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Abstract

Previous studies have demonstrated that four latent variables, or reference abilities

(RAs), can account for the majority of age-related changes in cognition: these being

episodic memory, fluid reasoning, speed of processing, and vocabulary. In the current

study, we focused on RA-selective functional connectivity patterns that vary with

both age and behavior. We analyzed fMRI data from 287 community-dwelling adults

(20–80 years) on a battery of tests relating to the four RAs (three tests per RA = 12

tests). Functional connectivity values were calculated between a pre-defined set of

264 ROIs (nodes). Across all participants, we (a) identified connections (edges) that

correlated with an RA-specific indicator variable and, indexing only these edges;

(b) performed linear regression analysis per edge, regressing indicator correlations

(Model 1) and connectivity values (Model 2) on Age, Behavioral Performance, and

the Interaction term; and (c) took the conjunction of significant edges between

models. Results revealed a different subset of edges for each RA whose connectivity

strength and domain-selectivity varied with age and behavior. Strikingly, the fluid rea-

soning RA was particularly vulnerable to the effects of age and displayed the most

extensive connectivity and selectivity “footprint” for behavior. These findings indi-

cate that different functional networks are recruited across RA, with fluid reasoning

displaying a special status among them.
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1 | INTRODUCTION

Several studies have reported a monotonic decline in cognitive abili-

ties across the lifespan (see Salthouse, 2009a). Furthermore, the

majority of age-related cognitive decline appears to be captured by

four unique latent variables that have been derived based on a princi-

ple of shared variance across a variety of cognitive tests; termed “ref-

erences abilities” (RAs), these are: episodic memory, fluid reasoning,

speed of processing, and vocabulary (Salthouse, 2009b; Salthouse &

Ferrer-Caja, 2003). While the utility of representing cognition in a

comprehensive yet reductive manner has been largely acknowledged

in the behavioral literature, fewer attempts have been made to map

behavioral constructs onto their underlying neural substrates.

Previous work conducted in our lab successfully identified neural

patterns uniquely associated with each of the four RAs (Habeck

et al., 2016; Habeck, Eich, Razlighi, Gazes, & Stern, 2018; Stern

et al., 2014). Participants had performed a series of in-scanner tasks

related to each of the four RAs; voxel activations were then submitted

to Principal Component Analysis to derive spatial covariance patterns

across tasks related to the same domain. Interestingly, when these
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reference ability neural networks (RANN) were derived in younger

adults (<30 years) and predictive validity tested via out-of-sample

classification performance, classification accuracy remained high even

when testing on neural patterns derived in older adults. This finding

suggested that there is a component to RANNs that is age-invariant

and that RAs maintain their neural specificity across the lifespan

(Habeck et al., 2016). In the current study, we attempted to extend

previous findings demonstrating unique RANNs in the voxel activation

data to functional connectivity collected from the same group of par-

ticipants and as part of an ongoing study.

Advancing age has shown to be accompanied by altered func-

tional networks, generally reflecting a decline in functional connectiv-

ity (see Liem, Geerligs, Damoiseaux, & Margulies, 2019, for a review).

Recent studies have postulated age-related changes in functional

network connectivity expressed as dedifferentiation— a reduction in spe-

cialized networks for specific cognitive processes (see Damoiseaux, 2017

for a review). For example, it is hypothesized that increasing age is

associated with lower functional segregation, or a decrease in

within-network connectivity compared to between-network connec-

tivity, in distinct networks such as the default mode network (DMN;

see Mak et al., 2017 for a meta-analysis). However, studies of task-

related functional connectivity have evidenced both age-related

increases and decreases in connectivity, particularly related to epi-

sodic and working memory, with the direction of age-related change

potentially linked to performance and task difficulty (for a review,

see Sala-Llonch, Bartrés-Faz, & Junqué, 2015). For example, Nagel

and colleagues (2011) studied the effect of low versus high task load

of an n-back task on blood-oxygen-level dependent (BOLD) activa-

tion in addition to functional coupling between task-relevant ROIs

and a priori-defined seed region of the left dorsolateral prefrontal

cortex (DLPFC). Older adults displayed a load-related increase in

coupling between the DLPFC and the frontopolar and posterior tem-

poral cortices but a decrease in connectivity between the DLPFC

and premotor cortex. Other studies investigating episodic memory

tasks have reported a reduction in functional connectivity between

the hippocampus/medial temporal lobe and posterior and occipital

regions while reporting an increase in connectivity between the

hippocampus/medial temporal lobe and the PFC (Addis, Leclerc,

Muscatell, & Kensinger, 2010; Dennis et al., 2008). These latter

results have been interpreted as supporting a posterior–anterior

shift with aging, which is a model based on voxel-based activation

patterns that suggest an age-related reduction in occipital activity

combined with increased functional activity (see Davis, Dennis,

Daselaar, Fleck, & Cabeza, 2007); in this context, interpreting sup-

port for this model assumes that functional connectivity changes fol-

low similar patterns as voxel activations (Sala-Llonch et al., 2015).

Few studies have investigated the relationship between func-

tional connectivity and cognition as it relates to aging, and those that

exist have largely been limited to episodic memory or processing

speed, as it relates to DMN connectivity (Damoiseaux et al., 2008;

Liem et al., 2019), whole-brain functional connectivity in episodic

memory (Sala-Llonch et al., 2014), or resting-state changes as it com-

pares to performance on neuropsychological tests (Onoda, Ishihara, &

Yamaguchi, 2012). While this certainly does not comprise an exhaus-

tive list, it does reflect gaps in the breadth of knowledge regarding

age-related changes across multiple cognitive domains and their

accompanying task-based functional correlates. Here, we analyzed

the functional connectivity data collected from 287 participants with

an age range between 20 and 80 years on a battery of tests compris-

ing the four RAs considered to represent the breadth of age-related

cognition. Exploiting an extensive battery of in-scanner testing, we

were interested in identifying connections (i.e., edges) that commonly

represented the tasks associated with each RA (e.g., domain-selec-

tive). A strength of our study design is that we test participants on

multiple tasks that allow for analyses, such as within-domain task

comparisons, that are performed on the same group of participants.

Given the breadth of findings suggesting age-related changes in func-

tional connectivity (Sala-Llonch et al., 2015) in addition to age-related

changes across most cognitive domains (Salthouse & Davis, 2006), we

were further interested in elucidating the effect of both age and

behavior on domain-selectivity as well as strength of connectivity via

linear regression analysis. In brief, our analytic approach first entailed

deriving RA-selective edges based on linear indicator correlation.

Next, using only those edges, we performed linear regression analysis,

separately regressing the indicator correlation values and functional

connectivity values on age, behavioral, and the interaction between

the two. We then identified significant edges that overlapped

between the terms of the two regression models. Given the novelty

of studying the neural correlates related to the four latent RA, particu-

larly their functional networks, we refrained from making strong a

priori claims as to specific network configurations that might uniquely

express age- or behavior-related changes. Instead, we merely

expected that age-related differences would indeed manifest at the

level of functional connectivity.

