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1  | INTRODUC TION

There is increasing interest in understanding how personality may 
affect brain function and health across the adult lifespan. Personality 

consists of relatively stable patterns of behaviors, cognition, moti-
vation, and emotional responses that characterize each individual. 
Currently, the five-factor model (FFM) or “Big Five” is a widely ac-
cepted taxonomy of human personality that includes five traits: 
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Abstract
Introduction: Personality is associated with cognitive, emotional, and social function-
ing, and can play a role in age-related cognitive decline and dementia risk; however, 
little is known about the brain dynamics underlying personality characteristics, and 
whether they are moderated by age. 
Methods: We investigated the associations between personality and resting-state 
functional MRI data from 365 individuals across the adult lifespan (20–80  years). 
Participants completed the 50-item International Personality Item Pool and a resting-
state imaging protocol on a 3T MRI scanner. Within-network connectivity values were 
computed based on predefined networks. Regression analyzes were conducted in 
order to investigate personality–connectivity associations, as well as moderation by 
age. All models controlled for potential confounders (such as age, sex, education, IQ, 
and the other personality traits).
Results: We found that openness was positively associated with connectivity in the 
default-mode network, neuroticism was negatively associated with both the ventral 
and dorsal attention networks, and agreeableness was negatively associated with 
the dorsal attention network. In addition, age moderated the association between 
conscientiousness and the frontoparietal network, indicating that this association 
become stronger in older age.
Conclusions: Our findings demonstrate that personality is associated with brain con-
nectivity, which may contribute to identifying personality profiles that play a role in 
protection against or risk for age-related brain changes and dementia.
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openness (i.e., the tendency to be imaginative, perceptive, curious, 
creative, and thoughtful), conscientiousness (i.e., the tendency to be 
organized, goal-oriented, self-disciplined, persistent, and suppress 
disruptive impulses), extraversion (i.e., the tendency to seek stim-
ulation, be energetic, sociable, assertive, and active), agreeableness 
(i.e, the tendency to be cooperative, altruistic, and empathetic), and 
neuroticism (i.e., is the tendency to experience negative emotions, 
worries, and stress; Costa & McCrae, 1992; Goldberg, 1990; McCrae 
& Costa, 2003).

Although previous research stated that personality is relatively 
stable over time suggesting that personality becomes “set like plas-
ter” by age 30 (i.e., the plaster hypothesis; Costa & McCrae, 1994, 
1997; Costa, Metter, & Mccrae, 1994; Roberts & DelVecchio, 2000), 
there is compelling evidence showing changes in personality across 
adulthood, including in old age. Cross-sectional and longitudinal 
studies indicate that aging is associated with lower levels of neu-
roticism, openness, and extraversion, and higher levels of agree-
ableness and conscientiousness (Allemand, Zimprich, & Hendriks, 
2008; Caspi, Roberts, & Shiner, 2005; Costa & McCrae, 1997; 
Donnellan & Lucas, 2008; Helson, Jones, & Kwan, 2002; McCrae, 
Martin, & Costa, 2005; Roberts & Mroczek, 2008; Roberts, Walton, 
& Viechtbauer, 2006; Soubelet & Salthouse, 2011; Srivastava, John, 
Gosling, & Potter, 2003; Terracciano, McCrae, Brant, & Costa, 2005; 
Weiss et al., 2005).

Nevertheless, studies that incorporate a wider age range that 
includes older individuals (60 years and up) indicated that conscien-
tiousness may present a curvilinear association with age, such that it 
increases up until middle age and decreases in older ages (Donnellan 
& Lucas, 2008; Terracciano et al., 2005). Besides the effect of age, it 
is important to consider that major life events can also affect person-
ality traits and therefore be confounded with age since they occur in 
different phases of adult life. For instance, a large study found spe-
cific effects of major life events (i.e., first job, marriage, childbirth, 
separation, divorce, and retirement) on different personality traits 
(Specht, Egloff, & Schmukle, 2011).

Evidence indicates that personality traits, particularly consci-
entiousness, neuroticism, and openness, are associated with gen-
eral health, longevity, cognitive performance (Chapman, Roberts, 
& Duberstein, 2011; Curtis, Windsor, & Soubelet, 2015), and 
dementia risk (Chapman et al., 2019; Terracciano & Sutin, 2019). 
Conscientiousness has been associated with reduced cognitive 
decline, while neuroticism has been associated with greater de-
cline (Caselli et al., 2016; Hock et al., 2014; Luchetti, Terracciano, 
Stephan, & Sutin, 2016). Similarly, individuals who scored lower on 
conscientiousness and higher on neuroticism shower greater risk 
for development of Alzheimer's Disease (AD; Terracciano et al., 
2014). Critically, these traits are also associated with dementia risk 
factors (Curtis et al., 2015; Terracciano et al., 2014). For instance, 
conscientiousness has been negatively associated with cigarette 
smoking, physical inactivity, obesity, and diabetes, while neurot-
icism is associated with higher risk for psychopathology, espe-
cially anxiety disorders and depression (Lahey, 2009). It has been 
hypothesized that higher openness can be a protective factor in 

the contact of cognitive aging since it is associated with greater 
participation in a cognitively enriching lifestyle; however, there 
are inconsistencies in studies that have explored this relationship. 
Studies found that openness did not predict differences in cogni-
tive trajectories over time (Caselli et al., 2016; Sharp, Reynolds, 
Pedersen, & Gatz, 2010), while others found openness was asso-
ciated with better cognitive performance and less decline over 
the time (Chapman et al., 2012; Luchetti et al., 2016). In addition, 
higher openness and agreeableness have been associated with a 
slightly reduced risk of AD, but not extraversion (Terracciano et 
al., 2014), although in another study some association has been 
found between higher extraversion and steeper decline (Chapman 
et al., 2012).

