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ABSTRACT 
 
Western monarch butterflies (sp. Danaus plexippus) are undergoing a severe decline that rivals 
those occurring among insects across the globe. Despite the estimation of population 
abundance, growth rates, and extinction probabilities, no analyses have investigated 
spatiotemporal patterns of decline in the western monarch population. I performed occupancy 
modeling of Western Monarch Thanksgiving Count (WMTC) data. The data was constrained 
spatially and temporally, with sites grouped into occupancy bins by latitude and year. 
Occupancy probabilities (psi) were estimated for each intersection of a latitude and time bin 
and detection probabilities (p) were estimated for each time bin. Psi increased slightly and non-
significantly from northern to southern latitude bins. However, the dataset was unable to 
support any models with >3 latitude bins or the intersection of latitude and time bins because 
the dataset contained unequal sampling distributions across both space and time and a high 
proportion of missing observations. These constraints are likely driven by the reliance upon 
citizen science for WMTC data collection, and thus those constraints may be present in other 
citizen science datasets. Despite inconclusion regarding my original research questions, I 
concluded that occupancy modeling requires robust datasets that are more complete and 
equally distributed across the relevant parameters than the WMTC data. As species begin to 
decline, datasets with these characteristics may be harder to generate, suggesting that 
occupancy modeling may not be suitable for western monarch butterflies or other insect 
populations in the future.  
 
 
INTRODUCTION 
 
Insects are highly abundant and occupy important ecological niches such as pollinating flowering 
plant species, decomposing detritus to organic matter, and serving as prey for higher level 
consumers. This makes them highly important to both natural ecosystems and human 
economies. However, recent evidence has indicated drastic and universal declines in insect 
species across the globe (Moller 2018). Western monarchs, sp. Danaus plexippus, are facing 
equally or potentially more dramatic declines (Leong et al. 2004; Moller 2018; Pelton et al. 2019; 
Schultz et al. 2017). Population abundance estimates place the 2000-2016 mean at 3.5% of 1980-
1989 levels and a 95% confidence interval places this ratio between 2.4%-6.7% (Schultz et al. 
2017). A similar ratio emerges when contemporary maximum estimates of 300,000 monarchs are 
compared to the 1980s maximum of 4.5 million (Schultz et al. 2017). Beyond simple abundance, 
declines have also been noted in other metrics. Western monarchs have plummeted in raw day 
positives—the number of days in which a monarch sighting is reported at various sites (Espeset 
et al. 2016)—and in population growth rate, which was significantly negative for the period 1980-
2016 (Schultz et al. 2017). Monitoring of overwintering sites reveals that 41% of sites that were 
occupied prior to 1990 are now unoccupied (Leong et al. 2004). These declines place western 
monarchs at an extinction risk of 50-75% within 20 years and 65-85% within 50 years (Schultz et 
al. 2017). Furthermore, the population is at heightened risk of suffering severe consequences 
from Allee effects and environmental stochasticity, factors which would presumably increase 



extinction risks (Pelton et al. 2019). These declines seem to be located earlier in the breeding 
season, which suggests a correlation between declines and overwintering (Espeset et al. 2016).  
 
Data from the Western Monarch Thanksgiving Count, a citizen science project involving annual 
counts of overwintering sites across the California coast, reveals that 2019 abundance 
estimates were less than 1% of 1980s estimates (Pelton et al. 2019). This dataset has been 
analyzed to show a significant positive correlation between proportion of declining sites with 
distance from the overwintering range center (Griffiths and Villablanca 2014). However, no 
analysis of spatial and temporal patterns within this dataset has yet been performed. Such an 
analysis would reveal patterns of western monarch abundance and distribution and inform 
conservation efforts.  
 
I used occupancy modeling to analyze the WMTC dataset and identify both spatial and 
temporal heterogeneity in the occupancy rates of overwintering monarchs in California. I 
hypothesized that patterns of abundance and distribution of overwintering monarchs in the 
west can inform the temporal and spatial patterns of decline. I predicted that monarchs may be 
i) declining uniformly across the range; ii) shifting North—indicating a climate change response; 
iii) contracting towards the range center; or iv) shifting bimodally towards the range extremes. 
These predictions were tested by encoding them into occupancy models and performing model 
selection to determine those that best modeled the data. 
 
