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Rory Boyle1
& Lee Jollans2 & Laura M. Rueda-Delgado1

& Rossella Rizzo3
& Görsev G. Yener4,5,6 & Jason P. McMorrow7,8

&

Silvin P. Knight8,9 & Daniel Carey9,10 & Ian H. Robertson1,11
& Derya D. Emek-Savaş4,11,12 & Yaakov Stern13

&

Rose Anne Kenny8,9,14 & Robert Whelan1,11

# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Brain-predicted age difference scores are calculated by subtracting chronological age from ‘brain’ age, which is estimated using
neuroimaging data. Positive scores reflect accelerated ageing and are associated with increased mortality risk and poorer physical
function. To date, however, the relationship between brain-predicted age difference scores and specific cognitive functions has
not been systematically examined using appropriate statistical methods. First, applying machine learning to 1359 T1-weighted
MRI scans, we predicted the relationship between chronological age and voxel-wise grey matter data. This model was then
applied to MRI data from three independent datasets, significantly predicting chronological age in each dataset: Dokuz Eylül
University (n = 175), the Cognitive Reserve/ReferenceAbility Neural Network study (n = 380), and The Irish Longitudinal Study
on Ageing (n = 487). Each independent dataset had rich neuropsychological data. Brain-predicted age difference scores were
significantly negatively correlated with performance on measures of general cognitive status (two datasets); processing speed,
visual attention, and cognitive flexibility (three datasets); visual attention and cognitive flexibility (two datasets); and semantic
verbal fluency (two datasets). As such, there is firm evidence of correlations between increased brain-predicted age differences
and reduced cognitive function in some domains that are implicated in cognitive ageing.
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Introduction

Longitudinal neuropsychological testing in older adults can be
used to detect cognitive decline. However, practice effects can
obscure assessment of cognitive ability (Elman et al. 2018), and
test performance is affected by subject-level factors such as the
individual’s level of comprehension, reading ability, self-effi-
cacy, motivation, fatigue, and fluctuations in concentration
(McCaffrey and Westervelt 1995). In contrast, objective bio-
markers are not subject to such biases or patients’ physical
limitations (Jollans andWhelan 2016). An objective biomarker
of cognitive ageing would therefore be useful for the timely
identification of cognitive decline outside of age-related norms.

Ageing is a process with significant heterogeneity across
individuals (McCrory and Kenny 2018). Consequently, chro-
nological age is not the most accurate marker of an individ-
ual’s rate of biological ageing (Sprott 2010). Ageing bio-
markers have been developed that provide additional informa-
tion about an individual’s health status and life expectancy
(Dean and Morgan 1988). For example, DNA methylation
data can estimate epigenetic ageing (‘epigenetic clocks’),
reflecting the age of an individual’s tissues or blood cells
(Fiorito et al. 2019). Subtracting chronological age from the
biological age results in a biologically informative summary
score – the predicted age difference – for each individual,
which reflects the deviation from typical lifespan trajectories
(Richard et al. 2018). This approach has also been applied in
neuroimaging, where machine learning can be used to quan-
tify the relationship between structural MRI data and chrono-
logical age, in order to estimate an individual’s ‘brain age’.
Subtracting chronological age from the estimated ‘brain age’
results in a brain predicted-age difference score (brainPAD,
also referred to as brain age gap, brainAGE, Brain-Age
Score; Beheshti et al. 2018; Franke et al. 2010; Schnack et
al. 2016) which quantifies how a person’s brain health differs
from what would be expected for their chronological age.

BrainPAD is a promising biomarker of general brain ageing
as it already satisfies several criteria for ageing biomarkers
(Butler et al. 2004). BrainPAD is predictive of mortality and
of age-sensitive physiological measures, including grip
strength, lung function, walking speed and allostatic load
(Cole et al. 2018). Moreover, brainPAD has been associated
with cognitive impairment (Liem et al. 2017), is negatively
correlated with fluid cognitive performance (Cole et al. 2018)
and is significantly increased in Alzheimer’s disease (AD) and
mild cognitive impairment (MCI; Franke and Gaser 2012;
Gaser et al. 2013; Löwe et al. 2016). As such, brainPAD could
serve as a cognitive ageing biomarker. However, this potential
use of brainPAD is currently limited by a lack of knowledge
regarding the exact relationship between brainPAD and spe-
cific cognitive functions in healthy individuals.

Studies relating specific cognitive functions and brainPAD
have been assessed in solely clinical samples (e.g., Cole et al.

2015; traumatic brain injury), or in mixed samples of clinical
groups and healthy controls (e.g., Beheshti et al. 2018; AD,
MCI, and healthy controls) and not samples comprised only of
healthy adults. As such, the reported associations between
brainPAD and specific domains of cognitive function in such
studies (Beheshti et al. 2018; Cole et al. 2015) may be skewed
towards significance by the inclusion of the clinical samples
with typically higher brainPADs. Consequently, these findings
may not represent the brainPAD-cognition relationship in nor-
mal ageing. For example, Le et al. (2018) reported a signifi-
cant negative correlation between brainPAD and response in-
hibition and selective attention in a sample of individuals
comprised of healthy controls and patients with mood or anx-
iety disorders, substance use disorder and/or eating disorders.
However, significantly increased brainPADs have been re-
ported in mood disorders such as major depression
(Koutsouleris et al. 2014) and in substance use disorders such
as alcohol dependence (Guggenmos et al. 2017). As both ma-
jor depression and alcohol dependence are associated with
cognitive impairments (Chanraud et al. 2007; McIntyre et al.
2013), the significant brainPAD-cognitive function correla-
tions reported across samples including such populations
could be driven by the inclusion of such clinical groups.

The relationship between specific cognitive functions and
BrainPAD has also been somewhat obscured by statistical
considerations. Recent work has empirically demonstrated
that chronological age must be controlled for when testing
relationships between brainPAD and cognitive functions (Le
et al. 2018; Smith et al. 2019). Failure to correct for chrono-
logical age can result in false positive findings because some
cognitive variables are correlated with chronological age – but
not brain ageing – and brainPAD is typically correlated with
chronological age (Le et al. 2018). In light of this recent work,
it is difficult to interpret studies that did not control for chro-
nological age when investigating the brainPAD-cognition re-
lationship in healthy controls (Franke et al. 2013; Löwe et al.
2016). A second statistical issue is a failure to correct for
multiple comparisons. Researchers testing the brainPAD-cog-
nition relationship have tended to carry out multiple statistical
tests of the correlation between brainPAD and various cogni-
tive measures. The performance of multiple statistical tests
can increase the Type I error and result in false positive find-
ings (Ranganathan et al. 2016). However, some papers did not
control for multiple comparisons when investigating the
brainPAD-cognition relationship (Beheshti et al. 2018; Cole
et al. 2017b). Other studies have investigated the relationship
between brainPAD and specific domains of cognitive
function while controlling for chronological age and
multiple comparisons, but there are conflicting results
for most cognitive domains. For example, a significant
correlation between verbal fluency and brainPAD was
reported by Franke et al. (2013) whereas Richard et
al. (2018) found no association between verbal fluency
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and brainPAD. We have summarized the brainPAD-cog-
nition findings in Table 1.