Despite the above evidence showing the influence of person-
ality on general health, cognitive aging, and dementia risk, it is still 
unclear as to what possible mechanisms underlying these relation-
ships might be. A better understanding of the effect of person-
ality on brain health metrics across adulthood can advance this 
area of research to gain a more complete understanding of how 
personality may affect cognitive health in aging. Resting-state 
functional connectivity (RSFC) is considered a viable approach to 
capture the complex intrinsic neural architecture underlying per-
sonality (Nostro et al., 2018) and can describe personality differ-
ences in terms of networks dynamics (Toschi, Riccelli, Indovina, 
Terracciano, & Passamonti, 2018). Specifically, RSFC is based on 
resting-state functional magnetic resonance imaging (RS-fMRI), 
which measures spontaneous low-frequency fluctuations in blood 
oxygen level-dependent (BOLD) signal in subjects at rest. RS-fMRI 
has attracted attention for its ability to measure correlations in 
neural activity (via BOLD signal) between brain regions, regard-
less of their spatial proximity (Power et al., 2011; Schaefer et al., 
2018), in order to identify co-activation patterns among regions 
(i.e., networks).

There are several brain networks that have been established to 
have specific cognitive implications that replicate across indepen-
dent adult samples (Power et al., 2011), such as the default-mode 
network (DMN; associated with self-reflection and mind-wander-
ing thought; Buckner, Andrews-Hanna, & Schacter, 2008; Raichle 
et al., 2001), ventral and dorsal attention networks (VAN and 
DAN, respectively; associated with dynamic attentional control; 
Corbetta & Shulman, 2002; Fox, Corbetta, Snyder, Vincent, & 
Raichle, 2006; Vossel, Geng, & Fink, 2014), salience network (SAN; 
associated with cognitive control; Seeley et al., 2007), frontopari-
etal network (FPN; associated with executive function; Power et 
al., 2011), and cingulo-opercular network (CON; associated with 
alertness; Dosenbach et al., 2007; Power et al., 2011). Past studies 
consider these networks to be cognitive or associative networks 
(Chan, Park, Savalia, Petersen, & Wig, 2014; Geerligs, Renken, 
Saliasi, Maurits, & Lorist, 2015), since the regions implicated 
within these networks tend to correspond to areas of task-related 
activation on relevant cognitive tasks (Barch, 2017). Despite this, 
the relationship between these brain networks and personality is 
still poorly understood.
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Regarding openness/intellect, is suggested that DMN play a 
relevant role given it implications on imagination, imagery, and 
creativity (Allen & DeYoung, 2016; Beaty et al., 2014). For in-
stance, higher levels of openness/intellect were associated with 
higher FC between DMN and regions or networks associated with 
cognitive control (Adelstein et al., 2011; Beaty et al., 2018), and 
predicted global efficiency of a network comprised of DMN nodes 
(Beaty et al., 2016). In relation to conscientiousness, FPN and VAN 
have been considered good candidates for a neural substrate since 
they are relevant to reorienting attention away from distractions 
and toward stimuli important for goal pursuit (Allen & DeYoung, 
2016). In this vein, a large study (N = 818) found that only consci-
entiousness was linked to measures of higher FC in the FPN and 
DMN (Toschi et al., 2018). In addition, a recent study found that 
conscientiousness was positively associated with within-network 
connectivity of the “goal priority network,” a broad neural network 
incorporating VAN and SAN regions (Rueter, Abram, MacDonald, 
Rustichini, & DeYoung, 2018).

It has been hypothesized that individuals with higher levels 
of neuroticism present deficits in emotional and self-regulation 
(Robinson, Ode, Wilkowski, & Amodio, 2007; Tamir, 2005), which 
could suggest reduced connectivity between the amygdala and 
frontal regions (Allen & DeYoung, 2016). For instance, higher levels 
of neuroticism were associated with lower FC between the amyg-
dala and the dorsomedial prefrontal cortex, but also temporal re-
gions such as middle temporal gyrus and temporal pole (Adelstein 
et al., 2011; Aghajani et al., 2014). In addition, there is evidence that 
neuroticism is associated with overall weaker FC when consider-
ing a brain-wide network (Nostro et al., 2018), FPN, or DMN, and 
stronger FC in the networks implicated in emotional processing and 
negative affect (i.e., “affective” network and CON; Servaas et al., 
2015). These findings are in line with the “mental noise hypothesis,” 
which states that higher neuroticism is characterized by increased 
mental noise, contributing to variability in cognitive performance 
and cognitive deficits, particularly in cognitive control and attention 
(Bredemeier, Berenbaum, Most, & Simons, 2011; Robinson & Tamir, 
2005; Robison, Gath, & Unsworth, 2017). In addition, some of the 
negative associations between neuroticism and brain connectivity 
are consistent with the networks implicated in major depression 
(e.g., DMN, DAN and “cognitive control” network; Yan et al., 2019; 
Yao et al., 2019) and anxiety (e.g., VAN, FPN, DMN, CON; Sylvester 
et al., 2012).

