we have obtained from the asymptotic form of

the solutions of the Schrödinger equation (appendix E),

M =

(
eiφ

√
1 + ss −is

is e−iφ
√

1 + ss

)
, (5.23)

where

φ =
π

2
+ arg

{
Γ2
(
i k
α

)
Γ2
(

1
2 + i k

α

)

Γ
(
c+ i k

α

)
Γ
(
b+ i k

α

)
Γ
(
1 − c+ i k

α

)
Γ
(
1 − b+ i k

α

)
}
, (5.24)

s =
cosh(πg+)eπk/α + cosh(πg−)e−πk/α

sinh(2πk/α)
, (5.25)

s = s(g+ � g−), (5.26)

with the definitions

c =
1

2
− i

2
(g+ − g−), b =

1

2
− i

2
(g+ + g−). (5.27)

It immediately follows from the transmission matrix that the absorption probabilities

read

AL(k) =
ss− s2

1 + ss
, AR(k) =

ss− s2

1 + ss
. (5.28)

Unlike the complex delta potentials example, this potential has some drawbacks

that must be carefully solved. Its imaginary part is non-negative defined in its domain,

which might cause anomalous scattering. Only some values of V2 will be physically

acceptable. To ensure that T (k) 6 1 for all k, it is clear from equation (5.21) that

the necessary and sufficient condition is cosh(πg+) cosh(πg−) > 0. The functions g+,

g−, can be real or pure imaginary depending on the values of V1 and V2. A detailed

analysis of the conditions for physical transmission is presented in appendix E. As
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Table 5.1. Ranges of V2 compatible with the condition T (k) 6 1 for all k for the

complex Scarf potential for certain negative values of V1. The last column includes

the intervals providing physical scattering from the emissive side of the potential.

V1 |V2| |V2| emissive

−0.5 [0, 0.5] ∪ [1.5, 5.5] ∪ [11.5, 19.5] · · · [0, 0.5]

−1 [0, 5] ∪ [11, 19] ∪ [29, 41] · · · Ø

−2.4 [0, 0.4] ∪ [2.4, 3.6] ∪ [9.6, 17.6] · · · [0, 0.4] ∪ [2.4, 2.569]

−3 [0, 1] ∪ {3} ∪ [9, 17] · · · [0, 1]

−4 [0, 4] ∪ [8, 16] ∪ [26, 38] · · · [3.606, 4]

−5 [0, 1] ∪ [3, 5] ∪ [7, 15] · · · [3, 4.123] ∪ [4.472, 5]

a summary, let us say that for V1 > 0 (barriers) , the evaluation of the condition

translates into

|V2| ∈ [0,V1] ∪ [2n(2n− 1) + V1, 2n(2n+ 1) + V1], n ∈ Z+. (5.29)

For V1 < 0 (wells) the situation becomes more complicated and the result can only be

expressed through several inequalities, each one adding a certain allowed range for V2

(see appendix E). As an example, in table 5.1 we show the compatible ranges of V2 for

a few negative values of V1. One can trivially check the compatibility of the intervals

presented for V2 with the condition T (k) 6 1 for all k by plotting equation (5.21).

In a two dimensional plot of |V2| versus V1, the physical ranges for the transmission

distribute as alternating fringes and a funny chessboard like pattern (figure 5.11 on

the following page).

One feature to emphasize according to the conditions given for acceptable trans-

mission is the fact that the number of permitted intervals for V2 is infinite for any

V1, either positive(barrier) or negative(well), and therefore there is no mathemati-

cal upper bound on |V2|(|Vcritical
2 |) above which the transmission probability always

becomes unphysical, contrary to what has been reported recently [8]. From a phys-

ical viewpoint of course, a sensible limitation must also be imposed on V2, usually

|V2| � |V1|.
Let us see now what happens with the reflectivity. We assert that for the values of

V1 and V2 preserving a physical transmission, one of the reflectivities of the system

remains physical (i.e. R(k) 6 1 − T (k) for all k), left or right, depending on the par-

ticular values of the dimensionless amplitudes (or equivalently, one of the absorptions

takes positive values for all k). The statement is easy to prove from equations (5.28)

and more specifically reads: when T (k) 6 1 for all k (i.e. cosh(πg+) cosh(πg−) > 0),
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Figure 5.11. Scattering diagram for the complex Scarf potential in terms of the

potential amplitudes. The physically acceptable ranges for V1, V2, correspond to the

shaded zones. The curves are the inversion lines given by equation (5.33). The black

points mark the correlated values of the amplitudes (equations (5.32)) generating a

fully transparent behaviour.

then

| cosh(πg−)| < | cosh(πg+)| ⇒ AL(k) > 0, ∀ k, (5.30a)

| cosh(πg−)| > | cosh(πg+)| ⇒ AR(k) > 0, ∀ k. (5.30b)

Considering V1 > 0 and V2 > 0 it is not hard to see that the first of the above

inequalities always holds. Therefore, in the case of a potential barrier the scattering is

always physical from the absorptive side (trough of the imaginary part), as has already

been stressed [8]. More interesting is the fact that this conclusion cannot be extended

to the case V1 < 0 (well). In this case the physical scattering sometimes occurs from

the emissive side (peak of the imaginary part), producing smaller absorption terms.

In table 5.1 a few examples of V2 intervals providing physical scattering from the

emissive side for some potential wells are shown.

Another interesting feature that must be observed is that there exists a set of cor-

related values of V1,V2 for which the complex Scarf potential behaves as fully trans-

parent (i.e. T (k) = 1 for all k). The condition for this to happen is from equation

(5.21) cosh(πg+) = cosh(πg−) = 0. Thus, the main requirement is that g+ and g−

must be pure imaginary, yielding in this case the transparency equations

cos

(
π

√
1

4
− V1 ± V2

)
= 0, (5.31)

whose solutions are

V1 =
1

4
− 1

8

[
(2m+ 1)2 + (2n+ 1)2

]
, (5.32a)

V2 =
1

8

[
(2m+ 1)2 − (2n+ 1)2

]
, m, n ∈ Z. (5.32b)
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Table 5.2. Some correlated values of V1, V2, producing the fully resonant be-

haviour of the complex Scarf potential. The particular Pöschl-Teller resonances are

in square brackets.

(−V1,|V2|)

(1, 1) (3, 3) (6, 6) (10, 10) (15, 15)

[2, 0] (4, 2) (7, 5) (11, 9) (16, 14)

[6, 0] (9, 3) (13, 7) (18, 12) (24, 18)

[12, 0] (16, 4) (21, 9) (27, 15) (34, 22)

It is worth noting that the transparencies only appear for potential wells (V1 < 0).

Considering the particular case n = m one recovers the Pöschl-Teller resonances. In

table 5.2 the first values of equations (5.32) are listed explicitly.

The absorption obviously vanishes for all energies when considering these special

resonant values of the potential amplitudes. Surprisingly, there also exists another

set of non-trivial correlated values of V1,V2 for which the potential is non-dissipative

(A(k) = 0 for all energies) without being fully transparent. This set of values satis-

fies cosh(πg+) = cosh(πg−) 6= 0, as can be seen from equations (5.28). Non-trivial

solutions exist when g+, g− ∈ C, yielding

|V2| = n
√

1 − 4V1 − 4n2, n ∈ Z+. (5.33)

Let us also notice from equations (5.30) that the latter points are also the borders

where the physical scattering changes from the absorptive side to the emissive side

or vice versa. We shall refer to these borders as inversion points (IP). Therefore,

whenever we encounter an IP we can say A(k) = 0 for all k without a fully transparent

behaviour, and hence a non-dissipative scattering process for all energies with a non-

vanishing imaginary part of the potential. Let us note that from equation (5.33) the

IPs only appear in the case of Scarf potential wells and only for |V2| 6 1/4 − V1.

In figure 5.12 the characteristic scattering probabilities are shown for a Scarf barrier

and a Scarf well, and in figure 5.13 the maximum value of the physical absorption

is plotted versus |V2| for different values of V1. When V1 is positive the absorption

grows with the amplitude of the imaginary part of the potential. On the other hand,

for negative V1 a strikingly different pattern arises, with transparency points (TP) and

inversion points (IP) and the absorption does not increase monotonically with |V2|.
The whole behaviour of the scattering can be clearly understood by building a two

dimensional diagram |V2| versus V1 (figure 5.11 on the preceding page), including

physically permitted ranges, inversion lines and the points of transmission resonance.
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Figure 5.12. Scattering pat-
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curve is shown for continuity. The
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pared with the values in table 5.1.

The complex Scarf potential shows two opposite faces to scattering, namely barrier

and well, and a much richer structure in the latter case.

After this detailed analysis of the peculiarities of the complex Scarf, let us continue

with our work on connecting several potentials to model dissipative atomic chains.

The procedure is the same as the one described for the Pöschl-Teller potential in chap-

ter 4. In this case a symmetric cut-off of the potential is taken, the portion included in

the interval [−d, d]. Then from the asymptotic matrix it follows that the cut-off matrix

reads, according to equation (2.10),

M =

(
ei(φ+2kd)

√
1 + ss −is

is e−i(φ+2kd)
√

1 + ss

)
, (5.34)

in terms of the previously defined quantities φ, s and s. It can be checked that the

half-widths d1/2 of both the real and imaginary parts of the potential coincide and

that the decay of the imaginary part is always slower than that of the real part (figure

5.10). This causes an increase in the minimum value of the cut-off distance d0 with

regard to the Pöschl-Teller case. For a sensible wide range of the potential amplitudes

we have found that considering d0 ' 3d1/2 = 5.3/α is enough in most cases. In fact,

this minimum value can be relaxed in the case of potential barriers (V1 > 0), whereas

for potential wells taking d below this value to apply the connection equations may
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Figure 5.14. Scattering probabilities for double Scarf potentials with parameters

α = 1(x−1 units), V1 = 2, V2 = 1 for barriers and α = 1(x−1 units), V1 = −4,

V2 = 3.1 for wells. The solid lines were obtained from the analytical composition

technique and the dashed lines correspond to the exact numerical integration of the

Schrödinger equation for the global potential. The insets show the potential profile

(in arbitrary units) for each case: solid line for the real part and dashed line for the

imaginary part. The vertical lines limit the portion of the potential that the compo-

sition technique takes into account. Notice that for low d the exact integration may

lead to unphysical scattering. As d is increased an acceptable scattering is recovered

and both methods give the same result. In the case of potential barriers the analytical

composition technique works impressively well even for very low values of d.

sometimes distort the results. The correct behaviour of the connection procedure for

d > d0 can be observed in figure 5.14, where the scattering probabilities obtained

upon integrating the Schrödinger equation numerically for the global potential are

compared with those given by the analytical composition technique, for two potential

barriers and two potential wells with different choices of the cut-off distance and with

high values for |V2|. Notice how in the barrier example the agreement between both

methods is completely reached for d ' 2d1/2 whereas for potential wells a further step

is needed since the minimum value of the cut-off is more critical.