The first step in generating a brainPAD score is creating a
feature set of neuroimaging data which is correlatedwith chro-
nological age. Neuroimaging data have high dimensionality,
which can result in overfitting and overoptimistic predictions
(Whelan and Garavan 2014). Brain age prediction models
thus rely on feature engineering techniques such as principal
components analysis (PCA; Franke et al. 2010; Gutierrez
Becker et al. 2018) or even dot products of different features
(e.g. vectors of GM and white matter (WM) voxels as in Cole
et al. 2015; Cole et al. 2018; Cole et al. 2017b) in order to
reduce the dimensionality (Mwangi et al. 2014). These tech-
niques map the original variables onto a feature space (in
effect, creating ‘new’ variables) typically using linear trans-
formations in the case of dot products (Snyder et al. 2013),
although non-linear transformation may also be used for ker-
nel methods (Honeine and Richard 2009; Kwok and Tsang
2004). While these models create generalizable and accurate
predictions, this may come at the cost of reduced interpretabil-
ity of the contributions of the features (Bunea et al. 2011;
Mateos-Pérez et al. 2018), which is important for assessing
the neurobiological validity of the model (Woo et al. 2017)
and to identify specific brain areas for further investigation
(Scheinost et al. 2019). Due to the importance of interpretabil-
ity in neuroimaging, unlike with other data (e.g. credit card
transactions for fraud detection), the application of machine
learning to MRI does not necessarily involve the goal of
achieving the highest accuracy (Mateos-Pérez et al. 2018).
While methods do exist for projecting the ‘new’ variables
back from the feature space to the input space (Honeine and
Richard 2009; Kwok and Tsang 2004; Snyder et al. 2013) thus
enabling interpretability of models employing dot products,
PCA or kernel methods, these methods are not always imple-
mented and/or reported in brain-age papers (Cole et al. 2015,
2018; Cole et al. 2017a; Gaser et al. 2013; Gutierrez Becker et
al. 2018; Nenadić et al. 2017). In contrast, penalized regres-
sion methods (e.g., the Elastic Net; Zou and Hastie 2005) do
not require the back-projection of coefficients from feature
space to input space and therefore have good interpretability,
particularly when less complex feature sets are used
(Luo et al. 2019). GM data is particularly well-suited
for age prediction as GM volume linearly declines with
age (but cf. Fjell et al. 2013) whereas WM volume has
a less straightforward relationship with age, as it doesn’t
decline significantly until middle age (Farokhian et al.
2017; Ge et al. 2002). The Elastic Net is a machine
learning model well-suited to the high dimensionality
and multicollinearity inherent in neuroimaging data as
shown by the finding that it produced the most consis-
tent predictions as compared to various other models
over datasets with varying sample-, feature set-, and
effect-sizes (Jollans et al. 2019).

A final challenge in the development of neuroimaging bio-
markers, or neuromarkers, is ensuring the generalisability of the
neuromarker to new data. For practical reasons, cross-valida-
tion, where a dataset is split into a training set and a test set
(Varoquaux et al. 2017), is often used as an estimate of model
accuracy for new data (Jollans and Whelan 2018; Scheinost et
al. 2019). However, cross-validation accuracy estimates are of-
ten optimistically biased and can vary considerably (Varoquaux
et al. 2017), particularly when preprocessing and feature selec-
tion are carried out on the entire dataset before splitting it into
training and test sets (Dwyer et al. 2018; Woo et al. 2017). As
such, the gold-standard for assessing the external validity and
generalisability of a neuromarker is by testing how the model
performs on a completely independent held-out dataset (Jollans
and Whelan 2018). While various brainPAD studies have ex-
ternally validated their models (Beheshti et al. 2018; Cole et al.
2015,2018; Cole et al. 2017b; Franke et al. 2010; Gutierrez
Becker et al. 2018; Lancaster et al. 2018; Liem et al. 2017;
Madan and Kensinger 2018; Varikuti et al. 2018), only a few
studies have reported model performance in terms of accuracy
(i.e., correlation or mean absolute error between brain-predicted
age and chronological age) on the external validation dataset
(Cole et al. 2015; Lancaster et al. 2018; Liem et al. 2017;
Madan and Kensinger 2018). This does not necessarily cast
doubt on the validity of the models whose accuracy is reported
in terms of internal cross-validation performance. However, not
reporting the external validation performance limits the inter-
pretation of the accuracy and generalisability of various
brainPAD models as typically performance will be lower in
the external validation dataset.

In order to clarify the unclear relationship between
brainPAD and specific domains of cognitive function, we
aimed to 1) establish an interpretable model of brainPAD
using the Elastic Net with GM voxel-wise data, 2) externally
validate this model in three independent datasets, and 3) to
establish the domains of cognitive function that are reliably
correlated with brainPAD across different datasets.

Methods

Study design

The present study used data from open-access repositories to
form a training set in which a machine learning model was
trained. Data from three separate datasets (Dokuz Eylül
University (DEU); Cognitive Reserve/Reference Ability
Neural Network Study (CR/RANN) and The Irish
Longitudinal Study on Ageing (TILDA)) were then used to
form three external validation sets in which the machine learn-
ing model was validated and the relationship between
brainPAD and cognitive function was investigated. In all
cases, the data were collected prior to conception and design
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Table 1. Summary of findings on the relationship between brainPAD and cognitive function.

Cognitive Domain Measure Reference Sample n Sig. Sig. in
HCs

Age
adj.

MC
corr.

General
Cognitive Status

MOCA (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔

MMSE (Kaufmann et al., 2019) MCI; DEM 921; 707 ✔ ✘ ✔ ✔

MMSE (Gaser et al., 2013) MCI 195 ✘ ✘ ✘ ✘

CDR ✔ ✘ ✘ ✘

ADAS ✔ ✘ ✘ ✘

MMSE (Löwe et al., 2016) APOE; Non APOE 219; 186 ✔ ✘ ✘ ?a

CDR APOE; Non APOE 219; 186 ✔ ✘ ✘ ?a

ADAS APOE; Non APOE 219; 186 ✔ ✘ ✘ ?a

MMSE (Beheshti et al., 2018) AD; pMCI; sMCI; HC 147; 112;
102; 146

✔ ✘ ✘ ✔b

CDR ✔ ✘ ✘ ✔b

ADAS ✔ ✘ ✘ ✔b

Composite measurec (Cole et al., 2017b HIVp; HC 161; 102 ✔ ✔ ✘d ✔b

Verbal Fluency Composite measuree (Cole et al., 2017b) HIVp; HC 161; 102 ✘ ✔ ✘d ✘

Composite measuref (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔

Semantic (Category
Fluency Test)

(Franke et al., 2013) DM2; HC 98; 87 ✔ ✔ ✔ ✔

Phonemic (Letter
Fluency Test)

(Cole et al., 2015) TBI 89 ✔ ✘ ✔ ✔

Processing Speed Composite measureg (Cole et al., 2017b) HIVp; HC 161; 102 ✔ ✔ ✘d ✘

Composite measureh (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔

TMT-A (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔

CRT TBI 66 ✔ ✘ ✔ ✔

Processing Speed,
Visual Attention, and
Cognitive Flexibility

Composite measurei (Cole et al., 2017b) HIVp; HC 161; 102 ✔ ✔ ✘d ✘

TMT-B (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔

Visual Attention and
Cognitive Flexibility

TMT-B minus TMT-A (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔

Response Inhibition and
Selective Attention

D-KEFS CWIT Composite
measurej

(Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔

D-KEFS CWIT (Inhibition
vs Color Naming – scaled)

(Le et al., 2018) HC, MOOD/ANX,
SUD, ED

489 ✘ ✘ ✔ ✔

D-KEFS CWIT
(Inhibition/Switching)

TBI 89 ✔ ✘ ✔ ✔

D-KEFS CWIT
(Inhibition/Switching minus
Baseline Stroop performance)

TBI 89 ✘ ✘ ✔ ✔

Sustained Attention Composite measurei (Cole et al., 2017b) HIVp; HC 161; 102 ✘ ✔ ✘b ✘

Verbal Episodic
Memory

Composite measurek (General) (Cole et al., 2017b) HIVp; HC 161; 102 ✔ ✔ ✘b ✘

CVLT Immediate Recall,
CVLT Delayed Recall,
CVLT Learning 1–5, (all
tested separately)

(Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔

People Test (Immediate) (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔

Working Memory Composite measurel (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔

Blocked Verbal N-back Task (Scheller et al., 2018) HC 34 ✘ ✔ ✘ n/am

Motor Function Composite measuren (Cole et al., 2017b) HIVp; HC 161; 102 ✘ ✔ ✘b ✘

Intelligence WASI Similarities (Abstract
verbal reasoning)

(Cole et al., 2015) TBI 90 ✘ ✘ ✔ ✔

WASI Matrix Reasoning
(Non-verbal reasoning)

TBI 88 ✘ ✘ ✔ ✔
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of the present study. The target population were healthy
adults.