Extraversion has not being associated with RSFC in studies 
using a whole-brain approach (Dubois, Galdi, Han, Paul, & Adolphs, 
2018; Toschi et al., 2018). Despite that, it has been associated 
with strengthened FC between different ROIs (e.g., amygdala, 
ACC, and precuneus) and regions involved in the reward system 
(Adelstein et al., 2011; Passamonti et al., 2015), and emotional and 
motivational processing (Aghajani et al., 2014). There is no evi-
dence that Agreeableness is associated with RSFC in studies using 
a whole-brain approach (Dubois et al., 2018; Toschi et al., 2018). 
Nevertheless, agreeableness is associated with greater process-
ing of social information and is likely to be involved in emotional 

regulation and the ability to suppress aggressive impulses (Allen 
& DeYoung, 2016). For instance, resting-state studies found that 
higher levels of agreeableness are associated with higher FC be-
tween ROIs (ACC and precuneus) and regions involved in empathy 
and social information processing (Adelstein et al., 2011); and be-
tween posterior cingulate cortex and DMN regions (Ryan, Sheu, 
& Gianaros, 2011). In addition, a meta-analysis found a common 
disrupted cognitive control network across aggressive individ-
uals with psychiatric diagnoses (Wong et al., 2019), suggesting 
that networks related to cognitive control may be associated with 
agreeableness.

In summary, evidence from past studies indicates that person-
ality is associated with different aspects of RSFC; however, these 
studies vary in terms of approach (e.g., seed-based vs. whole-
brain), and network definitions, which limits generalizable con-
clusions and contributes to variability in the results. In addition, 
several studies considered sex, and sometimes age, as control vari-
able, but most failed to control for intelligence and/or education, 
factors that may influence both personality and brain function. 
Critically, all RSFC studies reviewed above included only young 
adults, indicating a gap in the literature considering an older pop-
ulation, remaining unclear whether age can moderate personal-
ity–connectivity associations. This is a relevant aspect since age 
can affect both personality (Donnellan & Lucas, 2008; Terracciano 
et al., 2005) and RSFC (Chan et al., 2014; Geerligs et al., 2015). In 
addition, understanding how personality is associated with brain 
functioning in healthy individuals across adulthood, and whether 
this association differs as a function of age can advance the under-
standing of personality's role as a protective factor against age-re-
lated cognitive decline and dementia.

1.1 | The present study

Taking into account the aforementioned literature and methodo-
logical considerations, the aims of the current study were twofold. 
First, to extend previous research by examining the association 
between personality and RSFC, considering a number of meth-
odological advantages: (a) a relatively large cohort (N = 365); (b) a 
wide age range representing the adult lifespan (20–80 years); (c) 
control of variables that may affect personality and/or brain func-
tion, such as age, sex, education, and IQ; and (d) using predefined 
networks considered to be stable across replication (Power et al., 
2011). Considering this last item, we focused on networks that are 
thought to be relevant for cognitive and/or emotional processing 
(i.e., CON, DAN, DMN, FPN, SAN, and VAN) and therefore criti-
cal to investigate the underlying brain dynamics of personality. 
Second, to investigate whether age moderates any associations 
between personality traits and within-network connectivity. To 
the best of our knowledge, this is the first study to address this 
question including a sample with a wide age range representing 
the adult lifespan. Understanding whether age plays a role in the 
relationship between personality and functional connectivity may 
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elucidate underlying mechanisms suggesting personality charac-
teristics that may be protective against or a source of vulnerability 
for age-related cognitive decline and dementia.

Regarding our first aim, based on the previous literature, it is 
hypothesized that some personality traits will be associated with 
within-network connectivity. In brief, higher levels of openness 
will be associated with stronger within-DMN connectivity; higher 
levels of conscientiousness would be associated with higher with-
in-network connectivity in networks related to cognitive control 
and goal priority, possibly FPN, CON, VAN, and SAN; and higher 
levels of neuroticism would be associated with weaker within-net-
work connectivity in networks relevant for executive functions 
and attention control such as FPN, VAN, and DAN, as well as 
emotional regulation, such as the DMN. We did not predict robust 
associations between RSFC and extraversion or agreeableness. 
Regarding the second aim, we predicted that age would moderate 
personality–RSFC relationships; however, we consider this to be 
an exploratory aim since there is no previous literature to support 
specific hypotheses.

2  | MATERIAL S AND METHODS

2.1 | Participants

A total of 365 participants were included in the present study (age 
range: 20–80 years). The sample was comprised of participants who 
completed the baseline visit for either of two studies: the Reference 
Ability Neural Network (RANN) study or Cognitive Reserve (CR) 
study (Habeck et al., 2016; Stern, 2009; Stern et al., 2014). Both 
studies included the same inclusion/exclusion criteria, the same 
structural and resting-state functional imaging protocols, and most 
of the same cognitive assessments and questionnaires. The primary 
difference between the two studies was the functional task-based 
imaging protocols used, which will not be analyzed in the current 
study.

Participants were recruited using established random market 
mailing procedures, and written informed consent was obtained 
from all participants prior to study participation. All participants 
were native English speakers, right-handed, free of MRI contra-
indications, and read at a fourth grade reading level or above. 
Screening was performed prior to enrollment to ensure that no 
participants had any psychological or medical conditions that 
could affect cognitive functioning. Specifically, for older adults, 
performance on our neuropsychological battery (details below) 
that was indicative of mild cognitive impairment or dementia was 
grounds for exclusion. Global cognitive functioning was assessed 
with the Mattis Dementia Rating Scale (Lucas et al., 1998), on 
which a minimum score of 134 was required for inclusion in the 
study. Additionally, in order to be included in the present anal-
yses participants had to have personality data, complete a rest-
ing-state scan protocol, and have less than 30% motion artifact 
data removal (scrubbing) from that resting-state scan (Parkes, 

Fulcher, Yucel, & Fornito, 2018; Power, Barnes, Snyder, Schlaggar, 
& Petersen, 2012).