2 | METHODS

2.1 | Participants

Three hundred thirty-nine native English-speaking, right-handed

(Oldfield Edinburgh Handedness Inventory; Oldfield, 1971) adults

(age = 52.3 ± 16.71; range = 20–80 years) participated in the study.

Participants were primarily recruited via random-market-mailing. All

participants were screened for serious psychiatric or medical condi-

tions, poor hearing and vision, and any other impediments that could

hinder MRI acquisition; in addition, older participants were screened

for dementia and mild cognitive impairment using the dementia rating

scale (DRS; Mattis, 1988). Participants who then had more than 50%

of their data “scrubbed,” as explained in the fMRI Data Preprocessing

section, were eliminated from the analysis. This procedure led to the

removal of an additional 52 participants. Thus, 287 participants

(154 females, 133 males) remained in the sample for analysis

(age = 50.5 ± 16.92; range = 20–80 years), with a mean Nart IQ of

116.34 (± 8.92) and a mean education level of 16.28 (± 2.36) years. It

is important to note that behavioral data were missing for some
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participants due to software or hardware malfunction or incomplete

task performance in certain cases. Thus, sample size varies depending

on the task of analysis. Data counts are presented alongside the infer-

ential statistics of our behavioral analyses.

2.2 | Procedure

FMRI data were acquired from participants as they performed 12 com-

puterized cognitive tasks in-scanner, each relating to one of the four

RAs (Stern et al., 2014). Participants completed the battery of tasks

over two sessions, each lasting for �2 hr and containing six of the

12 tasks belonging to two of the four RAs. Tasks within each refer-

ence domain were presented in a fixed order; however, the order of

the two sessions was counterbalanced across participants. Prior to

each scanning session, participants were familiarized with the six tasks

relevant to the current session during an out-of-scanner training ses-

sion, which was performed on a laptop computer. The mode of

response for all but one task was keyboard button press; the picture-

naming task used an oral response. Training sessions were self-paced

such that breaks could be taken when needed and participants were

given the option of repeating the training session if desired. In a sepa-

rate session, participants also completed a neuropsychological battery;

however, results from this battery will not be addressed in the current

paper.

2.2.1 | Stimulus presentation

Stimuli were back-projected onto an LCD monitor positioned at the

end of the scanner bore. Participants viewed the screen via a tilted

mirror system that was mounted on the head coil. When needed,

vision was corrected-to-normal using MR compatible glasses (man-

ufactured by SafeVision, LLC. Webster Groves, MO). Responses were

made on a LUMItouch response system (Photon Control Company).

E-Prime v2.08, operating on PC platform, was used for stimulus deliv-

ery and data collection. Task onset was electronically synchronized

with the MRI acquisition device.

2.2.2 | RA in-scanner tasks

Twelve cognitive tasks, each belonging to one of four reference

domains, were presented in-scanner. A brief description of each task,

divided by domain, is provided below (for a more thorough descrip-

tion, see Stern et al., 2014). For all tasks, except for picture naming,

responses were made via button press; picture naming, instead,

required a vocal response. For episodic memory, fluid reasoning, and

vocabulary domains, accuracy—measured as the proportion of correct

trials to total trials included—was analyzed for each task. For the

processing speed domain, RT data were analyzed for each task. For

the remainder of the document, an abbreviated version for each

reference ability will be used: episodic memory—MEM, fluid

reasoning—FLUID, processing speed—SPEED, and vocabulary—

VOCAB. We also will interchangeably use the terms “domain” and

“reference ability” to refer to our RAs.

Episodic memory

For all three episodic memory (MEM) tasks, both study and test

phases were scanned together and cannot be separated in the analy-

sis. The percentage of correct trials served as the behavioral variable

of analysis.

Logical memory. Participants were presented with a story scenario on

the computer screen. They were required to read the story and

answer detailed multiple-choice questions regarding the content,

choosing from four possible answers.

Word order recognition. In the study phase, participants were pres-

ented with a list of 12 words, one word at a time, on the computer

screen and asked to remember the order of word presentation. In the

test phase, participants were presented with a probe word at the top

of the screen and four choice words below and asked to indicate

which of the four choice words was presented subsequent to the

probe word.

Paired associates. In the study phase, participants were presented with

a list of 12 word-pairs, one pair at a time, on the computer screen and

asked to remember the word pairings. In the test phase, participants

were presented with a probe word and four choice words below and

asked to select which word was previously paired with the

probe word.

Fluid reasoning

The percentage of correct trials served as the behavioral variable of

analysis (FLUID).

Matrix reasoning. Participants were presented with a matrix divided

into nine cells (3 × 3), reflecting a particular pattern given by an

unspecified rule, in which the bottom right cell though is empty. Eight

figure choices were presented below the matrix and participants had

to decide which figure best reflects the missing cell to complete the

pattern (adapted from Raven 1962).

Letter sets. Participants were presented with five sets of letters where

four out of the five letter sets expressed a common rule (e.g., contains

no vowels). Participants were asked to infer the rule and identify the

letter set that deviates from it (Ekstrom, Dermen, & Harman, 1976).

Paper folding. Participants were presented with a paper folded in a

specific sequence with a set of holes punched through it. They had to

decide which of six options, presented in two rows each containing

three options, reflected the configuration of the holes on the paper

when unfolded (Ekstrom et al., 1976).
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Processing speed

Reaction time served as the behavioral variable of analysis (SPEED).

Digit symbol. Participants were presented with a code key at the top

of the screen consisting of nine number (values ranging from one to

nine)-symbol pairs. Below the code key a single number-symbol pair

was presented and participants were asked to indicate if the pair was

present in the code key (adapted from Salthouse, 1998).

Letter comparison. Participants were presented with two strings of let-

ters, alongside one another, each containing three to five letters. They

were asked to indicate whether the strings were the same or different

(Salthouse & Babcock, 1991).

Pattern comparison. Participants were presented with two figures

alongside one another, each containing lines that were connected in

different configurations. They were asked to indicate whether the fig-

ures were the same or different (Salthouse & Babcock, 1991).

Vocabulary

The percentage of correct trials served as the behavioral variable of

analysis (VOCAB).

Antonyms. Participants were presented with a probe word in capital

letters at the top of the screen. Below the probe word, four choices of

words were listed. They were asked to indicate which word possessed

a meaning that was most dissimilar to that of the probe (Salthouse &

Kersten, 1993).

Picture naming. Participants were presented with single images and

asked to identify the picture by vocal response. Images were selected

from the WJ-R Psycho-Educational battery (Salthouse, 1998;

Woodcock, 1989).

Synonyms. Participants were presented with a probe word in capital

letters at the top of the screen. Below the probe word, four choices of

words were listed. They were asked to indicate which word possessed

a meaning that was most similar to that of the probe (Salthouse &

Kersten, 1993).

2.2.3 | fMRI data acquisition

Image acquisition was performed using a 3T Philips Achieva Magnet.

