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ABSTRACT

A Single-stage Passive Vibration Isolation System for Scanning Tunneling

Microscopy

Toan Le

Scanning Tunneling Microscopy (STM) uses quantum tunneling effect to study the

surfaces of materials on an atomic scale. Since the probe of the microscope is on the order

of nanometers away from the surface, the device is prone to noises due to vibrations from

the surroundings. To minimize the random noises and floor vibrations, passive vibration

isolation is a commonly used technique due to its low cost and simpler design compared to

active vibration isolation, especially when the entire vibration isolation system (VIS) stays

inside an Ultra High Vacuum (UHV) environment. This research aims to analyze and build

a single-stage passive VIS for an STM. The VIS consists of a mass-spring system staying

inside an aluminum hollow tube. The mass-spring system is comprised of a circular copper

stage suspended by a combination of six extension springs, and the STM stays on top of the

copper stage. Magnetic damping with neodymium magnets, which induces eddy currents in

the copper conductor, is the primary damping method to reduce the vibrations transferred

to the mass-spring system. FEMM and MATLAB® are used to model magnetic flux density

and damping coefficients from eddy current effect, which will help determine the necessary

damping ratios for the VIS. Viton, which demonstrates a high compatibility with vacuum

environments, will also serve as a great damping material between joints and contacts for

the housing tube. Viton will be modeled as a Mooney-Rivlin hyperelastic material whose

material parameters are previous studied, and Abaqus will be used as a Finite Element

Analysis software to study the Viton gaskets’ natural frequencies. The natural frequencies

of the aluminum hollow tube will also be investigated through Abaqus.

Keywords: dynamics, vibrations, scanning tunneling microscope, Viton, viscoelastic, visco-

hyperelastic, eddy currents, magnetic damping, FEA, MATLAB®, Abaqus, FEMM.
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Chapter 1

INTRODUCTION

1.1 Background

In the early 1980s, Gerd Binnig, Heinrich Rohrer, Christoph Gerber, and Edmund

Weibel successfully built a Scanning Tunneling Microscope (STM) in the IBM Research

Laboratory in Zurich, Switzerland. The STM uses the quantum tunneling effect to study

surfaces of materials on an atomic scale. The instrument consists of a probe (typically a

metal tip) scanning just above a conductive surface. When the two conducting electrodes at

different voltage potentials are separated by a very thin insulating barrier (air or vacuum),

the electrons can penetrate this barrier and establish a small flow of current.19 Although

staying very close to each other, the electrodes are not actually in physical contact, which

allows the tunneling effect to occur due to the wave-particle duality of electrons. Since the

quantum tunneling effect decays exponentially10 with the increasing distance between the

scanning tip and the surface of the conductive material, the distance between two electrodes

must be kept within a few angstroms to just a few nanometers (Figure 1.1).

Figure 1.1: An atomic scale view with the STM tip and material’s surface27

Constructing a working STM, therefore, is a challenging task. The original design

of a Binnig and Rohrer’s STM, shown in Figure 1.2, consists of a base L, which is positioned

1



by a piezoelectric three-legged stepper with electrostatically clampable feet. By adjusting

voltage applied to base L, the stepper crawls forward to move sample S into a tunneling

range of tip T. The piezoelectric positioners X, Y, and Z then move tip T into an exact

relationship with sample S.19 The entire STM stays on a Vibration Isolation System (VIS)

P, which keeps the whole system mechanically stable and isolates any random noises and

floor vibrations that will disturb the STM while it is running.

Figure 1.2: A schematic of the Binnig and Rohrer’s STM19

Once the tip and the sample are within the tunneling range, the STM can be

operated under a constant height mode (CHM) or a constant current mode (CCM), which

are shown in Figure 1.3. In the CHM, the tip-to-sample distance is kept as a constant by

a closed-loop control system while tunneling current is recorded. This technique allows the

tip to scan rapidly across the material’s surface.2 However, the surface must be relatively

flat28 in which the differences in altitude should be less than a few angstroms,2 otherwise

the tip can easily crash into the surface. Vice versa, in CCM, the current is maintained as a

constant preset value, and the vertical tip position is continuously adjusted by a closed-loop

feedback circuit.2 By using either method, a topographic image in the sub-angstrom scale

can be displayed. Figure 1.4 shows one of a first few images produced by the Binnig and

Rohrer’s STM. Because the invention of STM (and later the AFM or the Atomic Force

Microscopy allowing non-conductive materials to be scanned) has opened up entirely new

fields to study the structure of matters, Gerd Binnig and Heinrich Rohrer were awarded the

Nobel Prize in Physics in 1986.
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(a) Constant height mode (CHM) (b) Constant current mode (CCM)

Figure 1.3: Two imaging methods for STM28

Figure 1.4: An STM’s topography of a gold’s surface at room temperature3

1.2 The Lyding STM

The Lyding STM, which was originally developed by Professor Joe Lyding at the

University of Illinois at Urbana-Champaign, is an extremely compact and rigid version of

the STM.19 Figure 1.5 shows the Lyding STM, which contains two concentric piezoelectric

tubes: an outer and an inner tube. The outer tube is used to move the sample holder in

the range of a few millimeters and to compensate for thermal changes. The inner tube has

a scanning metal tip, which is mounted along the tube’s center line and faces a vertical

sample attached to a sample holder.
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The outer tube is attached to a quartz tube through a thermal compensation collar.

The material used for the collar is carefully chosen so that it expands and contracts at the

same rate as the scanning metal tip. This will ensure that the tip-to-sample distance remains

constant, and data acquisition can be performed over a wide range of ambient temperatures.

The outer tube is metalized so that the outside is grounded, and voltages can be applied to

the inside of the tube. The grounded outer surface provides shielding for the inside as well

as the outside of the inner tube. By applying asymmetric sawtooth waveform to the inner

surface, the piezoelectric outer tube will uniformly change its length and move the sample

holder. With the ramp portion of the applied sawtooth signal, the outer tube contracts,

and sample holder starts moving in one direction. Once the sample holder has gained some

momentum, the sudden drop portion of the applied sawtooth signal jerks the rails back,

which leaves the sample holder one step away from where it was. Reversing the symmetry

of the sawtooth signal causes the sample holder to move in the other direction. This motion

is referred to as the coarse sample translation.19 By repeating this motion, the sample can

be translated at a rate of 0.2 mm/s that is visible to the naked eye.24

The inner tube is used to finely adjust the tip-to-sample distance. Similarly to

the outer tube, it is metalized, but the inner surface is grounded instead of the outer one,

which helps provide coaxial shielding to the signal wires within the tube. The outer surface

is divided into four quadrants, which is shown in Figure 1.6. With equal voltages applied to

all four quadrants, the inner tube will change its thickness uniformly, so the tip can move

in the z-axis. By applying equal but opposite voltages to quadrants 1 and 3, one quadrant

becomes thinner while the other one gets thicker so that the inner tube can bend along the

x-axis. Similarly, by applying equal but opposite signals to quadrants 2 and 4, the inner tube

will deflect in the y direction. Since these movements are so small compared to the length

of the inner tube, the motions are considered planar in the xy-plane. In addition, because

the metalized quartz rail system is not level, gravity tends to pull the sample holder to the

same position. Figure 1.7 shows two examples of surface images scanned by the Lyding

STM. In Figure 1.7a, the red dashed line is approximately 25 nanometers long.
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(a) The Lyding STM mounted on an Al stage with two storing
units in the back

(b) Schematic front view19 (c) Schematic side view19

Figure 1.5: Configuration of the Lyding STM

Figure 1.6: Inner tube of the Lyding STM19
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(a) Carbon nanotube (white) on
hydrogen-passivated silicon

(b) Clean silicon surface with Miller
indices of (100)39

Figure 1.7: Scanned images (400x400 �A) from the Lyding STM

1.3 Previous Designs of VIS

The first VIS that Binnig and Rohrer built has permanent magnets levitating

on a superconducting lead bowl (Figure 1.8a). To achieve the superconducting state, the

lead bowl is cooled to a few Kelvin, and the system uses about 20 liters of liquid helium

per hour.2 The vacuum chamber is essentially “an exsicator with lots of Scotch tape.”

Later, this system was modified to have the VIS suspended by rubber bands instead, which

indicates that superconducting levitation might be unnecessary.2 Binnig and Rohrer discuss

another VIS where the STM would stay on a stack of metal plates separated by Viton, which

is an Ultra High Vacuum (UHV) compatible material (Figure 1.8b).

(a) First VIS with superconducting lead
bowl

(b) VIS with metal stacks
and Viton

Figure 1.8: VIS designed by Binnig and Rohrer2
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Multiple designs of VIS have been shown over the years. Okano et al. discuss

two systems: a two-stage coil-spring VIS with eddy current dampers and a metal-stack

system with rubber pieces among metal plates.29 Figure 1.9 illustrates the two-stage system

where a base frame (I) is directly connected to the vacuum chamber. The middle frame

(II) is suspended from base frame (I) by three coil springs. The exterior frame (III) is

then suspended from the middle frame (II) by three other coil springs. Each coil spring

is terminated by a rubber ring to attenuate the high frequency propagating along the

structure.29 A magnet (V) is sandwiched between two copper blocks (IV and VI) to provide

eddy current damping. This configuration prevents the vertical translational motion as well

as the rotational motion about the center of gravity.

Figure 1.9: Two-stage coil-spring VIS, Okano et al.29

In the metal-stack VIS, Viton is sandwiched between five metal plates, and the system is

designed such that the center of gravity can be adjusted as low as possible for each stage.

However, the metal-stack design does not perform as well as the two-stage system.29 To

improve the isolation performance of the metal-stack VIS, Viton is replaced by coil springs

at the lowest stack, and both Viton and coil springs are used in the second stack (Figure

1.10). The springs should be carefully chosen so that it will not be fully compressed under

weight and will not be bent under load.29
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Figure 1.10: VIS with stack plates, Okano et al.29

Krapf et al. use an alternative approach, where the STM is attached on a rigid

structure through a bellow (Figure 1.11a). The base structure, which is composed of a rigid

tripod mounted on a concrete block, is designed to be as stiff as possible when connected

to the ground.22 The STM is mounted on a 3.5-inch UHV flange, which is linked to the

vacuum chamber by a flexible welded bellow.22 The stiff base structure helps minimize

the effects of building vibrations on the STM6 while the flexible bellow helps absorb any

vibrations transferred to the STM.22 Figure 1.11b shows a similar design developed at the

National Institute of Standards and Technology (NIST). Four pneumatic vibration isolation

legs support a concrete slab on which “a commercially available shear damped tripod” is

mounted.6 The STM stays in a cube-shaped structure, which is then hung from the vacuum

chamber through some extension springs.

(a) Krapf et al.’s VIS (b) NIST’s VIS

Figure 1.11: Designs of VIS with rigid frames6
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A mass-spring system seems to be a common design for VIS because of the effec-

tiveness of a suspended system. Figure 1.12 depicts a two-stage VIS used with the Lyding

STM at the University of Illinois. This VIS features an aluminum (Al) top stage suspended

from the top flange of the vacuum chamber by four vertical extension springs. Four other

extension springs connect the Al bottom stage to the top flange as well. Four rods are used

to mount the bottom copper (Cu) disk at a fixed height from the top flange. Magnetic

damping is applied to both the top and bottom Al stage. U-shape structures sitting on the

bottom Al stage will hold magnet pairs facing Cu rectangular blocks, which are attached

to the Al top stage. This will provide damping for the Al top stage on which the STM sits.

The bottom Cu disk interacts with some magnets fixed to the Al bottom stage to provide

magnetic damping for the bottom stage. Some other Cu cylinders are mounted to the top

and bottom Al stage to add necessary weights in the confined space of the vacuum chamber.

(a) Suspended VIS from the vacuum chamber’s
stainless steel flange

(b) A closer look at the Al top and Al bottom
stage

Figure 1.12: A two-stage VIS used at the University of Illinois
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1.4 Motivation for Research

Passive vibration isolation is a commonly used system due to its low cost and

simpler design compared to active vibration isolation, especially when the entire VIS stays

inside a UHV environment. Multi-stage VIS have been used previously, but this design is

usually too complex and not cost-effective. Two-stage VIS, in particular, requires additional

analyses and experiments compared to a single-stage VIS to ensure the vibration isolation

performance of the system. In addition, many mass-spring systems for VIS only arrange

extension springs vertically. This poses a challenge for such systems because the torsional

stiffness about its center of gravity is often neglected. This thesis, as a result, aims to

design, analyze, and build a single-stage passive VIS as well as its housing for the Lyding

STM, which will be used in the existing vacuum chamber in a Chemistry lab at Cal Poly

University. The single-stage VIS will be suspended by a combination of extension springs,

and each spring will form an angle with respect to the main stage. This will help add

torsional stiffness to the single-stage VIS.

1.5 Thesis Outline

Chapter 1 is to familiarize audience with the topics of STM and VIS. The remain-

der of the thesis will be divided into three main parts, and each part represents a topic

contributing to the overall design of the VIS.

• Chapter 2 will discuss the dynamic and vibration model for the mass-spring system

of the VIS. The base excitation model will be developed to select springs and mass of

the main stage necessary for the VIS to achieve vibration isolation. Experiment data

will be used to validate the design of the mass-spring system.

• Chapter 3 will present the simulation results for the natural frequency analyses of the

aluminum housing as well as the Viton gasket. Abaqus is used as a Finite Element

Analysis (FEA) software to extract the eigenvalues, which will be used to select the
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housing structure and thickness of Viton gasket. Transient modal dynamics in Abaqus

is also used to study the material’s responses to an impulse load, which, in turn,

demonstrates the damping capability of thick versus thin Viton gaskets.

• Chapter 4 will present the magnetic damping analysis. MATLAB® will be used as

the main simulation tool. FEMM (Finite Element Method Magnetics), which is an

open-source software, will be used to compare the magnetic flux density B produced

by MATLAB® simulations. The damping coefficients and damping ratios will be

shown as a function of gap distance between the copper main stage and the surface

of neodymium magnets. These results will be used to select the types and geometry

of magnets, as well as providing design constraint for the aluminum housing tube.

At the end, Chapter 5 will summarize the research and propose future work necessary for

the development of the VIS.
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Chapter 2

DYNAMIC AND VIBRATION ANALYSIS

2.1 Background

There are two models for the mass-spring system of the VIS: the base excitation

and the direct excitation. The base excitation model, or sometimes referred to as the

displacement transmissibility,16 is used to model a VIS that could isolate a system of interest

from the source of vibration. In the context of VIS for STM, it helps model the VIS

to protect the delicate instrument (STM) from the random noises and floor vibrations

from the surroundings. The direct excitation model, or usually referred to as the force

transmissibility,16 is used to model a system that protects the ground from vibrations of

the mass. In other words, if a vacuum pump is installed, the VIS for this pump should

be modeled as a direct excitation model since the force and frequency from this pump is

detrimental to the STM. Both models can be readily formulated by drawing the free-body

diagram (FBD) and kinetic diagram (KD). In the following sections, the derivation of the

base excitation model will be shown. The direct excitation model can be developed in a

very similar way, or it could be looked up in most textbooks about mechanical vibrations,

such as Inman’s Engineering Vibration.

2.2 Modes of Vibration

The suspended mass-spring system has six degrees of freedom (DOF). Figure 2.1

shows three translational and three rotational vectors in x, y, and z direction. Vertical

mode refers to the translational movement of the stage in the vertical z direction. Yaw

mode refers to the rotational movement about z-axis through the centroid. Roll mode is

the rotation about x-axis, which then defines pitch mode as the rotation about y-axis. Roll

and pitch could be simply referred to as the rocking mode because these movements rock
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the stage from side to side. This also means that roll, pitch, and rocking mode can be

used interchangeably to refer to the same movement because of the symmetrical circular

stage. In the following analyses, only the vertical and yaw mode are considered. The

pitch/roll/rocking mode is very similar to the vertical mode, and the translation in the

x-axis and y-axis are not considered as these modes are not as substantial as the translation

in z direction.

Figure 2.1: Modes of vibration for a 6 DOF system

2.3 Base Excitation Model

In this model, the vibration passing through the top cap of the Al housing is the

source of vibration. The mass-spring system as a whole can be modeled as having a generic

linear spring with vertical stiffness Kv and a generic viscous damper with vertical damping

coefficient Cv. Figure 2.2 illustrates a diagram of the base excitation model. The excitation

from the top cap of the housing is assumed to be a sinusoidal signal y = Y sin (ωt) with

an arbitrary forcing frequency ω. Without loss of generality, assume that the magnitude

of displacement, velocity, and acceleration of the top cap is larger than those of the main

stage, i.e. y > z, ẏ > ż, and ÿ > z̈. These assumptions allow us to define the direction for

the force vectors, so the magnitude of each force vector should be a positive quantity. The
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magnitude of the spring force is then defined as Fs = Kv(y − z), and the magnitude of the

viscous damping force is Fd = Cv(ẏ − ż).

Figure 2.2: Base excitation diagram

Figure 2.3 shows the corresponding FBD and KD of the base excitation model.

The inertia force Mz̈ must be in the same direction as the positive acceleration defined

in Figure 2.2 for the stage. In this scenario, the force causes the acceleration; hence, the

resultant vector of Fs and Fd is in the same direction as Mz̈ vector.

Figure 2.3: FBD and KD of base excitation model

Summing the forces in the vertical direction, we have

(∑−→
F vertical

)
FBD

=
(∑−→

F vertical

)
KD

(2.1)

Kv(y − z) + Cv(ẏ − ż) = Mz̈ (2.2)

Mz̈ + Cv ż +Kvz = Cvẏ +Kvy (2.3)

14



Equation 2.3 above is a linear non-homogeneous ordinary differential equation (ODE). Its

general solution consists of one complementary solution and two particular solutions. The

complementary solution, or homogeneous solution, is found by solving the homogeneous

equation. Predictably, the particular solution, or non-homogeneous solution, is found by

solving the non-homogeneous equation for each forcing function. The homogeneous form of

Equation 2.3 is

Mz̈ + Cv ż +Kvz = 0 (2.4)

z̈ +
Cv
M
ż +

Kv

M
z = 0 (2.5)

Let the solution for this homogeneous equation be

z(t) = Aeλt (2.6)

Differentiating Equation 2.6 twice with respect to time t and substituting them to Equation

2.5, the characteristic equation is then defined as

λ2 +
Cv
M
λ+

Kv

M
= 0 (2.7)

This quadratic equation yields two solutions

λ1,2 = − Cv
2M
± 1

2M

√
C2
v − 4KvM (2.8)

The system is called underdamped if the discriminant C2
v − 4KvM < 0. Both quadratic

solutions λ1 and λ2 are imaginary, and the complementary solution has the form

z(t) = A1e
λ1t +A2e

λ2t (2.9)

where A1 and A2 are coefficients to be determined by the initial conditions once the form

of general solution is obtained. Further simplification can be applied by using Euler’s

formula
(
exj = cosx+ j sinx

)
. If C2

v − 4KvM = 0, the system is critically damped. The
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complementary solution then has the form

z(t) = A1e
λ1,2t + tA2e

λ1,2t (2.10)

Finally, if C2
v − 4KvM > 0, the system is overdamped, and the solution’s form is similar to

Equation 2.9. In all three cases, the forcing frequency ω does not show up in the solution

since the complementary solution only expresses a family of solutions for the ODE. To find

the specific response of the system to the forcing functions, we must consider the particular

solutions.

By using the definition of natural frequency (ω2
n = Kv/M) and the definition of

damping ratio (ζ = Cv/C
crit
v ), we can rewrite Equation 2.3 as

z̈ + 2ζωnż + ω2
nz = 2ζωnẏ + ω2

ny (2.11)

where the critical damping coefficient is defined as Ccrit
v = 2

√
KvM = 2Mωn for conve-

nience. Differentiating the sinusoidal signal twice and substituting these into Equation

2.11, we have

z̈ + 2ζωnż + ω2
nz = 2ζωn (ωY cosωt) + ω2

n (Y sinωt) (2.12)

Equation 2.12 is also a linear non-homogeneous ODE. The particular solution z1
p(t) for

the first forcing function 2ζωn(ωY cosωt) can be found by using Method of Undetermined

Coefficients, and the result is

z1
p(t) =

2ζωnωY√
(ω2
n − ω2)2 + (2ζωnω)2

cos (ωt− β1) (2.13)

where

β1 = arctan

(
2ζωnω

ω2
n − ω2

)
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Similarly, by using the Method of Undetermined Coefficients, the particular solution z2
p(t)

for the second forcing function ω2
n(Y sinωt) is

z2
p(t) =

ω2
nY√

(ω2
n − ω2)2 + (2ζωnω)2

sin (ωt− β1) (2.14)

From the principle of linear superposition, the total particular solution will be the sum of

each particular solution, so the total particular solution zp(t) is determined as

zp(t) = z1
p(t) + z2

p(t) (2.15)

zp(t) =

ωnY
√

ω2
n + (2ζω)2

(ω2
n − ω2)2 + (2ζωnω)2


×


 2ζω√

ω2
n + (2ζω)2

 cos (ωt− β1) +

 ωn√
ω2
n + (2ζω)2

 sin (ωt− β1)


(2.16)

zp(t) =

ωnY
√

ω2
n + (2ζω)2

(ω2
n − ω2)2 + (2ζωnω)2


×
[

cosβ2 cos (ωt− β1) + sinβ2 sin (ωt− β1)
] (2.17)

zp(t) =

ωnY
√

ω2
n + (2ζω)2

(ω2
n − ω2)2 + (2ζωnω)2

× cos (ωt− β1 − β2) (2.18)

where

β2 = arctan

(
ωn
2ζω

)
Let the amplitude of zp(t) be Z, we then have

Z = ωnY

√
ω2
n + (2ζω)2

(ω2
n − ω2)2 + (2ζωnω)2

(2.19)

Z

Y
=

√
1 + (2ζr)2

(1− r2)2 + (2ζr)2
(2.20)

where the frequency ratio r = ω/ωn. Equation 2.20 expresses the displacement response of

the system to the input displacement magnitude, and it is used to described how motion is

transmitted from the housing cap to mass M .
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Figure 2.4 shows the plot of displacement ratio Z/Y as a function of frequency ratio

r with varying damping ratio ζ. From this plot, it is clear that once ω/ωn ≥
√

2, vibration

isolation is achieved: less motion is transferred through the top cap into the main stage

(Z/Y ≤ 1). Although increasing damping ratio is effective around resonance, high damping

ratios will have an opposite effect in the vibration isolation region and actually reduce

the effectiveness of the mass-spring system. As a result, careful calculations, experiments,

and simulations are important to control the right amount of damping ratio for the VIS’s

mass-spring system.