2.2 | Behavioral data

2.2.1 | Neuropsychological assessment

Participants completed an extended neuropsychological battery. 
Similar to previous research (Salthouse et al., 2015; Soubelet & 
Salthouse, 2011), we created four composite cognitive domain 
scores based on performance on several cognitive tests: Reasoning: 
Wechsler Adult Intelligence Scale (WAIS-III) Matrix Reasoning, 
Letter-Number Sequencing, and Block Design tests (Wechsler, 
1997). Vocabulary: WAIS-III Vocabulary test, the Wechsler Test 
of Adult Reading (WTAR; Wechsler, 2001), and the American 
National Adult Reading Test (AMNART; Grober, Sliwinski, & Korey, 
1991), Memory: Selective Reminding Test (SRT); last trial, continu-
ous long-term retrieval, and last retrieval (Buschke & Fuld, 1974), 
and Speed of Processing: WAIS-III Digit Symbol, Stroop Color 
Naming test (Golden, 1975), and Trail Making Test (TMT)-A (time) 
(Reitan, 1978). Following collection of all neuropsychological task 
data, performance on each task was z-scored relative to the mean 
and standard deviation for each task within the whole sample of 
participants enrolled in the RANN and CR studies who completed 
these assessments. The z-scores for all tasks within each cognitive 
domain were then averaged in order to generate domain-based 
z-scores.

2.2.2 | Personality

Personality traits were measured using the 50-item version of the 
International Personality Item Pool (IPIP), to evaluate five major 
dimensions of personality based on the five-factor model: open-
ness, conscientiousness, extraversion, agreeableness, and neuroti-
cism (reversed emotional stability; Goldberg, 1999). Participants 
rated themselves on a 5-point scale ranging from “Strongly Agree” 
to “Strongly Disagree” with respect to how well each statement de-
scribed them.

2.3 | Neuroimaging data

2.3.1 | fMRI scan parameters

Neuroimaging data were collected during a 5-(n = 124) or 9.5-(n = 241) 
minute resting-state fMRI protocol. All participants completed these 
scans on a 3T Philips Achieva Magnet. T1-weighted images of the whole 
brain were acquired for each subject with a Magnetization Prepared 
Rapid Gradient Echo (MPRAGE) sequence with the following param-
eters: TE/TR: 3/6.5 ms; Field of view: 256 mm; Flip angle: 8°; In-plane 
resolution: 256 × 256 voxels; Slice thickness/gap: 1/0 mm; and Slices: 
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180. fMRI blood oxygen level-dependent (BOLD) resting-state scans 
were collected with the following parameters: TE/TR: 20/2,000 ms; 
Flip angle: 72°; In-plane resolution: 112 × 112 voxels; Slice thickness/
gap: 3/0 mm; and Slices: 37.

2.3.2 | fMRI data processing

Images were preprocessed using an in-house developed native space 
method (Razlighi et al., 2014) as described previously (Varangis, 
Habeck, Razlighi, & Stern, 2019). The preprocessing pipeline included 
slice-timing correction and motion correction performed in FSL 
(Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson et al., 2012), 
calculation of frame-wise displacement (FWD; as described in Power 
et al., 2011), volume replacement for contaminated volumes (Carp, 
2013), band-pass filtering using flsmaths–bptf (Jenkinson et al., 2012), 
and residualization of the processed data with respect to FWD, root 
mean square difference of the BOLD signal, left and right hemisphere 
white matter, and lateral ventricular signals (Birn, Diamond, Smith, 
& Bandettini, 2006). T1 image segmentation was performed using 
FreeSurfer (Dale, Fischl, & Sereno, 1999, Fischl et al., 2002, Fischl et al., 
2004) and inspected visually for any inaccuracies. In order to perform 
the functional connectivity analyses described below, the coordinates 
of the 264 ROIs identified by Power et al. (2011) were transferred 
to native space via nonlinear registration of the subject's structural 
scan to the MNI template using the ANTS software package. Next, a 
10-mm-radius spherical mask was generated for each coordinate and 

intersected with the FreeSurfer gray matter mask in order to derive 
the gray matter-registered ROI masks for each of the 264 ROIs. An 
intermodal, intra-subject, rigid-body registration of the fMRI refer-
ence image and T1 scan was then performed using FLIRT with six 
degrees of freedom, normalized mutual information as the cost func-
tion (Jenkinson & Smith, 2001), in order to transfer ROI masks from 
T1 space to fMRI space. These transferred ROI masks were used to 
average all voxels within each mask to obtain a single fMRI time series 
for each of the 264 ROIs.

Time-series data from each ROI were used to generate correla-
tion matrices among all ROIs (264 ROIs by 264 ROIs) and were then 
z-transformed to generate normalized correlation matrices for each 
participant. The diagonal of each correlation matrix was set to “NA” 
for all analyses, in order to remove correlations between an area and 
itself from analyses. ROIs were then labeled based on the Power 
(2011) network assignments, with the following six networks being 
selected for analysis based on their inclusion as cognitive or “asso-
ciation” networks in past studies (Chan et al., 2014); default mode 
(DMN; 58 ROIs), salience (Sal; 18 ROIs), cingulo-opercular (CO; 14 
ROIs), frontoparietal (FP; 25 ROIs), dorsal attention (DAN; 11 ROIs), 
and ventral attention (VAN; 9 ROIs).