Participants

Training set. The data were comprised of MRI scans from
1359 healthy adults (mean age 40.04 years, SD = 17.78
years, range = 18.00–88.36 years; 855 females) drawn from
various open-access data repositories (see Table S1 in
Supplementary Info). Inclusion criteria for the training co-
hort were: over 18 years old, age and gender data avail-
able, and not diagnosed with any neurological, psychiatric
or major medical conditions.

Test Set 1 –DEU. The first test set was comprised of 175 com-
munity-dwelling adults (mean age = 68.95 years, SD = 8.59
years; range = 47.56–93.51 years; 104 females) recruited as
part of a study conducted at Dokuz Eylül University, Izmir,
Turkey. Exclusion criteria included history of neurological or

psychiatric diseases, use of psychotropic drugs including cho-
linesterase inhibitors, traumatic brain injury, history of stroke,
drug and/or alcohol addiction and uncontrolled systemic
diseases.

Test Set 2 – CR/RANN. The second test set was comprised of
380 community-dwelling adults (mean age = 52.41 years,
SD = 17.09 years; range = 19–80 years; 210 females) who
participated in the CR/RANN study (Stern et al. 2018; Stern
et al. 2014). These participants were screened for MRI con-
traindications, hearing and visual impairments, medical or
psychiatric conditions, and dementia and MCI. Further inclu-
sion criteria were a score of over 135 on the Mattis Dementia
Rating Scale (Jurica et al. 2001), a reading level at least equiv-
alent to the US 4th grade, and minimal complaints of func-
tional impairment.

Test Set 3 –TILDA. The third test set was comprised of anMRI
subset of a nationally representative longitudinal cohort study

Table 1. (continued)

Cognitive Domain Measure Reference Sample n Sig. Sig. in
HCs

Age
adj.

MC
corr.

Composite measureo

(Fluid-type intelligence)
(Cole et al., 2018) HC 669 ✔ ✔ ✔ ✘

Moray House Test
(Childhood IQ)

✘ ✔ ✘ ✘

Sig: results were statistically significant; Sig. in HC: results were statistically significant in healthy controls; Age adj.: results were adjusted for age; MC
corr.: results were corrected for multiple comparisons. MOCA=Montreal Cognitive Assessment;MMSE=MiniMental State Examination, MCI =Mild
Cognitive Impairment, DEM=Dementia; CDR=Clinical Dementia Rating Scale, AD=Alzheimer’s Disease, ADAS= Alzheimer’s Disease Assessment
Scale, HC =Healthy Controls, APOE= APOE e4 carrier, Non APOE= APOE e4 non-carrier, sMCI = Stable MCI, pMCI = Progressive MCI, HIVp =
HIV-positive, DM2=DiabetesMellitus Type 2, TBI = Traumatic Brain Injury, TMT-A= TrailMaking Test A (Time to complete), CRT =Choice Reaction
Time Task (Median reaction time), TMT-B= Trail Making Test B (Time to complete), D-KEFS CWIT=Delis-Kaplan Executive Function System D
Color-Word Interference Test, MOOD/ANX=Mood/Anxiety Disorder, SUD= Substance use Disorder, ED= Eating Disorder, CVLT = California
Verbal Learning Test, WASI =Weschler Abbreviated Scale of Intelligence
a No response from authors – Multiple comparison correction not outlined in relation to brainPAD-cognition tests but used elsewhere in paper.
b Finding not corrected for multiple comparison but likely would have survived Bonferroni correction so not affected by lack of correction.
c Average of average standardised t-scores (adjusted for age, sex, education) across domains of verbal fluency, processing speed, executive function,
memory, attention, and motor function
d T-scores controlled for effect of age on cognitive scores, but relationship between brainPAD and agewas not controlled for, so not fully adjusted for age.
e Average of standardised t-scores (adjusted for age, sex, education) from Category Fluency and Letter Fluency tests
f Cluster measure combining Phonological Flow and Semantic Flow measures from CABPad (Willer, Pedersen, Forchhammer, & Christensen, 2016)
g Average of standardised t-scores (adjusted for age, sex, education) from TMT-A,WAIS-III Digit Symbol and Symbol Search, and Stroop Colour-Word
Test
h Cluster measure combining processing speed parameters based on the Theory of Visual Attention obtained from test battery using CABPad
i Average of standardised t-scores (adjusted for age, sex, education) from TMT-B andWCST (Number of total errors, perseverative errors and responses)
j Cluster measure combining scores from the Colour-Naming, Reading, Inhibition, and Inhibition/Switching trails of the D-KEFS CWIT
kAverage of standardised t-scores (adjusted for age, sex, education) from Rey Auditory Verbal Learning test and WMS-IV Visual Reproduction
l Cluster measure combining measures from working memory test of CABPad
mOnly one test of brainPAD-cognition relationship conducted so multiple comparison correction not necessary
nAverage of standardised t-scores (adjusted for age, sex, education) from Grooved Pegboard and Finger Tapping tasks
o Index derived from a principal components analysis ofWASI-III Letter-number sequencing, digit span backwards, matrix reasoning, block design, digit
symbol coding, symbol search
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of community-dwelling adults in Ireland (Whelan and Savva
2013). From an initial subset of 502 participants, participants
were excluded due to missing a portion of the cerebellum (n =
2), a history of Parkinson’s disease, stroke, or transient ische-
mic attack (n = 11) and no cognitive data (n = 2). The final test
set was comprised of MRI data from 487 participants (mean
age = 68.6 years, SD = 7.21 years; range = 50–88 years; 260
females).

MRI data acquisition

Training Set. A range of T1-weighted MRI scans from differ-
ent scanners and using different protocols were used as the
training set (see Table S1 in Supplementary Info).

Test Set 1 – DEU. DEU participants underwent a 10 min T1
scan in a 1.5 T Philips Achieva scanner as part of a larger 20-
min MRI battery. Two separate protocols were used for scans
included here. The Alzheimer’s Disease Neuroimaging
Initiative (ADNI) T1 protocol was followed for 126 scans
using the turbo field echo sequence with the following param-
eters: number of slices = 166, FOV = 240 mm3, matrix size =
256 × 256, slice thickness = 1 mm, slice gap = 0 mm, TR = 9
ms, TE = 4 ms. For 49 scans, a local protocol using a gradient
echo sequence was followed with the following parameters:
FOV = 230 mm3, matrix size = 400 × 512, slice thickness = 1
mm, slice gap = 0 mm, TR = 25 ms, TE = 6 ms.

Test Set 2 – CR/RANN. CR/RANN participants underwent a 5
min T1 MPRAGE scan in a 3 T Philips Achieva scanner as
part of a larger 2-h imaging battery. The following parameters
were used: FOV = 256 × 256 × 180 mm, matrix size = 256 ×
256, slice thickness = 1 mm, slice gap = 0 mm, TR = 6.5 ms,
TE = 3 ms.

