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Recent studies have found a deleterious effect of age on a wide variety of measures
of functional connectivity, and some hints at a relationship between connectivity at
rest and cognitive functioning. However, few studies have combined multiple functional
connectivity methods, or examined them over a wide range of adult ages, to try
to uncover which metrics and networks seem to be particularly sensitive to age-
related decline across the adult lifespan. The present study utilized multiple resting
state functional connectivity methods in a sample of adults from 20–80 years old
to gain a more complete understanding of the effect of aging on network function
and integrity. Whole-brain results showed that aging results in weakening average
within-network connectivity, lower system segregation and local efficiency, and higher
participation coefficient. Network-level results suggested that nearly every primary
sensory and cognitive network faces some degree of age-related decline, including
reduced within-network connectivity, higher network-based participation coefficient,
and reduced network-level local efficiency. Further, some of these connectivity metrics
showed relationships with cognitive performance. Thus, these results suggest that a
multi-method analysis of functional connectivity data may be critical to capture the full
effect of aging on the health of brain networks.

Keywords: aging, cognition, fMRI, functional connectivity, graph theory

INTRODUCTION

One commonly reported complaint in the context of healthy aging is that of cognitive decline –
adults show reductions in processing speed, attentional resources, working and episodic memory,
and inhibitory processing as they age (Craik and Byrd, 1982; Hasher and Zacks, 1988; Salthouse,
1996). At the same time, changes in brain structure (Peter, 1979; Kemper, 1994; Damoiseaux et al.,
2009) and function (Li and Lindenberger, 1999; Cabeza, 2002; Cabeza et al., 2002) over the course of
adulthood have been well-documented, and suggest that many aspects of brain health also decline
throughout the adult lifespan. While some previous studies have found links between structural
and functional outcomes and cognition (i.e., Miller et al., 2008; Hedden et al., 2016), recent studies
have focused on how changes in patterns of correlated activity in the brain may underlie age-related
cognitive decline (Campbell et al., 2012; Onoda et al., 2012; Sala-Llonch et al., 2012, 2014; Avelar-
Pereira et al., 2017). In the current study, we investigated how aging is associated with integrity of
and interactions among functional brain networks at rest, and how these age-related differences
may be associated with cognitive outcomes.
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There has recently been increasing interest in examining
interactions among networks using functional connectivity
techniques which model correlations among functional magnetic
resonance imaging (fMRI) blood oxygen level dependent (BOLD)
signals from specific regions of interest (ROIs). These studies
can be divided along several lines: (1) those examining a few
select networks vs. those looking more broadly across the whole
brain, (2) those using seed-based techniques to capture regions
connected to specific ROIs vs. those modeling connectivity
across many predefined ROIs distributed throughout the brain,
(3) those using a predefined network structure vs. those
deriving network structure from participant-level data, and
(4) those measuring connectivity at rest vs. those measuring
connectivity during a cognitive or motor task. While many
approaches have been taken, recent studies have focused on
examining connectivity (1) across the whole brain, (2) modeling
connectivity across multiple predefined ROIs, (3) deriving a
network structure from participant/group level data, and (4)
measuring connectivity at rest. Previous studies using this
approach have found that with aging functional connectivity
tends to be reduced within-network (especially in cognitive,
non-sensory networks), increased between networks, and show
a generally less segregated/modular network structure (Onoda
et al., 2012; Tomasi and Volkow, 2012; Betzel et al., 2014; Chan
et al., 2014; Sala-Llonch et al., 2014; Song et al., 2014; Geerligs
et al., 2015; King et al., 2017). This corroborates past research
using more exploratory, seed-based analyses (Andrews-Hanna
et al., 2007; Jones et al., 2011; Campbell et al., 2012), or examining
specific networks or connections between nodes (Wang et al.,
2010) to uncover the effects of aging on functional connectivity.
Further, many of these studies (and similar ones) found that these
patterns of connectivity may be related to cognitive performance,
thus potentially implicating their role in age-related cognitive
decline (Andrews-Hanna et al., 2007; Wang et al., 2010; Onoda
et al., 2012; Chan et al., 2014; Sala-Llonch et al., 2014; Geerligs
et al., 2015; King et al., 2017). Extending these findings to whole-
brain connectivity during a cognitive task, two additional studies
have also found alterations in network connectivity during a task
in aging (Geerligs et al., 2014; Varangis et al., 2019), suggesting
that in addition to showing differential connectivity at rest, aging
brains also respond differently to a cognitive challenge, and
these connectivity patterns may in turn be related to cognitive
performance on the in-scanner task (Varangis et al., 2019).

While these existing studies have examined many metrics of
functional connectivity in older and younger adults, few have
systematically compared the effect of age on several techniques
for measuring functional connectivity, and fewer still have
included a wide range of ages (i.e., beyond just younger vs. older
adults). As such, some of these past studies may be painting an
incomplete picture of the magnitude or presence of the effect
of aging on functional connectivity, or they may be missing
the key “missing window” of middle adulthood in examining
age-related differences in these metrics. One such study by
Geerligs et al. (2015) utilized both graph theory and whole-
brain correlational metrics for assessing functional connectivity
in younger and older adults who completed a resting state scan.
While this study explored which of several metrics of functional

connectivity showed effects of aging, it did not include a middle-
aged group. Thus, the present study included most of the same
metrics as this previous study, but also included two middle-aged
groups in order to test whether any effects of age are gradual
across the adult lifespan, or become exaggerated (or only appear)
with increasing age.

One approach commonly used in studies examining
within- and between-network connectivity involves using an
independent components analysis (ICA), clustering methods,
or community detection to define network membership from
a set of ROIs. These analyses determine the optimal network
structure by identifying sets of regions (or components) that
function largely independently of other sets of regions, then
cross-referencing the location of each set of regions with those
of established brain networks to generate network assignments
for each component. Since these analyses can either be run at
the individual or group level, studies using these techniques to
compare groups must either identify networks that are common
to all participants, or identify networks that are common to
participants within each group. The benefit of the former option
is that the network structure is identical (and thus comparable)
across all participants, facilitating between-group comparisons,
however, the benefit of the latter option is that it generates
network structures that better reflect the underlying network
topology of each sub-group of participants. While many studies
have used these techniques to identify network structure in
older and younger adults (i.e., Chan et al., 2014; Geerligs
et al., 2015), it is unclear the degree to which the functional
connectivity outcomes in these studies were influenced by these
internal, optimally defined, network parcellations. Further,
since these parcellations are typically conducted separately
for older and younger participants, comparing patterns of
network connectivity between younger and older participants
will likely entail comparison of non-identical networks. To
address this limitation, the present study aimed to utilize an
external parcellation scheme in order to determine network
membership that is unbiased by participant age or the methods
of the present study. Power’s network parcellations were found to
be fairly stable across replication (Power et al., 2011), suggesting
that these network architectures may be unbiased, valid schemas
for use in external samples. Thus, all network-based functional
connectivity measures in the present study were computed based
on this unbiased, external schema in order to investigate the
effect of participant age on these metrics.

The present study examined multiple techniques for
measuring resting state functional connectivity: graph theory
(Rubinov and Sporns, 2010; Sporns, 2011), the metric of system
segregation (Chan et al., 2014), and an average correlation
approach (i.e., Geerligs et al., 2015; King et al., 2017). Based
on previous studies of functional connectivity in aging, the
hypotheses of the present study were as follows: (1) older adults
(OA) will show reduced local efficiency (but not global efficiency)
relative to younger adults (Song et al., 2014; Geerligs et al.,
2015), (2) OAs will show reduced modularity relative to younger
adults (Betzel et al., 2014; Song et al., 2014; Geerligs et al., 2015),
(3) OAs will show increased participation coefficient relative
to younger adults (Chan et al., 2014; Geerligs et al., 2015),
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(4) OAs will show less segregation between networks relative to
younger adults (Chan et al., 2014), (5) OAs will show reduced
within-network correlations and increased between-network
correlations relative to younger adults (Betzel et al., 2014;
Chan et al., 2014; Geerligs et al., 2015), (6) OAs will generally
show a less negative brain graph relative to younger adults
(Geerligs et al., 2015; Ferreira et al., 2016), and (7) some of
these metrics of resting state connectivity will be related to
cognitive performance (Andrews-Hanna et al., 2007; Wang
et al., 2010; Onoda et al., 2012; Chan et al., 2014; Sala-Llonch
et al., 2014; Geerligs et al., 2015; King et al., 2017). While these
hypotheses do not specifically address where middle-aged adults
fall into these patterns, it is expected that middle-aged adults
will fall somewhere between younger and older adults, with
the difference between younger and older adults being the
primary comparison of interest in relation to findings from
previous studies. That being said, the inclusion of middle-aged
adults in the present study is critical to determine whether these
functional connectivity metrics show gradual changes over the
adult lifespan, or if age-related differences in the metrics are
primarily driven by the differences between the youngest and
oldest participants.