2.3.3 | Functional connectivity analyses

Individual z-transformed correlation matrices were used to com-
pute the measures of functional connectivity. The average positive 

F I G U R E  1  Regions of interest (ROIs) reflecting each cognitive network.
Note: Regions of interest (ROIs) making up each of the six cognitive networks were superimposed on a standard 3D brain template. Images 
were generated using BrainNet Viewer by creating spheres around each of the Power (2011) ROI coordinates corresponding to the networks 
used in the present analysis
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within-network correlation was computed by setting all negative cor-
relation values to “NA” and then taking the average within-network 
positive correlation for each of the six cognitive networks mentioned 
above, as in previous work by our group (Varangis, Habeck, et al., 2019). 
Although it is possible to include negative correlations in a network anal-
ysis (Rubinov & Sporns, 2011), because of the ambiguity regarding the 
meaning of negative correlations (Chai, Castanon, Ongur, & Whitfield-
Gabrieli, 2012; Chan et al., 2014; Murphy, Birn, Handwerker, Jones, 
& Bandettini, 2009; Scholvinck, Maier, Ye, Duyn, & Leopold, 2010), 
all negative correlations in participants’ correlation matrices were ex-
cluded from analysis. Within-network correlations were characterized 
as those reflecting correlations among ROIs within a specific network; 
thus, the data for this analysis included the average within-network 
positive correlation (six values; one average within-network positive 
correlation computed per network) for each participant. In addition, for 
illustration purposes, regions of interest (ROIs) on each network were 
superimposed on a standard 3D brain template making up each of the 
six cognitive networks (Figure 1). The images were generated using 
BrainNet Viewer (Xia, Wang, & He, 2013—http://www.nitrc.org/proje​
cts/bnv/) by creating spheres around each of the Power (2011) ROI co-
ordinates corresponding to the networks used in the present analysis.

2.3.4 | Statistical analyses

In order to examine relationships between personality and within-
network connectivity metrics, multiple regression models were 

computed using connectivity within each of the networks as a de-
pendent variable. In Model 1, we investigated the effect of each of 
the personality traits on each of the average within-network corre-
lations. We ran separate models for each network (dependent vari-
able: within-network connectivity): We first entered demographic 
variables that may affect personality or connectivity values (i.e., age 
and sex) and then entered all personality variables in order to assess 
the unique effect of each personality trait on each within-network 
connectivity metric. In Model 2, we added two-way interaction terms 
between age and each personality variable to the previous model in 
order to examine whether age could moderate the association be-
tween personality and each network. Of note, the interaction terms 
were calculated using mean-centered variables and were entered in 
separate models for each network. To more closely understand the 
nature of the interaction, we tested conditional effects of age mod-
eration considering three age groups, which we labeled as Younger 
(36.8 yo; −1 SD), Middle Age (53,4 yo; mean), and Older (70.1; +1 SD). 
Conditional effects of moderation were examined with PROCESS 
(Hayes, 2012), and analyses were performed using SPSS 22 (SPSS).

3  | RESULTS

3.1 | Demographics and descriptive statistics

Participant demographics are described in Table 1. The mean age 
of participants was 53.4  years (range of 20–80  years), and mean 

TA B L E  1  Demographics and cognitive characteristics

  All Young Middle age Older adults p-value

Demographics 20–80 years 20–39 years 40–59 years 60–80 years  

Number of subjects 365 96 88 181  

Age, M (SD), years 53.4 (16.6) 29.5 (4.9) 50.6 (5.4) 67.5 (5.1) <.001*

Sex, % of Women 55.1% 51.0% 61.4% 54.1% .35

Education, M(SD), years 16.1 (2.3) 15.8 (2.4) 16.1 (2.3) 16.3 (2.3) .16

Personality

Openness 0.004 (1.0) 0.11 (1.0) −0.01 (1.0) −0.04 (0.99) .46

Conscientiousness −0.02 (1.0) −0.06 (0.99) 0.04 (1.0) −0.03 (0.97) .73

Extraversion −0.001 (1.0) 0.004 (1.1) 0.02 (0.95) −0.01 (0.98) .93

Agreeableness −0.02 (1.0) −0.08 (1.0) −0.04 (1.1) 0.02 (0.93) .65

Neuroticism 0.006 (0.99) 0.24 (1.1) 0.01 (1.0) −0.12 (0.91) .01*

Cognition

IQ Scoresa 117.0 (8.5) 113.4 (8.3) 115.9 (8.1) 119.4 (8.1) <.001*

Vocabulary score 0.02 (0.9) −0.32 (0.9) −0.07 (0.8) 0.26 (0.8) <.001*

Reasoning score 0.07 (0.8) 0.62 (0.7) −0.05 (0.8) −0.16 (0.7) <.001*

Memory scoreb 0.05 (0.9) 0.60 (0.7) 0.13 (0.9) −0.27 (0.8) <.001*

Speed scorec 0.02 (0.8) 0.72 (0.7) 0.05 (0.7) −0.35 (0.6) <.001*

aVerbal IQ scores are based on American National Reading Test (AMNART). 
bThere are missing data for two subjects, and scores reflect 363 subjects. 
cLower values of Speed scores reflect worse (slower) performance. Personality and cognitive scores are represented by z-scores. 
*Significant p-values (<.05). 

http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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TA B L E  2   Models reflecting the effects of personality traits on within-network connectivity