There were two, 2-hr MR imaging sessions to accommodate the

12 fMRI activation tasks. At each session, a scout, T1-weighted image

was acquired to determine participant position. Participants underwent

a T1-weighted MPRAGE scan to determine brain structure, with a

TE/TR of 3/6.5 ms and Flip Angle of 8�, in-plane resolution of

256 × 256, field of view of 25.4 × 25.4 cm, and 165–180 slices in axial

direction with slice-thickness/gap of 1/0 mm. All scans used a 240 mm

field of view. For the EPI acquisition, the parameters were: TE/TR

(ms) 20/2000; Flip Angle 72�; In-plane resolution (voxels) 112 × 112;

Slice thickness/gap (mm) 3/0; Slices 41. In addition, MPRAGE, FLAIR,

DTI, ASL, and a 7-min resting BOLD scan were acquired. A neuroradi-

ologist reviewed each participant's scans. Any significant findings were

conveyed to the participant's primary care physician.

2.2.4 | fMRI data processing

Images were preprocessed using an in-house developed native space

method (Razlighi et al., 2014). Briefly, the preprocessing pipeline

included slice-timing correction and motion correction (MCFLIRT)

performed using the FSL package (Jenkinson, Bannister, Brady, &

Smith, 2002). All volumes were registered (6 df, 256 bins mutual

information, and sinc interpolation) to the middle volume. Frame-

wise displacement (FWD), as described in Power, Barnes, Snyder,

Schlaggar, and Petersen (2012), was calculated from the six motion

parameters and root-mean-square difference (RMSD) of the BOLD

percentage signal in the consecutive volumes. To be conservative,

the RMSD threshold was lowered to 0.3% from the suggested 0.5%.

Contaminated volumes were then detected by the criteria

FWD > 0.5 mm or RMSD >0.3% and replaced with new volumes

generated by linear interpolation of adjacent volumes. Volume

replacement was performed before temporal filtering (Carp, 2013).

Flsmaths–bptf (Jenkinson et al., 2002) was used to pass motion-

corrected signals through a bandpass filter with cut-off frequencies

of 0.01 and 0.09 Hz. Finally, the processed data were residualized by

regressing out the FWD, RMSD, left and right hemisphere white

matter, and lateral ventricular signals (Birn, Diamond, Smith, &

Bandettini, 2006).

2.2.5 | Functional connectivity

T1 image segmentation was performed using FreeSurfer (Dale, Fis-

chl, & Sereno, 1999). The coordinates of 264 putative functional

nodes derived from a network partition scheme developed by Power

et al. (2011) were transferred to each participant's T1 space via

nonlinear registration of the participant's structural scan to the MNI

template using the ANTS software package. Next, a 10 mm radius

spherical mask, centered at each transferred coordinate, was gener-

ated and intersected with the FreeSurfer gray matter mask in order to

obtain the ROI mask for the 264 functional nodes. An intermodal,

intra-subject, rigid-body registration of fMRI reference image and T1

scan was performed with FLIRT with 6 degrees of freedom, normal-

ized mutual information as the cost function (Jenkinson &

Smith, 2001), and used to transfer all ROI masks from T1 space to

fMRI space. These transferred ROI masks were then used to average

all the voxels within each mask to obtain a single fMRI time-series for

each node. Pearson correlations were then performed for all pairwise

combinations. This resulted in 264 x 263/2 = 34,716 functional con-

nectivity pairs, or edges.

Given the differing nature of the task, the length of the time-series

varied for each. The following represents the number of TRs
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(1 TR = 2000 ms) per task: MEM: Log_Mem—210, Word_Order—208,

Pair_Assoc—99; FLUID: Mat_Reason—430, Letter_Sets—430, Paper_Fold—

430; SPEED: Digit_Sym—210, Letter_Comp—195, Pattern_Comp—190;

VOCAB: Antonyms—194, Pic_Name—190, Synonyms—194.

2.3 | Analytical approach

Data were analyzed and brain connectivity graphs created using

custom-written MATLAB® codes (Mathworks, Natick, MA). Brain

maps were generated using BrainNet Viewer (Xia, Wang, & He, 2013).

FC correlation values (r) between nodes were converted to

Z coefficients using Fisher's transformation (i.e., inverse tangent of r).

In order to standardize comparisons between tasks, behavioral scores

were z-transformed using the mean and SD calculated across all

participants for each task separately. Given that speed tasks were

measured as reaction time, z-score values were sign-inverted to corre-

spond with accuracy scores, whereby higher scores always indicate

better performance. Age effects were tested using age as a continu-

ous factor in regression analyses. For regression models, behavior and

age factors were mean-centered to remove any potential interfer-

ences of multicollinearity (Aiken & West, 1991). Furthermore, operat-

ing under the assumption of within-domain task similarity, functional

connectivity values were averaged across tasks within each domain,

rendering a reduced matrix of 34,716 edges × 287 subjects × 4

domains. To demonstrate that this was an analytically sound

approach, we employed a simple out-of-sample classification proce-

dure using permutation analysis. We divided the data into training

(215 participants, or 75% of the sample) and testing (72 participants,

or 25% of the sample) sets, computing the mean within-domain map

across the three tasks and participants in the training set for each of

the four domains, which served as reference “dictionary” by which to

compare our test sample. We then classified all held-out data at the

individual level by correlating each individual's task vector (=12) with

the dictionary. For each task, the winning “vote” was assigned to the

domain that displayed the highest Pearson's R correlation. This proce-

dure was repeated 1,000 times by permuting training/testing set

assignment across iterations, generating different set combinations.

We then obtained accuracy scores by summing across all 1,000 itera-

tions and dividing by the number of permutations, per task and indi-

vidual, and then averaging across individuals. This rendered a 12 × 4

matrix of accuracy scores for each task across domains. Our results

showed that tasks were correctly classified according to their domain

well above chance level (25% chance) for all 12 tasks (see Figure S1

and Table S1).

2.3.1 | Indicator variable correlation (RA domain-
selectivity)

To obtain connectivity edges that were selective to each RA domain,

an indicator variable, or binary vector, was used to correlate with the

FC Z-coefficients across tasks for each connectivity pair. We used

indicator correlation to identify the edges that express similarity in

their FC values based on RA domain, such that those edges highly

selective for a particular RA will correlate highly with the vector

expressing the domain of interest. In this way, selectivity will be

expressed as the relation between the FC values and the vector pat-

tern. For instance, to detect memory-selective edges among connec-

tivity edges (c = 1…34,716), we created the 12 × 1 vector as:

We then correlated this vector with the 12 × 1 FC values for each

edge (c) and converted the resulting r coefficient to Z, thus yielding a

single correlation value Z(c)mem for each of the 34,716 connectivity

edges. This correlation was performed for each RA domain (d = 1…4)

at the single-participant level (s = 1…287), such that

arctanh Corr Vmem,FC c,sð Þ
� �� �

=Z c,sð Þmem

where Vmem is the indicator vector for memory expressed above, FC(c,

s) is the 12 task FC values for a given edge (c) and subject (s), and Z(c,

s)mem is the resulting single Z-coefficient after Fisher's (arctanh) trans-

formation. This process was repeated four times, each time correlating

the same 12 × 1 FC(c, s) vector with the indicator vector corresponding

to one of the four domains. Whereas in the example above, the indica-

tor vector for memory is expressed as [111000000000], for fluid

reasoning it would be expressed as [000111000000], for processing

speed it would be expressed as [000000111000], and for vocabulary

it would be expressed as [000000000111]. The final result was a

third-rank matrix Z(c, s, d) with format [Z] = 34,716 × 287 × 4 of indi-

cator correlation values.