Test Set 3 – TILDA. TILDA participants underwent a 5 min 24
s T1 MPRAGE scan in a 3 T Philips Achieva scanner as part
of a larger 45-min MRI battery. The following parameters
were used: FOV = 240 × 240 × 162 mm3, matrix size =
288 × 288, slice thickness = 0.9 mm, slice gap = 0 mm,
TR = 6.7 ms, TE = 3.1 ms.

MRI pre-processing

All images were preprocessed using SPM12 (University
College London, London, UK). Prior to processing, all scans
were automatically approximately reoriented (see
Supplemental Information; MRI pre-processing) to a canoni-
cal SPM template. All scans were then visually inspected for
good orientation and gross artefacts before preprocessing. In
the test set, badly oriented scans were manually reoriented
before preprocessing. In both training and test sets, each indi-
vidual dataset was preprocessed in a separate batch. Bias

correction was applied to images which were then segmented
into GM, WM, and CSF. Segmented GM images were non-
linearly registered to a custom template, using SPM’s
DARTEL. Images were then affine registered to MNI space
(1 mm3) and resampled with modulation to preserve the total
amount of signal from each voxel. Images were smoothed
with a 4 mm full-width at half maximum Gaussian kernel.
Finally, images were visually inspected for accurate segmen-
tation. The code used to auto-reorient and preprocess the MRI
data is available at https://github.com/rorytboyle/brainPAD.

Machine learning

Data preparation GM images were resized to 2 mm3 voxels
and individual voxel values were extracted from each image.
A threshold was applied such that a voxel was retained if it
had GM density > 0.2 in that voxel across all 1359 training set
images. After thresholding, the training data consisted of 1359
images, each with 54,869 voxels.

Machine learning model The goal of the training phase was to
construct a generalizable model that could predict chronolog-
ical age from GM data. In order to increase generalizability, a
data resampling ensemble approach was used. That is, 500
participants, with a 50:50 gender ratio, were randomly sam-
pled without replacement from the training data to form a
nested training set. This process was repeated 25 times, creat-
ing 25 nested training sets. Each nested training set (500 par-
ticipants × 54,869 voxels), was used as the input to a regular-
ized linear regression model (Elastic Net), with 10-fold cross-
validation (CV), to predict the chronological age of each par-
ticipant (see Supplementary Info for further information on
the machine learning model). The performance of the model
was quantified using the mean of each of the 25 nested
models’ Pearson’s correlation between chronological age
and predicted age (r), mean absolute error (MAE), and the
weighted MAE. The weighted MAE is equal to the MAE
divided by the age range of the sample tested and is a more
suitable metric for comparing the MAE of brainPAD models
across studies as it accounts for the impact of a sample’s age
range on prediction accuracy (Cole et al. 2019). A lower
weighted MAE reflects greater accuracy.

Application to independent test sets First, the average coef-
ficient value for each voxel across all folds in all 25 training
models was calculated, resulting in a vector of length 54,869.
For each independent test set, the mean coefficient values
were multiplied by the voxels’ GM density values and the
product was summed to create a brain-age prediction for each
participant. To correct for the proportional bias in the model,
the prediction was added to the intercept of the training set,
and the result was then divided by the slope of the training set.
This correction does not affect the relationship between
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brainPAD and outcome measures but scales the data correctly
so that brainPAD scores can be interpreted in units of years
proportional to a person’s chronological age. Similar correc-
tions have been applied in other brainPAD models (Cole et al.
2018). BrainPADwas calculated by subtracting chronological
age from the corrected predicted age, hence, a positive
brainPAD value indicates a brain-predicted age that exceeds
the participant’s chronological age, suggesting accelerated
brain ageing. The code used to make brain-age predictions
and calculate brainPAD scores for independent test sets is
available at https://github.com/rorytboyle/brainPAD.

Cognitive function measures

Each of the three datasets contained a wide range of cognitive
measures. However, as the three datasets were completely in-
dependent of one another, and all data collection was completed
prior to conception and design of the present study, different
cognitive measures were used across the datasets. For the pur-
poses of the present study, a cognitive measure was selected for
analysis if it assayed a cognitive domain that was assessed in at
least one other dataset. For example, the AMNARTand NART
assessed premorbid intelligence in CR/RANN and TILDA re-
spectively so both measures were selected for analysis and con-
sidered as ‘comparable’ measures. The cognitive domains
assessed by each measure were decided with reference to the
literature as outlined in the Supplementary Information. Across
all three datasets, 17 common cognitive domains were identi-
fied (see Table 2 for list of cognitive domains and cognitive
measures used and Supplementary Information for detailed de-
scriptions of each cognitive measure).

Statistical analysis

The statistical analysis was conducted using the following
procedure:

1. Correlate. Within each independent test set, partial
Spearman’s rank order correlationswere conducted between
brainPAD scores and cognitive measures, controlling for
chronological age and sex. Sex was adjusted for to account
for a significant sex difference in brainPADs (p < 0. 0001).

2. Replicate. For findings replicated in multiple datasets, the
probability of obtaining p-values by chance was calculat-
ed by random-label permutation (see Supplementary
Methods for further detail). Briefly, this involved random-
ly shuffling brainPAD scores, conducting Spearman’s par-
tial correlations between randomly shuffled brainPAD
scores and the cognitive dependent variables, controlling
for age and sex. This process was repeated one million
times. The number of times in which all random p-values
were more extreme (i.e. smaller) than the actual p-values
was summed and divided by one million to obtain the

probability of the finding replicating across multiple
datasets by chance. Replicated findings were deemed sig-
nificant if this probability was less than .05.

3. Correct for multiple comparisons. All other correlations
were then corrected for multiple comparisons, while
allowing for correlations among dependent cognitive var-
iables, using a maximum statistic approach (see
Supplementary Methods for further detail). Briefly, in
each test set, brainPAD scores were randomly shuffled
and then Spearman’s partial correlations were conducted
between the randomly shuffled brainPAD scores and the
cognitive dependent variables, controlling for age and
sex. This process was repeated one million times and the
maximum rho value was stored each time. Correlations
between actual brainPAD scores and cognitive variables
were deemed significant if they exceeded the 95th percen-
tile of the maximum rho values.

Results

Brain age prediction

Training set

The model accurately predicted chronological age (r = 0.85,
MAE = 7.28 years, weighted MAE = 0.10, p < 0.0001). As
with other brain PAD models (e.g., Cole et al. 2018), a propor-
tional bias was observed in this model where chronological age
correlated with prediction error (r = − 0.4452, p = 1.1036e-10).

Independent test sets

The model accurately predicted chronological age in each of
the three independent test sets (see Table 3).

Sex differences in brainPAD

Mean brainPAD differed significantly by sex in all datasets,
Welch’s t(1009.55) = − 5.79, p < .0001. Males (M = −1.81,
SD = 9.92) had significantly lower brainPADs than females
(M = 1.81, SD = 10.23; see Fig. 1). Within individual test sets,
males had significantly lower brainPADs, compared to fe-
males, in in CR/RANN (p < .0001) and TILDA (p < .0001)
but not in DEU (p = 0.148; see Fig. 2).

Brain regions involved in brain age prediction

The voxel-wise method used here to predict brain age resulted
in individual coefficient values for each voxel. Voxels with
positive coefficient values contributed to older brain age pre-
dictions and voxels with negative coefficient values
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contributed to younger brain age predictions. Fig. 3 shows all
voxels with binarised negative and positive coefficient values,
respectively. However, as it is difficult to visualize a 3D object
containing a large number of small voxels, a .nii file of
the regression coefficients can be downloaded here:
https://osf.io/5n6t8/. Overlaying this .nii file in a
viewer such as mricroGL will allow for a more

accurate view of the regression coefficients. Moreover,
an .xlsx file containing the absolute value of each
regression coefficient, the sign direction of that
coefficient (i.e. positive/negative), the coefficient rank
in terms of absolute values, as well as the MNI
coordinates and anatomical labels of the coefficients, is
available here: https://osf.io/dkz67/.