Network
Number of 
observations/R2 Independent variables

Unstandardized coefficients
B

Standardized coefficients
β p-value

Default mode 365
R2 = .18

Age .00 −.07 .20

Sex −.01 −.07 .09

Education .00 −.003 .94

NART IQ −.00 −.02 .91

Openness .01 .14 .02*

Conscientiousness .001 .01 .80

Extraversion −.006 −.08 .17

Agreeableness −.003 −.04 .45

Neuroticism .001 .01 .81

Fronto parietal 
control

365
R2 = .11

Age .00 −.05 .30

Sex −.007 −.04 .43

Education .00 −.002 .90

NART IQ .001 .08 .22

Openness −.004 −.05 .37

Conscientiousness .003 .04 .46

Extraversion .003 .04 .51

Agreeableness −.005 −.06 .30

Neuroticism −.001 −.01 .79

Ventral attention 365
R2 = .15

Age .00 .06 .24

Sex .005 .03 .53

Education .00 .01 .83

NART IQ −.001 −.06 .35

Openness .003 .03 .56

Conscientiousness .002 .02 .65

Extraversion .00 .006 .91

Agreeableness −.006 −.06 .24

Neuroticism −.01 −.11 .03*

Cingulo-Opercular 
Control

365
R2 = .29

Age −.001 −.25 <.001*

Sex −.005 −.02 .59

Education .02 .06 .31

NART IQ .00 −.03 .57

Openness .008 .08 .16

Conscientiousness −.003 −.03 .58

Extraversion .003 .03 .52

Agreeableness .00 .005 .93

Neuroticism .002 .02 .69

Dorsal Attention 365
R2 = .33

Age −.002 −.23 .001*

Sex −.01 −.04 .34

Education .006 .12 .03*

NART IQ −.002 −.16 .01*

Openness .008 .07 .23

Conscientiousness −.002 −.01 .78

Extraversion −.002 .02 .72

Agreeableness −.01 −.12 .03*

Neuroticism −.01 −.12 .02*

(Continues)
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education was 16.1  years (range of 9–24  years). There were no 
differences in sex and education when stratifying by age groups. 
Personality scores revealed only neuroticism differed as a function 
of age, indicating lower neuroticism in older adults. In addition, cog-
nitive performance reflected the expected differences across the 
age groups, indicating that older participants show higher verbal IQ 
and vocabulary scores, but lower scores on tasks of reasoning, epi-
sodic memory, and processing speed.

3.2 | Relationships between personality and within-
network connectivity

Regression model results for the effects of the personality traits on 
each within-network connectivity metric are presented in Table 2. The 
models were run separately for each network and controlled for age, 
sex, education, and IQ. The regression parameter for openness was 
found to be significant in predicting within-DMN connectivity (β = .14, 
p  =  .02) and the regression parameter for neuroticism significantly 
negatively predicted within-VAN (β = −.11, p =  .03) and within-DAN 
(β = −.12, p =  .03) connectivity. Finally, the regression parameter for 
agreeableness significantly negatively predicted within-DAN con-
nectivity (β  =  −.12, p  =  .02). There were no significant relationships 
between within-network connectivity in any of the above networks 
and extraversion or conscientiousness. The pattern of association did 
not change when re-analyzing the data excluding education and IQ as 
covariates. Despite the significant results observed, none of them sur-
vived Bonferroni correction for multiple comparisons.

3.3 | Age moderation of personality–connectivity 
associations

Age moderated the association between conscientiousness and 
within-FPC-network connectivity, indicating that this association 
was stronger for older adults (β = .17, p = .001; Table 3, Figure 2). To 
better clarify this interaction, we tested conditional effects of age 

moderation. We found that higher conscientiousness was associated 
with greater connectivity in the FPC network only for older adults 
(p = .004), while this relationship was not significant for middle-age 
(p = .44) or younger adults (p = .07), although a trend was observed 
for the younger group (Figure 3).

3.4 | Analysis considering scan length

Due to the two different scan lengths in our study and the fact 
that previous work has shown that scan length has a significant 
effect on functional connectivity metrics (Birn et al., 2013), we 
reran the models testing whether each of above significant asso-
ciations mentioned above was moderated by scan length. Results 
showed that none of the significant effects were moderated by 
scan length. Regarding Model 1, scan length did not moderate the 
association between openness and DMN (p = .67), neuroticism and 
VAN (p = .38), neuroticism and DAN (p = .21), and agreeableness 
and DAN (p = .65). In Model 2, scan length did not moderate the 
age by conscientiousness interaction, although a trend was ob-
served (p = .05).

4  | DISCUSSION

Results from this study show associations between major di-
mensions of personality, as characterized by the FFM/Big Five 
(McCrae & Costa, 2004), and RSFC in predefined brain networks 
across the adult lifespan. Specifically, we found that higher levels 
of openness were associated with stronger within-DMN connec-
tivity, higher levels of neuroticism were associated with weaker 
within-VAN and DAN connectivity, and higher levels of agreea-
bleness were associated with weaker within-VAN connectivity. In 
addition, age moderated the relationship between conscientious-
ness and FPN connectivity, such that this positive relationship was 
significant for older adults, but not for younger and middle-aged 
adults.

Network
Number of 
observations/R2 Independent variables

Unstandardized coefficients
B

Standardized coefficients
β p-value

Salience 365
R2 = .14

Age .00 −.10 .07

Sex .003 .01 .77

Education −.002 −.04 .44

NART IQ −.00 −.006 .93

Openness .006 .07 .23

Conscientiousness −.003 −.04 .47

Extraversion −.001 −.007 .90

Agreeableness −.003 −.04 .51

Neuroticism −.004 −.04 .41

*Significant p-values (<.05). Models were run separately for each network. 

TA B L E  2   (Continued)
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Our results are in line with previous findings that openness im-
plicates the DMN. For instance, others have found that openness 
predicted the global efficiency of a functional network comprised 
of DMN nodes, and, similar to our findings, this result remained 
significant after controlling for intelligence, age, sex, and other 
personality variables (Beaty et al., 2016). In addition, openness has 
been found to be positively associated with functional connectiv-
ity between DMN hubs and regions and networks associated with 
cognitive control (Adelstein et al., 2011; Beaty et al., 2018). Given 
the fact that people with higher openness/intellect tend to be 

imaginative, curious, innovative, and creative (Allen & DeYoung, 
2016), we expected that the DMN would be a relevant substrate 
of this trait. The DMN has been reported to reflect spontaneous 
and self-generated cognitive processes such as mental imagery, 
creative cognition, future thinking, autobiographical memory re-
trieval, theory of mind, mental scene construction, daydreaming, 
and mind-wandering (Andrews-Hanna, Smallwood, & Spreng, 
2014; Fox, Spreng, Ellamil, Andrews-Hanna, & Christoff, 2015; 
Pearson, 2019; Stawarczyk & D'Argembeau, 2015).