Figure 2.4: Displacement transmissibility of a base excitation model

2.4 Input Frequencies

One of the challenges of designing a VIS is to understand the inputs to the system.

This depends widely from place to place and from time to time. Even on the same floor of

a building, the excitation frequencies and their magnitudes vary depending on a number of

factors: the time of day, the number of running equipment, the number of people walking
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around the lab, etc. Fortunately, we can estimate the frequency range of the excitation

and design the VIS accordingly. Figure 2.5 generalizes the range of input frequencies to the

STM. High frequency vibration induced by vacuum pumps and other equipment are much

higher than 100 Hz while random vibrations caused by human activities are categorized as

low frequency vibration, which is below 100 Hz.

Figure 2.5: Suggested low and high frequency range6

Figure 2.6 further explains the low frequency range by showing the typical floor

vibration spectra in three different labs. Although these labs are in different locations, their

vibration spectra share some common characteristics that we can use to estimate the input

frequencies to the VIS.

In Figure 2.6a, the solid curve represents measurements from the accelerometer,

and the solid bars show the corresponding displacement amplitudes, which is calculated as

follows

|y|
|ÿ|

=
|Y sinωt|
|−Y ω2 sinωt|

=
1

ω2
(2.21)

In this IBM Lab, the building shear and bending vibrations occur between 15–25 Hz.32 The

highest displacement amplitude of approximately 0.2 µm appears near 17 Hz. The peaks at

50 Hz and 100 Hz are less pronounced, probably because they are off-resonance with regard

to the lowest-order floor eigenfrequency.32 The peak at zero is an instrumental artifact,
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(a) Floor vibration in the IBM Lab32

(b) Floor vibration in the AT&T Bell Lab45

(c) Floor vibration in a lab in France22

Figure 2.6: Vertical floor vibration spectrum measured in different labs
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which can be ignored. The dashed vertical bar at about 1–3 Hz represents irregular motions

caused by people walking and working in the lab. Primary attention, therefore, has to be

given to the frequency range between 1–100 Hz.32

Figure 2.6b shows similar conclusions but from different sources of inputs. The

solid curve represents acceleration with its first peak at 1–3 Hz. The peaks at approximately

9, 29, and 60 Hz originated from ventilation ducts, motors, and transformers respectively.45

Figure 2.6c shows four distinguishable peaks in the acceleration plot. The first

vibration amplitude reaches a maximum value of 0.13 µm at approximately 25 Hz in the

vertical direction, and the second amplitude peak of 0.67 µm is at about 50 Hz. The peaks

at about 100 Hz and near 150 Hz are small, but they agree with the categorization in Figure

2.5. The inset for Figure 2.6c represents the underground acceleration magnitude where

the peak near 0 Hz is an artifact due to the accelerometer.22

Overall, measurements in person should be done once the VIS is completely built

to investigate floor vibrations in the Chemistry lab at Cal Poly. However, it is clear that

without using vacuum pumps, the VIS should be designed to isolate effectively the input

frequencies between 1–100 Hz, since this is mostly encountered in lab environment due

to human’s activities and building vibrations. The natural frequency of the mass-spring

system, therefore, should be close to 1 Hz, so regardless of what input frequencies traveling

through the VIS, they will be in the vibration isolation region.

2.5 Angled Spring Configuration

As discussed in Chapter 1, many VIS with mass-spring systems use only vertical

springs to isolate vibrations for vertical mode. To add torsional stiffness about the center of

gravity, either a torsional spring or a different configuration of the extension springs should

be employed. Using a torsional spring requires a more complex design with additional

features in the main stage to hold the torsional spring’s legs. In addition, the torsional

spring must be fixed with respect to the moving mass-spring system. This requires other
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damping solutions since the input vibrations can travel through the torsional spring into

the main stage. As a result, a different configuration for the extension springs becomes an

attractive idea. Figure 2.7 shows a schematic of such configuration. Two adjacent extension

springs are mounted vertically at the rim of the main stage, and they are arranged so

that each of them forms an angle φ with respect to the main stage. There should be no

radial component for any spring because such component is not useful for any mode. By

considering each pair as a group and combining multiple groups to suspend the main stage,

not only is the VIS suspended similarly to the vertical spring system, but this configuration

also provides torsional stiffness inherently without the need for a torsional spring.

Figure 2.7: A pair of vertical extension springs forming an angle φ with main stage

The overall stiffness of the VIS needs to be reconsidered since the arrangement

of the springs is no longer vertical. Each linear spring’s stiffness, k, will be split into the

vertical component (kv) and horizontal component (kh) as follows

kv = k sinφ (2.22)

kh = k cosφ (2.23)

The overall vertical stiffness Kv for the vertical mode will be the linear combination of n

linear springs

Kv = nkv (2.24)

Kv = nk sinφ (2.25)
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In yaw mode, only one extension spring in each pair is engaged for each rotation direction.

The overall tangential stiffness Kt for the yaw mode can be written as

Kt =
n

2
kh (2.26)

Kt =
n

2
k cosφ (2.27)

2.5.1 Natural Frequency of Vertical Mode

Substituting Equation 2.25 into the definition of natural frequency (ω2
n = Kv/M)

of a rectilinear system, the natural frequency in the vertical direction then becomes

ωn,v =

√
Kv

M
(2.28)

ωn,v =

√
nk sinφ

M
(2.29)

Using Equation 2.29 and the limit for vibration isolation (ω/ωn ≥
√

2) discussed above, we

can derive the relationship between the stiffness of one extension spring and mass of stage

necessary to achieve vibration isolation

ω ≥ ωn,v
√

2 (2.30)

ω ≥
√

2nk sinφ

M
(2.31)

M ≥ 2nk sinφ

ω2
(2.32)

Equation 2.32 indicates the minimum required mass of the main stage to achieve vibration

isolation for the VIS, where n extension springs—each with stiffness k—are used, and the

input frequency to the VIS is ω.
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2.5.2 Natural Frequency of Yaw Mode

Similar to the vertical mode, the natural frequency of the rotational system can be

defined through an equation of motion. Figure 2.8 illustrates a diagram of the yaw mode. An

illustrative linear spring is attached to the circular stage at the rim to represent the overall

tangential spring constant Kt produced by the angled spring configuration. Without loss

of generality, we can assumed the positive direction of θ, θ̇, and θ̈ to be counter-clockwise.

Figure 2.8: Yaw mode diagram

Figure 2.9 shows the corresponding FBD and KD for the yaw mode diagram.

The spring force Ft represents the overall tangential force caused by the angled springs in

tension. The torsional damping moment Mc due to magnetic damping, which is not shown

in the yaw mode diagram above, is in the opposite direction of the assumed motion. The

inertia couple Īz θ̈ is in the same direction as the positive angular acceleration defined in

Figure 2.8.

Figure 2.9: FBD and KD for yaw mode
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Summing the moment about center O, we have

(∑−→
MO

)
FBD

=
(∑−→

MO

)
KD

(2.33)

−RsFt −Mc = Īz θ̈ (2.34)

Īz θ̈ +Mc +RsFt = 0 (2.35)

Īz θ̈ + R̄Fc +RsFt = 0 (2.36)

where Īz is the centroidal moment of inertia, Rs is the radius of the main stage, and R̄ is

the distance from the centroid of the stage to the magnetic damping vector Fc. Equation

2.36 is a 2nd-order homogeneous ODE whose solution represents the response of the main

stage to an angular initial condition. The non-homogeneous ODE form of yaw mode with

sinusoidal forcing functions can be analyzed similarly to that of the vertical mode, which

will yield the same conclusion for the displacement transmissibility as shown in Figure 2.4.

Using the tangential stiffness Kt derived in Equation 2.27 as well as small angle

approximation for sin θ, we can rewrite Ft as

Ft = Kt (∆x) (2.37)

Ft = Kt (Rs sin θ) (2.38)

Ft =
(n

2
k cosφ

)
(Rs sin θ) (2.39)

Ft =
(n

2
kRs cosφ

)
θ (2.40)

Moreover, if the magnetic damping is a type of viscous damping, the magnitude of the

magnetic damping force can be described similarly to the linear viscous damping force for

vertical mode: the force is proportional to the linear velocity. We can then describe Fc as

Fc = Cyvθ (2.41)

Fc = CyR̄θ̇ (2.42)
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where the relationship between linear velocity vθ and angular velocity θ̇ is invoked. As a

result, Equation 2.36 can be expanded to

Īz θ̈ + CyR̄
2θ̇ +

(n
2
kR2

s cosφ
)
θ = 0 (2.43)

Īz θ̈ + CyR̄
2θ̇ + κθ = 0 (2.44)

Using the definition of natural frequency (ω2
n = κ/Īz) for a rotational system, we can

determine the natural frequency for the yaw mode as

ωn,y =

√
κ

Īz
(2.45)

ωn,y =

√
n

2
kR2

s cosφ
1

Īz
(2.46)

ωn,y =

√
n

2
kR2

s cosφ
2

MR2
s

(2.47)

ωn,y =

√
nk cosφ

M
(2.48)

In addition, the discriminant for the yaw mode’s characteristic equation is defined as ∆y =

(CyR̄
2)2 − 4Īzκ, so the critical damping for yaw mode can be determined as

∆y = 0 (2.49)

(Ccrit
y R̄2)2 − 4Īzκ = 0 (2.50)

Ccrit
y =

2
√
Īzκ

R̄2
=

2Īzωn,y
R̄2

(2.51)

Equation 2.48 can be used to calculate the natural frequency for yaw mode after the mass of

stage and spring stiffness are chosen using Equation 2.32. The vertical mode, however, will

be given priority because it is the most dominant mode for these systems and because the

height of the vacuum chamber limits how long the extension springs can be. The following

sections will discuss the selection process for extension springs so that the natural frequency

for vertical mode should be as close to 1 Hz as possible.
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2.6 8-spring System

Before being able to select extension springs, we need to compile a list of available

springs from different suppliers and compare them together. Figure 2.10 shows music wire

springs collected from websites of two suppliers: Century Spring and The Spring Store.

Figure 2.10: Music wire springs from 2 suppliers

Each dot represents a spring, and it is plotted based on the manufacturer’s spring constant

and the recommended maximum allowable load. The dots are categorized into red group

(long springs with initial length > 10 inches) and blue group (short springs with initial

length ≤ 10 inches). Assuming that n and φ are constants, the input frequencies ω is

varied between 1–3 Hz with a 0.5 Hz interval. Since only the equality in Equation 2.32 is

plotted as solid lines, it is implied that any spring above a given solid line will successfully

isolate that frequency and any other input frequencies below it on the plot. In other words,

considering all springs with stiffness of 0.2 lbf/in from Century Spring, for example, there

is only one spring that is able to isolate the 1 Hz input vibration since this spring can
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withstand a maximum load of 4.8 lbf while only 3.7 lbf is required to isolate 1 Hz input

vibration. Since it can isolate the input frequency as low as 1 Hz, higher frequencies can

also be isolated by this spring. The selected music wire spring for validation experiment

is purchased from The Spring Store (Part # PE030-500-103667), and its specifications

provided by the manufacturer are shown in Table 2.1.

Table 2.1: Music wire spring used for the 8-spring experiment

Outer dia. Wire dia. Initial length Spring constant Max load Initial tension

0.5 in 0.03 in 3.8 in 0.1 lbf/in 2.7 lbf 0.1 lbf

Figure 2.11 shows a wooden frame built to hold 8 angled springs, and different

sets of weights are put on a wooden stage to test against the mathematical model. Eight

stud anchors with swivel heads are used on the wooden stage to allow free rotation for

the springs’ hooks so that none of the springs are twisted. The entire wooden frame is

then placed on a shaker connected to a spectrum analyzer to collect data to a floppy disk.

Since the mass-spring system has low stiffness and almost zero damping, an interval sine

sweep is used instead of sweeping through the whole range of interested frequencies. The

latter technique can present incorrect frequency responses as the shaker is sweeping at high

frequencies while the stage is oscillating at its low natural frequency indefinitely†. Moreover,

the former method allows us to observe carefully the effectiveness of the mass-spring system

in isolating vibration for each interval. An interval of 0.5 Hz is used for inputs from 0.5–2 Hz,

and an interval of 1 Hz is used for inputs from 2–10 Hz. Once data are collected, they are

converted to MATLAB® data files.

Figure 2.12 illustrates the frequency response of the wooden stage with three sets of

weights: 4 kg, 5 kg, and 6 kg. Figure 2.12a shows the raw absolute magnitude data recorded

from the accelerometer, and Figure 2.12b shows the same data plotted in dB scale using

the relationship ydB = 20 log10(yabs). As the main stage gets heavier, the natural frequency

decreases as predicted. We can also observe that the vibration isolation starts at roughly

1–2 Hz when the data lines cross below 0 dB. This is the crossover frequency. When more

†Compared to only a few milliseconds required for equipment to collect and process data.
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Figure 2.11: A test frame with 8 angled springs

weights are applied, however, the wooden frame does not hold up well, and the top starts

swinging from side to side instead of just moving up and down as the vertical motion of the

shaker. This unintended effect can be seen through the more jagged yellow line compared

to the relatively smoother red and blue lines. In Figure 2.12a, the max absolute magnitude

of the 6 kg stage is 4 times less than that of the 4 kg because the main stage motion is split

between vertical and rocking modes. As a result, we are not able to test the theoretical

maximum load of 7.3 kg to achieve the best vibration isolation for the selected music wire

springs. Following the trend in this frequency response plot, we can conclude that the

higher frequencies can be effectively isolated, so the troubling frequencies are, in fact, the

lower ones.

The 8-spring system is intended to be symmetrical so that each mode is uncoupled.

However, the motion of the stage during testing suggests a different idea: when the top of

the frame displaces from side to side, the symmetrical VIS stays in the rocking mode much

longer than in the vertical or yaw mode. This somewhat defeats the purpose of designing

the VIS for a dominant vertical mode. Hence, a more viable solution is to use an asymmetric
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(a) Absolute magnitude recorded from accelerometer

(b) Magnitude converted to dB scale

Figure 2.12: Frequency response of mass-spring system
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system with 6 springs to balance between different modes. Fewer springs means that for the

same weight of stage, VIS’s natural frequency is lower, so a wider range of input frequencies

can be isolated. More space beneath the main stage can also be saved for the installation

of neodymium magnets.

2.7 6-spring System

Once the mathematical model is verified, the materials of the main stage and

springs must be considered for the actual system to be used in the vacuum chamber. Firstly,

since the VIS is a single-stage system, a Cu stage is more favorable than an Al stage

considering the tight space in the vacuum chamber. For the same weight, an Al stage takes

up three times as much volume as a Cu stage. Not only is Cu vacuum compatible, but a

Cu stage can also be used as a conductor for magnetic damping, which can eliminate the

need for Cu blocks hanging from an Al stage. Figure 2.13 shows a machined Cu stage for

the VIS. The Cu stage weighs 3.95 kg.

Figure 2.13: A machined Cu stage for VIS

Secondly, instead of music wire, stainless steel extension springs should be used.

The vacuum compatible material list recommended by LIGO Laboratory7 favors the use

of stainless steel springs because of its low outgassing property compared to music wire

springs made out of carbon steel. Figure 2.14 shows stainless steel springs collected from

websites of two suppliers: Century Spring and The Spring Store. Similarly to Figure 2.10,
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each dot represents a spring, and it is plotted based on the manufacturer’s spring constant

and the maximum allowable load. The linear solid lines represents the equality in Equation

2.32, and they implies that any spring above a given solid line will effectively isolate the

vibration frequencies below it. Only one spring with stiffness of 0.17 lbf/in can theoretically

isolate frequency as low as 1 Hz, but applying max load to this spring causes the Cu stage

to touch the bottom of the vacuum chamber. Therefore, we will use the Cu stage at its

current weight and will only add extra weights to the stage once the gap between magnets

and Cu stage is determined.

Figure 2.14: Stainless steel springs from 2 suppliers

Table 2.2 shows the manufacturer’s specifications of the stainless steel springs

purchased from Century Spring (Part # 80657S).

Table 2.2: Stainless steel spring used with Cu stage

Outer dia. Wire dia. Initial length Spring constant Max load Initial tension

0.5 in 0.036 in 5 in 0.17 lbf/in 3.3 lbf 0.3 lbf
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Using the spring’s specifications in Table 2.2 and the formulas in Shigley’s textbook,4 we

can calculate the spring’s axial length, vertical length with respect to the Cu stage, and

spring stiffness, which are shown in Table 2.3. Appendix A details the MALAB® code used

for the calculations.

Table 2.3: Calculated lengths & stiffness of the stainless steel spring

Axial length Vertical length Spring stiffness

11.26 in 11.09 in 0.1836 lbf/in

With the current weight of Cu stage and the calculated spring stiffness from manufacturer’s

specifications, the VIS is expected to have its vertical natural frequency between 1–1.5 Hz,

and the vibration isolation should starts at about 1.5 Hz. The discrepancy of spring stiff-

ness between our calculations and the manufacturer’s data indicates that tolerances in

manufacturing process, especially for the wire and outer diameters, affect the accuracy in

determining the spring constant. For example, if the wire diameter assumes the value of

0.037 in while other specifications remain the same, the spring stiffness and axial length

become 0.212 lbf/in and 10.708 in respectively. The change of 0.001 in of the wire diameter

is very small and within the tolerance of machining capability, so we need to recalculate

the natural frequency of each mode from a different perspective. Figure 2.15 shows the

measured axial length of one spring in the 6-spring system with the Lyding STM on top of

the Cu stage. Using this measured length of 10.1 in, we can calculate the effective spring

stiffness using standard Hooke’s law for each spring as

F = keff∆x (2.52)

M

6
g = keff

(
10.1′′ − 5′′

)
(2.53)

keff =
Mg

6 (0.25654 m− 0.127 m)
(2.54)

keff = 49.855 N/m (2.55)

where g = 9.81 m/s2 is the acceleration of gravity. All units are converted to standard

SI units. Then, using Equation 2.29 and Equation 2.48, we can recalculate the natural
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frequency of 1.38 Hz for the vertical mode, which is very close to our estimation above, and

the natural frequency of 0.48 Hz for the yaw mode.

Figure 2.15: Axial length of 6-spring system with Cu stage
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Chapter 3

FINITE ELEMENT ANALYSIS

3.1 Background

In Chapter 2, the mass-spring VIS is analyzed as a 6-DOF system because the

springs’ stiffness is much lower than the stage’s stiffness, so the Cu stage can be considered

rigid. For solid bodies such that the material stiffness is high and the solid structures can

no longer be considered perfectly rigid, a different method of analysis must be used for such

multiple-DOF systems: the Finite Element Method.

The earliest utilization of minimum energy principles in structural design was

proposed by Rayleigh in the late 1800s, which was then extended by Ritz in the early 1900s

to a more general framework. Galerkin, in 1915, developed the integral concept of the

method of weighted residuals, which is the basis of modern development of Finite Element

Analysis (FEA) today. By 1940s, numerical techniques for the boundary value problems

were developed with the use of matrix methods. However, not until 1960s was the term FEA

coined by Ray Clough, and the development of the numerical method began to flourish with

the advance of digital computers. In the late 1980s, commercial software became available

in personal computers.21

3.2 The FEA Process

The Finite Element Method, in essence, converts a strong form of the differential

equations describing a structure or domain and its corresponding boundary conditions into

an integral form—weak form—because the original strong form could be extremely difficult

to find the solution using conventional methods. During the process, the domain, whether

it is a solid body or a fluid region, is divided into small elements connected by nodes, and
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an approximate form of the solution is substituted into the weak form to find the governing

equations for each element. The element equations are then assembled appropriately into

the global domain to form a system of linear algebraic equations,21 which could be solved

using matrix operation. In the following sections, a few critical steps and concepts are

discussed. However, the description should not replace numerous fundamental textbooks

about this topic, such as The Finite Element Method by Thomas Hughes. Once the concepts

are discussed, the natural frequencies of the housing structure for VIS as well as the Viton

gaskets can be studied.