Once the connection of potentials has been successfully made, one should ask

which are the ranges of the potential amplitudes that provide an acceptable physi-

cal scattering in this new framework. Analysis of this issue is very non-trivial and

quite complex analytically, but also very important because it determines whether this



134 Quantum wire with complex potentials

model remains useful when considering atomic chains. First, in the case of two po-

tentials we have observed that choosing each individual pair of amplitudes (V1,V2)

belonging to a physical range, and selecting the signs of the imaginary parts so that the

physical faces of both potentials point in the same direction, then an acceptable scat-

tering for the composite potential can always be recovered at least from one of the two

possible orientations (both physical faces to the right or to the left). In other words,

considering that the incident particle always collides with the left side (it comes from

−∞) and therefore orientating the individual physical faces to the left, then at least

one of the sequences VI(x)−VII(x) or VII(x)−VI(x) gives an acceptable scattering for

all energies. We have checked this assertion for a broad variety of Scarf couples. For

a higher number of potentials the situation becomes more complex but a few pseudo-

rules to obtain physical scattering can be deduced. For an arbitrary chain we have

found that in many cases the left scattering remains physical as long as: the left scat-

tering of each individual potential is physical and the left scattering of each couple of

contiguous potentials is physical. This recipe seems completely true when composing

potential barriers only, whereas when wells are included it fails in some situations,

especially when several contiguous wells are surrounded by barriers. Although at the

beginning it may appear almost random to recover a physical scattering from a large

composition of Scarfs, following the given advices it turns out to be more systematic.

Let us remember that the composition procedure, apart from being a powerful tool

for numerical calculations also provides analytical expressions for the scattering prob-

abilities, which of course adopt cumbersome forms for a large number of potentials

but are useful for obtaining simple expansions for certain energetic regimes. Just as

an example, the transmittivity and left reflectivity for the double Scarf read

T (k) =
1

s21s
2
2 + (1 + s1s1)(1 + s2s2) − 2s1s2

√
1 + s1s1

√
1 + s2s2 cos(Φ)

, (5.35)

RL(k) =
s21(1 + s2s2) + s22(1 + s1s1) − 2s1s2

√
1 + s1s1

√
1 + s2s2 cos(Φ)

s21s
2
2 + (1 + s1s1)(1 + s2s2) − 2s1s2

√
1 + s1s1

√
1 + s2s2 cos(Φ)

, (5.36)

where Φ = φ1 + φ2 + 2k(d1 + d2) and making use of the previously defined terms

s, s and φ. Just like for the Pöschl-Teller potential, the formulae for the compos-

ite scattering probabilities analytically account for the fully transparent behaviour of

the whole structure as long as there is resonant forward scattering of the individual

potential units. Another curious feature arises when composing different potentials

whose amplitudes describe an inversion point. In this case the whole structure re-

mains non-dissipative as can be seen in figure 5.15. Moreover, the complex Scarfs at

these points behave completely as real potentials, providing an acceptable scattering

for the composition that is independent of the incidence direction for any sequence of
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(dashed lines) and cut-off distance d = 6(x

units).

the individual Scarfs.

Considering larger Scarf chains with small imaginary parts of the potentials, in the

case of a periodic array we observe that the absorption term remains flat over a wide

range of forbidden bands and oscillates inside the permitted ones. The variations in

the absorption are entirely balanced by the reflectivity while the transmittivity is sur-

prisingly not affected by the presence of a small complex potential, as can be seen in

figure 5.16. This behaviour contrasts strongly with the periodic chain of complex delta

potentials, where the absorption was completely different and it was the reflectivity

that was little affected by the dissipation (figure 5.8 on page 126). For an aperi-

odic sequence the situation is quite different, as expected. In figure 5.17(a) a type of

molecular aggregate is modelled with complex Scarfs. It exhibits a peaky absorption

spectrum and a strongly oscillating transmittivity with sharp resonances. In figure

5.17(b) a symmetric atomic cluster has been considered in which the dissipation only

occurs at both ends. The model is quite versatile since very different transmission and

absorption configurations can be obtained by building different structures.

As a final exercise, two examples are included in figure 5.18 on page 137 showing

the evolution of the transmittivity of two different Scarf compositions as a function of

the imaginary part of the potential. The transmission patterns are plotted for differ-

ent values of the parameter ε = |V2|/|V1|, which measures the strength of the imag-
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Figure 5.17. Scattering probabilities for a couple of 10-Scarf structures with pa-

rameters α = 1(x−1 units) and d = 6(x units) equal for all potentials and amplitudes

(a) (V1,V2): (1, 0), (−0.5,−0.005), (−1.3, 0.013), (1.8, 0.01), (−1.3, 0.013), (4, 0.04),

(−2.4,−0.024), (3.5, 0.04), (−3.1, 0.031), (−1.5, 0.04) and (b) (V1,V2): (1, 0.04),

(1, 0.05), (−2, 0), (−1.5, 0), (−1, 0), (−1, 0), (−1.5, 0), (−2, 0), (1, 0.1), (1, 0.1). The

inset shows the real part of the potential profile (arbitrary units).

inary part. The transmission efficiency Teff =
∫ k2

k1
T (k) dk/(k2 − k1), corresponding

to the area enclosed by T (k) per energy unit, is evaluated in a characteristic energy

range, generally the zone where T evolves until it becomes saturated. The imagi-

nary potential tends to smooth the transmission pattern in the first example (figure

5.18(a), corresponding to a sequence of barriers), causing a slight decrease in the

transmission efficiency for low ε, although it is finally improved. For a double well

a different effect occurs (figure 5.18(b)). Teff is always enhanced with increasing ε

until it reaches a maximum, after which the transmittivity falls with the strength of

the imaginary potential. These effects are very similar to those obtained for the con-

ductivity of a disordered chain in which inelastic processes are included by means

of parametrized scatterers [140, 102] or incorporating imaginary corrections to the

Hamiltonians [41, 181, 101]. As we have seen, complex potentials are useful to model

the effects of dissipative mechanisms in atomic chains. Then it would be specially in-

teresting to implement these complex potentials in long disordered arrays where the

break of the electronic localization regime could arise as a result of the loss of co-

herence due to phase-breaking mechanisms [66, 82, 78, 93], but this task demands a

deeper analysis.

5.2.4 Concluding remarks

In this section dissipative scattering processes have been modelled in various types of

atomic chains using complex potentials. In particular:
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Figure 5.18. Transmittivity for different strengths of the imaginary part of the po-

tentials in (a) a chain with 6 Scarf barriers V1 = 4, 2, 2.5, 3, 3.5, 4 and α = 1(x−1

units), (b) a double Scarf well with V1 = −1,−1 and α = 2(x−1 units). The cut-off

distance in all cases is equal to d = 6(x units). Each imaginary amplitude reads

V2 = ε|V1|, except the first barrier in example (a) which is maintained real. The

insets show the evolution of Teff vs the strength of the imaginary amplitudes.

• The absorption probability has been rigorously included to recover unitarity for

the non-Hermitian Hamiltonians.

• The asymptotic transmission matrix of the complex Scarf potential has been

obtained. Using the cut-off version of the matrix, the linear composition of

several potential units has been realized for which exact analytical expressions

of the scattering amplitudes can be written.

• A profound mathematical analysis of the scattering properties of the complex

Scarf potential has been carried out. The ranges of physical transmission have

been analytically obtained and a group of interesting novel features have arisen

such as the existence of parameters for which the potential becomes transparent

for all energies or the presence of inversion points which are the borders where

the acceptable scattering changes from the emissive side to the absorptive side

or vice versa.

• The models proposed are able to include dissipation in the system in a tractable

way. The versatility and richness of the different possible configurations may

have direct applicability for considering molecular aggregates and other struc-

tures with explicit potential profiles. The results suggest that the models might

also be able to account for the loss of coherence in the electronic localization

regime due to phase-randomization events.
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C H A P T E R 6

Final discussion

The generalization of some parts of the existing methodology together with the de-

velopment of new tools to treat one-dimensional disordered systems have made it

possible to carry out a thorough analysis of several models of quantum wires. A de-

tailed study of the properties of their spectra and the nature of their electronic states

has been made, and some novel and interesting features have arisen. An itemized list

with the main results is included after each chapter.

We believe that the results presented can contribute to understand better some

of the properties of disordered 1-D systems, but at the same time they require us to

ask new questions (probably more than we had at the beginning!) about the physics

of these structures. Therefore, it is worth to comment on the significance of several

results and discuss future perspectives.

At the present time the theory of disordered systems does not include a unify-

ing mathematical principle comparable to the Bloch theorem for the case of periodic

structures. We would like to believe that the derivation of the universal functional

equations for disordered systems in one dimension may mean a little advance in this

direction. The fact that independently of the potential model it is possible to write a

general set of functional equations which only depend on the distributions defining

the disorder and that characterize the thermodynamic limit of the systems, is to our

minds a result that must be taken into account. And physical relevant quantities such

as the DOS or the localization length can be directly calculated in the thermodynamic

limit from the functional equations. In spite of their formidable aspect the equations

may have analytical solutions in certain cases or they may be useful to extract analyti-

cally information of the systems in the thermodynamic limit. Work along this line will

probably require the use of a tough mathematical formalism but it also could be very
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fruitful.