Although it remains to be clarified which regions of the DMN 
are more critically involved in the expression of openness, previous 
findings show that parietal regions of DMN may have a particular 
role in openness (Sampaio, Soares, Coutinho, Sousa, & Goncalves, 
2014). This evidence is in line with a longitudinal finding that in-
dividuals with higher openness have a slower loss of gray matter 
volume in the right inferior parietal lobule, a DMN hub, and a re-
gion involved in creativity and working memory (WM; Taki et al., 
2013). In addition, others have investigated the hypothesis that 
dopamine is part of the biological substrate of openness/intel-
lect and has been associated with curiosity, exploratory behav-
ior, and WM (Allen & DeYoung, 2016). For instance, Passamonti 
et al. (2015) showed that openness/intellect positively predicted 
functional connectivity between midbrain regions (from which do-
paminergic neurons project, such as substantia nigra and ventral 
tegmental area) and the dorsolateral prefrontal cortex, a critical 
area for WM, in line with findings that openness is associated with 
WM (DeYoung, Peterson, & Higgins, 2005; DeYoung, Shamosh, 
Green, Braver, & Gray, 2009). Moreover, DMN–openness associa-
tions may underlie the evidence that openness is positively linked 
to several cognitive abilities, regardless of age (e.g., memory, fluid 
and crystallized intelligence, verbal fluency), as observed in stud-
ies including young, middle-aged, and older adults (Graham & 
Lachman, 2014; Soubelet & Salthouse, 2011).

In our study, as anticipated, we did not find associations between 
extraversion and brain networks, similar to previous connectivity 
studies based on whole-brain analysis (Dubois et al., 2018; Toschi et 
al., 2018). Neuroticism was negatively associated with within-net-
work functional connectivity, as previous reports (Nostro et al., 2018; 
Servaas et al., 2015). This negative association was observed in the 

TA B L E  3   Model reflecting age moderation of conscientiousness on FPC within-network connectivity

Network
Number of 
observations/R2

Independent 
variables

Unstandardized coefficients
B

Standardized coefficients
β p-value

Fronto 
parietal 
Control

365
R2 = .20

Age −.00 −.01 .71

Sex −.006 −.04 .44

Openness −.001 −.01 .80

Conscientiousness .003 .03 .48

Extraversion .003 .03 .50

Agreeableness −.003 −.04 .46

Neuroticism .00 −.005 .93

Age*Conscient .001 .17 .001*

*Significant p-values (<.05). Conscient = Conscientiousness. 

F I G U R E  2  Age moderation of the effect of conscientiousness 
on FPC network connectivity.
Note: Graph represents conscientiousness–FPC network within 
connectivity as a function of age. X-axis represents age group; 
y-axis represents beta values. Values above zero represent positive 
associations and below zero represent negative associations. Error 
bars = standard error; FPC = frontoparietal control network

F I G U R E  3   Conditional effects of age moderation.
Note: FPC = frontoparietal control network; C = conscientiousness. 
Younger = −1 SD; Middle Age = mean age; Older = +1 SD
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VAN and DAN, both reflecting systems with specialized nodes pro-
moting specific processes for attentional control. It has been proposed 
that the DAN mediates top-down guided voluntary attention to loca-
tions or features allocation, whereas the VAN is involved in detecting 
unattended or unexpected stimuli and triggering shifts of attention 
(Corbetta & Shulman, 2002; Vossel et al., 2014). The fact that neurot-
icism was negatively linked to connectivity in both attention-related 
networks may be connected to the “mental noise hypothesis,” indicat-
ing that higher neuroticism may increase mental noise, contributing 
to variability of cognitive performance and attention control deficits 
(Bredemeier et al., 2011; Robinson & Tamir, 2005; Robison et al., 2017). 
In addition, it has been hypothesized that higher neuroticism is linked 
with emotion dysregulation (Allen & DeYoung, 2016). Evidence in sup-
port of this view indicates that neuroticism is associated with reduced 
functional connectivity between the amygdala and several regions 
(e.g., dorsomedial prefrontal cortex, middle temporal gyrus and tem-
poral pole; Adelstein et al., 2011; Aghajani et al., 2014). The fact that 
we observed reduced connectivity in the VAN may support the above 
hypothesis, since the VAN has been also implicated in both attentional 
control and emotion regulation (Viviani, 2013). In contrast to these 
previous findings, we did not observe any association between neurot-
icism and FPN or DMN networks (Servaas et al., 2015), and networks 
also implicated in psychiatric conditions (e.g., depression and anxiety), 
executive functions, and cognitive control and emotional regulation 
(Sylvester et al., 2012; Yan et al., 2019; Yao et al., 2019).