MATERIALS AND METHODS

Participants
The sample for the present study was comprised of participants
who completed the baseline visit for two studies: the Reference
Ability Neural Network (RANN) study (N = 426) (Stern et al.,
2014), or the Cognitive Reserve (CR) study (N = 239; some
overlapping with RANN participants). Both studies included
the same inclusion/exclusion criteria, the same structural and
resting state functional imaging protocols, and many of the
same cognitive assessments and questionnaires; the primary
difference between the two studies being the functional task-
based imaging protocols used, which will not be discussed here.
All participants were native English speakers, right-handed, free
of MRI contraindications, and read at a fourth grade reading level
or above. Screening was performed prior to enrollment in order
to ensure that no participants had any psychological or medical
conditions that could affect cognitive function, and that OAs
did not meet criteria for dementia or MCI at baseline. In order
to facilitate testing of age group effects, the variable “age” was
transformed into a categorical variable reflecting the following
age group delineations: young adults (YA; age 20–34, n = 103),
younger middle-aged adults (yMA; age 35–49, n = 63), older
middle-aged adults (oMA; age 50–64, n = 136), and older adults
(OA; age 65–80, n = 146).

For inclusion in the present study, participants had to meet
the following additional inclusion criteria: completion of a resting
state scan, and less than 30% motion artifact data removal
(scrubbing) from that resting state scan (Power et al., 2012; Parkes
et al., 2018). Based on these additional criteria, the final sample
was comprised of 427 (YA n = 101, yMA n = 61, oMA n = 126,
OA n = 139) healthy adults between the ages of 20 and 80 who
met all inclusion criteria.

fMRI Scan Parameters
The present study collected fMRI scans during a 5- (n = 142)
or 9.5-(n = 286) minute resting state protocol. All participants
completed these scans on a 3.0T Philips Achieva Magnet. T1-
weighted images of the whole brain were acquired for each
subject with a Magnetization Prepared Rapid Gradient Echo
(MPRAGE) sequence with the following parameters: TE/TR:
3/6.5 ms; Field of view: 256 mm; Flip angle: 8◦; In-plane
resolution: 256 × 256 voxels; Slice thickness/gap: 1/0 mm; Slices:
180. fMRI blood oxygen level-dependent (BOLD) resting state
scans were collected with the following parameters: TE/TR:
20/2000 ms; Flip angle: 72◦; In-plane resolution: 112 × 112
voxels; Slice thickness/gap: 3/0 mm; Slices: 37.

fMRI Data Processing
Images were preprocessed using an in-house developed
native space method (Razlighi et al., 2014) as described and
utilized previously in Varangis et al. (2019). The preprocessing
pipeline included slice-timing correction and motion
correction performed in FSL (Jenkinson et al., 2002, 2012),
calculation of frame-wise displacement (FWD; as described
in Power et al., 2011), volume replacement for contaminated
volumes (Carp, 2013), band-pass filtering using flsmaths–bptf
(Jenkinson et al., 2012), and residualization of the processed
data with respect to FWD, root mean square difference of the
BOLD signal, left and right hemisphere white matter, and lateral
ventricular signals (Birn et al., 2006). T1 image segmentation was
performed using FreeSurfer (Dale et al., 1999; Fischl et al., 2002,
2004), and inspected visually for any possible inaccuracies. In
order to perform the functional connectivity analyses described
below, the coordinates of the 264 ROIs identified by Power
et al. (2011) were transferred to native space via non-linear
registration of the subject’s structural scan to the MNI template
using the ANTS software package. Next, a 10 mm radius spherical
mask was generated for each coordinate and intersected with
the FreeSurfer gray matter mask in order to derive the gray
matter-registered ROI masks for each of the 264 ROIs. An
intermodal, intra-subject, rigid-body registration of the fMRI
reference image and T1 scan was then performed using FLIRT
with 6 degrees of freedom, normalized mutual information as the
cost function (Jenkinson and Smith, 2001), in order to transfer
ROI masks from T1 space to fMRI space. These transferred ROI
masks were used to average all voxels within each mask to obtain
a single fMRI time-series for each of the 264 ROIs.

Time-series data from each ROI were used to generate
correlation matrices among all ROIs (264 ROIs by 264 ROIs),
and were then z-transformed to generate normalized correlation
matrices for each participant. The diagonal of each correlation
matrix was set to zero for all graph theory analyses, and “NA” for
all average correlation analyses, in order to remove correlations
between an area and itself from analyses. Additionally, ROIs with
centers located within 20 mm of one another were set to “NA”
as per Power et al. (2011). ROIs were then labeled based on
the Power et al. (2011) network assignments, with the following
networks being selected for analysis based on their inclusion
in similar past studies (Chan et al., 2014; Geerligs et al., 2015;
for visual depiction of all network ROIs please see Figure 1):
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FIGURE 1 | Regions of interest (ROIs) used in the present analyses, derived from the Power et al. (2011) atlas. ROIs are depicted in both their axial (left) and sagittal
(right) view for each network to better illustrate spatial locations. ROIs fall into 10 primary networks, and are comprised of spherical volumes centered around
coordinates, as outlined in the original atlas.

Somatomotor Hand (Hand; 30 ROIs), Visual (Vis; 31 ROIs),
Somatomotor Mouth (Mouth; 5 ROIs), Auditory (Aud; 13 ROIs),
Default Mode (DMN; 58 ROIs), Salience (Sal; 18 ROIs), Cingulo-
Opercular (CO; 14 ROIs), Frontoparietal (FP; 25 ROIs), Dorsal
Attention (DAN; 11 ROIs), and Ventral Attention (VAN; 9 ROIs).

Functional Connectivity Analyses
Individual z-transformed correlation matrices were used to
compute several measures of functional connectivity:

Positive/Negative Correlation Weights
Average positive and negative correlation were computed
within and between all networks of interest. Within-network
correlations were characterized as those reflecting correlations
between ROIs within a specific network; between-network
correlations were characterized as those reflecting correlations
between ROIs from one network and those of all other networks.
Average positive correlation was computed by setting all negative
correlation values to “NA,” then taking the average within-
and between-network positive correlation for each network
(see Figure 2). Average negative correlation was computed by
setting all positive correlation values to “NA,” then taking the

average within- and between-network negative correlation for
each network (see Figure 3). Due to few negative within-network
correlations (and concern as to how to interpret these values),
only between-network negative correlations were included in
the analysis of negative correlations. Thus, data from this
analysis included the average within-network positive correlation
(10 values), average between-network positive correlation (10
values), and average between-network negative correlation (10
values) for each participant. In order to examine the effect of
age group on these metrics, a 4 (age group: YA, yMA, oMA,
OA)× 2 (correlation direction: within, between)× 10 (network:
Vis, Hand, Mouth, Aud, DMN, Sal, FP, CO, DAN, VAN)
MANCOVA (covariate: scrubbing percentage) was performed
for positive correlations, and a 4 (age group: YA, yMA, oMA,
OA) × 10 (network: Vis, Hand, Mouth, Aud, DMN, Sal, FP,
CO, DAN, VAN) MANCOVA (covariate: scrubbing percentage)
was performed for negative between-network correlations.
Significant interactions were probed using follow-up MANCOVA
and ANOVA analyses.