 
METHODS 
 
Data 
The publicly available Western Monarch Thanksgiving Count data (westernmonarchcount.org) 
from the Xerces Society for Invertebrate Conservation was used for the analysis. The database 
contains georeferenced overwintering grove locations and associated annual population size 
estimates. Data are collected by citizen scientists with coordination by the Xerces Society, with 
the current time period spanning from 1997 to 2019. Though this is the best dataset available, 
it comes with important constraints. The number of sites counted per year is variable, and not 
all sites are counted in every year. Furthermore, the number of sites recognized and counted 
each year has increased over time. Therefore only 41.77% of the 7567 total possible 
observations (329 sites x 23 year) were actually made. Schultz et al. 2017 also recognize this 
constraint and had to develop a multi-state model in order to analyze the data set. My 
analytical method attempts to accomplish something comparable. 



 

Figure 1. Comprehensive map of western 
monarch overwintering sites  
(N = 329). 
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Figure 2. Differences between ELAT and CLAT bin models where ELAT bins represent equal latitudinal ranges while 
CLAT bins represent equal distributions of counts. Maps depict a zoomed in segment of the California and Baja 
California coasts, including all sites present in the dataset (N=329). (a) Map of 3 ELAT bin model; (b) map of 3 CLAT 
bin model; (c) count distribution for 3 ELAT bins (map a); (d) count distribution for 3 CLAT bins (map b).  

Experimental Analysis 

 

   

   

   

   

    

    

    

    

    

                 

 
 
 
 
 
  
 
  
 
 
 
 
  

            

 

   

   

   

   

    

    

    

    

    

                 

 
 
 
 
 
  
 
  
 
 
 
 
  

            



Overwintering sites outside of California (U.S.) and Baja California (Mexico) were excluded, with 
329 sites remaining. The data were then matched by Site ID with latitude coordinates provided 
by Emma Pelton of the Xerces Society (Figure 1). Sites were ordered  
latitudinally, from north to south, and grouped into latitude bins (to evaluate spatial 
correlations with occupancy; Figure 2). In preliminary groupings, these latitude bins were 
evenly sized according to the total latitude range of sites present in the dataset and named 
ELAT bins for equal latitude (Figure 2a). Analyses of the ELAT bins revealed that the data were 
distributed unequally across space such that models did not reach stationarity (see below), 
especially for bins at the extreme northern and southern latitudes. As seen in Figure 2c, a 
model with 3 ELAT bins resulted in a distribution with the overwhelming majority of counts in 
the central bin. The solution was to group the latitude bins according to the total number of 
counts (N = 3161) present in the entire dataset, creating CLAT bins named for counts-based 
latitude bins (Figure 2b). This was achieved by shifting the latitudinal boundaries until each bin 
was approximately equal to the bin size (n) calculated as n = 3161 counts/number of bins. This 
ensured that the data were equally distributed across space and improved the likelihood that 
model estimates reached stationarity (Figure 2d). While the latitudinal cutoffs varied from 
model to model, the CLAT bins were still ordered sequentially from North to South and thus 
allowed for an analysis of the correlation of occupancy with space.  Time bins (to evaluate 
temporal correlations with occupancy) grouped multiple years into single bins according to the 
number of counts and could thus similarly be approximated by the expression n = 3161 
counts/number of bins. This grouping also ensured an equal distribution of data across time to 
promote the likelihood of estimate stationarity.  
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Figure 3. Maps of CLAT bins of equal count distributions (each shown in a distinct color) depicting model designs 
containing (a) 2 bins, (b) 3 bins, (c) 4 bins, and (d) 5 bins. Maps depict a zoomed in segment of the California and 
Baja California coasts, including all sites present in the dataset (N=329).  
 
 
Occupancy Modeling 
Abundance values were converted to presence data in R 1.4.11. Occupancy models were 
constructed by combining various latitude and time bins, with every combination of 1-5 CLAT 
bins (Figure 3) and 1-2 time bins tested. The bins were then binarily encoded as sample 
covariates and run in PRESENCE (MacKenzie et al. 2003). Occupancy probabilities (psi) were 
estimated for each CLAT bin, revealing potential spatial differences in the population 



distribution. Detection probabilities (p) were estimated for each time bin and used by 
PRESENCE to improve the accuracy of psi estimates. Models thus varied from a total of 2 
parameters [(psi(.)p(.)] to 7 parameters [psi(5Clat)p(2time)]. PRESENCE was then utilized to 
perform model selection by calculating AIC scores and rank-ordering the 
models accordingly. All models that reached complete stationarity with a ∆AIC < 2.00 were 
selected and averaged by model weight (MacKenzie et al. 2003) to produce the final parameter 
estimates for psi and p.  
 
 
RESULTS 
 

Model selection results yielded three occupancy models for which the ∆AIC < 2.00 and all 
parameter estimates reached stationarity (Table 1). Stationarity was defined as a model in 
which no parameter estimates included confidence intervals of 0.00-1.00. One model with ∆AIC 
< 2.00 was excluded because the psi estimate for the southernmost latitude bin included such a 
confidence interval and thus did not reach stationarity. 
 