3.2.1 Problem Definition & Boundary Conditions

Figure 3.1 shows a 1-dimensional (1D) cantilever beam subjected to a known

displacement u at the left end, an internal body force per unit length ~b, and a point load

~P applied at the right end. The FBD for an infinitesimal element of the beam is also

illustrated, where ~f is the internal force and ∆~f is the infinitesimal change in internal force.

(a) An element of the cantilever beam

(b) A cantilever beam fixed at left end

Figure 3.1: A cantilever beam and its infinitesimal element
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The differential equation for a beam infinitesimal element can be shown as

∑−→
F horizontal = 0 (3.1)

−f + b∆x+ f + ∆f = 0 (3.2)

b+
∆f

∆x
= 0 (3.3)

b+
d

dx
(f) = 0 (3.4)

b+
d

dx
(Aσx) = 0 (3.5)

b+
d

dx
(AEεx) = 0 (3.6)

b+
d

dx

(
AE

du

dx

)
= 0 (3.7)

b+AEu,xx = 0 (3.8)

where E is the Young’s modulus, u is the axial displacement, the axial stress is related to

axial strain by σx = Eεx assuming material is linearly elastic, and axial strain is defined as

εx = du/dx = u,x. As a result, the strong form (S) is described as follows

(S)



Find u(x) such that

AEu,xx + b = 0

u(0) = u

AEu,x(L) = P

(3.9)

In commercial FEA software with Graphic User Interface (GUI) such as Abaqus, when we

define the sketch, its shape, and boundary conditions (BC), the software will assign the

appropriate form of equations as well as the BC values to the geometry, so users do not

need to derive the strong form over again. To convert this strong form (S) into a weak form

(W), the weighted-residual method will be used. Hence, the weak form can also be referred

to as the weighted-residual form in contrast to the strong form defined in Equation 3.9.30

Moreover, the solutions for the weak form is identical to those of the strong form,15 which

encourages us to study the weak solution of the problem.
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3.2.2 The Weighted-residual Form & the Galerkin Method

To define the weak form, we need to characterize two classes of functions: the

trial (candidate) solutions and the weighting functions—variations.15 The collection of trial

solutions (S) consists of all functions u(x) such that they have square-integrable derivatives

and take on the displacement BC.15 In mathematical notation, the previous statement can

be written as

S =
{
u(x) | u(x) ∈ H1, u(0) = u

}
(3.10)

where squared-integrable functions are called H1 functions and have the following condition

∫ L

0
(u,x)2 dx <∞ (3.11)

For the 1D cantilever beam in Figure 3.1, the left end has displacement of u, which is shown

as u(0) = u in Equation 3.10. In other contexts, the displacement BC is generally referred

to as the essential BC or Dirichlet BC.

The second collection of functions (V) is very similar to the first one, except that

we require the weighting functions to be homogeneous at the essential BC. For the 1D

cantilever beam in Figure 3.1, this can be written as

V =
{
w(x) | w(x) ∈ H1, w(0) = 0

}
(3.12)

Because the functions w(x) are just variations of the actual displacement function or merely

virtual displacements, their magnitude must be 0, which explains the homogeneous con-

straint. In fact, the formulations from strong form to weak form of this type can be called

the virtual work, or virtual displacement, principles in mechanics,15 which conveniently

adds more names and complexities to our confusions! It is important to mention that even

though both u(0) and w(0) have the same value of 0 if the cantilever beam in Figure 3.1 is

fixed at the left end, the reasons are entirely different.
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Multiplying w(x) to both sides of the strong form in Equation 3.9 and integrating

over the domain using integration by part, we can derive the weak form as follows

w(AEu,xx + b) = 0 (3.13)

AE

∫ L

0
wu,xx dx+

∫ L

0
bw dx = 0 (3.14)

AE
[
wu,x

]L
0
−AE

∫ L

0
(u,xw,x) dx+

∫ L

0
bw dx = 0 (3.15)

AE
[
w(L)u,x(L)− w(0)u,x(0)

]
−AE

∫ L

0
(u,xw,x) dx+

∫ L

0
bw dx = 0 (3.16)

AE
[
w(L)u,x(L)

]
−AE

∫ L

0
(u,xw,x) dx+

∫ L

0
bw dx = 0 (3.17)

Using the Dirichlet BC from Equation 3.9 and rearranging Equation 3.17, we can rewrite

the weak form as

(W)


Find u ∈ S such that for all w ∈ V

AE

∫ L

0
(u,xw,x) dx =

∫ L

0
bw dx+ Pw(L)

(3.18)

As Equation 3.18 shows, the derivative for u(x) decreases an order because the weighting

function w(x) is used to take on an order of derivative. This is particularly helpful in

problems where the displacement has higher order derivatives.

So far, a few assumptions of the Galerkin method are introduced to derive the

weak form in Equation 3.18. The first one is the displacement BC must be satisfied at the

outset: the solution u(x) is sought over a set of candidate functions that already take on

the displacement BC.30 This is established in the collection of trial functions S. The second

assumption is the homogeneous constraint on weighting functions: w(0) = 0. The third

assumption is the limit of choices for w(x) to ensure the same weighting functions are used

at the boundary as well as in the domain. This is reflected in Equation 3.18 where a single

form of w(x) is used in both integrals and evaluated at the boundary L.
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Once the weak form is derived, the Bubnov-Galerkin approximation method† can

be used to approximate the actual solution of the weak form, which, in turn, gives an ap-

proximate solution for the strong form. In other words, the Bubnov-Galerkin approximation

method provides a fairly general framework for the numerical solution of the strong form

within the context of the weighted-residual formulation30 that helps derive the weak form.

3.2.3 The Approximate Solution

The differential equation in Equation 3.9 can be solved easily by integrating it twice

before substituting two BC to achieve the exact solution. However, the exact solution is not

our main concern here since we want to establish a generic scheme to solve more complex

strong forms by converting them to weak forms and then generalizing the approximate

solution for those forms. The approximate solution, in contrast to the exact solution,

follows a discretization process in which a collection of functions are used to express the

approximate solution. The approximate solution û(x) for the weak solution u(x) can be

described as a finite-dimensional collection of functions15 such that

u(x) ≈ û(x) =
n∑

A=1

NA(x)dA +N0(x)u (3.19)

where NA(x) and N0(x) are interpolation functions or shape functions while di can be seen

as unknown constants associated with each shape function NA(x) for now. The form of

û(x) is chosen so that it satisfies the displacement BC of u(0) = u by requiring all shape

functions to be 0 at x = 0 except the shape function associated with u. In other words,

NA(0) = 0 and N0(0) = 1 so that

û(0) =
n∑

A=1

NA(0)dA +N0(0)u (3.20)

û(0) = u (3.21)

†Generally referred to as the Galerkin approximation method in many textbooks.
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The weighting function w(x), by Galerkin approximation method, takes the form

w(x) =
n∑

A=1

NA(x)cA (3.22)

where cA’s are arbitrary constants, and the same shape functions are used for both w(x)

and û(x) so that the homogeneous constraint is maintained: w(0) = 0. This is the most

popular version of the Galerkin method.30

After discretizing the solution form, we can substitute Equation 3.19 and 3.22 into

Equation 3.18. The subscript for û(x) is changed to avoid errors in indicial notation, and

the Galerkin approximation form is derived as follows

AE

∫ L

0

[(
n∑

B=1

NB,xdB +N0,xu

)(
n∑

A=1

NA,xcA

)]
dx =

∫ L

0
b

(
n∑

A=1

NAcA

)
dx+ P

(
n∑

A=1

NA(L)cA

) (3.23)

n∑
A=1

cA

(
n∑

B=1

AE

∫ L

0
NA,xNB,x dx

)
dB −

n∑
A=1

cA

(∫ L

0
bNA dx+ PNA(L)

)

+

n∑
A=1

cA

(
AE

∫ L

0
uN0,xNA,x dx

)
dx = 0

(3.24)

n∑
A=1

cA

[(
n∑

B=1

AE

∫ L

0
NA,xNB,x dx

)
dB

−
(∫ L

0
bNA dx+ PNA(L)−AE

∫ L

0
uN0,xNA,x dx

)]
= 0

(3.25)

If we assign

KAB =

n∑
B=1

AE

∫ L

0
NA,xNB,x dx

FA =

∫ L

0
bNA dx+ PNA(L)−AE

∫ L

0
uN0,xNA,x dx
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then Equation 3.25 can be rewritten as

n∑
A=1

cA

(
n∑

B=1

KAB dB − FA

)
= 0 (3.26)

Since cA’s are arbitrary, each set of Equation 3.26 must be identically 0. Therefore, we have



n∑
B=1

K1B dB − F1 = 0 for A = 1

n∑
B=1

K2B dB − F2 = 0 for A = 2

· · ·
n∑

B=1

KnB dB − Fn = 0 for A = n

(3.27)



K11d1 +K12d2 + · · ·+K1ndn = F1

K21d1 +K22d2 + · · ·+K2ndn = F2

· · ·

Kn1d1 +Kn2d2 + · · ·+Knndn = Fn

(3.28)

or in familiar matrix form



K11 K12 · · · K1n

K21 K22 · · · K2n

...
...

...

Kn1 Kn2 · · · Knn


×



d1

d2

...

dn


=



F1

F2

...

Fn


(3.29)

Kd = F (3.30)

where K is the stiffness matrix, d is the displacement vector, and F is the force vector.

In structural mechanics, K is sometimes referred to as the tangent matrix, and F is the

load or residual vector.21 The Galerkin approximation method leads to a coupled system

of linear algebraic equations15 in which the unknown vector d can be solved by d = K−1F
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provided that K is invertible. Once the values of d are solved, we can substitute them back

to Equation 3.19 to get the complete approximate solution for û(x).

It is important to remember that in discretizing and approximating the exact

solution, we construct the finite-dimensional approximation subspaces Sh and Vh of S and

V such that Sh ⊂ S and Vh ⊂ V.15 The approximate solution û(x) belongs to the subset

Sh, or û ∈ Sh, and the collection of weighting functions w(x) belongs to Vh, or w ∈ Vh. For

a graphical interpretation, Figure 3.2 shows the approximate solution domain discretized

by triangular shapes only partially covers the exact solution domain.

Figure 3.2: Finite element vs. exact domain30

3.2.4 Element Types

In Section 3.2.3, we discuss the approximate solution û(x) for the entire domain L

of the 1D cantilever beam. In practice, it is more common to discretize a geometric shape

into small regions or subdomains with a characteristic length h representing the scale of the

mesh based on the type of object being studied. A 1D cantilever beam, for example, can

be discretized into finite element domains of straight or curved segments, which is shown in

Figure 3.3. For a curved edge, an additional node is placed in between the end nodes.

Figure 3.3: Finite element domains in 1D30
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Two-dimensional geometric shapes, such as plates or thin walls, can be discretized

into finite element domains of triangles or quadrilaterals. Figure 3.4 illustrates examples of

these shapes where the edges can be straight or curved.

Figure 3.4: Finite element domains in 2D30

For three-dimensional objects, the most useful finite element domains are tetrahe-

dral (tets), pentahedral (pies), and hexahedral (bricks) with either straight or curved edges

and either flat or non-flat faces.30 Pentahedral elements are sometimes called prisms or

wedges. In Figure 3.5, two tetrahedral elements with straight and curved edges are shown

along with straight-edged pentahedral and straight-edged hexahedral element.

Figure 3.5: Finite element domains in 3D30

3.2.5 Shape Functions

For each element type discussed in the previous section, polynomial interpolation

functions can be used in the approximate solution form among the nodes. A linear shape

function between 2 nodes will result in a straight edge while a quadratic or cubic shape

function connecting 3 nodes and 4 nodes respectively will result in a curved edge. Figure

3.6 shows two types of shape functions for a 1D element: linear shape functions for a 2-node

element, and quadratic shape functions for a 3-node element. Each shape function, which
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is associated with a node, has the value of 1 at the associated node while having the value

of 0 at all of the other nodes in the element.

(a) Linear shape functions for a 2-node element (b) Quadratic shape functions for a 3-node element

Figure 3.6: 1D shape functions plotted together

For the 1D shape functions, a two dimensional graph showing the locations ξ and

magnitudes N(ξ) at each node helps visualize the element. Similarly, 2D shape functions

need a three dimensional graph to visualize the locations and magnitudes of the functions

in an element. Figure 3.7 illustrates three type of shape functions for a 2D element: linear

shape functions for a 3-node element, linear shape functions for a 4-node element, and

quadratic shape functions for a 9-node element. The shape functions in Figure 3.7a are

used for triangular elements while shape functions in Figure 3.7b and Figure 3.7c are for

quadrilateral elements. Appendix B highlights the examples of MATLAB® codes used to

plot the 2D shape functions of each element type. The shape functions for each 2D element

type are also plotted together in Appendix B for visualization.

We may observe that the 4-node quadrilateral element in Figure 3.7b has nodeless

interior while there is a node in the center of the 9-node quadrilateral element in Figure

3.7c. In fact, higher-order rectangular elements can be divided into two families based on

the methodology used to generate them: the serendipity and the Lagrangian elements.30

The polynomials in both families can be represented by Pascal’s triangle, although each

family has its own diagram to account for the noded or nodeless interior. Figure 3.8 shows

the Pascal’s triangle for each family. As the name suggested, the interpolation functions
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(a) Linear shape functions for a 3-node element (b) Linear shape functions for a 4-node element

(c) Quadratic shape functions for a 9-node element

Figure 3.7: 2D shape functions plotted individually

of Lagrangian elements can also be determined trivially as products of one-dimensional

Lagrange interpolation functions. A general expression for an nth-order Lagrangian inter-

polation function in one dimension is given as the product sum21

ln−1
a (x) =

n∏
b=1
b 6=a

x− xb
xa − xb

(3.31)

=
(x− x1)(x− x2) · · · (x− xa−1)(x− xa+1) · · · (x− xn)

(xa − x1)(xa − x2) · · · (xa − xa−1)(xa − xa+1) · · · (xa − xn)
(3.32)

where n − 1 is the degree of polynomial, and a is the nodal coordinate. To generate a

2D shape function at a node, we need to multiply the one dimensional polynomial in each
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direction. For example, the center node in Figure 3.7c has the shape function of

N9(x, y) = l22(x)× l22(y) (3.33)

where l22(x) is interpreted as the 2nd-order polynomial for the second node from left to right

in the x-direction, and l22(y) reads as the 2nd-order polynomial for the second node in the

y-direction. Each of them is defined as

l22(x) =
(x− x8)(x− x4)

(x9 − x8)(x9 − x4)
(3.34)

l22(y) =
(y − y2)(y − y6)

(y9 − y2)(y9 − y6)
(3.35)

where the subscripts are the neighbors’ nodal numbers shown in Figure 3.7c. One of the

advantages of using serendipity shape functions is having less equations to solve in the

overall system of equations Kd = F. For example, an 8-node 2D quadrilateral element

requires 16 equations to solve for 16 unknowns, which are essentially in the d array of

Equation 3.29. A 9-node 2D quadrilateral element (Figure 3.7c) requires 18 equations. If

a structure has tens of thousands of elements, we can really appreciate the computational

time of a simpler element type.

(a) Serendipity family (b) Lagrangian family

Figure 3.8: Pascal’s triangle for 2D elements30
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In general, higher-order shape functions, such as quadratic or cubic functions, al-

low us to capture more information between the nodes with the curved edges, which could

help avoid some errors in the FEA process. One of the well-known issues of using linear

shape functions for 2D quadrilateral elements is shear locking. Sheer locking occurs when

the linear shape functions cannot capture the curved edge of a bending load, which causes

the element to overestimate shear stress and appear stiffer than it should be. Figure 3.9

demonstrates the shear locking issue for a 2D quadrilateral element under a pure bending

load M . To reserve the computational advantage of the elements with linear shape func-

tions, the incompatible modes for linear elements may be used. This type of formulation

adds internal displacement modes within an element to capture bending deformations.21

These deformations are internal and do not add global degrees of freedom outside of the

element. Since the internal displacement modes do not match across element boundaries,

the formulation is named “incompatible modes”.

(a) Correct elastic response (b) 4-node element response

Figure 3.9: Shear locking issue for a 2D quadrilateral element under pure bending M

Volumetric locking is another issue when materials are incompressible. For these

types of materials, when the Poisson’s ratio ν approaches 0.5, the term 1−2ν will approach

zero. It becomes a problem when the material tensor D defined in terms of a Lame’s

constant λ such that the term 1 − 2ν is in the denominator of λ. Once that happens, λ

goes to infinity, and convergence does not occur with mesh refinement. Figure 3.10 shows

an example of this issue where the displacement is measured on the top right node for two

materials with different Poisson’s ratio: 0.3 and 0.4999. The selective reduced integration

method can solve this issue by splitting the material tensor into two components: deviatoric

and volumetric tensor. The splitting process can be demonstrated by a simple plane strain
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tensor of a linear isotropic elastic material as follows

D =


λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

 = µ


2 0 0

0 2 0

0 0 1

+ λ


1 1 0

1 1 0

0 0 0

 (3.36)

D = Ddev +Dvol (3.37)

where λ and µ are the usual Lame’s constants, and stress is related to strain as σ = Dε.

The integrals associated with Ddev will have full integration while the integrals associated

with Dvol will have reduced integration, which suggests the name of the method. In some

cases, using the selected reduced integration method may cause the element to distort and

have an hourglass shape, so an hourglass stabilization option can be included.

Figure 3.10: Volumetric locking issue21

3.2.6 Isoparametric Mapping

Throughout the discussions above, we should notice that the shape functions are

conveniently plotted in the coordinate system of (ξ, η) and not in the coordinate system of

(x, y) of the structure. The (ξ, η) coordinate system is called the parent or natural domain

that reflects the regular-shaped elements while the (x, y) coordinate system, which reflects
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the irregular-shaped elements of a structure, is called the physical domain. Formulating a

problem on the parent domain offers a means for irregular-shaped elements to inherit the

well-established completeness and integrability properties of their regular-shaped counter-

parts.30 It also greatly simplifies the satisfaction of completeness and continuity conditions

that are necessary for convergence.21

An isoparametric mapping is a formulation such that the primary unknowns of an

element uh(ξ) and the coordinates of an element x(ξ) are interpolated by the same shape

functions. In mathematical form, we have

uh(ξ, η) =

n∑
a=1

Na(ξ, η)dea (3.38)

x(ξ, η) =
n∑
a=1

Na(ξ, η)xea (3.39)

where dea represent the element degrees of freedom, and xea are the vectors with coordinates

(xea, y
e
a) pointing from the origin to the positions of each node. The superscript h refers

to the association with a mesh or discretization which is parameterized by a characteristic

length scale h of an element.15 Figure 3.11 visualizes the mapping process between the

(ξ, η) coordinate system and the (x, y) coordinate system.

Figure 3.11: Isoparametric mapping for a bilinear quadrilateral element15
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In the mapping process, we can define the Jacobian matrix as

J =
∂x

∂ξ
(3.40)

or in indicial notation: Jij = ∂xi/∂ξj . The determinant of the Jacobian matrix for a 2D

transformation, from Equation 3.40, is defined as

|J| =

∣∣∣∣∣∣∣
∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

∣∣∣∣∣∣∣ (3.41)

=

∣∣∣∣∣∣∣
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣∣∣ (3.42)

where ξ1 ≡ ξ, ξ2 ≡ η, x1 ≡ x, and x2 ≡ y. An infinitesimal area dA in the physical domain

can also be transformed to an infinitesimal area dξdη in the parent domain as follows

d ~A = d~x× d~y =

(
∂x

∂ξ
dξ ı̂+

∂y

∂ξ
dξ ̂

)
×
(
∂x

∂η
dη ı̂+

∂y

∂η
dη ̂

)
(3.43)

=

(
∂x

∂ξ

∂y

∂η
dξdη − ∂x

∂η

∂y

∂ξ
dξdη

)
k̂ (3.44)

= |J| dξdη k̂ (3.45)

or in magnitude form: dxdy = |J| dξdη. This result becomes important in evaluating

the integrals appearing in the weak form. The Jacobian determinant, in fact, occurs very

often in mathematical contexts, such as the transformation between Cartesian and polar

coordinate that dxdy = r drdθ.

The strong form in Equation 3.9, which is derived from the FBD, applies to the

overall structure with two boundary conditions. Other methods, such as energy-based

methods, can also be used to derive the similar differential equation. What makes our dis-

cussion so far an FEA process is the application of the formulation over each element that

is discretized by a meshing routine. For each element obeying the same set of differential

equations, by using shape functions to discretize the solution and then using matrix oper-
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ation to solve for primary unknowns (displacement of each node for example), we can then

find approximate solution for the discretized domain and other secondary variables. This

emphasizes the importance of having two viewpoints: the global and the element viewpoint,

which are discussed through the process of isoparametric mapping.