Table 2 Cognitive measures available across each dataset in comparable cognitive domains.

Cognitive Domain(s) DEU Measure (N) CR/RANN Measure (N) TILDA Measure (N)

General Cognitive Status MMSE (total score) (172) DRS (370) MMSE (485)

Premorbid Intelligence n/a AMNART (362) NART (486)

Phonemic Verbal Fluency KAS Test (137) CFLTest (360) n/a

Semantic Verbal Fluency Animals Test (175) Animals Test (361) Animals Test (487)

Processing Speed TMTA (93) TMTA (361) CTT 1 (487)

Processing Speed, Visual
Attention, Cognitive Flexibility

TMT B (84) TMT B (357) CTT 2 (482)

Visual Attention, Cognitive
Flexibility

TMT B minus TMTA (84) TMT B minus TMTA (357) CTT 2 minus CTT 1 (482)

Cognitive Flexibility WCST Perseverative Error
Percentage (50)

WCST Perseverative Error Percentage
(327)

n/a

Response Inhibition, Selective
Attention

Stroop (Turkish Capa version;
(Emek-Savaş, Yerlikaya,
Yener, & Öktem, 2019)
Interference Score - Time (150)

Stroop (Golden version; Golden, 1978)
Interference Score - Words (359)

n/a

Sustained Attention (Errors of
Commission)

n/a PVT False Alarms (176) SART Errors of Commission
(482)

Sustained Attention (Reaction
Time)

n/a PVT Median Reaction Time (176) SART Coefficient of Variation
in Reaction Time (479)

Verbal Episodic Memory
(Immediate)

OVMPT Immediate Recall (175) SRT Total Score (360) Immediate Recall (487)

Verbal Episodic Memory (Delayed) OVMPT Delayed Recall (175) SRT Delayed Recall (360) Delayed Recall (487)

Verbal EpisodicMemory (Learning) OVMPT Total Learning Score
(175)

SRT Consistent Long Term
Retrieval (360)

n/a

Working Memory WMS-R Digit Span Forward
Test (171)

WAIS-III Letter Number
Sequencing Test (360)

n/a

WMS-R Digit Span Backward
Test (170)

Visuospatial Ability BLOT (80) WAIS-III Block Design Test (356) n/a

See Table S.4 for full information on each measure; MMSE=Mini-Mental State Examination (Folstein, Folstein, &McHugh, 1975); DRS Total Score =
Mattis Dementia Rating Scale-2 – Total Score (Jurica et al., 2001); NART =National Adult Reading Test (Nelson & Willinson, 1982); AMNART=
American National Adult Reading Test (Grober & Sliwinski, 1991); CTT =Colour Trails Test (D’Elia, Satz, Uchiyama, & White, 1996); TMT= Trail
Making Test (Reitan, 1955); WCST=Wisconsin Card Sorting Test (Heaton, Chelune, Talley, Kay, & Curtiss, 1993); SART= Sustained Attention to
Response Test (Robertson, Manly, Andrade, Baddeley, & Yiend, 1997); PVT= Psychomotor Vigilance Task (Dorrian, Rogers, & Dinges, 2005);
OVMPT=Öktem Verbal Memory Processes Test (Öktem, 1992); SRT = Selective Reminding Test (Buschke & Fuld, 1974); WMS-R =Wechsler
Memory Scale (Wechsler, 1987); WAIS-III =Wechsler Adult Intelligence Scale – Third Edition (Wechsler, 1997); BLOT=Benton’s Judgement of
Line Orientation Test (Benton, Varney, & Hamsher, 1978)

Table 3. Results of application of
trained model parameters to 3
independent test sets.

Test Set Pearson’s r Mean brainPAD SD brainPAD MAE Weighted MAE

Test Set 1 – DEU 0.78* +6.60 6.44 7.60 0.17

Test Set 2 – CR/RANN 0.87* +6.39 8.57 8.56 0.14

Test Set 3 - TILDA 0.65* −6.97 7.52 8.42 0.22

* = p < 10–37. Pearson’s r between brain age and chronological age. Weighted MAE=MAE divided by age
range
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BrainPAD and cognitive function

Across multiple datasets, higher brainPAD scores were signifi-
cantly correlated with reduced performance on measures of gen-
eral cognitive status, semantic verbal fluency, processing speed,
cognitive flexibility, and visual attention (see Fig. 4 and Table 4).

Discussion

A penalized regression approach was able to produce accurate
brain-age predictions from T1 MRI data in three independent
datasets. In non-demented adults, brainPAD, calculated by
subtracting these brain-age predictions from chronological
age, was negatively correlated with general cognitive status,
semantic verbal fluency, processing speed, visual attention,
and cognitive flexibility; and visual attention and cognitive
flexibility in multiple datasets. BrainPAD was significantly
correlated with phonemic verbal fluency, premorbid intelli-
gence, verbal episodic memory (learning score), and visuo-
spatial ability in single datasets after controlling for multiple
comparisons; however, these correlations were not replicated
in another dataset so we do not have strong evidence here in
support of these relationships. BrainPADwas not significantly
correlated with processing speed, cognitive flexibility, re-
sponse inhibition and selective attention, sustained attention,
verbal episodic memory (immediate recall or delayed recall),
or working memory in any dataset.

BrainPAD and cognition

General cognitive status

BrainPAD was negatively correlated with general cognitive
status, as measured using the MMSE and DRS, in DEU and
CR/RANN, and the replication of this result across both
datasets was statistically significant. However, brainPAD
was not significantly correlated with the MMSE in TILDA.
Nonetheless, given the statistically significant replication
across two of the three datasets, there is reliable evidence in
support of the correlation between brainPAD and general cog-
nitive status in healthy older adults. Previous studies have
reported that brainPAD is related to general cognitive status,
albeit in samples including individuals with MCI, AD, or de-
mentia (Beheshti et al. 2018; Kaufmann et al. 2019), and
without adjusting for the effect of age or controlling for mul-
tiple comparisons (Beheshti et al. 2018; Cole et al. 2017b; but
see Table 1 Footnote 4 for information about adjusting for age
in Cole et al. 2017b). In contrast to our findings, Gaser et al.
(2013) reported that brainPAD was correlated with the CDR
and ADAS but not the MMSE in an MCI sample. However,
Gaser et al. (2013) did not account for the effect of age. While
Löwe et al. (2016) reported that brainPAD was negatively
correlated with the MMSE across mixed samples of APOE
e4 carriers and non-carriers (including healthy controls, MCI,
and AD), it was not significantly correlated with the MMSE
within healthy control and MCI subgroups. Sample sizes
within these subgroups were relatively small, ranging from
14 to 81 participants. Consequently, the correlations between
brainPAD and the MMSE in these participants may not have
been adequately powered to reach significance. Our study is
the first to report a relationship between brainPAD and mea-
sures of general cognitive status in healthy adults while con-
trolling for the effects of age and correcting for multiple com-
parisons. This is also the first study to investigate the relation-
ship between brainPAD and DRS score. Our findings provide
strong support for the existence of a significant negative rela-
tionship between brainPAD and general cognitive status. As
such, this finding provides some preliminary support in favour
of brainPAD as an objective measure of general cognitive
function given that brainPAD is not subject to the various
biases and effects (e.g. low reliability, practice effects) that

Fig. 2 Violin plots comparing
distributions of brainPADs
between sexes within datasets

Fig. 1 Violin plot comparing distributions of brainPADs between sexes
across all datasets
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limit the MMSE (Galasko et al. 1993; Pfeffer et al. 1984;
Tombaugh and McIntyre 1992) and the DRS (Emery et al.
1996; Green et al. 1995).