These data were also used to derive the metric of
system segregation introduced by Wig and colleagues
(Chan et al., 2014, 2017; Wig, 2017). This metric reflects the
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FIGURE 2 | Visual depiction of the derivation of the average positive correlation metric for each network. Boxes along the diagonal reflect values averaged in order to
generate the average within-network positive correlation, while values within the same row (not including the box along the diagonal) reflect values averaged to
generate the average positive between-network correlation. For example, for the auditory network (depicted in orange), the values within the solid orange box were
averaged to generate each participant’s average within-auditory positive correlation, while the values within the dashed orange box were averaged to generate each
participant’s average between-auditory positive correlation.

degree to which the brain segments into networks (or systems)
that function independently of one another – high values reflect
greater functional separation between networks, while lower
values reflect less functional separation between networks. In
order to compute this metric, only positive correlations among
the ten networks identified above were considered, and all
negative correlations were set to zero (Chan et al., 2014, 2017).
Then, the average within- and between-network correlations
were calculated, and the whole-brain system segregation was
defined as:

SS =
z̄within − z̄between

z̄within

A one-way ANOVA was used to test whether the four age groups
differed on this metric.

Graph Theory Metrics of Connectivity
Several graph theory metrics of functional connectivity were
also computed using the Brain Connectivity Toolbox1 (Rubinov
and Sporns, 2010) in order to measure additional aspects
of global and nodal connectivity. Global connectivity was
assessed using the graph theory metrics of modularity (the
extent to which the correlation matrix can be partitioned
into networks that maximize within-group connections and

1www.brain-connectivity-toolbox.net

minimize between-group connections) (Newman, 2006) and
global efficiency (average inverse shortest path length) (Latora
and Marchiori, 2001). Nodal connectivity was assessed using
the graph theory metrics of participation coefficient (using
Power network partitioning – metric reflecting the number
of between-network connections relative to the total number
of connections at each node) (Guimera and Nunes Amaral,
2005) and local efficiency (global efficiency metric computed on
the neighborhood of the node) (Latora and Marchiori, 2001).
All nodal metrics were then averaged by network in order to
examine any effect of network membership on these metrics. In
order to ensure that results were not biased by the connectivity
weight threshold applied to the correlation matrices, a range of
thresholds between 2–10% (in increments of 1%) was applied
to matrices during computation of each metric (i.e., Geerligs
et al., 2015). Based on this thresholding, all graph theory metrics
were only computed on positive correlation weights. As such,
all graph theory analyses will evaluate the effects of both age
group and threshold on the metric of interest. In order to
assess the effect of age group on graph theory metrics, a 4 (age
group: YA, yMA, oMA, OA) × 9 (threshold: 2–10%) × 10
(network) MANCOVA (covariate: scrubbing percentage) was
conducted for each local metric, and a 4 (age group: YA, yMA,
oMA, OA) × 9 (threshold: 2–10%) MANCOVA (covariate:
scrubbing percentage) was conducted for each global metric.
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FIGURE 3 | Visual depiction of the derivation of the average negative correlation metric for each network. Boxes along the diagonal reflect values that represent the
average within-network negative correlation (not analyzed here), while values within the same row (not including the box along the diagonal) reflect values averaged
to generate the average negative between-network correlation (the only negative correlation metric utilized). For example, for the auditory network (depicted in
orange), the values within the dashed orange box were averaged to generate each participant’s average between-auditory negative correlation.

Significant interactions were probed using follow-up MANCOVA
(age group × network at each threshold) and one-way ANOVA
(effect of age group on each network for thresholds exhibiting a
significant age× network interaction) analyses.

Continuous Effect of Age
In order to test whether age exhibited a continuous effect on these
metrics, follow-up correlational analyses were performed on each
metric or network that showed a main effect of age group. Thus,
any global or network-based measure that showed a main effect
of age was included in a correlational analysis to test for a linear
effect of age on the metric (correlation between age and each
metric of interest).

Neurocognitive Assessment
Participants completed a battery of neuropsychological tasks as
part of their baseline study visit. Tasks were administered in the
following fixed order: Wechsler Adult Intelligence Scale (WAIS-
III; Wechsler, 1997), Letter-Number Sequencing, American
National Adult Reading Test (AMNART; Wechsler, 1997),
Selective Reminding Task (SRT) immediate recall (Buschke and
Fuld, 1974), WAIS-III Matrix Reasoning (Wechsler, 1997), SRT
delayed recall and delayed recognition (Buschke and Fuld,
1974), WAIS-III Digit Symbol (Wechsler, 1997), Trail-Making
Test versions A and B (TMT-A/B; Reitan, 1978), Controlled
Word Association (C-F-L) and Category Fluency (animals;

Benton et al., 1983), Stroop Color Word Test (Golden, 1975),
Wechsler Test of Adult Reading (WTAR; Holdnack, 2001),
WAIS-III Vocabulary (Wechsler, 1997), and WAIS-III Block
Design (Wechsler, 1997). Based on prior analyses using these
tasks in our lab, the tasks were clustered into four primary
cognitive domains (Razlighi et al., 2017): Episodic Memory
(all SRT outcomes), Vocabulary (WAIS Vocabulary, WTAR,
AMNART), Processing Speed (WAIS Digit Symbol, Stroop Color,
Stroop Color Word, TMT-A), and Fluid Reasoning (WAIS
Matrix Reasoning, WAIS Block Design, TMT-B). Following
collection of all baseline participant data, performance on each
task was z-scored relative to the mean and standard deviation
for each task within the whole sample of participants enrolled
in the RANN and CR studies who completed these assessments.
The z-scores for all tasks within each cognitive domain were
then averaged in order to generate domain-based z-scores.
The primary metrics used for analysis in the present study
were the participant-level z-scores representing standardized
performance in each domain.

In order to examine any relationships between out-of-
scanner neuropsychological task performance and resting
state connectivity metrics, Pearson correlational analyses were
conducted between z-scored task performance in each domain
and each of the connectivity metrics generated (for graph theory
analyses, only thresholds that showed significant differences
between age groups were used for analysis). Due to the
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exploratory nature of these analyses, p-value correction was
not performed for multiple comparisons, and thus only
networks that showed significant correlations with performance
across multiple network-based metrics, or whole-brain metrics
showing a consistent relationship with task performance will be
discussed below.

RESULTS

Participants
Demographic characteristics of participants in the present study
are summarized in Table 1. Participant groups did not differ
on education (p = 0.261) or gender distributions (p = 0.076),
however, they did differ on age (p < 0.001), and performance on
all cognitive tasks (VOCAB p < 0.001, SPEED p < 0.001, FLUID
p < 0.001, and MEM p < 0.001; see Table 1). Further, the groups
also differed in scrubbing percentage, such that oMAs and OAs
tended to have higher scrubbing percentage than YAs. As a result,
all MANCOVAs presented below include scrubbing percentage as
a covariate to account for any effect of scrubbing percentage on
the observed patterns of results.

Positive and Negative Correlations
A 4 (age group: YA, yMA, oMA, OA) × 2 (direction:
within, between) × 10 (network) MANCOVA revealed
significant effects of age group (F3,420 = 8.072, p < 0.001),
and network (F9,3780 = 62.695, p < 0.001) on positive
correlation weight. Additionally, interactions among direction
and age group (F3,420 = 7.247, p < 0.001), network and age
group (F27,3780 = 2.489, p < 0.001), direction and network
(F9,3780 = 40.821, p < 0.001), and direction and network and
age group (F27,3780 = 3.103, p < 0.001), and were all significant.
The main effect of direction (F1,420 = 0.001, p = 0.971) was
not significant. The main effect of age manifested such that
YAs and yMAs showed a higher average positive correlation
weight than OAs, and YAs have a higher average positive
correlation than oMAs (see Table 2). Follow-up analyses
probing the interaction among network and direction and age
group showed an interaction between network and age group
for both positive within- (F27,3780 = 2.914, p < 0.001) and
between-(F27,3798 = 1.557, p = 0.033) network correlations.

Analysis by network showed that there was an effect of age
on within-network correlations for the Mouth, Auditory, CO,
and DAN networks, and an effect of age on between-network
correlations for the CO, DAN, and Sal networks (see Table 3
and Figure 4). Further, correlational analyses revealed linear
effects of age on positive correlation weight in the networks
mentioned above, such that higher age was associated with
decreased positive within/between-network correlation strength
in the above networks (see Table 3).