In order to establish significant edges, multiple one-way t-tests

against chance were performed across participants on this third-rank

[Z] matrix, for each pair (c) and domain (d). This process resulted in a

matrix of t-values− t(c, d), and corresponding p-values− p(c, d). As t-

values could reflect a relationship in either the positive or negative

direction, we divided edges by the sign of their t-values, which indi-

cated positive versus negative correlations between the FC values

and indicator vector. We chose an uncorrected p-value significance

threshold of .001 and selected only those edges falling below this cut-

off. For the purposes of the present analyses, only edges with a posi-

tive t-statistic were considered beyond this point for further analyses,

as we were interested in those edges that demonstrated a positive

relationship between FC values and cognitive domain. We refer to

these edges as domain-selective.

2.3.2 | Regression models with RA-selective edges

For each RA domain, we indexed the domain-selective edges resulting

from the one-way t-test analyses and performed multiple linear

regression on each of these edges. We considered the effect of Age,
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Behavioral Performance, and their Interaction on both (a) the FC values

and (b) the strength of domain-selectivity, across individuals. Including

the interaction term in our models allowed us to test for a possible

moderating effect of Age on the strength of the relationship between

brain and behavior. All predictor terms were simultaneously included

in the model, creating the full model, separately, for both connectivity

values and domain-selectivity values, rather than generating multiple

models by including one predictor variable at a time in a stepwise

fashion. Ultimately, we were interested in elucidating the effect of the

predictor variables on both domain-selectivity and the connectivity

values themselves.

Indicator correlation regression model

For each domain, we returned to the [Z] matrix of indicator correla-

tion values and selected the subarray of edges that expressed

domain-selectivity, resulting in a reduced matrix Z(cselect, s, d), where

(cselect = 1…number of domain-selective edges per domain; s = 1…

287; d = 1…4). Next, for each edge of each domain, we created a full

linear regression model, regressing the indicator correlation Z-coeffi-

cients Z(s = 1…287) across all participants on Age, Behavioral Perfor-

mance, and the Interaction (Age × Behavior), exemplified as

SignificantΔ selectivity domainð Þ= Z cselect,dð Þ~Age+Behavior +Age
�Behavior

where for each predictor term (=3 in total), we selected those edges

that demonstrated a significant effect on the indicator correlation

values at a p-threshold of .001, uncorrected.

Functional connectivity values regression model

Identical to the indicator correlation regression model, for each

domain, we again selected the subarray of edges that expressed

domain-selectivity, only this time to return to their corresponding FC

connectivity values. We refer to this matrix as ConnZ(cselect, s, d). As

before, per edge of each domain, we created the full linear regression

model, regressing the participant-level connectivity correlation Z-

coefficients ConnZ(s = 1…287) on Age, Behavioral Performance, and

the Interaction (Age x Behavior), exemplified as

SignificantΔ connectivity domainð Þ= ConnZ cselect,dð Þ~Age+Behavior +Age
�Behavior

where for each predictor term, we again selected those edges that

demonstrated a significant effect on the connectivity values at the

p-threshold of .001, uncorrected.

Significant edge overlap between models

After establishing the edges whose variation in indicator and FC cor-

relation values was separately and significantly predicted by age,

behavioral performance, or the Interaction, we examined the edge

overlap emerging from both indicator and FC correlation regression

analyses. That is, for each predictor term (3) in each domain (4), we

determined which edges were significant in both regression models.

For instance, we tallied edges whose domain-selectivity to memory

and FC-strength in the memory tasks both showed significant associa-

tions with memory performance.

2.3.3 | Statistical analysis

For testing age effects on behavioral task performance, linear regres-

sion analysis was used. False Discovery Rate (FDR) as described by

Benjamini and Yekutieli (2001) was used to control for multiple com-

parisons (i.e., 12 comparisons). A result was considered significant if its

corresponding p-value was below the critical p-value calculated to con-

trol for false positives at the standard rate of <5% (q = 0.05). Con-

versely, for regression models built on the neural data, the established

threshold for significance across all analyses was p < .001, uncorrected.

3 | RESULTS

3.1 | Behavioral

We first report the findings from the effects of age on behavioral per-

formance. Regression analysis revealed a significant effect of Age on

Behavioral Performance (critical p < .0048; Benjamini-Yekutieli

corrected) on most neuropsychological tests. The only task in which

performance was not significantly related to age was for Logical Mem-

ory of the MEM domain. Otherwise, age was negatively related to

performance, meaning that increasing age was linked to reduced per-

formance on tasks of memory, fluid reasoning, and processing speed.

Conversely, on all three vocabulary tasks, age was positively related

to performance, meaning that participants' performance improved

with increasing age. These findings were generally in line with previ-

ous studies (Salthouse & Davis, 2006; Stern et al., 2014). Inferential

statistics of task performance including the number of participants for

whom behavioral data was available for analysis can be found in

Table 1. Discrepancies in data counts were attributable to software or

hardware malfunction or incomplete task performance in certain

cases.

3.2 | Indicator variable correlation (RA domain-
selectivity)

One-way t-tests across participants revealed several edges that were

RA-selective (see Table 2 for significant edge counts). As a reminder,

only edges demonstrating a positive relationship between the indica-

tor vector and within-domain connectivity values are considered

domain-selective and reported. Overall, the number of MEM-selective

positive edges was higher than edge-selectivity for any other domain.

This was followed by the FLUID domain, then SPEED, and finally

VOCAB.
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To see whether the majority of participants truly expressed

domain-selective edge selectivity, we averaged across the original Z-

coefficients of significant edges in each domain for each of the

12 tasks at the participant-level. For instance, for those edges that

expressed MEM-selectivity, we indexed the original Z-coefficients

pertaining to those edges, not for memory tasks alone but for all

12 tasks in order to observe the strength of connectivity expressed in

those edges in all domains. We then calculated the average across

those edges for each task, for each participant, repeating this process

for the significant edges from each domain. For graphs of the average

correlational values across edges per participant, see Figure 1. As can

be observed from the figure, for all domains, edges that expressed

selectivity for a particular domain consistently demonstrated higher

FC coefficients in tasks that related to that domain in the majority of

participants. It is important to note that while edge RA-selectivity was

not necessarily unique to a given RA, any nonunique overlap is likely

due to different participants driving an edge's selectivity. We tested

this speculation by correlating the indicator correlation values,

obtained at the individual participant level, for one domain with those

of the other for all edges that expressed edge overlap. That is, for

each domain combination (6 in total: MEM-FLUID: 324 edges; MEM-

SPEED: 39 edges; MEM-VOCAB: 632 edges; FLUID-SPEED:

558 edges; FLUID-VOCAB: 30 edges; SPEED-VOCAB: 187 edges),

for each overlapping edge, we returned to the original [Z] indicator

correlation matrix (34,716 edges × 287 participants × 4 domains) and

selected the two across-participant vectors of indicator correlation

values corresponding to an edge of overlap for a given domain combi-

nation. The assumption was that across-participant correlation should

be either low or negative between two domains' indicator correlation

values if different participants are driving selectivity in each domain.