Semantic verbal fluency

BrainPAD was significantly negatively correlated with semantic
verbal fluency, asmeasured using theAnimals task, in bothDEU
and CR/RANN but not in TILDA. Regardless, the replication of
this result across both DEU and CR/RANN was statistically
significant. This finding contradicts non-significant correlations
between brainPAD and composite measures of semantic and
phonemic verbal fluency (Cole et al. 2017b; Richard et al.
2018), although the former study used age-adjusted t-scores to
control for the age-cognition relationship \rather than adding age
as a covariate to the brainPAD-fluency analysis (cf. Le et al.
2018). As semantic verbal fluency is associated with age
(Clark et al. 2009; Santos Nogueira et al. 2016), the failure to
adjust for age may have obscured a significant effect.
Alternatively, these previously reported non-significant correla-
tions could be explained by the use of composite measures of
both phonemic and semantic fluency as we did not find strong
evidence for a relationship between phonemic verbal fluency
and brainPAD (although it was significant in DEU, this correla-
tion was not replicated in CR/RANN). Therefore, it is possible

that a non-significant relationship between phonemic fluency
and brainPAD in the Cole et al. (2017a) and Richard et al.
(2018) study may have diluted a possible significant relationship
between semantic fluency and brainPAD. In a study controlling
for age, brainPADwas found to significantly negatively correlate
with semantic verbal fluency (Franke et al. 2013). Although the
Animals task has been described as an optimal test of neuropsy-
chological function (Ardila et al. 2006), scores on this task are
affected by various factors, including scoring and administration
procedures (Woods et al. 2016) and practice effects (Cooper et al.
2001; Harrison et al. 2000; Wilson et al. 2000). As such,
brainPAD, as an objective marker of general brain health and
global cognitive function, could be a viable alternative to the
Animals task. In sum, our results provide further evidence in
support of a correlation between brainPAD and semantic verbal
fluency.

Processing speed, visual attention, and cognitive flexibility

Across all three datasets, brainPAD was negatively correlated
with processing speed, visual attention, and cognitive flexibility
as measured by trail-making tests (TMT B or CTT 2). The TMT
B is a relatively sensitive measure of cognitive decline: comple-
tion times were shown to be significantly different between
healthy controls, MCI, and AD (Ashendorf et al. 2008).

Fig. 3. Binarised regression
coefficients (positive coefficients
shown in pink, negative
coefficients shown in yellow)
overlaid on 5 coronal slices. A:
No threshold applied; B:
thresholded at 25th percentile of
absolute value of regression
coefficients; C: thresholded at
50th percentile of absolute value
of regression coefficients; D:
thresholded at 75th percentile of
absolute value of regression
coefficients; E: thresholded at
95th percentile of absolute value
of regression coefficients
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Likewise, the CTT 2 is sensitive to cognitive decline, with dif-
ferences between AD and healthy controls (Lin et al. 2014), and
between healthy controls, MCI, and AD (Guo et al. 2010).
Therefore, it is no surprise that processing speed, visual attention,
and cognitive flexibility were also negatively correlated with an
index of accelerated brain ageing. Indeed, previous studies have
reported similar results for trail-making versus brainPAD; how-
ever, these studies did not correct for multiple comparisons (Cole
et al. 2017b) or used clinical samples (TBI; Cole et al. 2015). Our
data therefore augment these findings by replicating this result
across three independent datasets. This evidence could suggest
that brainPADmay be a potential objective measure of cognitive
decline as it is not subject to the same factors which bias trail-
making performance, including to practice effects (Bartels et al.
2010), rater effects (Feeney et al. 2016) and participant literacy
(Vaucher et al. 2014).

Visual attention and cognitive flexibility

BrainPADwas also negatively correlated with visual attention
and cognitive flexibility (TMT B minus A), in DEU and CR/
RANN, but not in TILDA (CTT 2 minus 1). Replication of
this finding in DEU and CR/RANN suggests a modest asso-
ciation between visual attention and cognitive flexibility. The
relationship between brainPAD and TMTBminus Awas only

investigated in one previous study, in a TBI sample, (Cole et
al. 2015) where a significant positive correlation was reported.
Although the TMT B minus A can distinguish between stable
and progressive MCI on a group level (Zanetti et al. 2006),
and is associated with reduced mobility, increased mortality
risk (Vazzana et al. 2010) and slower walking speed (Ble et al.
2005), as a derived measure of the TMT, the TMT B minus A
index is similarly affected by the various factors that can limit
interpretation of the TMT B scores. Therefore, given the cor-
relation shown here between TMT B minus A and brainPAD,
brainPAD may be a potential objective measure of general
cognitive function.

It is notable that several significant brainPAD-cognition rela-
tionshipswere observed in theDEU andCR/RANNdatasets, but
not in TILDA. We tentatively offer some suggestions for this
pattern of results. Confounding factors obscuring the
brainPAD-general cognitive status relationship may have been
uniquely present in TILDA. Whereas the DEU and CR/RANN
cohorts were part of neuroimaging research studies, which have
typically strict inclusion criteria, the TILDAMRI sample were a
subset of a large nationally representative longitudinal study
encompassing health, economic and social research (Whelan
and Savva 2013). TILDA therefore had few inclusion criteria:
being at least 50 years old, having a residential address, and
absence of dementia at baseline (Kearney et al. 2011; Savva et

Fig. 4 Scatterplots of replicated
correlations between the residuals
of brainPAD and cognitive
measures after regressing
brainPAD on age and sex, and
each cognitive measure on age
and sex. A: General cognitive
status; B: Semantic verbal
fluency; C: Processing speed,
visual attention, and cognitive
flexibility; D: Visual attention and
cognitive flexibility. For
scatterplots of non-replicated
correlations, see Supplementary
Info, Fig. S.4
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al. 2013). TILDA’s MRI sample were screened for MRI contra-
indications and were on average healthier than the full sample,
but it is likely that the TILDA sample included participants who
might normally be excluded from neuroimaging research studies
(e.g., those using psychotropic or cardiovascular medication).
Moreover, the range of some cognitive measures in TILDA
was also smaller than DEU and CR/RANN in some cases (see
Supplemental Information: Table S5): notably for general cogni-
tive status, and visual attention and cognitive flexibility, where
the brainPAD-cognition correlations were not replicated within
TILDA. Restricted range of scores on these measures in TILDA
may have contributed to smaller correlation coefficients (Bland
and Altman 2011; Mendoza and Mumford 1987). Additionally,
the age rangewithin TILDAwas smaller than bothDEUandCR/
RANN which may have reduced the statistical power of the
brainPAD-cognition correlations within TILDA as range restric-
tion on covariates has also been shown to reduce power (Miciak
et al. 2016) and decrease the magnitude of correlation coeffi-
cients (Sackett and Yang 2000).