A 4 (age group: YA, yMA, oMA, OA) × 10 (network)
MANCOVA revealed a significant effect of network
(F9,3798 = 19.193, p < 0.001) on negative between-network
correlation weight. The main effect of age group (F3,422 = 1.380,
p = 0.248), and the interaction between network and age
group (F27,3798 = 0.861, p = 0.672) were not significant.
Follow-up analyses probing the main effect of network
showed that some networks showed stronger between-
network negative correlations than others (see Table 4
and Figure 5).

A one-way ANOVA testing the effect of age group on system
segregation showed that this metric significantly differed by
age group (F3,415 = 4.088, p = 0.007). Bonferroni-corrected
post hoc analyses revealed that this effect of age was driven
by greater system segregation in YAs compared to yMAs
and OAs (see Table 2). Further, the continuous effect of
age on system segregation was significant (r426 = −0.119,
p = 0.014), such that higher age was associated with reduced
system segregation.

Participation Coefficient and Modularity
A 4 (age group: YA, yMA, oMA, OA) × 9 (threshold:
2–10%) × 10 (network) MANCOVA revealed significant
effects of age group (F3,422 = 4.735, p = 0.003), threshold
(F8,3376 = 8824.174, p < 0.001), and network (F9,3798 = 69.835,
p < 0.001) on participation coefficient. Additionally, interactions
among threshold and network (F72,30384 = 23.173, p < 0.001),
and the three-way interaction (F216,30384 = 1.615, p< 0.001) were
significant, however, the interactions between threshold and age
group (F24,3376 = 1.433, p = 0.079), and between network and
age group (F27,3798 = 1.182, p = 0.237) were not significant. The
main effect of age was driven by lower participation coefficient
in yMAs compared to oMAs and OAs (see Table 2). Follow-up

TABLE 1 | Sample demographics by age group (Young Adults, or YA; younger Middle Adults, or yMA; older Middle Adults, or oMA; Older Adults, or OA).

YA (n = 101) yMA (n = 61) oMA (n = 126) OA (n = 139) F (p-value)

Age 27.604 (3.855) 42.393 (4.488) 58.556 (4.577) 70.093 (3.905) 2219.969 (<0.001)a

Education 16.030 (2.324) 15.869 (2.533) 16.206 (2.033) 16.504 (2.541) 1.349 (0.258)

% Male 33.663% 49.180% 47.619% 48.921% χ2 = 6.889 (0.076)

VOCAB −0.219 (0.907) −0.386 (0.887) 0.164 (0.815) 0.315 (0.817) 13.449 (<0.001)b

SPEED 0.823 (0.701) 0.215 (0.629) −0.108 (0.772) −0.418 (0.698) 59.883 (<0.001)a

FLUID 0.688 (0.727) 0.140 (0.721) −0.064 (0.752) −0.251 (0.681) 36.839 (<0.001)c

MEM 0.687 (0.700) 0.435 (0.636) −0.077 (0.929) −0.368 (0.893) 34.745 (<0.001)d

Scrubbing % 3.092 (4.198) 4.476 (6.063) 6.089 (7.167) 6.844 (7.646) 7.181 (<0.001)e

Values reflect means (standard deviations in parentheses) for each age group. All F-values with p < 0.006 (MC-corrected) are bolded; all means representing groups that
differ from one another are also bolded (a = all groups differ, b = oMA&OA > YA&yMA, c = YA > all and yMA > OA, d = YA&yMA > oMA > OA, e = YA < oMA&OA).
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analyses of the three-way interaction showed that there was only
a significant interaction between network and age group at the
2% threshold (F27,3798 = 1.751, p = 0.010), such that YAs and
yMAs showed lower participation coefficient than OAs in the FP
network, and oMAs showed lower participation coefficient than
OAs in the VAN (see Table 5 and Figure 6). Further, correlational
analyses revealed a linear of age on participation coefficient in the
auditory and fronto-parietal networks, such that higher age was
associated with greater network-level participation coefficient
(see Table 5).

A 4 (age group: YA, yMA, oMA, OA) × 9 (threshold:
2–10%) MANCOVA revealed a significant effect of threshold
(F8,3376 = 2475.356, p < 0.001) and a significant interaction
between threshold and age group (F24,3376 = 1.760, p = 0.013)
on modularity, however, no significant main effect of age group
(F3,422 = 2.590, p = 0.052). Follow-up analyses of the interaction
between threshold and age group showed that oMAs showed
greater modularity than yMAs at thresholds of 5–8% and 10%
(p-values for the mean difference ranging from 0.020 to 0.040).

Local and Global Efficiency
A 4 (age group: YA, yMA, oMA, OA) × 9 (threshold:
2–10%) × 10 (network) MANCOVA revealed significant
effects of age group (F3,422 = 3.363, p = 0.019), threshold
(F8,3376 = 1766.923, p < 0.001), and network (F9,3798 = 40.658,
p < 0.001) on local efficiency. Additionally interactions among
threshold and network (F72,30384 = 16.085, p < 0.001), and
the three-way interaction (F216,30384 = 1.291, p = 0.003) were
significant, while the interactions between network and age group
(F27,3798 = 0.912, p = 0.595), and age group and threshold
(F24,3376 = 0.714, p = 0.842) were not. This main effect of age
was driven by lower local efficiency in OAs compared to YAs (see
Table 2). Follow-up analyses of the three-way interaction showed
that there was only a significant interaction between network and
age group at the 2% threshold (F27,3798 = 1.592, p = 0.027) in
the Hand (YA > OA), Vis (yMA > OA), and VAN (YA > oMA)
networks (see Table 5 and Figure 7). Further, both linear effects
of age on local efficiency were significant for the Hand and Vis
networks, but not for the VAN network (see Table 5).

A 4 (age group: YA, yMA, oMA, OA) × 9 (threshold:
2–10%) MANCOVA revealed a significant effect of threshold
(F8,3376 = 3191.555, p < 0.001) and a significant interaction
between threshold and age group (F24,3384 = 3.337, p < 0.001)
on global efficiency, however, no significant main effect of age
group (F3,423 = 1.980, p = 0.116). Follow-up analyses of the
interaction between threshold and age group showed that global
efficiency only marginally differed by age group at a threshold
of 3% (F3,426 = 2.471, p = 0.061), and that this was driven by
marginally greater global efficiency in OAs than yMAs (mean
difference = 0.011, p = 0.065).

Cognitive Correlates of Connectivity
Correlational analyses revealed several whole-brain and network-
based metrics that were related to neuropsychological task
performance outside of the scanner (see Table 6). For SPEED
tasks, whole-brain system segregation (r = 0.097, p = 0.047;
see Figure 8), and hand (positive between-network: r = 0.136,
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TABLE 3 | Interactions between age and correlation direction (main effect of age row), and age and network (rows depicting network effects), with accompanying post hoc tests of the group mean differences (p-values
in parentheses) among all age group combinations.

Direction Network F (p-value) Post Hoc Tests Corr w Age (p-value)

YA vs. yMA YA vs. oMA YA vs. OA yMA vs. oMA yMA vs. OA oMA vs. OA

Within Main Effect of Age 12.813 (<0.001) 0.007 (>0.999) 0.024 (<0.001) 0.034 (<0.001) 0.017 (0.086) 0.027 (0.001) 0.010 (0.482) −0.163 (0.001)

Hand 2.289 (0.078) n/a

Mouth 5.220 (0.002) 0.038 (0.397) 0.047 (0.037) 0.065 (0.001) 0.009 (>0.999) 0.027 (>0.999) 0.018 (>0.999) −0.182 (<0.001)

Vis 2.321 (0.075) n/a

Aud 10.240 (<0.001) −0.008 (>0.999) 0.041 (0.005) 0.051 (<0.001) 0.049 (0.004) 0.059 (<0.001) 0.011 (>0.999) −0.254 (<0.001)

DMN 0.819 (0.484) n/a

FP 0.625 (0.599) n/a

VAN 1.247 (0.292) n/a

CO 9.187 (<0.001) 0.034 (0.164) 0.047 (0.001) 0.063 (<0.001) 0.013 (>0.999) 0.029 (0.257) 0.016 (0.944) −0.246 (<0.001)