3.2.7 Numerical Integration

Finding the analytical expressions for the integrals in matrices K and F is quite

challenging, especially with tens of thousands of elements in a structure. An alternative

method is the numerical integration. This works particularly well with modern computers

since the numerical integration relies on evaluating polynomials at specific points, which

makes the process much faster than finding analytical expressions. An appropriate weighting

factor is multiplied at each point of evaluation before they are all added together to find

the value of integration. An arbitrary integrand f(x) which is smooth and integrable in the

physical domain is transformed to the parent domain as

∫ b

a
f(x) dx =

∫ 1

−1
f

(
b− a

2
ξ +

b+ a

2

)(
b− a

2

)
dξ (3.46)

=

∫ 1

−1
g(ξ) dξ (3.47)

The transformation is assisted by defining the ratio

x− a
b− a

=
ξ − (−1)

1− (−1)
(3.48)

from the limits of each variable: a ≤ x ≤ b and −1 ≤ ξ ≤ 1. The definite integral in the

parent domain is numerically integrated by the formula

∫ 1

−1
g(ξ) dξ =

np∑
k=1

g(ξk)wk (3.49)

where np is the number of integration (quadrature) points, ξk is the coordinate of the kth

integration point, and wk is the weighting factor at the kth integration point. Similarly, the
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numerical integration for a 2D element can be shown as

∫ b

a

∫ d

c
f(x, y) dx dy =

∫ 1

−1

∫ 1

−1
f

(
b− a

2
ξ +

b+ a

2
,
d− c

2
η +

d+ c

2

)
|J| dξ dη (3.50)

=

np∑
k=1

np∑
l=1

g(ξk, ηl)wkwl (3.51)

where ηl is the coordinate of the lth integration point, wl is the weighting factor at the lth

integration point, and the Jacobian determinant, as a result of changing variables, is

|J| =
(
b− a

2

)(
d− c

2

)

which agrees with Equation 3.42.

There are many numerical integration techniques: Trapezoidal rule, Simpson’s

rule, or Gauss-Legendre quadrature rules. The Trapezoidal rule and Simpson’s rule are

special cases of the Newton-Cotes quadrature rules. Although these rules are widely used,

they are inefficient in the sense that there exist integration rules that are just as accurate but

involve fewer integration points.15 For the Gaussian-Legendre quadrature rules, in order to

integrate completely a polynomial order p, the required number of integration points—or

sampling points†—is rounded to the nearest integer toward infinity following the formula21

np =
p+ 1

2
(3.52)

For example, numerically integrating a 4th-order polynomial requires at least 3 integration

points for accuracy. Table 3.1 gives a list up to 7 integration points in decimals for one

dimension. The derivation for a 3-point Gaussian quadrature formula is shown in Appendix

C along with the exact fractional expressions up to 5 integration points. Generally, for multi-

dimensional domains, the Gaussian-Legendre quadrature rules can be extended by applying

the one-dimensional formulas to each dimension before summing them all up, as shown in

Equation 3.51. Figure 3.12 illustrates three integration rules over a 2D quadrilateral parent

†Some textbooks often call Gauss points as sampling points.
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domain: 1 integration point, 2 integration points, and 3 integration points in each dimension.

For each dimension, the same quadrature rules highlighted in Table 3.1 can be used.

Table 3.1: Gauss-Legendre quadrature rules

# of points (np) Coordinates (ξk) Weighting factors (wk)

1 ξ1 = 0 w1 = 2

2
ξ1 = −0.5774 w1 = 1
ξ2 = 0.5774 w2 = 1

3
ξ1 = −0.7746 w1 = 0.5556

ξ2 = 0 w2 = 0.8889
ξ3 = 0.7746 w3 = 0.5556

4

ξ1 = −0.8611 w1 = 0.3479
ξ2 = −0.3400 w2 = 0.6521
ξ3 = 0.3400 w3 = 0.6521
ξ4 = 0.8611 w4 = 0.3479

5

ξ1 = −0.9062 w1 = 0.2369
ξ2 = −0.5385 w2 = 0.4786

ξ3 = 0 w3 = 0.5689
ξ4 = 0.5385 w4 = 0.4786
ξ5 = 0.9062 w5 = 0.2369

6

ξ1 = −0.9325 w1 = 0.1713
ξ2 = −0.6612 w2 = 0.3608
ξ3 = −0.2386 w3 = 0.4679
ξ4 = 0.2386 w4 = 0.4679
ξ5 = 0.6612 w5 = 0.3608
ξ6 = 0.9325 w6 = 0.1713

7

ξ1 = −0.9491 w1 = 0.1295
ξ2 = −0.7415 w2 = 0.2797
ξ3 = −0.4058 w3 = 0.3818

ξ4 = 0 w4 = 0.4180
ξ5 = 0.4058 w5 = 0.3818
ξ6 = 0.7415 w6 = 0.2797
ξ7 = 0.9491 w7 = 0.1295

Once the integrals are numerically evaluated for each element’s K and F, the

element stiffness matrix K and element residual vector F can be assembled into a global

element arrays to solve for the unknowns of interest.
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(a) 1 integration point in
each direction

(b) 2 integration points in
each direction

(c) 3 integration points in
each direction

Figure 3.12: Integration points for a 2D quadrilateral parent domain30

3.3 VIS Housing Enclosure

After the FEA process is discussed, we can review different design iterations for

the VIS housing enclosure based on their natural frequencies. Recall that the mass-spring

system is designed to have very low natural frequencies for yaw mode as well as vertical

mode, which is approximately 1 Hz. An effective VIS, therefore, should have the housing to

be as stiff as possible so that its first natural frequency is much higher than the upper limit

of the input frequencies, which is expected to be between 1–100 Hz as discussed in Section

2.4. Since the input frequencies to the mass-spring system come from the excitation and

resonances of the housing, a large gap between the natural frequencies of the mass-spring

system and the housing’s 1st natural frequency will allow for a more effective VIS. We can

think of an analogy with circuit analysis or signal processing such that we are designing

two filters in which the low-pass filter is the mass-spring system while the high-pass filter

is the housing enclosure.

Figure 3.13 shows three designs for the housing enclosure: six circular rods, four

90° angles, and a hollow tube with cut-out openings. The 1st case is an extension from the

two-stage VIS used at the University of Illinois (Figure 1.12). The 2nd case is the typical

design used for CubeSat, and the 3rd case is a novel design using a hollow tube of 0.25′′

wall thickness.
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(a) Case 1: six circular rods (b) Case 2: four 90° angles (c) Case 3: a hollow tube

Figure 3.13: Three designs of VIS housing

3.3.1 FEA Process for Eigenvalue Problems

Similar to the general FEA process for static problems discussed in Section 3.2,

the FEA process for dynamic problems starts with the strong form that could be derived

through the Newtonian mechanics (forced-based method) or analytical mechanics (energy-

based method). For demonstration of the forced-based method, the FBD and KD for an

axial beam element are shown in Figure 3.14.

Figure 3.14: FBD and KD for an axial beam element
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Summing forces in the horizontal direction gives the following equation

∑(−→
F horizontal

)
FBD

=
∑(−→

F horizontal

)
KD

(3.53)

−f + b∆x+ f + ∆f = ∆max (3.54)

b+
∆f

∆x
=

∆m

∆x
u,tt (3.55)

b+
∆f

∆x
=
ρ∆V

∆x
u,tt (3.56)

b+AEu,xx = ρAu,tt (3.57)

where u(x, t) is now a function of both displacement x and time t, ∆m is the infinitesimal

mass of an element, and ρ is the density of the beam. The strong form can be stated that

(S)



Find u(x, t) such that

AEu,xx + b = ρAu,tt

u(0, t) = u

AEu,x(L, t) = P

u(x, 0) = u0(x)

u,t(x, 0) = u̇0(x)

(3.58)

where the last two equations are the initial value conditions (IVC) in contrast to the bound-

ary value conditions (BVC) that we see in the static problems. The weak form, following

the same procedure, is defined as

(W)


Find u ∈ S such that for all w ∈ V

AE

∫ L

0
(u,xw,x) dx+ ρA

∫ L

0
(wu,tt) dx =

∫ L

0
bw dx+ Pw(L)

(3.59)

where density ρ is assumed to be constant like the 1-dimensional Young’s modulus E. The

discretization scheme for u and w are similar to those in Equation 3.19 and Equation 3.22
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such that

u(x, t) ≈ û(x, t) =
n∑

A=1

NA(x)dA(t) +N0(x)u (3.60)

w(x) =

n∑
A=1

NA(x)cA(t) (3.61)

Changing subscript to avoid indicial notation errors and then substituting these equations

to the weak form in Equation 3.59 yield

n∑
A=1

cA

[(
n∑

B=1

AE

∫ L

0
NA,xNB,x dx

)
dB +

(
n∑

B=1

ρA

∫ L

0
NANB dx

)
d̈B

−
(∫ L

0
bNA dx+ PNA(L)−AE

∫ L

0
uN0,xNA,x dx

)]
= 0

(3.62)

Again, if we assign

KAB =
n∑

B=1

AE

∫ L

0
NA,xNB,x dx

MAB =

n∑
B=1

ρA

∫ L

0
NANB dx

FA =

∫ L

0
bNA dx+ PNA(L)−AE

∫ L

0
uN0,xNA,x dx

then Equation 3.62 can be rewritten as

n∑
A=1

cA

(
n∑

B=1

KAB dB +
n∑

B=1

MAB d̈B − FA

)
= 0 (3.63)

Since cA’s are arbitrary, each set of Equation 3.63 must be identically 0. Therefore, we have



M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

...

Mn1 Mn2 · · · Mnn


×



d̈1

d̈2

...

d̈n


+



K11 K12 · · · K1n

K21 K22 · · · K2n

...
...

...

Kn1 Kn2 · · · Knn


×



d1

d2

...

dn


=



F1

F2

...

Fn


(3.64)

Md̈ + Kd = F (3.65)
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where M is the mass matrix, and d̈ is the nodal acceleration vector. Equation 3.65 is the

generalized formula for multiple-DOF axial vibration systems. Its analogous form for 1D

vibration systems is Mz̈ + Kz = F , which is discussed in Section 2.3. Although axial

vibration model is used in the derivation above, Equation 3.65 is also applicable for other

types of vibrations, such as transverse vibration. In fact, the matrix form for any damped

multiple-DOF systems with external loads can be written as

Md̈ + Cḋ + Kd = F (3.66)

where C is the viscous damping matrix, and ḋ is the nodal velocity vector.

Considering an undamped system without external forces, we can assume the

solution for such system to be d = Φ(x)eiωnt where Φ(x) is the nonzero vector containing

the magnitude of nodal displacements. Differentiating d twice and then substituting these

into Equation 3.65, we have

M
[
−Φ(x)ω2

ne
iωnt
]

+ K
[
Φ(x)eiωnt

]
= 0 (3.67)(

K− ω2
nM

)
Φ(x)eiωt = 0 (3.68)(

K− ω2
nM

)
Φ(x) = 0 (3.69)

where eiωnt can be dropped out because it is a non-zero term. Equation 3.69 is a generalized

eigenvalue problem that is very familiar to us. Let λ = ω2
n then the eigenvalues λ are

determined to satisfy

|K− λM| = 0 (3.70)

which will allow us to find the corresponding eigenvector Φ(x) for each eigenvalue. Directly

taking the inverse of M and multiplying it to the left of K in Equation 3.69 are quite

computationally expensive steps, so other methods, such as the Cholesky decomposition,

can be applied to transform the generalized eigenvalue problem into the algebraic eigenvalue

problem of the form (A − λI)Φ where I is the identity matrix. The square root of each
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eigenvalue λ yields a natural frequency of the multiple-DOF system while the eigenvectors

represent the mode shapes. In fact, a pair of {ωn,Φ(x)} represents the interrelationship

between a natural frequency and a mode shape in a multiple-DOF system such that a

specific natural frequency will be excited if the corresponding mode shape is applied on the

system.

3.3.2 Natural Frequencies of VIS housing

The models in Figure 3.13 are created in SolidWorks, so the native FEA tool for

natural frequency study is used to estimate the natural frequencies of the first 4 modes.

Table 3.2 lists the material properties used in all FEA models.

Table 3.2: Material properties of Al 6061 used in FEA models

Young’s modulus Poisson’s ratio Density

71 GPa 0.33 2,770 kg/m3

Table 3.3 shows the natural frequencies of the first 4 modes of each case. In

all 3 cases, the models are meshed with tetrahedral elements for quick analyses, and all

structures are fixed at the bottom as required by the FEA program. It is interesting to

observe that in the first two modes of case 1 and of case 2, the natural frequencies share

the same values. Recall that in eigenvalue problems, a repeated eigenvalue can result in

two linearly independent eigenvectors when the matrices are nondefective. In multiple-DOF

systems, two different mode shapes can excite the same natural frequency, which is typically

due to the system’s symmetry. For case 2, although it is a common design for CubeSat,

the natural frequencies are not as high as expected. It turns out that in most CubeSat

structures, the middle section is filled with solid components and masses that increase the

overall stiffness of the design, but in our system, the middle section must be hollow to allow

for the extension spring setup.

Although the tetrahedral elements are helpful in discretizing complex geometries,

they often produce inaccurate results and require an extremely large number of elements for
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Table 3.3: SolidWorks’s results for the first 4 natural frequencies of 3 cases

Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)

Case 1 74.9 74.9 122.1 345.3

Case 2 49.6 49.6 98.0 313.1

Case 3 478.9 650.6 1,135.4 1,244.8

mesh convergence. However, for the initial analysis in SolidWorks, tetrahedral elements are

used for all models because of two reasons. First, we can perform a comparative study for the

natural frequencies quickly without wasting too much time on partitioning and setting up

interactions or constraints between components. Second, we are only interested in selecting

the best candidate that has the highest 1st natural frequency for further detailed study.

In addition, although the numerical results for each mode may be incorrect in SolidWorks

FEA, by observing the mode shape simulation, we can always judge whether the FEA

program breaks the models.

It is apparent that the hollow tube in case 3 is the most promising model. A

detailed study in Abaqus is conducted where quadratic shape functions are used to avoid

locking issue that is discussed in Section 3.2.5. Shell element family, which is used for the

entire model, is an expansion of 2D quadrilateral elements to 3D structures where each

node has six DOF (3 translation and 3 rotation components).40 A constant thickness is

assigned to the FEA program to interpolate the shape function throughout the thickness.

Figure 3.15 illustrates the first 4 mode shapes of the hollow tube, and Table 3.4 shows

the corresponding natural frequency for each mode. From the mode shape simulation, we

can expect that once a top and bottom cap are used together with the hollow tube, the

overall mode shapes will be more constrained, so the experimental natural frequencies can

be higher than what we observe in Abaqus FEA simulation.

Table 3.4: Abaqus’s results for the first 4 natural frequencies of case 3

Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)

Case 3 539.34 642.07 752.72 885.76
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 3.15: First 4 mode shapes simulated in Abaqus

Compared to the shell elements in Abaqus, tetrahedral elements in SolidWorks seem to

underestimate the 1st natural frequency while they overestimate the 2nd and higher natural

frequencies. Hence, the tetrahedral elements appear to be stiffer than shell elements. This

behavior is generally expected for both 2D triangular elements and their 3D counterpart—

tetrahedral elements. Figure 3.16 shows the convergence study for the 1st natural frequency

using shell elements for the Al housing. The convergence occurs rather quickly, which

indicates an advantage of using shell elements for these types of structures.
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Figure 3.16: Convergence study for the 1st natural frequency of Al housing

3.3.3 Top Cap and Bottom Cap

The top and bottom caps are screwed into the hollow tube using #4-40 vented

socket head screws, which are shown in Figure 3.17. In addition to the #4-40 screws, six

stud anchors are used on the top cap to attach the extension springs. Since these screws are

made of stainless steel, it is much stronger than the Al housing, and failure, if occurs, will

be at the root of the internal threads of the housing with the majority of the load is taken

by the first thread.11 Nevertheless, for the VIS under random noise and floor vibrations,

the thread failure is less encountered unless the VIS is dropped onto the ground, which is so

catastrophic for such sensitive instrument that we should never let this happen. Therefore,

the design only focuses on allowing at least 4–5 thread engagement to distribute the load

from the weight of the VIS without additional analyses on impact load upon dropping.
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(a) Top cap

(b) Bottom cap

Figure 3.17: Top cap & bottom cap attached to housing with #4-40 screws

3.4 Viton Damper Characteristics

As shown in Figure 3.17, the Viton gasket is sandwiched between the top cap and

the housing as well as between the housing and the bottom cap. This will allow the Viton

to absorb high frequency vibrations since the Al hollow tube has very low damping. There

are two different thicknesses that are available on a supplier’s website: 1/16′′ and 1/8′′. An

overview in terms of material characteristics will be discussed, and, in the following sections,

their natural frequencies and transient responses to an impulse load will be investigated.

Intuitively, we should expect thicker and heavier Viton gasket to have higher damping

capability; however, the natural frequencies are not entirely clear since they are typically

proportional to stiffness but inversely proportional to mass.

3.4.1 Viscoelastic Materials

Viscoelastic and visco-hyperelastic materials, as the name suggested, possess both

the viscous and the elastic characteristics, which make their behavior inherently non-linear.

Because of the viscous part, such materials are time-dependent, which means that they

respond to a load gradually over time before reaching an equilibrium. This behavior cor-

responds to having either or both stress and strain as functions of time. In terms of the
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elastic characteristic, the main difference between two models is whether the elastic part

obeys a linear or a non-linear model. Materials having linear stress-strain responses are

categorized as viscoelastic while those having non-linear stress-strain responses are called

visco-hyperelastic. In this section, we will discuss the characterization of viscoelastic mate-

rials before expanding the concepts to visco-hyperelastic materials.

Several classical models are proposed by Maxwell, Kelvin-Voigt, and Zener1 to

characterize viscoelastic materials. In these models, the elastic part is modeled as a spring,

and the viscous part is modeled as a damper. Specifically, the Maxwell model features the

elastic and viscous parts in series while Kelvin-Voigt model connects them in parallel. The

constitutive equations for the stress-strain relationship are

Spring: σs = Esεs (3.71)

Damper: σd = cdε̇d (3.72)

where Es is the Young’s modulus of elastic part, and cd is the viscosity of the dissipative

element.1 The damper’s constitutive equation is analogous to the Newton’s law of viscosity

for fluids: τxy = µ(∂ux/∂y) where ux is the velocity in the x-direction. Table 3.5 sum-

marizes the models, dynamic equations, as well as the demonstrations of creep and stress

relaxation of each model in the time domain. Generally, creep is referred to as the gradual

changes of deformation over time under a constant stress. In Table 3.5, creep is observed

by switching on and off a constant load. Specifically, when the load is applied, Maxwell

model predicts that the strain increases linearly without bound before the load is turned

off. Meanwhile, Kelvin-Voigt model predicts that strain increases asymptotically before it

gradually decreases once the load is switched off. Stress relaxation, on the other hand, is

generally defined as the changes of stress over time when a constant strain is applied.
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Table 3.5: Time-domain characteristics of classical viscoelastic models1

Maxwell Kelvin-Voigt

Model

Dynamic equations
cd
Es
σ̇ + σ = cdε̇ σ = Esε+ cdε̇

Creep

Stress relaxation

It is also meaningful to define the viscoelastic responses in the frequency domain.

Assume that a viscoelastic material is subjected to a sinusoidal stress such that

σ = σ0e
iωt (3.73)

ε = ε0e
iωt (3.74)

where σ0 is the amplitude of stress, ε0 is the amplitude of strain, and Euler’s formula is

used above to assist with the derivation. Using the Maxwell’s dynamic equation in Table

3.5, we can show that the amplitude of stress and strain are related by the following form1

σ0 =

[
ω2λ2

1 + ω2λ2
Es + i

ωλ

1 + ω2λ2
Es

]
ε0 (3.75)

σ0 =

[
E′(ω) + iE′(ω)

1

ωλ

]
ε0 (3.76)

σ0 =
[
E′(ω) + iE′(ω)η(ω)

]
ε0 (3.77)

σ0 =
[
E′(ω) + iE′′(ω)

]
ε0 (3.78)
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where λ = cd/Es. The real part E′(ω) is called storage modulus, the imaginary part E′′(ω)

is called loss modulus, and η(ω) is the loss factor. It is obvious that η(ω) is equal to the ratio

of loss modulus over the storage modulus. Since the stress-strain relationship is related by

a complex form of moduli, the complex modulus E∗(s) is often defined as

E∗(s) = E∗(iω) = E′(ω) + iE′′(ω) (3.79)

where s is the Laplace complex variable: s = σ+iω. Since the stress and strain are assumed

to be non-decaying (steady-state) sinusoidal, the σ component vanishes (σ = 0). Similar

steps can be applied to the Kelvin-Voigt model to describe the moduli and loss factor in

terms of frequency ω. Table 3.6 shows the frequency-domain characteristics of the Maxwell

and Kelvin-Voigt model.

Table 3.6: Frequency-domain characteristics of classical viscoelastic models1

Maxwell Kelvin-Voigt

Storage modulus

Loss factor

Although these classical theories are helpful in understanding the nature and con-

cepts of viscoelastic materials, some of the responses are unrealistic, and the classical theo-

ries have serious limitations in modeling accurately the behavior of viscoelastic materials.1

Characterization of these viscoelastic materials, in reality, relies heavily on experimental

data. Table 3.7 shows several testing methods to measure the dynamic parameters of vis-

coelastic materials that are necessary for understanding and simulating their behavior. Two

popular methods are DMTA† and Oberst beam, which are discussed in Appendix E.