We indeed found this to be the case with all but two edges displaying

negative correlation. We randomly selected an overlapping edge from

each domain combination and graphically present each participant's

indicator correlation values linked between domains in Figure S2.

TABLE 1 Inferential statistics for the
linear regression model
performance�age

Task Domain
Age predictor

N B t p padj

Log_Mem MEM 253 −0.009 −2.35 .02 ns

Word_Order MEM 255 −0.021 −5.94 <.001 <.001

Pair_Assoc MEM 251 −0.016 −4.53 <.001 .001

Mat_Reason FLUID 257 −0.020 −5.75 <.001 <.001

Letter_Sets FLUID 258 −0.010 −2.84 .005 .016

Paper_Fold FLUID 250 −0.020 −5.62 <.001 <.001

Digit_Sym SPEED 268 −0.035 −11.60 <.001 <.001

Letter_Comp SPEED 270 −0.026 −7.85 <.001 <.001

Pattern_Comp SPEED 274 −0.023 −6.78 <.001 <.001

Antonyms VOCAB 271 0.014 3.98 <.001 .001

Pic_Name VOCAB 262 0.023 6.74 <.001 <.001

Synonyms VOCAB 263 0.020 5.61 <.001 <.001

Note: Tasks displaying a significant effect of age on behavioral performance is presented in bold face.

Abbreviations: B, standardized Beta coefficient; N, number of people for whom data were present; ns,

nonsignificant; p, unadjusted p-value; padj, adjusted p-value from Benjamini-Yeku; t, t-statistic.

TABLE 2 Number of significant edges per domain

Domain
Indicator selectivity

Regression with indicator correlation
as outcome

Regression with functional connectivity
as outcome

Overlap of both
regression

Positive Age Beh Inter Age Beh Inter Age Beh Inter

MEM 3,918 46/44 5/0 3/3 44/7 6/1 7/1 0 1/0 0

FLUID 3,820 14/10 107/0 2/1 343/298 95/0 1/1 6/5 32/0 0

SPEED 3,238 40/14 11/9 1/0 254/142 7/7 3/1 31/9 2/2 1/0

VOCAB 2,403 13/13 1/0 5/2 58/42 3/0 5/1 3/3 1/0 1/0

Note: Number of significant edges per domain (column 1) from (a) Indicator correlation domain-selectivity analysis (column 2); (b) Indicator correlation

regression (columns 3–5); (c) Connectivity correlation regression models (columns 6–8); and the (d) Overlap of significant edges between indicator and

connectivity regression models, per predictor term (Age, Behavior, and the Interaction) (columns 9–11). The bolded number on the left represents the total

number of significant edges while the number on the right represents the number of significant edges displaying a negative relationship between the

predictor term and outcome variable.
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3.3 | Regression models

3.3.1 | Associations of domain-selectivity
regression

Age

For each domain, we again indexed domain-selective edges and per-

formed regression analysis per edge, regressing the participant-level

indicator correlations on Age, Behavior, and the Interaction term.

There was a generally negative relationship between age and the indi-

cator correlation values, except for the SPEED domain, which demon-

strated a mainly positive relationship, specifically in bilateral posterior

cortical regions, with few negative long-range connections extending

mainly from left anterior regions to bilateral posterior regions (see left

section of Figure 2). In addition, one node in the right superior poste-

rior cortex (medial temporal lobe) served as a connective “hub.” Not

only did this node display a positive relationship between age and

domain-selectivity, but a negative relationship between behavior and

domain-selectivity; that is, as domain-selectivity increased with age,

behavioral performance decreased.

Conversely, the MEM domain primarily possessed several con-

nections displaying a negative relationship between age and domain-

selectivity at posterior cortical sites, with a slightly right

hemispheric bias.

Behavior

When considering behavior after controlling for age, significant edges

mainly displayed a positive relationship between behavior and

domain-selectivity—that is, as domain-selectivity was increasing,

behavior was also increasing (see left section of Figure 3). However,

the SPEED domain mainly displayed edges with a negative relationship

between domain-selectivity and behavioral performance. Interestingly,

F IGURE 1 Scatterplots of functional connectivity Fisher's Z coefficients averaged across all edges demonstrating RA domain selectivity in
each domain, per participant (dots), for each of the 12 tasks; selectivity is defined as those edges significantly positively correlated with the
indicator variable. For example, for the “Memory” plot, the Fisher's Z-coefficients relating to only significant Memory edges were averaged within
each participant for each of the 12 tasks, such that average connectivity values should be higher in memory tasks than for any of the other tasks.
As can be observed from the plots, this was generally the case. The color of each box corresponds to domain of the task, the expanse of the box
represents one SD, the pink middle strip represents the SEM for the 95% confidence interval, and the purple line represents the mean
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whereas the FLUID domain presented few edges displaying an age-

effect on domain-selectivity, instead it presented the highest number

of edges displaying a significant relationship between behavior and

domain-selectivity. Notably, contrary to the SPEED domain, two edges

displayed a significant positive relationship between both age and

behavior and domain-selectivity, meaning that domain-selectivity

increased as both age and behavioral performance increased. These

edges connected the right inferior and medial occipital cortex to the

right angular gyrus. The right medial occipital cortex also displayed

high connectivity to the left precentral gyrus.

