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Abstract: 

 

Over the centuries, the application of grassland and cutting of livestock are the primary foundations for 

the production of food agriculture manufacturing. Growing human population, accelerated human 

activities globally, staggering food inequity, changing climate, precise nutrition for extended life 

expectancy, and more demand for protein food call for a new outlook to smartness in food agriculture 

manufacturing for delivering nutritious food. Cellular agriculture, 3D printing of food, vertical urban 

farming, and digital agriculture alongside traditional means are envisioned to transform food agriculture 

and manufacturing systems for acceptability, availability, accessibility, affordability, and resiliency for 

meeting demands of food in this century for communities across the US and the world. This technical 

note illustrates the thought leadership for cellular agriculture as a part of the new food agriculture 

manufacturing revolution.   

 

1. Drivers for food agriculture manufacturing revolution 

It is estimated that the world population will reach 9.5 billion by 2050 [1]. The food supply for this 

growing population will be constrained due to limited resources, land, water, and the impacts of climate 

change. The issue is how to sustainably feed a growing population with minimal impact on the 

environment and resource consumption while ensuring dietary wellbeing. Approaches such as digital 

agriculture (use of Industry 4.0 principles in farming), vertical urban farming (for local and resource-

constrained fresh produce) alongside alternative protein manufacturing are being explored to increase 

food production and meet consumer demands.  For the majority of this world population, animal 

protein is a critical food nutrient source for a balanced diet and it is predicted that the global demand 

for this protein will double by 2050 [2–4]. In the US, it was reported that about 78% of consumers rely 

on meat as a source of protein [5]. USDA projects both meat production and demand to steadily 

increase over the coming years [6]. Over the years, cutting animals for meat has evolved from hunter-

gatherers -to local butchers -to large-scale industrial slaughterhouses. Even though the efficiency and 

outputs of meat production have increased, the modus operandi has stayed the same - cutting animals 

raised through farms, ranches, and others. Over the last few decades, it has been recognized that this 

top-down manufacturing approach of cutting animals is resource-intensive in terms of land, water, 

mailto:amalshe@purdue.edu


This manuscript is submitted to ASTM ‘Smart and Sustainable Manufacturing’ journal 
 

   
 

energy, and time. Additionally, the macro supply chains of meat processing, packaging, and 

transportation remain vulnerable to disruptions, a fact recently evidenced during the COVID-19 

pandemic, worsening food insecurity and challenging the resilience of communities [7]. The above 

factors, in addition to, distribution inequity, growing concerns over the spread of zoonotic diseases [8], 

and reducing animal cruelty call for new disruptive thinking for the development of complementary 

sustainable and humane food production approaches (schematically represented in Figure 1) [9–11] as a 

part of the upcoming food agriculture manufacturing revolution delivered by the convergence of many 

disciplines. 

 
Figure 1: Potential benefits of alternative cell-based protein meat manufacturing  

Complementary to today’s livestock and poultry farming, two protein-rich food production approaches 

[12] to address these issues are plant-based meat and cell-based meat  (also called cultivated meat or in-

vitro meat). Plant-based meat alternatives have attracted significant attention over the last few years 

through the introduction of meat substitutes by Beyond Meat®, Impossible® Foods, and others into the 

market. However, it is noted that these plant-based protein sources, when compared to beef, have 

lower levels of some essential amino acids like lysine and methionine, vitamin B12, minerals, and some 

secondary nutrients [13]. Additionally, these products primarily [14] appeal to a limited population with 

vegetarian and vegan (a minority of the population) dietary interest. Their nutritional benefits as highly 

processed foods are still being debated and their advantage over eating established plant-based foods 

(vegetarianism as observed in older cultures like in India and other parts of the world) remains 

questionable.  On the other hand, manufacturing of cell-based meat  (CBM), which has an identical 

physicochemical composition to conventional meat products has the potential to have a significant 

impact on American (2018 Gallup poll, only 5% of U.S. adults consider themselves to be vegetarian [15]) 
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and global nutrition, meat production, and distribution systems as a part of future food agriculture 

manufacturing. Since this field is still in infancy, this is an opportune time to map and incorporate CBM 

manufacturing into flexible, customizable supply chains [16], as a part of sustainable and smart 

manufacturing. This paper presents open challenges and opportunities for cellular agriculture as a part 

of sustainable food agriculture manufacturing.  