†DMTA stands for dynamic, mechanical, thermal analyzer.
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Table 3.7: Operating ranges of 5 methods for testing viscoelastic materials1

Method Freq. (Hz) Temp. (°C) Testing mode

DMTA 0.01 to 200 -150 to 300 Shear, tension, bending

Torqued cylinder 50 to 1,500 -40 to 70 Shear

Resonant bar 2.5 to 25,000 -60 to 70 Tension

Oberst beam 10 to 10,000 -60 to 120 Bending of composite beams

Ultrasonic spectroscopy 104 to 1010 -35 to 60 Shear

Once the testing data are collected, they are curve-fitted to either time-domain or frequency-

domain model to yield key parameters for simulation studies. Multiple advanced models

have been introduced, such as the Fractional Derivative (FD), the Golla-Hughes-McTavish

(GHM), or the Augmented Temperature Fields model (ATF). The GHM is discussed briefly

here, and the other models are left for audience to investigate further. The complex shear

modulus G∗(s) in the frequency domain is described as follows

G∗(s) = G0

[
1 +

N∑
a=1

αa
s2 + 2ζaωas

s2 + 2ζaωas+ ω2
a

]
(3.80)

where G0 is the equilibrium (static) value of shear modulus at ω = 0. The parameters αa, ζa,

and ωa are obtained from the curve fitting process at a given temperature. Function fmincon

in MATLAB® can be used to assist with the fitting process in which the above parameters

are constrained by appropriate conditions. In general, the more mini-oscillators N are used

in the GHM model, the more accurate the model will be in comparison to experimental

data. For linear, homogeneous, and isotropic viscoelastic materials, the extensional complex

modulus E∗(s) can be derived from the complex shear modulus through the relationship

G∗(s) =
E∗(s)

2
[
1 + ν(s)

] (3.81)

where ν(s) is the complex Poisson’s ratio. For simplicity, however, a real frequency-

independent Possion’s ratio ν = ν(s) is assumed,44 which allows the shear and extensional

loss factor to be equal: ηE(ω) = ηG(ω) = η(ω).
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The Generalized Maxwell Model (GMM) provides an alternative approach to the

GHM model such that it enables the modeling process in both time and frequency domains.

The GMM method is, in fact, extensively used in many commercial FEA software such

as ANSYS.1 Mathematically, the model is expressed in the time domain by the following

Prony series

E(t) = E0

[
1 +

N∑
a=1

αa exp

(
− t

ρa

)]
(3.82)

where E0 is the equilibrium modulus at t =∞ when the material is totally relaxed, αa is the

relative modulus, and ρa = ηa/Ea is the relaxation time constants. The complex modulus

in the frequency domain, which can be derived by using Laplace transform, is expressed as

E∗(s) = E0

[
1 +

N∑
a=1

αa
ρas

ρas+ 1

]
(3.83)

Since the GMM model has lower order than the GHM model, it can reduce the complexity

in finding the fitting parameters for experimental data. In Abaqus, these parameters can

be input directly into the material tab to evaluate the viscous part of the model.

It is also important to mention that the behavior of viscoelastic materials depends

primarily on the operating frequency and temperature,1 and Figure 3.18 demonstrates how

these factors affect the storage modulus E′ and loss factor η. There are 3 distinct regions

for any viscoelastic materials in which the behavior drastically changes: the glassy, the

transition, and the rubbery region. For example, for the frequency of 5 Hz in Figure 3.18,

the glassy region is approximately below 15 °C, the transition region is between 15–35 °C,

and the rubbery region is above 35 °C. These categories apply to both storage modulus and

loss factor. Ideally, the viscoelastic materials should be chosen so that they are operated

near the peak in loss factor to maximize the damping effect, which is the main purpose in

most applications.
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Figure 3.18: Effects of temperature and frequency on storage modulus and loss factor1

3.4.2 Visco-hyperelastic Materials

For visco-hyperelastic materials, instead of a constant Young’s modulus reflecting

the linear elastic constitutive relationship, the elastic part can be modeled by the hyper-

elasticity theory where different models such as Neo-Hookean, Mooney-Rivlin, Yeoh, or

Ogden model can be used. Viton†, which is a rubber-like material, is a vacuum compatible

elastomer that should be categorized as a visco-hyperelastic material due to its non-linear

elastic response. However, the amount of strain also determines whether a hyperelastic

model is necessary to model the elastic part. If the strain is below approximately 5–10%,18

Young’s modulus and Poisson’s ratio are sufficient while large strain simulations require

hyperelastic models to best fit the testing data. For educational purposes, the hyperelastic

†Fluoroelastomer, or FKM, is the American standard ASTM name of Viton whereas Viton is named
after a trademark product of Du Pont’s elastomer. They both refer to the same type of material.
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model, which will be discussed in the next section, is used in this thesis to model Viton

gaskets’ elasticity.

For the viscous part, time-domain or frequency-domain parameters are defined

similarly as discussed in the previous section, and depending on how the materials are

tested, they can be input to Abaqus accordingly. However, for the extraction of eigenvalues,

the viscous inputs are not required. This can be explained by observing that the natural

frequency is proportional to stiffness and inversely proportional to mass. Since mass only

depends on material’s volume and density, it remains unchanged during steady-state and

transient responses at a constant temperature. Stiffness, which depends on part’s geometry

and material’s elasticity, also does not change at a fixed temperature because the equilibrium

modulus is defined when the material is static and relaxed. Hence, the viscous part should

not affect natural frequency study. However, for transient frequency responses of structures

under repeated random impulses, we still need to include the viscous part to ensure an

accurate model, so future investigations are necessary to fully characterize this type of

materials. If the structures change their shapes or masses while under loading condition,

the viscous part needs to be fully incorporated in the analysis.

3.4.3 Mooney-Rivlin Model for Hyperelastic Materials

Each manufacturer has different methods and uses different chemical composi-

tions to make Viton, so samples need to be thoroughly tested before they are used on any

applications. During testing, the correct loading type is extremely important to gather

correct material parameters to simulate materials’ responses for the intended applications.

For example, data from uniaxial tension tests are not sufficient to describe the materials’

behavior in applications where the materials will be compressed or subjected to biaxial ten-

sion. Since the Viton gaskets in our VIS will be sandwiched between Al caps and Al hollow

tube, we are interested in studies and data describing Viton samples in uniaxial compres-

sion. Performing compression tests on elastomers are relatively difficult due to friction,18 so

an equivalent experimental test for uniaxial compression should be employed. Figure 3.19
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shows the equivalence between uniaxial compression and equibiaxial tension. A Viton sheet

being subjected to both equibiaxial tensile tractions σ and a hydrostatic stress state −σ will

experience a resultant uniaxial compression −σ as a result of the superposition principle.

Figure 3.19: Equivalence of equibiaxial tension and uniaxial compression

There are two methods to set up the equibiaxial tension tests: stretching a square

sheet in a biaxial testing machine or inflating a circular sample in a pressurized chamber. In

a study by Makino et al., the pressurized chamber method is used, and the equivalence of

uniaxial compression and equibiaxial tension for Viton is demonstrated. The test sample is

clamped at its edge in a pressurized chamber by an annular clamp. A microscope is directed

toward the surface of the inflated Viton sheet to measure the coordinates of marked points

with respect to inflation pressure. Since Viton exhibits a noticeable viscoelastic behavior as

it does not assume an immediate equilibrium position, it is necessary to wait 5–30 minutes

depending on the stretch ratios before taking measurements.25 Once the experimental data

are collected, the stretches and stresses are calculated and plotted as shown in Figure 3.20.

Figure 3.20: Least squares fit of the experimental data for Viton samples25
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Subsequently, the two-parameter first-order Mooney-Rivlin model is used to generate a

response curve to fit over the experimental data. Equation 3.84 shows the strain energy

function for the first-order Mooney-Rivlin model such that

W = C10(I1 − 3) + C01(I2 − 3) (3.84)

where I1 and I2 are the first and second strain invariants while C10 and C01 are material

constants to be determined. The invariants are defined in terms of principal stretches λ1, λ2,

and λ3 that are in the 1-direction, 2-direction, and 3-direction respectively

I1 = λ2
1 + λ2

2 + λ2
3 (3.85)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 (3.86)

Using the incompressibility property of this material (λ1λ2λ3 = 1), we can express the

principal true stress components in the 1-direction and 2-direction as

σ11 = σ22 = 2

(
λ2 − 1

λ4

)(
∂W

∂I1
+ λ2∂W

∂I2

)
(3.87)

where λ1 = λ2 = λ for equibiaxial tension. Equation 3.87 is linear in terms of C10 and

C01, so a linear least squares fit will appropriately provide a means to solve for these two

unknowns. In fact, these coefficients are chosen through the least squares regression process

to minimize the error in fitting the experimental data points.25 In Abaqus, the strain energy

function is split into the deviatoric and volumetric components. This separation of strain

energy function, however, should not affect the values of C10 and C01 since the material is

assumed to be fully incompressible, which allows the total volume ratio to be 1. Table 3.8

summarizes the material parameters for Viton that will be used in the following simulations.

The parameter D1 is associated with the volume ratio, so its value can be set zero.

Table 3.8: Material properties of Viton used in FEA models

Density C10 C01 D1

1,180 kg/m3 1,194.6 kPa 163 kPa 0
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In this study, the two-parameter Mooney-Rivlin model is used because it is a common

first-order strain energy function. In addition, the stretch ratio in the VIS is expected

to be small, which matches the anticipated maximum stretch ratio (less than 1.5) for the

application in this study. Although the Viton used in our VIS will be purchased from the

same supplier, performing actual tests on purchased Viton from McMaster in the future is

important to validate the results.

3.4.4 Natural Frequencies of Viton Gaskets

Since the eigenvectors representing mode shapes are mutually orthogonal, in-plane

and out-of-plane modes are not related, and they should be analyzed separately. Specifi-

cally, annular structures with rectangular cross-sections have both in-plane and out-of-plane

deformations since there is no common degree-of-freedom between the in-plane and out-of-

plane motions,43 so the natural frequencies and mode shapes of Viton gaskets are simulated

for both cases.

For the out-of-plane modes, Viton gaskets are modeled with quadratic quadri-

lateral shell elements, and two thicknesses are assigned accordingly. The through holes for

#4-40 vented screws are fixed as the boundary conditions for the simulation process. Figure

3.21 illustrates the mode shapes for the 1/8′′ Viton, and Table 3.9 shows the corresponding

natural frequencies. The mode shapes for 1/16′′ are very similar to those of 1/8′′, and they

can be found in Appendix D. Overall, thicker Viton gasket has higher natural frequencies for

each mode, and with 12 fixed through holes, the lowest natural frequency is above 100 Hz.

This suggests that there should be at least 12 screws to be used between the Al caps and

Al tube to maintain a uniform contact between the surfaces.

Table 3.9: First 4 out-of-plane natural frequencies of 2 Viton gaskets

Thickness Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)

1/16′′ 73.94 74.17 74.20 74.82

1/8′′ 133.81 134.54 134.54 136.57
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 3.21: First 4 out-of-plane mode shapes of the 1/8-inch Viton gasket

For the in-plane modes, Viton gaskets are modeled as plane strain since each

sandwiched gasket is constrained between two surfaces and there is no strain along the

thickness direction. Hybrid quadratic elements are used, and the gaskets are also fixed at

the through holes. It turns out that the thickness does not affect the eigenvalues for in-

plane modes, and both gasket versions have the same natural frequencies. Table 3.10 shows

the natural frequencies of both thicknesses, and Figure 3.22 illustrates the corresponding

in-plane mode shapes.

Table 3.10: First 4 in-plane natural frequencies of 2 Viton gaskets

Thickness Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz)

1/16′′ & 1/8′′ 165.97 175.42 175.42 199.69
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 3.22: First 4 in-plane mode shapes of Viton gaskets

Similar to the shell elements used for Al hollow tube, the quadrilateral shell for-

mulation allows convergence to occur relatively fast for Viton gasket study, which can be

seen in Figure 3.23. Both in-plane and out-of-plane modes for Viton gaskets suggest that

in the real structure, we should expect some resonances with small amplitude above 100 Hz

in the VIS’s frequency response due to the Viton gaskets before seeing a larger peak of the

VIS’s first natural frequency due to the Al hollow tube. The boundary conditions for plane

strain study also suggest that we should not overcompress the Viton gaskets; otherwise, the

plane strain will become a plane stress study.
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Figure 3.23: Convergence study for the 1st natural frequency of Viton gasket

3.4.5 Transient Modal Dynamics of Viton Gaskets in Abaqus

Once the natural frequencies are investigated, we can illustrate the effect of Viton’s

thickness on damping with the transient modal dynamics in Abaqus. This analysis allows us

to construct an impulse force applied to a node and observe the time-domain free response

at another neighboring node. Figure 3.24 pictures the applied point load on the Viton

gasket in the negative z-direction, and Table 3.11 shows how the load is constructed. The

impulse force is defined by an amplitude curve such that the total area under the curve

adds up to approximately 1 N. The time period is 0.15 s, and the time increment is set to

0.1 ms, which will result in 1,500 frames per time period.

Table 3.11: Tabular amplitudes for impulse loading

Time (s) Amplitude (N/s)

0 0
0.001 333
0.003 333
0.004 0
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Figure 3.24: Point load applied to Viton gaskets in transient modal dynamics

The structure’s response is based on a subset of the number of modes, so this step must be

inserted after the eigenvalue extraction step. In this study, the first 10 modes are requested.

Figure 3.25 shows the transient responses of two Viton gaskets under the same impulse force

recorded at node 215. The excitation in the thicker Viton (0.125′′) is attenuated much faster

than the thinner one (0.0625′′), and the amplitude of the excitation is reduced significantly

as well—almost 9 times.

Figure 3.25: Modal dynamic transient responses of 2 Viton gaskets

Usually, to demonstrate the material damping, the Rayleigh damping method is assumed,

and user-defined coefficients α and β are used to define the damping coefficient matrix C
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such that

C = αM + βK (3.88)

where M is the mass matrix, and K is the stiffness matrix as usual. For a given mode i,

the damping ratio ζi can be defined in terms of the natural frequency at each mode as

ζi =
α

2ωi
+
βωi
2

(3.89)

The parameters α and β can be chosen based on previous experience or to match experimen-

tal data. Hence, future studies should revisit this section to propose the guesses for these

parameters. In the meantime, this modal dynamic analysis step aims to produce a certain

mode shape in the gasket, and the responses shown in Figure 3.25 are to help visualize the

responses of two gasket samples to an impulse load. The responses do not demonstrate the

material damping through the definition of Rayleigh damping as a linear combination of

the mass and stiffness matrix. Rather, the illustration gives a sense of how the thickness

affects the responses of the gaskets, as we already discuss that the thicker the Viton gasket

is, the more damping there will be for the housing tube.
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Chapter 4

MAGNETIC DAMPING ANALYSIS

4.1 Background

In Chapter 2, the natural frequencies of the mass-spring system for vertical mode

and yaw mode are discussed, and the effectiveness of damping ratio in the vibration isolation

region is demonstrated through the displacement transmissibility plot. Ideally, the damping

ratio for the mass-spring system should be less than 0.2 for each DOF to provide the right

amount of damping in the vibration isolation region; otherwise, the amplitude of the random

noises and floor vibrations will be enhanced, and the overall effectiveness of the VIS will be

reduced.

Because of the high compatibility of magnetic damping in UHV environment, this

will be the main damping mechanism for the mass-spring system. Magnetic damping due

to eddy currents generated in the conducting material by permanent magnets, although

easy to demonstrate, is notoriously difficult to calculate,14 analyze, and simulate. In this

chapter, the fundamental theories of electromagnetism will be reviewed before we discuss a

previous study using magnetic damping on a cantilever beam. The same concepts will be

then applied to two vibration modes of the mass-spring system: vertical and yaw modes.

4.2 Electromagnetism Concepts

Just like the mechanical world, the electromagnetism world can be separated into

two realms: statics and dynamics. The fundamental equations for electrostatics and magne-

tostatics, as well as the constitutive relations for linear and isotropic media are summarized

in Table 4.1 where E is the electric field (V/m), D is electric flux density (C/m2), H is

the magnetic field intensity (A/m), B is the magnetic flux density (T or Wb/m2), and J
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is the volume current density (A/m2). The constant µ represents permeability (H/m), ρ

represents electric volume charge density (C/m3), and ε represents permittivity (F/m). All

units are standard SI units.

Table 4.1: Fundamental relations for electrostatic and magnetostatic models5

Electrostatic model Magnetostatic model

Governing equations
∇×E = 0 ∇ ·B = 0
∇ ·D = ρ ∇×H = J

Constitutive relations D = εE H =
1

µ
B

The magnetic flux density B is an indisputably fundamental quantity14 and deserves the

name magnetic field. Many textbooks, however, refer to both B and H as magnetic field, so

each of them will be called alongside with its symbol in this thesis to avoid any confusion,

even though this sounds extremely repetitive to the audience and especially the author!

Hence, B is often referred to as magnetic flux density in this thesis to allow for variations

in the language but not in the physical meaning.

Electrodynamics forms the foundation for the interrelationship between electric

fields and magnetic fields: a changing magnetic field will give rise to an electric field, and

vice versa. The Maxwell’s equations encapsulate these ideas and explain electromagnetic

phenomena under time-varying conditions.5 The Maxwell’s equations, Lorentz force law,

and the electromagnetism continuity equations explain and predict all macroscopic electro-

magnetic phenomena. One of the Maxwell’s equations—Faraday’s law—will be explained

below since this law is directly applicable to the formation of magnetic damping concepts.

4.2.1 Faraday's Law & Lorentz Force Law

In 1831, Michael Faraday reported a series of experiments, including three that

can be summarized below:
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• Experiment 1. A loop of wire was moved into and out of a constant magnetic field

generated by a fixed magnet. A flow of current was detected in the loop.

• Experiment 2. A magnet was moved into and out of a loop of wire that was held still.

A flow of current was also detected in the loop.

• Experiment 3. Both an electromagnet and a loop of wire were fixed. A time-varying

magnetic field from the electromagnet caused a flow of current in the loop.

In all three experiments, Faraday discovered that an electric field was induced by a changing

magnetic field. This discovery is an experimental postulate that can be expressed by a

mathematical equation

E = −dΦ

dt
(4.1)

where E is the electromotive force (V), or emf, and Φ is the flux (Wb) of magnetic field B

crossing a surface. The negative sign indicates that the induced emf will cause a current

to flow in the closed loop in such a direction that it opposes the change in the magnetic

flux Φ. This is also known as Lenz’s law. Equation 4.1 describes all three experiments,

and sometimes it is referred to as the Faraday’s law. However, describing the Faraday’s law

this way conceals the underlying reasons for each case. In the first experiment, the emf is

induced by the moving conductor, and Lorentz force helps explain how the charges move

across the conductor. The emf is magnetic14 and frequently referred to as the motional emf.

In the second and the third experiments, the time-varying magnetic field induces the electric

field, which in turn explains the emf. This emf is commonly known as the transformer emf.

Before going into detail about each emf, we will discuss the Lorentz force law first as this

is related to the motional emf.

In the present of both electric field E and magnetic field B, an electric charge q

moving with velocity v experiences a force that can be described as

F = q (E + v×B) (4.2)
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This is known as the general Lorentz force law, and it can be considered a fundamental

postulate of electromagnetic model because it cannot be derived from other postulates.5

In Faraday’s first experiment, when a conductor moves with a velocity v in a static (non-

time-varying) magnetic field B, this force will cause the freely movable electrons in the

conductor to drift toward one end and leave the other end positively charged.5 Because the

magnetic field B does not vary, there is no induced electric field E in the conductor nor the

surroundings. Moreover, since there is no applied electric field E, the Lorentz force law can

be reduced to

F = q (v×B) (4.3)

This force, however, can shift the electric charges and generate an electric field independent

from other sources. From the definition for the relationship between force and electric field

F = qE, the electric field generated by Lorentz force can be defined as

E = v×B (4.4)

Using the definition of emf such that

E =

∮
C

E · dl (4.5)

we can describe the motional emf in terms of velocity v and magnetic field B as

Emotional =

∮
C

(v×B) · dl (4.6)

In Faraday’s second experiment, the magnetic field B varies because of the moving

magnet, and this will induce an electric field E. In the third experiment, time-varying

magnetic field caused by the electromagnet also induces an electric field E. The differential

form of the well-known Faraday’s law stated in the Maxwell’s equations allows us to describe
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these phenomena as follows

∇×E = −∂B

∂t
(4.7)

Taking the surface integral of Equation 4.7 and using Stokes’ theorem, we have

∫
S

(∇×E) · ds =

∫
S

(
−∂B

∂t

)
· ds (4.8)∮

C
E · dl = − d

dt

∫
S

B · ds (4.9)

Etransformer = − d

dt

∫
S

B · ds (4.10)

If we use the definition of magnetic flux Φ such that

Φ =

∫
S

B · ds (4.11)

we can achieve exactly the experimental postulate shown in Equation 4.1. Therefore, the

Faraday’s law stated in the Maxwell’s equations describes a more specific case of the so-

called Faraday’s law shown in Equation 4.1 that is somewhat too generic.