F IGURE 2 Edges demonstrating a significant age effect on (a) indicator correlation values (e.g., domain-selectivity); (b) strength of functional
connectivity from the regression models, and (c) the overlap between models. As a reminder, linear regression analysis was performed only on
RA-selective edges emerging from the one-way t tests across participants. Presented to the left of each subpanel are axial slices of significant
edges, where negative correlations are presented in blue and positive correlations are presented in pink. Presented to the right of each subpanel
are circular plots reflecting the topological organization of the brain divided into octants along the three coordinate planes (Anterior–Posterior,
Superior–Inferior, Right–Left). The color of the nodes represents the octant to which the node belongs. The order of nodes within each octant
was decided based on Euclidean distance from the common center point (0, 0, 0)
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Interaction

A few edges displayed a significant moderating effect of Age on the

relationship between domain-selectivity and Behavior (see left

section of Figure 4). For the MEM domain, three edges displayed a

negative interaction effect—that is, increasing age led to a decrease in

behavioral performance with higher values of domain-selectivity. The

FLUID and SPEED domains, on the other hand, each expressed one

edge displaying a positive interaction effect, or a strengthening of the

positive relationship between behavior and domain-selectivity with

advancing age. Interestingly, edges displaying this positive interaction

were long-range projections connecting medial frontal regions to

more posterior cortical sites. The VOCAB domain contained the most

F IGURE 3 Edges demonstrating a significant behavior effect on (a) indicator correlation values (e.g., domain-selectivity); (b) strength of
functional connectivity from the regression models, and (c) the overlap between models. As a reminder, linear regression analysis was performed
only on RA-selective edges emerging from the one-way t tests across participants. Presented to the left of each subpanel are axial slices of
significant edges, where negative correlations are presented in blue and positive correlations are presented in pink. Presented to the right of each
subpanel are circular plots reflecting the topological organization of the brain divided into octants along the three coordinate planes (Anterior–
Posterior, Superior–Inferior, Right–Left). The color of the nodes represents the octant to which the node belongs. The order of nodes within each
octant was decided based on Euclidean distance from the common center point (0, 0, 0)
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edges displaying a significant interaction in both directions. Of the

edges displaying a positive interaction, two extended from medial

occipital regions bilaterally to the medial temporal cortex and

precuneus.

3.3.2 | Associations of connectivity regression

Age

Compared to the indicator regression analysis, functional connectiv-

ity values regressed on Age generally yielded many more edges dis-

playing a significant relationship between the two, with the FLUID

domain presenting the highest number (see right section of Figure 2).

There was a clear concentration of bilateral negative connections

between right and left posterior superior regions of the cortex,

mainly linking the left post and paracentral lobule and medial cingu-

late to right parietal structures. Conversely, the MEM domain primar-

ily displayed edges with a positive relationship between Age and

connectivity diffuse across the brain. Both the FLUID and SPEED

domains displayed edges with a positive relationship between Age

and connectivity mainly in posterior regions of the cortex, with a

higher concentration for the SPEED domain. Interestingly, several of

these positive edges shared overlap with the significant edges from

the indicator regression analysis, consistently in the positive

direction- that is, as age increased, both domain-selectivity and func-

tional connectivity increased. Furthermore, the node of the right

superior posterior cortex (medial temporal lobe) that served as a con-

nective “hub” in the indicator regression analysis was also present in

F IGURE 4 Edges demonstrating a significant Interaction effect between Age and Behavior for (a) indicator correlation values (e.g., domain-
selectivity) and (b) strength of functional connectivity from the regression models. In the upper panel, graphs are presented reflecting the Age
moderation effect in two sample edges (one for the indicator regression and one for the connectivity regression). In each graph, Behavioral
Performance (Z-score) is presented on the y-axis and either indicator correlation (Z-transformed coefficient) or connectivity values (Z-
transformed coefficient) on the x-axis. Age is stratified by decade and color coded, each dot representing a participant. The colored lines
represent the least-squared fit. The bottom-left of each graph denotes the edge depicted in the graph. In the bottom panel, as previously stated,
axial slices of significant edges are presented, where negative correlations are indicated in blue and positive correlations are indicated in pink
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the overlap between models. A connective hub displaying a negative

relationship between Age and connectivity strength was also

observed in left inferior parietal lobule. Additionally, there were three

long-range negative connections also present in the overlap linking

the cerebellum to the bilateral medial orbitofrontal cortex and left

anterior cingulate. The VOCAB domain displayed a right-lateralized

reduction in connectivity with age, notably among long-range con-

nections linking the superior frontal gyrus with the precuneus in addi-

tion to age-related increases in connectivity among left posterior

superior regions.

Behavior

Few edges displayed a significant relationship between behavior and

functional connectivity across domains except for the FLUID domain

(see right panel of Figure 3). For the FLUID domain, all significant

edges displayed a positive relationship between behavior and func-

tional connectivity. Additionally, six of these edges also displayed a

positive relationship between age and connectivity, indicating that

connectivity increased with age and that behavior also increased with

increasing strength of connectivity. Conversely, for the SPEED

domain, only edges expressing a negative relationship between con-

nectivity strength and behavioral performance were significant. Addi-

tionally, three of these edges, linking the cerebellum to visual cortical

areas as well as the right medial occipital cortex to the right fusiform,

the displayed increased connectivity with advancing age. The VOCAB

domain displayed the fewest edges reflecting a relationship between

behavior and connectivity strength; however, there was one edge,

connecting the right medial occipital gyrus to the rolandic operculum,

that still displayed an overlap between regression models, indicating

that as both domain-selectivity and connectivity strength increased,

behavior increased. Additionally, two left-hemispheric edges dis-

played the same positive relationship, namely connecting the inferior

frontal gyrus to the vermis and the medial occipital gyrus to heschl's

gyrus.

Interaction

For the MEM domain, contrary to the negative moderation effect of

Age on the relationship between behavioral performance and domain-

selectivity, age mainly exerted a positive effect on the relationship

between behavior and connectivity strength in significant edges (see

right section of Figure 4). These edges linked the right putamen and

left precuneus to occipital lobe sites in addition to the cerebellum to

medial orbitofrontal cortex. The VOCAB domain also displayed edges

with a mainly positive moderation effect of Age on the relationship

between Behavior and connectivity strength. These edges were inter-

hemispheric and distributed along the posterior–anterior axis whereas

the one negative interaction linked the right parahippocampal gyrus

to the right inferior temporal lobe. For the SPEED domain, a positive

moderation effect of Age was observed for two long-range connec-

tions between the left and right superior frontal lobule and left

precuneus and medial temporal lobe. Interestingly, a negative modera-

tion effect of Age was found between two regions of the right medial

frontal cortex.

4 | DISCUSSION

The current study aimed to identify task-based functional networks

pertaining to four cognitive domains (i.e., RAs), for which unique neu-

ral network activation patterns had been previously derived (Habeck

et al., 2016; Habeck et al., 2018), and to investigate differences in

both selectivity and connectivity of these networks as they relate to

age and behavior. To this end, we report the functional connectivity

results from 287 adults ranging from 20 to 80 years who performed

12 in-scanner behavioral tasks across our four RA domains. Exploiting

an in-scanner fMRI multiple task testing design, we derived a set of

domain-selective edges that emerged from the neural data across

tasks pertaining to the same RA performing multiple one-way t tests

across participants. We next used these domain-selective edges as an

index to explore the effect of age, behavior, and the interaction term

as an indicator of age moderation, on the both selectivity and connec-

tivity. That is, for each edge, we created two linear regression models,

regressing either selectivity or connectivity on age, behavior, and the

interaction between the two. We then looked at the conjunction of

significant edges between models for each predictor term. Overall,

different subsets of edges emerged as displaying a significant relation-

ship between our neural measures and age or behavioral performance

for each of the four cognitive domains tested. Furthermore, the

FLUID domain particularly stood out as vulnerable to the effects of

age as well as displaying the most extensive connectivity and selectiv-

ity “footprint” for behavioral performance.