In the analysis of the different disordered models, it has been found that the dis-

tribution of states in the thermodynamic limit shows a fractal behaviour in certain

energy ranges. Fractality of the DOS seems to be a universal feature of disordered

systems in 1-D, independent of the potential model, and that apparently manifests

itself whenever the distributions of the parameters of the system defining the disorder

are discretized. This assertion has been checked for the delta model and the Pöschl-

Teller model, for which fractality of the DOS always appears when the distribution of

the different species is discretized, whereas if one allows one of the configurational

parameters, for example the interatomic distances, to be governed by a continuous

distribution, fractality disappears. The fractal character of the DOS has been con-

firmed numerically by studying the change of the distribution of the energy spacings

between adjacent eigenlevels with the length of the system, as well as via the semi-

variance analysis of the DOS which has been used to quantify the fractal dimension.

It is also remarkable the fact that fractal energy ranges of the DOS are related to

strong localization while extended states always occur, without exception, in smooth

regions of the distribution of states. This fact establishes a link between localization

of states at a given energy and the infinitesimal distribution of available levels around

that energy. A homogeneous infinitesimal distribution of levels facilitates delocaliza-

tion, while if homogeneity at the infinitesimal scale cannot be reached (i.e. a fractal

distribution) then electrons have no chances to be extended. Then, one can wonder

whether it is possible to characterize localization in terms of the nature of the dis-

tribution of states, or if a direct relationship exists between the mean value of the

localization length in an energy range and the fractal dimension of the DOS within

that range. On the contrary it may also happen that fractal dimensions of the distribu-

tion follow more general rules which could be determined by the potential model or

the type of disorder. It would be interesting also to study whether fractality in the DOS

of disordered systems also appears in 2-D and 3-D structures, or on the contrary is a

fingerprint of one-dimensional physics. Further research is then needed to study in

depth these topological features of the DOS, their connection if any with localization

properties and their dependence upon disorder and dimensionality.

The analysis of the quantum wire models has also revealed the existence of isolated

extended states exhibiting very dissimilar characteristics: different critical exponents

for λ and DOS, different behaviour of the IPR and different aspect of the envelope of

the state. However they share some common features, like the fact that the number

of states near the resonance with a localization length larger than the system size

scales as the square root of the length of the chain. But the most interesting thing
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is that all extended states found are located at commuting-energies, that ensures

the commutativity of the transmission matrices composing the array. Then one can

conjecture that all extended states in 1-D systems may be commuting-energies of the

spectrum. As we have seen, this common origin is compatible with very different

features of the extended states, and if it were true it would mean to have a very

simple condition to find all possible resonances that can occur in a one-dimensional

disordered system. Of course we must not forget that the additional condition of

belonging to the permitted spectrum of all species of the chain has also to be satisfied

by the commuting-energy. In order to support this conjecture let us see that even

when short-range correlations are included in the disorder, the extended states occur

at commuting-energies. Let us consider for example the famous binary random-dimer

model. One of the atomic species appears always in pairs (dimers), then the matrix of

the dimer reads(
α β

β∗ α∗

)(
α β

β∗ α∗

)
=

(
α2 + |α|2 − 1 2βRe (α)

2β∗Re (α) (α∗)2 + |α|2 − 1

)
, (6.1)

where we have used |α|2−|β|2 = 1. Then, due to the dimeric structure of the matrix it

is possible that new resonant states emerge in the spectrum at energies for which the

dimer matrix commutes with the matrix of the other species. The simplest case cor-

responds to the situation when the dimer matrix reduces to a multiple of the identity

matrix, and that occurs whenever Re (α) = 0 as can be seen in the above expression.

Then the only left condition to have a resonance is that the energy belongs to the per-

mitted spectrum of the non-dimerized species. This is the most simple way to write

the condition of the dimer resonance and it is independent of the potential model.

Additionally the discrete transfer matrix can also be used instead of the continuous

transmission matrix to deduce the commuting-energies. Moreover, other commuting-

energies can exist for which the dimer matrix does not reduce to the identity, since it

suffices that the dimer matrix (Mdimer) can be written as a combination of the identity

and powers of the matrix of the non-dimerized species (M),

Mdimer = a0I +
∑

n>0

anM
n
. (6.2)

And the same reasoning can be applied to other types of impurities that can be in-

cluded inside a periodic chain. In fact, it has been found that if the impurities are

symmetric then extended states can exist at energies for which the impurity matrix

reduces to a linear combination of the identity and the matrix of the other species of

the chain [188, 108], hence they are commuting-resonances. Therefore, this kind of

short-range correlations are able to include new extended states in the spectrum be-

cause there exist energies for which the matrices of the new compositional units (i.e.
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the dimer matrix or the impurity matrix and the matrices of the other species) can

commute. And some of these commuting-energies will not be commuting energies of

the individual matrices of the system and that is the reason why these extended states

do not exist in the uncorrelated model. Let us consider another correlated model sup-

porting extended states, for example the simplest case of the diluted Anderson model

[104, 68]. It consists of a one-dimensional tight-binding Hamiltonian for which the

self-energies εj of the odd sites are random, whereas they are all equal for the even

sites that can be set to zero without loss of generality. This model is known to support

an extended state for E = 0. Let us see that it is a commuting-resonance. The discrete

transfer matrix for the diagonal tight-binding model reads from equation (2.42) on

page 26 (
E − εj −1

1 0

)
. (6.3)

We can define a new compositional unit in the system including an odd and an even

site, which can be described by the product of the individual matrices,

Mj =

(
E2 − εjE − 1 εj −E

E −1

)
, (6.4)

and the commutator of these compositional units can be readily calculated,

[Mj ,Mi] =

(
(εj − εi)E 0

(εj − εi)E
2 (εi − εj)E

)
, (6.5)

that obviously vanishes for E = 0 independently of the values of the site-energies. It

can be easily seen that E = 0 belongs to the permitted spectrum of the periodic chain

of matrices (6.4) for all values of εj , and therefore a commuting-resonance emerges

at that energy whatever the distribution of the site-energies for the odd sites is. It can

be shown that the extended states appearing in more complex configurations of the

diluted Anderson model are also commuting-resonances. It must then be clear that

not all kind of short-range correlations will be able to include new extended states in

the spectrum (in the thermodynamic limit). The correlations must be such that new

compositional units can be defined in the system, so that new commuting-energies for

the matrices of the new compositional units can exist. This reasoning explains why

the model of correlations proposed in this work is not able to include new extended

states, since the probability of appearance of certain binary clusters is modified but

the compositional units of the system remain the same as for the completely random

case, and they are the individual matrices of the atomic species. Then, although the

localization and the transport properties can be modified by the correlations, as it has
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been shown, however no additional truly extended states emerge in the spectrum.

And, what about long-range correlations? Certainly the situation is quite more com-

plex with long-range correlations, however at the present time, to our knowledge,

there does not exist in the literature any proof that long-range correlations are able to

include in the spectrum of disordered systems strictly extended states, that is with a di-

vergent localization length. Only numerical proofs and also analytical calculations up

to fourth-order in perturbation theory exist that have proved that qualitatively a MIT

happens due to long-range correlations. However the states of the ‘delocalized’ phase

are strictly speaking still exponentially localized, as we discussed in the first chapter of

the present work. Hence, it seems that a large variety of models existing so far in the

literature are compatible with the conjecture that all extended states in the thermo-

dynamic limit of one-dimensional disordered structures occur at commuting-energies

of the transmission matrices of the compositional units of the system. Nevertheless,

further research is needed to confirm the validity of such hypothesis.

Among all the interesting features exhibited by the Pöschl-Teller model, such as the

presence of isolated extended states in uncorrelated disordered sequences in which

the parameters of the different species satisfy certain properties, one of them de-

serves a special remark: the building of random resonant chains with a continuum

of delocalized states. The composition of resonant Pöschl-Teller wells behaves as a

transparent potential for all positive energies. As described in chapter 4, as long as the

dimensionless amplitude of the well belongs to an infinite set of discrete values that

provide the resonant behaviour, the rest of the parameters of the well can be varied

randomly, therefore the configuration of the resonant chain is quite versatile. And of

course the delocalization of the electronic states for positive energies is absolutely in-

dependent of the random or correlated character of the disordered sequence. Then, at

least it is possible to find a theoretical model for which disordered arrays of potentials

exhibits a full continuum of extended states which is independent of the length of the

system. It is in principle a pure academic model whose properties are tightly bound to

the functional dependence of the potentials. Hence, its real importance depends up

to a point on the possibility to reproduce experimentally such a structure. Semicon-

ductor heterostructures may be considered as applicants for this task. Advances in the

epitaxial growing techniques have made it possible to manipulate the profiles of the

band conduction inside the heterostructure in order to build for example confining

parabolic wells. Then if not now, perhaps in the future it might be possible to control

the growing process of semiconductor samples in such a manner that the spatial pro-

file of the band conduction follows the functional dependence of the Pöschl-Teller hole

and therefore having the possibility to check experimentally the predicted behaviour.
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The Pöschl-Teller potential has shown an ensemble of very interesting properties and

also a completely new behaviour not expected from a disordered system. From our

point of view, it is important to build new models of one-dimensional disordered sys-

tems using other potentials, in order to analyse their properties and decide on the

validity of our conjectures.

Regarding complex potentials, let us say that their real importance lies on the fact

that they can model very easily dissipative processes, as we have studied in chapter 5.

Nevertheless the utility of the models proposed in this work to account for delocaliza-

tion due to decoherence in long disordered wires has not been fully studied already,

and certain additional problems such as the presence of anomalous scattering needs

to be solved when considering large systems. Much work needs to be done in order to

build general complex extensions of the potentials, based on physical grounds, so that

they can be used to incorporate successfully decoherence processes and dissipation in

the systems.

To conclude let us finally say that there is still a lot to be learned about one-

dimensional systems and the effects of disorder. The physics underlying localization

phenomena have turned out to be enormously rich and long after Anderson made the

first description it is still possible to find surprising results. We hope that our little

contribution to the field stimulates other people to face interesting questions that

remain to be answered, some of which have been formulated in this final discussion.