 

Model AIC ∆AIC AIC Wgt No. Par. 
Psi(.)p(2time) 3623.01 0.00 0.5579 3 
Psi(3Clat)p(2time) 3624.74 1.73 0.2349 5 
Psi(2Clat)p(2time) 3624.99 1.98 0.2073 4 

Table 1. Model selection results. Model names describe the number and type of bins used for both psi and p. For 
example, model Psi(3Clat)p(2time) included 3 equal-counts latitude bins (North, Central, South) and 2 time bins 
(1997-2011 and 2012-2019). AIC scores represent the fitness of the model to the dataset, with ∆AIC depicting the 
difference in AIC scores between the model of interest and the top-ranking model. AIC Wgt displays the statistical 
weight that the model holds, which is related to the ∆AIC score, and is used to weight the estimates for a particular 
model when averaging multiple models.  

 

 
Model Lat bin(s) psi(estimate) ± CI Time bin(s) p(estimate) ± CI 

Psi(.)p(2time) 1 0.972 ± 0.052 1997 – 2011  0.793 ± 0.024 
- -  2012 – 2019  0.678 ± 0.024 

Psi(3Clat)p(2time) 1N 0.961 ± 0.052 1997 – 2011  0.793 ± 0.024 
2C 0.973 ± 0.052 2012 – 2019  0.679 ± 0.024 
3S 0.996*± 0.270 -  -  

Psi(2Clat)p(2time) 1N 0.976 ± 0.052 1997 – 2011  0.793 ± 0.024 
2S 0.978 ± 0.052 2012 – 2019  0.678 ± 0.024 

Table 2. Psi parameter estimates for model equal-counts latitude bins (CLAT) and p estimates for model time bins 
(1997-2011 and 2012-2019). Models differed by the number of CLAT bins with either the whole range pooled, 
north (N) and south (S) distinguished, or north (N), center (C), and south (S) distinguished. Confidence intervals 
noted are the maximum intervals for values in the column (e.g. all psi CIs ≤ value ± 0.052). One interval (*) was an 
outlier.  

The psi estimates were relatively similar with overlapping confidence intervals (Table 2). 
Occupancy increased slightly from northern to southern latitude bins. However, southernmost 



bins were also the most likely to have confidence intervals that were either wide or did not 
reach stationarity. The confidence interval for the southern psi estimate of the 
psi(3Clat)p(2time) model was an outlier when compared to the other intervals, which  
reinforces the aforementioned pattern. P estimates were more disparate, with the early 
time bin (1997-2011) reliably producing a higher detection probability than the late time bin 
(2012-2019). Furthermore, the confidence intervals for p estimates were much tighter and did 
not overlap. Model averaged psi estimates (Table 3) were, as observed below, highly similar but 
increased from north to south. Averaged p estimates (Table 3) were disparate, with the early 
estimate being greater than the late.   
 
 

Parameter Bin Value 

psi 
 
 

North 0.9704 
Central 0.9735 
South 0.9792 

p 

 

1997-2011 0.7934 

2012-2019 0.6783 

Table 3. Model averaging results based on results in Table 2. Parameters included both psi and p, with both 
latitude (psi) and time (p) bins represented. Psi results averaged to three latitude bins—North, Central, and 
Southern—with three average psi estimates resulting. P results averaged to two time bins—early and late—with 
two p estimates resulting. Estimates were averaged according to the model weight.  

 
 
DISCUSSION 
 
The top models included between 1-3 equal-counts latitude bins and 2 time bins each, with no 
confluence of latitude and time bins. Psi estimates—both raw and averaged—and their 
confidence intervals were highly similar but did increase slightly from North to South. P 
estimates were higher for the early time bin (1997-2011) than the late time bin (2012-2019). 
The differences in estimated values for p are consistent with my predictions.  
 
These results are somewhat inconclusive to my original questions. The psi estimates did not 
reveal large or significant spatial differences in occupancy. Furthermore, no models were able 
to test for changes in occupancy with time. These inconclusive results are largely due to the 
unequal distribution of data across both space and time and the large proportion of missing 
data. Of the 7567 potential observations (329 sites x 23 years), only 3161 have actually been 
counted; thus, 58.23% of the potential data is nonexistent. A majority of sites (53.22%) have 
been counted for less than 8 of the 23 potential years and only 33.36% have been counted for 
more than half of these years. The spatially unequal data distribution led to occupancy 
estimates that did not reach stationarity at the range extremes. This necessitated an expansion 
of latitude bins to ensure that all bins—especially those at the range extremes—included 
enough data to yield estimates that reached stationarity. When the total number of counts 
across the 23-year period are sorted by latitude, most of the data is located within the central 
coast between the 34.5 – 35.5 latitude range. The southern portion of the range, from 31.5˚ – 



34.5˚ latitude, is particularly lacking in both counts and sites. This relative lack of data explains 
why the confidence intervals for psi estimates of southern bins were higher and often large 
enough to prevent estimates from reaching stationarity.  
 