Results from the indicator variable correlation analysis identified

edges that were attributable to each of our RA domains. Moreover,

evaluation of how significant edges relevant to one domain behaved

cross-domain revealed that strength of selectivity was indeed lower

for all other domains, which was further expressed in the majority of

participants. This confirms the domain-selective nature of these edges

and reinforces the separability of these four domains of cognition that

have previously been postulated in the literature (Salthouse & Ferrer-

Caja, 2003).

For the speed domain, results from both the indicator and con-

nectivity models revealed edges whose selectivity and connectivity

strength increased with age, notably concentrated at posterior cortical

sites. One node located in the right superior posterior cortex (middle

temporal gyrus; BA37) served as a connective “hub.” Previous studies

have linked this region to conceptual action processing and action

understanding (Kable, Kan, Wilson, Thompson-Schill, & Chatterjee,

2005; Simos et al., 2017). A negative connective “hub” between age

and connectivity strength was also present in the left inferior parietal

lobule, which is an area that has been implicated in visuospatial

processing and multimodal representations, potentially serving

visually guided action and navigation (Kravitz, Saleem, Baker, &

Mishkin, 2011). Interestingly, despite the age-related increases in both

domain-selectivity and connectivity strength, behavior significantly

decreased in, notably, right posterior regions. Taken together, these

findings could support accounts of age-related reductions in hemi-

spheric lateralization that potentially points to inefficient bilateral

recruitment of neural resources for tasks typically hemispherically
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specialized, such as that of motor-related processing (Mutha,

Haaland, & Sainburg, 2012). Additionally, the negative relationship

between connectivity strength and age in long-range connections

extending from anterior nodes could support previous findings of

reduction in prefrontal and motor cortical coupling but enhanced local

coupling within posterior motor and premotor cortices with advancing

age (Rowe et al., 2006). This finding is somewhat at odds with theo-

ries positing an age-related anterior shift in processing that has been

typically attributed to functional compensation (Davis et al., 2007).

However, maintenance of long-range connectivity may be necessary

to successful task performance among older adults, as a positive inter-

action effect was found for one long-range connection between the

left superior medial frontal cortex and right precuneus.

For the memory domain, the effect of age on domain-selectivity

resulted in edges principally expressing a reduction in domain-

selectivity with increasing age whereas for connectivity, edges primar-

ily expressed an increased in connectivity with age. Interestingly, this

was the only domain that did not express overlap in edges expressing

a significant effect of age on either domain-selectivity or connectivity.

Despite the primarily negative effect of age on domain-selectivity,

nodes connecting these negative edges were linked to a positive rela-

tionship between behavior and domain-selectivity, located in right

posterior regions of the inferior/medial occipital cortex and cuneus.

Edges where behavioral performance was positively related to con-

nectivity strength were bilaterally located across the angular gyrus,

medial cingulate, inferior/medial occipital cortex, thalamus, lingual

gyrus, and precuneus. A largely positive interaction effect between

age and behavior was also found in areas including the putamen, infe-

rior/medial occipital cortex, medial temporal pole, and precuneus in

addition to the cerebellum and medial orbitofrontal cortex. The

involvement of posterior portions of the occipital cortex across model

analyses could support previous findings of common engagement of

these regions in both visual search and memory search tasks (Makino,

Yokosawa, Takeda, & Kumada, 2004) as well as the reactivation of

sensory regions in the recollection of visual memory (Wheeler,

Petersen, & Buckner, 2000). Rather unsurprisingly, several structures

additionally belonging or related to the limbic system were observed.

For instance, the precuneus is a structure that has been widely impli-

cated in episodic memory retrieval (for a review, see Cavanna &

Trimble, 2006). The thalamus has also been linked to particular

aspects of episodic memory function, including selection of stimuli for

encoding and retrieval strategies (Van Der Werf, Jolles, Witter, &

Uylings, 2003). These results jointly indicate a prominent role of the

limbic system and structures possessing thalamcortical projections in

maintaining the integrity of episodic memory across the lifespan.

Despite the extensive findings displaying the consistent involvement

of prefrontal cortical (PFC) regions in both episodic memory encoding

and retrieval (for a review, see Tromp, Dufour, Lithfous, Pebayle, &

Després, 2015), we only observed one connection displaying a posi-

tive interaction effect between age, behavior, and connectivity in the

right orbitofrontal cortex. Right PFC activation has been observed

during the retrieval phase of episodic information (Morcom, Good,

Frackowiak, & Rugg, 2003; Tulving, Kapur, Craik, Moscovitch, &

Houle, 1994). However, as we did not differentiate between encoding

and retrieval phases among memory tasks, making informed specula-

tion difficult.

The fluid domain displayed the highest number of significant

edges emerging from the connectivity regression models, for both age

and behavior. Perhaps the most salient finding was the vast bilateral

connectivity between posterior superior regions of the cortex that

were declining with age in addition to an age-related reduction in con-

nectivity strength between frontal and parietal regions. Distributed

fronto-parietal networks have been linked to reasoning ability

(Wendelken, Ferrer, Whitaker, & Bunge, 2015), with the posterior

parietal cortex playing an integral role (for a meta-analysis, see

Wendelken, 2014). The current findings suggest a potential age-

related decline in these networks. When analyzing the relationship

between behavior and connectivity strength, only edges displaying a

positive relationship emerged, with one node in the right frontal supe-

rior medial cortex, corresponding to Brodmann's area (BA) 10, linking

frontal cortex to parietal regions. BA10 has been previously found to

account for individual age-related differences in fluid intelligence

(Kievit et al., 2014). Other prominent regions displaying a significant

positive relationship between behavior and connectivity demon-

strated bilateral crossover between parietal and occipital regions of

the cortex. Within these regions, several edges additionally displayed

an overlap in significance between age and behavior. Interestingly,

these edges of overlap demonstrated a positive relationship between

age, behavior, and connectivity strength, meaning that as connectivity

strength increased, both age and behavior increased. These edges

were primarily found in right-lateralized regions nonexhaustively

including the angular gyrus, precuneus, insula, posterior cingulum, and

medial occipital lobe. The presence of the posterior cingulum corrobo-

rates a previous finding from our lab in which preliminarily derived

patterns of the fluid intelligence RA also revealed this region to be sig-

nificant (Stern et al., 2014). Furthermore, the posterior cingulum has

been found to be a hub for functional connections in the DMN, along

with the precuneus and angular gyrus (Andrews-Hanna, Reidler,

Sepulcre, Poulin, & Buckner, 2010). Previous literature has pointed to

a greater left-lateralization of intelligence as formalized by the

parieto-frontal integration theory of intelligence (Jung & Haier, 2007)