DAN 10.904 (<0.001) 0.021 (>0.999) 0.068 (<0.001) 0.070 (<0.001) 0.046 (0.040) 0.048 (0.024) 0.002 (>0.999) −0.275 (<0.001)

Sal 1.577 (0.194) n/a

Between Main Effect of Age 3.943 (0.009) −0.005 (>0.999) 0.013 (0.244) 0.016 (0.079) 0.018 (0.106) 0.021 (0.036) 0.003 (>0.999) −0.100 (0.039)

Hand 2.515 (0.058) n/a

Mouth 1.117 (0.342) n/a

Vis 1.365 (0.253) n/a

Aud 1.899 (0.129) n/a

DMN 1.887 (0.131) n/a

FP 1.637 (0.180) n/a

VAN 1.817 (0.143) n/a

CO 4.672 (0.003) −0.008 (>0.999) 0.010 (0.866) 0.019 (0.042) 0.019 (0.151) 0.027 (0.006) 0.008 (>0.999) −0.151 (0.002)

DAN 3.645 (0.013) −0.011 (>0.999) 0.013 (0.642) 0.015 (0.316) 0.025 (0.059) 0.027 (0.025) 0.002 (>0.999) −0.119 (0.014)

Sal 4.078 (0.007) 0.000 (>0.999) 0.012 (0.413) 0.020 (0.015) 0.012 (0.676) 0.020 (0.056) 0.008 (>0.999) −0.165 (0.001)

F-values reflect the main effect of age for each network/metric, and mean differences reflect the comparisons among groups driving the significance of the main effect. The final column also presents the correlation
between each connectivity metric and the continuous metric of age (Pearson correlation coefficient, with p-value in parentheses) for each metric showing a significant effect of age group. All p-vales for post hoc tests
are Bonferroni-corrected, with bolded values reflecting p < 0.05 after correction, and italicized values reflecting marginal differences (p < 0.10 after correction).
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FIGURE 4 | Graph depicting the interaction among age, network, and direction showing the average positive correlation for each network and direction by age
group (light green = young adults, darker green = younger middle adults, light blue = older middle adults, darker blue = older adults). Significance of the main effect
of age at each network/direction is represented by asterisks: ∗∗∗p ≤ 0.001, ∗∗p < 0.01, ∗p < 0.05.

p = 0.006; LE: r = 0.099, p = 0.045), auditory (positive within-
network: r = 0.151, p = 0.002; PC: r = −0.134, p = 0.006), CO
(positive within-network: 0.125, p = 0.011; positive between-
network: 0.113, p = 0.021; see Figure 9), and DAN (positive
within-network: 0.136, p = 0.006; positive between-network:
0.121, p = 0.014) network integrity seemed to be related to task
performance. For FLUID tasks, whole-brain system segregation
(r = 0.110, p = 0.025), and Vis (positive within-network: r = 0.108,
p = 0.027; negative between-network: r = −0.111, p = 0.024)
and VAN (positive within-network: r = 0.187, p < 0.001;
positive between-network: 0.114, p = 0.020; LE: r = 0.122,
p = 0.013) network integrity was related to task performance.
For MEM tasks, whole-brain system segregation was related to
memory task performance (r = 0.134, p = 0.007), however, no
network showed a consistent relationship between functional
connectivity and task performance. Additionally, correlational
analyses were conducted between VOCAB task performance
and functional connectivity metrics, however, given the superior
performance on these tasks by OAs (who show reduced network
structure/integrity based on many of the analyses presented

above), these trends are less interpretable, and thus will not
be discussed here.

Effect of Scan Length on Analyses
Due to the differences in resting state scan length, analyses
were repeated including a factor representing the length of the
resting state scan (short rest scan N = 141: YA n = 40, yMA
n = 20, oMA n = 37, OA n = 44; long rest scan N = 286: YA
n = 61, yMA n = 41, oMA n = 89, OA n = 95). Specifically,
the primary focus of these analyses was to assess whether the
primary effects of age on connectivity observed above were
affected by the length of the resting state scan. As such, the
primary interactions of interest were: (1) positive correlations:
Network × Direction × Age Group × Scan Length; (2)
system segregation: Age Group × Scan Length; (3) participation
coefficient: Network × Threshold × Age Group × Scan Length;
(4) modularity: Threshold× Age Group× Scan Length; (5) local
efficiency: Network × Threshold × Age Group × Scan Length;
(6) correlations: all correlations showing significant relationships
between connectivity metrics and cognitive performance. Results
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of these specific tests showed: (1) positive correlations: no
modification of this three-way interaction as a function of scan
length (F27,3744 = 0.978, p = 0.497); (2) system segregation: no
interaction between age group and scan length (F3,418 = 1.037,
p = 0.376); (3) participation coefficient: no modification
of this three-way interaction as a function of scan length
(F216,30096 = 0.775, p = 0.994); (4) modularity: significant
interaction among Threshold, Age Group, and Scan Length
(F24,3344 = 2.316, p < 0.001); (5) local efficiency: significant
interaction among Network, Threshold, Age Group, and Scan
Length (F216,30096 = 1.235, p = 0.011); (6) correlations: Four
correlations showing considerable change in p-value when re-
analyzed in just those participants who completed a longer
resting state scan.

For the metric of modularity, the effect of scan length
on the interaction between threshold and age group showed
that there was a marginally significant interaction between
age group and threshold for participants who completed the
longer rest scan (F24,2248 = 1.534, p = 0.047), but there
was a strong, significant interaction between age group and
threshold for those who completed the shorter rest scan
(F24,1088 = 2.734, p < 0.001). However, post hoc tests for
the short rest scan, revealed only a marginal effect of age
group on modularity at the 2% threshold, driven by marginal
differences between younger middle adults and older middle
(mean difference = −0.043, p = 0.150) and older (mean
difference = −0.041, p = 0.160) adults. For comparison, analysis
of modularity in the full sample revealed a significant difference
between younger middle and older middle adults at thresholds
5–8 and 10%.

For the metric of local efficiency, the effect of scan length
on the interaction among network, threshold, and age group
showed that there was a marginally significant interaction
among network, threshold, and age group for participants who
completed the longer rest scan (F72,20232 = 1.178, p = 0.038),
but there was a stronger, significant interaction between age
group and threshold for those who completed the shorter
rest scan (F72,9792 = 1.223, p = 0.015). Post hoc tests for the
shorter resting state scan showed a marginal interaction between
network and age group at the 2% threshold (F27,1224 = 1.386,
p = 0.091), but no significant interaction at any other threshold
(all p-values > 0.615). This interaction at the 2% level showed
a significant effect of age group in the visual (yMA > oMA,
p = 0.020; yMA > OA, p = 0.020), mouth (yMA > OA,
p = 0.010), and cingulo-opercular (yMA > oMA, p = 0.036;
yMA > OA, p = 0.003) networks. Post hoc tests for the longer
resting state scan showed a significant interaction between
network and age group at the 2% threshold (F27,2529 = 1.503,
p = 0.047), but no significant interaction at any other threshold
(all p-values > 0.259). This interaction at the 2% level showed a
significant effect of age group in the hand (YA > OA, p = 0.028),
visual (oMA > OA, p = 0.014), ventral attention (YA > oMA,
p = 0.026), and dorsal attention (YA > oMA, p = 0.039) networks.
For comparison, analysis of local efficiency in the full sample
revealed a significant effect of age at the 2% threshold within
the hand (YA > OA), visual (yMA > OA), and ventral attention
(YA > oMA) networks.
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FIGURE 5 | Main effect of network showing the average negative between-network correlation for each network (for significant differences see Table 4). Network
colors correspond to their color assignments in Figures 1–3.

For the correlations between connectivity metrics and
neuropsychological task performance, four correlations that
showed significant relationships between connectivity metrics
and task performance in the full sample showed p-values
greater than 0.500 when analyses were conducted in just those
participants who completed the longer resting state scan: positive
between-CO and Speed (r = 0.025, p = 0.674), positive between-
CO and Fluid (r = 0.011, p = 0.859), positive within-Salience
and Memory (r = 0.019, p = 0.754), and 2% CO LE and Fluid
(r =−0.030, p = 0.624).