A P P E N D I X A

The transmission matrix

A.1 Properties and symmetries of the transmission matrix

Let be V (x) a finite range potential appreciable only inside the region [−d, d], so that

the wave function can be written as

Ψ(x) =





A1e
ik(x+d) +B1e

−ik(x+d), x 6 −d,
A2u(x) +B2v(x), −d < x 6 d,

A3e
ik(x−d) +B3e

−ik(x−d), x > d.

(A.1)

u(x), v(x) being the linearly independent elementary solutions for each k of the con-

tinuum spectrum of the potential. By applying the continuity conditions of the state

and its derivative at x = ±d, it is possible to reach an expression of the form

(
A3

B3

)
=

(
M11 M12

M21 M22

)(
A1

B1

)
≡ M

(
A1

B1

)
, (A.2)

relating the amplitudes of the free particle states on the right and left sides of the

potential. M is the continuous transmission matrix of the potential and its elements
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read in a general form:

M11 =
v(d)u′(−d) + v(−d)u′(d) − u(d)v′(−d) − u(−d)v′(d)

2W
+ i

k2u(d)v(−d) − k2u(−d)v(d) + u′(d)v′(−d) − u′(−d)v′(d)
2kW , (A.3a)

M12 =
v(d)u′(−d) − v(−d)u′(d) − u(d)v′(−d) + u(−d)v′(d)

2W
+ i

k2u(−d)v(d) − k2u(d)v(−d) + u′(d)v′(−d) − u′(−d)v′(d)
2kW , (A.3b)

M21 =
v(d)u′(−d) − v(−d)u′(d) − u(d)v′(−d) + u(−d)v′(d)

2W
+ i

k2u(d)v(−d) − k2u(−d)v(d) − u′(d)v′(−d) + u′(−d)v′(d)
2kW , (A.3c)

M22 =
v(d)u′(−d) + v(−d)u′(d) − u(d)v′(−d) − u(−d)v′(d)

2W
+ i

k2u(−d)v(d) − k2u(d)v(−d) − u′(d)v′(−d) + u′(−d)v′(d)
2kW , (A.3d)

where W = v(x)u′(x) − u(x)v′(x) is the Wronskian of the solutions and it must be in-

dependent of x. A straightforward calculation of the determinant of the transmission

matrix leads to

detM =
v(d)u′(d) − u(d)v′(d)

v(−d)u′(−d) − u(−d)v′(−d) . (A.4)

Therefore detM = 1 for all kind of potentials, since no specific assumptions have

been made regarding V (x). Let us remark that this property is not a consequence of

the time reversal symmetry of the Hamiltonian as it is usually stated. Let us study

now the symmetries of the elements of the matrix in different special cases.

A.1.1 V (x) ∈ R

If the potential is real it is always possible to find real linearly independent solutions

u(x), v(x) for each value of the energy k. And from equations (A.3) the following

relations hold,

M22 = M∗
11, M21 = M∗

12. (A.5)

Therefore in the case of a real potential the transmission matrix can be written as

M =

(
α β

β∗ α∗

)
, |α|2 − |β|2 = 1. (A.6)

It is easy to check that these matrices satisfy

M

(
1 0

0 −1

)
M† =

(
1 0

0 −1

)
. (A.7)

The latter equation together with detM = 1 define the group SU(1, 1).
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V (x) with parity symmetry

If the potential is real such that V (−x) = V (x), then it is possible to find elementary

solutions with parity symmetry. Let us suppose u(x) to be even and v(x) to be odd,

then

u(−x) = u(x), v(−x) = −v(x), (A.8)

u′(−x) = −u′(x), v′(−x) = v′(x). (A.9)

Using this symmetry in (A.3) one finds

M21 = −M12. (A.10)

And together with (A.5) it yields a matrix of the form

M =

(
α ib

−ib α∗

)
, b ∈ R, |α|2 − b2 = 1. (A.11)

A.1.2 V (x) ∈ C

If the potential is complex, it is not possible generally to build functions u(x), v(x)

being real, therefore the conjugation relations (A.5) are not satisfied. There are no

special symmetries among the matrix elements.

M =

(
α β

δ γ

)
, αγ − βδ = 1. (A.12)

V (x) with parity symmetry

In the case of a complex potential with parity symmetry, the same analysis as for a real

potential can be applied, and equation (A.10) is obtained, since it does not depend on

the elementary solutions being real or complex but only on their symmetries.

M =

(
α β

−β γ

)
, αγ + β2 = 1. (A.13)

V (x) with PT -symmetry

Let us consider a complex local potential invariant under the joint action of parity and

time-reversal operations V ∗(−x) = V (x) [150]. Then it is possible to find u(x), v(x)

satisfying

u∗(−x) = u(x), v∗(−x) = −v(x), (A.14)

(u∗)′(−x) = −(u∗)′(x), (v∗)′(−x) = (v∗)′(x). (A.15)
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Using the above symmetries in (A.3) one is led to

M22 = M∗
11, M∗

12 = −M12, M∗
21 = −M21. (A.16)

Thus the matrix can be written as

M =

(
α ib

ic α∗

)
, b, c ∈ R, |α|2 + bc = 1. (A.17)

A.2 Scattering amplitudes

The scattering amplitudes are directly calculated from the transmission matrix. Figure

A.1 is a pictorial representation of equation (A.2). Considering left incidence then

i kxe

kx−ie
i kxe

V(x)
1

−iB e kx

A 1 B 2

A2

Figure A.1.

A1 = 1, B1 = rL, A2 = tL, B2 = 0. And it follows

tL =
1

M22
, rL = −M21

M22
. (A.18)

In the case of right incidence A1 = 0, B1 = tR, A2 = rR, B2 = 1. And the equations

yield

tR =
1

M22
, rR =

M12

M22
. (A.19)

The insensitivity of the complex transmission amplitude to the incidence direction is

trivially proved. Using the properties of the transmission matrix for particular cases

of the potential is easy to see that for parity invariant potentials (real or complex)

rL = rR, for generic real potentials rL = eiϕrR and for generic complex ones both

amplitudes differ.

In table A.1 a summary of the symmetries of the transmission matrices and scat-

tering amplitudes is given for the different type of potentials described.
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Table A.1. Symmetries of the transmission matrix and scattering amplitudes for

different potentials. Greek letters mean complex elements of the matrix while Latin

ones represent real coefficients. P̂ and T̂ denote the parity and time reversal opera-

tors respectively.

V̂ (x)
[〈
x
∣∣ V̂
∣∣x′
〉

= V (x)δ(x − x′)
]

Transmission Matrix
Scattering

Amplitudes

All detM = 1 tR = tL

Real

(
α β

β∗ α∗

)
∈ SU(1, 1) rL = eiϕrR

Real,
[
V̂ , P̂

]
= 0

(
α ib

−ib α∗

)
∈ SU(1, 1) rL = rR

Complex

(
α β

δ γ

)
rL 6= rR

Complex,
[
V̂ , P̂

]
= 0

(
α β

−β γ

)
rL = rR

Complex,
[
V̂ , P̂T̂

]
= 0

(
α ib

ic α∗

)
rL 6= rR

A.3 Transmission matrix for a continuous potential

For the most general continuous potential, equation (A.2) is only satisfied asymptoti-

cally, that is the amplitudes of the asymptotic states

Ψ(−∞) = A1e
ikx +B1e

−ikx, (A.20a)

Ψ(∞) = A3e
ikx +B3e

−ikx, (A.20b)

can be related via the asymptotic transmission matrix M,

(
A3

B3

)
= M

(
A1

B1

)
. (A.21)

The procedure to obtain this asymptotic matrix is the following. First is solving the

Schrödinger equation for positive energies so that the more general state reads

Ψ(x) = A2u(x) +B2v(x), (A.22)
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0
x

0

V(x)

-d1 d2 Figure A.2. A continuous potential

in terms of the elementary solutions u(x), v(x). Now one needs to build the asymptotic

form of the elementary solutions,

u(±∞) = U±
1 eikx + U±

2 e−ikx, (A.23a)

v(±∞) = V ±
1 eikx + V ±

2 e−ikx. (A.23b)

Therefore the more general asymptotic state becomes

Ψ(±∞) =
(
A2U

±
1 +B2V

±
1

)
eikx +

(
A2U

±
2 +B2V

±
2

)
e−ikx. (A.24)

Equating the coefficients with those corresponding to the asymptotic forms (A.20)

yields

A1 = A2U
−
1 +B2V

−
1 , A3 = A2U

+
1 +B2V

+
1 , (A.25)

B1 = A2U
−
2 +B2V

−
2 , B3 = A2U

+
2 +B2V

+
2 . (A.26)

Solving (A3, B3) in terms of (A1, B1) one obtains for the elements of the asymptotic

matrix

M =
2ik

W

(
U+

1 V
−
2 − V +

1 U
−
2 V +

1 U
−
1 − U+

1 V
−
1

U+
2 V

−
2 − V +

2 U
−
2 V +

2 U
−
1 − U+

2 V
−
1

)
, (A.27)

where W = vu′ − v′u is the Wronskian of the solutions.

A.3.1 Including a cut-off in the potential

Let us suppose that due to the nature of the potential, it is only appreciable inside

the region [−d1, d2] (figure A.2). Then the transfer matrix for the potential with the

cut-off relates the amplitudes of the plane waves at x = d2 and x = −d1, which can

be written from the asymptotic forms (A.20), yielding the relation

(
A3e

ikd2

B3e
−ikd2

)
= Mcut

(
A1e

−ikd1

B1e
ikd1

)
, (A.28)
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which implies

Mcut =

(
eikd2 0

0 e−ikd2

)
M
(

eikd1 0

0 e−ikd1

)
, (A.29)

leading to

Mcut =

(
M11 eik(d2+d1) M12 eik(d2−d1)

M21 e−ik(d2−d1) M22 e−ik(d2+d1)

)
. (A.30)

Once the asymptotic transmission matrix is known, the cut-off matrix is straightfor-

wardly built. And for a given potential it is usually easier to calculate the asymptotic

matrix than to construct directly the cut-off version using the continuity conditions at

the cut-off points.