To incorporate both the motional emf and transformer emf, we can write the

general Faraday’s law in the integral form as

∮
C

E · dl =

∫
S

(
−∂B

∂t

)
· ds+

∮
C

(v×B) · dl (4.12)

E = Etransformer + Emotional (4.13)

Equation 4.12 can be used to described a moving circuit or a moving conductor in a time-

varying magnetic field. The line integral on the left-hand side of Equation 4.12 is the emf

induced in the moving frame, and the division of the induced emf between the transformer

and the motional parts depends on the chosen frame of reference.5
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4.2.2 Eddy Currents & Motional Damping Force

Once the induced emf is generated in the medium, it will produce local currents

in the conducting material normal to the magnetic flux Φ. These currents, which are

called eddy currents, create the magnetic fields to oppose the changes of the magnetic

flux permeating the conductor. The strength of eddy currents can be expressed by the

microscopic form of Ohm’s law similar to other types of currents

J = σE (4.14)

where σ is the electric conductivity of a medium (S/m). Using the local electric field that

is generated by the Lorentz force highlighted in Equation 4.4, we can derive the following

relationship for eddy current density

J = σ (v×B) (4.15)

Since the free electric charges reside in a conductor which moves at a uniform speed, Equa-

tion 4.15 can be used to describe the overall eddy current density in the moving conductor

immersed in a magnetic field B.

On the microscopic level, the electric charges constituting the eddy currents will

form a different Lorentz force to oppose the changes in magnetic flux Φ. Using the definition

of Lorentz force law once again, we can derive the motional damping force in terms of eddy

current density J as follows

F = q (E + v×B) (4.16)

dF

dV
=

dq

dV
(v×B) (4.17)∫

V
dF =

∫
V
ρ (v×B) dV (4.18)

F =

∫
V

(J×B) dV (4.19)
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The applied electric field does not exist, so it can be removed. The volume charge density

ρ is defined in terms of the infinitesimal electric charge dq over a volume element dV , and

another definition of current density (J = ρv) is used. This definition allows us to find the

motional damping force through the cross product of eddy current density J and magnetic

flux density B instead of quantifying the charge density ρ. Moreover, it is important to

note that Equation 4.18 and Equation 4.19 are equivalent: no motional damping force is

generated if the velocity of the conductor v is parallel to the magnetic flux density B since

their cross product is zero. The cross product of J×B also disappears in that case because

there is no eddy current density generated in the conductor; hence, the force must be zero

as well. This agrees with the Lorentz force law for a charge particle moving parallel to the

magnetic field B in an absence of electric field E such that it experiences no force.

4.3 Magnetic Flux Density B

The magnetic flux density B for a wire carrying a constant current can be readily

shown by using the Biot-Savart law. For a permanent magnet, it is not as straightforward,

and other theories must be used to find an equivalence for the magnet depending on its type,

shape, and strength. There are two main models: the current model and the charge model.

In the current model, the magnet is reduced to a distribution of an equivalent current, which

is then input into the magnetostatic field equations in Table 4.1 to obtain the magnetic field

B.13 In the charge model, the permanent magnet is reduced to a distribution of equivalent

magnetic charge instead. Since the derivation is relatively complicated, only the equations

describing the magnetic field B using the current model are shown below. Specifically, these

equations are derived in Craik’s textbook.8 The radial and vertical components at position

(r, z) above the top surface of a cylindrical magnet are

Br =
µ0I

2πL

∫ L/2

−L/2

z − z′

r
√

(R+ r)2 + (z − z′)2

[
−K(k) + E(k)

R2 + r2 + (z − z′)2

(R− r)2 + (z − z′)2

]
dz′ (4.20)

Bz =
µ0I

2πL

∫ L/2

−L/2

1

r
√

(R+ r)2 + (z − z′)2

[
K(k) + E(k)

R2 − r2 − (z − z′)2

(R− r)2 + (z − z′)2

]
dz′ (4.21)
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where µ0 = 4π× 10−7 is the permeability of free space (Tm/A or H/m), I is the equivalent

current (A), L is the magnet’s length (m), R is the magnet’s radius (m), and z′ is the

variable of integration. For a magnet that is magnetized along the length direction, the

equivalent current can be determined as

I = M0L (4.22)

where M0 is the magnetization of a magnet (A/m). The value of M0 can be obtained

through the remanent flux density† Br, which is defined as the amount of magnetization

left in the ferromagnetic material after the external magnetic field is removed. In the

neodymium magnets, the material is NdFeB while common electromagnets use iron cores

instead. Table 4.2 shows typical values of remanence Br for each magnet grade.

Table 4.2: Typical values of remanence Br for different grades of neodymium magnets12

Magnet grades Br (G)

N35 11,700–12,200
N38 12,200–12,500
N40 12,500–12,800
N42 12,800–13,200
N45 13,200–13,800
N48 13,800–14,200
N50 14,000–14,500
N52 14,300–14,800

The unit for Br from most magnet manufacturers is Gauss (G), which can be converted to

magnetization M0 by the following equation

M0 =
Br
µ0

(4.23)

To simulate the magnetic flux density B, the magnet parameters should be ob-

tained from the supplier. Table 4.3 shows the parameters of the chosen magnet for this

thesis from McMaster. To perform the integration in Equation 4.20 and Equation 4.21,

†Other names are remanence, remanent magnetization, or residual magnetism.
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a MATLAB® function is written, which is attached in Appendix F for reference, and the

numerical integration technique highlighted in Table 3.1 can be used. The results are then

plotted in 2D and 3D with the shape of the magnet, which are illustrated in Figure 4.1.

Table 4.3: Magnet parameters for a neodymium magnet from McMaster

Grade Length Outer dia. Remanence Br
N42 3/16′′ 1′′ 13,000 G

(a) 2D (b) 3D

Figure 4.1: Visualization of magnetic flux density B using MATLAB®

In order to verify the magnetic flux density B produced by the MATLAB® script,

we will first compare the results at the magnet’s center line from our code with an equation

specifically derived to find magnetic field B at the center line from a different textbook by

David Cheng.5 The equation is shown below:

B =
µ0M0

2

[
z√

z2 + b2
− z − L√

(z − L)2 + b2

]
k̂ (4.24)

Equation 4.24 is obviously much easier to compute, and the results are overlaid with those

from Craik’s equations in Figure 4.2. Although the results from each author’s equation

match nicely, further investigation is necessary. Essentially, Equation 4.24 can only predict

the vertical component at the center line. The radial component is not taken into account,

and it cannot be verified. This requires us to use another software called FEMM to find

the magnetic flux density B.
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Figure 4.2: Magnetic field along the center line from 2 authors

This FEA software allows us to plot the magnet, input material parameters, discretize the

space outside of the magnet, and calculate the magnetic field B. Figure 4.3a illustrates the

discretization scheme of FEMM using triangular elements. Since the cylindrical magnet

is symmetrical about its center axis, only half of the magnet is plotted and simulated.

Moreover, the circular boundary region of air around the magnet must be included to make

the simulation act as if the analysis is performed on an unbounded domain,26 even though

the finite region of the surrounding space is modeled. Figure 4.3b shows the magnetic flux

density B results in FEMM. The normal and tangential data are collected at the surface

of the magnet and at 15 mm above the surface, which are then overlaid with the respective

numerical results of the magnetic flux density B from the previous MATLAB® function

using Craik’s equations. With a numerical integration function written separately, we can

attempt several trials for the number of integration points since the formula shown in

Equation 3.52 only applies to polynomials and simple fractions. For the complicated ratios

of functions in Equation 4.20 and Equation 4.21, although the Gauss-Legendre quadrature

rules can still be applied, it turns out that we need more integration points than what is

predicted by Equation 3.52. Seven integration points seem to be sufficient and allow the

results between each method to match, which can be seen in Figure 4.4.
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(a) Spacial discretization using
triangular elements

(b) FEA results for magnetic
flux density B

Figure 4.3: Magnetic flux density B generated by FEMM

(a) Br at surface (b) Bz at surface

(c) Br 15mm above surface (d) Bz 15mm above surface

Figure 4.4: Magnetic flux density B comparison between MATLAB® and FEMM
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4.4 Magnetic Damping for a Cantilever Beam

Before discussing the analyses for the VIS magnetic damping, we must first assure

the audience that the journey we are embarking on up until this point is trustworthy and

fruitful. After all, these simulations rely heavily on numerical methods, and without exper-

imental data, they are merely colorful cartoons rather than correct illustrations of physical

phenomena that we absolutely intend them to be. Fortunately, several previous studies for

magnetic damping are done and proved to be reliable. For this thesis, we will compare

the results from a series of experiments by Henry Sodano41 to our calculations in terms

of magnetic damping for a cantilever beam. Figure 4.5 shows the setup of the experiment

as well as the measured natural frequencies of the beam, and Table 4.4 lists the magnet

parameters used in the study.

Table 4.4: Magnet parameters for Sodano’s experiment

Grade Length Outer dia. Remanence Br
N35 12.7 mm 6.35 mm 12,100 G

(a) Experiment setup of the Al beam and eddy
current damper

(b) Experimental measurement of damped and
undamped frequency responses

Figure 4.5: Experiment setup and measured frequencies in Sodano’s experiment41

The natural frequencies observed in Figure 4.5b are approximately 9 Hz for the first mode

and 65 Hz for the second mode. We use the same MATLAB® functions as above to nu-

merically calculate magnetic flux density B as well as the damping ratios for each mode.
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The results are shown in Figure 4.6 along with the original data and calculations from

Sodano’s study. As we can observe, the damping ratios with edge effects predicted by our

code match very closely with the calculations in Sodano’s study for finite conductor with

edge effects. In calculating damping ratios, because we are only interested in a quick check

against Sodano’s study, we assume the effective conducting sheet that the magnet interacts

with is all Cu instead of having an Al beam element sandwiched between 2 pieces of Cu as

shown in Figure 4.5a. Even though we incorporate the edge effects for finite conductor in

our codes, assuming 100% Cu should give us an overestimate of damping ratios since Cu

has a higher conductivity than Al and leads to higher eddy current density. However, as

we see in Figure 4.6, the margins are very small.

(a) Experimental data & predictions for damping
ratio of the 1st mode in Sodano’s study41

(b) Damping ratio of 1st mode predicted by our
MATLAB® scripts

(c) Experimental data & predictions for damping
ratio of the 2nd mode in Sodano’s study41

(d) Damping ratio of 2nd mode predicted by our
MATLAB® scripts

Figure 4.6: Damping ratio comparison with Sodano’s study
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4.5 Magnetic Damping for VIS

In the previous section, the eddy current density is calculated but not shown since

we are more interested in demonstrating the similarity of results between our code and

Sodano’s study. In this section, we will explain the mathematical procedures in calculating

the eddy current density as well as the damping ratios for the VIS. Figure 4.7 shows the

latest configuration with two magnets attached to the bottom cap on either side as an

example. Since the magnets are fixed at the bottom of the VIS, only the motional emf is

generated in the Cu stage. The derived EOMs for vertical and yaw modes in Chapter 2 will

be used to form the complete 2nd-order ODEs, which will be solved in MATLAB® using

ode45 function to find the time domain response for each mode.

Figure 4.7: Current configuration of magnets under the Cu stage

4.5.1 Eddy Current Density

Because we only consider two modes for the mass-spring system, the velocity vector

for an off-center piece of Cu conductor directly above the magnet can be expressed in the

cylindrical coordinate system as

v = vθθ̂ + vzẑ (4.25)

where vθ and vz are the transverse and vertical components respectively, and the coordinate

system is fixed at the center of the bottom cap. The magnetic flux density B with radial
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and vertical components can then be written in this coordinate system as

B = Brr̂ +Bzẑ (4.26)

Notice that the magnetic flux density B is already numerically calculated in MATLAB®, so

every point in the discretized space above the magnet contains only the values of (Br, Bz)

without the direction for each component in the magnet’s coordinate system. This will

allow us to conveniently assign the components of B into a different coordinate system in

Equation 4.26 to assist with the calculations of motional damping forces. With this new

assignment, the direction of each component of B will make the motional damping forces

to be opposite of the velocity vector. In the following calculations, audience is encouraged

to use the right-hand rule to verify the cross products and directions of forces.

We can then calculate the total eddy current density for an infinite conducting

stage by using Equation 4.15 such that

J = σ

∣∣∣∣∣∣∣∣∣∣
r̂ θ̂ ẑ

0 vθ vz

Br 0 Bz

∣∣∣∣∣∣∣∣∣∣
(4.27)

J = σ
(
Bzvθr̂ +Brvzθ̂ −Brvθẑ

)
(4.28)

Each mode can be considered separately because they are mutually orthogonal, so the eddy

current density for the vertical mode where vθ = 0 is

Jv = σBrvzθ̂ (4.29)

The eddy current density for the yaw mode where vz = 0 is

Jy = σBzvθr̂ − σBrvθẑ (4.30)
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Since the eddy current density for the yaw mode contains both r̂ and ẑ components, the

magnitude of Jy is treated as the magnitude of a vector: square root of the sum of each

component squared.

In order to quantify the numerical values of eddy current density, we need to

estimate the velocity value for each mode. If we assume the amplitude of the vertical mode

is 1 mm per cycle and the natural frequency for the vertical mode is 1.38 Hz as shown at

the end of Chapter 2, we can estimate the vertical velocity as

vz =

(
1.38 cycles

s

)
×
(

1 mm

cycle

)
(4.31)

vz = 1.38 mm/s (4.32)

For the yaw mode, we also must maintain the standard SI unit for the eddy current density

to be A/m2. If the amplitude of rotation is 1 mm per cycle and the natural frequency for

yaw mode is 0.48 Hz that is shown at the end of Chapter 2, we can estimate the transverse

velocity for the yaw mode as

vθ =

(
0.48 cycles

s

)
×
(

1 mm

cycle

)
(4.33)

vθ = 0.48 mm/s (4.34)

The infinite eddy current density model neglects the edge effects, so it is only accu-

rate for an infinite large conducting stage above a magnet. However, since the eddy current

is required to be zero at the edges so that the damping force is not overestimated,41 we

need to calculate the finite eddy current density using the image method. This technique

consists of two steps: calculating the regular eddy current density as before and then gen-

erating a mirror, or imaginary, image of eddy current density about the conductor’s edge.

The difference between the infinite and imaginary components ensures zero eddy current

density at the boundaries of the conductor. The finite eddy current density for vertical
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mode Jfit
v can be expressed as

Jfit
v = Jinf

v − Jimg
v (4.35)

Jfit
v = σvz

[
Br(r, z)−Br(2rout − r, z)

]
θ̂ (4.36)

where rout is the outer radius of the effective conducting area. Similarly, the finite eddy

current density for yaw mode Jfit
y can be calculated as

Jfit
y = Jinf

y − Jimg
y (4.37)

Jfit
y = σvθ

[
Bz(r, z)r̂ −Br(r, z)ẑ

]
− σvθ

[
Bz(2rout − r, z)r̂ −Br(2rout − r, z)ẑ

] (4.38)

Figure 4.8 pictures the regular, imaginary, and finite eddy current density for each mode to

illustrate the concept of image method. The calculation of eddy current density becomes

unstable as the radius of magnet approaching the radius of the conductor, so we recommend

that the projected radius of the conductor is twice as large as the radius of the magnet.

Appendix G details the MATLAB® code that is used to calculate and display the eddy

current density.

(a) Vertical mode (b) Yaw mode

Figure 4.8: Visualization of eddy current density
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4.5.2 Damping Coefficients and Damping Ratios

As we have discussed, the transformer emf is absent since the magnets are fixed

and the magnetic flux density B does not change with time. Applying Equation 4.19, we

can find the form of motional damping force for the vertical mode as

Fv =

∫
V

(Jv ×B) dV (4.39)

Fv =

∫
V

[(
σvzBrθ̂

)
×
(
Brr̂ +Bzẑ

)]
dV (4.40)

It appears that the cross product should be carried out normally. However, it is important

to realize that the eddy current density for vertical mode Jv only exists because of the

vertical velocity vz and the radial component Br of magnetic flux density B. The vertical

component Bz does not contribute to the generation of the eddy current density Jv. This

is a crucial physical concept. In addition, from Equation 4.18, it can be observed that the

magnetic flux density component Bz does not contribute to the damping force41 because it is

parallel to the vertical velocity vz of the Cu conducting stage. Removing the Bz component

and assigning δ as the thickness of the Cu stage, we can calculate the motional damping

force Fv for the vertical mode as

Fv =

∫
V

[(
σvzBrθ̂

)
×
(
Brr̂

)]
dV (4.41)

Fv = −
∫
V
σvzB

2
r dV ẑ (4.42)

Fv = −σvzδ
∫ 2π

0

∫ rout

rin

B2
r r dr dθ ẑ (4.43)

Fv = −σvzδ2π
∫ rout

rin

rB2
r dr ẑ (4.44)

where rin and rout are the inner and outer radius of the effective conducting area respec-

tively. For a non-annular shaped conductor, rin is zero. The motional damping force is

proportional to the vertical velocity vz, so the magnetic damping can be categorized as a

form of viscous damping. The negative sign indicates that this damping force opposes the

motion of the stage. Using the definition of viscous damping, we can isolate the motional
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damping coefficient term as follows

Cv =
|Fv|
vz

(4.45)

Cv = σ2πδ

∫ rout

rin

rB2
r dr (4.46)

A MATLAB® function is written to calculate Cv, which is shown in Appendix H. The

results for motional damping coefficient are output in a column array where each value of

Cv corresponds to a specific height of the Cu stage from the magnet’s surface. These values

of Cv can then be used to calculate the damping ratio ζv as

ζv =
Cv
Ccrit
v

(4.47)

where Ccrit
v is the critical damping for vertical mode, which is defined similarly to that in

Chapter 2: Ccrit
v = 2

√
MKv = 2Mωn,v. With the stage’s mass of 3.95 kg and the vertical

natural frequency estimate of 1.38 Hz, we can calculate the critical damping for the vertical

mode as Ccrit
v = 68.499 kg/s. Figure 4.9a illustrates the relationship between the damping

ratio and the gap distance between the magnet’s surface and the Cu conductor. Since one

magnet does not seem to provide sufficient damping, damping by multiple magnets are

simulated by multiplying the damping ratio ζv with the corresponding number of magnets

as we assume there is a linear relationship between the number of magnets and the amount

of damping.

Similarly, the motional damping force for the yaw mode can be shown by taking

the cross product between the eddy current density for yaw mode Jy and the magnetic flux

density B

Fy =

∫
V

(Jy ×B) dV (4.48)

Fy =

∫
V

[(
σBzvθr̂ − σBrvθẑ

)
×
(
Brr̂ +Bzẑ

)]
dV (4.49)

Fy = −
∫
V
σvθ

(
B2
z +B2

r

)
dV θ̂ (4.50)
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(a) Vertical mode (b) Yaw mode

Figure 4.9: Damping ratios for multiple magnet configurations

Since both components of magnetic flux density B contribute to the eddy current density

Jy, the cross product is carried normally. With δ being the thickness of the Cu stage as

before, we can calculate the motional damping force Fy for the yaw mode as

Fy = −σvθδ
∫ 2π

0

∫ rout

rin

(
B2
z +B2

r

)
r dr dθ θ̂ (4.51)

Fy = −σvθδ2π
∫ rout

rin

r
(
B2
z +B2

r

)
dr θ̂ (4.52)

Since the motional damping force is proportional to the transverse velocity vθ, the magnetic

damping for yaw mode is also a type of viscous damping, and its damping coefficient can

be defined as

Cy =
|Fy|
vθ

(4.53)

Cy = σδ2π

∫ rout

rin

r
(
B2
z +B2

r

)
dr (4.54)

The same MATLAB® function in Appendix H is used to calculate this damping coefficient.

The output is also an array with each element being the damping coefficient for yaw mode

at each discretized height above the magnet’s surface. These values of Cy can then be used
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to calculate the damping ratio ζy by the relationship

ζy =
Cy
Ccrit
y

(4.55)

where Ccrit
y is the critical damping for yaw mode whose derivation is shown in Equation

2.51. With the average distance from the Cu stage’s centroid to the center of magnet to be

1.7 in, we can calculate the critical damping for yaw mode as Ccrit
y = 32.553 kg/s. Figure

4.9b shows the relationship between the damping ratio for yaw mode and the gap distance

from the magnet’s top surface. In addition, multiple magnets can be used, and the damping

ratio is multiplied by the corresponding number of magnets for which the linear relationship

between them is also assumed.

4.5.3 Time Domain Responses

Once the damping ratios are calculated and plotted against the gap distance, we

can decide the right amount of damping needed for the VIS. In turn, this decision dictates

the nominal gap as well as the number of magnets for the overall design. With 8 magnets

at 3-4 mm under the Cu stage, the damping ratio is approximately 0.1 for the vertical mode

and 0.2 for the yaw mode, which seems appropriate by earlier discussion at the beginning

of this chapter. Using these parameters and the ODE derived in Chapter 2 for each mode,

we can rewrite the ODEs for time domain simulations.