The smaller age range within TILDA (38 years) as com-
pared to DEU (45.95 years) and CR/RANN (70 years) might
also have contributed to the weaker correlation between chro-
nological age and brain-predicted age in TILDA, as range

restriction will reduce the size of correlation coefficients
(Goodwin and Leech 2006). Moreover, a negative mean
brainPAD was reported in TILDA (−6.97 years) whereas both
DEU and CR/RANN had positive mean brainPADs, +6.6
and + 6.39 years respectively. Various factors, including intel-
ligence, educational attainment, and environmental factors,
have been proposed to affect brain ageing (Irimia et al.
2015). TILDA had significantly higher levels of education
versus both CR/RANN and DEU (see Supplementary
Results). Steffener et al. (2016) reported that brainPAD was
significantly related to education, with higher education asso-
ciated with younger brains (or smaller/more negative
brainPADs). This association with education could be one
reason why much lower mean brainPADs were observed for
the TILDA dataset. As the cohorts are each from different
countries, there could be various other environmental factors
that could further explain this relationship.

Model evaluation

We evaluated our model based on its predictive accuracy in
three independent test sets, as proposed by Madan and
Kensinger (2018). While internal cross-validation is a

Table 4. Results of Spearman’s partial correlations between brainPAD and 17 cognitive domains.

Cognitive Domain DEU CR/RANN TILDA Probability of
replicating by
chance

Sig. by max statistic
correction (where
finding not
replicated)

rho df p rho df p rho df p

General Cognitive Status −0.3199 168 <0.0001 −0.1449 366 0.0275 −0.0333 481 0.4655 <0.00001 n/a

Premorbid Intelligence n/a −0.2322 358 <0.0001 0.0485 482 0.2873 n/a CR/RANN

Phonemic Verbal Fluency −0.3259 134 0.0001 −0.0771 356 0.1454 n/a n/a DEU

Semantic Verbal Fluency −0.2507 171 0.0009 −0.2019 357 0.0001 −0.0615 483 0.1765 <0.00001 n/a

Processing Speed 0.1232 89 0.2448 0.0595 357 0.2610 0.1208 483 0.0077 n/a None

Processing Speed, Visual
Attention, Cognitive Flexibility

0.2662 80 0.0156 0.1167 353 0.0279 0.0904 478 0.0478 0.00005 n/a

Visual Attention, Cognitive
Flexibility

0.2702 80 0.0141 0.1211 353 0.0225 0.0166 478 0.7165 0.00097 n/a

Cognitive Flexibility 0.0722 46 0.6258 0.0429 323 0.4411 n/a n/a None

Response Inhibition, Selective
Attention

0.0854 146 0.3019 −0.1755 355 0.0009 n/a n/a None

Sustained Attention (Errors of
Commission)

n/a 0.0203 172 0.7902 0.0499 478 0.2752 n/a None

Sustained Attention (Reaction Time) n/a −0.0212 172 0.7813 0.0436 475 0.3425 n/a None

Verbal Episodic Memory
(Immediate)

0.2194 171 0.0037 −0.0407 356 0.4428 −0.0347 483 0.4114 n/a None

Verbal Episodic Memory (Delayed) 0.2797 171 0.0002 0.0343 356 0.5173 0.0122 483 0.7887 n/a None

Verbal Episodic Memory
(Learning)

−0.3196 171 <0.0001 0.0657 356 0.2151 n/a n/a DEU

Working Memory −0.1310
−0.2974

167
166

0.0895a

0.0001b
−0.0469 360 0.3759 n/a n/a None

Visuospatial Ability −0.0809 76 0.4815 −0.1824 352 0.0006 n/a n/a CR/RANN

a Digit Span Forwards; b Digit Span Backwards
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valuable and widely used technique that can attenuate
overfitting (Arlot and Celisse 2010); the use of cross-valida-
tion in certain situations and when it is not implemented cor-
rectly, can result in overestimated prediction accuracy and
overfitting (Saeb et al. 2016; Skocik et al.2016; Varoquaux
et al. 2017). For brainPAD to be considered for clinical use,
it must perform accurately with MRIs acquired in different
scanners and under different protocols. However, in most in-
stances of cross-validation, while the test set is split and held
completely independent from the training set, factors common
to both sets, such as scanner and protocol, could influence
model performance. As such, the gold-standard evaluation
for brainPAD should be accurate performance on independent
external datasets.

The significant correlations between chronological age and
brain-predicted age in all three external datasets shows that
our model is accurate and generalizable (0.65, 0.78, and
0.87 for external datasets). Although the magnitude of these
correlations is lower than correlations reported elsewhere,
ranging from 0.91 to 0.94 (Cole et al. 2015; Cole et al.
2017a; Franke et al. 2010; Lancaster et al. 2018; Liem et al.
2017), it exceeds other externally validated brain-predicted
age studies, ranging from 0.65 to 0.85 (Beheshti et al. 2018;
Madan and Kensinger 2018; Varikuti et al. 2018).

With respect to mean absolute error (MAE), our model did
not perform as well as other externally validated studies, rang-
ing from 4.28 to 7.5 years (Beheshti et al. 2018; Cole et al.
2018; Franke et al. 2010; Lancaster et al. 2018; Madan and
Kensinger 2018). As a result, it could be possible that we may
have lost some precision by not integrating WM information
as input in the model, as was done by Cole et al. (2018), for
example. Another potential reason is that other studies cen-
tered the age predictions using the mean of the ages from the
test set. Although this correction is typically not explicitly
described in method sections, Madan and Kensinger (2018)
note that this is a standard correction in brain age prediction.
Moreover, some studies also match the variance in predicted
age in the test set with the variance of the training data (Madan
and Kensinger 2018). Both corrections are principled and ac-
ceptable methods of correcting for the regression to the mean
artefact in brain age predictions but they result in biased age
predictions in the test set. These corrections also limit the use
of brainPAD to make single subject predictions, as both the
test set mean and variance are used in the prediction. Our
method used only training set information and therefore pro-
duced slightly less accurate but less biased predictions.
Finally, our model may also appear to be less precise in terms
ofMAE as an artefact of the greater age range of our sample in
comparison to most brainPAD studies. An alternative metric,
the weighted MAE (calculated by dividing the MAE by the
age range of the sample), may enable better comparisons
across studies with different age ranges (Cole et al. 2019).
While our weightedMAE is higher than some studies, ranging

from 0.072 to 0.087 (Lancaster et al. 2018; Liem et al. 2017),
the lowest weighted MAE in our sample (0.14 in CR/RANN)
outperformed this metric when calculated for other studies,
0.178 (Beheshti et al. 2018), and 0.18 (Varikuti et al. 2018)
and is comparable to 0.139 (Franke et al. 2010, ‘Test 4’ exter-
nal test set). As such, the predictive accuracy of our model is
comparable to the rest of the literature and is arguably less
biased as only training set information is used.

Sex differences in brainPAD

There were significantly higher mean brainPADs in females in
two of the three datasets in this study (TILDA and CR/
RANN). There is mixed evidence in relation to sex differences
in other brain age prediction studies, with some studies
reporting significantly higher mean brainPADs in males
(Cole et al. 2018; Franke et al. 2013; Luders et al. 2016), some
reporting no significant sex differences (Azor et al. 2019;
Cruz-Almeida et al. 2019; Franke et al. 2014; Han et al.
2019), and another study, with a notably large sample size of
19,000, reporting higher mean brainPADs in females (Smith
et al. 2019). Even studies using the same training sets have
contrasting results in terms of sex effects. For example, the
same training set resulted in significantly higher male
brainPADs in two studies (Franke et al. 2013; Luders et al.
2016) but no sex differences in another study (Franke et al.
2014): however, this divergence could be due to the likely
mean centering of both brainPADs in both sexes in the latter
study (i.e., male and female groups had mean brainPADs of 0
years). This was also the case in another training set used in
multiple studies, with one study reporting significantly higher
male brainPADs (Cole et al. 2018) but another reporting no
significant differences (Azor et al. 2019). As such, it is likely
that sex differences in brainPAD reflect the characteristics of
the test sample. This is apparent in the present study with two
out of the three datasets showing higher mean female
brainPAD but one dataset showing no significant differences.
We therefore recommend that future brain age studies report
sex differences.