A.4 Canonical equation from the transmission matrix

Let us consider a linear composition of potentials. All of them are formally described

by the same transmission matrix with different parameters. And let be Mj the trans-

mission matrix of the jth potential,

(
Aj+1

Bj+1

)
= Mj

(
Aj

Bj

)
, (A.31)

where the coordinates of the electronic wave function in the different sectors of the

chain are chosen to satisfy that the amplitude of the state at all sites is simply given

by the sum of the complex amplitudes of the travelling plane waves, that is Ψj =

Aj + Bj for all j. To build the canonical equation one simply calculates the quantity

Ψj+1 + χΨj−1, using Mj and M−1
j−1 to write the amplitudes (Aj±1, Bj±1) in terms

of (Aj , Bj). Then χ is solved by imposing the coefficients of Aj and Bj to be the

same. Following this procedure one concludes that the canonical equation for the

most general potential can be written as,

Ψj+1 =

(
Sj + Sj−1

Kj

Kj−1

)
Ψj −

Kj

Kj−1
Ψj−1, (A.32)

where

Sj =
1

2
[(Mj)11 + (Mj)12 + (Mj)21 + (Mj)22] , (A.33a)

Sj =
1

2
[(Mj)11 − (Mj)12 − (Mj)21 + (Mj)22] , (A.33b)

Kj =
1

2
[(Mj)11 − (Mj)22 + (Mj)21 − (Mj)12] . (A.33c)
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In the case of a real potential, using the symmetries of the transmission matrix de-

scribed previously, one finds

Sj = Re [(Mj)11] + Re [(Mj)12] , (A.34a)

Sj = Re [(Mj)11] − Re [(Mj)12] , (A.34b)

Kj = Im [(Mj)11] − Im [(Mj)12] . (A.34c)

And it also can be observed that for real and parity invariant potentials the functions

Sj and Sj coincide because the off-diagonal elements of the matrix are pure imaginary.
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The Lyapunov exponents

Let us prove that for a one-dimensional Hamiltonian system, suitable to be described

in terms of products of random matrices, the two Lyapunov characteristic exponents

(LCE) come in a pair of the form {λ,−λ}.

Let us consider our system within the discrete transmission matrix formalism. If

the Hamiltonian of the system can be written in terms of a potential V (x) then it can

be shown that the canonical equation takes always the form

Ψj+1 = J(γj−1, γj)Ψj −
K(γj)

K(γj−1)
Ψj−1, (B.1)

where γj denotes the parameters of the potential at the jth site of the system and J ,

K are functions depending on these parameters and the energy. Hence the discrete

transmission matrix reads

Pj(γj−1, γj) =

(
J(γj−1, γj) − K(γj)

K(γj−1)

1 0

)
. (B.2)

The above matrix becomes a symplectic transformation if K(γj)/K(γj−1) = 1 but in

general detPj 6= 1. The necessary and sufficient condition to ensure that the LCE of

the asymptotic product PN = PN . . .P1 (N → ∞) are {λ,−λ} is that the determinant

of Oseledet’s matrix Γ equals 1. Let us remember that Γ = limN→∞

(
Pt

NPN

) 1
2N . Thus

we only need to prove that limN→∞(det PN )1/N = 1 which is trivial if the individual

transfer matrices are symplectic, like for example in the tight-binding model with con-

stant transfer integrals or for the delta potential model, but it may not be so obvious

in the most general case. For the proof let us suppose that our system is composed

of two different kind of potentials 1, 2, in a random sequence. Then the product ma-

trix PN will contain four different types of matrices, namely P(1, 1), P(1, 2), P(2, 1),
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P(2, 2) according to the different pairs of potentials occurring in the sequence and

participating in the canonical equation. Then,

lim
N→∞

(det PN )
1
N =

lim
N→∞

[
(detP(1, 1))N11 (detP(1, 2))N12 (detP(2, 1))N21 (detP(2, 2))N22

] 1
N =

(detP(1, 1))C11 (detP(1, 2))C12 (detP(2, 1))C21 (detP(2, 2))C22 , (B.3)

Nij being the number of times that P(i, j) appears, and Cij the frequencies of appear-

ance of the pairs −ij− in the thermodynamic limit. From (B.2) it readily follows

lim
N→∞

(det PN)
1
N =

[
K(2)

K(1)

]C12
[
K(1)

K(2)

]C21

. (B.4)

A simple reflection symmetry argument requires that C12 = C21 so the above expres-

sion equals 1. And finally the eigenvalues of Γ must be of the form eλ, e−λ.

This proof can be straightforwardly extended for a case considering k different

potentials or for a continuous model with parameters inside a certain range with a

given probability distribution.

This result about the Lyapunov exponent for a one-dimensional system must be

naturally expected, by the fact that the same physical problem can be treated through

the continuous transmission matrix formalism and it must lead to the same results.

Therefore considering the latter matrices which have always determinant unity, it is

obvious that det Γ = 1. Nevertheless it is interesting to see how the discrete transfer

matrices, although not symplectic individually, lead to a global symplectic transforma-

tion in the canonical sense, provided they describe a Hamiltonian system.
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DOS from node counting

James and Ginzbarg obtained the expression of the integrated density of states (IDOS)

of a linear chain of potentials in terms of the changes of sign of the wave function in-

side the different sectors of the system [115]. Their reasoning is the following. Let

us consider a binary wire composed of two types of potentials β1 and β2. And let be

[xj, xj+1] the jth sector of the chain including a β1 potential. Then the elementary

solutions for positive energy in this cell f1(x), g1(x), can be chosen to satisfy

f1(xj) = 1, f ′1(xj) = 0, (C.1a)

g1(xj) = 0, g′1(xj) = 1. (C.1b)

Now let us consider a certain energy E for which g1(x) has p1 nodes inside the

given sector (the first one at xj). Then for this energy, possible states include ψ(x) =

g1(x) + µf1(x) with (p1 − 1) zeros and ψ(x) = g1(x) − µf1(x) with p1 zeros in the cell

(for sufficiently small µ). For low E, p1 = 1 and as the energy grows the index p1

increases by one whenever g1(xj+1) = 0. Thus the energy spectrum can be divided in

intervals according to the value of the index p1, so that if E lies in the interval labelled

with p1 then the solution ψ(x) will have p1 or (p1 − 1) nodes in every sector of type

β1. To determine whether the number of zeros is p1 or (p1 − 1), one has to check

if ψ(xj) and ψ(xj+1) have the same signs (even number of nodes) or opposite signs

(odd number of nodes). Thus for that energy the number of nodes in a β1 sector can

be written as

p1 −
1

2
+ (−1)p1

z

2
, (C.2)

where z = 1 if ψ(xj) and ψ(xj+1) have the same signs and z = −1 otherwise. The

same reasoning can be used for the species β2. And for an energy E with the labels
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p1 for the species β1 and p2 for β2, the total number of nodes inside the mixed system

and therefore the IDOS per atom reads

n(E) = c1

(
p1 +

(−1)p1 − 1

2

)
+ c2

(
p2 +

(−1)p2 − 1

2

)

− (−1)p1N1(E) − (−1)p2N2(E),

(C.3)

where c1, c2, are the concentrations of the species and N1(E), N2(E), are the con-

centrations of changes of sign for each species, that is the number of cells containing

a certain species in which the state changes sign (i.e. ψ(x) has opposite signs at the

beginning and at the end of the sector) divided by the total number of potentials of

the system. To obtain the density of states one needs to evaluate n(E) in the interval

(E,E + dE) in which the indices p1, p2, can be considered to remain fixed. Therefore

the only quantities that can vary in the differential interval are the concentrations of

changes of sign. Hence,

g(E) =

∣∣∣∣(−1)p1
dN1(E)

dE
+ (−1)p2

dN2(E)

dE

∣∣∣∣ . (C.4)

And this expression is straightforwardly generalized for an arbitrary number of species.

The main result is that to determine the DOS correctly, depending on the energy range

one has to sum or subtract the changes of sign of the wave function at sectors corre-

sponding to different species.

Now let us see how one can know the indices p1, p2, in a practical way. The system

is completely determined by the canonical equation

Ψj+1 = J(γj−1, γj)Ψj −
K(γj)

K(γj−1)
Ψj−1. (C.5)

The functions J , K, can be obtained in terms of the elementary solutions of the

Schrödinger equation in each sector of the chain. According to reference [161], K(γj)

can be written as

K(γj) =
fγj

(xj+1)gγj
(xj) − fγj

(xj)gγj
(xj+1)

f ′γj
(xj)gγj

(xj) − fγj
(xj)g′γj

(xj)
, (C.6)

where fγj
(x), gγj

(x) are the elementary solutions in the jth sector [xj , xj+1] with a

potential of type γj. Imposing the additional conditions (C.1) it follows for the case

γj = β1 that K(β1) = −g1(xj+1). That is, the function −K(β1) takes the same values

that the elementary solution g1(x), verifying equations (C.1), would reach at the end

of every β1 sector. Thus, whenever g1(xj+1) as a function of the energy changes its

sign, and therefore the index p1 increases by 1, K(β1) also registers a change of sign.
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What is more, it is not hard to see that in equation (C.4) the terms (−1)p1 , (−1)p2 , can

be directly identified with the signs of K(β1), K(β2). And finally, one can write

g(E) =

∣∣∣∣sgn[K(β1)]
dN1(E)

dE
+ sgn[K(β2)]

dN2(E)

dE

∣∣∣∣ . (C.7)

From a numerical viewpoint one must do the transmission of the state through the

system using the functional equation and count the number of changes of sign from

site to site for the different atomic species, to perform finally a numerical differentia-

tion with respect to the energy and sum or subtract the different contributions of the

species according to the sign of the function K(β) for the energy considered.
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A P P E N D I X D

The Functional Equation

Let us begin with the canonical equation describing our one-dimensional problem,

Ψj+1 = J(γj−1, γj)Ψj −
K(γj)