Using Equation 2.4 for the ODE form of the vertical mode, replacing the damping

coefficient Cv by the damping ratio ζv and the critical damping Ccrit
v , and using the vertical

stiffness Kv of the angled spring configuration highlighted in Equation 2.25, we have

Mz̈ + Cv ż +Kvz = 0 (4.56)

Mz̈ + 2ζv
√
KvMż +Kvz = 0 (4.57)

Mz̈ +
(

2ζv
√
nk sinφM

)
ż + (nk sinφ) z = 0 (4.58)
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Defining the state vector as

xv =

ż
z

 (4.59)

we can solve Equation 4.58 in the time domain with a displacement initial condition of

2 mm by a simple script in MATLAB® using ode45. Figure 4.10a shows the normalized

displacement response versus time. It takes the stage approximately 5-6 s to settle with an

overshoot of about 70%.

(a) Vertical mode (b) Yaw mode

Figure 4.10: Responses in time domain

Similarly, using Equation 2.43 for the ODE form of the yaw mode as well as

replacing the damping coefficient Cy by the damping ratio ζy and the critical damping

Ccrit
y , we have

Īz θ̈ + ζyC
crit
y R̄2θ̇ +

(n
2
kR2

s cosφ
)
θ = 0 (4.60)

Īz θ̈ +
(

2ζy
√
Īzκ
)
θ̇ +

(n
2
kR2

s cosφ
)
θ = 0 (4.61)(

1

2
MR2

s

)
θ̈ +

[
2ζy

√(
1

2
MR2

s

)(n
2
kR2

s cosφ
)]

θ̇ +
(n

2
kR2

s cosφ
)
θ = 0 (4.62)
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Defining the state vector as

xy =

θ̇
θ

 (4.63)

we can solve Equation 4.62 in the time domain with an angular displacement initial condition

of 0.05 rad (or 2.865°) by a simple script in MATLAB® using ode45. Figure 4.10b shows

the normalized angular displacement response versus time. It takes the stage approximately

7-8 s to settle with an overshoot of about 55%.

The simulations in the time domain are not fully captured on paper because we

can use MATLAB® to make an animation for each mode to visualize how the Cu stage

responses under each initial condition. Appendix I provides a snippet of the animation

script, including the GIF generation code, used to produce such animation.
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Chapter 5

CONCLUSION

5.1 Summary

That was quite a journey to get through many different topics! Building a vibration

isolation system for sensitive instruments, such as the STM, is a daunting task. Many issues

and analyses must be covered to establish the necessary framework because this process will

control the designs and material selection. Furthermore, it is important for the designers

as well as the end users of the VIS to understand the dynamic concepts and capability of

the system so that further improvements in the future can be easily integrated.

In Chapter 1, several designs of VIS and STM are discussed. An effective STM

such that both the scanning tip and the material holder stay on the same rigid platform

can reduce the complexity of the VIS because the system will less likely suffer from thermal

noises due to thermal expansion from different materials. Moreover, a rigid platform allows

a better control of where resonances occur so that the system can be tuning to reduce the

effects from identifiable vibration sources. A UHV environment provides another layer of

vibration isolation since it reduces debris particles, contamination, and vibrations transmit-

ted through air. The Lyding STM by itself is a robust microscope such that it is functional

at room temperature with constant height mode (CHM) operation, which is a significant

development compared to the first STM developed in the 1980s. However, CHM can easily

crash the tip of the microscope if the material’s surface is not flat—on the nanoscale, so

a functional and effective VIS is still a must for sophisticated operations. For this type of

STM, the mass-spring VIS system is chosen to provide a platform for the STM because

it is one of the most cost-effective systems to put in a vacuum chamber, especially when

the inside of the vacuum chamber is very compact: 14′′ height by 7.5′′ inner diameter.

A mass-spring system can also be readily analyzed with fundamental dynamic and vibra-
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tion equations from undergraduate-level mechanical engineering classes. This will make the

analyses and experiment setups somewhat easier and more straightforward.

In Chapter 2, even though the stage can have up to 6 DOF, only the vertical and

yaw modes are chosen for detailed analyses because these are two of the primary mode

shapes for systems with long springs and a heavy stage. Moreover, these two modes are

mutually exclusive: the eigenvectors representing these modes are mutually orthogonal,

which allows us to analyze them separately. The pitch/roll mode is also a primary mode,

and they can be analyzed similarly to the vertical mode. A single DOF model for the

vertical mode of the mass-spring system is proposed and analyzed to find the relationship

between the spring stiffness and the required stage’s mass to achieve vibration isolation.

This model allows us to derive the displacement transmissibility ratio whose plot then serves

as a guidance on choosing the right amount of damping for the vertical mode. The right

damping for yaw mode can be found by the same plot and equation because of the similarity

in the mathematical derivation. A damping ratio of 0.2 is ideal for both modes. The input

frequencies between 1-100 Hz are commonly found in laboratory environment, so the natural

frequency for each mode should be designed to be as low as possible. This will allow the

crossover—or vibration isolation—to occur early, and low frequency noises can be effectively

isolated. Once the suitable spring is selected among thousands of springs from two suppliers,

a wooden stage is used to validate the theoretical equations, which confirms that as the stage

gets heavier, the lower its natural frequency will be. Since stainless steel outgases much less

than music wire, it is the preferred spring material. Commercial springs can suffer from

imperfections, such as tolerances in manufacturing wires, which will negatively affect the

accuracy of spring stiffness. This leads to the difference in spring stiffness from supplier’s

data and from our calculations using given spring’s dimensions. Consequently, we need to

recalculate spring stiffness after purchasing by using the measurement of extended length,

which might reflect a more reliable estimate for spring stiffness.

In Chapter 3, FEA is used to investigate the housing for the mass-spring system

because 1-DOF analysis is not applicable for such multi-DOF body. Multiple preliminary

studies for different concepts are done before the hollow tube is chosen for further FEA
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studies. The hollow tube provides exceptional stiffness such that the 1st natural frequency

is approximately 540 Hz. This allows the housing to suppress input frequencies of 1-100 Hz

from the laboratory environment. In addition, such solid structure separates the natural

frequency peaks from each other. More distinctive peaks of the subsequent natural frequen-

cies mean that we can avoid having two adjacent resonance peaks, which can easily amplify

noises in the nearby regions of those peaks. The formulation of the finite element method

is introduced by using an axial beam, but the process is totally applicable for transverse

beam vibration as well. The discussion allows us to justify the choices of element type and

the order of shape functions used in the commercial FEA software with GUI like Abaqus.

Overall, there are a few residual methods besides the weighted-residual method, and the

Galerkin method specifically provides a fairly general framework for the numerical solution

of differential equations within the context of the weighted-residual formalization.30 The

finite element method is also used to study Viton, which is a visco-hyperelastic material. A

previous study characterizing Viton as a hyperelastic material with Mooney-Rivlin model

is used to input material parameters into Abaqus for the natural frequency study. Both

in-plane and out-of-plane modes are investigated, and the thicker Viton gasket is preferable

since it has higher natural frequencies for out-of-plane modes. This will help us avoid the

interference between the low natural frequencies of the thin gasket and the input noises of

laboratory environment. Transient modal dynamics in Abaqus is also used to investigate

the material response under an impulse load applied to a node. Thicker Viton demonstrates

higher damping capability, which can be seen by lower amplitude of sinusoidal response and

by faster recovery to equilibrium.

Finally, in Chapter 4, Faraday’s law and Lorentz force law are introduced, and they

are used as a basis to establish the fundamentals of eddy current and motional damping co-

efficients. The magnetic flux density B derived from the current sheet model is numerically

calculated in MATLAB®, and the results are then compared to those from an FEA software

called FEMM. Once the results for magnetic flux density B are confirmed, the eddy current

density and damping ratio for the transverse vibration of a cantilever beam are calculated

to compare with a previously published study. Although several assumptions are used to
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simplify the comparative study, the margin of error is very small, which gives us confidence

that the codes and calculations work well. For the VIS, an effective area of conductor above

the magnet is used to calculate the motional damping coefficients for both vertical and yaw

modes. It is recommended that the radius of the conductor’s effective area should be twice

as large as the radius of magnet. An important observation is that the vertical component

of B does not contribute to the generation of eddy current density for vertical mode, so

it is removed from subsequent calculations. This also agrees with the previous study for

magnetic damping of the cantilever beam. The damping coefficient is proportional to the

velocity for each mode, so magnetic damping can be categorized as viscous damping. Each

mode’s damping coefficient is then inserted into the corresponding equation of motion to

simulate the time domain responses. All equations and formulas derived in this chapter are

verified through dimensional analysis for standard SI units, and audience is encouraged to

verify them as well.

5.2 Future Work

Unfortunately, due to COVID-19, a portion of the manufacturing, experiments,

and validation work cannot be completed within the time frame allowable for the thesis.

However, because most of the important and fundamental studies have been done, we are

confident that the system should behave as closely as expected to the analyses. To continue

the development of the VIS, the following areas should be addressed to verify the analyses

as well as to open new possible research opportunities. Any new fundamental changes must

be accompanied by thorough analyses similar to this thesis to avoid any misconceptions.

The mass-spring system, which is the core of the VIS, has been already thoroughly

analyzed and designed to meet the criteria for vibration isolation, allowable load for the

springs, and spacial tolerances in the vacuum chamber. Further experiments for the 6-spring

configuration on the vertical shaker with input frequencies from 1-100 Hz are necessary to

confirm the natural frequencies of vertical and yaw modes as well as the crossover frequency.

Pitch/roll mode should also be modeled and tested as this is one of the primary modes. In
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addition, floor vibration within the Chemistry Lab should be recorded to confirm the input

excitation frequencies to the system.

Before manufacturing, the Al hollow tube should be tested, and the frequency

response data can be used to compare against the natural frequencies from the FEA model.

This allows us to validate material constants, confirm the choices in constructing the FEA

model, and fine-tune the desirable sizes and locations of the openings in the tube. Once the

Al tube is machined, Viton gaskets should be added one layer at a time to investigate how

much damping each layer will contribute to the overall system, and whether thicker Viton

positively affects the responses of the VIS in the range of 1-100 Hz. As we discussed, O-rings

will be used between all metal-to-metal contacts, so an empirical or FEA study must be

done for these sandwiched O-rings as well. In order to characterize the transient response

of Viton, we will need to test the material samples separately with the DMTA method and

use the test data to extract the material parameters by the curve fitting process with the

fmincon function in MATLAB®. Alternatively, Abaqus has a built-in table to insert the

raw data for the FEA study of visco-hyperelastic materials.

Since we are using the Gauss-Legendre quadrature rules to perform numerical in-

tegration for magnetic damping, an additional study is necessary to investigate how many

integration points are minimum. A plot highlighting the percentage error and the conver-

gence of results versus the number of Gauss points being used is extremely helpful. To

validate the modeling methods, we can purchase the neodymium magnets with a strict con-

trol of magnetic strength and measure their remanence by a Gauss meter or a magnetometer.

These measurements are critical. This will allow us to verify the calculated magnetic flux

density B from the current sheet model and from the FEMM’s FEA model. Similar to the

FEA study for the hollow tube that depends largely on the accuracy of Young’s modulus of

Al, the magnetic damping will be easier to verify once the magnets’ strength is confirmed

through measurements. Future studies emphasizing on discretizing the conductor domain is

imperative to validate the magnetic damping calculations highlighted in this thesis because

such thick Cu plate has not been analyzed or experimented before.
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APPENDICES

Appendix A

LENGTH AND STIFFNESS CALCULATION FOR SPRINGS

1 function output = spring_length(Load_lbf ,Fi_lbf ,Lo_in ,OD_in ,d_in ,
2 theta_degree ,SS)
3 % Function takes 7 inputs
4 % Load_lbf = load per spring [lbf]
5 % Fi_lbf = initial tension [lbf]
6 % Lo_in = initial length [in]
7 % OD_in = outer diameter [in]
8 % d_in = wire diameter [in]
9 % theta_degree = angle of spring wrt main stage [degree]

10 % SS = 1 if spring is stainless steel , 0 if spring is music wire
11 % Function returns the length of spring in the axial , vetical direction &

the calculated spring stiffness as output = [axial_length ,
vertical_length , k]

12

13 if SS == 1
14 % Shigley pg .526. Stainless Steel 302, 304
15 G = 10; % [Mpsi]
16 E = 28; % [Mpsi]
17 elseif SS == 0
18 if d_in <= 0.032
19 % Shigley pg .526. Music Wire A228
20 G = 12; % [Mpsi]
21 E = 29.5; % [Mpsi]
22 elseif d_in > 0.032 && d_in <= 0.063
23 G = 11.85; % [Mpsi]
24 E = 29; % [Mpsi]
25 elseif d_in > 0.063 && d_in <= 0.125
26 G = 11.75; % [Mpsi]
27 E = 28.5; % [Mpsi]
28 elseif d_in > 0.125
29 G = 11.6; % [Mpsi]
30 E = 28; % [Mpsi]
31 end
32 end
33

34 D = OD_in - d_in;
35 C = D/d_in; % Spring index
36 KB = (4*C+2) /(4*C-3); % Max allowable stress
37 Nb = Lo_in/d_in - 2*C + 1; % # body coils
38 Na = Nb + G/E; % # active coils
39 k = ((d_in ^4)*G*10^6) /(8*(D^3)*Na); % G in [psi]
40 y = (Load_lbf - Fi_lbf)/k;
41 L = Lo_in + y;
42 axial_length = L;
43 vertical_length = L*sind(theta_degree);
44 output = [axial_length , vertical_length , k];
45

46 end
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Appendix B

SHAPE FUNCTIONS

1 % Initialize
2 clearvars; clc; close all;
3

4 % Mesh for xi and eta
5 [xi ,eta] = meshgrid ( -1:0.08:1);
6

7 % Colormap
8 colormap(jet);
9

10 % N1
11 N1 = 0.25*(1 - xi).*(1 - eta);
12 figure (1);
13 subplot (2,2,3);
14 surf(xi,eta ,N1);
15 grid on; grid minor;
16 xlabel('$\xi$','interpreter ','latex');
17 ylabel('$\eta$','interpreter ','latex ');
18 zlabel('$N_1(\xi ,\eta)$','interpreter ','latex');
19 set(gca ,'ticklabelinterpreter ','latex ');
20

21 % N2
22 N2 = 0.25*(1 + xi).*(1 - eta);
23 subplot (2,2,4);
24 surf(xi,eta ,N2);
25 grid on; grid minor;
26 xlabel('$\xi$','interpreter ','latex');
27 ylabel('$\eta$','interpreter ','latex ');
28 zlabel('$N_2(\xi ,\eta)$','interpreter ','latex');
29 set(gca ,'ticklabelinterpreter ','latex ');
30

31 % N3
32 N3 = 0.25*(1 + xi).*(1 + eta);
33 subplot (2,2,2);
34 surf(xi,eta ,N3);
35 grid on; grid minor;
36 xlabel('$\xi$','interpreter ','latex');
37 ylabel('$\eta$','interpreter ','latex ');
38 zlabel('$N_3(\xi ,\eta)$','interpreter ','latex');
39 set(gca ,'ticklabelinterpreter ','latex ');
40

41 % N4
42 N4 = 0.25*(1 - xi).*(1 + eta);
43 subplot (2,2,1);
44 surf(xi,eta ,N4);
45 grid on; grid minor;
46 xlabel('$\xi$','interpreter ','latex');
47 ylabel('$\eta$','interpreter ','latex ');
48 zlabel('$N_4(\xi ,\eta)$','interpreter ','latex');
49 set(gca ,'ticklabelinterpreter ','latex ');
50

51 % Combine all shape functions
52 figure (2);
53 surf(xi,eta ,N1);
54 hold on;
55 surf(xi,eta ,N2);
56 surf(xi,eta ,N3);
57 surf(xi,eta ,N4);
58 grid on; grid minor;
59 colormap(jet);
60 xlabel('$\xi$','interpreter ','latex');
61 ylabel('$\eta$','interpreter ','latex ');
62 zlabel('$N(\xi ,\eta)$','interpreter ','latex ');
63 set(gca ,'ticklabelinterpreter ','latex ');
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(a) Four linear shape functions for a 4 node element

(b) Four linear shape functions for a 4 node element

(c) Nine quadratic shape functions for a 9 node element

Figure B.1: Combined 2D shape functions
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Appendix C

GAUSS-LEGENDRE QUADRATURE RULES

C.1 Derivation of 3-point Gaussian Quadrature Formula

In order to accurately evaluate the integral of a 5 th-order polynomial, a Gaussian

formula with 3 sampling points must be used. Equation 3.49 is reproduced below∫ 1

−1
g(ξ) dξ =

np∑
k=1

g(ξk)wk

= g(ξ1)w1 + g(ξ2)w2 + g(ξ3)w3 (C.1)

where g(ξ) has the form

g(ξ) = a1 + a2ξ + a3ξ
2 + a4ξ

3 + a5ξ
4 + a6ξ

5 (C.2)

Evaluating the integral on the left-hand side gives∫ 1

−1
g(ξ) dξ = a1ξ

∣∣∣1
−1

+ a2
ξ2

2

∣∣∣1
−1

+ a2
ξ3

3

∣∣∣1
−1

+ a2
ξ4

4

∣∣∣1
−1

+ a2
ξ5

5

∣∣∣1
−1

+ a2
ξ6

6

∣∣∣1
−1

(C.3)

= 2a1 +
2

3
a3 +

2

5
a5 (C.4)

Substituting Equation C.2 to the right-hand side of Equation C.1 as well as substituting

Equation C.4 to the left-hand side of Equation C.1, we have

2a1 +
2

3
a3 +

2

5
a5 = w1

[
a1 + a2ξ1 + a3ξ

2
1 + a4ξ

3
1 + a5ξ

4
1 + a6ξ

5
1

]
(C.5)

+ w2
[
a1 + a2ξ2 + a3ξ

2
2 + a4ξ

3
2 + a5ξ

4
2 + a6ξ

5
2

]
(C.6)

+ w3
[
a1 + a2ξ3 + a3ξ

2
3 + a4ξ

3
3 + a5ξ

4
3 + a6ξ

5
3

]
(C.7)
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Collecting like terms gives a system of equations

w1 + w2 + w3 = 2

w1ξ1 + w2ξ2 + w3ξ3 = 0

w1ξ
2
1 + w2ξ

2
2 + w3ξ

2
3 =

2

3

w1ξ
3
1 + w2ξ

3
2 + w3ξ

3
3 = 0

w1ξ
4
1 + w2ξ

4
2 + w3ξ

4
3 =

2

5

w1ξ
5
1 + w2ξ

5
2 + w3ξ

5
3 = 0

(C.8)

There are too many unknowns in Equation C.8, so we shall assume that the integration

points are equally weighted and symmetrically spaced about the origin such that w1 = w3,

ξ2 = 0, and ξ1 = −ξ3. A reduced system of equations is as follows
2w1 + w2 = 2

2w1ξ
2
1 =

2

3

2w1ξ
4
1 =

2

5

(C.9)

Dividing the second equation by the third equation to solve for ξ1 and then solving for w1

and w2, we have the following results

w1 =
5

9

w2 =
8

9

ξ1 = ±
√

3

5

(C.10)

Repeating the process for other sampling points, we can derive other exact expressions,

which are shown in Table C.1. Although these exact fractional expressions are helpful,

decimal expressions are preferred in reality, especially when higher numbers of integration

points are needed since the derivation by hand is quite cumbersome.

C.2 Exact Expressions for the First 5 Gaussian Quadrature Points
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Table C.1: Exact expressions for Gauss-Legendre quadrature rules

# of points (np) Coordinates (ξk) Weighting factors (wk)

1 ξ1 = 0 w1 = 2

2
ξ1 =

−1√
3

w1 = 1

ξ2 =
1√
3

w2 = 1

3

ξ1 = −
√

3

5
w1 =

5

9

ξ2 = 0 w2 =
8

9

ξ3 =

√
3

5
w3 =

5

9

4

ξ1 = −

√
3

7
+

2

7

√
6

5
w1 =

18−
√

30

36

ξ2 = −

√
3

7
− 2

7

√
6

5
w2 =

18 +
√

30

36

ξ3 =

√
3

7
− 2

7

√
6

5
w3 =

18 +
√

30

36

ξ4 =

√
3

7
+

2

7

√
6

5
w4 =

18−
√

30

36

5

ξ1 = −1

3

√
5 + 2

√
10

7
w1 =

322− 13
√

70

900

ξ2 = −1

3

√
5− 2

√
10

7
w2 =

322 + 13
√

70

900

ξ3 = 0 w3 =
128

225

ξ4 =
1

3

√
5− 2

√
10

7
w4 =

322 + 13
√

70

900

ξ5 =
1

3

√
5 + 2

√
10

7
w5 =

322− 13
√

70

900
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Appendix D

MODE SHAPES OF 1/16-INCH VITON GASKET

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure D.1: First 4 out-of-plane mode shapes of the 1/16-inch Viton gasket
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Appendix E

FREQUENCY DOMAIN MEASUREMENT TECHNIQUES FOR THE
DYNAMIC PROPERTIES OF VISCOELASTIC MATERIALS

E.1 Dynamic, Mechanical, and Thermal Analyzer (DMTA)

A dynamic mechanical thermal analysis is often used to obtain the Young’s mod-

ulus of the materials as a function of temperature or frequency.35 A sample is held in place,

and an oscillating force is applied to the sample. The oscillating response is then recorded,

and modulus can be calculated from the elastic response whereas damping is calculated

from the viscous response.17 The phase lag will be 0° for purely elastic materials while it

will be 90° for purely viscous materials. Viscoelastic materials will exhibit an intermediate

phase difference.42 There are multiple modes of deformation depending on how the mate-

rials are used: dual/single cantilever, 3-point bend, shear sandwich, etc. Figure E.1 shows

an example of the equipment from TA Instruments.