and substantiated by studies of regional metabolic processing associ-

ated with fluid intelligence (Nikolaidis et al., 2016). We did observe a

somewhat left-lateralization for negative age effects, with age-related

decreases in connectivity in the left medial frontal cortex and anterior

cingulate. One edge connecting the anterior cingulate to the medial

temporal gyrus displayed a significant negative interaction between

age and behavior on connectivity strength, meaning that behavior

increased with increasing connectivity at younger ages but the inverse

pattern was found with advancing age. The anterior cingulate cortex

has been shown to be strongly engaged in working memory and tasks

of high attentional demand (Lenartowicz & McIntosh, 2005). Given

the cognitive complexity that is associated with fluid intelligence—a

general mental ability comprising reasoning, problem solving, and

learning—it indeed has been shown to share overlap with abilities

such as working memory (see Salthouse, Pink, & Tucker-Drob, 2008)
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and attempts have been made toward its functional parcellation into

networks including attention, salience, and cognitive control (for a

meta-analysis, see Santarnecchi, Emmendorfer, & Pascual-Leone,-

2017). However, our finding of a more right-lateralized posterior net-

work displaying increases between age, behavior, and connectivity

presents a novel consideration for the functional network organiza-

tion in the aging brain.

The vocabulary domain, on the other hand, demonstrated the

lowest number of significant domain-selective edges in the indicator

analysis. We observed an overall right-lateralized reduction in both

domain-selectivity and connectivity strength with increasing age, par-

ticularly among long-range connections linking the superior frontal

gyrus with the precuneus. One hypothesis could be that, given an

arguably left-lateralized language network (Dronkers, Wilkins, Van

Valin Jr, Redfern, & Jaeger, 2004) combined with the fact that vocabu-

lary is the one domain where older adults outperform younger adults

(Salthouse & Davis, 2006; see Hartshorne & Germine, 2015), an

increase in left-hemispheric connectivity could suggest a strengthen-

ing of specialized networks, rather than compensation of processing.

However, when looking at the relationship between behavior and

connectivity, the edge that displayed a positive relationship between

behavior and both domain-selectivity and connectivity strength linked

the right rolandic operculum to the right middle occipital gyrus. Both

the rolandic operculum and the middle occipital gyrus have been

implicated in language and speech production (Nakamichi et al., 2018)

and visual word form processing (Levy et al., 2008), respectively,

although in the left hemisphere. Focusing only on edges displaying

increases between behavior and connectivity strength, we observed

significant behavior-related connectivity between the inferior frontal

gyrus and vermis. The inferior frontal gyrus is a well-studied integral

region to language production (Tyler et al., 2011). Additionally, more

recent research on cerebellar functions has argued for a modulatory

role in non-motor language processes such as lexical retrieval and

other language dynamics (Marien, Engelborghs, Fabbro, & De

Deyn, 2001). Interesting, the majority of edges displaying a positive

interaction between age, behavior, and connectivity strength were

bilateral connections linking the left anterior cingulate to right subcor-

tical structures (i.e., putamen and thalamus), the left middle temporal

gyrus to the right middle occipital gyrus, and the left superior parietal

gyrus to the right supplementary motor cortex. Activations of regions

outside of canonical language processing could be due to recruitment

of what has been termed “domain-general” language systems, which

includes regions typically linked to functions such as cognitive control

and memory (Campbell & Tyler, 2018; Fedorenko, 2014). Indeed, we

witnessed a significant interaction extending from the anterior cingu-

late to subcortical structures, which could evidence the engagement

of such cognitive control mechanisms.

The motivation of the RANN study was to define patterns of acti-

vation associated with four latent abilities, or RA, that had repeatedly

been identified as comprising the majority of age-related cognitive

changes (Salthouse, 2005, Salthouse, 2009b). To this end, our lab had

previously derived neural patterns based on voxel activations that

demonstrated age-invariance across the lifespan (Habeck et al., 2016).

In the current study, we aimed to investigate functional connectivity

networks associated with each RANN domain and to analyze the

change in both selectivity and connectivity strength among each abil-

ity as a function of age and behavioral performance. We found that

different network organizations accompany different RAs and that,

despite age-invariant patterns being derived at the voxel level, some

of these edges are prone to significant change in both domain-

selectivity and connectivity strength with advancing age. Additionally,

some edges expressed significant changes between connectivity and

behavioral performance, rendering different configurations by

domains.

Given the richness of data presented herein, there are several fur-

ther considerations that could be made in attempting to capture age-

related changes in cognition. These additional analyses went beyond

the current scope of the paper and remain for the future. For instance,

we could consider the overlap in edge selectivity that had emerged

between different domains in the indicator analysis to see if there is

any domain-general processing network that might then display signif-

icant modulation with age or differences in behavioral performance.

Additionally, we could include education and NART as covariates in

our regression models.

We employed Power et al.'s (2011) parcellation scheme, which

divides the brain based on 14 functional networks, and we could have

investigated how these networks could have differentially interacted

in representing domain-selectivity across our RAs and how age could

have impacted network configuration on a variety of graph theoretical

metrics such as network integration/segregation, modularity, global/

local efficiency, etc. Several recent studies have pointed to age-

related differences in network metrics (for a review, see Chan, Park,

Savalia, Petersen, & Wig, 2014; Damoiseaux, 2017; Geerligs, Renken,

Saliasi, Maurits, & Lorist, 2014; Shaw, Schultz, Sperling, & Hedden, 2015).

One potential limiting factor is the use of a parcellation scheme that

has been derived in younger adults, which assumes consistency in

spatial organization across the life span. Recent work has challenged

this notion, arguing that age-dependent changes in macro-anatomy

introduce greater variability that may compromise anatomical align-

ment in older adults; thus, alternative parcellation schemes have been

proposed (see Han et al., 2018). Given the remaining questions about

the validity and persistence across the lifespan, we confined the

majority of our analyses to reporting edges and their constituent

nodes, rather than omnibus measures whose derivation depends on

Power's network taxonomy.

Taken together, our findings indicate that different functional

connectivity patterns are associated with each of our RANN domains

and that, at least at the level of functional associations between

regions, the degree of selectivity and connectivity strength of some of

these edges vary as a function of age and behavioral performance.

Furthermore, our findings do not support an exclusively greater

recruitment of frontal regions as has been posited by theories

supporting anterior shifts in activation increases with advancing age.

We acknowledge that findings from voxel-based activation data do

not necessarily extend to higher-order moments such as functional

connectivity outcomes, despite a naturally tendency toward forging
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this relationship. However, in showing an overall more posterior

involvement of regions displaying increases in domain-selectivity and

connectivity strength with age, our results do argue for a more promi-

nent role of posterior regions in the aging process, at least in terms of

network dynamics. Interestingly, though, recent accounts have dis-

puted anterior-shift accounts, claiming that greater activation in PFC

in older adults carries less information than visual region activation,

for example, speaking against the notion of PFC compensation

(Morcom & Henson, 2018). Future studies that directly test these

hypotheses are critical to advancing more refined theories of aging.
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