K(γj−1)
Ψj−1, (D.1)

where Ψj means the real amplitude of the electronic state at the jth site of the wire

and γj denotes the set of parameters characterizing the potential at the jth site (jth

sector). The functions J(γ, β) andK(γ) which depend on the potential and the energy,

rule the spreading of the state from one site to its neighbours. From now on Greek

letters are used to label the parameters of the different types of potentials composing

the chain, while Latin letters always mean site indices. The above equation can be

casted as a two-dimensional mapping defining xj+1 = Ψj+1, yj+1 = Ψj,

(
xj+1

yj+1

)
=

(
J(γj−1, γj) − K(γj)

K(γj−1)

1 0

)(
xj

yj

)
, (D.2)

which in polar coordinates xj = ρj cos θj, yj = ρj sin θj leads to the following trans-

mission relations for the phase and the moduli

θj+1 ≡ T(θj; γj−1, γj) = arctan

{(
J(γj−1, γj) −

K(γj)

K(γj−1)
tan θj

)−1
}
, (D.3)

(
ρj+1

ρj

)2

≡ F(θj ; γj−1, γj) = cos2 θj +

(
J(γj−1, γj) cos θj −

K(γj)

K(γj−1)
sin θj

)2

. (D.4)

In order to ensure the continuity of the phase transmission for a given energy we work
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j-1 j j+1

(j-1)-sector j-sector

γj-1 γj

θj-1 θj θj+1

Figure D.1. Sites and sectors of the one-dimensional system.

with the inverse function defined as

T
−1(θj+1; γj−1, γj) = arctan

{
K(γj−1)

K(γj)

(
J(γj−1, γj) −

1

tan θj+1

)}
, (D.5a)

T
−1(θj+1 + nπ; γj−1, γj) = T

−1(θj+1; γj−1, γj) ± nπ, θj+1 ∈ [0, π), n ∈ Z,

(D.5b)

where the plus (minus) sign in (D.5b) must be taken when
K(γj)

K(γj−1) > 0
(

K(γj)
K(γj−1) < 0

)

corresponding to an increasing (decreasing) behaviour of the phase transmission.

The goal is to calculate a distribution function for the phase θ, valid in the ther-

modynamic limit, so that the differential form of such a function acts as a natural

measure of the phase in that limit. In this way one then would be able to obtain the

thermodynamic average of any quantity of the system that could be written in terms

of the phase.

The first step is to define the functions Wj(θ) with θ ∈ [0, π), that means the

probability for θj(modπ) to be included in the interval [0, θ), that is dWj(θ) means

the probability that θj( modπ) belongs to (θ, θ + dθ), for a given energy. Therefore it

follows that Wj(θ) are monotonically increasing functions with θ such that Wj(0) = 0,

Wj(π) = 1 for all j. And we impose

Wj(θ + nπ) = Wj(θ) + n, θ ∈ [0, π), n ∈ Z, ∀ j. (D.6)

According to the meaning of these distribution functions for the individual phases, it

is clear that they must satisfy the relation

dWj+1(θ) = dWj

(
T
−1(θ; γj−1, γj)

)
, (D.7)

that is, the probability for θj+1(modπ) of being included in (θ, θ + dθ) must be the

probability for θj( modπ) of appearing in
(
T
−1(θ),T−1(θ) + dT

−1(θ)
)
(modπ). Inte-

grating the above equation leads us to

Wj+1(θ) =
∣∣Wj

(
T
−1(θ; γj−1, γj)

)
−Wj

(
T
−1(0; γj−1, γj)

)∣∣ , (D.8)



161

where the absolute value is necessary for the cases when T
−1(θ) decreases with θ (i.e.

[K(γj)/K(γj−1)] < 0), because the distribution functions must be positive. Since the

inverse transmission function of the phase gives a value in the interval [−π/2, π/2],
the additional condition (D.6) is used to ensure that the argument of Wj is always

included in the interval [0, π). And from the definition of the inverse transmission

function it follows

T
−1(0; γj−1, γj) =




−π

2 if
K(γj)

K(γj−1) > 0,

π
2 if

K(γj)
K(γj−1) < 0.

(D.9)

The equations relating the distributions for the phase at the different sites of the sys-

tem clearly show that in fact those distributions only depend on the atomic species

composing the chain. Thus the functions can be properly redefined in terms of the

compositional species. Wj+1(θ) is the distribution for the phase at the site (j + 1),

generated after a potential of type γj (see figure D.1), therefore we relabel the func-

tion as Wj+1(θ) ≡ Wγj
(θ), that is the distribution function for the phase after a γj

potential. And it is defined by

Wγj
(θ) =

∣∣∣Wγj−1

(
T
−1(θ; γj−1, γj)

)
−Wγj−1

(π
2

)
+ δ(γj−1, γj)

∣∣∣ , (D.10a)

Wγj
(θ + nπ) = Wγj

(θ) + n, θ ∈ [0, π), n ∈ Z, ∀ j, (D.10b)

where

δ(γj−1, γj) =





1 if
K(γj)

K(γj−1) > 0,

0 if
K(γj)

K(γj−1) < 0,
(D.11)

due to (D.6) and (D.9). Now it is straightforward to carry out a thermodynamical

average of the probabilities Wγj
(θ). We only have to sum over all the atomic species

and binary clusters taking into account their respective concentrations,

∑

γ

cγWγ(θ) =
∑

γ,β

Cβγ

∣∣∣Wβ

(
T
−1(θ;β, γ)

)
−Wβ

(π
2

)
+ δ(β, γ)

∣∣∣ , (D.12)

where cγ is the concentration of the γ species and Cγβ = Cβγ is the frequency of

appearance of the cluster –γβ– or –βγ–. Writing Cγβ = cγpγβ, where pγβ is the

probability of finding a β atom besides a γ atom, one can obtain an individual equation

for each species,

Wγ(θ) =
∑

β

pγβ

∣∣∣Wβ

(
T
−1(θ;β, γ)

)
−Wβ

(π
2

)
+ δ(β, γ)

∣∣∣ , (D.13a)

Wγ(θ + nπ) = Wγ(θ) + n, θ ∈ [0, π), n ∈ Z. (D.13b)
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So that in the thermodynamic limit there exists a phase distribution function for each

species composing the chain, and binary statistical correlations naturally appear in

their definitions. Although we have supposed a discrete composition of the system,

the same reasoning can be used for a continuous model in which the compositional

parameters belong to a certain interval with a given probability distribution.

Therefore solving equations (D.13), one would be able to calculate the average in

the thermodynamic limit of any quantity of the system that can be written in terms of

the phase θ as long as it is a periodic function with period π. The latter expressions

are the most general functional equations valid for all one-dimensional systems for

which a canonical equation of the form (D.1) can be obtained.

D.1 Calculating the localization length and the DOS in the

thermodynamic limit

Let us consider the Lyapunov exponent given by

λ = lim
N→∞

1

N

∑

j

log

(
Ψj+1

Ψj

)
=

〈
log

(
Ψj+1

Ψj

)〉
, (D.14)

where 〈 · · · 〉 denotes the average in the thermodynamic limit and the amplitudes of

the state at the different sites are considered to be real. Using the two-dimensional

mapping defined in the previous section,

λ =

〈
1

2
log

(
ρj+1

ρj

)2
〉

+

〈
log

∣∣∣∣
cos θj+1

cos θj

∣∣∣∣
〉

+

〈
log

[
cos θj+1 | cos θj|
| cos θj+1| cos θj

]〉
. (D.15)

The middle term vanishes because the cosine is a bounded function that does not

diverge as the length of the system grows. On the other hand the argument of the

logarithm in the last term takes only the values ±1. Since log(1) = 0 and log(−1) = iπ

it readily follows

Re (λ) =

〈
1

2
log

(
ρj+1

ρj

)2
〉
, (D.16)

Im (λ) = −i

〈
log

[
cos θj+1| cos θj|
| cos θj+1| cos θj

]〉
. (D.17)

From equation (D.4) the average of the real part can be easily written using the distri-

bution functions for the phase and therefore obtaining the inverse of the localization

length ξ(E),

ξ(E)−1 ≡ Re (λ(E)) =
1

2

∑

γ,β

Cγβ

∫ π

0
dWγ(θ) log F(θ; γ, β), (D.18)
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which integrated by parts can also be written as

ξ(E)−1 =
1

2

∑

γ,β

Cγβ log F(π; γ, β) − 1

2

∑

γ,β

Cγβ

∫ π

0
Wγ(θ)

F
′(θ; γ, β)

F(θ; γ, β)
dθ. (D.19)

Let us remember that Cγβ = Cβγ is the probability for the cluster –γβ– or –βγ– to

appear at any position of the chain.

On the other hand the imaginary part of the Lyapunov exponent increases by iπ

every time the wave function changes sign from one site to the next one. Therefore

by averaging equation (D.17) over all possible species at the site (j + 1) when the jth

species is a γ atom, and dividing by π, one obtains the fraction of γ atoms after which

the state changes its sign.

− i

π

〈
log

[
cos θj+1| cos θj |
| cos θj+1| cos θj

]〉

j+1

= − i

π

∑

β

cβ

∫ π

0
dWγ(θ) log

[
cos T(θ; γ, β) |cos θ|
|cos T(θ; γ, β)| cos θ

]

=

∫ π

π/2
dWγ(θ) = 1 −Wγ

(π
2

)
, (D.20)

since the transmission function always returns a value in the interval [−π/2, π/2],
where the cosine is positive. Thus it follows that cγ [1 −Wγ(π/2)] is the concentration

of changes of sign for the γ species, Nγ(E) as denoted in appendix C. And from the

results of the appendix cited the density of states per atom reads

g(E) =

∣∣∣∣∣
∑

γ

sgn[K(γ)]cγ
dWγ

(
π
2

)

dE

∣∣∣∣∣ . (D.21)

D.2 Particular cases

The functional equations can be considerably simplified depending on the particular

model of the one-dimensional system. Let us consider a couple of examples appearing

in this work.