Figure E.1: DMTA measurement system
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DMTA differs from other mechanical testing devices in two important ways.42

First, typical tensile test devices focus only on the elastic component. In many applications,

the inelastic, or viscous component, is critical. It is the viscous component that determines

properties such as impact resistance. Second, tensile test devices work primarily outside

the linear viscoelastic range. DMA works primarily in the linear viscoelastic range and is

therefore more sensitive to structure.

E.2 Oberst Beam

While the DMTA method is classified as a non-resonant technique, the Oberst

beam method belongs to the class of resonant methods.1 In this method, the beam is

excited by a non-contact exciter, and the response is monitored by an accelerometer. The

excitation can be a swept sinusoidal or random in nature. Depending on how the viscoelastic

layers are configured in the beam, the extracted parameter can be either tensile or shear

modulus. The method is adopted by The American Society for Testing and Materials as a

standard test procedure for quantifying the damping characteristics of viscoelastic materials

(ASTM E 756-93). Figure E.2 shows the schematic drawing of the Oberst beam test setup.

Figure E.2: Oberst beam test setup
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Appendix F

CALCULATING MAGNETIC FLUX DENSITY B

1 %% Magnetic Field Density B Calculation
2 function [B] = magfield_current(para ,r,z)
3

4 %% Extract parameters
5 L = para.L; % length of magnet
6 rmag = para.rmag; % radius of magnet
7 mu0 = para.mu0;
8 M0 = para.M0;
9

10 %% Equivalent current from magnetization
11 I = M0*L;
12

13 %% Warning for z < L/2
14 for zi = 1: length(z)
15 if z(zi) < L/2
16 disp('[WARNING] B field is calculated within magnet.');
17 disp('[WARNING] Check space grid for z again.');
18 pause;
19 end
20 end
21

22 %% Call Gauss function
23 G = 7;
24 [wt ,m] = gaussquad(G);
25 zp = (L/2)*m;
26

27 %% Calculate Br & Bz
28 for zi = 1: length(z)
29 for ri = 1: length(r)
30 for Gi = 1:G
31 % Compute elliptic integrals
32 k2 = 4*rmag*r(ri)/(( rmag + r(ri))^2 + (z(zi) - zp(Gi))^2);
33 [K,E] = ellipke(k2);
34

35 % Compute Br
36 Br_integrand = ((z(zi) - zp(Gi))/(r(ri)* ...
37 sqrt((rmag + r(ri))^2 + (z(zi) - zp(Gi))^2)))* ...
38 (-K + E*(rmag^2 + r(ri)^2 + (z(zi) - zp(Gi))^2)/ ...
39 ((rmag - r(ri))^2 + (z(zi) - zp(Gi))^2));
40 Bri(Gi ,1) = (L/2)*(mu0*I/(2*pi*L))*Br_integrand*wt(Gi);
41

42 % Compute Bz
43 Bz_integrand = (1/( sqrt((rmag + r(ri))^2 + (z(zi) ...
44 - zp(Gi))^2)))*(K + E*(rmag^2 - r(ri)^2 - (z(zi) - ...
45 zp(Gi))^2) /(( rmag - r(ri))^2 + (z(zi) - zp(Gi))^2));
46 Bzi(Gi ,1) = (L/2)*(mu0*I/(2*pi*L))*Bz_integrand*wt(Gi);
47 end
48 % Sum them up
49 B.Br(zi ,ri) = sum(Bri);
50 B.Bz(zi ,ri) = sum(Bzi);
51 end
52 end
53

54 end
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Appendix G

CALCULATING & PLOTTING EDDY CURRENT DENSITY

1 %% Find J for vertical mode
2 rstart = 1e-9;
3 rend = 2*para.rout;
4 r = linspace(rstart ,rend ,rn);
5 zdot = fn(1) *(0.001);
6 [Binf] = magfield_current(para ,r,zstart);
7 [Bfit] = magfield_current(para ,2* para.rout - r,zstart);
8 Jinf = para.sigma*Binf.Br*zdot;
9 Jimg = para.sigma*Bfit.Br*zdot;

10 for ri = 1: length(r)
11 if r(ri) <= para.rout
12 rJ(1,ri) = r(ri);
13 if Jinf(ri) <= Jimg(ri)
14 Jfit(1,ri) = 0;
15 else
16 Jfit(1,ri) = Jinf(ri) - Jimg(ri);
17 end
18 end
19 end
20

21 %% Plot J for vertical mode
22 figure (1);
23 plot(r*10^3,Jinf ,':','linewidth ' ,1.5,'displayname ','$J_{infinite }$');
24 hold on;
25 plot(r*10^3,Jimg ,':','linewidth ' ,1.5,'displayname ','$J_{imaginary }$');
26 plot(rJ*10^3,Jfit ,'linewidth ' ,1.5,'displayname ','$J_{finite }$');
27 grid on; grid minor;
28 set(gca ,'ticklabel ','latex ');
29 xlim ([0 2*para.rout *10^3]);
30 legend('location ','north ','interpreter ','latex ');
31 xlabel('r [mm]','interpreter ','latex ');
32 ylabel('Eddy current density J [$A/m^2$]','interpreter ','latex ');
33 plot ([0 para.rout *10^3] ,[ -0.001* max(Jinf) -0.001* max(Jinf)],'color ','k',...
34 'linewidth ',2,'handlevisibility ','off'); % plot conductor
35 text(para.rout *10^3 , -0.07* max(Jinf),'$\ uparrow$ $r_{conductor }^{ projected }$'

,...
36 'fontsize ',9,...
37 'verticalalignment ','bottom ','horizontalalignment ','center ',...
38 'interpreter ','latex '); % text box for conductor
39 plot ([0 para.rmag *10^3] ,[ -0.01* max(Jinf) -0.01* max(Jinf)],'color ','r',...
40 'linewidth ',2,'handlevisibility ','off'); % plot magnet
41 text(para.rmag *10^3 , -0.08* max(Jinf),'$\ uparrow$ $r_{magnet }$',...
42 'fontsize ',9,'color ','r',...
43 'verticalalignment ','bottom ','horizontalalignment ','center ',...
44 'interpreter ','latex '); % text box for magnet
45 title(strcat('Vertical velocity $\dot{z}$ =',...
46 sprintf(' %.2f',zdot *10^3) ,' mm/s'),...
47 'interpreter ','latex ');
48 hold off;
49

50 %% Find J for yaw mode
51 rstart = 1e-9;
52 rend = 2*para.rout;
53 r = linspace(rstart ,rend ,rn);
54 thetadot_lg = fn(1) *(0.001);
55 [Binf] = magfield_current(para ,r,zstart);
56 [Bfit] = magfield_current(para ,2* para.rout - r,zstart);
57 Jinf = para.sigma*sqrt(Binf.Bz.^2* thetadot_lg ^2 + Binf.Br.^2* thetadot_lg ^2);
58 Jimg = para.sigma*sqrt(Bfit.Bz.^2* thetadot_lg ^2 + Bfit.Br.^2* thetadot_lg ^2);
59 for ri = 1: length(r)
60 if r(ri) <= para.rout
61 rJ(1,ri) = r(ri);
62 if Jinf(ri) <= Jimg(ri)
63 Jfit(1,ri) = 0;
64 else
65 Jfit(1,ri) = Jinf(ri) - Jimg(ri);
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66 end
67 end
68 end
69

70 %% Plot J for yaw mode
71 figure (2);
72 plot(r*10^3,Jinf ,':','linewidth ' ,1.5,'displayname ','$J_{infinite }$');
73 hold on;
74 plot(r*10^3,Jimg ,':','linewidth ' ,1.5,'displayname ','$J_{imaginary }$');
75 plot(rJ*10^3,Jfit ,'linewidth ' ,1.5,'displayname ','$J_{finite }$');
76 grid on; grid minor;
77 set(gca ,'ticklabel ','latex ');
78 xlim ([0 2*para.rout *10^3]);
79 legend('location ','north ','interpreter ','latex ');
80 xlabel('r [mm]','interpreter ','latex ');
81 ylabel('Absolute Eddy current density J [$A/m^2$]','interpreter ','latex ');
82 plot ([0 para.rout *10^3] ,[ -0.001* max(Jinf) -0.001* max(Jinf)],'color ','k',...
83 'linewidth ',2,'handlevisibility ','off'); % plot conductor
84 text(para.rout *10^3 , -0.07* max(Jinf),'$\ uparrow$ $r_{conductor }^{ projected }$'

,...
85 'fontsize ',9,...
86 'verticalalignment ','bottom ','horizontalalignment ','center ',...
87 'interpreter ','latex '); % text box for conductor
88 plot ([0 para.rmag *10^3] ,[ -0.01* max(Jinf) -0.01* max(Jinf)],'color ','r',...
89 'linewidth ',2,'handlevisibility ','off'); % plot magnet
90 text(para.rmag *10^3 , -0.08* max(Jinf),'$\ uparrow$ $r_{magnet }$',...
91 'fontsize ',9,'color ','r',...
92 'verticalalignment ','bottom ','horizontalalignment ','center ',...
93 'interpreter ','latex '); % text box for magnet
94 title(strcat('Tangential arc velocity $\dot{\theta }$ =',...
95 sprintf(' %.2f',thetadot_lg *10^3) ,' mm/s'),...
96 'interpreter ','latex ');
97 hold off;
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Appendix H

CALCULATING MOTIONAL DAMPING COEFFICIENT

1 %% Find motional damping coefficient caused by Eddy Current from 1 magnet
2 function [Cver ,Crot] = motionalcoeff(para ,z)
3

4 %% Extract parameters
5 sigma = para.sigma;
6 del = para.del;
7 rout = para.rout;
8 rin = para.rin;
9

10 %% Call Gauss function
11 G = 10;
12 [wt ,m] = gaussquad(G);
13 rm = ((rout - rin)/2)*m + (rout + rin)/2;
14

15 %% Find integral for infinite plate from 1 magnet
16 for Gi = 1:G
17 % Find B at the quadrature point
18 [Binf] = magfield_current(para ,rm(Gi),z);
19

20 % Find Cver at quadrature points
21 Iver_inf_i(Gi ,1) = rm(Gi)*(Binf.Br^2)*((rout -rin)/2)*wt(Gi);
22

23 % Find Crot at quadrature points
24 Irot_inf_i(Gi ,1) = rm(Gi)*(Binf.Br^2 + Binf.Bz^2)*((rout -rin)/2)*wt(Gi);
25 end
26

27 % Sum them up
28 Iver_inf = sum(Iver_inf_i);
29 Irot_inf = sum(Irot_inf_i);
30

31 %% Find integral for imaginary eddy current from 1 magnet
32 for Gi = 1:G
33 % Find B at the quadrature point
34 [Bimg] = magfield_current(para ,2*rout -rm(Gi),z);
35

36 % Find Cver at quadrature points
37 Iver_img_i(Gi ,1) = rm(Gi)*(Bimg.Br^2)*((rout -rin)/2)*wt(Gi);
38

39 % Find Crot at quadrature points
40 Irot_img_i(Gi ,1) = rm(Gi)*(Bimg.Br^2 + Bimg.Bz^2)*((rout -rin)/2)*wt(Gi);
41 end
42

43 % Sum them up
44 Iver_img = sum(Iver_img_i);
45 Irot_img = sum(Irot_img_i);
46

47 %% Find overall vertical motional damping coeff using the image method
48 if Iver_inf - Iver_img <= 0
49 Cver = 0;
50 else
51 Cver = sigma *(2*pi)*del*( Iver_inf - Iver_img);
52 end
53

54 %% Find overall rotational motional damping coeff using the image method
55 if Irot_inf - Irot_img <= 0
56 Crot = 0;
57 else
58 Crot = sigma *(2*pi)*del*( Irot_inf - Irot_img);
59 end
60

61 end
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Appendix I

ANIMATION CODE FOR TIME DOMAIN RESPONSES

1 %% Prep for animation window
2 w = stage_radius *2*10^3; [mm]
3 h = 0.0254*10^3; [mm]
4

5 % Define plot size
6 figure (3);
7 set(gcf ,'position ' ,[250 200 1200 600]);
8

9 % Define x-related variables for vertical mode
10 xcenter = 0;
11 x1 = xcenter - w/2;
12 x2 = xcenter + w/2;
13 x3 = xcenter + w/2;
14 x4 = xcenter - w/2;
15 X = [x1 x2 x3 x4 x1];
16

17 % Define y-related variables for vertical mode
18 ycenter = z(1,2) *10^3;
19 y1 = ycenter - h/2;
20 y2 = ycenter - h/2;
21 y3 = ycenter + h/2;
22 y4 = ycenter + h/2;
23 Y = [y1 y2 y3 y4 y1];
24

25 % Normalize parameters time subplot for vertical mode
26 timenorm_z = t_z/tspanz (2);
27 posnorm_z = z(1,2)/y0(2,1);
28

29 % Normalize parameter for time subplot for yaw mode
30 timenorm_theta = t_theta/tspantheta (2);
31 posnorm_theta = theta (1,2)/theta0 (2,1);
32

33 % Position subplot for vertical mode
34 subplot (2,2,1);
35 z1 = plot(X,Y,'linewidth ' ,1.5,'color ' ,[0.8500 0.3250 0.0980]);
36 hold on;
37 z2 = plot(xcenter ,ycenter ,'.','markersize ',15,'color ' ,[0 0.4470 0.7410]);
38 grid on; grid minor;
39 axis equal;
40 xlim ([ -0.6*w 0.6*w]);
41 ylim ([ -0.8*h 0.8*h]);
42 xlabel('X distance (mm)','interpreter ','latex');
43 ylabel('Y distance (mm)','interpreter ','latex');
44 set(gca ,'ticklabel ','latex ');
45 tt1 = title(sprintf('Time = %.1f s',t_z (1)),'interpreter ','latex ');
46 hold off;
47

48 % Time subplot for vertical mode
49 subplot (2,2,2);
50 z3 = plot(timenorm_z (1),posnorm_z (1),'.','markersize ' ,15);
51 hold on;
52 z4 = plot(timenorm_z (1),posnorm_z (1),'linewidth ' ,0.7,'color ' ,[0 0.4470

0.7410]);
53 grid on; grid minor;
54 axis equal;
55 xlim ([0 tspanz (2)]);
56 ylim([-1 1]);
57 xlabel('Time (s)','interpreter ','latex ');
58 ylabel('Normalized amplitude ','interpreter ','latex');
59 set(gca ,'ticklabel ','latex ');
60 title(strcat('Initial vertical displacement = ',...
61 sprintf(' %.3f',y0(2)),' m'),...
62 'interpreter ','latex ');
63 hold off;
64

65 % Position subplot for yaw mode
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66 subplot (2,2,3);
67 t1 = plot(stage_radius *10^3* cos(theta0 (2)),stage_radius *10^3* sin(theta0 (2)),

'.','markersize ' ,15);
68 hold on;
69 pos = [-stage_radius -stage_radius stage_radius *2 stage_radius *2]*10^3;
70 t2 = rectangle('Position ',pos ,'Curvature ' ,[1 1],'linewidth ' ,1.5,'edgecolor '

,[0.8500 0.3250 0.0980]);
71 axis equal;
72 grid on; grid minor;
73 xlim ([ -0.6*w 0.6*w]);
74 ylim ([ -0.35* stage_radius *10^3 0.35* stage_radius *10^3]);
75 xlabel('X distance (mm)','interpreter ','latex');
76 ylabel('Y distance (mm)','interpreter ','latex');
77 set(gca ,'ticklabel ','latex ');
78 tt2 = title(sprintf('Time = %.1f s',t_theta (1)),'interpreter ','latex ');
79 hold off;
80

81 % Time subplot for yaw mode
82 subplot (2,2,4);
83 t3 = plot(timenorm_theta (1),posnorm_theta (1),'.','markersize ' ,15);
84 hold on;
85 t4 = plot(timenorm_theta (1),posnorm_theta (1),'linewidth ' ,0.7,'color ' ,[0

0.4470 0.7410]);
86 grid on; grid minor;
87 axis equal;
88 xlim ([0 tspantheta (2)]);
89 ylim([-1 1]);
90 xlabel('Time (s)','interpreter ','latex ');
91 ylabel('Normalized amplitude ','interpreter ','latex');
92 set(gca ,'ticklabel ','latex ');
93 title(strcat('Initial angular displacement = ',...
94 sprintf(' %.3f',theta0_deg),'$^o$'),...
95 'interpreter ','latex ');
96 hold off;
97

98 %% Update vertical animation
99 figure (3);

100 tic;
101 for ni = 1: length(t_z)
102 % Update position -related variables for vertical mode
103 ycenter = z(ni ,2) *10^3;
104 y1 = ycenter - h/2;
105 y2 = ycenter - h/2;
106 y3 = ycenter + h/2;
107 y4 = ycenter + h/2;
108 Y = [y1 y2 y3 y4 y1];
109

110 % Update position subplot for vertical mode
111 z1.YData = Y;
112 set(tt1 ,'string ',sprintf('Time = %.1f s',t_z(ni)));
113 z2.YData = ycenter;
114

115 % Update time -related variables for vertical mode
116 timenorm_z = t_z(ni)/tspanz (2);
117 posnorm_z = z(ni ,2)/y0(2,1);
118 timeseries_z(ni ,1) = timenorm_z;
119 posseries_z(ni ,1) = posnorm_z;
120

121 % Update time subplot for vertical mode
122 set(z3 ,'xdata ',timenorm_z*tspanz (2),'ydata ',posnorm_z);
123 set(z4 ,'xdata ',timeseries_z*tspanz (2),'ydata ',posseries_z);
124

125 % Control frame
126 pause (0.0030);
127

128 % Store frames
129 frame1(ni ,1) = getframe(figure (3));
130

131 end
132 toc;
133 clear timeseries_z posseries_z;
134

135 %% Update yaw animation
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136 figure (3);
137 tic;
138 for mi = 1: length(t_theta)
139 % Update position subplot for yaw mode
140 t1.XData = stage_radius*cos(theta(mi ,2))*10^3;
141 t1.YData = stage_radius*sin(theta(mi ,2))*10^3;
142 set(tt2 ,'string ',sprintf('Time = %.1f s',t_theta(mi)));
143

144 % Update time -related variables for yaw mode
145 timenorm_theta = t_theta(mi)/tspantheta (2);
146 posnorm_theta = theta(mi ,2)/theta0 (2,1);
147 timeseries_theta(mi ,1) = timenorm_theta;
148 posseries_theta(mi ,1) = posnorm_theta;
149

150 % Update time -subplot routine for yaw mode
151 set(t3 ,'xdata ',timenorm_theta*tspantheta (2),'ydata ',posnorm_theta);
152 set(t4 ,'xdata ',timeseries_theta*tspantheta (2),'ydata ',posseries_theta);
153

154 % Control frame
155 pause (0.008);
156

157 % Store frames
158 frame2(mi ,1) = getframe(figure (3));
159

160 end
161 toc;
162 clear timeseries_theta posseries_theta;
163

164 %% Make GIF
165 % Turn frames to images for vertical mode
166 for g1i = 1: length(t_z)
167 im1{g1i ,1} = frame2im(frame1(g1i));
168 end
169

170 % Turn images to GIF for vertical mode
171 count1 = 0;
172 filename = 'animation_full.gif';
173 for g1i = 1:17: size(im1 ,1)
174 [A,map] = rgb2ind(im1{g1i ,1} ,256);
175 if g1i == 1
176 imwrite(A,map ,filename ,'gif','LoopCount ',Inf ,'DelayTime ' ,0);
177 else
178 imwrite(A,map ,filename ,'gif','WriteMode ','append ','DelayTime ' ,0);
179 end
180 count1 = count1 + 1;
181 end
182

183 % Turn frames to images for yaw mode
184 for g2i = 1:( length(t_theta))
185 im2{g2i ,1} = frame2im(frame2(g2i));
186 end
187

188 % Turn images to GIF for yaw mode
189 count2 = 0;
190 for g2i = 1:9: size(im2 ,1)
191 [A,map] = rgb2ind(im2{g2i ,1} ,256);
192 if g2i == 2 % don 't need this since we append the yaw mode to vertical

mode
193 imwrite(A,map ,filename ,'gif','LoopCount ',Inf ,'DelayTime ' ,0);
194 else
195 imwrite(A,map ,filename ,'gif','WriteMode ','append ','DelayTime ' ,0);
196 end
197 count2 = count2 + 1;
198 end
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