DISCUSSION

Results from the present study suggest that age has an effect
on several whole-brain metrics of functional connectivity. While
several past studies have noted effects of aging on modularity
(Betzel et al., 2014; Song et al., 2014; Geerligs et al., 2015), and
between-network connections (Betzel et al., 2014; Chan et al.,
2014) at rest, the present study did not find a similar effect of
aging on these metrics. However, the present study did replicate

past studies finding an increase in participation coefficient (Chan
et al., 2014; Geerligs et al., 2015), and reductions in within-
network connectivity (Betzel et al., 2014; Chan et al., 2014;
Geerligs et al., 2015), system segregation (Chan et al., 2014), and
local efficiency (Song et al., 2014; Geerligs et al., 2015) across the
adult age range.

Of note, however, is that while a past study examining
the effect of age on system segregation found that this was
driven by both decreasing within-network connections and
increasing between-network connections (Chan et al., 2014), the
present study found that this decrease in system segregation was
primarily driven by reductions in within-network connectivity.
While results did show an effect of age on between-network
correlations, the relationship between age and between-network
correlations was negative (not positive as in Chan et al., 2014),
and this was driven by reduced between-network correlation
strength in OAs relative to yMAs (and not younger adults).
Further, the correlation between between-network connectivity
and age was quite weak, and possibly localized to a negative
relationship between age and between-network connectivity
for the CO and Sal networks. Some key differences between
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TABLE 5 | Mean differences between groups (p-values in parentheses) probing the Participation Coefficient and Local Efficiency interactions among age and network, depicted here at the 2% threshold.

Metric Network F (p-value) Post Hoc Tests Corr w Age (p-value)

YA vs. yMA YA vs. oMA YA vs. OA yMA vs. oMA yMA vs. OA oMA vs. OA

PC Hand 0.209 (0.890) n/a

Vis 0.626 (0.599) n/a

Mouth 0.681 (0.564) n/a

Aud 3.346 (0.019) 0.009 (>0.999) −0.031 (0.386) −0.038 (0.105) −0.039 (0.246) −0.047 (0.077) −0.008 (>0.999) 0.135 (0.005)

DMN 2.023 (0.110) n/a

FP 4.360 (0.005) 0.004 (>0.999) −0.026 (0.221) −0.035 (0.022) −0.030 (0.233) −0.039 (0.035) −0.009 (>0.999) 0.165 (0.001)

VAN 4.735 (0.003) 0.018 (>0.999) 0.023 (>0.999) −0.032 (0.326) 0.005 (>0.999) −0.051 (0.061) −0.056 (0.003) 0.085 (0.079)

CO 0.599 (0.616) n/a

DAN 1.970 (0.118) n/a

Sal 2.494 (0.060) n/a

LE Hand 4.694 (0.003) 0.003 (>0.999) 0.020 (0.175) 0.031 (0.005) 0.017 (0.672) 0.028 (0.061) 0.010 (>0.999) −0.185 (<0.001)

Vis 3.434 (0.017) −0.013 (>0.999) −0.001 (>0.999) 0.022 (0.214) 0.012 (>0.999) 0.035 (0.030) 0.023 (0.129) −0.102 (0.035)

Mouth 2.070 (0.104) n/a

Aud 0.033 (0.992) n/a

DMN 0.564 (0.639) n/a

FP 0.542 (0.654) n/a

VAN 2.875 (0.036) 0.035 (0.444) 0.046 (0.025) 0.025 (0.728) 0.011 (>0.999) −0.011 (>0.999) −0.022 (0.849) −0.082 (0.092)

CO 1.801 (0.146) n/a

DAN 2.066 (0.104) n/a

Sal 0.385 (0.764) n/a

F-values reflect the main effect of age for each network, and mean differences reflect the comparisons among groups driving the significance of the main effect. The final column also presents the correlation between
each connectivity metric and the continuous metric of age (Pearson correlation coefficient, with p-value in parentheses) for each metric showing a significant effect of age group. All p-vales for post hoc tests are
Bonferroni-corrected, with bolded values reflecting p < 0.05 after correction, and italicized values reflecting marginal differences (p < 0.10 after correction).
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FIGURE 6 | Average Participation Coefficient (PC) by network for each age group (light green = young adults, darker green = younger middle adults, light
blue = older middle adults, darker blue = older adults). Significance of the main effect of age at each network is represented by asterisks: ∗∗p < 0.01, ∗p < 0.05.

the present study and that by Chan et al. (2014), however,
may explain some of this difference: (1) the present study
utilized the Power et al. (2011) network parcellation scheme
rather than defining networks based on participants’ optimal
network organization, (2) the present study used the Power
et al. (2011) 264-ROI parcellation scheme, while Chan et al.
(2014) used a novel 441-ROI parcellation scheme, and (3)
the present study did not include global signal regression in
the processing pipeline. While Chan et al. (2014) did cross-
reference their own network parcellation with that of Power
et al. (2011), slight differences in ROI number, location, and
network assignment may have contributed to this difference in
the observed patterns of results. Thus, while this reduction in
system segregation may be driven by declining within-network
connectivity alongside increasing between-network connectivity
(as in Chan et al., 2014), it may be the case that declining within-
network connectivity is more readily and consistently reproduced
across different network parcellations and processing pipelines
(as in the present study).

The present study also examined several of the metrics
described above at the network-level in order to probe

which networks might be specifically susceptible to age-
related decline. Past studies found increases in connectivity
with age within the somatomotor (Tomasi and Volkow,
2012; Song et al., 2014) and auditory (King et al., 2017)
networks, and decreases in connectivity with age within the
visual (Betzel et al., 2014), default mode (Andrews-Hanna
et al., 2007; Wang et al., 2010; Onoda et al., 2012; Tomasi
and Volkow, 2012; Betzel et al., 2014; Song et al., 2014;
Geerligs et al., 2015), fronto-parietal (Campbell et al., 2012;
Betzel et al., 2014; Geerligs et al., 2015), cingulo-opercular
(Geerligs et al., 2015), dorsal attention (Tomasi and Volkow,
2012), and salience (Onoda et al., 2012) networks. Findings
from the present study provided support for age-related
reductions in within-network connectivity in the cingulo-
opercular and dorsal attention networks, however, contrary to
previous studies, the present study also found decreases in
within-network connectivity in the somatomotor (mouth) and
auditory networks.

In addition to examining average within- and between-
network connectivity in both the positive and negative directions
on the network level, the present study also calculated two
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FIGURE 7 | Average Local Efficiency (LE) by network for each age group (light green = young adults, darker green = younger middle adults, light blue = older middle
adults, darker blue = older adults). Significance of the main effect of age at each network is represented by asterisks: ∗∗p < 0.01, ∗p < 0.05.

local graph theory metrics at the network level: participation
coefficient and local efficiency. A previous study by Geerligs
et al. (2015) found increases in participation coefficient localized
to the visual and somatomotor networks, and reductions in
local efficiency in aging localized to the cingulo-opercular,
fronto-parietal, and default mode networks. Results from the
present study provide some support for these trends, but fall
short of replicating them completely: participation coefficient
was found to be elevated in OAs (relative to yMAs and
YAs, respectively) in the auditory and fronto-parietal networks,
however local efficiency was only found to be reduced in
OAs (relative to YAs) in the somatomotor hand network
(and relative to yMAs in the visual network). While some
of these findings seem to corroborate those of Geerligs et al.
(2015), there are some key differences in the patterns observed.
Comparisons to this study come with the same caveats as
those with the Chan et al. (2014) study, but also with a key
difference in samples: the Geerligs et al. (2015) study included
40 younger adults and 40 OAs, and thus did not include
participants in middle-adulthood. Thus, the present study may

have also failed to replicate some of the effects they observed
due to differences in the age distribution of the sample, as
well as differences in the power to detect effects among 2
versus 4 groups.

The present study, thus builds on these two foundational
studies examining functional connectivity in aging by including a
sample that spans a wide age range (unlike Geerligs et al., 2015),
and including a variety of local and global graph theory metrics of
functional connectivity (unlike Chan et al., 2014). Further, while
several recent studies have endeavored to similarly build on or
replicate these foundational studies, the present one is the first
to examine all of the above metrics within one large sample,
and across such a wide age range. Previous studies examining
these effects in aging have differed from the present study in
the scope of functional connectivity metrics used (King et al.,
2017), sample size (Iordan et al., 2017; King et al., 2017), or
age range (Iordan et al., 2017; Zonneveld et al., 2019); thus, the
present study is critical in furthering this line of investigation
in a systematic way by bridging several methodologies in a large
lifespan sample.
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TABLE 6 | Pearson correlation coefficients (p-values in parentheses) between each connectivity metric and z-scores of performance on Neuropsychological tasks falling into four domains: vocabulary (VOCAB),
processing speed (SPEED), fluid reasoning (FLUID), and episodic memory (MEM).