We found a negative association between agreeableness and with-
in-DAN connectivity, which has not been reported previously, and 
therefore not hypothesized, in the current study. Resting-state seed-
based studies have reported that agreeableness is positively associated 
with functional connectivity among some hubs of the DMN (Adelstein 
et al., 2011; Sampaio et al., 2014); however, there is no association 
between this trait and RSFC in studies using a whole-brain approach 
(Dubois et al., 2018; Toschi et al., 2018). Likewise, there are several 
reports on the lack of association between agreeableness and regional 
brain volumes (Bjornebekk et al., 2013; Liu et al., 2013), and cognitive 
performance (Graham & Lachman, 2014; Soubelet & Salthouse, 2011). 
Our results reinforce the idea that aggressive behavior (e.g., lower 
agreeableness) is linked to brain networks relevant for cognitive/atten-
tion control (Wong et al., 2019), although more evidence is necessary 
to better understand this relationship.

Contrary to our hypothesis, conscientiousness was not associated 
with networks relevant to cognitive control and goal priority (e.g., 
CON, VAN, and SAN; Rueter et al., 2018), but it was associated with 
FPN, considered a critical substrate of conscientiousness (Allen & 
DeYoung, 2016; Toschi et al., 2018). The FPN has been linked to top-
down cognitive control, particularly initiating and adjusting cognitive 
control (Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Zanto 
& Gazzaley, 2013), reflecting skills endorsed by more conscientious in-
dividuals (e.g., those who are goal-oriented, self-disciplined, persistent, 
and able to suppress disruptive impulses). Nevertheless, we found 
that age moderated the association between FPN and conscientious-
ness, which was significant only in older participants. Our data add a 
unique contribution since we showed that the conscientiousness–FPN 

association increases as a function of age and may be particularly rel-
evant for older adults. To the best of our knowledge, previous studies 
have not specifically analyzed relationships between brain connec-
tivity and conscientiousness in older adults, since in many cases pre-
vious studies have systematically excluded older individuals (Allen & 
DeYoung, 2016; Passamonti et al., 2019; Rueter et al., 2018; Toschi et 
al., 2018). Although exploratory, our findings suggest that conscien-
tiousness may be a protective resource for brain aging, being associ-
ated with higher within-FPN connectivity, which is otherwise expected 
to decrease as a function of age (Campbell, Grady, Ng, & Hasher, 2012). 
Our result is in line with several observations that show conscientious-
ness as a predictor for academic or occupational success, healthy 
lifestyle, reduced cognitive decline, and longevity (Bogg & Roberts, 
2013; Costa, Weiss, Duberstein, Friedman, & Siegler, 2014; Hock et 
al., 2014; Noftle & Robins, 2007; Ozer & Benet-Martínez, 2006; Sutin 
& Terracciano, 2016).

In addition, we observed that within-network connectivity metrics 
were more consistently associated with personality than IQ, which 
showed small and typically nonsignificant effects on brain connectivity 
(expect for DAN). This observation is similar to a study that found that 
openness had a greater effect than IQ on DMN (Beaty et al., 2016). 
Despite that, individual differences in intelligence have been related to 
changes in RSFC in neural networks broadly involved in self-referential 
mental activity (e.g., DMN), attentional control processes (e.g., DAN 
and VAN), executive functions (e.g., FPN), and task-set maintenance 
(e.g., CON; Hearne, Mattingley, & Cocchi, 2016).

The present work has as few limitations worth noting. Although 
our sample size is one of the largest in this area of research, we can-
not rule out that our modest sample size may limit interpretation of 
our findings. In addition, the interpretation of the findings should be 
considered carefully due to the exploratory nature of our study and 
since results did not survive correction for multiple comparisons. The 
fact that we used a cross-sectional design to investigate personality–
connectivity associations does not allow us to infer causality or ex-
clude cohort effects. Longitudinal design would have the potential to 
provide greater clarity on the current findings. In addition, personality 
data were examined only at the trait-level, and not the subfactor level 
(e.g., facets), since the IPIP-50 does not provide a validated facet-level 
structure. Another potential limitation concerns the relatively shorter 
scanning duration (5 min) in part of the sample (n = 124) compared 
to other resting protocol (9.5 min) performed from most part of the 
participants (n = 241). Nevertheless, we did not find that scan length 
moderated any of our key results, which also remained consistent 
when replicating the analyses considering scan length as a covariate in 
the regression models Although unlikely, the difference in scan length 
could have had undetected effects on some of the connectivity met-
rics analyzed. In addition, the utilization of an externally derived net-
work parcellation scheme for network assignment (Power et al., 2011) 
may be a limitation for the present study. Although previous studies 
have used network parcellation schemes derived from participants’ 
optimal network organization and cross-registered these networks 
with nodal assignments in the Power et al. (2011) network taxonomy 
(Chan et al., 2014; Geerligs et al., 2015), this methodology is difficult to 
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reproduce results in an external dataset due to differences in network 
structure in different samples. Considering this issue, we followed pre-
vious studies that similarly utilized the Power et al. (2011) taxonomy to 
define network structure/organization, indicating that this approach 
may be appropriate to estimate a plausible network structure that is 
not biased by participants in the sample (Song et al., 2014; Varangis, 
Habeck, et al., 2019; Varangis, Razlighi, Habeck, Fisher, & Stern, 2019). 
Lastly, it is relevant to highlight that some of the inconsistencies be-
tween our findings and those from other studies may be associated 
with differences in personality instruments, connectivity parcellation 
schemes adopted, and connectivity metrics chosen for analysis.

In summary, our findings extend those of previous studies 
showing associations among FFM/Big Five personality traits and 
within-networks connectivity. We found robust and specific asso-
ciations between openness and DMN, conscientiousness and FPN, 
neuroticism and attention networks (VAN and DAN), and agree-
ableness and DAN. Importantly, we added the unique contribution 
that age may be a relevant moderator of these personality–connec-
tivity relationships, and future studies should include a wider age 
range when examining these associations across the adult lifespan. 
Our results contribute to understanding specific personality pro-
files that may be protective against different aspects of brain aging.
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