Model interpretation

Model interpretability

The interpretability of machine learning models is an impor-
tant and widely discussed problem (Doshi-Velez and Kim
2017), and although it is poorly defined (Lipton 2018) it has
been described as “the ability to explain or to present in un-
derstandable terms to a human” (Doshi-Velez and Kim 2017,
p. 2) and elsewhere as the ability to “understand the contri-
bution of individual features in the model” (Lou et al. 2012, p.
1). Additionally, Lipton (2018) argued that for a model to be
considered truly interpretable, it should possess the following
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three properties: algorithmic transparency (i.e. it should be
possible to understand the mechanism by which the model
works), decomposability (each part of the model, such as the
model input and parameters, should have an intuitive expla-
nation), and simulatability (a person should be able to consid-
er the entire model at once). We contend that our model pos-
sesses these three properties as well as conforming to the
definitions proposed above. First, our model possesses algo-
rithmic transparency in that the Elastic Net is a penalized
linear regression. Second, our model possesses decomposabil-
ity. The inputs to the model were GMvoxel density values and
the parameters, or beta coefficient values, weighted the con-
tribution of each individual value to the model output, which
is brain predicted age. Third, our model possesses
simulatability as the entire model can be considered as fol-
lows: summing the multiplication of GM voxel density values
by the average contribution of these voxels to the prediction of
chronological age in the training set (i.e., the beta coefficient
values) resulted in a prediction of a new individual’s brain age.

Biological interpretability

Our statistical model of brain age contains many adjacent
voxels that have opposite signs. The negative weights repre-
sent those areas with less volume (associated with older age).
The positive weights show areas that have more volume asso-
ciated with older age, which may seem counterintuitive: we
propose that this is because GM in these areas represents a
shift away from the cortex or periventricular regions (i.e.,
younger participants would have WM or CSF in those re-
gions). An example of a similar result can be seen in an
Alzheimer’s disease classification study (Dubois et al. 2014),
which also used penalized regression.

Limitations

While we argue that the current model has good biological
interpretability, this could be further improved by forcing spar-
sity to limit the number of voxels making significant contribu-
tions to brain age predictions. Modified Elastic Net algorithms,
such as Enet-BETA (Liu and Li 2017), can obtain sparser
models which would reduce the number of predictive voxels,
thereby further improving interpretability. However, as the
Elastic Net’s prediction accuracy can increase with feature set
size (Jollans et al. 2019), further limiting the feature set size
could reduce model accuracy. As such, it might be difficult to
achieve the right balance between interpretability and accuracy.
An alternative approach could be to incorporate a penalty such
as Total Variation within the Elastic Net in order to take into
account the spatial structure of MRI data and produce weight
maps that show the predictive voxels clustered in regions rather
than dispersed across the brain (Dubois et al. 2014). These al-
gorithms have been shown to produce models with greater

biological interpretability (i.e. spatially organized weight maps)
and comparable predictive accuracy to regular Elastic Net
models for classification problems (Dubois et al. 2014).
However, the technical implementation of such algorithms can
be difficult and computationally expensive, although solutions
such as early stopping and feature screening, have been pro-
posed (Dohmatob et al. 2015).

Another possible limitation of the current model is that it
uses only voxel-wise GM density data and thus our model
may have lower accuracy due to this restricted feature set.
Other brain age models have used feature sets including com-
binations of cortical and subcortical GM regional volumes
(Steffener et al. 2016); combinations of GM voxel density
values, cortical thickness, and regional volume data
(Gutierrez Becker et al. 2018); combinations of cortical thick-
ness, cortical surface area, subcortical volume, and functional
connectivity information (Liem et al. 2017); and combinations
of GM and WM voxel-wise density information (Cole et al.
2015, 2018; Cole et al. 2017b). Notably, diffusion tensor im-
aging metrics and cortical thickness have been related to the
cognitive domains assessed here, including semantic verbal
fluency (Eastman et al. 2013; Rodríguez-Aranda et al. 2016)
and processing speed, visual attention, and cognitive flexibil-
ity (Ciulli et al. 2016; Dickerson et al. 2008). More complex
feature sets, which combined different feature types and im-
aging modalities, resulted in higher predictive accuracy versus
single feature sets (Liem et al. 2017). As such, it is possible
that a more accurate model using a more complex feature set
would strengthen the brainPAD-cognition correlations report-
ed here. However, such feature sets typically require dimen-
sion reduction such as PCA (Gutierrez Becker et al. 2018) or
even dot products to combine GM and WM data (Cole et al.
2015, 2018; Cole et al. 2017b). These steps can reduce the
interpretability of the relationship between the original feature
and brain age (Mateos-Pérez et al. 2018), although methods
exist for making such feature sets interpretable (Honeine and
Richard 2009; Kwok and Tsang 2004; Snyder et al. 2013).
However, our aim was to produce an interpretable model with
a relatively straight-forward method, an aim which required a
simple feature set. While this approach may have limited our
model’s accuracy as larger and more complex feature sets
often produce more accurate predictions (Scheinost et al.
2019), our model’s accuracy is still comparable to other
models reported to-date in the literature.

The major limitation of our study is that for the majority of
the cognitive domains investigated here, we used different
cognitive measures to assess the putatively same cognitive
processes. For example, although we considered the CTT 2
as a direct ‘culture-free’ analogue of the TMTB, as it is widely
described (Elkin-Frankston et al. 2007; Messinis et al. 2011),
the CTT 2 has different stimuli (shapes and colors vs numbers
and letters) and takes longer because it has more stimuli
(Mitrushina et al. 2005). Consequently, some have argued,
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based on findings of significant difference in mean scores on
CTT 2 and TMT B, that the tests are not direct equivalents
(Dugbartey et al. 2000; Strauss et al. 2006). However, mean
scores for both measures are calculated as time to completion
and thus a difference in means between both measures reflects
a difference primarily in test length. A more appropriate mea-
sure of test equivalence would be correlations between mean
scores, and various studies report significant correlations be-
tween both measures (Dugbartey et al. 2000; Elkin-Frankston
et al. 2007; Lee et al. 2000; Messinis et al. 2011). Similar
arguments might be made for the other tests (e.g. the MMSE
and DRS) that we used to assess the same cognitive constructs
(e.g. general cognitive status). While it would be preferable to
use the identical measures across datasets, our study used
existing data and was designed after data collection. As a
result, this approach was not possible here. Nonetheless, the
measures used here were broadly comparable in that they are
apparent measures of the same underlying cognitive con-
structs and it is these constructs which we are most interested
in, more so than the actual measures.

Conclusions

The brain age model presented here is accurate and generaliz-
able as it significantly predicts chronological age in three inde-
pendent datasets. Furthermore, this model is interpretable and
biologically plausible as older brain age is driven by decreased
GM density in voxels that have been previously shown to be
vulnerable to GM atrophy and volume loss. Finally, brainPAD
scores, calculated using this model, are associated with reduced
cognitive performance within the domains of general cognitive
status; semantic verbal fluency; processing speed, visual atten-
tion, and cognitive flexibility; and visual attention and cognitive
flexibility. The replication of these correlations in multiple
datasets demonstrates that the relationship between
brainPAD and these domains of cognitive function is
robust to cultural- and site/scanner effects. As such,
given that brainPAD is also not limited by task effects
which can hinder neuropsychological assessment, these
findings provide support for the use of brainPAD as an
objective measure of general cognitive function with
applications as a general measure of brain health and
cognitive performance in the clinic and as a summary
outcome measure for intervention studies in research
settings.
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