Connectivity Metric Whole
Brain

Network

Hand Vis Mouth Aud DMN FP VAN CO DAN Sal

VOCAB

Within-network positive n/a −0.129
(0.008)

−0.037
(0.457)

−0.002
(0.974)

−0.096
(0.050)

−0.009
(0.859)

0.003
(0.947)

−0.016
(0.743)

−0.055
(0.262)

−0.164
(0.001)

−0.024
(0.624)

Between-network positive n/a −0.093
(0.059)

−0.104
(0.034)

−0.062
(0.208)

−0.137
(0.005)

−0.128
(0.009)

−0.096
(0.051)

−0.103
(0.035)

−0.111
(0.024)

−0.126
(0.010)

−0.078
(0.114)

Between-network negative n/a 0.096
(0.050)

0.022
(0.659)

0.071
(0.147)

0.075
(0.126)

0.051
(0.298)

0.107
(0.029)

0.114
(0.021)

0.062
(0.212)

0.108
(0.028)

0.047
(0.336)

System Segregation 0.045
(0.366)

n/a

Participation Coefficient (2%) 0.015
(0.765)

−0.024
(0.625)

−0.089
(0.069)

0.032
(0.513)

0.021
(0.664)

0.075
(0.127)

0.014
(0.771)

0.032
(0.518)

0.002
(0.962)

0.027
(0.581)

−0.019
(0.704)

Modularity (10%) 0.097
(0.049)

n/a

Local Efficiency (2%) −0.067
(0.173)

−0.096
(0.051)

−0.104
(0.034)

0.018
(0.707)

0.019
(0.693)

0.001
(0.990)

−0.062
(0.206)

−0.019
(0.700)

0.000
(0.994)

−0.032
(0.519)

−0.053
(0.280)

Global Efficiency (3%) −0.001
(0.978)

n/a

SPEED

Within-network positive n/a 0.047
(0.337)

0.087
(0.077)

0.191
(<0.001)

0.151
(0.002)

0.090
(0.068)

0.034
(0.492)

−0.022
(0.660)

0.125
(0.011)

0.136
(0.006)

0.043
(0.387)

Between-network positive n/a 0.136
(0.006)

0.082
(0.095)

0.059
(0.228)

0.086
(0.080)

0.073
(0.137)

0.073
(0.136)

0.077
(0.116)

0.113ˆ
(0.021)

0.121
(0.014)

0.128
(0.009)

Between-network negative n/a −0.067
(0.172)

−0.066
(0.182)

−0.074
(0.134)

−0.045
(0.362)

−0.057
(0.251)

−0.034
(0.490)

0.001
(0.982)

−0.062
(0.207)

−0.015
(0.764)

−0.026
(0.601)

System Segregation 0.097
(0.047)

n/a

Participation Coefficient (2%) −0.071
(0.152)

0.011
(0.831)

−0.031
(0.524)

−0.004
(0.932)

−0.134
(0.006)

−0.068
(0.169)

−0.038
(0.437)

−0.040
(0.420)

−0.052
(0.295)

−0.077
(0.118)

−0.001
(0.982)

Modularity (10%) 0.036
(0.463)

n/a

Local Efficiency (2%) 0.085
(0.085)

0.099
(0.045)

0.061
(0.219)

0.014
(0.771)

−0.028
(0.576)

0.024
(0.624)

0.082
(0.095)

0.016
(0.752)

0.073
(0.135)

0.043
(0.385)

0.074
(0.131)

Global Efficiency (3%) −0.024
(0.632)

n/a

FLUID

Within-network positive n/a 0.051
(0.300)

0.108
(0.027)

0.143
(0.004)

0.165
(0.001)

0.066
(0.182)

0.015
(0.755)

0.036
(0.465)

0.187
(<0.001)

0.087
(0.078)

0.020
(0.688)

(Continued)
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TABLE 6 | Continued

Connectivity Metric Whole
Brain

Network

Hand Vis Mouth Aud DMN FP VAN CO DAN Sal

Between-network positive n/a 0.083
(0.090)

0.006
(0.900)

0.011
(0.818)

0.080
(0.106)

0.032
(0.515)

0.058
(0.240)

0.055
(0.263)

0.114ˆ
(0.020)

0.064
(0.193)

0.116
(0.018)

Between-network negative n/a −0.095
(0.052)

−0.111
(0.024)

−0.018
(0.717)

−0.037
(0.447)

−0.067
(0.174)

−0.067
(0.171)

0.015
(0.759)

−0.092
(0.061)

−0.040
(0.422)

−0.031
(0.524)

System Segregation 0.110
(0.025)

n/a

Participation Coefficient (2%) −0.028
(0.564)

0.064
(0.194)

−0.023
(0.643)

0.024
(0.630)

−0.063
(0.204)

0.016
(0.744)

−0.087
(0.076)

0.009
(0.848)

−0.019
(0.707)

−0.087
(0.075)

−0.075
(0.130)

Modularity (10%) 0.058
(0.242)

n/a

Local Efficiency (2%) 0.091
(0.066)

0.135
(0.006)

0.038
(0.443)

0.028
(0.575)

0.062
(0.211)

0.059
(0.232)

−0.023
(0.643)

0.097
(0.049)

0.122ˆ
(0.013)

0.039
(0.428)

−0.028
(0.575)

Global Efficiency (3%) 0.060
(0.221)

n/a

MEM

Within-network positive n/a 0.026
(0.600)

0.065
(0.186)

0.162
(0.001)

0.118
(0.017)

0.059
(0.235)

−0.075
(0.128)

−0.102
(0.038)

0.063
(0.201)

0.142
(0.004)

0.098ˆ
(0.048)

Between-network positive n/a 0.082
(0.098)

0.014
(0.771)

0.006
(0.909)

0.077
(0.118)

0.046
(0.356)

0.011
(0.828)

0.062
(0.211)

0.091
(0.065)

0.060
(0.228)

0.070
(0.158)

Between-network negative n/a −0.013
(0.796)

−0.074
(0.134)

−0.023
(0.646)

−0.012
(0.816)

0.007
(0.885)

−0.018
(0.718)

0.013
(0.786)

−0.015
(0.755)

−0.015
(0.763)

0.047
(0.346)

System Segregation 0.134
(0.007)

n/a

Participation Coefficient (2%) −0.044
(0.370)

0.006
(0.908)

−0.014
(0.783)

0.037
(0.459)

−0.048
(0.333)

−0.059
(0.234)

−0.057
(0.247)

−0.071
(0.151)

0.042
(0.394)

−0.061
(0.218)

0.000
(>0.999)

Modularity (10%) 0.024
(0.631)

n/a

Local Efficiency (2%) 0.063
(0.204)

0.058
(0.244)

0.076
(0.123)

0.009
(0.854)

0.026
(0.596)

0.011
(0.829)

0.045
(0.360)

0.001
(0.988)

0.095
(0.054)

0.022
(0.657)

0.009
(0.851)

Global Efficiency (3%) −0.025
(0.612)

n/a

Correlations marked with “ ˆ ” denote correlations whose p-values rise above 0.500 when correlational analyses are conducted on only those participants who completed the longer, 9.5-min resting state scan; all other
significant correlations either remain significant, or have p-values that are between 0.050 and 0.500. No correction for multiple comparisons was performed; bolded values reflect p-values less than 0.05.
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FIGURE 8 | Scatterplot depicting the relationships between whole-brain system segregation and each of the four cognitive z-scores. Relationships between system
segregation and speed (p = 0.047), fluid (p = 0.025), and memory (p = 0.007) were significant, while the relationship between system segregation and vocabulary
(p = 0.366) was not.