2. Cellular Agriculture (Cell-Ag, CA): State-of-the-art, opportunities, and challenges 

2.1 Overview of cellular agriculture process steps 

 

Since the unveiling of the $325,000 in-vitro burger by Dr. Mark Post in 2013 [17], the cellular agriculture 

industry has progressed in reducing the costs to a certain extent associated with cell-based meat  (CBM) 

with cultured chicken nuggets now being served in Singapore [18]. This section will introduce cellular 

agriculture to the readers and give an overview of the current challenges and research innovation 

opportunities in CBM production. 

For this manuscript, cellular agriculture is defined as the manufacturing of animal- or bio-inspired 

protein food derived from cell-cultures producing cell-based foods. Typically, CBM production involves 

extraction and isolation of stem cells from the animal, subsequent cell growth, proliferation, and 

differentiation in increasing sizes of bioreactors containing cell culture medium followed by meat 

harvesting as summarized in Figure 2 [19]. The individual processing steps shown in Figure 2 each have 

their own unique scientific and technological barriers for large-scale production and are discussed in the 

next subsection. 

2.2 At-scale manufacturing challenges for cellular agriculture 

Current steps as outlined above and state-of-the-art approaches in the industry are derived from tissue 

engineering and biomedical manufacturing methods. But for CBM, tissue production needs to be 

Figure 2: Process schematic for manufacturing cell-based meat [19] 
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inexpensive and manufactured at a much larger scale compared to the aforementioned approaches for 

its affordability as a consumer food product. For comparison, the cost of organs cultured with 

biomedical tissue engineering methods justifies the expensive cell lines and culture media but for CBM 

production, the cost needs to be comparable to conventional meat [20], and therefore, needs to be 

orders of magnitude lower. On the other hand, even large-scale tissue culturing methods for therapeutic 

purposes result in the final culture comprising of ~106-109 cells [21] contained in ~5L bioreactor [22] for 

clinical scale but for CBM, the final culture needs to comprise of ~1015 cells (with ~1012 cells/kg) housed 

in a ~10000-liter bioreactor [23]. In addition to that, the resulting CBM should be similar or superior to 

conventional meat in sensorial and nutritional aspects [24]. Therefore, the manufacturing of CBM needs 

to overcome numerous serious scientific and manufacturing challenges. These challenges can be broadly 

classified [25] into four categories (see Figure 3): (a) cell lines, (b) cell culturing, (c) bioreactor design, 

and (d) scaffold design. 

 

Figure 3: Challenges and opportunities for cellular agriculture meat manufacturing 

a. Cell line: The selection of appropriate cell lines from an appropriate species of interest is 

important for being able to manufacture the high number of cells in the final culture as well as 

controlling their differentiation into fat, muscle, and connective tissue at desired locations. On 

the later issue, choice of starter cell(s) will dictate the downstream optimization of cell-culture 

media, nutrient delivery, scaffold design, and bioreactor design to achieve location-specific 

expression of desired tissues. 
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b. Culture Media: The growth and differentiation are also controlled by cell culture media used at 

various stages of manufacturing. The medium needs to be optimized with required nutrients 

and growth factors at each stage for the cell line used and its cost needs to be lowered with 

manufacturing processes for its components being suitably modified following economies of 

scale [26]. For this, and for reproducibility, the culture media also needs to be serum-free i.e., it 

should not contain Fetal Bovine Serum, Horse Serum, or any other living animal-derived 

component [27]. 

c. Bioreactors: For bioreactors, two key challenges for research and innovation are addressing 

nutrient transport and mixing limitations and sterilization. Addressing the first challenge 

involves the design of bioreactors such that no significant gradients in nutrient and oxygen 

concentrations exist throughout the volume at each stage and this homogeneity needs to be 

achieved without increasing the shear rates for agitation which may cause cell death. For the 

second challenge, in addition to accommodating the sterilization constraints similar to industrial 

fermenters for bioreactors and supporting equipment design, it will be important to 

limit/eliminate the use of antibiotics (as is common in tissue culturing) in the culturing media. 

d. Scaffolds: Animal stem cells need to adhere to a surface for growth, division, and differentiation. 