D.2.1 The canonical equation reads Ψj+1 = J(γj)Ψj − Ψj−1

This is one of the simplest forms for the canonical equation, appearing for example in

the diagonal tight-binding model or the delta potential model with substitutional dis-

order. In this case the function J(γ) depends only on the parameters of one potential

and one can take K(γ) = 1 for all the species. Therefore the problems concerning the

changes of sign of the latter function are completely avoided and the inverse transmis-

sion function for the phase is an increasing function for all energies which depends



164 The Functional Equation

xjxj-1 xj+1

aj-1 aj aj+1 aj+2

Figure D.2. Delta chain with structural and substitutional disorder.

only on one atomic species, T
−1(θ; γ). Then equations (D.13) read

Wγ(θ) =
∑

β

pγβ

{
Wβ

(
T
−1(θ; γ)

)
−Wβ

(π
2

)}
+ 1, (D.22a)

Wγ(θ + nπ) = Wγ(θ) + n, θ ∈ [0, π), n ∈ Z. (D.22b)

If one further considers the case of uncorrelated disorder, that is pγβ = cβ for all γ, β,

then a global distribution function for the phase can be defined W (θ) ≡ ∑
γ cγWγ(θ)

being the solution of

W (θ) =
∑

γ

cγW
(
T
−1(θ; γ)

)
−W

(π
2

)
+ 1, (D.23a)

W (θ + nπ) = W (θ) + n, θ ∈ [0, π), n ∈ Z. (D.23b)

In this particular case only one functional equation needs to be solved and the local-

ization length as well as the density of states per atom can be calculated respectively

from

ξ(E)−1 ≡ Re (λ(E)) =
1

2

∑

γ

cγ

∫ π

0
dW (θ) log F(θ; γ), (D.24)

g(E) =

∣∣∣∣∣
dW

(
π
2

)

dE

∣∣∣∣∣ . (D.25)

D.2.2 The delta potential model with uncorrelated structural and substi-

tutional disorder

Let us consider a very specific model treated in chapter 3: the delta chain with un-

correlated structural and substitutional disorder. The system is composed of different

atomic species following a random sequence and whose positions are not equally

spaced, as shown in figure D.2. The potential at each sector is determined by two pa-

rameters: the delta coupling and the distance right after the delta. For this particular

setup the canonical equation takes the general form (D.1) with functions

J(xj−1, xj, aj) = cos(kxj) + cot(kxj−1) sin(kxj) +
2

kaj
sin(kxj), (D.26)

K(xj) = sin(kxj). (D.27)
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The function J depends on the coupling and the distance of the j sector and the

distance of the (j − 1) sector, while K is determined by the distance of each sector.

The spacing between neighbouring atoms is determined by a certain probability dis-

tribution depending on one free parameter σ that quantifies the degree of structural

disorder. This distribution is chosen to satisfy the following requirements:

- It is the same for all atomic species.

- It maximizes at xj = a for all j. a being the interatomic distance of the regular

lattice.

- It is symmetric around the value a and therefore its domain is the interval (0, 2a] in

which it must be correctly normalized.

Our distribution for the distances shall be denoted by P (l, σ), where l = x/a is a

dimensionless variable and σ measures the degree of disorder. According to the above

requirements P (l, σ → 0) = δ(l − 1) and
∫ 2
0 P (l, σ)dl = 1. P (l, σ) is the probability

density for the values of l for the spacings of the chain. Defining a dimensionless

energy variable ε ≡ ka the functions of the canonical equation read

J
(
l̄, l, aγ

)
= cos(lε) + cot

(
l̄ε
)
sin(lε) +

2(a/aγ)

ε
sin(lε), (D.28)

K(l) = sin(lε). (D.29)

And the relevant functions T
−1
(
θ; l̄, l, aγ

)
and F

(
θ; l̄, l, aγ

)
are built from definitions

(D.4) and (D.5).

The derivation of the functional equation is naturally followed until equations

(D.10). Now for taking the average in the thermodynamic limit one must also include

the distribution for the distances. Let us remember that in this situation each potential

is characterized by two parameters: the atomic species and the distance. Therefore

the equation for the phase distributions is

∑

γ

cγ

∫ 2

0
P (l, σ)dl W(γ,l)(θ) =

∑

γ,β

cγcβ

∫ 2

0
P (l, σ)dl

∫ 2

0
P
(
l̄, σ
)
dl̄
∣∣∣W(β,l̄)

(
T
−1
(
θ; l̄, l, γ

))
−W(β,l̄)

(π
2

)
+ δ

(
l̄, l
)∣∣∣ ,

(D.30)

where the uncorrelated case pγβ = cβ has been considered. The situation can be

slightly simplified defining the phase distribution functions in terms only of the dis-

tances, Wl(θ) ≡ ∑
γ cγW(γ,l)(θ). And considering a discretization of the continuous
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distribution for the distances, one is finally led to an equation for each value of l,

Wl(θ) =
∑

γ

cγ

∫ 2

0
P
(
l̄, σ
)
dl̄
∣∣∣Wl̄

(
T
−1
(
θ; l̄, l, γ

))
−Wl̄

(π
2

)
+ δ

(
l̄, l
)∣∣∣ , (D.31a)

Wl(θ + nπ) = Wl(θ) + n, θ ∈ [0, π), n ∈ Z. (D.31b)

Finally the localization length and the DOS per atom can be obtained from

λ(ε) =
1

2

∫ 2

0
P
(
l̄, σ
)
dl̄

∫ π

0
dWl̄(θ)

[
∑

γ

cγ

∫ 2

0
P (l, σ)dl log F

(
θ; l̄, l, aγ

)
]
, (D.32)

g(ε) =

∣∣∣∣∣

∫ 2

0
P (l, σ)dl sgn [K(l)]

dWl

(
π
2

)

dε

∣∣∣∣∣ . (D.33)
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Pöschl-Teller and complex Scarf

potentials

E.1 Solutions of the Pöschl-Teller potential

The elementary positive energy solutions of the Schrödinger equation for the potential

V (x) =
}2α2

2m

V

cosh2(αx)
, V ∈ R, (E.1)

read

u(x) = coshb(αx) 2F1

(
b

2
+ i

k

2α
,
b

2
− i

k

2α
,
1

2
;− sinh2(αx)

)
, (E.2a)

v(x) = sinh(αx) coshb(αx) 2F1

(
b+ 1

2
+ i

k

2α
,
b+ 1

2
− i

k

2α
,
3

2
;− sinh2(αx)

)
. (E.2b)

where b = 1
2 +

√
1
4 − V and 2F1(a1, a2, a3; z) is the Hypergeometric function. And

their asymptotic forms can be written as [2]

u(x) →meik|x| +m∗e−ik|x|, (E.3a)

v(x) → sgn(x)
(
neik|x| + n∗e−ik|x|

)
, (E.3b)

where

m =

√
π Γ
(
i k
α

)
2−ik/α

Γ
(

b
2 + i k

2α

)
Γ
(

1−b
2 + i k

2α

) , (E.4a)

n =

√
π Γ
(
i k
α

)
2−ik/α

2Γ
(

b+1
2 + i k

2α

)
Γ
(
1 − b

2 + i k
2α

) . (E.4b)
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E.2 Complex Scarf potential

E.2.1 Scattering states

The elementary positive energy solutions of the Schrödinger equation for the complex

potential

V (x) =
}2α2

2m

(
V1

cosh2(αx)
+ iV2

sinh(αx)

cosh2(αx)

)
, V1,V2 ∈ R, (E.5)

are

u(x) =e−i(b−1/2) arctan[sinh(αx)] coshc(αx)

× 2F1

(
c+ i

k

α
, c− i

k

α
, 1 − b+ c;

1

2
+

i

2
sinh(αx)

)
, (E.6a)

v(x) =e−i(b−1/2) arctan[sinh(αx)] coshc(αx)

(
1

2
+

i

2
sinh(αx)

)b−c

× 2F1

(
b+ i

k

α
, b− i

k

α
, 1 + b− c;

1

2
+

i

2
sinh(αx)

)
, (E.6b)

where

c =
1

2
− i

2
(g+ − g−), b =

1

2
− i

2
(g+ + g−), (E.7)

g± =
√
V1 ± V2 − 1/4 and 2F1(a1, a1, a3; z) is the Hypergeometric function. The

asymptotic limit x→ ±∞ yields [2]

u(x) → 2c
(
m1e

ik|x| +m2e
−ik|x|

)
, (E.8a)

v(x) → 2c
(
n1e

ik|x| + n2e
−ik|x|

)
, (E.8b)

where

m1 =
isgn(x)[1/2−b+c]2−2ik/αΓ (1 − b+ c) Γ

(
2i k

α

)
esgn(x)πk/(2α)

Γ
(
c+ i k

α

)
Γ
(
1 − b+ i k

α

) , (E.9a)

m2 =
isgn(x)[1/2−b+c]22ik/αΓ (1 − b+ c) Γ

(
−2i k

α

)
e−sgn(x)πk/(2α)

Γ
(
c− i k

α

)
Γ
(
1 − b− i k

α

) , (E.9b)

n1 = m1 (b � c) , (E.9c)

n2 = m2 (b � c) . (E.9d)

E.2.2 Ranges of physical transmission

The condition for physical transmission reads cosh(πg+) cosh(πg−) > 0 as can be seen

from equation (5.21) on page 128. V2 can be considered positive without loss of
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generality since its change in sign (which is equivalent to changing the side of in-

cidence) does not affect the transmission. With the definitions X = |V1| − V2 and

Y = |V1| + V2, the study can be easily carried out. Considering V1 > 0 the inequality

translates into the permitted regions

∀ Y




X > 0,

−2n(2n+ 1) 6 X 6 −2n(2n− 1), n ∈ Z+,
(E.10)

which is clearly a sequence of allowed vertical fringes in the negative X quadrant and

the whole positive X quadrant. This pattern will be same but rotated π/4 clockwise

when the change of variables is undone. More specifically, in terms of the potential

amplitudes the allowed intervals can be written as

|V2| ∈ [0,V1] ∪ [2n(2n− 1) + V1, 2n(2n+ 1) + V1], n ∈ Z+. (E.11)

In the case of V1 < 0 a careful analysis leads to the following cumbersome allowed

ranges:

X < 0 ⇒ 2n(2n− 1) 6 Y 6 2n(2n+ 1), n = 1, 2, 3, . . . , (E.12)