Results from this study also suggest that resting state
functional connectivity in certain networks may be specifically
related to cognitive function across the adult age range. At
the whole-brain level, system segregation may be related
to processing speed, fluid reasoning, and memory task
performance, such that greater segregation is associated
with better performance on the tasks. At the network level,
integrity of the hand, auditory, and dorsal attention networks
may be related to performance on processing speed tasks,
integrity of the visual network may be related to performance
on fluid reasoning tasks, and integrity of the cingulo-opercular
network may be related to performance on both processing speed
and fluid reasoning tasks. One interesting finding consistently
observed across these functional connectivity correlates of
cognitive task performance is that within-network positive
connectivity, between-network positive connectivity, system
segregation, and participation coefficient seem to show the
strongest relationships with cognition. While past studies
examining functional connectivity during a task seemed to

focus on the role of between-network connections in explaining
variability in task performance (Fox et al., 2005; Uddin et al.,
2009; Grady et al., 2016; Varangis et al., 2019), results from the
present study suggest that both within- and between-network
resting state connectivity may also play a role in accounting for
some of the variability in cognitive function across the adult
lifespan. While these results are not seen as contradictory to
those of these previous studies, they suggest that resting and
task-based connectivity may exhibit differential relationships
with cognitive performance, and thus the metrics of functional
connectivity chosen for analysis may play a different role in
resting vs. task-based conditions.

Studies examining more network-specific metrics of resting
state connectivity have been somewhat mixed in finding
relationships between network-based connectivity and task
performance in the context of healthy aging. Five studies in
particular examined relationships between within- and between-
network connectivity and cognitive task performance: two
studies implicated the DMN, one in verbal learning in just
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FIGURE 9 | Scatterplot depicting the relationships between average positive within-CO correlation and each of the four cognitive z-scores. Relationships between
within-CO correlation and speed (p = 0.011) and fluid (p < 0.001) were significant, while the relationships between within-CO correlation and vocabulary (p = 0.262)
and memory (p = 0.201) were not.

younger adults (CO-DMN and FP-DMN connections; Geerligs
et al., 2015), and the other in fluid intelligence (Geerligs et al.,
2017); one study implicated the FP network in working memory
in just OAs (Geerligs et al., 2015); two studies implicated
the CO network in working memory in just younger adults
(CO-FP connections and LE in the CO, respectively; Geerligs
et al., 2015; Iordan et al., 2017); and two studies implicated
the Salience network, one in “frontal” processes (Onoda et al.,
2012), and one in three different memory tasks (Sal between-
network connectivity; La Corte et al., 2016). Further, Chan
et al. (2014) found that system segregation (a metric derived
from the within/between-network connectivity metrics discussed
above) was related to associative memory performance. While
the present study did not directly measure some of the cognitive
domains included in these prior studies, some network-level
trends were consistent with the results here – namely, that
connectivity within the CO network, between the CO network
and other networks, and local efficiency in the CO network
may be related to tasks of executive function (here, fluid

reasoning), that the salience network may be involved in tasks
of executive function and memory, and that whole-brain system
segregation may be related to memory performance. While
some of these relationships between network-based connectivity
and task performance may differ between our study and those
previous studies, it should be noted that there are a few key
differences between the present study and those mentioned
above: (1) the present study includes differing cognitive measures
that may not directly overlap with those utilized in previous
studies, (2) the measure of between-network connectivity in
the present study did not target specific network pairings, and
(3) many of these relationships observed in prior studies were
specific to older or younger adults and were not observed
across the whole sample. As such, results from the present study
do not necessarily provide support for or contradict results
from prior studies, but rather add to the body of research
showing that functional connectivity at rest can account for
significant portions of the variability in out-of-scanner cognitive
task performance.
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These relationships between functional connectivity metrics
and cognition in the context of aging suggest that functional
brain organization, even at rest, may underlie some individual
differences in cognitive function across the adult lifespan.
This concept that functional brain architecture may support
cognitive function in the face of age-related structural brain
changes naturally evokes the concept of CR. The CR theory
posits that exposures accrued throughout the lifespan (IQ,
education, cognitive and social engagement, exercise, etc.) may
buffer against some of the deleterious effects of structural
brain changes on cognitive outcomes. The mechanism by
which this is enacted is hotly debated, but is theorized to
involve differential utilization of specific brain regions or
networks by individuals with higher levels of CR. Recent
studies have focused on identification of CR networks that
may be utilized across multiple task and rest conditions,
whose activation is correlated with IQ, and whose expression
during a task moderates the effect of cortical thickness on
task performance (Stern et al., 2018). The authors showed that
individuals who demonstrated greater expression of this IQ-
related CR network across multiple cognitive tasks showed a
weaker relationship between cortical thickness and cognitive
performance, suggesting that expression of this network played
some role in dampening the effect of age-related cortical
volume loss on cognition. While the present study does not
relate the current findings to proxies of CR, it does suggest
that some of the individual variability in cognitive functioning
throughout adulthood can be accounted for by functional
brain network properties. Future studies should therefore target
the degree to which these relationships between functional
connectivity and cognitive measures may be influenced by CR
exposures, and whether these patterns of functional connectivity
that are related to CR proxies may moderate the effect of
volumetric differences between older and younger adults on
cognitive outcomes.

Limitations
While the present study benefited from a large sample and
stringent fMRI processing criteria, there were several limitations
that should be considered when interpreting results. First,
participants in the present study completed two different lengths
of resting state scan. A previous study assessing the effect of
scan length on functional connectivity estimates found that
test–retest reliability and similarity was optimized in resting
state scans that were 9–12 min or longer (Birn et al., 2013).
Thus, patterns observed in shorter resting state scans may
not be as reliable or replicable within- or across participants.
However, analyses testing whether this effect of scan length
modified any of the significant effects of age observed above
showed a relatively minor effect of scan length on the primary
interactions discussed above. Specifically, effects of age on
modularity and local efficiency may be slightly discounted
since these metrics seem particularly sensitive to differences
in scan length, and the four correlations that were found to
be dramatically altered in the longer resting state scan sample
might represent less reliable relationships between connectivity
and cognition. Additionally, given that many of the age-related

differences in modularity and local efficiency showed somewhat
counter-intuitive patterns (i.e., differences between yMAs and
oMAs), these differences were less interpretable and consistent.
Of particular note is that the effects of age on within/between
network positive correlations and system segregation were not
affected by this difference in scan length, suggesting that these
effects may be less sensitive to length of the resting state
scan being analyzed.

Another potential limitation of the present study is the
utilization of an externally derived network parcellation scheme
for network assignment (Power et al., 2011). Several past
studies have performed similar analyses using a network
parcellation scheme derived from participants’ optimal network
organization, and cross-registering these networks with nodal
assignments in the Power et al. (2011) network taxonomy
(Chan et al., 2014; Geerligs et al., 2015). While those studies
benefit from deriving network assignments based on actual
participant network structure, their results may be more
difficult to reproduce in an external dataset due to possible
differences in network structure in different samples. Several
past studies have also utilized the Power et al. (2011) taxonomy
to define network structure/organization, and thus indicate
that this approach may be appropriate to estimate a plausible
network structure that is not biased by participants in the
sample (i.e., Song et al., 2014; Varangis et al., 2019). As such,
both approaches may have advantages and disadvantages for
examining whole-brain and network-based measures in the
context of aging.

CONCLUSION

We have shown that aging has an effect on several different
metrics of functional connectivity at rest. Specifically, aging
results in weakening within-network connectivity, lower system
segregation and local efficiency, and higher participation
coefficient. Further, the results suggest that nearly every primary
sensory and cognitive network faces some degree of age-
related decline, from reduced within-network connectivity
(auditory, default mode, fronto-parietal, cingulo-opercular,
dorsal attention, and salience networks), higher participation
coefficient (somatomotor, visual, default mode, fronto-parietal,
and ventral attention networks), or reduced local efficiency
(visual network). Additionally, some of these connectivity
metrics were related to cognitive performance. Altogether these
results suggest a general reduction in network integrity in the
context of aging, which could be associated with cognitive
outcomes. These results also highlight the utility of a whole-
brain, multi-technique approach to capturing different facets of
functional connectivity that may be differentially sensitive to age-
related decline in order to more completely encapsulate the effect
of aging on large-scale brain connectivity.
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