For comminuted and non-structured CBMs, this function can be served by microcarrier bead 

suspensions. But for making cell-based food of whole meat cuts like T-bone, sirloin, or ribeye, 

the differentiation needs to be more targeted to mimic the physicochemical and sensorial 

properties of these cuts which can be enabled only through scaffolds. Despite recent 

developments in manufacturing processes of edible scaffolds involving food-safe materials like 

alginate and pectin and processes like electrospinning [27], large-scale manufacturing of edible 

and hierarchical scaffold structures, that allow cells to adhere and proliferate and ensure 

nutrients are accessible to the cell culture at all stages of maturation, is an open challenge that 

demands extensive research and a combination of bio-inspired, additive and hybrid 

manufacturing approaches.  

Additionally, cellular agriculture processes and related hardware and software are expected to face 

other challenges including but not limited to high biological variability in raw materials, low-profit 

margins, compliance to current good manufacturing practice (cGMP) regulations and consumers, and 

producer’s acceptance and concerns. Optimization in supply chain and distribution will be required to 

make CBM commercially acceptable, available, accessible, and affordable along with profitable in the 

current form of capitalism [28].  

In conclusion, although the cellular agriculture industry has come a long way while lowering the cost of 

the quarter-million-dollar beef burger patty to making CBM a super-luxury dining menu option it is far 

from a solution to food inequity. Scaling of cellular agriculture processes for feasible CBM manufacturing 

of unstructured and more importantly structured meat is rife with opportunities from design, materials, 

and manufacturing perspectives and requires convergent and sustainable techno-socio-economic 

interventions to thrive alongside conventional meat manufacturing systems. Along these lines, a closer 

examination of the sustainability outlook is important and presented below.     
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3. Cellular agriculture: A perspective on sustainability  

The life cycle stages of traditional meat production consume materials, chemicals, and energy resources, 

and produce a variety of waste streams. Figure 4 shows the life cycle stages of traditional meat and CBM 

production. For example, animal feed is an important input to animal agriculture that is the major cost 

for cultivating animals. Animal agriculture accounts for an estimated 15% of global greenhouse gas 

(GHG) emissions [29–31]. In addition to animal feeding, animal agriculture consumes a large amount of 

energy and water throughout the entire livestock production and meat processing chain.  These energy 

and water investments are inculcated within the animals during their growth stage and required for 

other life cycle stages. Biswas and Naude [32] reported that beef has embodied energy of 29.6 MJ/kg, 

whereas chicken and soy protein have embodied energies of 22.2 MJ/kg and 9.17 MJ/kg. These values 

vary by geographical location (e.g., where the farm is located) and the conditions under which the 

animals are raised. Major energy demands for meat products are the pre-farm inputs, e.g., the energy 

needed for feed, pumping water, equipment, and chemicals. The cultivation of cows, pigs, and chickens 

consumes water directly and indirectly and could be assessed through embodied water associated with 

beef, pork, and chicken products [33]. According to Chen et al. [34], the entire meat production chain 

accounts for 20% of total global water consumption. These data illustrate that animal agriculture 

consumes significant energy, water, and land resources.  

 
 Figure 4: Life cycle stages of traditional and CBM production  

Livestock influences the environment through feed production, animal husbandry, changes in land use, 

manure, transportation, etc. For example, pig farming creates numerous impacts on the environment 

where wastes and feces spread to surrounding areas and pollute water and air with toxic wastes. 

Chicken farming operations also have substantial negative environmental impacts, such as odors and 

emission of ammonia, hydrogen sulfide, and poultry dust. These waste streams also impact workers and 

neighbors in terms of breathing polluted air, ingesting polluted water, and polluting soil where crops 

may be grown. To illustrate the environmental impacts of livestock cultivation and processing, consider 
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the beef life cycle. Figure 5 shows the contribution of different life cycle stages of traditional beef 

production on common environmental indicators. It is seen that cattle feeding contributes about 90% of 

the total consumptive water usage, energy consumption, land use, ozone depletion potential, and 

human toxicity potential. Feed production requires pesticides and other chemicals and uses equipment 

that consumes fossil fuels to prepare fields and harvest crops [35]. These activities consume resources 

and produce wastes that increase the environmental burden. A cow-calf operation (i.e., the raising of 

calves from a permanent herd of cattle until they are sold to a processor) involves weaning calves 

grazing on a pasture that is irrigated with a foraging diet until they are 16 months of age (mass of about 

581 kg) for harvest [35]. A cow-calf operation contributes to the highest acidification potential, global 

warming potential, solid waste, and abiotic depletion potential [35].  Moreover, it is estimated that 

about 5%-25% of animal feed goes to wastage that could dramatically increase the environmental 

burden [36,37].  