X > 0 ⇒





{
2n(2n− 1) 6 X 6 2n(2n+ 1)

}⋂{
2m(2m− 1) 6 Y 6 2m(2m+ 1)

}
,

{
2j(2j + 1) 6 X 6 2j(2j + 3) + 2

}⋂{
2k(2k + 1) 6 Y 6 2k(2k + 3) + 2

}
,

(E.13)

for n,m ∈ Z+ and k, j = 0, 1, 2, . . .. In this case the permitted zones are a set of

allowed horizontal fringes in the negative X quadrant and a chessboard like structure

for positive X. Undoing the change of variables will mean a π/4 clockwise rotation

followed by a reflection around the vertical axis of this pattern to recover the negative

axis of V1. Solving these inequalities in terms of the potential amplitudes gives rise to

the following group of inequalities, each one assigning a certain allowed interval for

|V2| when fulfilled:

for n ∈ Z+,

|V1| 6 n(2n− 1) ⇒
[
2n(2n− 1) − |V1|, 2n(2n+ 1) − |V1|

]
, (E.14a)

n(2n− 1) 6 |V1| 6 n(2n+ 1) ⇒
[
|V1|, 2n(2n+ 1) − |V1|

]
, (E.14b)

for m,n ∈ Z+ (m > n),

m(2m− 1) + n(2n− 1) 6 |V1| 6 m(2m− 1) + n(2n+ 1)

⇒
[
2m(2m− 1) − |V1|,−2n(2n− 1) + |V1|

]
, (E.15a)



170 Pöschl-Teller and complex Scarf potentials

m(2m− 1) + n(2n+ 1) 6 |V1| 6 m(2m+ 1) + n(2n− 1)

⇒
[
− 2n(2n+ 1) + |V1|,−2n(2n− 1) + |V1|

]
, (E.15b)

m(2m+ 1) + n(2n− 1) 6 |V1| 6 m(2m+ 1) + n(2n+ 1)

⇒
[
− 2n(2n+ 1) + |V1|, 2m(2m + 1) − |V1|

]
, (E.15c)

and for j, k = 0, 1, 2, . . . (k > j),

k(2k + 1) + j(2j + 1) 6 |V1| 6 k(2k + 1) + j(2j + 3) + 1

⇒
[
2k(2k + 1) − |V1|,−2j(2j + 1) + |V1|

]
, (E.16a)

k(2k + 1) + j(2j + 3) + 1 6 |V1| 6 k(2k + 3) + 1 + j(2j + 1)

⇒
[
− 2 − 2j(2j + 3) + |V1|,−2j(2j + 1) + |V1|

]
, (E.16b)

k(2k + 3) + 1 + j(2j + 1) 6 |V1| 6 k(2k + 3) + j(2j + 3) + 2

⇒
[
− 2 − 2j(2j + 3) + |V1|, 2 + 2k(2k + 3) − |V1|

]
. (E.16c)

In the particular cases m = n for inequalities (E.15) and k = j for (E.16) only the

positive part of the allowed intervals must be considered. The total physical range for

|V2| comes from the union of the different permitted intervals.
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Collection of 1-D models

This appendix includes a collection of different models of 1-D potentials which can be

used and combined to build one-dimensional quantum wires. The tables in the fol-

lowing pages gather their transmission matrices and the canonical equations applying

to their compositions, so that they can be used as a quick reference handbook. One

remark to keep in mind: for the calculation of the transmission matrix the coordinates

of the electronic wave function at the right and at the left of the potential are chosen

to satisfy that the state right before and right after the potential is simply given by the

sum of the complex amplitudes of the travelling plane waves, that is if the potential

ranges in the interval [x1, x2] then one considers ΨL(x) = ALeik(x−x1) + BLe−ik(x−x1)

and ΨR(x) = AReik(x−x2) + BRe−ik(x−x2) for the states at the left and the right side

of the potential respectively. In this way one obtains the more general form of the

transmission matrix and removes any dependence on the relative coordinates of the

potential. Let us also remember that the canonical equation can generally be written

as

Ψj+1 =

(
Sj + Sj−1

Kj

Kj−1

)
Ψj −

Kj

Kj−1
Ψj−1, (F.1)

where the jth sector of the chain is the one between the sites j and j + 1.

The matrices and functions given in the following tables are valid for positive en-

ergies in principle. The extension to negative energies is straightforward for some

models but it is not trivial for the potentials of table F.2 for which several simplifica-

tions have been carried out that are not true for negative energies.
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Table F.1.

POTENTIAL TRANSMISSION MATRIX CANONICAL EQUATION

Zero potential

of length dj

(
eikdj 0

0 e−ikdj

)
Sj = Sj = sin(kdj)

Kj = cos(kdj)

Delta potential

αj δ(x)

dj



[
1 − i

kaj

]
eikdj − i

kaj
eikdj

i
kaj

e−ikdj

[
1 + i

kaj

]
e−ikdj


 aj =

}2

mαj

Sj = cos(kdj) +
2

kaj
sin(kdj)

Sj = cos(kdj)

Kj = sin(kdj)

Square barrier

Vj
Lj

dj

(
µj eikdj βj eikdj

β∗
j e−ikdj µ∗

j e−ikdj

)
µj = cos(Ljκj) + i

k2 + κ2
j

2kκj
sin(Ljκj)

βj = −i
k2 − κ2

j

2kκj
sin(Ljκj)

κj =

√
k2 − 2mVj

}2

Sj = cos(Ljκj) cos(kdj) −
κj

k
sin(Ljκj) sin(kdj)

Sj = cos(Ljκj) cos(kdj) −
k

κj
sin(Ljκj) sin(kdj)

Kj = cos(Ljκj) sin(kdj) +
k

κj
sin(Ljκj) cos(kdj)

These expressions are valid for E > Vj .

In the case 0 < E < Vj the equations are formally the same with the substitution κj = iηj = i
√

2mVj

}2 − k2
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Table F.2.

POTENTIAL TRANSMISSION MATRIX CANONICAL EQUATION

Pöschl-Teller

potential

}2α2

2m

V

cosh(αx)2

dj
L

αj
-1

Vj α
2
j

dj
R


ei[ϕj+k(dR

j +dL
j )]
√

1 + w2
j −iwje

ik(dR
j −dL

j )

iwje
−ik(dR

j −dL
j ) e−i[ϕj+k(dR

j +dL
j )]
√

1 + w2
j




Sj = −wj sin
[
k(dL

j − dR
j )
]

+
√

1 + w2
j cos

[
k(dL

j + dR
j ) + ϕj

]

Sj = wj sin
[
k(dL

j − dR
j )
]

+
√

1 + w2
j cos

[
k(dL

j + dR
j ) + ϕj

]

Kj = wj cos
[
k(dL

j − dR
j )
]

+
√

1 + w2
j sin

[
k(dL

j + dR
j ) + ϕj

]

wj =
sin(πbj)

sinh(πk/αj)
, bj = 1/2 +

√
1/4− Vj

ϕj = arg

{
i Γ2(ik/αj)

Γ(bj + ik/αj)Γ(1 − bj + ik/αj)

}

Complex Scarf

}2α2

2m cosh(αx)2
×

[V1 + iV2 sinh(αx)]

dj
L

αj
-1

V1j
α2

j
V2j

α2
j

dj
R

(
ei[φj+k(dR

j +dL
j )]√1 + sjsj −isje

ik(dR
j −dL

j )

isje
−ik(dR

j −dL
j ) e−i[φj+k(dR

j +dL
j )]√1 + sjsj

)

Sj = −i
[
sje

ik(dR
j −dL

j ) − sje
−ik(dR

j −dL
j )
]

+
√

1 + sjsj cos
[
k(dL

j + dR
j ) + φj

]

Sj = i
[
sje

ik(dR
j −dL

j ) − sje
−ik(dR

j −dL
j )
]

+
√

1 + sjsj cos
[
k(dL

j + dR
j ) + φj

]

Kj = sje
ik(dR

j −dL
j ) + sje

−ik(dR
j −dL

j )

+
√

1 + sjsj sin
[
k(dL

j + dR
j ) + φj

]

φj = arg

{
i Γ2(ik/αj)Γ

2(1/2 + ik/αj)

Γ
(
cj + i k

αj

)
Γ
(
bj + i k

αj

)
Γ
(
1 − cj + i k

αj

)
Γ
(
1 − bj + i k

αj

)
}

sj =
cosh(πg+

j )eπk/αj + cosh(πg−j )e−πk/αj

sinh(2πk/αj)
, sj = sj(g

+
j � g−j )

cj =
1

2
− i

2
(g+

j − g−j ) , bj =
1

2
− i

2
(g+

j + g−j ) , g±j =

√
V1j

± V2j
− 1

4
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Some of the results presented in this work are collected in the following publications:

1. Infinite chain of N different deltas: a simple model for a quantum wire

J. M. Cerveró and A. Rodŕıguez, Eur. Phys. J. B 30, 239-251 (2002)

2. Simple model for a quantum wire II. Statistically correlated disoder

J. M. Cerveró and A. Rodŕıguez, Eur. Phys. J. B 32, 537-543 (2003)

3. The band spectrum of periodic potentials with PT -symmetry

J. M. Cerveró and A. Rodŕıguez, J. Phys. A: Math. Gen. 37, 10167-10177

(2004)

4. Absorption in atomic wires

J. M. Cerveró and A. Rodŕıguez, Phys. Rev. A 70, 052705 (2004)

5. Simple model for a quantum wire III. Transmission in finite samples with correlated

disorder

J. M. Cerveró and A. Rodŕıguez, Eur. Phys. J. B 43, 543-548 (2005)

Publications of the author not directly related to this work:

1. Squeezing and quantum canonical transformations

J. M. Cerveró and A. Rodŕıguez, Int. J. Theor. Phys. 41, 503-510 (2002)

2. Collective versus local measurements in a qubit mixed-state stimation

E. Bagán. R. Muñoz-Tapia, M. Baig and A. Rodŕıguez, Phys. Rev. A 69, 010304(R)

(2004)
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