Additionally, there is a temporal disparity in the data distribution. The total number of sites 
counted per year is inconsistent, with most years prior to 2010 falling between 80-120 sites 
counted. In the last decade, this number has risen dramatically, peaking at 263 sites in 2017. 
However, this disparity in the number of sites counted across time presents a challenge for 
analysis. The lack of repeat counts within any given year mean that detection probabilities must 
be estimated across multiple years, which both confounds the attempt to find differences in 
occupancy between those years and restricts the ability to vary the detection probability across 
space and time (Mackenzie and Royle 2005). Furthermore, the addition of new sites in recent 
years inherently means that those sites have been counted few times and that those counts 
occur in the late time bin only. Thus, while the early time bin has fewer sites counted, those 
sites are counted more frequently and regularly. By contrast, the addition of sites with only a 
few counts increased the proportion of missing data in the late time bin, yielding a lower p 
estimate.  
 
The trend for both psi estimates and the associated confidence intervals to be higher for 
southernmost bins is slight, and potentially interesting. It may be that the southern region 
indeed does display the highest occupancy. However, this result may be an artifact of the 
incompleteness of the dataset. The southern region lacked both sites and counts relative to the 
other regions, which may have given “present” observations a disproportionate influence upon 
the occupancy estimate. This may also be explained by the proclivity for sites in the central 
region to be counted the most frequently, which seemingly resulted in more absences being 
detected than in the southern region. Both may have resulted in the higher occupancy rates 
observed in the South. The detection probability is also likely an artifact of the recent addition 
of sites that were counted infrequently and nonconsecutively, reducing the p estimate in the 
late time bin.  
 
While the results are inconclusive to my original questions, they are conclusive for occupancy 
modeling and the data required to perform such modeling. It is clear that datasets with large 
proportions of missing data and large disparities in its distribution are not suitable for fine-
scaled occupancy modeling, as is the case with my analysis. This is evident in my inability to test 
models with >3 latitude bins and the inability to test for changes in psi across time. 
Furthermore, the gross amount of data is also highly important. For example, when initially 
trying to decrease the amount of missing data, I set a threshold number of counts per site and 
excluded sites below that threshold. However, that left too few sites for the analyses to reach 
stationarity. Thus, it is clear that an ideal dataset must be abundant, evenly distributed, and 
contain multiple counts per year or season.  
 
Producing datasets with these qualities may be inherently difficult for citizen science projects, 
including the Western Monarch Thanksgiving Counts. Citizen science projects introduce human 
biases into the datasets and may have a proclivity to produce disparities in the distribution of 



data across its parameters (Mackenzie and Royle 2005). For example, the WMTC dataset 
reveals a clear bias towards counting sites in the central coast—where the monarchs are 
typically the most abundant—probably because it is more rewarding to count sites where there 
are likely to be thousands or potentially millions of monarchs. As a result, the WMTC will almost 
certainly continue to be unsuitable for occupancy modeling into the future and for performing 
the analysis I attempted.  
 
These dataset challenges will be further exacerbated by decreases in the population size and 
predictability of western monarchs. In 2017, the Xerces Society added a second annual count to 
the Western Monarch Thanksgiving Count project that begins on New Year’s Eve. This will 
improve the ability to estimate detection probabilities (Mackenzie and Royle 2005). However, 
given the current rate of population decline, it may already be too late for this change to enable 
crucial analyses that inform conservation efforts. Furthermore, the Western Monarch 
Thanksgiving Count will likely continue to produce data that is uneven in spatial and temporal 
distributions because of the natural human biases of its citizen scientists.  
 
Similar challenges can be expected for insects at large as populations and species continue to 
decline rapidly. Spatial and temporal stochasticity will likely increase, particularly when 
populations cross the size threshold for Allee effects. This will make it more difficult to collect 
large datasets and to ensure that they are distributed evenly across the relevant parameters. 
Furthermore, population unpredictability reduces the likelihood that data collection efforts will 
be successful and may necessitate budgeting decisions to cut resources to particular 
populations or species. The challenges outlined above may drive a natural shift in data analyses 
away from occupancy modeling because of the strict requirements in the data attributes.  
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