 
Figure 5: Percentage contribution of different traditional beef production life cycle stages to common 

environmental indicators [35] 

While still an emerging technology, cellular agriculture methods seek to produce cell-based meat 

through the manufacturing sequence discussed above, rather than breeding and raising animals for their 

meat. Through the process logistics discussed in the previous section, a considerable amount of meat 

could be produced from only a few animals by extracting the necessary cells without breeding/raising 

them. It is predicted that land use, water use, and GHG emissions (mainly methane) could be reduced by 

two orders of magnitude with the implementation of CBM [38,39] The comparison between traditional 

meat and CBM production in terms of energy consumption, GHG emission, land use, and eutrophication 

is shown in Figure 6 [40,41]. All the collected data for each environmental indicator were normalized 

where the environmental impact of beef is the benchmark. It is seen that beef has the highest 

environmental impact for all the indicators except energy consumption while CBM requires more 

intensive energy consumption than other meat types. This may result from more energy costs of the 

infrastructures required for cell culture. However, culture meat has potential environmental benefits in 

terms of GHG emission, land use, and eutrophication. Therefore, CBM shows promise as an alternative 

for animal protein production in terms of environmental impacts. Recent efforts [42] have looked into 
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the economics of cell-culture medium [26] and bioreactors as well as other sustainability [27] concerns 

for CBM. The major contributors to CBM’s environmental impact are projected to be resources used to 

maintain temperature, sterility (which can draw energy from renewable energy sources for 

sustainability), and the water used for manufacturing serum-free media (which can be reduced through 

culture medium recycling). However, since the current research approaches for CBM span a variety of 

meat products, cell lines, scaffolding methods, and bioreactors, conducting a full cradle-to-grave life 

cycle on CBM is premature at this stage, largely because of the many unknowns related to production-

scale manufacturing.  

 

Figure 6: Comparison of relative environmental impacts of CBM with traditional meat products (adapted from 
[41]) – impacts shown relative to the beef impact which has been scaled to 1.0 

While promising from an environmental standpoint, CBM manufacturing as new technology could face 

challenges in terms of technical, environmental, and social issues. Technical challenges include cell 

sources, culture media, and commercial-scale bioreactor as discussed in the previous section. Initial 

estimates suggest that CBM might offer energy savings; however, scaling up to an industrial scale may 

erode energy benefits and result in higher carbon emissions, and thus needs further research for 

advancements. A comprehensive analysis of the environmental impacts between traditional meat and 

CBM at the commercial scale needs to be conducted. For the social dimension, potential barriers must 

be identified, e.g., consumer acceptance, integration of ranchers/farmers in these manufacturing 

advancements, and regulations for the cellular agriculture industry. 

4. Summary and future directions  

Current food manufacturing methods are inequitable and unsustainable to support the needs of the 

growing population. Furthermore, complex techno-socio-economic dynamics and globalization are 

perpetuating issues for equity and access to basic human needs, including food [43]. The COVID-19 

pandemic exemplified the vulnerabilities of mass-scale food manufacturing in large-scale factories and 

global distribution while putting issues such as increasing demands with increasing population, 

urbanization, constraining resources, and supply chains for distribution to the forefront. Convergent 

engineering and resilient manufacturing efforts are needed to solve the convergent social problems 

[44]. To address these challenges, traditional agriculture and meat manufacturing approaches must be 
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supplemented with alternate food manufacturing methods including cellular agriculture, vertical and 

urban farming, 3D food printing, and others.  

This paper specifically discussed one such convergent emerging food manufacturing approach in the 

form of cellular agriculture. CBM manufacturing would lessen the burden on land use and animal 

husbandry while also could be beneficial to reduce the environmental impact of traditional meat 

manufacturing. Additionally, the advantages include potential micro-micromanufacturing setup for 

close-to-consumer manufacturing, increased resilience, control over nutritional profiles for population-

specific needs, and humane production of meat. While promising, there are several technological, social, 

economic, and sustainability challenges for CBM as discussed in this paper as opportunities for 

convergent research and innovations for addressing the challenges and meeting the future needs 

through smart and sustainable manufacturing.  
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